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Abstract. We discuss geometric formulations of hydrodynamic limits in diffusive
systems. Specifically, we describe a geometrical construction in the space of density
profiles — the Wasserstein geometry — which allows the deterministic hydrodynamic
evolution of the systems to be related to steepest descent of the free energy, and show
how this formulation can be related to most probable paths of mesoscopic dissipative
systems. The geometric viewpoint is also linked to fluctuating hydrodynamics of these
systems via a saddle point argument.
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1. Introduction

In many physical situations, one seeks to describe a complex system of many components
by a simpler theory that operates on large length (and time) scales. Familiar examples
include the description of molecular liquids by the continuum equations of fluid
dynamics, or the use of a diffusion equation to describe the spreading of particles
through a system. These are examples of hydrodynamic limits, where systems of
discrete particles can be modelled by the evolution of continuous fields, such as local
density and velocity. Here, we concentrate on a family of microscopic models with
overdamped (stochastic) dynamics, in which hydrodynamic limits have been studied
over many years [1, 2, 3]: these models have also attracted considerable recent
interest [4, 5, 6, 7, 8, 9, 10]. In these diffusive systems, the theory of “fluctuating
hydrodynamics” [1] captures the behaviour in the hydrodynamic limit, including both
deterministic and stochastic effects. The models have been studied both in equilibrium
and non-equilibrium settings. For example, they may be coupled to particle reservoirs
with different chemical potentials, so that currents flow through the system. Several
elegant results have been derived, including the exact analysis of long-ranged correlations
that appear in the non-equilibrium states [4, 5, 6, 7, 8], and calculations of large
deviations of currents and dynamical activities at equilibrium [9, 10].

The aim of this article is to show how recent results from mathematics [11, 12, 13]
(see also [14, 15]) provide a geometrical interpretation of the theory of fluctuating
hydrodynamics for these systems. In particular, we describe distance measures (metric
structures) in the space of density profiles, such that the hydrodynamic limit equations
for several diffusive systems correspond to “steepest descent” processes, or “gradient
flows”. That is, the systems evolve downhill in free energy, in the direction of the
gradient, within the relevant metric. Further, the probability of large deviations from
the most likely hydrodynamic behaviour [4, 5, 19] can be related to a geometrical “action
functional” which also depends only on the free energy of the system and the relevant
metric structure. The conclusion is that the theory of fluctuating hydrodynamics
arises from a combination of a thermodynamic free energy functional, and a geometric
structure that determines its dynamical evolution. The relevant geometric structures
are based on the Wasserstein distance [20], and have a physical interpretation in terms
of a cost that is required to transport density through the system.

Several aspects of the situation that we present have been noted in existing work.
Formulae for large deviations in diffusive systems have been discussed in detail by
Bertini et al. [4, 5, 6], who interpreted the most likely path in the system as the
solution to a Hamilton-Jacobi equation. The path integral analyses that we will
use to make the connection between geometrical structure and large deviations are
standard, as summarised (for example) in [8]. In mathematics, connections between the
Wasserstein geometry and hydrodynamic limit equations have been investigated [12],
and generalisation of these results to large deviations (and fluctuating hydrodynamics)
have also been discussed [14, 15]. Our main aim here is to interpret these mathematical
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results in a physical setting, which we accomplish by means of path integral methods.
The result is that the action functionals that appear in path integrals for diffusive
systems can be given a geometrical interpretation in terms of steepest descent paths
in the space of density profiles, providing an intuitive interpretation of these action
functionals and (some of) their symmetry properties. One possible application of this
geometrical formalism might that it faciliates the preservation of connections between
the free energy of a system and its dynamics, in approximation schemes. (Preserving
symmetries of the dynamics when making approximations can be difficult with existing
methods [16, 17, 18].)

The form of the paper is as follows. In Section 2, we discuss the diffusive systems to
which our results apply, and we summarize their most relevant properties. In Section 3,
we describe the Wasserstein geometry, and we show how it provides a geometrical
interpretation of several results for the hydrodynamic limit of a system of non-interacting
particles. Then, in Section 4, we discuss how the Wasserstein geometry can be modified
such that it applies to broad class of diffusive systems. We draw our conclusions and
summarize outstanding issues in Section 5.

2. Model systems

2.1. Free particle diffusion

The results that we describe here are relevant for a range of model systems that include
(for example) free-particle diffusion and the symmetric exclusion process. In all cases,
the behaviour on hydrodynamic scales is captured by a locally-conserved density p(r,t).
The models also exhibit microscopic reversibility, which typically arises from a detailed
balance relation at the level of the microscopic dynamics. The simplest model system
contains N non-interacting particles diffusing in d-dimensional space. Starting from
the master equation for an appropriate lattice model, standard methods lead to a path
integral representation of the dynamics, valid on length scales much larger than the
lattice spacing. The construction of this path integral is outlined in Appendix A. It
is convenient to define ¢(r,t) = ~p(r,t): since the system contains N particles, we
have [dro(r) = 1. (Here and in the following, r-integrals run over the entire space of
interest.) The result (for large N) is that the expectation value of any density-dependent
observable may be written as

1 A R J—
©) = [Pevioiden{-x [ [arpog - nuisvil}
with the Hamiltonian (or Hamiltonian density)
H(p,p, V) = =DV - Vp+ Do|Vp|* (2)

and Z = [DyeDp exp[—N [dtdr (pd;p — H)] for normalisation. Here and throughout,
we use (-) to represent an average (or expectation value), and [ DyDp to indicate a
functional integral over paths o(7,t) and ‘response functions’ p(7,t), subject to the
boundary conditions that are relevant for the physical situation of interest.
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The equilibrium state of this model has particle positions distributed independently
and uniformly throughout the system: the microscopic dynamics obey detailed balance
with respect to this distribution. In terms of the density ¢, the free energy that
corresponds to this distribution is

8Flp) = [ drellog(ex") ~ 1 3)

where [ is an inverse temperature, and A\ a constant with units of length. As expected,
F[¢] is the configurational part of the free energy of an ideal gas (which is purely entropic
in this case).

At the level of the Hamiltonian (2), the time-reversal symmetry (detailed balance)
of the model is not immediately apparent. To reveal this symmetry, one should notice
that Vo = ng%(ﬁF), and then make the change of variables rgr(r,t) = ¢(r,—t),

prr(r,t) = —p(r,—t) + ‘S(f—f)('r, —t) [8]. It follows that

/ "t / Ar[pradiprr — Horr, e, Vire)] = BFlp(—1)] — BFlp(7)]

+/: dt/dr (00w — Hp, p, V)] . (4)

This symmetry property of the path integral corresponds to the time-reversal symmetry
of the underlying particle model. One of the outcomes of the analysis presented here
is that while this construction may seem both complicated and rather arbitrary, it
has a straightforward geometrical interpretation, within the Wasserstein metric: see
Section 3.4 below.

2.2. Other diffusive systems

As well as this simple system of non-interacting particles, the results we will discuss also
apply in a more general setting. We focus on hydrodynamic limits: Imagine observing a
particle system on a large length scale, so that the fundamental particles are no longer
visible, and it is convenient to think in terms of a smooth density profile p(r). To
take the limit of a large observation scale, it is mathematically convenient to rescale co-
ordinates and instead consider a fixed region of space in which the number of particles
N — oo. To enable this, we again define a rescaled density ¢(r,t) = p(r,t)/N, so
that the hydrodynamic limit is N — oo at fixed . Then the class of systems that we
consider have path integral representations of the form

1 . . JU—
©) = [PeDsOllexp {—N [ faripoe - oo vm]} (5)
with the general Hamiltonian
R ) .
Honl0.0.VD) = =m(@)DVp -V 5[] +m() DI VI (6)

Here, Flp] is the free energy (per particle) of the diffusive system, and m(yp) is a
density-dependent local mobility. If we take F' as in (3) and m = ¢, we recover the
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free-particle model. However, the class of models described by (5) also includes non-
interacting particles diffusing in a potential, the symmetric simple exclusion process
(SSEP), and the Kipnis-Marchioro-Presutti (KMP) model: we discuss these specific
cases in Section 4.2 below. Our results may be further generalised to cases where the
mobility m depends explicitly on 7, or to cases of anisotropic mobility (in which case
m becomes a d x d matrix). It may easily be verified that systems described by (5) all
have the time-reversal symmetry (4): they have time-reversal symmetric (equilibrium)
steady states with free energy F'.

Note that we have taken D to be a simple constant that sets the relative scaling
of space and time. Alternatively we could incorporate the p-dependence of m into a
¢-dependent diffusion constant m(p)D — D(p) as in [6]: here, we anticipate that m(y)
will have a geometrical interpretation (independent of time), so we separate it from the
dynamical parameter D.

2.3. Saddle point analysis and large deviation functional

We now concentrate on the path integral (5), in the hydrodynamic (large-N) limit.
In this limit, the integrand in (5) becomes sharply peaked about its maximal value.
Assuming that O does not depend too strongly on NV, one has

(0) = Ol¢, (7)
where ¢*(r, t) is the path that maximises the exponential in (5), subject to any imposed

boundary conditions. We first maximise the exponential over the response field p, for
which the Euler-Lagrange equation is

5
Op = DV -m {V@BF - zvfa] . (8)

If we denote the (¢-dependent) solution of this equation by p* and substitute into (5),
the argument of the exponential reduces to —NS,,[p]/2 with

Sple] = 2/dt/drmD|Vﬁ*|2. (9)

(The factor of 2 is incorporated into S,, for later convenience.) Minimising S, then gives
the most likely paths ¢* (clearly, paths with Vp* = 0 are minimisers of S,,, but the
existence of such paths may depend on the boundary conditions in the path integral).
Hence, one may calculate expectation values of the form of (7).

To arrive at a stronger result, we restrict the integral in the numerator of (5) to
trajectories ¢ that are close to some reference path o(r,t). Integrating over the p field,
one finds that the probability of observing such a path satisfies

A}i_r}r(l)o%log Prob[p(r,t) =~ o(r,t)] = —%Sm[g]. (10)
This is a large deviation principle [19], which determines the probability of observing a
non-typical trajectory in this system, as N — oco. Such large deviation principles play
a central role in several theories of hydrodynamic behaviour [2, 3, 6].
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Equations (7-10) allow analysis of hydrodynamic limits in a range of diffusive
systems. However, the physical interpretation of some of the quantities that appear
in these equations is rather opaque. The central point of this paper is that the
large deviation function S, has a geometrical interpretation, as do the paths that
minimise this function. Hence, this geometrical structure determines both the most
likely paths in the hydrodynamic limit of these systems, as well as the probabilities
of large deviations from these paths. As we shall see, it also clarifies the connection
between the functional S, the free energy F', and the time-reversal symmetry (detailed
balance) of the microscopic dynamics in these systems.

3. Wasserstein geometry

The geometrical setting that we consider is called the Wasserstein geometry, which
defines a metric structure in the space of density profiles p(r). The Wasserstein distance
is also called an ‘earth-movers’ distance: it arises in the theory of optimal transport,
where we assume that some mass is initially distributed according to a density profile
p(r), and we consider how it can be transported with minimal cost, in order to arrive
at a given final profile. For a detailed discussion, we refer the reader to [20] (see
also [12, 14, 15]). The ‘standard’ Wasserstein geometry corresponds to the case m = ¢
in the notation of (6): others cases correspond to modified geometrical structures, as
discussed in Section 4. We first present this geometrical structure in an abstract setting
based on the transport of density at minimal cost. We then show that the resulting cost
function is directly connected to the probabilities of rare events in diffusive systems.

3.1. Wasserstein distance

We begin by defining the Wasserstein distance between two density profiles p;(7)
and py(7), assuming that these profiles represent the same number N of particles,
[drpi(r) = [drps(r) = N. We motivate the definition by a construction that comes
from the theory of optimal transport [20]. Starting with the profile p;(r), suppose
that we redistribute the particle density over the whole space, with the fraction of the
density from r that moves to 7’ being ¢(r'|r). Clearly [dr'q(r'|r) =1 for all . Also, for
this process to generate the profile ps(7), one requires that [drq(r'|r)pi(r) = pa(r'). If
transporting density through the system requires some kind of ‘cost’ that is proportional
to the square of the distance moved, then the total cost of this redistribution is

Clgl = /drdr/|r (7 (11)

where ¢(v',7) = q(v'|r)p1(r). At this stage, the cost C' is a purely abstract quantity
— its relation to the physics of diffusive systems will be discussed in Section 3.4 below.
The (squared) Wasserstein distance between p;(7) and po(7) is then defined by

dlpr, p]* = inf Clq] (12)

q(r’,r)
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where the infimum (minimum) is taken over all distributions ¢ which satisfy the
constraints [dr'q(r’,7) = pi(r) and [drq(r’,r) = pa(r’). That is, ¢ is a distribution,
whose marginals are p; and ps. The interpretation of d[p;, ps]* as an ‘earth-movers’
distance reflects its connection to the distance by which density must be transported.
In this setting, ¢(r'|r) is called a “transport plan”.

3.2. Path lengths and path energies

It is useful to consider continuous paths in the space of density profiles, represented
as p(r,s), where s is a progress co-ordinate along the path. We suppose that p(r,s)
represents advection by an s-dependent velocity field v(r, s), so that dsp = —V - (pv).
This advective process transports the density from an initial profile p(r,a) to a final
one p(r,b). Discretising the path into segments of length ds, we calculate the cost §C
of each segment by using (11) with ¢(r, ') = é(r — v’ — v(r)ds)p(r), where p(r) is the
profile at the start of the segment. Hence 6C = [ drp|v|*ds®. We then sum these costs
over all segments within the path to obtain &,[p(r,s), v(r, s)] = lims,_yo 3= >, 0C), =
fab ds [ dr p|v|*, which depends both on the path p(r,s) and the velocity field v(r, s).
For any path, &, is minimised by a potential flow v = —V® [21]. We therefore define

b
Elp(r,s)] = / ds/dr o VD[ (13)
where V& satisfies
Dup = V - (pVD). (14)

The functional £ depends only on the path p(r,s), and is obtained by summing the
costs of the small segments that comprise this path.

It then follows [21] that the Wasserstein distance between two profiles p;(7) and
p2(r) can be obtained by finding the path between these profiles that minimises £. The
result is that

dlpy, po)® = (b —a) nf £[0] (15)
where the minimisation is subject to p(r,a) = p; and p(r,b) = ps. Note that & was
defined by summing the costs 6C of each segment along the path: from (12), the cost 6C
is a squared distance so £ corresponds to a sum of squared segment lengths. However,
the distance d|[p, po] should be equal to the sum of the segment lengths themselves: the
content of (15) is that the infimum (minimum) is obtained when all segments are of
equal length, in which case the distance d can be inferred from the (rescaled) sum of
the squared segment lengths. The factor of (b — a) in (15) and the factor of ds in the
definition of &, implement the required rescaling. Mathematically, this relation follows
from a Cauchy-Schwarz inequality between path actions and path lengths: see Appendix
B.

Hence, the path p(7, s) that realises the minimum in (15) is the geodesic (shortest
path) connecting p; and ps, in the Wasserstein geometry. The metric structure that
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underlies these results is discussed in more detail in Appendix B. We have presented a
heuristic argument for (15), but this result has been shown rigorously [21, Proposition
1.1].

3.3. Steepest descent with respect to a free energy

A central conclusion of this study is that diffusive processes are governed by two factors:
the geometrical structure of the space of density profiles, and the free energies of these
profiles. We therefore associate to each profile p(r) a free energy F[p]. In this section,
we focus on the case where F' is given by (3), which corresponds to a microscopic model
of non-interacting particles.

Given a free energy and a distance measure (metric), it is natural to define a steepest
descent process. Paths of steepest descent may be constructed by a discrete-time process
[11]: on each time step, a system with profile p;(r) evolves to the profile p; s (r) which
minimises

1
= md[ﬂty ,Ot+6t]2 + BF[PtJrét]- (16)

Here dt is the (small) time increment associated with each time step and D a constant
that sets the units of time. (We note that d has units of length and Dt has units
of length®, while S and SF are dimensionless.) To make contact with the previous

S [pt+6t] =

subsection, we identify Dt with the progress variable s.

For a given starting profile py, minimisation of (16) leads to paths of decreasing
free energy F. Our aim in this section is to define a path action functional Sy [p(r, )],
which is minimal for these steepest descent paths. We define Sy [p(r,t)] by discretising
the path p(r,t) in time: for each time step, we measure the difference between S[ps 5]
and min,, ,, S[pi+s]. This difference provides a measure of the deviation of the path
p(r,t) from a steepest descent path.

To make progress, we assume that 6t is small, and use (13) and (15) to approximate

Dét
Slpess = 55" [ VO dr + 3Flpres) (17)
where the dimensionless field ®(r, ) solves
dip =V - (pDV®), (18)

subject to the boundary conditions p(t) = p; and p(t + 0t) = piyss-

To obtain steepest descent paths, we minimise (17) over pyis;, using a Lagrange
multiplier A = A\(r) to enforce the constraint (18). The quantity to be extremised (over
A D, prist) is
Dét

5 [ eVl s 8Flpus = [ NMpvss - pu— DSV - (570 (19)

Extremising over pys; yields A = B6F/dp and extremising over ® gives (Dot)V-(pVP) =
(D6t)V - (pVA). We solve these equations by taking ® = A\ = 0F/dp. It remains to
compute the minimal value of S: we write SF[piisi] = BF[pi] + (prst — pi)BIF/dp
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and the constraint (18) implies that pysr — pr = DOtV - (pV®). Substituting for
BF[piyst) in (16) and using the values of ® and (0F/dp) that minimise (17) gives

miny, ;, Slpirsi] = BF[pi] — D(St . oIV (0BF[pi] /op)
Let p* be the value of pt+5t that minimises (17). Clearly, minimising S[p; ] is
equivalent to minimising S[pss:] := S[prese] — S[p*]. With this definition, we obtain

Sloerst) = 9 /pt|V<I>| dr + BF [prrst] — BF[Pt]+T/Pt

which is a non-negative functional that measures the difference between S[p;. 5| and its

2

dr,  (20)

)
V@ﬁF[Pt]

minimal value. (Recall that this minimal value is S[p*], where p* is the value of p; s
that would be obtained by a steepest descent process starting from p;.)

Given a path p(r, t), we construct a discrete-time path action by discretising in time
and calculating the value of S for each segment, leading to the action 6t i Slptorist-
We then take the limit of continuous time (6t — 0) and move from this discrete-
time construction to a functional for continuous paths. Using E[p] = [ dt [drp|VP|?
from Section 3.2 [with ® being the solution of (18)], the sum over short path segments
converges to

Swlo(r.s)) = D&lo] + 8Flo(r.b)] - B[y / a | drp\ sm)|

Finally, noting that F[p(r,b)] — Flp(r,a)] = fa dt(0F/ép)O.p, one arrives at the path
functional for steepest descent in the Wasserstein metric:

Swlp /dt/drpD (@—52—];)

Summarising once again, this functional is minimal and equal to zero for steepest descent

(21)

2 (22)

paths, which are those which minimise (16) for every step along the path. The value of
Swp(r,t)] for a general path indicates the extent to which this path fails to minimise
(16).

The physical interpretation of the paths that minimise (22) is that if —DV® is the
velocity field that advects the underlying particle density, the effect of the free energy
F is to bias this advection. These paths (which have & = 0) therefore satisfy

Op = {pDV (/BF)} =: —Dgrad"V (BF). (23)

Here, the ‘gradient operator’ grad" for the Wasserstein metric is defined by its action on
a functional W[p(r)], as grad™ (V) = —V - (pva%\lf) So (23) describes steepest descent
with respect to the free energy F' in the Wasserstein geometry. This formulation is
analogous to steepest descent in Euclidean space, where v0,&x = —V FE, in which ~
is a friction constant and E a potential energy function. While this analogy looks at
the moment formal and possibly arbitrary, since it is based on the definition of grad",
it can be shown that the Wasserstein geometry indeed defines an infinite-dimensional
geometric structure where grad" plays the part of a gradient. Elements of this theory
are sketched in Appendix B.
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3.4. Relation to diffusive systems: saddle point trajectories and large deviations

So far, our discussion of the Wasserstein geometry has been purely abstract, via the
cost (11), the distance (12), and the steepest descent condition (16). We are now in a
position to connect this geometrical construction to the results of Section 2. The results
obtained so far correspond to the case m = ¢ in that Section. The first thing to note
is that the most likely paths ¢* in (7) are equal (up to a factor of N) to the solutions
of the steepest descent equation (23). This follows because the most likely paths are
those with Vp* = 0 [see (9)], in which case setting m = ¢ in (8) yields (23). It is also
instructive to substitute for F' using (3), in which case (23) reduces to the diffusion
equation

Op = —DgradV(BF) =V - {pDV%(ﬁF}} = DV?p. (24)
Thus, the trajectories that dominate the hydrodynamic limit of this system correspond
to steepest descent paths of the free energy, within the Wasserstein metric [11].

In addition, the large deviation function S,, in (9) corresponds (for m = ) to the
Wasserstein path action Sy in (22). To see this, note that since p* in (9) solves Eq. (8)
then (for m = ¢) we can identify p = $[6(8F)/dp — ®] where ® solves (18). Thus
the action S, that determines path probabilities in the large deviation principle (10)
is the same as the Wasserstein path action Sw. That is, the Wasserstein metric and
the free energy together specify not just the dominant hydrodynamic path but also the
fluctuations about this path.

Finally, we note from (21) that the cost of a path depends on the direction with
which the path is traversed: the free energy difference gives a contribution that is odd
under time reversal while the first and last terms on the right-hand side of (21) are
both even under time-reversal. The fact that the odd part of the cost is simply the
free energy difference between start and end points is equivalent to the detailed balance
symmetry of the microscopic model: for large N, if 7y is the time-reversed counterpart
of a trajectory ¢ that runs from ¢ = a to ¢ = b then one has from (10) and (21) that
e PF@Problp] = e #F®)Prob[prg]. The appearance of the free energy in (21) may
appear coincidental from the derivation given here but this is a general property of
steepest-descent processes (gradient flows), which follows from the the definition of the
path cost (22): see also Appendix B. Hence, if a system obeys a large deviation function
of the form of (10), where the action S corresponds to the path action for a steepest
descent process, then one arrives at a detailed balance-like relation which relates the
probability of trajectories to their time-reversed counterparts. The generalisation of
this result to systems without detailed balance would presumably result in a fluctuation
theorem similar to that of Crooks [26]: this would be an interesting direction for future
study.
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3.5. Fluctuating hydrodynamics

Since the Wasserstein metric provides a connection both to the most likely hydrodynamic
path and to fluctuations about this path, it can also be used to interpret the theory
if ‘fluctuating hydrodynamics’ for diffusive systems [1, 8]. Within this framework, one
describes systems on macroscopic scales by Langevin equations, or stochastic partial
differential equations. For free particle diffusion, the relevant equation is

Op = D[V?p+ V- (1/p)] (25)
where 1 is a space-time white noise. [That is, a Gaussian-distributed random function
with (n) = 0 and (p*(r,t)n"(v',t")) = 0" (t — t')0(r — 7'), where p, v label Cartesian
components of the vector n.] In the hydrodynamic limit, it may be more convenient to
write (25) as Oyp = D [V2g0 + \;_NV : (n\/@] to emphasise that the effect of the noise
becomes increasingly weak as the large- N limit is approached. Following the procedure
of Martin-Siggia-Rose-DeDominicis-Janssen [23, 24, 25], one may show that equation
(25) is equivalent to the path-integral description (5): see Section 3 of Ref. [8] for a
detailed discussion.

If the density profile at time t is p; () = p(r,t), the Langevin equation (25) specifies
a probability distribution for the density a short time dt later, po(r) = p(r,t + dt). In
the steepest descent case (where the noise 1 is absent), we recall from (16) that py
may be obtained by minimising $d[p1, p2]* + D6tSF [ps]. To incorporate the effects of
noise, we start from (10) and time-discretise the action S, from which we find that the
probability distribution of po is

~ sl el - 39 lod ). (26

To be precise, p[ps] is a probability density: probabilities are obtained by functional

ploalon, 58] o exp (

integrals of the form [ Dps plps] where the functional integral runs over functions p(r)
with [drp, = N, so that the total density is conserved. To reiterate, the Langevin
equation (25) is equivalent to the path integral (5), and for large-N the probabilities of
trajectories in this system satisfy both (10) and (26). Thus, (26) is a large-N result for
the stochastic evolution defined by (25). It means that the probability that a density
profile p; evolves into ps over a short time period 6t has a Gaussian dependence on the
distance d[p1, p2] and a simple exponential dependence on the free energy of the final
state SF'[ps).

It is useful to compare this result with the overdamped Langevin of a single particle
in a potential V(7). If the position of the particle is (t), one writes

Owx = DBVV +nq (27)
where 7 is a friction constant, the noise 1y has covariance (n} (t)n4(t')) = 2Do*(t —t'),
and (3 is the inverse temperature. This equation implies that if x(¢) = @y, then after a
small time interval dt, the position of the particle &y = x(t + dt) is distributed as

mf? — 56V (@) (25)

1
5t |y —
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We again recover Gaussian dependence on the distance |z — @] and exponential
dependence on the free energy difference (here the free energy is given simply by the
energy). Based on the similarity between (26) and (28), we argue that (25) is the
natural formulation of overdamped dynamics in the Wasserstein geometry — this is a
geometrical interpretation of the theory of fluctuating hydrodynamics for this system.
The particular noise in (25) has been connected to the Wasserstein geometry before
on mathematical grounds [27]; here we arrive at the same result with a very different
argument, starting from particles and a path integral formulation.

4. Generalisation to other systems

4.1. Modified Wasserstein metric

We have illustrated a connection between the Wasserstein distance as defined by (12)
and the hydrodynamic limit for diffusion of free particles. [In the notation of Section 2,
the results of Section 3 apply only in the case where m = ¢ and F is given by (3).] To
generalise this connection to the broader class of systems anticipated in (5), we define
a generalised Wasserstein distance. To this end, define a modified path cost by analogy
with (13): &, [p(r,s)] = fab ds [ drm|V®,,|* where @ solves dsp = V- (mV®,,). Then a
construction of steepest descent trajectories as in Section 3.3 yields a generalised action
vo, —V—=

functional
Sl / dt / dr mD
5/)

where ®,, solves O;p = V - (DmV®,,). Repeating the analysis of Sec. 3.4, it is easily
checked that this path action is equal to the large deviation function in (10): it follows

that the dominant hydrodynamic trajectories are therefore steepest descent processes
of the free energy within the relevant metric, that a detailed balance symmetry holds at
the macroscopic level, and that one may apply the theory of fluctuating hydrodynamics
in this more general case too. To make contact with previous work [6], it is useful to
note that the operator K(p) in [6] is the metric tensor for this generalised Wasserstein
geometry: see Appendix B.

The key results are therefore that the action S, appearing in the large deviation
principle (10) is the relevant modified Wasserstein path action (29), and that the
corresponding fluctuating hydrodynamic equation is

1
ﬁ(n\/ﬁ) : (30)

The generalisation of (26) that is equivalent to this process is obtained by replacing
the distance d in (26) by the modified distance d,,. We therefore interpret (30) as the
natural generalisation of Langevin dynamics to the modified Wasserstein geometry. The

5
dyp = DV - |mV—(BF) +
dp

dominant hydrodynamic path for this system is obtained by dropping the noise term
from (30), leading to d;p = D grad) (BF) where grad)t(-) = V - [mDV%(-)] is the
definition of the gradient operator within the modified Wasserstein geometry.
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4.2. Diffusive systems described by modified Wasserstein geometries

To illustrate the range of physical systems to which this analysis applies, we now describe
three physical systems that are described by path integrals of the form of (5), and we
discuss the metric structures associated with the hydrodynamic limits of this models.
The large deviation functions and the fluctuating hydrodynamic equations for all these
models are related to modified Wasserstein distances, as we have outlined here. (We also
note in passing that the case of additive noise, m = 1, leads to model-B dynamics [28].)

4.2.1.  Diffusion of free particles in a potential The simplest generalisation of free
particle diffusion is to introduce a potential V() that is smooth on the hydrodynamic
scale. In this case the free energy is simply

BF(p] = BFalp] + / dr pBV, (31)

where Fiq[p] is the non-interacting free energy given in (3). Constructing the path
integral as in the free-particle case, one obtains a Hamiltonian of the form (6):

H=—-Vp-D(Ve+ eBVV)+ Dp|Vp|>. (32)

Comparing with (6), one identifies m = ¢ as in the free particle case, and mV%(ﬁF} =
Vi + oBVV, as required. Hence, modifying free-particle diffusion by including an
external potential preserves the connection to the Wasserstein geometry that was already
identified in Sec. 3.4.

4.2.2. Symmetric exclusion process In the simple symmetric exclusion process (SSEP),
particles hop between the sites of a lattice, subject to the constraint that at most one
particle may occupy any site. This model is simple to define but interactions between
particles are strong, and the behaviour of the system is richer as a result. The free
energy for the SEP (on the hydrodynamic scale) is

BF = / dr [plog o + (1 — ) log(1 — )], (33)

where ¢ is the local density, rescaled to lie between zero and unity, with ¢(r) = 1
corresponding to almost all sites being occupied in the vicinity of the point r.

In the hydrodynamic limit, the system can be described [8] by a path integral of
the form of (5), with

H=-Vp-(DVy) + Do(1 = )| Vi (34)

Comparing with (6), we identify m = p(1 — ¢), so consistency between (6) and (33)
requires (1 — @)V&(/BF) = V. This may be verified from (33). Hence, a large
deviation principle of the form of (10) applies to the SSEP as well as to non-interacting
systems, where the large deviation function is the action functional for the relevatn
modified Wasserstein metric. (Properties of this large deviation function have also been
discussed extensively by Bertini et al. [4, 5]). For a fixed initial condition, the most likely
trajectories in the SSEP are given by 0, = DV - (mV%ﬁF[w]) = DV?p, corresponding
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to steepest descent in the relevant metric. We emphasise that while we recover the same
diffusion equation as in the free-particle case, both the free energy F' and the function
m that determines the geometry are different, so the fluctuations about the most likely
path differ strongly between the SEP and the free particle model. Specifically, the
equation of fluctuating hydrodynamics for the symmetric exclusion process is

Owp = D[V?p+ V- (N (1 —¢)/N)], (35)

which differs from (25). Here, n is a space-time white noise, as above.

4.2.8. Kipnis-Marchioro-Presutti (KMP) model The KMP model [29] was developed
as a model for heat conduction and has been studied extensively as a model diffusive
system [30, 8, 10]. In this model, ¢ denotes a local energy density. The model is defined
on a d-dimensional lattice, and at each time step, the energies of two neighbouring sites
are redistributed between those sites. In the equilibrium state, the energy of each site
is exponentially distributed, leading to a free energy on the hydrodynamic scale given

by [30]

BF = / dr (B — 1 — log(Be)]. (36)

Constructing the path integral for the dynamical evolution of the model, the
Hamiltonian is [8, 10]

H=—Vp-(DVyp)+ De*|Vp[, (37)

so we identify m = ¢?. It is easily verified from (36) that 902V%(6F) = Vo, as
required for consistency with (6). Thus the deterministic (hydrodynamic) equation is
again O;p = DV?p, as for free particles and for the SEP, but in the KMP model this
limit equation arises from a different combination of a free energy and a (generalised
Wasserstein) geometrical structure.

5. Conclusion

We have shown how large deviations in the hydrodynamic theory of several diffusive
systems can be interpreted geometrically, in terms of the Wasserstein geometry and
its generalisations. In particular, the most likely trajectories for these systems in the
hydrodynamic limit are given by steepest descent of the free energy, in the appropriate
metric. We also argued that the equations of fluctuating hydrodynamics are the
natural generalisations of Langevin dynamics, within this geometrical structure. The
relation between the large deviations of the time-dependent density and steepest descent
processes clarifies the decomposition of the large deviation function into parts that
are even and odd under time reversal, which can be traced back to detailed balance
properties of the original stochastic processes. It would be interesting to understand
whether other properties of these systems such as responses to boundary driving [5, 8] or
large deviations of time-integrated quantities [9, 10] can be related to properties of the
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Wasserstein geometry (see [31] for nonlinear diffusion with inhomogeneous boundary
data). In particular, one might expect that the mapping from boundary-driven to
equilibrium systems considered in [8] should have an interpretation in terms of the
Wasserstein geometry: this remains a topic for future study.

More generally, for models where the general structure of Section 4 applies, all
hydrodynamic properties are determined by the (thermodynamic) free energy functional
F', and the geometrical function m, which determines the ‘cost’ of density redistribution
in the system. The idea that the dynamical evolution of stochastic models arises from a
combination of a free energy and a metric structure has been discussed in other contexts
too [32]: the freedom to choose different metrics while preserving the same free energy
functional means that systems with the same thermodynamic properties can have very
different dynamical behaviour [33, 34].

It would be interesting to find other examples of stochastic processes whose
behaviour can be analysed using metric structures in infinite-dimensional spaces, such as
the space of density profiles considered here. One particular aspect here is the derivation
of systems driven by energy and entropy. In particular, there is a rich class of equations
of fluctuating hydrodynamics with the dissipative part being of the form (30) [3, 35].
This might provide a route to generalise the construction shown here to models without
microscopic reversibility, such as active-matter systems [37]. Some recent results for
systems without microscopic reversibility [31, 38] indicate that progress in this direction
may indeed be possible.
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Appendix A. Path integral construction

In this section, we give a very brief review of the construction of the path integral
expression (5), in order that the presentation of this paper be as self-contained as
possible, and to emphasise that this path integral comes from a microscopic description
of a specific particle system. The microscopic model involves particles hopping on
a (hyper)cubic lattice in d-dimensions. The lattice spacing is I, and particles hop
independently, with a rate D/I2 for hopping along each available bond on the lattice.
The number of particles on site ¢ is n;, and a configuration C is specified by the values
of all the n,.

Let P(C,t) be the probability of finding the system in configuration C at time t¢.
This quantity evolves in time by a master equation. To obtain a representation of this
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equation, it is useful [22] to write the probability distribution as a high-dimensional
vector |P) = 3", P(C,t)|C). Within this vector space, the operator a] acts on |C) by
adding a particle to site 7, while a; multiplies by n; before removing a particle from site
i (the occupancies of all sites j # 4 are unchanged). Hence a}a;|C) = n;|C) and one has
j] = aia; — aj-
state with no particles at all by |0). Then the master equation may be written as [22]

9,|P) = W|P) (A.1)

also the commutation relation [a;, a a; = 0;5. It is also useful to denote the

with

W = DI;*? Z(a%T — a})(aj —a;) (A.2)
(i)
where the sum runs over pairs of nearest neighbours on the lattice.

The formal solution of the master equation is |P(t)) = e"|P(0)). If we assume
for convenience that the operator O in (5) depends only on the density at a single
time ¢, then it may be shown that (O) = (0[eZi*Oe™|P(0)) where O is an operator
that depends on the density p = ), ala; in the same way that O depends on p(ty).
Generalisation to other observables O is straightforward but we omit it, for brevity.

To make further progress, one makes a time discretisation, writing e = nyzl eWot

with 6t = ¢, /M. One also requires a formula for the identity operator [22]:

i - / [H d(z, )

where 2/ is the complex conjugate of z;, and the notation [[[, d(z;, 2

e~ Tiu# X zial 0)(0]eXi =i (A.3)

*
%

)] means that each
z; is integrated over the entire complex plane, with one integration variable z; for each
site on the lattice. Inserting this resolution of the identity between each factor of e"

in the representation of e"*1, one arrives at

(0) = / [H Az, 22) | (06T OoTi aval [0) = Soe= Zusiowo (0o i) es | p(0))  (A.4)
ik
where
M i
e—So — He— 2 2 Fik <0|eZi kaaiew‘%ezz' Zi k=105 0> (A5)
k=1

Then, for small enough 0t, one may use the explicit form of W to approximate the
product as

M
e %0 = H exp | — Z 2 (zik — zip—1) — DIy 26t Z(sz — 25 )(Zik—1 — Zjg—1) + O(6t)*| (A.6)
k=1 i (i5)

The presence of finite differences and lattice derivatives makes this expression
very unwieldy. It is therefore conventional to combine (A.4) and (A.6) into a formal
expression, based on the assumption that the time step 0t and the lattice space [y are
small enough that all quantities of interest vary little between adjacent points in the
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space-time discretisation. Returning to a general case where O may be any functional
of the density, the result is

_ / D(z, 2*)0z2"] exp {— / at / dr (°0,2) — D(V=") - (V=) (A7)

where the integral over values of z at a large number of space-time points has been
replaced by an integral over a (rescaled) function z(r,t), and differences between
adjacent points have been approximated by considering derivatives of this function.
the dependence of O on p is reduced to a simple functional dependence on zz*. There
are boundary conditions on the functional integral that encode the initial condition P(0)
and the behaviour at the final time t.

Finally, to arrive at (5), one makes the change of variables

*

22" =p, 2 =el. (A8)

The transformation has unit Jacobian so the integration measure at a single spacetime
point d(z, z;;,) becomes simply dp;xdp;, with the integration contour for p lying along
the ‘imaginary direction’ in the complex plane (see also [36]). Within the path integral
(5), the measure DpDp indicates [[,, dpixdpik, similarly to the measure in (A.7). As
long as the functions p, p can be safely assumed to be smooth, the transformation (A.8)
maps 2*0;z to poyp and (Vz*)-(Vz) to (Vp)-(Vp) —p|Vp|?. In the hydrodynamic limit,
one expects that that p, p are indeed smooth enough that higher-order derivatives can
be neglected. Thus one makes the passage from (A.7) to (5), which should be valid for
large N.

Appendix B. Metric structure

In this section, we sketch the metric structure associated with the Wasserstein geometry,
to provide extra context for our main discussion. On a formal level, the relationships
that we quote are straightforward generalisations of results from differential geometry
to the space of density profiles, included here for completeness and to illustrate how the
geometry of the space of density profiles can be related to the geometry of more familiar
finite-dimensional curved spaces. A mathematically rigorous formulation exists but is
far beyond the scope of this review [13].

The main object of interest is the metric tensor. In physics, metric tensors are
familiar from differential geometry: we consider two paths z(s) and y(s) in a d-
dimensional curved space, with y(0) = x(0) = a. Let the “tangent vectors” to these
paths at the point a be u = dx/ds and v = dy/ds. Then, the inner product between these
two tangent vectors is u*g,,v”, where g, is the metric tensor (evaluated at a); we use
the Einstein convention of implicit summation of repeated upper and lower indices. One
can think of g as a symmetric matrix with strictly positive eigenvalues, which ensures
that u”g,,u” > 0, with equality only when u = 0, as expected for an inner product. In

this curved d-dimensional space, the length of a path z(s) is Ed = [dsy /9% g,, %
and one may also define a path action &, = [ds dg”: gW o If one minimises, for
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fixed initial and final position, the functionals £; and ¢4, then one finds that minimisers
(critical points) of &; are minimisers (critical points) of ¢4, but the converse is only true
is the curve is reparametrised proportional to arc-length (the functional ¢, is invariant
under reparametrisations, &, is not). For a path from s = a to s = b one also has

(alz(s)] < (b — a)€ala(s)]. (B.1)

To generalise these results to the present context, the d-dimensional vector x is
replaced by a density profile p = p(r). One may consider the metric tensor g,, as a
bilinear function g(u,v) = u*g,,v”. The analogue of this function for the Wasserstein
geometry in the space of density profiles is

G[ul,uﬂ = /drpV@l . V(I)Q (BQ)

where the functions @y 5(r) solve u; o = V- (pV®y5). Just like g(u, v), the functional
G is bilinear, G(auy, bus) = ab - G(uq,uz), as well as symmetric under interchange of u,
and uy. From (13) and the associated discussion, one identifies the path cost functional,
Elp(s)] with [ ds G[9sp, Osp], the natural generalisation of the finite dimensional path
action to the Wasserstein geometry. The result (15) is therefore analogous to (B.1). Also,

steepest descent processes in finite-dimensional curved spaces obey g, (d/dt)z” = —0,F
where E is the energy and 0, = 8% as usual. If ¢g"” is the inverse metric tensor then

one may write instead (d/dt)z* = —¢"”0,E. Comparing with the discussion of Sec. 3.3,
we identify the operator grad” (-) = —V - [pv%(-)] as the analogue of ¢"*9,(-).

So far we have shown how various quantities from the main text have analogies
in finite-dimensional curved spaces. Finally, we show how these analogies provide an
explanation for the apparently coincidental simplification of (22) into the form given in
(21). The path cost (22) associated with steepest descent may be identified as

b
Sp] = % / dt G[0,p + Dgrad" (BF), 8,p + Dgrad" (3F)]. (B.3)

However, since the grad" operator is analogous to ¢**d,, the finite dimensional
analogue of this cost is Sy = 3 [dt (Oa* + ¢"0,E)gn(0a* + g*0cE), where we
use an energy function E as the analogue of SF, as above. If we then note that
9y A = (5§ since g" is (by definition) the inverse metric tensor, then one arrives at Sg =
$ [ dt[(Dix") gur(0pa) +2(8pat ) (0, E) + (0, E) g (9, E)). Noting that (9,2*)(0,E) = O,F
by the chain rule, we may integrate the second term may to obtain E(b) — E(a), so that

Si=E®) - E@) + 5 [dt[(0")9,(0) + O,E)g" (O,E)] (B.4)

Since the last two terms in this equation are time-reversal symmetric while the
combination of the first two terms is odd under time-reversal, it follows that if the
probability of a path x(t) is given by e~5¢ then there is a detailed balance symmetry
between z(t) and its time-reversed counterpart zrg(t), which is Prob[z(t)]e #(® =
Prob[zrr(t)]e ®®. To re-cast (B.4) in the Wasserstein setting, it is useful to define
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a bilinear function Gz, y] = [ dt p(Vz) - (Vy) which is the analogue of z,¢"y,. Then,
using the analogy with the finite-dimensional case, in the Wasserstein setting,

Slo) = BF(®) ~ F(a) + 515 [ 4t Glop, ] + -+ / dtG{/a‘;F 5(;]; ] (B.5)

This result is equivalent to (21) which confirms its validity (it was derived independently
in Section 3.3). However, writing this result as in (B.5) emphasises that it is connected
to the metric tensor and its inverse, and clarifies its relation to (B.3) and hence to (22).

References

H. Spohn, J. Phys. A 16, 4275 (1983)

C. Kipnis, S. Olla and S. R. S. Varadhan, Commun. Pure Appl. Math. 42, 115 (1989).

G. L. Eyink, J. Stat. Phys. 61, 533 (1990).

L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Phys. Rev. Lett. 87, 040501
(2001); J. Stat. Phys. 107, 625 (2002).

[5] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, J. Stat. Phys. 135, 857

(2009).

] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, arXiv:1404.6466.

] J. Tailleur, J. Kurchan and V. Lecomte, Phys. Rev. Lett. 99, 150602 (2007).

] J. Tailleur, J. Kurchan and V. Lecomte, J. Phys. A 41, 505001 (2008)

] A. Imparato, V. Lecomte and F. van Wijland, Phys. Rev. E 80, 011131 (2009)

10] V. Lecomte, A. Imparato, and F. van Wijland, Prog. Theor. Phys. Supp. 184, 276 (2010).

] R. Jordan, D. Kinderlehrer, F. Otto, STAM J. Math. Anal. 29, 1 (1998)

] F. Otto, Commun. Partial Differ. Equations 26, 101 (2001).
] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability

Measures (Lectures in Mathematics ETH Ziirich), (Birkh&duser, 2005)

[14] S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, Commun. Math. Phys. 307, 791 (2011).
[15] S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, Phil. Trans. Roy. Soc. A 371, 20120341 (2013).
[16] H. Jacquin and F. van Wijland, Phys. Rev. Lett. 106, 210602 (2011)

[17] A. Andreanov, G. Biroli and A. Lefevre, J. Stat. Mech. 2006, P07008
[18] B. Kim and K. Kawasaki, J. Phys. A 40, F33 (2007).

[19] H. Touchette, Phys. Rep. 478, 1 (2009).

[20] C. Villani, Topics in Optimal Transportation (Am. Math. Soc., 2003).
[21] J.-D. Benamou, Y. Brenier, Numerische Mathematik 84, 375 (2000).

[22] M. Doi, J. Phys. A 9, 1465 (1976); L. Peliti, J. Physique 46, 1469 (1985).
[23] P. C. Martin, E. D. Siggia and H. A. Rose, Phys. Rev. A 8, 423 (1973).
[24] C. De Dominicis, Lett. Nuovo Cimento, 12, 567 (1975).

[25] H.-K. Janssen, Z. Phys. B 23, 377 (1976).

[26] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).

[27] M. v. Renesse, K.-T. Sturm, Ann. Probab. 37, 1114 (2009).

[28] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

[29] C. Kipnis, C. Marchioro, E. Presutti, J. Stat. Phys. 27, 65 (1982).

[30] L. Bertini, D. Gabrielli J. L. Lebowitz, J. Stat. Phys. 121, 843 (2005).
[31] T. Bodineau, J. L. Lebowitz, C. Mouhot, C. Villani, arXiv:1305.7405.
[32] S. Whitelam, J. P. Garrahan, J. Phys. Chem. B 108, 6611 (2004).

[33] F. Ritort, P. Sollich, Adv. Phys. 52, 219 (2003).

[34] H. Jacquin and F. van Wijland, arXiv:1206.1586.

[35] G. L. Eyink, J. L. Lebowitz, H. Spohn, J. Stat. Phys. 83, 385 (1996).

[36] K. Itakura, J. Ohkubo and S. Sasa, J. Phys. A 43, 125001 (2010)



Geometrical interpretation of fluctuating hydrodynamics in diffusive systems 20

[37) M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao and R. A. Simha,
Rev. Mod. Phys. 85, 1143 (2013).
[38] M. H. Duong, M. A. Peletier and J. Zimmer, Nonlinearity 26, 2951 (2013).



