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Abstract

The efficient management of wind farms and electricity systems benefits greatly from
accurate wind power quantile forecasts. For example, when a wind power producer offers
power to the market for a future period, the optimal bid is a quantile of the wind power
density. An approach based on conditional kernel density (CKD) estimation has previously
been used to produce wind power density forecasts. The approach is appealing because: it
makes no distributional assumption for wind power; it captures the uncertainty in forecasts of
wind velocity; it imposes no assumption for the relationship between wind power and wind
velocity; and it allows more weight to be put on more recent observations. In this paper, we
adapt this approach. As we do not require an estimate of the entire wind power density, our
new proposal is to optimise the CKD-based approach specifically towards estimation of the
desired quantile, using the quantile regression objective function. Using data from three
European wind farms, we obtained encouraging results for this new approach. We also
achieved good results with a previously proposed method of constructing a wind power
quantile as the sum of a point forecast and a forecast error quantile estimated using quantile

regression.
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1. Introduction

For many countries, the proportion of electricity consumption generated from
renewable sources is rapidly increasing, with ambitious targets aimed at reducing carbon
emissions. Wind power generation is a prominent feature of this development in sustainable
energy. The high variability and low predictability of the wind present a significant challenge
for its integration into electricity power systems [1]. The efficient operation of a power
system requires an accurate estimate of the uncertainty in the predicted power output from a
wind farm. Quantifying this uncertainty is also important for wind farm operators. A common
purpose of wind power forecasting is to set the bid for sales of future production that a wind
power producer will make to an energy market. Pinson et al. [2] show that if, as is likely to be
the case, the unit cost of surplus and shortage wind power production are different, the
optimal bid is not the expectation of future production, but it is instead a quantile. It is,
therefore, a prediction of the quantile that is needed, and not a point forecast. The forecasting
of wind power quantiles is the focus of this paper.

One possible approach to wind power forecasting is to fit a univariate time series
model to wind power time series (e.g. [3]). However, this is very challenging due to the
bounded and discontinuous nature of wind power time series. It is more straightforward to fit
a time series model to wind speed and direction data, converted to Cartesian coordinates to
represent wind velocity variables (e.g. [4]). Forecasts of these variables can then be used as
the basis for wind power prediction. This is the approach taken by Jeon and Taylor [5] who
use conditional kernel density (CKD) estimation to produce a forecast of the wind power
probability density function (i.e. a density forecast). Their methodology incorporates (a) wind
speed and direction forecast uncertainty, and (b) the stochastic nature of the dependency of
wind power on wind speed and direction. We are not aware of other wind power density
forecasting methods that aim to capture these two fundamental sources of uncertainty. The

method would, therefore, seem to have strong potential. Although the resultant wind power



density forecasts can be used to provide quantile forecasts, it is our assertion in this paper that
superior quantile forecasts can be produced by an adaptation of this CKD-based
methodology.

Jeon and Taylor [5] optimise method parameters using an objective function that
measures density forecast accuracy. In this paper, we replace this by the objective function of
quantile regression, and hence calibrate the approach towards estimation of a particular
quantile of interest. The result of this is that the parameters are able to differ across the
different quantiles. This is appealing, because different quantiles are likely to have different
features and dynamics. For example, the left tail of the wind power distribution may evolve at
a faster rate than the right tail.

In this paper, we focus on hourly data from three European wind farms, and we
forecast wind power quantiles for lead times ranging from 1 hour up to 3 days ahead. Foley et
al. [6] describe how such short lead times are important for power system operational
planning and electricity trading. We base the estimation on density forecasts for wind speed
and direction, produced by a time series model. It is worth noting that these wind speed and
direction density forecasts can be replaced by ensemble predictions from an atmospheric
model [7,8,9]. We use density forecasts from a time series model, because this approach has
appeal in terms of cost, and the forecasts are likely to compare well with ensemble
predictions for short lead times. Also, by contrast with ensemble predictions, time series
model predictions can be conveniently produced from any forecast origin, for any lead time,
and for any wind farm location for which a history of observations is available.

As we have explained, our proposal is to use the quantile regression objective
function within a CKD-based approach. It is worth noting that quantile regression has
previously been used for wind power quantile prediction. Bremnes [10] proposes forms of
locally weighted quantile regression with wind speed and direction as explanatory variables.

The adaptive quantile regression procedure of Mgaller et al. [11], and the linear model with



spline basis functions of Nielsen et al. [12], both involve the application of quantile
regression to the errors of wind power point forecasts produced in a separate procedure. As in
the study of Taylor and Bunn [13], Nielsen et al. simultaneously estimate quantiles for a
range of lead times by using the forecast error from different lead times as dependent
variable, and the forecast lead time as one of the explanatory variables. In this paper, we
implement a form of this approach, and compare quantile forecast accuracy with our
proposed adaptation of the CKD-based approach of Jeon and Taylor [5]. The CKD-based
approaches explicitly try to capture the uncertainties underlying wind power, while the
quantile regression method is a pragmatic approach. It is an interesting empirical question as
to which is more accurate.

Section 2 discusses the features of wind power, speed and direction data from three
wind farms. Section 3 reviews CKD-based wind power density forecasting, and Section 4
describes how the method can be adapted for the prediction of a particular quantile. Section 5
provides an empirical evaluation of the accuracy of our proposed CKD-based quantile
forecasting approach, and a quantile regression model based on the approach of Nielsen et al.

Section 6 provides a brief summary and conclusion.

2. Wind data and the power curve
2.1. The characteristics of wind data

The data used in this paper consists of hourly observations for wind speed, direction
and power, recorded at the following three wind farms: Sotavento, which is in Galicia in
Spain, and Rokas and Aeolos, which are on the Greek island of Crete. Our data for Sotavento
is for the 23,616 hourly periods from 1 July 2004 to 11 March 2007. For Rokas and Aeolos,
the data is for the 8,760 hourly observations from the year 2006. The wind power data

corresponds to the total power generated from the whole wind farm. On the final day of each



dataset, the capacities of Sotavento, Rokas and Aeolos were 17.6 MW, 16.3 MW and 11.6
MW, respectively. The data from the two Crete wind farms was used in [5].

Fig. 1 presents the wind speed, direction and power time series for the Sotavento wind
farm. The series exhibit substantial volatility, which suggests that point forecasting is likely
to be very challenging, and this motivates the development of methods for quantile and
density forecasting. The plots also suggest that fluctuations in wind power coincide, to some
extent, with variations in wind speed and direction. It is interesting to note that the volatility
in the series varies over time. It is this that has prompted the use of generalised autoregressive
conditional heteroskedastic (GARCH) models for wind speed data (e.g. [4,8,14]). Fitting such
models to wind power time series is not appealing, because the power output from a wind
farm is bounded above by its capacity, and this creates discontinuities, as well as

distributional properties that are non-Gaussian and time-varying.
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Fig. 1. Wind speed, direction and power time series for Sotavento.



For Sotavento and Rokas, Fig. 2 shows Cartesian plots of wind speed and direction,
where the distance of each observation from the origin represents the wind speed. The plot

for Rokas shows that north-westerly wind is particularly common at this wind farm.
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Fig. 2. For Sotavent(l)g(;nd Rokas, Cartesian plots of wind speed ar:godirection, where the
distance of each observation from the origin is the strength of the wind speed.
2.2. Power curves

The theoretical relationship between the wind power generated and the wind speed is
described by the machine power curve, which can be provided by the turbine manufacturer
[15]. This curve is deterministic and nonlinear, with the following features: a minimum
‘connection speed’ below which no power can be generated; as speed rises from this
minimum, the power output increases; this continues until a ‘nominal speed’, which is the
lowest speed at which the turbine is producing at its maximum power output; and finally
there is a ‘disconnection speed’ at which the turbine must be shut down to avoid damage.

Fig. 3 plots the empirical power curves, using historical observations, for Sotavento
and Rokas. Although the figures show the essential features that we have just described for
the machine power curve, it can be seen that, in reality, the power curve for a wind farm is
stochastic. Sanchez [15] attributes this to the effect of other atmospheric variables, such as air

temperature and pressure, as well as other factors, such as the relationship differing for rising



and falling wind speed, complexities caused by the aggregated effect of different types of

turbines in the one wind farm, and the capacity of the wind farm varying over time.

Sotavento, Spain Rokas, Greece

159

wn
L

—
[
L
<
n

Wind Power (MW)

wn
1
wn
£

Wind Power (MW)

5 ’ ; . " 0 4 o B AA 2.£ . ’ . ' i
0 5 10 15 20 25 0 5 10 15 20 25

Wind Speed (m/s) Wind Speed (m/s)
Fig. 3. Empirical power curves for Sotavento and Rokas.

The empirical power curves in Fig. 3 indicate that the dispersion and distributional
shape of the variability in wind power depends on the value of wind speed. For example, for
Rokas, if wind speed is between about 10 and 15 m/s, the wind power density is skewed to
the left with relatively high variability, while for wind speed below about 5 m/s, the wind
power density would seem to be skewed to the right with relatively low variability.
Therefore, the estimation of the wind power density or quantiles should be conditional on the
value of wind speed.

For Sotavento and Rokas, Fig. 4 shows the empirical power curves plotted for two
different months. The Sotavento plot shows considerably more variation in November 2005
than in April 2006. Curiously, for the higher values of wind speed, more wind power tended
to be generated in November 2005 than April 2006. A similar comment can be made
regarding the Rokas empirical power curve, which shows greater efficiency in the conversion
of strong values of wind speed to power in January 2006 than September 2006. In essence,
the plots suggest that the power curves are time-varying. This can be due to changing weather

patterns, and changes in the capacity of the wind farm due, for example, to maintenance or



expansion. Time-variation in the power curve suggests that, when modelling, it may be useful

to put more weight on more recent information.
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Fig. 4. Empirical power curves for Sotavento and Rokas. Each based on two selected months.

The plots of this section indicate that, when forecasting wind power based on a model
relating power to speed, it is important to acknowledge two issues. First, the relationship
between wind power and speed is nonlinear and stochastic, and it may be time-varying and
dependent on wind direction and other atmospheric variables [15]. Second, the stochastic
nature of wind speed will affect the uncertainty in wind power predictions [16], and so should
be accommodated in the modelling approach. In the next section, we present a methodology
for wind power forecasting that addresses the first of these issues through the use of a
nonparametric approach that makes no distributional assumption for wind power, imposes no
parametric assumption for the relationship between wind power and speed, and puts more
weight on more recent observations. The methodology addresses the second issue by
incorporating Monte Carlo sampling from wind velocity density forecasts. These density
forecasts could be produced from a time series model or from weather ensemble predictions

from an atmospheric model.



3. Conditional kernel estimation for wind power density forecasting
3.1. Conditional kernel density estimation

Kernel density estimation is a nonparametric approach to the estimation of the density
of a target variable Y:. It can be viewed as smoothing the empirical distribution of historical

observations. The unconditional kernel density (UKD) estimator (see [17]) is expressed as:
fy) =2 K, (Y, -y, (1)
t=1

where n is the sample size, and Kn(+)=K(+/h)/h is a kernel function with bandwidth h. The
kernel function is a function that integrates to 1. A common choice is the standard Gaussian
probability density function, and we use this for all kernel functions in this paper. The
bandwidth is a parameter that controls the degree of smoothing.

In its simplest form, conditional kernel density (CKD) estimation enables the
nonparametric estimation of the density of a target variable Y, conditional on the value of an
explanatory variable X: It is nonparametric in two senses: it requires no parametric
assumptions for either the distribution of Y or the form of the functional relationship between
Yy and X:. These features make the method particularly attractive for the wind power context,
because the wind power distribution is non-Gaussian and unknown, and the form of the
relationship between wind power and speed is nonlinear and unknown. The CKD estimator of
the conditional density function of Yt, given Xt = x (see [18]), is expressed as:

YK (K0 K, (- )
fylx) == .

ZKhx(xt_X)
t=1
The kernel K, enables kernel density estimation in the y-axis direction, with the

observations weighted in accordance to the kernel K, , which relates to kernel smoothing in

the x-axis direction, enabling a larger weight to be put on historical observations for which X;

is closer to x. For the two kernels, the bandwidths, hx and hy, control the degree of smoothing.



3.2. Conditional kernel density estimation for wind power density forecasting

With wind power specified as the target variable Y, Jeon and Taylor [5] use CKD
estimation with conditioning on wind velocity variables, Ut and Vi, which are the result of
transforming wind speed and direction to Cartesian coordinates. They incorporate a decay
parameter A to enable more weight to be put on more recent observations. This is appealing
because the shape of the wind power density, and its relationship to wind velocity, can vary
over time. We noted this in Section 2.2, in relation to the two plots of Fig. 4, which each
show the empirical power curve differing for two separate months of the year. A lower value
of A leads to faster decay. The CKD estimator is presented in the following expression:

iﬂ”"Khw U —u)Ky, ,=VK, (Y, =)

f(yluv)=-2— (2)
Z/a,“*Khw(ut —u) K, (V,-Vv)

Cross-validation can be used to optimise A along with the bandwidths hyy and hy, and
we discuss this issue further in the next section. The exponential decay can be viewed as a
kernel function, defined to be one-sided with exponentially declining weight [19]. We can,
therefore, view the CKD estimator of expression (2) as having three bandwidths, A, hyy and
hy. The CKD estimator provides an estimate of the density at Yi=y. To estimate the full
density, the CKD estimation can be performed for values of y from zero to the wind farm’s
capacity with small increments. In our implementations of CKD in this paper, we used
increments equal to 1% of the capacity, and assumed equal probability within each of the
corresponding 100 wind power intervals to deliver an estimate of the full density.

To produce a wind power density forecast, it seems natural to perform the CKD
estimation conditional on forecasts of Ut and Vi This is essentially the approach taken by
Juban et al. [20], who condition on point forecasts of wind speed and direction from an
atmospheric model. The problem with conditioning on point forecasts is that the resulting

wind power density estimate will not capture the potentially significant uncertainty in Ut and

10



Vi. To address this, Jeon and Taylor [5] provide the following three-stage methodology that
effectively enables CKD estimation to be performed conditional on density forecasts for U
and V¢, which they produced using a time series model:
Stage 1 - The CKD estimator of expression (2) is used to produce an estimate of the full wind
power density conditional on each pair of values of Ut and Vi, on a grid from -30 m/s to 30
m/s with an increment of 0.5 m/s. The result is 121x121=14,641 pairs, and, for each, a
corresponding conditional wind power density estimate. These are stored for use in Stage 2.
Stage 2 - Monte Carlo simulation of a time series model is performed to deliver 1,000
realisations of pairs of values for Ut and V4, for a selected lead time. Each value is rounded to
the nearest 0.5 m/s, and then for each of the 1,000 pairs, the corresponding conditional wind
power density estimate is obtained from those stored in Stage 1.
Stage 3 - The 1,000 wind power density estimates from Stage 2 are averaged to give a single
wind power density forecast.

It is worth noting that the methodology relies on density forecasts for the wind
velocities, Ut and Vi, and that these could be produced by a time series model or atmospheric

model, which would be expected to capture the autocorrelation properties of the wind.

3.3. Optimising conditional kernel density estimation for wind power density forecasting

Fan and Yim [21] and Hall et al. [22] provide support for the use of cross-validation
to optimise the bandwidths in kernel density estimation. In our implementation of kernel
density estimation in this paper, we followed Jeon and Taylor [5] by using a rolling window
of 6 months to produce density estimates, and by selecting the values of A, hyy and hy that led
to the most accurate wind power density estimates calculated over a cross-validation
evaluation period for 1 hour-ahead prediction. They measured accuracy using the mean of the

continuous ranked probability score (CRPS), which is described by Gneiting et al. [23] as an
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appealing measure of accuracy, capturing the properties of calibration and sharpness in the
estimate of the probability density function.

As we explained in the previous section, in our implementation of the kernel density
methods, we estimated the density for values of wind power at increments equal to 1% of the
capacity, and assumed equal probability within each of the 100 wind power intervals. As this
delivers a discrete density and distribution, we evaluated accuracy using the RPS, which is
the discrete version of the CRPS (see [24]). We used a three-step cascaded optimisation
approach to find the parameter values that minimise the RPS for the cross-validation period.
The first step involved a grid search of 100 values for A, hy and hy, log-equally spaced
between the following intervals: 0.98<A<1; 0.0001<h,<5; and 0.001<hy<0.5. With regard to
the interval for hy, note that, instead of working with wind power measured in MW, we used
the capacity factor, which is wind power as a proportion of the wind farm’s capacity. The
second step of the cascaded optimisation approach used a trust-region-reflective algorithm
employed in the ‘fmincon’ function of Matlab 2012b. The trust-region-reflect algorithm
described by [35] further minimised the RPS for the cross-validation period subject to the
bound constraints given above. The algorithm uses finite difference approximation and trust
regions to ensure the robustness of the iteration. A genetic algorithm was chosen as the final
step of the cascaded optimisation. The best individuals from the previous optimisations were
used as the population required to operate the genetic algorithm. We did not choose the
genetic algorithm in the earlier stage of our cascading optimisation for global optimisation
because deceptive problems, which mislead the search to some local optima rather than the
global optimum, have been recognised as challenges in genetic algorithms [36]. Increasing
the mutation rate or maintaining a diverse population might help to relieve this issue, but in
the expense of an exponential increase of the search space. We use the notation CKDA to

refer to the three-stage CKD-based approach of Section 3.2, optimised using the RPS.
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4. Conditional kernel estimation for wind power quantile forecasting
In this section, we introduce our proposed approach to wind power quantile

forecasting. It is a relatively simple adaptation of the CKD approach of the previous section.

4.1. A limitation of the CKD approach for wind power quantile forecasting

Although CKDA can certainly be used to deliver quantile forecasts, we would suggest
that this has the disadvantage that CKDA involves the use of the same parameters across
different wind power quantiles. With regard to the bandwidth in the wind power direction, hy,
one might imagine that a larger value would be needed for more extreme quantiles, because
there are fewer observations in the tails of the density. With regard to the bandwidth in the
wind velocity directions, hu, it seems likely that the optimal value will depend on the value
of hy, as well as the characteristics of the empirical power curve around the quantile under
consideration. For example, if that part of the empirical power curve has a relatively high
gradient, then a relatively small value of hy, may be needed to avoid over-smoothing. As for
the decay parameter, A, it seems reasonable to assume that different parts of the wind power
density will evolve at different rates, and also that the conditionality on the wind velocities
may evolve differently for different quantiles. Hence, different values of A are likely to be
optimal for different quantiles. Therefore, the assumption of using the same parameters for

different quantiles would seem to hamper accurate quantile estimation.

4.2. Optimising conditional kernel density estimation for wind power quantile forecasting

In this paper, we use the three-stage CKD-based approach, described in Section 3.2,
to deliver a wind power density forecast, which we convert into a cumulative distribution
function from which we obtain the required @ quantile estimate. However, as our interest is

not in the accurate estimation of the entire wind power density, we optimise the approach
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specifically towards estimation of the desired & quantile of interest. More specifically, in the
cross-validation approach used to optimise A, huw and hy, we replace the RPS with the

following measure, which is the objective function minimised in quantile regression [25]:
13 A A
HZ(Yt_Qth‘Q_'(YtSQyt)) 3
t=1

where (jyt Is an estimate of the @ quantile of a variable Y. We refer to expression (3) as the

mean quantile regression error (MQRE). It has been proposed as a measure of quantile
forecast accuracy, both in the context of wind power [11,26] and in other applications
[27,28,29]. We discuss this further in Section 5.3.

Our proposal is, therefore, to produce wind power quantile forecasts using the three-
stage CKD-based approach of Section 3.2, with values of A, hyy and hy selected to deliver the
most accurate quantile estimates, where accuracy is measured using the MQRE, calculated
over a cross-validation evaluation period for 1 hour-ahead prediction. We refer to this method
as CKQA. In our empirical work, to minimise the MQRE for the cross-validation period, we

used the three-step cascaded optimisation approach that we described in Section 3.3.

5. Empirical study

In this section, we use the hourly data from the three wind farms, described in Section
2, to evaluate forecast accuracy for the 1%, 5%, 25%, 75%, 95%, and 99% conditional
quantiles for lead times from 1 to 72 hours ahead. For each wind farm, we used the final 25%

of data for post-sample evaluation, and the penultimate 25% for cross-validation.

5.1. Kernel density methods for quantile forecasting
In addition to the CKQA method, described in Section 4.2, we also implemented, as a

sophisticated benchmark, the CKDA method, described in Sections 3.2 and 3.3. These two
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methods differ in that CKDA uses the RPS as the basis for estimating the parameters, A, huw
and hy, while CKQA uses the quantile regression cost function of expression (3) for
estimation. For a given lead time, each of these methods delivers a wind power density
forecast, from which the required & quantile forecast is obtained. We used a 6-month moving
window in the CKD estimation, with CKD estimation performed afresh every 24 hours.

Density forecasts of the wind velocity variables, Ut and Vi, were produced using a
time series model of the form used by Jeon and Taylor [5], with parameters estimated using
the first 75% of the data. This is a bivariate model with vector autoregressive moving average
components for the levels, and GARCH components for the variances. Interesting alternative
time series models for wind speed and direction include the multivariate kernel density
estimation approach of Zhang et al. [30], and the Bayesian approach of Jiang et al. [31].

As a relatively simple benchmark method, we applied the unconditional kernel
density (UKD) estimator of expression (1) to a moving window of the most recent historical
wind power observations. We optimised the one bandwidth using cross-validation. The
resulting density estimate provided quantile estimates that we used as the wind power
quantile forecasts for all future periods. We considered moving windows of lengths 24 hours,
10 days and 6 months. The best results were produced with moving windows of 24 hours, and
so for simplicity we report only these results in the remainder of this paper. We refer to this
method as UKD24.

Table 1
Parameters optimised using cross-validation for Sotavento.

Method Bandwidth hy, (m/s) Bandwidth hy A (half-life)
UKD24 0.267

CKD4 0.56 0.021 0.999 (28.9 days)
CKQA-1% 2.55 0.012 0.990 (2.9 days)
CKQA-5% 0.87 0.015 0.999 (28.9 days)
CKQA-25% 0.40 0.013 0.999 (28.9 days)
CKQA-50% 0.50 0.021 0.999 (28.9 days)

15



CKQA-75% 0.58 0.010 0.999 (28.9 days)
CKQA-95% 0.53 0.065 0.999 (28.9 days)
CKQA-99% 0.46 0.090 0.999 (28.9 days)

NOTE: hy has no units, because y is the capacity factor.

Table 1 presents the parameters optimised for the three methods using cross-
validation, and averaged over the three wind farms. Note that the bandwidth in the y-
direction, hy, has no units because, as we stated in Section 3.3, in our computations, we
worked with capacity factor, which is wind power as a proportion of the capacity of the wind
farm. In Table 1, each value of the decay parameter A is accompanied by the corresponding
half-life, and these indicate that, although the values of 4 may seem rather high, they do
imply notable decreasing weight over the 6-month rolling window of hourly observations
used for CKDA and CKQA. For the CKQA method, it is interesting to note that the bandwidth
in the y-direction, hy, is larger for more extreme quantiles in the upper tail of the density. This
bandwidth relates to kernel density estimation for the wind power density. The need for
larger values of hy for more extreme upper quantiles seems intuitive, because there are fewer
observations in the upper tail of the wind power distribution, and hence more kernel
smoothing is beneficial. With regard to the values of hy, for CKQA4, it is interesting to note
that the values for the 1% quantile and 5% quantile, are notably larger than for the other
quantiles. This implies a relatively large degree of smoothing of the empirical power curve,
and this seems reasonable as the curve is relatively flat for low values of wind speed.

In Fig. 5, we present the wind power observations and the 6 hour-ahead forecasts for
the 5% and 95% quantiles from the CKQA method for the final 4 weeks of the post-sample
period for Sotavento. It is reassuring to see that the quantile forecasts move with the wind
power time series. However, the purpose of Fig. 5 is to provide just an informal visual check
on the method. A more thorough assessment of quantile forecast accuracy is provided in

Section 5.3.
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Fig. 5. Time series plots of 6 hour-ahead quantile forecasts from CKQA for the final 4 weeks
of the post-sample period for Sotavento.
5.2. A quantile regression method for quantile forecasting

In addition to the methods, described in the previous section, we also generated
quantile forecasts from a quantile regression model. The approach that we used was based on
the work of Nielsen et al. [12]. This involves first producing point forecasts, and then using
quantile regression to estimate quantile models for the forecast error distribution. For
simplicity, as point forecasts, we used the median of the density forecasts of the UKD24
method, which we described in the previous section.

Following the approach taken by Nielsen et al., we chose the quantile regression
dependent variable to be a vector constructed by concatenating vectors of (n-72) in-sample
forecast errors for each of the 72 lead times of interest, where n is the number of in-sample
periods. We included an intercept (C) in the quantile regression, and the following
explanatory variables: the lead time (L); the square of the lead time (L?); the value of the
wind power capacity factor at the forecast origin (P); the value of the capacity factor at the
forecast origin multiplied by the lead time (PxL); the value of the capacity factor at the

forecast origin multiplied by the square of the lead time (PxL2); the value of wind speed at

the forecast origin (S); the value of wind speed at the forecast origin multiplied by the lead
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time (SxL); the value of wind speed at the forecast origin multiplied by the square of the lead

time (SxL?); and the point forecast for wind power (P).

We performed the quantile regression for each of the six quantile probability levels
(1%, 5%, 25%, 75%, 95%, and 99%), and for each of the three wind farms. Each wind power
quantile forecast was then produced as the sum of the point forecast and the forecast error
quantile estimated by a quantile regression model. In Table 2, we provide the parameters
estimated for the 5% and 95% quantile regression models for Sotavento. Given that the lead
time variable L takes values up to 72, the coefficients of L?, PxL and PxL? are sufficiently
large to imply that the wind power uncertainty is nonlinearly dependent on the lead time and
wind power capacity factor at the forecast origin.

Table 2
Parameters of the 5% and 95% quantile regression models for Sotavento.

I L L2 P PxL Px|2 S SxL Sx|2 P

5%  0.0254 -0.054 -0.00072 156 0.0024 -0.00074 -0.0176 0.00200 0.000045 -7.56

95%  0.0161 0.026  -0.00025 1.79 -0.0477 0.00026 -0.0180 0.00008 0.000006 -0.92

5.3. Comparison of post-sample quantile forecast accuracy

To assess the post-sample performance of the wind power quantile forecasting
methods, we used the hit percentage and the MQRE of expression (3). In the context of
probabilistic wind power forecasting, Pinson et al. [26] describe how quantile forecasts
should be assessed in terms of reliability and sharpness. Reliability is the degree to which the
quantile forecast is, on average, correct. Sharpness is the extent to which the quantile forecast
varies with the quantile over time. The hit percentage, that we consider here, is a standard
measure of reliability (see, e.g., [26] and [32]). Pinson et al. [26] explain that, having assessed
reliability, sharpness can be evaluated through the use of the MQRE, which is an overall skill

score, measuring both reliability and sharpness.
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The hit percentage is the percentage of the post-sample wind power observations that
fall below the corresponding quantile forecasts. For estimation of the & quantile, the ideal
value for the hit percentage is @. For each method and forecast lead time, we calculated the
weighted average of the hit percentage across the three wind farms, where the weights were
in proportion to the capacities of the wind farms. We present this average hit percentage in
Table 3. For clarity of presentation, in Table 3, we group some of the forecast horizons
together, with more detailed results shown for the early lead times, as we feel all of the
methods have greatest potential for shorter lead times, as they are based in this paper on time
series models, rather than on predictions from an atmospheric model. The final column of the
table provides the average performance across all lead times. Table 3 shows the simple
benchmark method, UKD24, performing relatively poorly, except for estimation of the 75%
quantiles. Looking at the final column of Table 3, we see that, overall, CKQA performed the
best for four of the six quantile probability levels, and was poorer than CKDA for just the
25% probability level. The quantile regression method was relatively poor for the lower three
probability levels, but the best overall for estimation of the 95% quantiles, and competitive
for estimation of the 75% and 99% quantiles.

The hit percentage is a measure of the unconditional coverage of a quantile estimator.
It assesses the average number of times that an observation falls below the estimator. To also
assess the degree to which each quantile estimator varies with the wind power series, tests
have been proposed for conditional coverage (e.g. [33]). These tests focus on the level of
autocorrelation in the series of hits. Unfortunately, these tests are not of use for multi-step-
ahead prediction, because the hit variable will naturally tend to be autocorrelated, regardless
of the quality of the quantile forecasts [26]. To assess both conditional and unconditional
coverage, we use the MQRE, presented in expression (3). As we discussed at the start of this
section, the MQRE can also be viewed as an overall skill score measuring both reliability and

sharpness. Its use for evaluating quantile forecasts is natural, in view of the common use of
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the mean squared error (MSE) for evaluating point forecasts. Table 4 presents the weighted
average of the MQRE across the three wind farms, where the weighting was in proportion to
the capacities of the wind farms. In this table, the results for the UKD24 method are not
competitive for any of the quantiles. The results for the two conditional kernel methods are
the same for the lower three probability levels. For the upper quantiles, CKQA was more
accurate than CKDA, but the results are quite similar. For the 75% probability level, the
results for the quantile regression approach are notably the best, while for the other five
probability levels, the results for this approach are similar to those for the two conditional
kernel methods.

Table 5 investigates how the relative performances of the methods differ across the
three wind farms. For each wind farm, the table presents each of the two measures, averaged
across the 72 lead times, for each method. The results are reasonably consistent across the
three wind farms. An exception to this is that the CKDA method performed relatively poorly
for Aeolos. Another exception is that the UKD24 benchmark method was relatively accurate

for the Sotavento wind farm for 95% and 99% quantile estimation.
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Table 3
Evaluation of post-sample quantile forecasts using the hit percentage measure of reliability,
averaged over the three wind farms with weights in proportion to their capacities.

Horizon (hours) 1 2 3-4 56 7-8  9-12 13-24 25-48 49-60 61-72 1-72
1%
UKD24 224 225 224 226 226 228 229 236 239 241 23.5
QuReg 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CKDA 0.5 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
CKQ4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.1
5%
UKD24 28.1 282 282 285 287 288 288 297 302 308 29.6
QuReg 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CKDA 1.6 13 13 1.4 1.5 1.6 1.9 2.6 2.9 3.0 2.4
CKQA 1.5 1.3 1.2 1.3 1.6 1.6 2.1 3.4 4.1 4.6 3.2
25%
UKD24 538 538 538 540 542 540 541 549 544 536 54.3
QuReg 256 198 153 119 9.2 5.9 1.7 1.0 1.1 1.9 3.1
CKDA 181 194 205 216 226 236 234 221 212 203 21.8
CKQA 221 236 249 2641 267 283 304 302 303 302 29.6
50%
UKD24 689 690 688 688 686 685 682 679 675 66.6 67.8
QuReg 443 465 479 495 511 526 553 606 628 635 58.8
CKD4 532 53.0 51.6 504 49.7 485 469 458 446 443 46.3
CKQ4 50.4 497 484 473 467 458 450 445 439 436 44.8
75%
UKD24 828 824 823 819 815 813 808 793 785 774 79.5
QuReg 814 783 762 750 749 753 77.0 784 789 784 77.9
CKDA 795 774 759 745 738 730 708 681 663 655 68.9
CKQA 795 777 764 753 750 748 736 719 710 706 725
95%
UKD24 926 922 920 919 916 915 914 905 89.6 89.0 90.5
QuReg 87.8 90.0 903 90.2 905 911 937 973 975 950 95.2
CKDA 966 960 958 953 946 942 934 921 911 906 92.4
CKQA 97.7 975 972 971 968 966 96.2 954 947 945 95.5
99%
UKD24 965 964 962 960 958 959 958 953 947 944 95.2
QuReg 964 962 959 963 964 966 97.8 993 99.7 988 98.5
CKDA 990 990 991 992 990 989 987 980 976 975 98.1
CKQA 99.4 993 994 995 994 993 99.2 989 989 989 99.0

NOTE: For the @quantile, the ideal value is 6. The best performing method at each horizon is underlined.
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Table 4
Evaluation of post-sample quantile forecasts using the MQRE (%1,000) skill score, averaged
over the three wind farms with weights in proportion to their capacities.

Horizon (hours) 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72 1-72
1%
UKD24 8 8 8 9 9 9 10 12 13 14 12
QuReg 3 3 3 3 3 3 3 3 3 3 3
CKDA 3 3 3 3 3 3 3 3 3 3 3
CKQ4 3 3 3 3 3 3 3 3 3 3 3
5%
UKD24 28 28 28 29 30 31 32 35 38 39 35
QuReg 13 13 13 13 13 13 13 13 13 13 13
CKDA 10 1 12 12 12 13 13 13 13 14 13
CKQA 11 11 12 12 13 13 13 14 14 14 13
25%
UKD24 92 93 94 95 96 98 99 104 108 111 104
QuReg 23 32 41 49 55 60 65 67 69 71 64
CKDA 35 39 43 47 51 55 61 66 67 67 63
CKQA 34 38 42 a7 50 55 61 67 68 68 63
50%
UKD24 119 120 122 124 125 126 127 133 137 140 132
QuReg 65 70 75 81 86 90 100 115 129 136 113
CKDA 44 51 60 68 75 83 97 113 120 121 105
CKQA 40 46 52 59 65 71 83 97 104 106 91
75%
UKD24 100 100 102 103 104 105 106 110 114 116 110
QuReg 28 38 48 58 65 12 82 98 104 104 91
CKDA 36 44 51 60 67 76 92 111 122 124 104
CKQA 36 44 51 59 65 74 90 109 119 121 101
95%
UKD24 36 37 37 38 39 39 39 40 42 43 40
QuReg 13 16 20 22 25 26 27 29 30 29 28
CKDA 14 16 18 21 23 26 29 34 37 39 33
CKQA 15 17 19 21 22 24 27 29 30 30 28
99%
UKD24 11 11 12 12 12 12 12 13 14 14 13
QuReg 6 6 7 7 8 8 7 7 7 8 7
CKDA 4 5 5 5 6 6 7 7 7 7 7
CKQ4 4 5 5 5 6 6 6 7 7 7 6

NOTE: Smaller values are better. The best performing method at each horizon is underlined.
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Table 5

Evaluation of post-sample quantile forecasts using the hit percentage reliability measure and
the MQRE (x1,000) skill score. Values shown are averages across the 72 lead times. The
weighted averages use weights in proportion to the capacities of the wind farms.

Hit percentage MQRE (%1,000)
Aeolos Rokas Sotavento Wtd. Avg. Aeolos Rokas Sotavento Witd. Avg.

1%

UKD24 29.6 22.1 18.7 23.5 17 13 5 12

QuReg 0.0 0.0 0.0 0.0 3 3 2 3

CKDA 0.0 0.1 0.0 0.0 3 3 2 3

CKQ4 0.0 0.3 0.0 0.1 3 3 2 3
5%

UKD24 354 28.9 24.7 29.6 47 39 18 35

QuReg 0.0 0.0 0.0 0.0 14 14 11 13

CKDA 0.1 7.0 0.2 24 14 14 1 13

CKQ4 01 9.1 0.2 3.2 14 14 11 13
25%

UKD24 57.2 52.3 53.5 54.3 129 106 76 104

QuReg 2.1 5.6 1.6 3.1 69 70 54 64

CKDA 7.1 36.4 21.7 21.8 68 67 52 63

CKQA 30.1 36.7 22.0 29.6 69 67 52 63
50%

UKD24 67.1 66.1 70.2 67.8 159 131 107 132

QuReg 50.0 65.2 61.2 58.8 80 120 139 113

CKDA 35.7 59.0 44.1 46.3 126 107 83 105

CKQ1 38.5 61.9 34.1 44.8 123 109 40 91
75%

UKD24 78.3 76.9 83.4 79.5 130 107 91 110

QuReg 79.8 81.9 71.8 77.9 107 94 71 91

CKDA 54.3 80.5 72.0 68.9 143 92 76 104

CKQA 56.8 81.2 78.3 725 136 93 75 101
95%

UKD24 89.1 88.0 94.3 90.5 48 43 29 40

QuReg 96.5 94.2 94.9 95.2 31 28 24 28

CKDA 85.4 95.3 96.5 92.4 46 28 24 33

CKQA 93.0 95.2 98.3 955 30 28 25 28
99%

UKD24 94.1 924 99.2 95.2 16 16 7 13

QuReg 99.0 97.6 98.9 98.5 7 8 7 7

CKDA 96.3 98.5 99.6 98.1 8 6 6 7

CKQ1 99.1 98.2 99.9 99.0 6 6 6 6

NOTE: For the @ quantile, the ideal value is 6. The best performing method in each column is underlined.
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6. Summary and concluding comments

In many parts of the world, the move towards more sustainable power generation has
led to a rapid increase in installed wind power capacity. The assessment of the uncertainty in
the future power output from a wind farm is of great importance for the efficient management
of power systems and wind power plants. The accuracy of the forecasts of a specific quantile
of the wind power density is often of more relevance than the overall accuracy of an estimate
of the full density. For example, when wind power producers are offering power to the
market for a future period, the optimal bid is a quantile of the wind power density.

This paper has focused on a previously proposed CKD-based approach to wind power
density forecasting, which captures the uncertainty in wind velocity, and the uncertainty in
the power curve. It is appealing because it involves a nonparametric approach that makes no
distributional assumption for wind power, it imposes no parametric assumption for the
relationship between wind power and wind velocity, and it allows more weight to be put on
more recent observations. As we do not require an accurate estimate of the entire wind power
density, our new proposal in this paper is to optimise the CKD-based approach specifically
towards estimation of the desired quantile, using the quantile regression objective function.

Using data from three wind farms, we found that overall this approach delivered more
accurate quantile predictions than quantile forecasts derived from the density forecasts
produced by the original CKD-based method and by an unconditional kernel density
estimator. We also implemented a quantile regression approach based on the proposals of
Nielsen et al. [12]. We also implemented a method, based on the work of Nielsen et al. [12],
who construct a wind power quantile as the sum of a point forecast and a forecast error
quantile estimated using quantile regression. Interestingly, the results of this method were
competitive with the conditional kernel approaches, especially in terms of the MQRE skill
score. A disadvantage of the quantile regression approach is that it is not clear how to

constrain the wind power quantile to be between zero and the capacity of the wind farm.
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Furthermore, we suspect that quantile crossing (see Section 2.5 of [25]) will be more likely
from a pair of quantile regression models than from a CKD-based approach.

In future work, it would be interesting to evaluate empirically the conditional kernel
methods for wind velocity density forecasts based on weather ensemble predictions. It would
also be interesting to consider the possible incorporation of a copula in the CKD-based
approach, which would provide a representation of the interdependency between wind power

and the wind velocities (see [34]).
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