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Bees foraging for nectar often have to discriminate between flowers with similar

appearance but different nectar rewards. At the same time, they must be vigilant for

ambush predators, such as crab spiders, which can camouflage themselves on flowers.

Here we ask whether bees can efficiently discriminate similar flower colours while

exposed to predation threat from cryptic predators. Bees were individually tested in

tightly controlled laboratory experiments using artificial flowers whose nectar supply

was administered with precision pumps. Predation risk was simulated by automated

crab spider ‘robots’ that captured bees for a limited duration without injuring them.

Bees’ behaviour was monitored by a 3D video tracking system. We experimented

both with cryptic and conspicuous spiders, finding that bees had no difficulty avoiding

conspicuous spiders while still foraging adaptively. Conversely, they prioritised

predator avoidance at the expense of maximising energy intake when faced with

detecting cryptic predators and a difficult colour discrimination task. This difference

in behaviour was not due to cognitive limitations: bees were able to discriminate

between similar flower types under predation risk from cryptic spiders when choosing

the safe flower type incurred a gustatory punishment in the form of bitter quinine

solution. However, this resulted in bees incurring substantially higher costs in terms

of floral inspection times. We conclude that bees have the capacity to attend to
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difficult foraging tasks while simultaneously avoiding cryptic predators, but only do

so when avoidance of gustatory punishment justifies the increased costs.

keywords: attention, bumblebees, Bombus terrestris, foraging, predator avoidance,

predator crypsis, visual search
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Animals are exposed to a constant flow of complex sensory input. Foragers, for

example, must prioritize information relevant to important tasks, such as locating the

most rewarding food items or detecting predators (Milinski 1984; Godin & Smith

1988; Clark & Dukas 2003). For many animals, such as bees, foraging and visual

search often require a trade-off between attending to the foraging target (e.g. flowers)

and focusing on potential danger in the environment (e.g. sit-and-wait predators on

flowers). A foraging bee will spend most of its time choosing between visual targets

(flowers) that vary in colour, shape, and pattern — and is under constant pressure to

select the most rewarding flowers while minimizing predation risk and energetic costs

(Chittka & Menzel 1992). The task can be challenging and highly dynamic since there

are distractor flowers, i.e. other plant species with different traits (Schaefer & Ruxton

2009) and camouflaged predators in the field (Morse 2007). Many plant species, such

as those in the orchid family, have flowers which resemble the appearance or odour of

co-occurring, rewarding species to attract pollinators (Dafni 1984; Roy & Widmer

1999). Moreover, predators can use the attractiveness of flowers to lure their prey. For

example, crab spiders (Araneae: Thomisidae) are sit-and-wait predators that ambush

pollinators, such as bees, on flowers (Chittka 2001; Insausti & Casas 2008). Some

species of crab spiders can reversibly change their body colour to match that of the
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flower they are hunting on (Morse 1986). They even preferentially hunt on high

quality flowers (Morse 1986), which are also preferred by foraging bees (Menzel et al.

1993; Heiling et al. 2004).

We have a good understanding of the individual problems facing foraging bees:

how they choose between different flowers (Giurfa & Lehrer 2001; Shafir et al. 2003;

Chittka and Raine 2006) and how they interact with predators (Heiling & Herberstein

2004; Dukas 2005; Reader et al. 2006). Bees can associate food rewards with specific

floral traits, such as colour, and can successfully discriminate between even subtle

differences in traits to maximise foraging efficiency (Dyer & Chittka 2004a).

Furthermore, bees are able to learn to avoid both individual flowers harbouring

predators and sets of flowers of a given type (colour) associated with predation risk

(Ings & Chittka 2008, 2009; Jones & Dornhaus 2011). However, it is not known how

bees perform when exposed to both flower colour discrimination and predator

avoidance tasks simultaneously, a situation which bees must naturally face. Evidence

from field studies suggests that bees may choose to avoid a patch harbouring

predatory crab spiders (Dukas & Morse 2003), and laboratory studies indicate that

bees may also choose to switch to a less risky flower species (Ings & Chittka 2009;
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Jones & Dornhaus 2011). Therefore, we ask whether bees have the perceptual and

cognitive processing power to carry out such tasks simultaneously.

Early work on insects seemed to indicate that pollinators can only efficiently deal

with one task at a time (Lewis 1986), and indeed animals with substantially larger

brains have extensive capacity limitations in perceptual processing resulting in

significant costs associated with performing the precise discrimination of more than

one stimulus dimension (Kahneman 1973; Pashler 1998; Dukas 2009). For example,

in humans there are severe information processing consequences when one must

divide attention between two forms of visual input as simple as shape and orientation,

such that only one task can be attended to at a time (Joseph et al. 1997). Therefore, we

might expect such capacity limitations to be all the more important in much smaller

animals with concomitant smaller nervous systems, such as bumblebees.

In this study we ask whether bumblebees are able to maximise energy gains by

solving a difficult colour discrimination task whilst simultaneously exposed to

predation threat from camouflaged or conspicuous predators. Firstly, we exposed bees

to an ecologically relevant scenario where they foraged in an artificial meadow with

two visually similar flower types differing in reward quality. Visiting the highly

rewarding flower type was risky because 25% of flowers harboured predatory crab
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spider models. If bees are able to simultaneously solve colour discrimination and

predator avoidance tasks we predict that they will visit the highly rewarding species

but avoid individual flowers that are risky. Our null hypothesis is that bees are unable

to attend to two difficult tasks simultaneously and that i) bees will prioritise predator

detection and avoidance when predators are camouflaged and ii) they will continue to

maximise energy gains when predators are highly conspicuous. Secondly, because

bees did not simultaneously focus on predator avoidance and maximising energy

gains we ask whether this is a result of limited cognitive capacity. In this experiment

we manipulated the balance of risk and reward beyond that naturally encountered by

incorporating gustatory punishment into the colour discrimination task. Under this

scenario we predict that bees will be unable to focus on predator avoidance as well as

discriminating between rewarding and distasteful flowers. Ultimately, we hypothesise

that such limitations in sensory processing will increase indirect trait-mediated effects

of predators on plants when predators are cryptic — i.e. bees will alter their foraging

preferences when exposed to predation threat from camouflaged predators.

METHODS

Study Animals
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Three colonies of bumblebees (Bombus terrestris Dalla Torre 1882) from a

commercial supplier (Syngenta Bioline Bees, Weert, Netherlands) were used in the

experiment. All the bees were individually tagged with number tags (Christian Graze

KG, Weinstadt-Endersbach, Germany). Colonies were kept at room temperature

(~23°C) and subjected to a 12 hr light/dark cycle (light on at 8am). Sucrose solution

(50%, v/v) and pollen was provided ad libitum. A total of 54 foragers were used in the

experiments.

Experimental Apparatus

All experiments were conducted in a wooden flight arena (1.0 x 0.72 x 0.73

m) with a UV-transmitting Plexiglas lid. Two twin lamps (TMS 24 F with HF-B 236

TLD [4.3 kHz] ballasts, Philips, The Netherlands) fitted with Activa daylight

fluorescent tubes (Osram, Germany) were suspended above the flight arena to provide

controlled illumination. Artificial flowers (7x7 cm acrylic, 1 mm thick) were arranged

in a four by four vertical grid on one end wall of the arena on a grey background (Fig.

Al). The opposite wall contained an entrance hole through which the bees could enter

the arena from the colony. Bees were able to access rewards (sucrose solution)

through a hole which was 10 mm above a wooden landing platform (40x60 mm). A
Page 8 of 42



141  constant flow (1.85 + 0.3 pl per minute) of sugar solution (reward) was supplied to

142  each flower from individual syringes attached to two multi-syringe infusion pumps

143 (KD Scientific, KD220, Holliston, USA). At each flower, the solution was delivered

144 via silicone tubing ending in a 26G syringe needle (BD Microlance Drogheda, Ireland;

145  0.45 x 13 mm) temporarily held in place in front of the hole in the wall by reusable

146  adhesive (Blue Tack ®, Bostick, USA). A maximum droplet volume of 4.70 + 0.3 ul

147  could be reached before it fell into a “waste pot’” which was not accessible to bees

148  (thus mimicking a flower that had been emptied by a bee). This avoided unvisited

149  flowers from becoming excessively rewarding and the slow refill rate prevented bees

150  from revisiting a flower immediately after removing the reward. Re-visits did occur

151 (3.59 £ 0.4 per flower) as we had a limited number of flowers in the arena, but these

152  typically occurred after the bees had visited several other flowers in the arena first

153  (130.84 + 14.7 seconds between revisits). Robotic ‘spider arms’ (custom-built by

154  Liversidge & Atkinson, Romford, UK) covered with sponges were set up at the base

155  of the flowers to simulate predation attempts. The trapping mechanism enabled us to

156  capture bees without causing physical damage. ‘Dangerous flowers’ were fitted with

157  life-sized crab spider (Misumena vatia) models (I = 12mm, made from Gedeo Crystal

158  resin) placed on the flowers above the feeding hole. The flight behaviour and position
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159  of bees were recorded during the experiment with three dimensional coordinates of

160  bee positions being calculated 50 times per second using two video cameras

161  connected to a computer running Trackit 3D software (BIOBSERVE GmbH, Bonn,

162  Germany).

163

164  Pre-training

165 All bees were allowed to fly in the flight arena without any presentation of

166  floral signals for at least one day before the experiment. A constant flow (1.85 + 0.3

167  ul per minute) of 50% (v/v) sucrose solution was given as a food reward. Only bees

168  that left the colony and fed on the flowers consistently for at least three consecutive

169  foraging bouts were used in the experiments.

170

171 Experimental Design

172 Experiment 1: Discriminating Reward Quality under Predation Risk.

173 In this experiment we asked whether bees exposed to an ecologically relevant

174  scenario were able to simultaneously solve a colour discrimination task to maximise
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energy gains whilst avoiding conspicuous or camouflaged predators. Bees could

choose between two types of flowers that were similar shades of yellow to human

observers (neither shade of yellow reflected appreciable amounts of UV light and

therefore both colours were green to bees, i.e. they stimulated predominantly the bees’

green receptors; Fig. 1a). The flower colours were chosen so that bees could

distinguish between them, but only with significant difficulty (see Supplementary

Data). The darker shade of yellow (which was associated with high quality rewards)

was distinguished from the lighter yellow shade (low quality rewards or penalties) by

a colour hexagon difference of only 0.084 units, which indicates poor discriminability

according to previous work (Dyer & Chittka 2004a). We also tested experimentally

that the two colours were distinguishable for bees, but with difficulty (Appendix 1).

The high quality (dark yellow) flowers carried a risk of predation from either

conspicuous or cryptic ‘robotic spiders’ (Ings & Chittka 2008). Twenty-five percent

of the flowers harboured a spider. Conspicuous spiders were of white appearance to

human observers. They absorbed UV to some extent (Fig. 1b), and they therefore

appear blue-green to bees. However, some of the white spiders’ reflectance still

extended into the highly sensitive UV-receptor’s domain below 400nm. These spiders’

colour loci therefore appear very close to the uncoloured point (‘bee-white’, in the
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centre of the colour hexagon; Fig. 1a). They were distinguished by a colour contrast

(colour hexagon distance) of 0.439 units from the dark yellow flower substrate,

indicating a high level of conspicuousness. The contrast provided specifically to

bumblebees’ green receptor is also important, since this receptor feeds into the

motion-sensitive system and is thus often crucial in target detection (Dyer et al. 2008).

Green receptor contrast between white spiders and their dark yellow flower backdrop

is likewise large (0.104 on a scale of 0 to 1 where zero equals no contrast) indicating

high detectability of the white spiders both in terms of colour contrast as well as green

contrast. Conversely, cryptic spiders were dark yellow like the flowers on which they

were placed, and both colour contrast (0.036 hexagon units) and green contrast (0.004)

values were very low, indicating poor detectability of these spiders. As in a previous

study (Ings & Chittka 2008) the spiders were only detectable using

shape-from-shading cues.

Individual bees (N = 34 randomly selected from 2 colonies) were initially

trained to distinguish between the shades of yellow, with the darker yellow flowers

containing high quality rewards (50% v/v sucrose) and the lighter yellow flowers

providing low quality rewards (20% v/v sucrose). Training continued until bees made

a minimum of 200 flower choices. To reach this criterion, bees returned to the nest to
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empty their crops three to five times (number of foraging bouts: cryptic = 4.9 £ 0.7;

conspicuous = 3.7 = 0.3, total duration in minutes: cryptic = 45.27 + 3.71;

conspicuous = 40.93 + 3.43). All bees were allowed to complete their final foraging

bout and return to the nest under their own volition to avoid unnecessary handling that

may have influenced their predator avoidance behaviour. To prevent bees from

learning the locations of high reward flowers the positions of all flowers were

randomly reassigned between every foraging bout. Redistribution of flowers and their

food supply (syringe needles at the end of the silicone tubing) took under five

minutes, and in most cases was achieved before bees had emptied their honey crops in

the nest and returned to the nest entrance tube. After initial colour discrimination

training, bees were randomly assigned to one of two groups exposed to predation risk

on high quality flowers (25% of flowers harboured robotic spiders) by either

conspicuous (white spider model on dark yellow flower; Fig. 1) or cryptic (dark

yellow spider model on dark yellow flower) spiders (N = 17 in each group). Predator

avoidance training lasted for a further 200 flower choices (total duration of avoidance

training in minutes: cryptic = 32.52 + 2.91; conspicuous = 41.32 £+ 5.09). Every time a

bee landed on a high reward flower with a spider (dangerous flower) it received a

simulated predation attempt whereby the bee was held by the arms of a robotic crab
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spider for two seconds. This emulates natural spider attacks on bumblebees where

bees are grasped by the raptorial forelegs of the spider but manage to escape, avoiding

immobilization by the spider’s bite. As in colour discrimination training, locations of

all flowers were randomly reassigned between foraging bouts (number of foraging

bouts: cryptic = 4.9 £ 0.8; conspicuous = 4.2 £ 0.3).

Experiment 2: Discriminating Gustatory Punishment and Reward under Predation

Risk

To determine whether the apparent inability of bees to solve colour

discrimination and cryptic predator avoidance tasks simultaneously was due to

limitations in sensory processing or attention we conducted a second experiment

where the balance of risk and reward was adjusted beyond that naturally encountered.

In this experiment, a third group of bees (N = 10 from colony 3) was given an

additional incentive to discriminate between the shades of yellow flower by replacing

the low quality rewards with a form a gustatory punishment, a distasteful (bitter)

quinine hemisulfate solution that bees rapidly learn to avoid (Chittka et al. 2003). This

solution contained no sucrose. Bees do not ingest this solution and abort flower visits

immediately upon tasting it. It has been demonstrated empirically that such
Page 14 of 42
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punishment generates much stronger discrimination than simply rewardless flowers

that need to be distinguished from rewarding flowers (Chittka et al. 2003). Thus, bees

were initially trained to distinguish between dark yellow rewarding flowers containing

50% v/v sucrose solution and light yellow distasteful flowers containing 0.12%

quinine solution. After colour discrimination training for 200 flower choices (see

Experiment 1, total duration in minutes = 37.79 * 3.78) bees were then exposed to

predation risk (25%) from cryptic spiders (the hardest predator avoidance task) on the

rewarding (dark yellow) flowers for a further 200 flower visits (total duration = 31.75

+ 2.33 minutes). Locations of flowers were randomly re-assigned between every

foraging bout (number of bouts: colour discrimination training = 3.7 £ 0.3; predator

avoidance training = 4.4 £ 0.4).

Data Analysis

Individual bees’ preferences for highly rewarding flowers (dark yellow) were

calculated from their final 30 flower choices of the colour discrimination training

phase in both experiments. These preferences were then used to determine predator

avoidance during the training phase, where bees were exposed to predation risk

(pairwise comparisons using paired t tests or Wilcoxon Signed Rank Tests if data
Page 15 of 42
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violated the assumptions of the t test — all tests were 2-tailed). For example, under the

null hypothesis of no spider avoidance, a bee that chose highly rewarding flowers at a

frequency of 80% at the end of training would be expected to choose dangerous

flowers (2 dangerous flowers out of 8 highly rewarding flowers) with a probability of

0.8x0.25=0.2.

The time bees spent investigating and feeding on flowers was calculated from

time and position data recorded using Trackit 3D software. Investigating zones were 7

cm (length) by 9 cm (width) by 9 cm (height) from landing platforms, and the feeding

zones were 4.5 cm by 1 cm by 1 cm from the feeding hole. Investigating zones were

set based on the visual angles of bumblebees where bees were able to detect both

flower signals and predators using colour contrast (Spaethe et al. 2001) and feeding

zones were based on observation of the position bees take whilst feeding at the

flowers. Only instances when bees landed and fed on the flowers were considered as

choices. Investigation duration was quantified as the time spent in the investigation

zone before landing on a flower, or choosing to depart (when bees rejected the flowers

without landing). Data were analysed using R (v. 2.15.1) and JMP (v. 7, SAS

Institute). Four bees which lost motivation (i.e. stopped foraging) during training were

excluded from the analysis (2 per group in Experiment 1).
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RESULTS

Discrimination Learning

Bees in both experiments were trained to differentiate between two similar

shades of yellow flower. In the first experiment, colour discrimination was reinforced

by differences in reward quality, whereas in the second experiment it was reinforced

by the use of a gustatory punishment in the lighter shade of flowers versus sugar

reward in the dark yellow flowers. All bees commenced training without a preference

(Fig. 2) for either shade of yellow, irrespective of reward level or punishment (mean

[+ 1SEM] percentage of dark yellow flowers selected during the first 30 choices:

conspicuous spider group = 50.0 £ 2.25, cryptic spider group = 48.7 + 5.4, quinine

group =49.3 £ 3.9; ANOVA: F,37,=0.029, P = 0.971; one sample t test against

random visits [50%] on pooled data for all groups of bees: t3g =-0.285, P = 0.777; Fig.

2). However, by the end of the colour discrimination training, bees in Experiment 1

had developed a slight, but significant preference (Fig. 2) for the dark yellow flowers

(59.7 + 2.0 % [pooled data for both groups] dark yellow flowers selected during the

last 30 choices; one sample t test [against 50%]: ty = 4.853, P < 0.001). Furthermore,

colour discrimination was significantly greater in Experiment 2 where bees were
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incentivised by bitter quinine in the light yellow flowers (83.3 + 4.0 % dark yellow

flowers selected: t test [Experiment 1 versus Experiment 2], t33 = -5.710, P < 0.001;

Fig 2).

Discriminating Reward Quality under Predation Risk

Both groups of bees in Experiment 1 rapidly learnt to avoid robotic spiders (Fig. 3),

although the initial avoidance response was stronger when spiders were conspicuous

(Fig. 3; Mann-Whitney U Test: U = 197.5, Ny = N, = 15, P < 0.001). By the end of

training, both groups visited virtually no dangerous flowers (median percentage

during the last 30 choices for both groups = 0.0 and the inter-quartile range = 3.3;

Wilcoxon Signed Rank Test: T =4.790, N = 30, P < 0.001; Fig. 3). However, the two

groups differed significantly in their ability to simultaneously discriminate between

similar shades of yellow flowers in order to maximise their energy intake (mean

percentage of safe, highly rewarding flowers chosen during the last 30 choices:

cryptic spiders = 36.7 + 2.8, conspicuous spiders = 52.7 £ 4.4; t test: t,g = 3.097, P =

0.004; Fig. 2). Bees encountering conspicuous spiders regained their slight preference

for high reward flowers (one sample t test against random visits [37.5 %]: t14 = 3.483,

P = 0.004) whereas bees exposed to cryptic spiders failed to discriminate between
Page 18 of 42
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high and low reward flower types and foraged from all safe flowers at random (one

sample t test against random visits [37.5 %]: t14 = -0.300, P = 0.769).

Exposure to predation risk had no significant impact on the average time spent

inspecting flowers (comparison of mean duration before and after spiders were added,

paired t test: conspicuous spider group: ti4 = 0.003, P = 0.998; cryptic spider group:

ts = 1.354, P = 0.197, Fig. 4).

Discriminating Gustatory Punishment and Reward under Predation Risk.

When failure to choose the correct shade of yellow flower incurred a gustatory

punishment (distasteful quinine), rather than a lower quality reward, bees were able to

simultaneously solve the colour discrimination task and avoid cryptic predators on the

rewarding flower type (Figs 2 & 3). Although bees initially visited dangerous flowers

at random (first 10 choices in Fig. 3), they rapidly learnt to avoid cryptic spiders after

experiencing simulated predation attempts (median percentage during the last 30

choices = 3.3 and the inter-quartile range = 3.3; Wilcoxon Signed Rank Test: T =

2.805, N = 10, P = 0.005; Fig. 3). Furthermore, they were able to simultaneously

maintain their high level of colour discrimination (mean percentage of safe, highly
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rewarding flowers chosen during the last 30 choices = 78.7 £ 5.0; one sample t test

against random [37.5 %]: to = 8.276, P < 0.001; Fig. 2).

Once exposed to predation threat, bees spent 28% more time inspecting

flowers before making their choices than they did before learning about predation risk

(paired t test, to = 7.442, P < 0.001, Fig. 4). This increase in investigation time was

also significantly greater than observed for bees exposed to conspicuous spiders in the

first experiment (tp3 = 3.697, P = 0.001; Fig. 4).

DISCUSSION

In this study we presented bees with two natural tasks that potentially lead to

attentional competition (Kahneman 1973; Pashler 1998; Dukas 2009). The first task

was to maximise energy intake by using subtle differences in flower colour to

differentiate between reward quality. The second was to detect and avoid predators

that were either conspicuous or cryptic. We found that when predator detection was

difficult, bees prioritised predator avoidance over floral colour discrimination.

However, when bees were forced to make the colour discrimination by use of a

gustatory punishment in the distractor flowers, bees were able to solve both colour
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discrimination and predator avoidance tasks simultaneously. Solving both tasks did

not come for free, since bees incurred substantially increased inspection times when

trying to avoid both predators and quinine penalties. Therefore, we argue that

prioritisation of predator detection when predators are cryptic is a strategy employed

by bees, rather than being due to a fundamental limitation to attend to only one task at

a time (Lewis 1986). As in other tasks, for example sensorimotor learning (Chittka &

Thomson 1997) or the formation of visual object concepts (Avargues-Weber et al

2012b), it appears that bees can in principle juggle more than a single task, but

typically do so at increased temporal costs (Chittka & Thomson 1997). Our results

therefore show that bees employ a degree of attentional modulation depending upon

the fine balance between risks and rewards (Spaethe et al. 2006; Giurfa 2013).

It has recently been suggested that bumblebees might carry out restricted parallel

visual search — i.e. where the whole visual field is processed simultaneously and the

targets “pop out” from distractors (Morawetz & Spaethe 2012). This being so, bees in

our study might focus attention on flowers that match their search image (i.e. dark

yellow flowers = highest reward in training). Conspicuous predators are highly salient

and bees strongly avoided dangerous flowers right from the beginning of training (Fig.

3). It is therefore likely that safe (plain) dark yellow flowers are processed as targets
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371  and light yellow flowers and dangerous flowers are processed as distractors. In this

372  case bees would only need to compare each flower against one search image and

373  therefore attend to only a single visual search task.

374 A different pattern emerged when spiders were cryptic. Due to lack of contrast

375  between spiders and background flowers (Fig. 1) we would expect bees to initially

376  view dangerous flowers as desirable target flowers. Indeed, this is exactly what was

377  observed during the first few choices made by bees in the cryptic spider group that

378  chose significantly more dangerous flowers than bees in the conspicuous spider group

379  during their first 30 choices (Fig. 3). Despite this, bees exposed to cryptic spiders did

380 learn to avoid dangerous flowers, indicating that they had developed a new search

381  image for cryptic spiders (Ings et al. 2012). Therefore, we are led to ask how bees

382  process each flower during visual search. Avoiding dangerous flowers and

383  maximising energy gains would require a two-step process due to the similarity

384  between target and distractor flowers: bees could either assess flowers as

385  spider-infested or spider-free and then discriminate between flower colours, or vice

386  versa. This sequential decision making could make the assessment more costly in

387  terms of time than the one step process necessary for avoiding conspicuous spiders

388  (Spaethe et al. 2006; Ings et al. 2008). Our results showed that bees encountering
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cryptic spiders prioritised predator avoidance at the expense of discriminating floral

reward quality of the remaining safe flowers. To understand whether this failure to

attend to both tasks is due to principal limitations in sensory processing and cognitive

abilities (Lewis 1986; Dukas 2009) we need to consider how bees responded to

predation threat in Experiment 2 when they were strongly incentivised to discriminate

between the similar shades of yellow.

When one flower colour was associated with a positive value (sucrose reward)

and the other with a negative value (quinine), bees were able to maintain two

value-defined categories for the task (light yellow = punishment, dark yellow =

reward). As a result, discrimination between light and dark yellow flowers was

substantially better than in Experiment 1 (Fig. 2). Furthermore, bees also maintained

this high level of discrimination under predation threat from cryptic spiders on the

rewarding flowers. This difference in response compared to bees in the cryptic spider

group in Experiment 1 shows that bees are able to simultaneously solve both complex

visual search tasks given sufficient incentive. However, this incurs elevated temporal

costs which indicate a sequential assessment of the flowers for safety (spider

presence/absence) and reward level (by colour), as predicted by assuming that

bumblebee are using restricted parallel visual search (Morawetz & Spaethe 2012;
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Spaethe et al. 2006). Therefore, we are led to conclude that bees are able to divide

their attention between two complex visual search tasks in two different contexts. This

result is all the more remarkable given the failures of divided attention in related tasks

in birds (Dukas & Kamil 2000) and humans (Joseph et al. 1997).

An alternative explanation to divided attention is that bees categorised

(Srinivassan 2010; Avargues-Weber et al. 2012a) flowers into “good” or “bad” types,

irrespective of whether penalties were predation attempts or of a gustatory nature.

Light yellow flowers, which contain quinine in Experiment 2, could be classed as

poor foraging options, as could dark yellow flowers harbouring cryptic spiders. Dark

yellow flowers without spiders could be classed as desirable foraging options. Thus,

one might assume that a bee only needs to follow a simple rule — i.e. if the flower

matches the search image for ‘good’ then visit, otherwise avoid. However, the

increased inspection times in the face of two undesirable types of flowers indicate that

bees actively discriminate against both types of ‘bad’ flowers, i.e. a scenario based on

visual target categorisation would still require the memorisation of three search

images being employed simultaneously.

Finally, our results have interesting implications for the temporal costs of decision

making under natural conditions. Why did bees under predation threat choose not to
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engage in efficient foraging when solving the colour discrimination task would have

meant feeding from flowers bearing more than twice the energetic rewards? In

Experiment 2 bees had to spend a significantly (~28%) longer time inspecting flowers

under predation threat from cryptic spiders (Fig. 4). Inspection of flowers is carried

out in flight, which is an energetically demanding activity (Kacelnik et al. 1986;

Hedenstrom et al. 2001), so even small increases in inspection times are likely to bear

high energetic costs to bees. The increased inspection times observed in Experiment 2

can largely be attributed to the detection and avoidance of cryptic spiders (Ings &

Chittka 2008; Ings et al. 2012) which can lead bees to shift to alternative safe flower

types if they are as rewarding as risky flowers (Ings & Chittka 2009). Furthermore,

theoretical models (Jones 2010) predict that bees can maximise lifetime foraging

gains by switching to lower quality flowers when highly rewarding flowers have a

higher level of predation risk. Indeed, bumblebees do appear to make optimal choices

under laboratory conditions when predation risk is simulated (Jones & Dornhaus

2011), although field studies on honeybees show that they are less inclined to avoid

risky but highly rewarding patches (Llandres & Rodriguez-Gironés 2011). While

these differences could represent species specific responses, they are equally likely to

be due to differences in the balance of risk and reward as well as the difficulty of the
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visual search tasks involved. In the study by Jones and Dornhaus (2011) predators

were in effect cryptic (no spider models were used) and the colour difference between

high and low reward flowers was highly salient. In contrast, in our study,

discrimination of high and low reward flowers was very difficult, and in some groups

predators were conspicuous, as they can be in the field (Defrize et al. 2010). At least

at the patch level used in our experiments, it appears that the additional costs of

detecting cryptic predators (Ings & Chittka 2008; Ings et al. 2012) are outweighed by

the benefits of occasionally visiting a flower with over twice the energetic rewards of

the safe flower type. Furthermore, the reduced cognitive demands of detecting

conspicuous predators enable bees to continue to forage from risky but rewarding

species.

In summary, our study clearly shows that bumblebees are able to simultaneously

discriminate floral rewards based upon subtle visual differences (colour) and avoid

cryptic predators, but will only do so when the benefits outweigh the costs. These

findings highlight the importance of considering sensory processing and cognitive

abilities of prey when modelling predator-prey interactions (Spaethe et al. 2006;

Dukas 2009; Ings & Chittka 2008; Ings et al. 2012). Furthermore, our study

contributes to the growing body of evidence showing the importance of trait-mediated
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indirect effects of predators (e.g. Gongalves-Souza et al. 2008; Ings et al. 2009;

Schoener & Spiller 2012). In particular we showed that the costs associated with

detecting cryptic predators and discriminating similar floral colours could lead to

strong trait-mediated effects on plants and may benefit mimic plant species that

produce little or no floral rewards.
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Figure 1
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600  Fig. 1. (a) Appearance of yellow flowers (circles: light grey for light yellow and dark
601  grey for dark yellow) and spiders (stars: white for conspicuous spiders and dark grey
602  for cryptic spiders) in bee colour space (calculated using Bombus terrestris colour
603  receptor sensitivity functions in Skorupski et al. 2007) relative to the grey background
604  colour (centre of the hexagon). Positions of the colour loci in the hexagon indicate
605  excitation differences of the three bee colour receptors. The corners of hexagon

606 labelled UV, Blue and Green correspond to hypothetical maximum excitation of one
607  receptor combined with zero excitation in the two others. The angular position in the
608  hexagon (as measured from the centre) is indicative of bee subjective hue. Loci that

609 are close together appear similar to bees and loci that are far apart appear different. (b)
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Spectral reflectance curves of artificial flowers, spiders and the grey background of

the meadow. The dashed lines represent spiders (dark grey = dark yellow spiders and

light grey = white spiders), solid lines flowers (dark grey = dark yellow flowers and

light grey = light yellow flowers) and the dotted line represents the grey meadow

background.

Figure 2
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Fig. 2. The mean (plus upper 95% CI) percentage of safe high reward flowers

(without spiders) chosen during consecutive blocks of 10 trials during colour

discrimination and predator avoidance training in Experiments 1 & 2. Black

represents bees exposed to cryptic spiders and light grey bees exposed to conspicuous

spiders in Experiment 1, while dark grey represents bees in Experiment 2 that were

exposed to cryptic spiders and quinine punishment in distractor flowers. The dashed
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622 lines represent the expected percentage of high reward flowers if bees foraged

623  completely at random, i.e. with no preference for either flower type.

Figure 3
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625 Fig. 3. The mean (plus upper 95% CI) percentage of dangerous flowers chosen during

626  consecutive blocks of 10 trials during avoidance training in Experiments 1 and 2.

627  Black represents bees exposed to cryptic spiders and light grey bees exposed to

628  conspicuous spiders in Experiment 1, while dark grey represents bees in Experiment 2

629  that were exposed to cryptic spiders and quinine punishment in distractor flowers. The

630 dashed lines represents the avoidance thresholds (percentage of dangerous flowers

631  expected if bees ignored spiders and visited all dark yellow flowers at their learnt

632  preference level) for Experiments 1 (light grey) and 2 (dark grey). Values that lie

633  below these lines indicate significant avoidance of dangerous flowers.
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Fig. 4. Difference in floral investigation time between colour discrimination training

and predator avoidance training (average investigating time per flower after adding

spiders minus average time before adding spiders).

Page 38 of 42



639

640

641

642

643

644

Fig. Al. Experimental setup demonstrating the artificial meadow containing two

similar shades of yellow flowers while two (25%) of the highly rewarding flowers

(dark yellow) harboured cryptic spiders. The positions of the flowers and spiders were

randomly reshuffled for each foraging bout. The spiders were white in the

conspicuous spider group.
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Figure A2
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Fig A2. Discrimination test for similar and distinct colours. The black line is the
average (+/- 1SEM) percentage of bees choosing rewarded flowers between easily
distinguishable colours (white v. s. dark yellow), and the grey line is between colours
that were hard distinguish (dark yellow v. s. light yellow). Each data point represents

10 choices.
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APPENDIX 1: EXPERIMENTAL PROCEDURES AND RESULTS FOR THE

PRELIMINARY COLOUR DISCRIMINATION TEST.

METHODS

The aim of the test was to find two colours which are possible, but difficult for

bees to distinguish. We chose two different shades of yellow (dark yellow & light

yellow) whose distance in the bee colour hexagon (Chittka 1992) was 0.084 units. It is

known that bees can easily discriminate between colours 0.152 hexagon units apart

but find it impossible to differentiate colours less than 0.01 units apart (Dyer &

Chittka 2004b). Therefore, bees should find it difficult, but not impossible to

discriminate between our chosen colours. To test this we gave bees (N = 5) a choice

between rewarding dark yellow flowers (50% v/v sucrose) and distasteful light yellow

flowers containing 0.12% quinine hemisulfate salt solution. A second control group of

bees (N = 5) from the same colony were exposed to dark yellow flowers (rewarded)

and easily distinguishable white flowers (punished with quinine). Individual bees in

both groups were allowed to make 200 flower choices to determine whether they

could learn to distinguish rewarded and punished flower colours.
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RESULTS

All bees learnt that dark yellow flowers were rewarding as the proportion of

dark yellow flowers chosen during the last 30 choices was significantly higher than

that during the first 30 choices (Paired t test: t; = 2.91, P = 0.01). This confirmed that

bees were able to learn to distinguish the two shades of yellow despite their high

degree of similarity (Fig. A2). Furthermore, the average percentage of correct choices

during the last 30 choices was significantly higher for the easily distinguishable

colours (white and dark yellow flowers) than for the more similar colours (dark and

light yellow) flowers (t test: t, = 2.48, P = 0.03). This confirmed that although bees

are able to discriminate the two similar shades of yellow, they find the task

significantly more challenging than the task where the colours where highly

discriminable.
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