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We propose a general method for modeling transformation paths of multiphase materials such that elastic 
moduli can be fitted exactly. The energy landscape obtained in this way is global and automatically enjoys the 
correct symmetries. The method is applied to the triple point of zirconia, where tetragonal, orthorhombic 
�orthoI�, and monoclinic phases meet. An explicit and relatively simple expression yields a phenomenological 
model in the two-dimensional space spanned by a set of order parameters. We also show how to extend this 
energy to a fully three-dimensional model with an exact fit of all given elastic moduli. 
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I. INTRODUCTION 

We propose a method to derive an explicit phenomeno­
logical model of several coexisting stable phases and the 
relevant transformation paths. The focus is on solid-solid 
phase transitions. A detailed understanding of the transfor­
mation mechanisms is essential both for theory and applica­
tions of phase transitions. In theory, the framework of the 
analysis of solid-solid phase transformations is well estab­
lished. Since diffusion and reordering processes are usually 
negligible, these materials can be well approximated in the 
realm of nonlinear elasticity. In practice, any constitutive 
modeling requires an explicit expression for the energy den­
sity. It is remarkable that there are very few explicit energy 
densities available for three space dimensions that interpolate 
key data such as elastic moduli exactly. 

The relative shortage of explicit expressions for energy 
functions is even more surprising in the light of the subject’s 
long history. The analysis of strain- and temperature-
dependent energy functions was initiated by Landau.1 A 
more recent line of investigation based on the Cauchy-Born 
hypothesis in continuum mechanics can be traced back to 
Ericksen.2 A common method for deriving energy densities is 
to expand the energy function in invariant polynomials of the 
lowest order and fit as many degrees of freedom as possible 
or to obtain a best fit in some error norm. As for the triple 
point of zirconia �ZrO2�, when working with an expansion in 
invariant polynomials, it requires considerable ingenuity to 
obtain a reasonable or good match of most moduli;3 not all 
moduli can be fitted this way, let alone further information of 
the transformation path. This observation is not surprising 
given that polynomials offer little flexibility to control the 
energy along �transformation� paths. It has been observed4 

that the minimal set of order parameters may lead to unreal­
istically high estimates for the thermal activation energy. 
Consequently, to determine the energy barrier correctly, non-
symmetry-breaking order parameters or—more 
specifically—invariant polynomials of higher order are em­
ployed in Ref. 4. With the advent of ab initio calculations, 
data for the transformation point become available, and it is 
thus reasonable to ask for a method that can provide an exact 
reproduction of experimental data obtained along the entire 

transformation path, including data at the stable phases. With 
regard both to the theory and applications of solid phase 
transitions, there is a general interest in devising a method­
ology that allows for the integration of experimental data for 
multiphase materials into the energy density via a straight­
forward and phenomenological yet natural approach. 

To achieve this aim, we propose an intuitive method. The 
stable phases are first connected by a path that mimics the 
kinematic transformation path �if measurements are avail­
able�. The path is modeled in the space of invariant polyno­
mials so that the correct symmetries are automatically en­
sured. In Fig. 1 �top panel� such a path is visualized for a 
material with three stable phases. The wells in the figure 
indicate the respective elastic moduli and �0, �1, and �2 are 
the symmetry-adapted coordinates we employ to deal with 
the crystalline symmetry �see Sec. II C below for details�. 
The path is parametrized by a suitable invariant, here �0. We  
remark that in general the symmetry-adapted coordinates 
may form a collection of manifolds. The framework pre­
sented here allows for, under weak assumptions, a reduction 
of this nonlinear setting to a linear one, without loss of gen­
erality. Consequently, the coordinates are visualized as a 
plane in Fig. 1. A  profile then models the energy along the 
path and thus has minima at the stable phases and energy 
barriers in between �see Fig. 1 �middle panel��. In addition, 
we model the growth of the energy away from the path. 
Here, a quadratic growth is chosen, which is sufficient and 
keeps the global order low. We first construct at each stable 
phase a paraboloid that interpolates the elastic moduli lo­
cally and then interpolate between them along the path. This 
interpolation can be interpreted as a continuously deforming 
paraboloid that slides along the profile curve and blends one 
locally fitted paraboloid into the next �see Fig. 1 �bottom 
panel��. A plot of a schematic energy landscape obtained this 
way is shown in Fig. 2. In Sec. III we explain why this 
ansatz gives enough freedom to fit all elastic moduli exactly. 

To demonstrate that this approach is capable of fitting 
available data, we consider zirconia as a case study. This 
choice is motivated by Gibb’s phase rule, according to which 
a one-component system can have at most three phases in 
coexistence, namely, at the triple point, which occurs at one 
specific combination of pressure and temperature. Thus, a 
triple point is the most complicated scenario for single­
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FIG. 1. Top panel: visualization of the input data in a space of 
invariant polynomials of the strain tensor �see Sec. II C�. Here, the 
space of invariant polynomials is visualized as a plane. The stable 
phases are marked by spheres and the moduli are indicated by qua­
dratic wells around the phases. A transformation path p connecting 
the stable phases is indicated as a solid line. It is defined in the 
space of invariant polynomials and parametrized by the order pa­
rameter �0. Middle panel: a profile �p �dashed� is defined along the 
path. Bottom panel: the growth away from the path is modeled by a 
family of paraboloids parametrized by the path so that the given 
elastic moduli are interpolated. 

component materials. Zirconia has a triple point with tetrag­
onal, orthorhombic �orthoI�, and monoclinic phases in coex­
istence. While the analysis of phase transformations in 
zirconia is of interest for applications such as toughening of 
ceramics, the high pressure and temperature at the triple 
point render experimental investigations difficult. Numerical 
simulations offer an alternative. Yet, they are currently ham­
pered by a lack of a simple energy function that has mini­
mizers only at experimentally observed phases and fits avail­
able experimental data exactly. We give such an expression 
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FIG. 2. A schematic plot of the final energy landscape. 

in Sec. III C and present some numerical simulations in Sec. 
IV. 

For the triple point of zirconia, a simple count of the 
degrees of freedoms shows that an invariant polynomial of 
the lowest order does not offer enough parameters to match 
all moduli. Higher-order invariant polynomials provide a the­
oretical remedy for this problem but are rarely used in prac­
tice. One problem is that the calculations for the derivation 
become very cumbersome and it can be hard to verify that 
higher-order polynomials do not introduce spurious minima. 
In addition, the steep growth of higher-order polynomials 
often poses a challenge for simulations. At present, the ge­
neric Landau strain-energy function constructed by Truski­
novsky and Zanzotto5 and its augmentation by four new cou­
pling terms to fit experimental data3 seem to be the best 
three-dimensional energies for zirconia available. In two 
space dimensions, an approach using splines is able to match 
all available moduli exactly.6 While the path from the tetrag­
onal phase to an orthorhombic minimum for a polynomial 
energy of the lowest order is extremely shallow, splines offer 
enough flexibility to model a significant energy barrier. 
Straightforward numerical simulations with a spline energy 
can capture the corresponding pattern formation, while they 
fail to do so for a polynomial energy.6 However, the spline 
energy of Ref. 6 itself involves a finite element simulation 
and cannot be written down in a simple and concise form; it 
is also not evident how to extend it to three dimensions. 

The energy of Ref. 6 is continuously differentiable �C1� 
and the authors report that no spurious effects stemming 
from the discontinuity in the elastic moduli were ever ob­
served in numerical studies of boundary-value problems. 
This is in line with other simulations with piecewise defined 
C1 energy densities.7 However, we derive here an energy that 
is twice continuously differentiable �C2� since the relevant 
data involve derivatives up to the second order. Moreover, 
the construction could easily be extended to fit an energy 
density with an arbitrary degree of smoothness. 

The framework proposed in this paper renders the task of 
fitting parameters a profoundly simple one. This could sig­
nify that the construction has a deeper physical significance. 
Specifically, for a transition characterized by the softening of 
a modulus �such as the tetragonal-orthorhombic transition 
considered here�, the chosen path seems to capture the soft­
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FIG. 3. Tetragonal phase with lattice parameters a and b; c1, c2, 
and c3 denote the axes. 

ening remarkably well. Polynomials, on the other hand, are 
in general too rigid to accurately model a path determined by 
a softening direction. Further, a polynomial expansion of the 
energy for CuAlNi �Ref. 8� does not match all elastic moduli, 
while an approach similar to the one advocated here does 
provide a perfect fit for InTl,9 which, such as CuZnAl, can 
undergo a cubic-to-monoclinic transition. In general, non-
polynomial energy densities have been found to be a good 
approximation for InTl.10 

II. RELEVANT DATA FOR ZIRCONIA 

A. Transformation paths in zirconia 

Zirconia has a triple point near 1.8 GPa and 840 K, where 
tetragonal �t�, orthorhombic �o�, and monoclinic �m� phases 
meet. A quick review of the crystallographic aspects of these 
phases is included here for the reader’s convenience. We 
choose the tetragonal phase as the reference configuration 
�see Fig. 3 for the relevant primitive tetragonal Bravais lat­
tice�. The lattice is spanned by three mutually orthogonal 
basis vectors c1, c2, and c3. It is easy to verify that Rc

� 
1 

and 
Rc

�

3 

/2 generate the tetragonal point group T3, where Rc 
� de­

notes the rotation with an angle � about axis c �only 
orientation-preserving symmetry operations are considered 
in this paper�. We restrict the crystallographic discussion to 
skeletal lattices; a visualization of the movements of the at­
oms inside the skeletal lattices is given in Ref. 3. 

There are two orthorhombic and five monoclinic sub­
groups and it can be seen that there are four essentially dif­
ferent t-o-m paths,5 going from the tetragonal phase through 
an orthorhombic to a monoclinic phase. Based on the best-
established t-o orientational relationship of the respective 
axes and the coordination of O atoms with the Zr atoms, a 
transition path has been suggested5 which involves the 
monoclinic group M3 ª �1,R� 

c3 
� generated by Rc3 

and the 
orthorhombic group O123 ª �1,Rc1

,Rc2
,R� 

c3 
�. Though alterna­

tive kinematic paths for the phase transformations in zirconia 
have been suggested �e.g., Refs. 11 and 12�, we follow Ref. 
5 in considering the transformation mechanism 
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TABLE I. The minima in strain space calculated for 1.8 GPa 
and 840 K from data for the relevant lattice parameters in the Ap­
pendix of Ref. 3. The data is rounded to the 5th digit. 

Tetragonal Orthorhombic Monoclinic 

e1 0.0 9.39046�10−3 4.68924� 10−2 

e2 0.0 −5.39105�10−3 8.50962� 10−3 

e3 0.0 1.71769�10−2 −5.33516�10−4 

e4 0.0 0.0 0.0 

e5 0.0 0.0 0.0 

e6 0.0 0.0 −3.28543�10−1 

T3 → O123 → M3. 

It is known that the bifurcation associated with the transition 
T3 →O123 originates from the softening of the tetragonal 
modulus C11−C12, while the path T3 → M3 does not directly 
correspond to a softening of a tetragonal modulus.3 This 
seems natural in the light of the separation of the tetragonal 
and the monoclinic phases by the orthorhombic phase which 
makes the T3 → M3 transition appear as consecutive bifurca­
tion. 

The cubic, tetragonal, and monoclinic phases of ZrO2 
have been investigated with lattice dynamics in Ref. 13, 
where the phonon vibrations and the density of states for 
those phases were determined with the VASP code for 
ground-state calculations combined with the direct method 
for dynamics. 

B. Coordinates of the stable phases 

Let y�x� denote the deformation at a point x. The free-
energy density per unit reference volume, henceforth energy 
function for short, is a function of the deformation gradient 
Fjk ª �

�

x

y

k

j . By frame indifference, the energy function � can 
be written as a function of CªFTF or equivalently in terms 
of the Green–St. Venant strain tensor Eª 2

1 �FTF− Id�. In Voi­
gt’s notation, 

�
1 1 

�
e1 e6 e52 2 

1 1 
E = e6 e2 e4 ,

2 2 

1 1 
e5 e4 e32 2 

with ej �R, j=1, . . . ,6. The energy �=��e1 ,  . . .  ,e6� has to 
be invariant under the tetragonal point group T3. 

We calculate the position of the t-o-m phases in strain 
space for 1.8 GPa and 840 K from the data for the relevant 
lattice parameters in Ref. 3. The location of the t-o-m phases 
in strain space is listed in Table I. 

C. Symmetry constraints 

For the t-o-m transition under consideration, a set of order 
parameters is given by e1−e2 and e6. Since the transition at 
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the triple point can be described in terms of the order param- TABLE II. The location of the minima in orbit space calculated 
eters only, we first derive an energy in e1, e2, and e6 and later for the strain data given in Table I. The polynomials �4 ,  . . .  ,�7 in 

augment this energy to an energy that depends on the full Eq. �3� as well as �8 and �9 in Eq. �5� vanish at all three phases. 

strain tensor. Both for the reduced and the full set of strain The data is rounded to the 5th digit. 

variables, we first identify a suitable basis �a Hilbert basis; 
see Sec. II C 1� of polynomials �ª ��0 ,  . . .  ,�n−1�, where Tetragonal Orthorhombic Monoclinic 

each polynomial depends on the strain variables. We then 
construct the energy as a function ���� and finally the en­
ergy in strain space for eª �e1 ,  . . .  ,e6� is ��e�ª����e��. 

We remark that the choice of the order parameters in­
volves an assumption. To describe the microscopic deforma­

�0 0.0 2.18493�10−4 1.47324�10−3 

�1 0.0 3.99941�10−3 5.54020�10−2 

�2 0.0 0.0 1.07941�10−1 

�3 0.0 1.71769�10−2 −5.33516�10−4 

tion of the lattice in a macroscopic manner, we follow the 
conventional assumption that the Cauchy-Born hypothesis 
applies; this hypothesis states that the microscopic lattice 
deforms according to the macroscopic deformation. Since we 

We observe that any function of the polynomials in Eq. 
�1� automatically enjoys the correct symmetry. Points in the 

wish to contrast the method presented here with the polyno­
mial expansion going back to Landau, we follow Refs. 3 and 

strain space that are mapped to each other under tetragonal 
symmetry are mapped by �ª ��0 ,�1 ,�2� to the same point, 

5 and consider order parameters which are functions of the while points that are not symmetry related are mapped to 
strain as described above. Since the transformation can be different points by �. The map � is, as �0, �1, and �2 a 
well described by the deformation of one lattice supercell, function of the strain; it identifies points in the strain space 
this seems appropriate. The analysis of phase transitions that which are mapped to each other under the symmetry group. 
cannot be described in this framework is the topic of a future The map � is thus injective on a fundamental domain; one 
investigation. Of particular interest in this instance are phase way of visualizing � is to think of it as a function that maps 
transitions of multilattices; then, the relative shift of the lat­ the entire strain space to a suitably deformed fundamental 
tices can take place in a way which violates the Cauchy-Born domain. The deformation is such that points on the boundary 
hypothesis. Thus, the relevant shift has to be incorporated as of the fundamental domain are identified as appropriate. This 
an additional order parameter in the energy.14 While this identification facilitates the definition of the energy, as can be 
complicates the modeling, the principal ideas laid out in this 
paper essentially extend to the situation of Ref. 14. 

seen in the toy model of the invariance being defined by a 
rotation about � 

2 in R2; any quadrant is a fundamental do­

1. Invariants for the Landau contribution 
main. If one tries to define the energy on a quadrant then one 
needs to take into account that points on the boundaries are 

The first step in the construction is to incorporate the sym­ identified �mapped to each other under the symmetry group� 
metry constraints of the tetragonal point group. As the order in a pairwise manner. This imposes a constraint on the en-
parameters show, the t-o-m symmetry breaking takes place in ergy function. The map � would in this case map the model 
the c1 −c2 plane shown in Fig. 3. Thus, we restrict our atten­ strain space R2 to the surface of a cone obtained by taking 
tion to the corresponding two-dimensional subspace spanned the fundamental domain �quadrant� and gluing together the 
by c1 and c2; the strain space is then spanned by the three boundaries pointwise �e.g., identifying �x ,0� with �0,x� for 
strain variables e1, e2, and e6. For this subspace, the three x �R for the quadrant ��x , y� �x�0,  y �0��. Thus, the con-
polynomials straint that points have to be identified disappears when the 

�0�e1,e2,e6� ª �e1 − e2�2 , 
map � is applied to the strain space, and the definition of the 
energy function simplifies significantly. The image of the 

�1�e1,e2,e6� ª e1 + e2, 
strain space R3 under the map � is called orbit space. Any 
function defined in orbit space automatically exhibits the cor­

�2�e1,e2,e6� ª e6 
2 �1� 

rect symmetries. Here, the orbit space for the Landau contri­
bution is the quadrant 

are invariant under the �restriction of the� tetragonal point 
group. In addition, these polynomials have the special prop­

���0,�1,�2���0 � 0, �2 � 0� , �2� 

erty that every polynomial �̃ with this invariance can be and the position of the stable phases in orbit space is re­
written as �̃�e1 , e2 ,e6�= P��0 , �1 ,�2� for some polynomial corded in Table II. 
P. The mathematical background for this statement is given 
in Refs. 6 and 15. In a nutshell, by Hilbert’s theorem,16 there 
is a basis �0 ,  . . .  ,�n−1 such that every invariant polynomial 
can be written as a polynomial of the polynomial basis, and 

2. Invariants in the three-dimensional setting 

Analogous to the two-dimensional basis in Eq. �1�, the 
eight invariant polynomials 

by Chevalley’s17 theorem, there has to be a basis with n=3 
elements for the tetragonal point group. Since the polynomi­

�0�e1,  . . .  ,e6� ª �e1 − e2�2 , 

als in Eq. �1� are of lowest degree, they form such a basis. 
For us, it is convenient to introduce invariants in the order �1�e1,  . . .  ,e6� ª e1 + e2, 

parameters e1 −e2 and e6, which is why the basis chosen here 
differs from the one in Ref. 6. �2�e1,  . . .  ,e6� ª e6 

2 , 
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�3�e1,  . . . ,e6� ª e3, 

2 2�4�e1,  . . . ,e6� ª e4 + e5, 

2 2�5�e1,  . . . ,e6� ª e4e5, 

�6�e1,  . . . ,e6� ª e4e5e6, 

2 2�7�e1,  . . . ,e6� ª e1e4 + e2e5 �3� 

form a basis in the three-dimensional setting for the full 
strain tensor with strain variables e1 ,  . . .  ,e6. 

We computed these invariants with the library FINVAR.LIB 

of SINGULAR.18 However, tetragonal invariants can also be 
read off from the literature.19 In the three-dimensional set­
ting, we employ the same notation and terminology as pre­
sented for the Landau framework in Sec. II C 1. 

We remark that it is also possible to work in symmetry-
adapted coordinates, e.g., y1 ªe1+e2+e3 to characterize ho­
mogeneous dilations, y2 ª �

1
6 
�e1+e2−2e3�, y3 ª �

1
2 
�e1−e2�, 

yj ªej for j � �4,5 ,6�. This has been done successfully in 
Ref. 3 to simplify the calculations. Yet, in the framework 
presented here, it is not less convenient to work directly in 
strain coordinates. 

III. PATH-PROFILE CONSTRUCTION 

A. Concept 

The proposed construction relies on three simple ingredi­
ents: a path in the orbit space to model the kinematic trans­
formation path, a profile to model the energy along the path, 
and a paraboloid to model the growth away from the path. 

The invariance of the energy will be automatically ob­
tained by deriving the energy in the space of invariants, that 
is, the image of the strain space under the mapping �
ª ��0 ,  . . .  ,�n−1�; in the two-dimensional Landau setting, we 
have n=3 �see Sec. II C 1�, while n =8 in the full three-
dimensional setting �see Sec. II C 2�. 

The path must interpolate all stable phases. Here, we se­
lect one order parameter to parametrize the path. Specifically, 
we work with �0, though other choices are possible as well. 
Since �0 is an order parameter, its evaluations at the tetrag­
onal, orthorhombic, and monoclinic phases are mutually dif­
ferent. The ordering is such that the orthorhombic phase 
separates the tetragonal phase on the left from the mono­
clinic phase on the right. We then construct a mapping 
� :R Rn−1 that interpolates the three phases located at �� 

�
→

� ��= ��0 ,  . . .  ,�n−1� for �� �t ,o ,m� in the sense that ���0 
= ��1 

� ,  . . .  ,�� 
n−1�. Note that the n−1 components � j of � can 

be modeled independently of each other. The path p can then 
be seen either as the graph of the function �, that is, p
ª �(�0 ,���0�) ��0 �R��Rn, or as the zero set of the map­
ping 

�:Rn Rn−1, � � ��i − �i��0��i=1,. . .,n−1,→ 

p= ���Rn �����= �0,  . . .  ,0��; then �t ,�o ,�m � p. This path 
approximates the kinematic transition path and it would not 
be difficult to accommodate any explicit knowledge of the 
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transformation path such as the position of saddle points of 
the energy. For zirconia, no exact data seems to be available 
for the kinematic transformation path other than the position 
of the stable phases; we thus choose a path that simply in­
terpolates between the stable phases. Some care must be 
taken that the path remains within the orbit space ��R3� for 
the Landau part, respectively, ��R6� in the three-dimensional 
setting. This is since the orbit space is defined by homoge­
neous polynomials, which results in a half-space if the de­
gree is even. For example, the orbit space �2� for the Landau 
contribution in Sec. II C 1  is only a quadrant of R3 because 
�0 and �2 are polynomials of even degree. 

The profile must have global minima at the stable phases, 
and without loss of generality, we can choose zero as the 
value there. We remark that the method proposed here is also 
suited for fitting wells of unequal height, for example, for a 
loading experiment. Let �p :R R+

0 denote the energy along →
the path. This profile models the energy barriers �that is, 
saddles in the three-dimensional energy landscape� and the 
wells along the path p. Figure 1 �middle panel� shows such a 
profile construction. 

Finally, a paraboloid is employed to model the growth of 
the energy away from the transition path. This choice mirrors 
the ansatz with invariant polynomials of the lowest order. 
Using quadratic functions for this purpose results in the 
slowest possible growth of the energy for which the moduli 
can be fitted and simultaneously yields the lowest degree 
functions of the invariants. In order to fit the moduli of elas­
tic phases at the boundary of the orbit space, we need further 
to include a linear contribution in the invariant polynomials 
of even degree �cf. the linear behavior in �0 for the stable 
phase at the boundary in Fig. 1�. Together with a properly 
chosen path and profile, the combination of linear and qua­
dratic contributions allows us to match all prescribed elastic 
moduli at given phases exactly. The paraboloid can be 
thought of as a lowest-order ansatz to match elastic moduli at 
one phase and then modify it continuously along the path so 
as to match the moduli at the other phases as well. This is 
along a similar vein to a lowest-order polynomial ansatz, but 
the sliding paraboloid does not force us to compromise on 
the quality of the approximation at some phases. In the ex­
amples discussed below, it is immediately obvious that the 
interpolated paraboloid remains positive definite, while the 
linear contributions for quadratic invariants are always non­
negative. We denote the paraboloid by H :R R�n−1���n−1� →
with H= �hjk� j,k=1,. . .,n−1 and remark that it suffices to choose 
H symmetric hjk =hkj. The linear contribution is denoted 
�Rn R+

0.→
The energy is then of very simple form, namely, 

���� ª �p��0� + ����TH��0����� + ���� . �4� 

We show below that this ansatz gives enough freedom to 
match the available data for zirconia. The path, the profile, 
and the paraboloid enter as parameters into the fitting process 
at the phases. 

The specific choice of the terms in Eq. �4� will be influ­
enced by the requirement that the only global minima of � 
are at the given phases. Specifically, we ensure that the en­
ergy �̂ ���ª �p��0�+����TH��0����� without the linear 
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TABLE III. Elastic constants of the tetragonal and the mono­
clinic phases in GPa. Here, C11,  . . .  ,C66 are the elastic moduli that 
appear in the standard tetragonal elastic tensor �Ref. 20�. The te­
tragonal data is estimated for 1480 K in Ref. 21 �see also Table II of 
Ref. 3�. The monoclinic data are given in Ref. 21. To allow for a 
direct comparison with Ref. 3, we take the monoclinic data at 1273 
K. No experimental data seems to be available for the orthorhombic 
phase, which is why we fit the orthorhombic data of Ref. 6. Ortho­
rhombic moduli where no data to be fitted are available are marked 
by �. Empty entries are zero by symmetry. 

Modulus Tetragonal Orthorhombic Monoclinic 

C11 340.0 300.0 312.0 

C12 33.0 33.0 35.2 

C13 160.0 � 155.0 

C16 3.2 

C22 =C11 350.0 350.0 

C23 =C13 � 171.0 

C26 4.3 

C33 325.0 � 341.0 

C36 9.4 

C44 66.0 � 101.0 

C45 −13.9 

C55 =C44 � 81.6 

C66 95.0 90.0 66.3 

term has no other global minima, which is guaranteed by two 
observations. On one hand, we take care that the paraboloid 
H��0� is always positive definite so that �̂ ��� is locally de­
creasing in at least one direction at any �� p. On the other 
hand, the path p itself is constructed in such a way that it 
only has the three prescribed minima. The linear term ���� is 
constructed such that it is non-negative everywhere and van­
ishes at the three phases. We remark that the linear term 
deforms the path of the lowest energy. Consequently, the 
path p alone does not determine the physical transition path 
and the correction by the linear term has to be taken into 
account. 

B. Two-dimensional Landau energy for zirconia 

In the two-dimensional setting in the c1−c2 plane in Sec. 
II C 1, the strain variables are e1, e2, and e6. The position of 

%1,%2 

0.15 
orthorhombic monoclinic 

¼2
0.10 

¼1
0.05 

0 0.5 1.0 1.5 2.0 2.5 %0¢103 

FIG. 4. Plots of the path components �1 �solid line� and �2 

�dashed line� in the Landau construction. 
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0.4 

0.2 

e6 0 

¡0.2 

0.04 

0.02 

e2 0 

¡0.02 0.02 
0 ¡0.02 e1 

FIG. 5. Diagram of the paths in strain space �the image of these 
paths under � is the path shown in Fig. 4�. The paths emerge at the 
tetragonal phase �triangle� in the origin and remain in the e1− e2 

plane before bifurcating at the orthorhombic phases �square� in or­
der to reach the monoclinic phases �circle�. 

the three phases with respect to those coordinates is given in 
Table I. The invariants �1� then give the location of the 
phases in the orbit space ��R3� �see Table II�. Finally, the 
moduli we want to reproduce are listed in Table III. 

As motivated in Sec. III A, the energy is of the form �4�. 
In particular, the path is parametrized by �0 and the image of 
the mapping � has to lie in the half-space ���1 , �2� ��2 �0�. 
We construct both components �1 and �2 as piecewise poly­
nomial functions with two quartic and one quintic segment 
that join C2 continuously at the orthorhombic and the mono­
clinic phases. Moreover, we constrain the first and second 

3 mderivatives of the quintic segment to vanish at �0= 2 �0 so 
that it can be continued C2 continuously as a constant from 
there on �see Fig. 4�. The preimage of the path in strain space 
is shown in Fig. 5. The profile �p is defined by five polyno­
mial pieces �quintic, quartic, quartic, quartic, and linear� with 
the same knots as the path plus an additional knot halfway 
between the orthorhombic and the monoclinic phases that is 
used to control the height of this saddle �see Fig. 6�. As for 
the sliding paraboloid H= �hjk� j,k=1,2, it turns out that it can be 
modeled by a quadratic function h11��0� and constants h12 
and h22. Finally, the linear contribution � is defined as 
����ª�0��0��2, where �0 is a quartic polynomial between 

Áp + 0.001 

1.0 

0.1 

0.01 

0.001 

monoclinicorthorhombic 

0 0.5 1.0 1.5 2.0 %0¢103 

FIG. 6. The profile �p along the path from the tetragonal phase 
�left, at the origin� via the orthorhombic phase �middle� to the 
monoclinic phase �right�. Since the path is a function of �0= �e1 

−e2�2, only non-negative arguments are meaningful. 
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TABLE IV. The coefficients of the parameters for the Landau energy. All functions are polynomials of the 
form � j� jx

j. For those functions which are defined in a piecewise manner, we list the different polynomial 
segments and indicate the parameter range over which they are defined. Here, the first two knots are the �0 

coordinates of the orthorhombic and the monoclinic phases r1 ª �o
0 and r2 ª�m

0 �see Table II�, and the third 
o 1knot is r3 ª 2

3 
�m

0 . For the profile �p, we use a fourth knot r1.5 ª 2
1 
�0+ 2 �

m
0 . All polynomial pieces join C2 

continuously at the knots. The data are rounded to the 3rd digit. 

Range �1 �2 �3 �4 �5 

�1 �0,r1� 0.0 0.0 4.702� 105 −2.820�109 4.812�1012 

�r1 , r2� 2.314�10−3 1.904�101 −8.203�104 1.511�108 −5.948�1010 

�r2 , r3� −2.979 7.050�103 −6.282�106 2.664�109 −5.318�1011 3.897�1013 

�r3 ,�� 0.04 

�2 �0,r1� 0.0 

�r1 , r2� −2.578�10−3 3.676�101 −1.807�105 3.328�108 −1.307�1011 

�r2 , r3� −1.483�101 3.919�104 −4.063�107 2.083�1010 −5.292�1012 5.336�1014 

�r3 ,�� 0.09 

�p �0,r1� 0.0 7.675�101 0.0 −9.266�109 5.539�1013 −9.307� 1016 

�r1 ,r1.5� −3.127�10−1 4.613�103 −2.395�107 4.928�1010 −2.887�1013 

�r1.5 ,r2� −5.901�101 2.129�105 −2.703�108 1.466�1011 −2.899�1013 

�r2 , r3� −1.581�101 3.759�104 −3.284�107 1.239�1010 −1.683�1012 

�r3 ,�� −2.493 1.354�103 

h11 9.325�101 −1.995�104 1.276� 107 

h12 −2.854 

h22 7.678�101 

�0 �0,r2� 4.750�101 1.925�104 −1.705�108 1.454�1011 −3.627�1013 

�r2 ,�� 0.0 

the tetragonal and the monoclinic phases that blends C2 con­
tinuously into the zero function at the monoclinic phase. The 
energy in Eq. �4� with the prescribed degrees of freedom can 
then be fitted to exactly match the available data �see Table 
IV for the parameters�. 

We call the energy obtained in this way as Landau energy, 
since it corresponds to the minimization of all strain param­
eters other than the order parameters of the full three-
dimensional energy. 

We remark that in this framework, it is not hard to check 
that there are no other local minimizers. To do so, it is not 
necessary to verify that the gradient of the energy vanishes in 
the interior of the orbit space �though this is possible here 
since there are no algebraic dependencies of quantities in­
volved�. Instead, we can argue in a simple manner, since the 
energy function is always decreasing in some direction in the 
interior of ��R3� �except at the global minimizers, which are 
the t-o-m phases�. The same behavior can be verified for the 
boundary of the orbit space ���R3� by inspecting the restric­
tion of the energy function to the boundary. The coefficients 
shown in Table IV have different orders of magnitude since 
the input data values �the position of phases and the moduli� 
differ by orders of magnitude �see Tables II and III�. Figure 4 
shows that the constructed functions are nevertheless regular 
without strong oscillations. 

C. Three-dimensional energy function for zirconia 

The two-dimensional construction can be extended to the 
full three-dimensional setting in a rather straightforward way. 

We keep the Landau energy of Sec. III B, here denoted �126, 
to indicate its dependence on e1, e2, and e6. Since the ener­
getic contributions to be constructed below contribute to the 
moduli with indices 1, 2, and 6, the parameters of the Landau 
construction change and their new values are given in Table 
V. 

We augment �126 additively by a term �456 in e4, e5, and 
e6 to fit C44, C55, and C45. Here, we work in strain space, 
rather than in orbit space, and employ the invariants �2 and 

2 2 2 2�8�e1,  . . . ,e6� ª e1e4 + e2e5, 

2�9�e1,  . . . ,e6� ª �e4 + e2
5��1 +  e6

2� + 4e4e5e6. �5� 

It is easy to verify that �8=�1�7+ 14 ��0−�1
2��4 and �9= �1 

+ �2��4+4�6. The two latter invariants are chosen since they 
are non-negative. It turns out that the ansatz 

�456 ª �a0 + a1�2��4 + b�8 + c�9 �6� 

is sufficient to fit the moduli C44, C45, and C55. This form is 
considerably simpler than the contributions defined in orbit 
space but possible only because so few moduli need to be 
fitted. Since �456 is non-negative, it is easy to verify that 
minima exist only at the tetragonal, the orthorhombic, and 
the monoclinic phases. The parameters for �456 are given in 
Table VI. 

To match the elastic moduli involving the strain compo­
nent e3, we employ the path-profile construction with the 
four invariants �̃0 ª�0, �̃1 ª�1+ �3, �̃2 ª �2, and �̃3 ª �3. 
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TABLE V. The coefficients of the parameters for the contribution �126 to the three-dimensional energy. 
All functions are polynomials of the form � j� jx

j. For those functions which are defined in a piecewise 
manner, we list the different polynomial segments and indicate the parameter range over which they are 
defined. The four knots r1, r1.5, r2, and r3 are the same as in Table IV. All polynomial pieces join C2 

continuously at the knots. The data is rounded to the 3rd digit. 

Range �0 �1 �2 �3 �4 �5 

�1 �0,r1� 0.0 0.0 1.898� 105 −6.807�108 8.953�1011 

�r1 , r2� −1.653�10−3 3.241�101 −4.747�104 8.815�107 −3.599�1010 

�r2 , r3� 1.768 −5.989�103 7.875� 106 −4.935�109 1.485�1012 −1.731� 1014 

�r3 ,�� 0.04 

�2 �0,r1� 0.0 

�r1 , r2� −2.575�10−3 3.672�101 −1.805�105 −3.324�108 −1.305�1011 

�r2 , r3� −1.472�101 3.889�104 −4.030�107 2.065�1010 −5.244�1012 5.284�1014 

�r3 ,�� 0.09 

�p �0,r1� 0.0 1.325�101 0.0 −1.639�109 9.919�1012 −1.689� 1016 

�r1 ,r1.5� −3.192�10−1 4.686�103 −2.423�107 4.966�1010 −2.903�1013 

�r1.5 ,r2� −5.913�101 2.133�105 −2.708�108 1.469�1011 −2.904�1013 

�r2 , r3� −1.598�101 3.797�104 −3.314�107 1.250�1010 −1.697�1012 

�r3 ,�� −2.499 1.357�103 

h11 1.325�101 −2.097�104 1.276� 107 

h12 −2.854 

h22 7.562�101 

�0 �0,r2� 4.750�101 1.925�104 −1.705�108 1.454�1011 −3.627�1013 

�r2 ,�� 0.0 

Again, we choose the invariant �̃0 for the parametrization of 
the path, the profile, and the sliding paraboloid. As for the 
latter, it turns out that it suffices to involve only h11, h22, h13, 
and h33 and set the other components to zero. Moreover, the 
linear contribution � is not needed for this energetic contri­
bution that we denote �3 �see Table VII for details�. 

An energy that fits exactly all available moduli is then 

� ª �126 + �456 + �3 �7� 

considered as a function in strain space; that is, the invariants 
are evaluated with the strain variables. 

An examination of the energy reveals that no global mini­
mizers other than the prescribed ones exist. Local minimizers 
could in principle exist due to the addition of three energetic 
terms because gradients could cancel out locally. An analysis 
of the saddle point via Newton search as in Ref. 9 could be 
employed to examine the existence of local minima. 

IV. PHYSICAL INTERPRETATION AND NUMERICAL

ILLUSTRATION


One key feature of the approach advocated here is that it 
allows the modeling of the lowest-energy path between 
stable phases. The conventional polynomial expansion is less 
suitable for the description of this transition path. This is 
because a polynomial interpolation of several points already 
leads in normal circumstances to significant oscillations, 
while no such oscillations are expected for a macroscopic 
energy density. Since we propose a method that can model 

the energy along this low-energy transition path with arbi­
trary precision, the question arises as to how this path can be 
determined for arbitrary phase-transforming materials. One 
suitable method would be an ab initio calculation, where a 
sufficiently large region in the strain space is explored. Such 
a sequence of simulations would in principle determine the 
path and the elastic moduli along the path, though the detec­
tion of this path in higher space dimensions is far from 
trivial. Alternatively, an experiment where a specimen is ex­
posed to forces that trigger a transformation along the path 
can then be used to determine the moduli experimentally. 
The high temperature and pressure of the triple point, how­
ever, pose a serious challenge for such a sophisticated ex­
periment and we are not aware of such data. The available 
measurements for the elastic moduli of the stable phases al­
ready have significant error margins, in particular, for the 
off-diagonal moduli; the problem of precise measurements 
would be significantly accentuated for the sequence of out-
of-equilibrium measurements of the moduli along the transi­
tion path. In principle, however, such experiments are pos-

TABLE VI. The coefficients of the parameters for �456 defined 
in Eq. �6�, which constitutes one contribution to the three-
dimensional energy. The data is rounded to the 5th digit. 

a0 2.24230�101 

a1 5.86247�101 

b 4.56152�103 

c 1.05770�101 
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TABLE VII. The coefficients of the parameters for the contribution �3 to the three-dimensional energy. All functions are polynomials of 
the form � j� jx

j. For those functions which are defined in a piecewise manner, we list the different polynomial segments and indicate the 
o mparameter range over which they are defined. The knots are r1 ª �0, r2 ª�0 �see Table II�, r3 ª1.55� 10−3, and r4 ª2.21� 10−3. All  

polynomial pieces join C2 continuously at the knots. The data is rounded to the 2nd digit. 

Range �0 �1 �2 �3 �4 �5 �6 

�1 �0,r1� 0.0 3.05�102 −1.46� 106 2.32�109 

�r1 ,�� 2.46�10−2 −3.29�101 8.66�104 −3.41�107 

�2 �0,r1� 0.0 

�r1 , r4� −7.83�10−3 1.17�102 −6.30� 105 1.42�109 −1.21� 1012 4.38�1014 −5.78�1016 

�r4 ,�� 8.49�10−2 

�3 �0,r1� 0.0 2.28�102 −1.01� 106 1.49�109 

�r1 ,�� 1.54�10−2 1.73�101 −4.55� 104 1.79�107 

�p �0,r1� 0.0 6.35�101 0.0 −7.65�109 4.56� 1013 −7.66�1016 

�r1 , r3� 5.51�10−3 −6.12�101 2.21�105 −2.90�108 1.60� 1011 −3.15�1013 

�r3 ,�� −1.43�10−3 9.50� 10−1 

h11 8.00�101 1.02�103 

h13 −7.15 

h22 1.16 

h33 8.25�101 4.41�103 

sible since a suitable load transforms a point on the transition 
path into an equilibrium configuration. 

The energy barriers along the path influence various 
physical quantities. For example, the transformation stress 
�i.e., the stress required to trigger a stress-induced transfor­
mation� depends on the height of the profile. The reason is 
that the energy barrier defined by the profile is on the moun­
tain pass connection between minima, and a mountain pass 
connection is the energetically most favorable connection. 
The height h of the mountain pass is a function of the energy 
barrier and the applied stress. For example, for a spring-
chain model, it can be shown rigorously22 that the transition 
is given by the mountain pass, even if there are many pos­
sible ways to transform from one metastable state to another. 

We restrict the analysis here to the isothermal situation; 
the inclusion of thermal effects is discussed elsewhere.9 In 
Ref. 9, the focus is on the influence of stress on the transfor­
mation temperature via the Clausius-Clapeyron equation. We 
mention here that the energy barriers influence the depen­
dence of the specific heat on the temperature. For first-order 
phase transitions, the temperature dependence of the specific 
heat exhibits a sharp peak around the transformation tem­
perature due to the presence of latent heat. The latent heat 
released during the transformation is given by the area en­
closed by the hysteresis loop of the transformation; this area 
in turn depends on the transformation strain. 

While experiments at the high temperature and pressure 
of the triple point are very difficult, numerical simulations 
offer the possibility to analyze the formation of microstruc­
tures in this regime of particular interest. 

One question of interest is the propagation of a phase 
front. In the static situation, one would expect different ef­
fects to compete against each other. Namely, on the one 
hand, the transition path constructed here is the energetically 
favorable path for the transformation of one phase into an­
other. On the other hand, if the two phases form a sharp 

interface then this imposes a constraint since the displace­
ment has to be continuous across the interface. It is well 
known that this constraint can be expressed as the condition 
that the strain gradients of the two phases A and B, say, are 
connected by a rank-one line, A − B=a � b with a, b�Rn ,23 

here with n=2 or  n=3. Thus, there is competition between 
the energetically favorable transformation path and a transi­
tion along a rank-one line that connects two phases. We in­
vestigate this competition in the presence of dynamics and 
interfacial energy. Specifically, we employ the finite element 
method to study the behavior of a system consisting of the 
Landau energy, a higher gradient surface energy term, and 
the kinetic energy. We also add a viscosity term to slowly 
relax the system to a stationary point. This leads to the equa­
tion of motion 

ü = Div � − ��2u + ��u̇ 

for the displacement u=u�x , t�, with coefficients � and � 
controlling the surface energy and viscosity, respectively. 
The divergence of the stress �= ��

�F 
�F� is taken row-wise. 

A. Numerical solution method 

We use a finite element discretization with basis functions 
derived from Loop24 subdivision surfaces, which can be 
thought of as a generalization of multivariate splines to tes­
sellations of arbitrary topology. We resort to such a discreti­
zation of C1 smoothness to correctly evaluate the strain gra­
dient energy terms, which contain higher-order derivatives. 
The use of subdivision surfaces for this problem has been 
suggested in Ref. 25. The simulation employed is very simi­
lar to the one used in Ref. 26 and more information on the 
method can be found there. We do, however, use the method 
described in Ref. 27 to fix the clamped boundary conditions 
�i.e., Dirichlet and natural Neumann boundary data for the 
fourth-order initial-boundary-value problem�. A constant af­
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FIG. 7. Results of the simulation for a tetragonal-orthorhombic 
phase boundary. Initial values and boundary values are on a rank 1 
connection in between the two minima. The top panel shows the 
elastic energy density ����x��; the bottom panel shows the clear 
distinction between the two phases in the order parameter �0. 

fine tilt Ftilt is added to the gradient of u in the computation 
to achieve nonzero boundary conditions. In order to advance 
the system in time, we use an explicit Newmark scheme. The 
computational domain is a square of size one discretized 
with 28 293 triangular elements using distmesh.28 

B. Computational results 

Figure 7 shows the relaxed state of a simulation with tilt 

4.660 8 − 3.550 5 t−o � 10−3= � � , � = 0.4, � = 0.1. Ftilt 3.550 5 − 2.715 4 

This tilt has been chosen since it is located on a rank-1 con­
nection, exactly halfway between the tetragonal and an 
orthorhombic minimum. Therefore, the microstructure dis­
played in Fig. 7, alternating between the two minima, devel­
ops. As expected, the lamination occurs approximately 
across the habit plane of the system. 

Since the main thrust of this paper is the derivation of an 
explicit expression of the potential energy at the triple point, 
we contrast the numerical findings with those for the setting 
where the potential energy is given as a lowest-order poly­
nomial expansion. Figure 8 displays the result of a simula­
tion with the energy presented here replaced by the conven­
tional polynomial Landau expansion. The parameters in this 
simulation are 

FIG. 8. Simulation using the same parameters as in Fig. 7 but 
employing the polynomial energy landscape from Ref. 3. Shown is 
the order parameter �0, as in the bottom panel of Fig. 7. No clear 
distinction between the phases can be observed �note that the scal­
ing of the order parameter is 10−5, so the variation is 2 orders of 
magnitude smaller�. 

3.576 8 3.602 7 t−o = � � � 10−3, � = 0.4, � = 0.1. Ftilt − 3.602 7 − 3.628 7 

We take the energy from Ref. 3 restricted to the e1−e2−e6 
plane and evaluated at the triple point temperature �840 K� 
and pressure �1.8 GPa�. This energy uses a slightly different 
two-dimensional reduction in the system; therefore the 
minima are at slightly different positions. Again, there is a 
mountain pass, that is, a transformation path. It turns out that 
the energy is essentially flat along the path between the 
minima, with an extremely low-energy barrier. In other 
words, the conventional polynomial expansion yields an un­
realistic estimate of the energy barrier, unlike the method 
presented here. Consequently, for this polynomial energy, 
there is no clear distinction between the orthorhombic and 
tetragonal phases in the simulation, even though the affine 
tilt was again chosen to be exactly halfway in between the 
tetragonal and an orthorhombic minima on a rank-one con­
nection. The surface energy and the viscosity are the same as 
in the previous simulation. The simulation result is shown in 
Fig. 8. The two phases in the polynomial energy would lie at 
�0=0.0 �tetragonal� and �0=2.076 7�10−4 �orthorhombic�, 
respectively. 

In Fig. 9, the relaxed state of a simulation with tilt 

1.011 0 � 10−2 − 1.613 5 � 10−1 
t−m = � �,Ftilt − 6.009 5 � 10−4 − 8.881 1 � 10−3 

� = 0.4, � = 0.1 

is presented. The value for Ftilt 
t−m lies exactly halfway between 

the tetragonal and a monoclinic minimum on a rank-1 con­
nection between the two. The arrangement of phases in the 
resulting picture is complex due to a strong influence of the 
boundary. One can observe, however, that there are separate 
regions where the strain is close to the tetragonal or ortho­
rhombic phase and close to the monoclinic phase, respec­
tively. 
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FIG. 9. Elastic energy density �top panel� and order parameter 
�0 �bottom panel� of the fully relaxed state of a simulation with 
initial and boundary conditions on a rank-1 connection in between 
the tetragonal and the monoclinic minima of the energy. A complex 
arrangement of phases has formed, with boundaries of higher en­
ergy in between. 

These results show that the energy landscape constructed 
here is very well suited for use in finite element codes. 

V. DISCUSSION 

With regard both to the theory and applications of solid 
phase transitions, there is a general interest in devising a 
methodology that allows for the integration of experimental 
data for multiphase materials into an energy density via a 
straightforward and phenomenological yet natural approach. 
Here, we propose the path-profile construction. The intuition 
behind this method is the observation that a good phenom­
enological description of the energy landscape needs to de­
scribe the local properties of the stable phases correctly and 
has to offer a phenomenologically appropriate transformation 
path. The classical approach with invariant polynomials is 
well suited for the former but not for the latter. We develop a 
method to model a phenomenological transformation path 
such that local properties can be fitted with relative ease. The 
approach has recently been used in a less explicit fashion to 

PHYSICAL REVIEW B 79, 104114 �2009� 

model one contribution to an energy for InTl.9 Here, we 
demonstrate the simplicity of the method by choosing a ma­
terial with a triple point. We first derive the Landau contri­
bution, which only relies on order parameters, and apply the 
path-profile construction. The energy as a function of the 
three-dimensional strain tensor is then obtained via exten­
sion. 

The approach proposed here is general, even if the spe­
cific examples are genuine for zirconia. We noticed that the 
process of fitting is remarkably easy, since the construction 
with the sliding paraboloid greatly facilitates the process. 
The calculations for the fitting process were done in MAPLE, 
where a straightforward implementation requires at most a 
few seconds to complete on a personal computer. 

It is possible to construct the energy entirely in the orbit 
space rather than composing it from three different terms, as 
is the case here. Although the approach to work in the full 
orbit space may be more elegant and ultimately more 
straightforward, some technical aspects remain to be over­
come. Namely, it becomes more difficult to rule out minima 
on the boundary. This matter will be the topic of a future 
investigation. Also, it is not evident which set of invariants 
should be chosen. In the low-dimensional approach, as ad­
vocated here, it is easy to test and compare different choices, 
while the analogous procedure becomes much more involved 
when the number of invariants involved is increased. 

It has been noted that using a lowest-order polynomial as 
the Gibbs energy density necessarily introduces a second 
orthorhombic phase for which experimental evidence seems 
to be unavailable.3 While this phase is stable at zero pressure 
only for a small range of temperatures above 1520 K and 
becomes unstable for pressure over 1.35 GPa,3 it has been 
shown to be the most stable phase for the polynomial energy 
under various shear loads at room conditions.29 Since the 
existence of this phase may have implications on zirconia as 
a toughening agent near crack tips, it seems desirable to ex­
amine whether other energy densities also predict this phase. 
The present isothermal energy density may serve as a basis 
for such investigations. 
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