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Abstract 

The efficient management of wind farms and electricity systems benefits greatly from 

accurate wind power quantile forecasts. For example, when a wind power producer offers 

power to the market for a future period, the optimal bid is a quantile of the wind power 

density. An approach based on conditional kernel density (CKD) estimation has previously 

been used to produce wind power density forecasts. The approach is appealing because: it 

makes no distributional assumption for wind power; it captures the uncertainty in forecasts of 

wind velocity; it imposes no assumption for the relationship between wind power and wind 

velocity; and it allows more weight to be put on more recent observations. In this paper, we 

adapt this approach. As we do not require an estimate of the entire wind power density, our 

new proposal is to optimise the CKD-based approach specifically towards estimation of the 

desired quantile, using the quantile regression objective function. Using data from three 

European wind farms, we obtained encouraging results for this new approach. We also 

achieved good results with a previously proposed method of constructing a wind power 

quantile as the sum of a point forecast and a forecast error quantile estimated using quantile 

regression.  
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1. Introduction 

 For many countries, the proportion of electricity consumption generated from 

renewable sources is rapidly increasing, with ambitious targets aimed at reducing carbon 

emissions. Wind power generation is a prominent feature of this development in sustainable 

energy. The high variability and low predictability of the wind present a significant challenge 

for its integration into electricity power systems [1]. The efficient operation of a power 

system requires an accurate estimate of the uncertainty in the predicted power output from a 

wind farm. Quantifying this uncertainty is also important for wind farm operators. A common 

purpose of wind power forecasting is to set the bid for sales of future production that a wind 

power producer will make to an energy market. Pinson et al. [2] show that if, as is likely to be 

the case, the unit cost of surplus and shortage wind power production are different, the 

optimal bid is not the expectation of future production, but it is instead a quantile. It is, 

therefore, a prediction of the quantile that is needed, and not a point forecast. The forecasting 

of wind power quantiles is the focus of this paper.  

 One possible approach to wind power forecasting is to fit a univariate time series 

model to wind power time series (e.g. [3]). However, this is very challenging due to the 

bounded and discontinuous nature of wind power time series. It is more straightforward to fit 

a time series model to wind speed and direction data, converted to Cartesian coordinates to 

represent wind velocity variables (e.g. [4]). Forecasts of these variables can then be used as 

the basis for wind power prediction. This is the approach taken by Jeon and Taylor [5] who 

use conditional kernel density (CKD) estimation to produce a forecast of the wind power 

probability density function (i.e. a density forecast). Their methodology incorporates (a) wind 

speed and direction forecast uncertainty, and (b) the stochastic nature of the dependency of 

wind power on wind speed and direction. We are not aware of other wind power density 

forecasting methods that aim to capture these two fundamental sources of uncertainty. The 

method would, therefore, seem to have strong potential. Although the resultant wind power 
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density forecasts can be used to provide quantile forecasts, it is our assertion in this paper that 

superior quantile forecasts can be produced by an adaptation of this CKD-based 

methodology.  

 Jeon and Taylor [5] optimise method parameters using an objective function that 

measures density forecast accuracy. In this paper, we replace this by the objective function of 

quantile regression, and hence calibrate the approach towards estimation of a particular 

quantile of interest. The result of this is that the parameters are able to differ across the 

different quantiles. This is appealing, because different quantiles are likely to have different 

features and dynamics. For example, the left tail of the wind power distribution may evolve at 

a faster rate than the right tail.  

 In this paper, we focus on hourly data from three European wind farms, and we 

forecast wind power quantiles for lead times ranging from 1 hour up to 3 days ahead. Foley et 

al. [6] describe how such short lead times are important for power system operational 

planning and electricity trading. We base the estimation on density forecasts for wind speed 

and direction, produced by a time series model. It is worth noting that these wind speed and 

direction density forecasts can be replaced by ensemble predictions from an atmospheric 

model [7,8,9]. We use density forecasts from a time series model, because this approach has 

appeal in terms of cost, and the forecasts are likely to compare well with ensemble 

predictions for short lead times. Also, by contrast with ensemble predictions, time series 

model predictions can be conveniently produced from any forecast origin, for any lead time, 

and for any wind farm location for which a history of observations is available.  

 As we have explained, our proposal is to use the quantile regression objective 

function within a CKD-based approach. It is worth noting that quantile regression has 

previously been used for wind power quantile prediction. Bremnes [10] proposes forms of 

locally weighted quantile regression with wind speed and direction as explanatory variables. 

The adaptive quantile regression procedure of Møller et al. [11], and the linear model with 



 4 

spline basis functions of Nielsen et al. [12], both involve the application of quantile 

regression to the errors of wind power point forecasts produced in a separate procedure. As in 

the study of Taylor and Bunn [13], Nielsen et al. simultaneously estimate quantiles for a 

range of lead times by using the forecast error from different lead times as dependent 

variable, and the forecast lead time as one of the explanatory variables. In this paper, we 

implement a form of this approach, and compare quantile forecast accuracy with our 

proposed adaptation of the CKD-based approach of Jeon and Taylor [5]. The CKD-based 

approaches explicitly try to capture the uncertainties underlying wind power, while the 

quantile regression method is a pragmatic approach. It is an interesting empirical question as 

to which is more accurate. 

 Section 2 discusses the features of wind power, speed and direction data from three 

wind farms. Section 3 reviews CKD-based wind power density forecasting, and Section 4 

describes how the method can be adapted for the prediction of a particular quantile. Section 5 

provides an empirical evaluation of the accuracy of our proposed CKD-based quantile 

forecasting approach, and a quantile regression model based on the approach of Nielsen et al. 

Section 6 provides a brief summary and conclusion. 

 

2. Wind data and the power curve 

2.1. The characteristics of wind data 

The data used in this paper consists of hourly observations for wind speed, direction 

and power, recorded at the following three wind farms: Sotavento, which is in Galicia in 

Spain, and Rokas and Aeolos, which are on the Greek island of Crete. Our data for Sotavento 

is for the 23,616 hourly periods from 1 July 2004 to 11 March 2007. For Rokas and Aeolos, 

the data is for the 8,760 hourly observations from the year 2006. The wind power data 

corresponds to the total power generated from the whole wind farm. On the final day of each 
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dataset, the capacities of Sotavento, Rokas and Aeolos were 17.6 MW, 16.3 MW and 11.6 

MW, respectively. The data from the two Crete wind farms was used in [5].  

Fig. 1 presents the wind speed, direction and power time series for the Sotavento wind 

farm. The series exhibit substantial volatility, which suggests that point forecasting is likely 

to be very challenging, and this motivates the development of methods for quantile and 

density forecasting. The plots also suggest that fluctuations in wind power coincide, to some 

extent, with variations in wind speed and direction. It is interesting to note that the volatility 

in the series varies over time. It is this that has prompted the use of generalised autoregressive 

conditional heteroskedastic (GARCH) models for wind speed data (e.g. [4,8,14]). Fitting such 

models to wind power time series is not appealing, because the power output from a wind 

farm is bounded above by its capacity, and this creates discontinuities, as well as 

distributional properties that are non-Gaussian and time-varying.  

 

 
 

Fig. 1.  Wind speed, direction and power time series for Sotavento. 
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For Sotavento and Rokas, Fig. 2 shows Cartesian plots of wind speed and direction, 

where the distance of each observation from the origin represents the wind speed. The plot 

for Rokas shows that north-westerly wind is particularly common at this wind farm. 

 

 
Fig. 2. For Sotavento and Rokas, Cartesian plots of wind speed and direction, where the 

distance of each observation from the origin is the strength of the wind speed.  

   

 

2.2. Power curves 

 The theoretical relationship between the wind power generated and the wind speed is 

described by the machine power curve, which can be provided by the turbine manufacturer 

[15]. This curve is deterministic and nonlinear, with the following features: a minimum 

‘connection speed’ below which no power can be generated; as speed rises from this 

minimum, the power output increases; this continues until a ‘nominal speed’, which is the 

lowest speed at which the turbine is producing at its maximum power output; and finally 

there is a ‘disconnection speed’ at which the turbine must be shut down to avoid damage.  

Fig. 3 plots the empirical power curves, using historical observations, for Sotavento 

and Rokas. Although the figures show the essential features that we have just described for 

the machine power curve, it can be seen that, in reality, the power curve for a wind farm is 

stochastic. Sanchez [15] attributes this to the effect of other atmospheric variables, such as air 

temperature and pressure, as well as other factors, such as the relationship differing for rising 
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and falling wind speed, complexities caused by the aggregated effect of different types of 

turbines in the one wind farm, and the capacity of the wind farm varying over time.  

 

 
Fig. 3. Empirical power curves for Sotavento and Rokas.   

 

The empirical power curves in Fig. 3 indicate that the dispersion and distributional 

shape of the variability in wind power depends on the value of wind speed. For example, for 

Rokas, if wind speed is between about 10 and 15 m/s, the wind power density is skewed to 

the left with relatively high variability, while for wind speed below about 5 m/s, the wind 

power density would seem to be skewed to the right with relatively low variability. 

Therefore, the estimation of the wind power density or quantiles should be conditional on the 

value of wind speed.  

For Sotavento and Rokas, Fig. 4 shows the empirical power curves plotted for two 

different months. The Sotavento plot shows considerably more variation in November 2005 

than in April 2006. Curiously, for the higher values of wind speed, more wind power tended 

to be generated in November 2005 than April 2006. A similar comment can be made 

regarding the Rokas empirical power curve, which shows greater efficiency in the conversion 

of strong values of wind speed to power in January 2006 than September 2006. In essence, 

the plots suggest that the power curves are time-varying. This can be due to changing weather 

patterns, and changes in the capacity of the wind farm due, for example, to maintenance or 
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expansion. Time-variation in the power curve suggests that, when modelling, it may be useful 

to put more weight on more recent information.  

 

 
Fig. 4. Empirical power curves for Sotavento and Rokas. Each based on two selected months. 

 

 The plots of this section indicate that, when forecasting wind power based on a model 

relating power to speed, it is important to acknowledge two issues. First, the relationship 

between wind power and speed is nonlinear and stochastic, and it may be time-varying and 

dependent on wind direction and other atmospheric variables [15]. Second, the stochastic 

nature of wind speed will affect the uncertainty in wind power predictions [16], and so should 

be accommodated in the modelling approach. In the next section, we present a methodology 

for wind power forecasting that addresses the first of these issues through the use of a 

nonparametric approach that makes no distributional assumption for wind power, imposes no 

parametric assumption for the relationship between wind power and speed, and puts more 

weight on more recent observations. The methodology addresses the second issue by 

incorporating Monte Carlo sampling from wind velocity density forecasts. These density 

forecasts could be produced from a time series model or from weather ensemble predictions 

from an atmospheric model. 
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3. Conditional kernel estimation for wind power density forecasting 

3.1. Conditional kernel density estimation 

Kernel density estimation is a nonparametric approach to the estimation of the density 

of a target variable Yt. It can be viewed as smoothing the empirical distribution of historical 

observations. The unconditional kernel density (UKD) estimator (see [17]) is expressed as: 
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where n is the sample size, and Kh(•)=K(•/h)/h is a kernel function with bandwidth h. The 

kernel function is a function that integrates to 1. A common choice is the standard Gaussian 

probability density function, and we use this for all kernel functions in this paper. The 

bandwidth is a parameter that controls the degree of smoothing.  

 In its simplest form, conditional kernel density (CKD) estimation enables the 

nonparametric estimation of the density of a target variable Yt, conditional on the value of an 

explanatory variable Xt. It is nonparametric in two senses: it requires no parametric 

assumptions for either the distribution of Yt or the form of the functional relationship between 

Yt and Xt. These features make the method particularly attractive for the wind power context, 

because the wind power distribution is non-Gaussian and unknown, and the form of the 

relationship between wind power and speed is nonlinear and unknown. The CKD estimator of 

the conditional density function of Yt, given Xt = x (see [18]), is expressed as: 
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The kernel 
yhK  enables kernel density estimation in the y-axis direction, with the 

observations weighted in accordance to the kernel 
xhK , which relates to kernel smoothing in 

the x-axis direction, enabling a larger weight to be put on historical observations for which Xt 

is closer to x. For the two kernels, the bandwidths, hx and hy, control the degree of smoothing. 
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3.2. Conditional kernel density estimation for wind power density forecasting 

 With wind power specified as the target variable Yt, Jeon and Taylor [5] use CKD 

estimation with conditioning on wind velocity variables, Ut and Vt, which are the result of 

transforming wind speed and direction to Cartesian coordinates. They incorporate a decay 

parameter  to enable more weight to be put on more recent observations. This is appealing 

because the shape of the wind power density, and its relationship to wind velocity, can vary 

over time. We noted this in Section 2.2, in relation to the two plots of Fig. 4, which each 

show the empirical power curve differing for two separate months of the year. A lower value 

of  leads to faster decay. The CKD estimator is presented in the following expression: 
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 Cross-validation can be used to optimise  along with the bandwidths huv and hy, and 

we discuss this issue further in the next section. The exponential decay can be viewed as a 

kernel function, defined to be one-sided with exponentially declining weight [19]. We can, 

therefore, view the CKD estimator of expression (2) as having three bandwidths, , huv and 

hy. The CKD estimator provides an estimate of the density at Yt=y. To estimate the full 

density, the CKD estimation can be performed for values of y from zero to the wind farm’s 

capacity with small increments. In our implementations of CKD in this paper, we used 

increments equal to 1% of the capacity, and assumed equal probability within each of the 

corresponding 100 wind power intervals to deliver an estimate of the full density.  

 To produce a wind power density forecast, it seems natural to perform the CKD 

estimation conditional on forecasts of Ut and Vt. This is essentially the approach taken by 

Juban et al. [20], who condition on point forecasts of wind speed and direction from an 

atmospheric model. The problem with conditioning on point forecasts is that the resulting 

wind power density estimate will not capture the potentially significant uncertainty in Ut and 
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Vt. To address this, Jeon and Taylor [5] provide the following three-stage methodology that 

effectively enables CKD estimation to be performed conditional on density forecasts for Ut 

and Vt, which they produced using a time series model: 

Stage 1 - The CKD estimator of expression (2) is used to produce an estimate of the full wind 

power density conditional on each pair of values of Ut and Vt, on a grid from -30 m/s to 30 

m/s with an increment of 0.5 m/s. The result is 121×121=14,641 pairs, and, for each, a 

corresponding conditional wind power density estimate. These are stored for use in Stage 2.  

Stage 2 - Monte Carlo simulation of a time series model is performed to deliver 1,000 

realisations of pairs of values for Ut and Vt, for a selected lead time. Each value is rounded to 

the nearest 0.5 m/s, and then for each of the 1,000 pairs, the corresponding conditional wind 

power density estimate is obtained from those stored in Stage 1.  

Stage 3 - The 1,000 wind power density estimates from Stage 2 are averaged to give a single 

wind power density forecast. 

 It is worth noting that the methodology relies on density forecasts for the wind 

velocities, Ut and Vt, and that these could be produced by a time series model or atmospheric 

model, which would be expected to capture the autocorrelation properties of the wind.  

 

3.3. Optimising conditional kernel density estimation for wind power density forecasting 

 Fan and Yim [21] and Hall et al. [22] provide support for the use of cross-validation 

to optimise the bandwidths in kernel density estimation. In our implementation of kernel 

density estimation in this paper, we followed Jeon and Taylor [5] by using a rolling window 

of 6 months to produce density estimates, and by selecting the values of , huv and hy that led 

to the most accurate wind power density estimates calculated over a cross-validation 

evaluation period for 1 hour-ahead prediction. They measured accuracy using the mean of the 

continuous ranked probability score (CRPS), which is described by Gneiting et al. [23] as an 
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appealing measure of accuracy, capturing the properties of calibration and sharpness in the 

estimate of the probability density function.  

 As we explained in the previous section, in our implementation of the kernel density 

methods, we estimated the density for values of wind power at increments equal to 1% of the 

capacity, and assumed equal probability within each of the 100 wind power intervals. As this 

delivers a discrete density and distribution, we evaluated accuracy using the RPS, which is 

the discrete version of the CRPS (see [24]). We used a three-step cascaded optimisation 

approach to find the parameter values that minimise the RPS for the cross-validation period. 

The first step involved a grid search of 100 values for , huv and hy, log-equally spaced 

between the following intervals: 0.98≤≤1; 0.0001≤huv≤5; and 0.001≤hy≤0.5. With regard to 

the interval for hy, note that, instead of working with wind power measured in MW, we used 

the capacity factor, which is wind power as a proportion of the wind farm’s capacity. The 

second step of the cascaded optimisation approach used a trust-region-reflective algorithm 

employed in the ‘fmincon’ function of Matlab 2012b.  The trust-region-reflect algorithm 

described by [35] further minimised the RPS for the cross-validation period subject to the 

bound constraints given above. The algorithm uses finite difference approximation and trust 

regions to ensure the robustness of the iteration. A genetic algorithm was chosen as the final 

step of the cascaded optimisation. The best individuals from the previous optimisations were 

used as the population required to operate the genetic algorithm. We did not choose the 

genetic algorithm in the earlier stage of our cascading optimisation for global optimisation 

because deceptive problems, which mislead the search to some local optima rather than the 

global optimum, have been recognised as challenges in genetic algorithms [36]. Increasing 

the mutation rate or maintaining a diverse population might help to relieve this issue, but in 

the expense of an exponential increase of the search space. We use the notation CKD to 

refer to the three-stage CKD-based approach of Section 3.2, optimised using the RPS. 
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4. Conditional kernel estimation for wind power quantile forecasting 

 In this section, we introduce our proposed approach to wind power quantile 

forecasting. It is a relatively simple adaptation of the CKD approach of the previous section.  

 

4.1. A limitation of the CKD approach for wind power quantile forecasting 

 Although CKD can certainly be used to deliver quantile forecasts, we would suggest 

that this has the disadvantage that CKD involves the use of the same parameters across 

different wind power quantiles. With regard to the bandwidth in the wind power direction, hy, 

one might imagine that a larger value would be needed for more extreme quantiles, because 

there are fewer observations in the tails of the density. With regard to the bandwidth in the 

wind velocity directions, huv, it seems likely that the optimal value will depend on the value 

of hy, as well as the characteristics of the empirical power curve around the quantile under 

consideration. For example, if that part of the empirical power curve has a relatively high 

gradient, then a relatively small value of huv may be needed to avoid over-smoothing. As for 

the decay parameter, , it seems reasonable to assume that different parts of the wind power 

density will evolve at different rates, and also that the conditionality on the wind velocities 

may evolve differently for different quantiles. Hence, different values of  are likely to be 

optimal for different quantiles. Therefore, the assumption of using the same parameters for 

different quantiles would seem to hamper accurate quantile estimation. 

 

4.2. Optimising conditional kernel density estimation for wind power quantile forecasting 

 In this paper, we use the three-stage CKD-based approach, described in Section 3.2, 

to deliver a wind power density forecast, which we convert into a cumulative distribution 

function from which we obtain the required  quantile estimate. However, as our interest is 

not in the accurate estimation of the entire wind power density, we optimise the approach 
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specifically towards estimation of the desired  quantile of interest. More specifically, in the 

cross-validation approach used to optimise , huv and hy, we replace the RPS with the 

following measure, which is the objective function minimised in quantile regression [25]:  

         



n

t

yttytt QYIQY
n 1

ˆˆ1
      (3) 

where ytQ̂  is an estimate of the  quantile of a variable Yt. We refer to expression (3) as the 

mean quantile regression error (MQRE). It has been proposed as a measure of quantile 

forecast accuracy, both in the context of wind power [11,26] and in other applications 

[27,28,29]. We discuss this further in Section 5.3. 

 Our proposal is, therefore, to produce wind power quantile forecasts using the three-

stage CKD-based approach of Section 3.2, with values of , huv and hy selected to deliver the 

most accurate quantile estimates, where accuracy is measured using the MQRE, calculated 

over a cross-validation evaluation period for 1 hour-ahead prediction. We refer to this method 

as CKQ. In our empirical work, to minimise the MQRE for the cross-validation period, we 

used the three-step cascaded optimisation approach that we described in Section 3.3. 

 

5. Empirical study 

 In this section, we use the hourly data from the three wind farms, described in Section 

2, to evaluate forecast accuracy for the 1%, 5%, 25%, 75%, 95%, and 99% conditional 

quantiles for lead times from 1 to 72 hours ahead. For each wind farm, we used the final 25% 

of data for post-sample evaluation, and the penultimate 25% for cross-validation. 

 

5.1. Kernel density methods for quantile forecasting 

 In addition to the CKQ method, described in Section 4.2, we also implemented, as a 

sophisticated benchmark, the CKD method, described in Sections 3.2 and 3.3. These two 



 15 

methods differ in that CKD uses the RPS as the basis for estimating the parameters, , huv 

and hy, while CKQ uses the quantile regression cost function of expression (3) for 

estimation. For a given lead time, each of these methods delivers a wind power density 

forecast, from which the required  quantile forecast is obtained. We used a 6-month moving 

window in the CKD estimation, with CKD estimation performed afresh every 24 hours. 

 Density forecasts of the wind velocity variables, Ut and Vt, were produced using a 

time series model of the form used by Jeon and Taylor [5], with parameters estimated using 

the first 75% of the data. This is a bivariate model with vector autoregressive moving average 

components for the levels, and GARCH components for the variances. Interesting alternative 

time series models for wind speed and direction include the multivariate kernel density 

estimation approach of Zhang et al. [30], and the Bayesian approach of Jiang et al. [31]. 

 As a relatively simple benchmark method, we applied the unconditional kernel 

density (UKD) estimator of expression (1) to a moving window of the most recent historical 

wind power observations. We optimised the one bandwidth using cross-validation. The 

resulting density estimate provided quantile estimates that we used as the wind power 

quantile forecasts for all future periods. We considered moving windows of lengths 24 hours, 

10 days and 6 months. The best results were produced with moving windows of 24 hours, and 

so for simplicity we report only these results in the remainder of this paper. We refer to this 

method as UKD24. 

 

Table 1   

Parameters optimised using cross-validation for Sotavento. 

 

  Method Bandwidth huv (m/s) Bandwidth hy  (half-life) 

UKD24   0.267   

CKD 0.56 0.021 0.999 (28.9 days) 

CKQ-1% 2.55 0.012 0.990 (2.9 days) 

CKQ-5% 0.87 0.015 0.999 (28.9 days) 

CKQ-25% 0.40 0.013 0.999 (28.9 days) 

CKQ-50% 0.50 0.021 0.999 (28.9 days) 
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CKQ-75% 0.58 0.010 0.999 (28.9 days) 

CKQ-95% 0.53 0.065 0.999 (28.9 days) 

CKQ-99% 0.46 0.090 0.999 (28.9 days) 

 

NOTE: hy has no units, because y is the capacity factor. 

 

 Table 1 presents the parameters optimised for the three methods using cross-

validation, and averaged over the three wind farms. Note that the bandwidth in the y-

direction, hy, has no units because, as we stated in Section 3.3, in our computations, we 

worked with capacity factor, which is wind power as a proportion of the capacity of the wind 

farm. In Table 1, each value of the decay parameter  is accompanied by the corresponding 

half-life, and these indicate that, although the values of  may seem rather high, they do 

imply notable decreasing weight over the 6-month rolling window of hourly observations 

used for CKD and CKQ. For the CKQ method, it is interesting to note that the bandwidth 

in the y-direction, hy, is larger for more extreme quantiles in the upper tail of the density. This 

bandwidth relates to kernel density estimation for the wind power density. The need for 

larger values of hy for more extreme upper quantiles seems intuitive, because there are fewer 

observations in the upper tail of the wind power distribution, and hence more kernel 

smoothing is beneficial. With regard to the values of huv for CKQ, it is interesting to note 

that the values for the 1% quantile and 5% quantile, are notably larger than for the other 

quantiles. This implies a relatively large degree of smoothing of the empirical power curve, 

and this seems reasonable as the curve is relatively flat for low values of wind speed. 

 In Fig. 5, we present the wind power observations and the 6 hour-ahead forecasts for 

the 5% and 95% quantiles from the CKQ method for the final 4 weeks of the post-sample 

period for Sotavento. It is reassuring to see that the quantile forecasts move with the wind 

power time series. However, the purpose of Fig. 5 is to provide just an informal visual check 

on the method. A more thorough assessment of quantile forecast accuracy is provided in 

Section 5.3. 
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Fig. 5. Time series plots of 6 hour-ahead quantile forecasts from CKQ for the final 4 weeks 

of the post-sample period for Sotavento.  

5.2. A quantile regression method for quantile forecasting 

 In addition to the methods, described in the previous section, we also generated 

quantile forecasts from a quantile regression model. The approach that we used was based on 

the work of Nielsen et al. [12]. This involves first producing point forecasts, and then using 

quantile regression to estimate quantile models for the forecast error distribution. For 

simplicity, as point forecasts, we used the median of the density forecasts of the UKD24 

method, which we described in the previous section.  

 Following the approach taken by Nielsen et al., we chose the quantile regression 

dependent variable to be a vector constructed by concatenating vectors of (n-72) in-sample 

forecast errors for each of the 72 lead times of interest, where n is the number of in-sample 

periods. We included an intercept (C) in the quantile regression, and the following 

explanatory variables: the lead time (L); the square of the lead time (L2); the value of the 

wind power capacity factor at the forecast origin (P); the value of the capacity factor at the 

forecast origin multiplied by the lead time (P×L); the value of the capacity factor at the 

forecast origin multiplied by the square of the lead time (P×L2); the value of wind speed at 

the forecast origin (S); the value of wind speed at the forecast origin multiplied by the lead 
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time (S×L); the value of wind speed at the forecast origin multiplied by the square of the lead 

time (S×L2); and the point forecast for wind power ( P̂ ).  

 We performed the quantile regression for each of the six quantile probability levels 

(1%, 5%, 25%, 75%, 95%, and 99%), and for each of the three wind farms. Each wind power 

quantile forecast was then produced as the sum of the point forecast and the forecast error 

quantile estimated by a quantile regression model. In Table 2, we provide the parameters 

estimated for the 5% and 95% quantile regression models for Sotavento. Given that the lead 

time variable L takes values up to 72, the coefficients of L2, P×L and P×L2 are sufficiently 

large to imply that the wind power uncertainty is nonlinearly dependent on the lead time and 

wind power capacity factor at the forecast origin.  

Table 2   

Parameters of the 5% and 95% quantile regression models for Sotavento. 

 

 C L L2 P P×L P×L2 S S×L S×L2 
P̂  

5% 0.0254 -0.054 -0.00072 1.56 0.0024 -0.00074 -0.0176 0.00200 0.000045 -7.56 

95% 0.0161 0.026 -0.00025 1.79 -0.0477 0.00026 -0.0180 0.00008 0.000006 -0.92 

  

5.3. Comparison of post-sample quantile forecast accuracy 

 To assess the post-sample performance of the wind power quantile forecasting 

methods, we used the hit percentage and the MQRE of expression (3). In the context of 

probabilistic wind power forecasting, Pinson et al. [26] describe how quantile forecasts 

should be assessed in terms of reliability and sharpness. Reliability is the degree to which the 

quantile forecast is, on average, correct. Sharpness is the extent to which the quantile forecast 

varies with the quantile over time. The hit percentage, that we consider here, is a standard 

measure of reliability (see, e.g., [26] and [32]). Pinson et al. [26] explain that, having assessed 

reliability, sharpness can be evaluated through the use of the MQRE, which is an overall skill 

score, measuring both reliability and sharpness. 
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 The hit percentage is the percentage of the post-sample wind power observations that 

fall below the corresponding quantile forecasts. For estimation of the  quantile, the ideal 

value for the hit percentage is . For each method and forecast lead time, we calculated the 

weighted average of the hit percentage across the three wind farms, where the weights were 

in proportion to the capacities of the wind farms. We present this average hit percentage in 

Table 3. For clarity of presentation, in Table 3, we group some of the forecast horizons 

together, with more detailed results shown for the early lead times, as we feel all of the 

methods have greatest potential for shorter lead times, as they are based in this paper on time 

series models, rather than on predictions from an atmospheric model. The final column of the 

table provides the average performance across all lead times. Table 3 shows the simple 

benchmark method, UKD24, performing relatively poorly, except for estimation of the 75% 

quantiles. Looking at the final column of Table 3, we see that, overall, CKQ performed the 

best for four of the six quantile probability levels, and was poorer than CKD for just the 

25% probability level. The quantile regression method was relatively poor for the lower three 

probability levels, but the best overall for estimation of the 95% quantiles, and competitive 

for estimation of the 75% and 99% quantiles. 

 The hit percentage is a measure of the unconditional coverage of a quantile estimator. 

It assesses the average number of times that an observation falls below the estimator. To also 

assess the degree to which each quantile estimator varies with the wind power series, tests 

have been proposed for conditional coverage (e.g. [33]). These tests focus on the level of 

autocorrelation in the series of hits. Unfortunately, these tests are not of use for multi-step-

ahead prediction, because the hit variable will naturally tend to be autocorrelated, regardless 

of the quality of the quantile forecasts [26]. To assess both conditional and unconditional 

coverage, we use the MQRE, presented in expression (3). As we discussed at the start of this 

section, the MQRE can also be viewed as an overall skill score measuring both reliability and 

sharpness. Its use for evaluating quantile forecasts is natural, in view of the common use of 
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the mean squared error (MSE) for evaluating point forecasts. Table 4 presents the weighted 

average of the MQRE across the three wind farms, where the weighting was in proportion to 

the capacities of the wind farms. In this table, the results for the UKD24 method are not 

competitive for any of the quantiles. The results for the two conditional kernel methods are 

the same for the lower three probability levels. For the upper quantiles, CKQ was more 

accurate than CKD, but the results are quite similar. For the 75% probability level, the 

results for the quantile regression approach are notably the best, while for the other five 

probability levels, the results for this approach are similar to those for the two conditional 

kernel methods.  

 Table 5 investigates how the relative performances of the methods differ across the 

three wind farms. For each wind farm, the table presents each of the two measures, averaged 

across the 72 lead times, for each method. The results are reasonably consistent across the 

three wind farms. An exception to this is that the CKD method performed relatively poorly 

for Aeolos. Another exception is that the UKD24 benchmark method was relatively accurate 

for the Sotavento wind farm for 95% and 99% quantile estimation.  
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Table 3   

Evaluation of post-sample quantile forecasts using the hit percentage measure of reliability, 

averaged over the three wind farms with weights in proportion to their capacities.  

 

Horizon (hours) 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72 
 

1-72 

1%             

    UKD24 22.4 22.5 22.4 22.6 22.6 22.8 22.9 23.6 23.9 24.1  23.5 

    QuReg 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 

    CKD 0.5 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0  0.0 

    CKQ 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.2 0.0 0.0  0.1 

5%             

    UKD24 28.1 28.2 28.2 28.5 28.7 28.8 28.8 29.7 30.2 30.8  29.6 

    QuReg 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 

    CKD 1.6 1.3 1.3 1.4 1.5 1.6 1.9 2.6 2.9 3.0  2.4 

    CKQ 1.5 1.3 1.2 1.3 1.6 1.6 2.1 3.4 4.1 4.6  3.2 

25%             

    UKD24 53.8 53.8 53.8 54.0 54.2 54.0 54.1 54.9 54.4 53.6  54.3 

    QuReg 25.6 19.8 15.3 11.9 9.2 5.9 1.7 1.0 1.1 1.9  3.1 

    CKD 18.1 19.4 20.5 21.6 22.6 23.6 23.4 22.1 21.2 20.3  21.8 

    CKQ 22.1 23.6 24.9 26.1 26.7 28.3 30.4 30.2 30.3 30.2  29.6 

50%             

    UKD24 68.9 69.0 68.8 68.8 68.6 68.5 68.2 67.9 67.5 66.6  67.8 

    QuReg 44.3 46.5 47.9 49.5 51.1 52.6 55.3 60.6 62.8 63.5  58.8 

    CKD 53.2 53.0 51.6 50.4 49.7 48.5 46.9 45.8 44.6 44.3  46.3 

    CKQ 50.4 49.7 48.4 47.3 46.7 45.8 45.0 44.5 43.9 43.6  44.8 

75%             

    UKD24 82.8 82.4 82.3 81.9 81.5 81.3 80.8 79.3 78.5 77.4  79.5 

    QuReg 81.4 78.3 76.2 75.0 74.9 75.3 77.0 78.4 78.9 78.4  77.9 

    CKD 79.5 77.4 75.9 74.5 73.8 73.0 70.8 68.1 66.3 65.5  68.9 

    CKQ 79.5 77.7 76.4 75.3 75.0 74.8 73.6 71.9 71.0 70.6  72.5 

95%             

    UKD24 92.6 92.2 92.0 91.9 91.6 91.5 91.4 90.5 89.6 89.0  90.5 

    QuReg 87.8 90.0 90.3 90.2 90.5 91.1 93.7 97.3 97.5 95.0  95.2 

    CKD 96.6 96.0 95.8 95.3 94.6 94.2 93.4 92.1 91.1 90.6  92.4 

    CKQ 97.7 97.5 97.2 97.1 96.8 96.6 96.2 95.4 94.7 94.5  95.5 

99%             

    UKD24 96.5 96.4 96.2 96.0 95.8 95.9 95.8 95.3 94.7 94.4  95.2 

    QuReg 96.4 96.2 95.9 96.3 96.4 96.6 97.8 99.3 99.7 98.8  98.5 

    CKD 99.0 99.0 99.1 99.2 99.0 98.9 98.7 98.0 97.6 97.5  98.1 

    CKQ 99.4 99.3 99.4 99.5 99.4 99.3 99.2 98.9 98.9 98.9  99.0 

 

NOTE: For the  quantile, the ideal value is . The best performing method at each horizon is underlined. 
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Table 4   

Evaluation of post-sample quantile forecasts using the MQRE (×1,000) skill score, averaged 

over the three wind farms with weights in proportion to their capacities.  

 

Horizon (hours) 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72  1-72 

1%             

    UKD24 8 8 8 9 9 9 10 12 13 14  12 

    QuReg 3 3 3 3 3 3 3 3 3 3  3 

    CKD 3 3 3 3 3 3 3 3 3 3  3 

    CKQ 3 3 3 3 3 3 3 3 3 3  3 

5%             

    UKD24 28 28 28 29 30 31 32 35 38 39  35 

    QuReg 13 13 13 13 13 13 13 13 13 13  13 

    CKD 10 11 12 12 12 13 13 13 13 14  13 

    CKQ 11 11 12 12 13 13 13 14 14 14  13 

25%             

    UKD24 92 93 94 95 96 98 99 104 108 111  104 

    QuReg 23 32 41 49 55 60 65 67 69 71  64 

    CKD 35 39 43 47 51 55 61 66 67 67  63 

    CKQ 34 38 42 47 50 55 61 67 68 68  63 

50%             

    UKD24 119 120 122 124 125 126 127 133 137 140  132 

    QuReg 65 70 75 81 86 90 100 115 129 136  113 

    CKD 44 51 60 68 75 83 97 113 120 121  105 

    CKQ 40 46 52 59 65 71 83 97 104 106  91 

75%             

    UKD24 100 100 102 103 104 105 106 110 114 116  110 

    QuReg 28 38 48 58 65 72 82 98 104 104  91 

    CKD 36 44 51 60 67 76 92 111 122 124  104 

    CKQ 36 44 51 59 65 74 90 109 119 121  101 

95%             

    UKD24 36 37 37 38 39 39 39 40 42 43  40 

    QuReg 13 16 20 22 25 26 27 29 30 29  28 

    CKD 14 16 18 21 23 26 29 34 37 39  33 

    CKQ 15 17 19 21 22 24 27 29 30 30  28 

99%             

    UKD24 11 11 12 12 12 12 12 13 14 14  13 

    QuReg 6 6 7 7 8 8 7 7 7 8  7 

    CKD 4 5 5 5 6 6 7 7 7 7  7 

    CKQ 4 5 5 5 6 6 6 7 7 7  6 

 

NOTE:  Smaller values are better. The best performing method at each horizon is underlined. 
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Table 5   

Evaluation of post-sample quantile forecasts using the hit percentage reliability measure and 

the MQRE (×1,000) skill score. Values shown are averages across the 72 lead times. The 

weighted averages use weights in proportion to the capacities of the wind farms.  

 

 

 Hit percentage  MQRE (×1,000) 

 Aeolos Rokas Sotavento Wtd. Avg.  Aeolos Rokas Sotavento Wtd. Avg. 

1%          

    UKD24 29.6 22.1 18.7 23.5  17 13 5 12 

    QuReg 0.0 0.0 0.0 0.0  3 3 2 3 

    CKD 0.0 0.1 0.0 0.0  3 3 2 3 

    CKQ 0.0 0.3 0.0 0.1  3 3 2 3 

5%          

    UKD24 35.4 28.9 24.7 29.6  47 39 18 35 

    QuReg 0.0 0.0 0.0 0.0  14 14 11 13 

    CKD 0.1 7.0 0.2 2.4  14 14 11 13 

    CKQ 0.1 9.1 0.2 3.2  14 14 11 13 

25%          

    UKD24 57.2 52.3 53.5 54.3  129 106 76 104 

    QuReg 2.1 5.6 1.6 3.1  69 70 54 64 

    CKD 7.1 36.4 21.7 21.8  68 67 52 63 

    CKQ 30.1 36.7 22.0 29.6  69 67 52 63 

50%          

    UKD24 67.1 66.1 70.2 67.8  159 131 107 132 

    QuReg 50.0 65.2 61.2 58.8  80 120 139 113 

    CKD 35.7 59.0 44.1 46.3  126 107 83 105 

    CKQ 38.5 61.9 34.1 44.8  123 109 40 91 

75%          

    UKD24 78.3 76.9 83.4 79.5  130 107 91 110 

    QuReg 79.8 81.9 71.8 77.9  107 94 71 91 

    CKD 54.3 80.5 72.0 68.9  143 92 76 104 

    CKQ 56.8 81.2 78.3 72.5  136 93 75 101 

95%          

    UKD24 89.1 88.0 94.3 90.5  48 43 29 40 

    QuReg 96.5 94.2 94.9 95.2  31 28 24 28 

    CKD 85.4 95.3 96.5 92.4  46 28 24 33 

    CKQ 93.0 95.2 98.3 95.5  30 28 25 28 

99%          

    UKD24 94.1 92.4 99.2 95.2  16 16 7 13 

    QuReg 99.0 97.6 98.9 98.5  7 8 7 7 

    CKD 96.3 98.5 99.6 98.1  8 6 6 7 

    CKQ 99.1 98.2 99.9 99.0  6 6 6 6 

 

NOTE: For the  quantile, the ideal value is . The best performing method in each column is underlined. 
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6. Summary and concluding comments 

In many parts of the world, the move towards more sustainable power generation has 

led to a rapid increase in installed wind power capacity. The assessment of the uncertainty in 

the future power output from a wind farm is of great importance for the efficient management 

of power systems and wind power plants. The accuracy of the forecasts of a specific quantile 

of the wind power density is often of more relevance than the overall accuracy of an estimate 

of the full density. For example, when wind power producers are offering power to the 

market for a future period, the optimal bid is a quantile of the wind power density. 

 This paper has focused on a previously proposed CKD-based approach to wind power 

density forecasting, which captures the uncertainty in wind velocity, and the uncertainty in 

the power curve. It is appealing because it involves a nonparametric approach that makes no 

distributional assumption for wind power, it imposes no parametric assumption for the 

relationship between wind power and wind velocity, and it allows more weight to be put on 

more recent observations. As we do not require an accurate estimate of the entire wind power 

density, our new proposal in this paper is to optimise the CKD-based approach specifically 

towards estimation of the desired quantile, using the quantile regression objective function.  

 Using data from three wind farms, we found that overall this approach delivered more 

accurate quantile predictions than quantile forecasts derived from the density forecasts 

produced by the original CKD-based method and by an unconditional kernel density 

estimator. We also implemented a quantile regression approach based on the proposals of 

Nielsen et al. [12]. We also implemented a method, based on the work of Nielsen et al. [12], 

who construct a wind power quantile as the sum of a point forecast and a forecast error 

quantile estimated using quantile regression. Interestingly, the results of this method were 

competitive with the conditional kernel approaches, especially in terms of the MQRE skill 

score. A disadvantage of the quantile regression approach is that it is not clear how to 

constrain the wind power quantile to be between zero and the capacity of the wind farm. 
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Furthermore, we suspect that quantile crossing (see Section 2.5 of [25]) will be more likely 

from a pair of quantile regression models than from a CKD-based approach. 

 In future work, it would be interesting to evaluate empirically the conditional kernel 

methods for wind velocity density forecasts based on weather ensemble predictions. It would 

also be interesting to consider the possible incorporation of a copula in the CKD-based 

approach, which would provide a representation of the interdependency between wind power 

and the wind velocities (see [34]).  
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