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Locational Capacity Credit Evaluation
Girish Rai Pudaruth, Member, IEEE, and Furong Li, Member, IEEE

Abstract—Boosted by U.K. governmental targets of securing
10% of electricity generation from renewable resources by 2010
and 20% by 2020 and widespread public support for renewable
energy, distributed generators (DGs) are rapidly increasing in
electrical power systems. Among the renewable DGs, wind energy
is emerging as the popular choice due to its mature technology
and low operation and maintenance costs.

This paper utilizes the reliability aspects of electrical power sys-
tems to provide a probabilistic approach to determine the capacity
credit (CC) of distributed generators. Monte Carlo simulations are
employed to cater for the stochastic nature of the simulations and
each trial is validated using the Newton–Raphson optimal load flow
solution. Bernoulli trials are used to simulate the availability of net-
work components. An algorithm to evaluate the capacity credit due
to distributed generation (DG) connected in the network is shown.
Hence, the amount of conventional generation which can be backed
off from the bulk supply point (BSP) of the distribution network
can be quantified.

Wind energy production is known to depend on the wind regime
experienced by the wind turbines, as well as the geographical land-
scape and the presence of wind obstacles, which in turn determines
capacity credit. Having verified that adding a specific DG at each
node does not violate any operating constraints, it was assumed
that thermal constraints would not affect CC in this particular
system. In a more in-depth study, it is shown in this paper that ca-
pacity credit also varies with the different voltage levels at which
the wind turbine generators are connected and the loading level of
the distribution network. Moreover, it is shown that CC does not
vary with the base case reliability, but rather with wind penetra-
tion levels.

Index Terms—Capacity credit, distribution systems, Monte
Carlo simulation, power system planning, wind energy.

I. INTRODUCTION

I N the UK, privatization was introduced in the electricity
supply industry in England and Wales in 1990 as a way of

increasing efficiency and reducing costs. Power system dereg-
ulation has opened opportunities for many private energy pro-
ducers by allowing local generation to meet load demand [1].
Wind power is a potential choice for smaller energy producers
due to numerous benefits such as energy efficiency, diversifi-
cation of energy resources, availability of modular generating
plants, ease of finding sites for smaller generators, shorter con-
struction times, lower capital costs, proximity of the genera-
tion plant to heavy loads and legal, regulatory and technological
drivers for investment in wind energy [2]–[7].

Wind power has seen a steady annual growth above 25% since
the last decade [8]. Governments around the world have imple-
mented or are in the process of implementing obligations or in-
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centives to commit to a significant increase in renewable energy
penetration. The U.K. has ratified the Kyoto Protocol, pledging
for 10% of renewable energy by 2010, which will increase to
20% by 2020 [9].

This paper utilizes a wind power series model to reproduce
wind samples for the U.K. The large numbers of potential in-
teractions are simulated with a Monte Carlo reliability model
and required indices are evaluated [10], [11]. A distribution net-
work at peak load conditions is used as the test system to demon-
strate the process and illustrate the results. It is well established
in literature that capacity credit (CC) will depend on the wind
regime experienced by the wind generating plants [12], the ge-
ographical landscape and the presence of wind obstacles. How-
ever, some other factors, such as the base case reliability of the
network, the voltage levels at which the wind turbines are con-
nected and their proximity to load centers are investigated.

This paper is organized into the following sections. Section II
briefly defines capacity credit and its evaluation in literature and
in practice by some companies. Section III describes reliability
and how it is measured, and some commonly used reliability in-
dices. Section IV describes in brief the wind model utilized to
evaluate wind power in the simulation. Section V describes the
Monte Carlo (MC) simulation utilized, and the new technique in
evaluating CC. Section VI briefly describes the test system uti-
lized, which is a typical U.K. distribution network. Section VI
shows the results of how CC varies in a distribution system and
provides a brief discussion for each investigation. Finally, Sec-
tion VIII states the conclusions.

II. CAPACITY CREDIT

CC assigned to a regenerative conversion plant is the frac-
tion of installed capacity by which the conventional power gen-
eration capacity can be reduced without affecting the required
quality of supply [13]. In broad terms, it can be said to be the
amount of conventional resources (mainly thermal) that could
be displaced by the renewable production, without making the
system less reliable [14]. It is used to avoid ambiguities in com-
paring different types of generation, particularly when com-
paring wind to a specific type of generator [15]. CC is partic-
ularly useful when calculating wind power plant capacity credit
by a reliability index in production-cost or reliability models for
strategic system planning [12].

Traditionally, CC was evaluated as a function of wind power
penetration for different values of the reliability of the grid as
measured by a reliability index [10], [16]. Two loss of load
probability (LOLP) methods for evaluating capacity credit are
considered: the equivalent firm capacity (EFC) and the effective
load carrying capability (ELCC) [10], [15]. If non-firm capacity
is added to the grid, EFC is the amount by which firm capacity
can be decreased while still maintaining the same LOLP of the
grid. ELCC is the amount by which load may be increased in
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presence of additional non-firm capacity while original LOLP
of the system is maintained.

Although the majority of capacity credit evaluation studies
concentrate on the probabilistic approach to account for the sto-
chastic nature of intermittent generation, it should be noted that
other methods have been used. For example, RMATS in the
US uses a simplistic rule of thumb of 20% for all sites based
on previous studies [17]. Other “rule-of-thumb” models include
GE/NYSERDA [18] fixing onshore wind plants capacity credit
to be approximately 9% capacity value relative to rated capacity,
and offshore wind of approximately 40% from internal studies.
PJM [19] assumes a 20% capacity credit for new wind projects.
This value is replaced by the wind generator’s capacity credit
once the turbines are in operation for at least one year, which
is then obtained from the chronological energy output of these
turbines over the year. The initial values are not flexible though
and do not account for the location and individual availabilities,
amongst other reasons, of the DG plants. However, simulation
probabilistic methods are more accurate and offer more options
to power system planners. These probabilistic methods can be
subdivided into three main models: numerical probabilistic [16],
simulation [20], and analytic probabilistic [21]. While the loss
of load (LOL) group gives a good representation of system ade-
quacy, energy indices are required to substantiate the durations
of capacity outages and their effect on CC.

In order to evaluate the benefits brought about by the addition
of intermittent sources of energy to the grid, it is imperative
to be able to quantify the CC of the regenerative generation
without jeopardizing the security and quality of supply. In some
literature [22], [23], wind turbine speeds are obtained by random
draws from a probability distribution with characteristics which
do not take into account temporal interactions between load,
wind power and conventional generating capacity. However,
this paper takes the temporal and spatial correlation of wind
speeds over the U.K. into consideration (see Section IV).

III. RELIABILITY

Power system reliability indices can be calculated using
two main approaches, namely the analytical and simulation
approaches. Traditionally, analytical approaches have been
sufficient to provide system planners with the results needed
to make objective decisions. However, with ever-increasing
interest in a more comprehensive modeling of the system
behavior, evaluating a more informative set of system relia-
bility indices is required, and this implies the need to consider
MC simulations. Although computationally intensive, MC
simulation is capable of modeling the full range of operating
conditions [24].

Analytical techniques represent the system by a mathematical
model and evaluate the reliability indices from direct numerical
solutions [10]. Whilst the indices are obtained in a fairly short
computing time, unfortunately, assumptions are frequently re-
quired in order to simplify the problem. The resulting analysis
can therefore lose some of its significance. Furthermore, the
analytical approach based on contingency enumeration cannot
model a wide range of operating conditions and is thus subject
to several simplifying assumptions [24].

Simulation methods estimate reliability indices by simu-
lating the actual process and random behavior of the system.
These methods can theoretically take into account most aspects
and contingencies inherent to planning, design and operation
of power systems. These include random events such as outage
repairs of elements. If the system is simulated over a long
period of time, it is possible to obtain a complete picture of the
type of deficiencies that the system may suffer and evaluate
values of the reliability indices. The first simulation method,
known as random simulation simulates a particular time period
such as system peak or trough, though not only restricted to
these two. Sequential simulation examines each basic interval
of time of the simulated period in chronological order.

The choice of a particular simulation approach depends on
whether the history of the system plays a role in its behavior.
The random approach can be used if the history has no effect,
but the sequential approach is needed if past conditions affect
present conditions. For example, if the system performance in-
dices at peak time are required, random simulation at a peak
time with peak network conditions would be appropriate. In the
case of a power system containing hydroplant in which the past
use of energy resources affects the ability to generate energy,
sequential simulation is required.

In order to deal meaningfully with reliability as a design cri-
terion for distribution, it is necessary to be able to measure it
and set goals. Some reliability indices measure only frequency
of interruption, others only duration and the rest are composites.

The first group of indices form part of the loss of load, or LOL
group [10], [16], [25], [26]. Such indices are capacity or power
based. The loss of load expectation or expectancy (LOLE) is the
expected period during which the system load exceeds the avail-
able generating capacity. The loss of load frequency (LOLF) is
the expected number of times that a situation of capacity defi-
ciency (more demand than generation) occurs. The loss of load
probability (LOLP) gives the probability that load exceeds the
available generating capacity in a given time period. Utilities try
to keep this probability as low as possible while maintaining a
delicate balance between cost minimization and reliability. The
common practice is for system operators to aim for one day in
ten years or better, whereby the match between resource and de-
mand is decisive for the said indices [13].

It is more usual to use the “energy index of reliability” (EIR),
which is the result of subtracting the EIU from unity. This
second category of indices including energy information or the
“depth” of the power failure consists of the EIR, energy index of
unreliability (EIU), and expected energy not supplied (EENS).
The expected unserved energy (EUE) is the expected amount
of energy not supplied by the generating system. The EUE is
sometimes also called loss of energy expectation (LOEE) or
EENS. The EIU gives the ratio of the EUE and the total energy
demand [10].

Another method for a utility to measure capacity credit is to
maintain a reserve capacity margin that exceeds peak load by a
given percentage. Although there is no direct formula for con-
verting between reserve margin and LOLP or EUE, higher re-
serve margins correspond to a lower LOLP and hence, more re-
liable system.
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In opposition to the previous indices which are the expected
or average values of an underlying probability distribution and
hence only represent the long-run average values across the
whole range of customers, the final group—the customer load
point indices group—give a detailed account of individual cus-
tomers. Common customer point indices include [27] system
average interruption frequency index (SAIFI) and customer av-
erage interruption frequency index (CAIFI), amongst others.

IV. WIND MODEL

Wind energy is seen as a crucial player in view of meeting the
renewable energy portfolio standard of the British government
in 2010 and 2020 [9], [29]. The U.K. being the windiest country
in Europe [30] and the fact that wind technology is both reason-
ably mature and deep into commercial stage [31], [32] suggest
that wind energy has a major role to fulfill in electric power sys-
tems planning and operation if the targets are to be achieved.

Benefits of wind turbines include low carbon emissions
(green energy) [31], modularity, most competitive among all
renewable energy technologies and no fuel costs; hence re-
duced operating costs. Drawbacks of wind generators include a
present demand of wind turbines exceeding the supply (leading
to a relatively long lead time), problems for planning consent
in densely populated areas such as the U.K., as well as the
reliability and availability of wind turbines (specially offshore)
which imposes high maintenance requirements. Furthermore,
by its nature, wind is highly variable and site-specific [32].
Hence, the geographical location is primordial since the power
output is highly dependent on the prevailing wind regime. Wind
models have to consider factors such as mean wind speed,
variance and gusting patterns. Hence, random draws [33], [34]
from probabilistic distributions would not give accurate results
unless all the above-mentioned factors are considered for a
large number of years.

The wind samples used in this study were taken from the
output of the multivariate autoregressive moving average
(ARMA) model developed by the University of Bath under
the EPSRC Supergen initiative [35]. When developing the
wind speed model, Met Office stations that offered consistent
historical measurement were selected (with the longest possible
record to properly capture the variation in wind speeds over
different years). The range of wind speed data used began in
1983/84 and goes to at least 1994 and up to the year 2000
in some. The model parameters are estimated and the model
outputs are generated using Matlab. A 4th-order ARMA model
was used to generate the time-series wind samples which de-
scribe both the temporal behavior of the wind speeds and their
spatial correlation. Wind speed samples were obtained for 20
representative zones of the U.K., which were further subdivided
into four, namely offshore, coastal (within 5 km of coast and
elevation under 300 m AMSL), lowland (at greater than 5 km
from coast and ground elevation under 300 m AMSL), and
upland (at any distance from coast and ground elevation over
300 m AMSL). These were validated for each individual site,
as well as the correlation between zones and time of day in
relation to wind speed under the project [35].

Fig. 1. Wind power curve.

The methodology used the output of the U.K. wind speed
model and these values were then scaled to the four different ter-
rain types at each zone and applied to normalized wind power
curves to generate normalized wind power time-series. These
series were then applied to the installed capacities under study
to create the actual output wind power values. In so doing, a
typical wind speed-power curve was utilized. This is shown in
Fig. 1. This curve was scaled to exclude wake losses (approxi-
mated to 8% below rated speed and 0% above), electrical losses
within the wind farm (3%) and other miscellaneous losses (1%).
Below rated wind speed, the maximum power output is 0.88 p.u.
(depending on the wind regime experienced) and wind speeds
above the rated value result in a power output of 0.96 p.u. Rated
wind and cut-off speeds are 13 m/s and 25 m/s, respectively.

Previous works have modeled wind power as negative load
and hence substracted the available wind power from the load
[14]–[16], [36]. Treating wind power as a singular deterministic
reduction in load reduces the accuracy of system reliability mea-
sures with respect to wind resource. However, in this study, wind
power obtained from wind turbines connected to the network
is modeled as generators providing varying active and reactive
power at the specific busbars. An optimal load flow solution is
run for each trial, making sure that all constraints are respected.

V. SIMULATION MODELING

Based on Billinton and Allan’s work [11], [16], this work uses
reliability indices to benchmark the current network’s security
and quality of supply as the base case before going on to eval-
uate the indices for the network with wind penetration. MC sim-
ulations are used to represent most contingencies and evaluate
the required indices [37]–[43]. Due to the uncertainties in the
reserve margin which would vary between distribution network
operators (DNOs), it has been decided to use the widely used
and traditional LOLP in this work.

For a primary distribution system, each bus may have a
load, DG unit(s), reactive shunt device and/or series reactor
connected. With each DG, line and transformer having their
own reliability index (based on the DG’s or circuit’s history
of outages), their state in the network is randomly deduced
by Bernoulli trials using a Mersenne Twister random number
generator [44], [45]. Wind turbine generators placed in the
system experience a specific windstream (coastal, lowland,
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upland or offshore) in a specific Bath zone, reflecting their
location in the U.K. model. These are fed into the simulation
which randomly selects wind samples to keep the temporal and
spatial relationship. In the algorithm used, the power exported
from each wind farm is obtained from the wind model, after
transforming the wind speed by the wind speed-power curve
(Fig. 1). Each simulation sees wind turbines experiencing a
specific wind regime (Section IV). Since wind farms consist
of multiple wind turbines, the farm output is aggregated into a
single block of power exported into the network. Also, since
wind turbines in a specific wind farm are assumed to be very
close together, the same wind speed is experienced by all
turbines, with wake losses of 8% below rated speed to cater for
the correlation between wind turbines within a specific wind
farm. Power output (p.u.) for each individual wind generating
plant or aggregated wind farm is obtained by multiplying the
p.u. power by the DG rating in the following:

(1)

where is the wind plant’s output power in MW, is its
rated power output, and is the per unit power obtained from
the wind speed-power curve.

After determining the network states, including the avail-
abilities of the circuits and the power output by the DGs, the
solution of the power flow equations is performed using the
Newton–Raphson iteration. The process of updating the system
equations and solving them leads to the evaluation of total DG
contribution power, the total system power generation including
power from the bulk supply point (BSP), each bus voltage and
power imported at buses with DGs connected, each feeder
power flow and the total system power losses. The framework
is shown in Fig. 2.

Capacity credit results depend heavily on what happens
during the utility’s peak period. With wind speed greatly
varying from hour to hour, capacity credit estimates that are
based on a single year of data and modeled without considering
this variation would definitely be inaccurate. Some studies have
taken into account this variation [46] while others have not
[47]. Ignoring this variation could lead to significantly over-
or under-estimating the capacity credit [48]. In this work, it
was decided to stick with peak load conditions and hence wind
samples corresponding to peak time conditions were used.

MC simulations are run for the base case system (without
DGs) to obtain the current security and quality of supply.
Additionally, the total generation and demand at each trial
is recorded. The difference represents the spare capacity, or
the amount by which generation exceeds demand (left-hand
side of Fig. 3). With DGs in the system, the LOLP is lowered
and increases the reliability of the network. Recording the
generation and demand, along with the spare capacity gives the
right-hand side of Fig. 3.

This is the new improved system reliability. If the base case
reliability, and base case LOLP, were to be maintained, the new
LOLP would need to increase to the base case LOLP. This,
in Fig. 3, represents an additional capacity. In other words,
maintaining the same reliability as the base case would actually

Fig. 2. Modeling framework.

Fig. 3. Capacity credit evaluation.

provide a capacity credit for an installed DG capacity. This
method is used to produce the capacity credit to be evaluated
each time. Shell sorting is used to sort the spare capacity and
the capacity credit associated to an improvement of the LOLP
from the benchmark case to the current scenario with DGs is
noted.

Wind speed outputs at peak load (winter period—from De-
cember to February) were used to evaluate the contribution of
DGs at peak load. In the first instance, it was required to verify if
DGs can indeed contribute to improving the system reliability.
This is verified by adding DGs to the test network and recording
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TABLE I
NETWORK LOADS

the LOLP. Capacity credit measurements were made from spe-
cific sites on existing networks and the results verified.

MC simulations are inherently computationally intensive and
take a lot of time. Evaluating the capacity credit by connecting
one turbine or wind farm one node at a time and running the
simulations is effectively a tedious and time consuming process,
specially when the network comprises numerous nodes. Conse-
quently, a software was developed to perform the capacity credit
calculations at each node automatically. This was tested and val-
idated against the results obtained by individually simulating for
each node.

VI. TEST SYSTEM

The system used to validate the methodology was a typical
U.K. distribution network. The distribution system is modeled
with all its parameters. The bulk supply point, or point of con-
nection to the transmission system, is at 400 kV, and the re-
maining buses are rated at 132 kV, 33 kV, and 11 kV. These
are linked by lines and transformers. The distribution system’s
demand from the BSP at peak conditions is 135 MVA. With a
maximum line utilization of 61.2%, it is checked that there are
no thermal constraints for the addition of wind generators to the
system at any specific node. Loads in the system are all con-
nected to the 11 kV buses and are shown in Table I below to
produce a peak demand of 163 MW, with distributed genera-
tors making up the difference. For evaluating capacity credit at
peak demand, wind samples used for this paper were the ARMA
output between 4 pm to 7 pm for the three winter months in a
zone experiencing lowland windstream.

VII. RESULTS AND DISCUSSION

Connecting wind energy to the network depends on the loca-
tion of wind farms, which is influenced by the wind stream (and
variation) experienced at the particular location, the roughness
of the landscape, wind obstacles, as well as different properties,
such as the park and wake effects (for wind farms) and the hill
or tunnel effects [49]. However, when buses are available in the
network for connection (without causing any asset thermal vio-
lations), it is useful to determine which bus would give a higher

Fig. 4. CC variation with base case LOLP.

capacity credit if the wind farm were to be connected. From an
economic perspective, higher capacity credit would imply more
energy savings as more conventional power could be curtailed
from conventional generation plants.

Three factors affecting the capacity credit were formulated.
From literature, CC will vary according to the different reliabil-
ities of the network assets. However, it was thought that CC can
be influenced by the base case LOLP, by the voltage levels at
which DGs are connected and also the loading level in the net-
work. The first set of experiments varied the base case reliability,
but maintained each reliability rate while adding different DG
scenarios to the system. For investigating CC at different voltage
levels, a similar DG “injection” was applied at each node in the
11-, 33-, and 132-kV buses in the system. The effect of different
loading levels was investigated by injecting DGs at each node
for different loading levels at some load buses.

1) Capacity Credit Variation With Base Case Reliability:
From previous studies of the BSP reliability [39], a BSP relia-
bility index of 0.99 was used. This fact indicates that the BSP
is available 99% of a certain time period considered. The algo-
rithm was applied to the test system without any DGs in the first
instance (base case), and the base system LOLP was evaluated
at 3.08%. From the benchmark LOLP, the reliability of dif-
ferent scenarios with intermittent sources of energy connected
to the system can be evaluated and compared. By varying the
reliability indices for the BSP and the circuit assets, the same
amount and location of DGs were placed in the network, and
the capacity credit evaluated. The results are shown in Fig. 4.

Fig. 4 constituted a very interesting set of results in the sense
that CC showed no variation with the base case LOLP. In other
words, CC only varies with DG penetration, and is unaffected
by the base LOLP. This means that varying base reliability rates
will vary the LOLP with DGs proportionally, and produce the
same spare capacity or CC.

2) Capacity Credit Variation at Different Voltages: An in-
jection of wind energy generation, rated at 10 MW (installed
capacity) with variable wind power corresponding to the power
output from the wind model, was adjoined, one at a time, to each
of the buses in the system, and the equivalent capacity credit re-
covered from each scenario was recorded in Fig. 5 (grouped by
voltage level).

CC varied from point to point between 2.9 to 4.2 MW for a
10-MW injection. With a mean wind speed of 4.2 m/s and wind
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Fig. 5. CC recovered with injection at each node.

Fig. 6. CC recovered at 132 kV.

speed variance of approximately 2.2, the mean CC for this par-
ticular Bath zone and windstream is 3.76 MW with a standard
deviation of 0.3265 and variance of 0.1066.

The capacity credit was broken down into the respective
voltage levels to see if connecting at certain voltage levels
influences capacity credit in any way. Keeping the same axes,
but breaking down the capacity credit value into the voltage
levels gives Figs. 6–8. Fig. 6 corresponds to 132 kV, Fig. 7
corresponds to 33 kV, and Fig. 8 corresponds to 11 kV. Con-
necting DGs to high voltage (132 kV) near to the transmission
system shows that a higher capacity credit can be recovered if
there are no thermal constraints to injecting more turbines in
the network. In the 33-kV and 11-kV nodes, CC varies but is
generally lower than the 132-kV nodes.

The results suggest that voltage levels can indeed play a role
in liberating more CC if there are no thermal or voltage con-
straints. Hence, DGs should be encouraged to connect to higher
voltage levels, as it favours a higher CC. It is to be noted that this
is evident by comparing the 132 kV and 33 kV. The 11-kV level
is where the substations feeding the loads are connected. In this
case, further investigation is required to determine the effect of
load on CC.

Distributed generation can be strategically placed in power
systems for grid reinforcement, reducing power losses and
on-peak operating costs, improving voltage profiles and load
factors, deferring or eliminating system upgrades, and im-
proving system integrity, reliability, and efficiency [50]. While

Fig. 7. CC recovered at 33 kV.

Fig. 8. CC recovered at 11 kV.

these factors are vital for DG placement in the system, DG
connection can also be heavily impacted by the capacity credit
it liberates, as shown, and that these cost savings should also be
considered in optimization processes.

3) Capacity Credit Variation at Different Loading Levels: Fi-
nally, the same injection of 10 MW (installed capacity) used
for the voltage level investigation is used to see the effects of
loading levels. Since all the loads are at 11 kV, it simplifies
the task. Looking at the network shows that buses 48 and 49
have nearly the same peak load and are close to each other. A
further node, 55 is located further from the load center. These
three nodes are all load buses and are used for investigating the
loading effects on CC. The CC at each node at peak loading con-
ditions from Fig. 5 is stored. Then, in turn, the loads at nodes 48,
49, and 55 are removed and the automated CC software run for
the whole network to determine, each one in turn, the CC value
when adding a DG injection at each node. The results are shown
in Fig. 9.

It can be seen that CC does vary with different loads con-
nected to the network. By removing the loads at 48 and 49, CC
decreased for the whole network. Also, these nodes are quite
near to the load center, removing their loads causes a drop in
the capacity credit, which means that less power needs to be
supplied. Hence the significant drop in CC for both nodes. On
the other hand, node 55 is located further from the load centre
and although there is an overall drop in CC with the load re-
moval, the reduction is much less than the one noted for nodes
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Fig. 9. CC recovered with load variation.

48 or 49. Hence, this confirms that system loading has a distinct
influence on the CC recovered from the network. Placing DGs
near the load centers could increase CC recovered.

VIII. CONCLUSION

In this work, it was attempted to use the reliability aspects of
a typical distribution system in the UK to determine the capacity
credit provided by wind turbines, so as to determine how much
conventional power could be backed off from the grid. This was
done using a probabilistic approach using Bernoulli trials to de-
termine the network states, coupled with the optimal load flow
solution to check for no constraints violation, all within a Monte
Carlo framework which can in the first instance determine the
quality of supply for the benchmark scenario. After determining
the benchmark scenario, the study was extended to systems with
wind energy (with a wind model to cater for the high variability
of wind, as well as site-specific wind) and the new reliabilities
were evaluated. The CC was evaluated.

While it is traditionally known that capacity credit varies with
the wind regime experienced by the wind turbines, the geo-
graphical landscape and the presence of wind obstacles and the
binding limitations of circuit assets ratings, this study focused
on the variation of CC with other factors, such as the base case
reliability of the network, the voltage levels at which the tur-
bines are connected and system loading of the network were in-
vestigated. Because the system is being simulated at peak con-
ditions, with wind samples between 4 pm to 7 pm of the day,
wind speeds are higher than the average, which is reflected by
higher capacity credit values.

It is concluded that CC does not vary with the base case relia-
bility (or LOLP), but it will definitely vary with different voltage
levels at which the DG is connected and amount of loads con-
nected to the system whereby the windfarms are located. In gen-
eral, higher voltage levels allow for a greater CC, and system
loading has a definite impact on CC (more load near the DG in
the system account for losses and reduce the amount of conven-

tional power from the BSP). These factors can be used to opti-
mally site DGs in distribution networks, alongside other factors
mentioned above.
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