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Abstract. We consider the chemical reaction networks and study currents in
these systems. Reviewing recent decomposition of rate functionals from large

deviation theory for Markov processes, we adapt these results for reaction

networks. In particular, we state a suitable generalisation of orthogonality of
forces in these systems, and derive an inequality that bounds the free energy

loss and Fisher information by the rate functional.

1. Introduction. It is now becoming widely accepted that fluxes hold a key to
understanding many phenomena in non-equilibrium thermodynamics. Typically,
non-equilibrium systems are forced out of equilibrium by external forces. Since
such forces may cause ‘divergence-free’ fluxes, the forces can not be balanced by
changes in mass densities unless one takes the full fluxes into account. In fact, a
lot of thermodynamic information can be extracted from microscopic fluctuations of
fluxes on the large-deviations scale; this idea is the basis of Macroscopic Fluctuation
Theory (MFT) [3].

Although the setting of our paper will be slightly different, we briefly describe
the typical setting considered in MFT. One considers a random particle system
with particle density C(n)(x, t) (we write C instead of ρ as usual for a density to
emphasise the analogy for what follows) and particle flux J (n)(x, t) connected via

the continuity equation Ċ(n)(t) = −div J (n)(t), where div is a divergence operator.
The parameter n controls the number of elements in the system. When this number
is sent to infinity, this can lead — in a suitable scaling of space and time – to a
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macroscopic limit:

ċ(t) = Γj(t), with (1.1)

j(t) = κ(c(t)), (1.2)

for some model-specific operator κ; here Γξ = − div ξ (we will consider similar
structures on the level of chemical networks below, see (2.2) below). The mi-
croscopic fluctuations around this macroscopic limit are often characterised by a
large-deviation principle. In the context considered here, this means that the prob-
ability of observing trajectories which deviate from the macroscopic limit converges
exponentially:

Prob
(
(c(n), j(n)) ≈ (c, j)

)
n→∞∼ exp

(
−n

[
I0(c(0)) +

∫ T

0

‖j(t)− κ(c(t))‖2L2(f(c(t)) dt

])
, (1.3)

for some model-specific function f ; I0 is a functional depending on the initial data
(c(n)(0))n. For example, for independent Brownian particles, f(c) = c−1, and for
the simple symmetric exclusion process f(c) = c−1(1− c)−1.

The corresponding inner product is a very powerful tool that can be used to define
orthogonal decompositions of fluxes into “reversible” and “irreversible” parts. With
this decomposition the large-deviation rate function also decomposes,

‖j(t)−κ(c(t))‖2L2(f(c(t)) = ‖j(t)rev−κrev(c(t))‖2L2(f(c(t))+‖j
irr(t)−κirr(c(t))‖2L2(f(c(t)).

(1.4)
Moreover, by duality one also obtains an inner product on (generalised) forces,
allowing to orthogonally decompose forces into reversible and irreversible parts.

In this work we consider a similar setting, however for a class of systems with a
different noise so that the large deviations are entropic rather than quadratic,

Prob
(
(c(n), j(n)) ≈ (c, j)

) n→∞∼ exp

(
−n

[
I0(c(0)) +

∫ T

0

S
(
j(t) | κ(c(t))

)
dt

])
,

(1.5)

see (2.8) below for the precise definition. To facilitate the intuitive picture, we
interpret these systems as models for chemical reactions, although the range of
applicability is much wider. In particular, these models are more natural than
white-noise driven models when the underlying state space remains discrete. Their
non-quadratic fluctuation costs do not suggest a natural inner product, and so it is
not evident how to meaningfully decompose the cost as in (1.4) for the quadratic
case.

Recently, a new concept of generalised orthogonality was introduced for entropic
cost functions corresponding to independent particles [5]. In that case, the operator
κ is linear and the continuity operator will be the negative discrete divergence
Γ = −div. In this work we extend this orthogonality concept to the more general
case of randomly inter(re-)acting particles. In Sections 2 and 3, we collect results
from the literature, adapting and extending them where needed to the context of
chemical reaction networks. We therefore omit the proofs and sometimes the precise
technical assumptions, which can be found in the quoted literature. Sections 4
and 5 give orthogonal decomposition results and bounds on the entropy and a term
resembling the Fisher information in the classical setting.
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2. Microscopic model, macroscopic limit and large deviations. As men-
tioned we study a model for chemical reactions, although the mathematical struc-
ture is applicable to any Markov jump process for which the large-deviation principle
of the form (1.5) holds [5, 12]. Let Y be the set of reactants involved, for example
Y := {Na,CL2,NaCL}. We denote by R the set of reactions, in the example

R := {2Na + CL2 → 2NaCL, 2NaCL→ 2Na + CL2} .

The stoichiometric information of a reaction r is captured in the state change vector
γ(r) ∈ RY , which describes with negative entries how many reactants of each species
are consumed and with positive entries the creation of products, for example γ(r) :=
(−2,−1, 2) for the reaction r : 2Na + CL2 → 2NaCL. We shall assume that R is
the disjoint union of the set of forward reactions Rfw, in this example Rfw :=
{2Na + CL2 → 2NaCL}, and the set of backward reactions Rbw, such that for each
forward reaction r ∈ Rfw there is exactly one backward reaction bw(r) ∈ Rbw with:

γbw(r) = −γ(r). (2.1)

This assumption is no loss of generality, as we can always introduce phantom re-
actions with zero reaction rates, i.e., reactions that exist on paper but do not take
place. We sometimes also write bw(r) ∈ Rfw for r ∈ Rbw. The state change vectors
are collected in the matrix Γ := [γ(r)]r∈R ∈ RY×R. We deliberately use the same
notation as in (1.1), to emphasise the analogy of that equation to (2.2) below.

We now further specify the microscopic particle system that models such re-
action network, and introduce the time-reversed process. Next, we describe the
macroscopic limit and the corresponding large deviations. We then briefly sum-
marise in the remainder of this section some results from [13] which will be needed
in the current work: time-reversal symmetries and the relations between forward
and backward reaction rates that can be derived.

2.1. Microscopic model. The microscopic model will be a Markov jump process
consisting of randomly reacting particles in a large volume of size V , which now
controls number of particles in the system. We assume that there is no spatial
dependence of the reactions. The empirical concentration measure is

C(V )

y (t) :=
1

V
#
{

particles of species y present at time t
}
.

A reaction r ∈ R occurs randomly with concentration-dependent intensity k(V )
r =

k(V )
r (C(V )(t)), upon which the concentration is updated with C(V )(t) := C(V )(t−) +
V −1γ(r), where C(V )(t−) is the limit from the left. These intensities k(V )

r are also
called the jump rates or propensities. In addition, we would like to introduce a
reaction flux J (V )

r (t) that measures the amount of reactions taking place at time t.
However, since the process has jumps, it is mathematically easier to introduce the
(time-)integrated flux,

W (V )

r (t) :=
1

V
# {reactions r occurred in time (0, t]} .

The fluxes and concentrations are then related by the continuity equation C(V )(t) =
C(V )(0) + ΓW (V )(t), or formally

Ċ(V )(t) = ΓẆ (V )(t) = ΓJ (V )(t). (2.2)

We point out that this equation is the equivalent for chemical reactions to (1.1), for
the MFT setting sketched in the introduction. The pair (C(V )(t),W (V )(t)) is now a
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Markov process in RY × RR; its generator is given by

(Q(V )f)(c, w) :=
∑
r∈R

k(V )

r (c)
[
f(c+ 1

V γ
(r), w + 1

V 1r)− f(c, w)
]
.

We remark that these are the sole reasons for considering integrated fluxes: al-
though the concentration C(V )(t) is a Markov process, C(V )(t) paired with the non-
integrated flux J (V )(t) is not, and moreover, (2.2) only holds in a weak, measure-
valued sense. However in the macroscopic regime V →∞, these issues do not play
a role anymore, so that later we can focus on the non-integrated fluxes.

We collect the needed technical assumptions on the Markov chain as follows.

Assumption 2.1. Assume that for all V the process C(V )(t) is non-explosive on
(0, T ) (that is, for almost all starting points, almost all trajectories do not exhibit
infinitely many jumps in (0, T )) and remains almost surely within a compact set,
typically a simplex that describes mass conservation. Furthermore, the process has a
unique, coordinate-wise positive invariant measure 0 < π(V ) ∈ P( 1

V NI0). Integrated
fluxes are assumed to satisfy W (V )(0) = 0 almost surely in V .

Example 2.2. The typical example that is used to model microscopic chemical re-

actions is k(V )
r (c) = ω(r)V

∏
y∈Y(1/V )α

(r)
y α(r)

y !
(cyV
α

(r)
y

)
, where ω(r) is a reaction-specific

constant and α(r)
y are the number of y-reactants consumed in reaction r. In that case

the master equation for the Markov process C(V )(t) is called the “Chemical Master
Equation”, and in many cases the invariant measure π(V ) is explicitly known and
positive [2]. In general, explosion may occur for such models, but it can be ruled out
by imposing an additional mass conservation assumption [12].

2.2. The time-reversed process. Here we introduce the time-reversed process
which will be crucial throughout the paper. For a path (C(V )(t),W (V )(t)) and the
given final time T , we define the time-reversed path as(←−

C (V )(t),
←−
W (V )(t)

)
:=
(
C(V )(T − t),W (V )T(T )−W (V )T(T − t)

)
,

where W (V )T
bw(r)(t) := W (V )

r (t); by construction, these time-reversed integrated

fluxes
←−
W (V )(t) remain non-negative, non-decreasing, and initially calibrated at 0, as

the original integrated fluxes
←−
W (V )(t).

Theorem 2.3 ([13, Proposition 4.1], time-reversal). Let P(V )

Q(V ),π(V ) be the path

measure of the Markov process (C(V )(t),W (V )(t)) with generator Q(V ) and initial
distribution π(V ) × δ0. Then

P(V )

Q(V ),π(V )

(
(
←−
C (V )(t),

←−
W (V )(t)) ∈ A

)
= P(V )

←−
Q(V ),π(V )

(
(C(V )(t),W (V )(t)) ∈ A

)
, (2.3)

where the reversed generator is

(
←−
Qf)(w) =

∑
r∈R

←−
k (V )

bw(r)(c)
[
f(c+ 1

V γ
bw(r), w + 1

V 1bw(r))− f(c, w)
]
, (2.4)

and the reversed rates are related to the forward rates through

←−
k (V )

bw(r)(c) :=
π(V )(c+ 1

V γ
bw(r))

π(V )(c)
k(V )

r (c+ 1
V γ

bw(r)). (2.5)
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Remark 2.4. A special role is played for systems that satisfy “microscopic
detailed balance”, i.e., for V > 0:

π(V )(c)k(V )

r (c) = π(V )(c+ 1
V γ

(r))k(V )

r (c+ 1
V γ

(r)) for all c ∈ RY and r ∈ R.

Indeed, by (2.5), this is equivalent to
←−
k (V )
r (c) = k(V )

r (c), and hence to the reversibil-

ity of the Markov process, i.e.,
←−
Q (V ) = Q(V ) in (2.3) (not to be confused with

thermodynamic reversibility). As we will see, on a macroscopic level this condition
corresponds to conservative forces, or the absence of external forces. Since we are
mainly interesting in the behaviour of systems undergoing external forces, we shall
not assume this condition, but merely use it as a validity check at some places.

2.3. Macroscopic limit and large deviations. We now study the macroscopic
behaviour of the system in the limit V → ∞. To this aim we need to make the
following assumption.

Assumption 2.5. Let the jump rates converge in average to reaction rates, that
is, supc|V −1k(V )

r (c) − κr(c)| → 0 as V → ∞. Furthermore, we assume that the
rates κr satisfy the assumptions of [12] allowing for a large-deviation principle; in
particular, a rate κr(c) has to vanish if the associated reaction would lead to nega-
tive concentrations, and the mapping c 7→ κr(c) must be non-decreasing, Lipschitz
continuous, superhomogeneous [12, Assumption 2.2(vi)] and bounded on the com-
pact set of concentrations of Assumption 2.1. We require the invariant distributions
π(V ) ∈ P( 1

V NY0 ) to satisfy a large-deviation principle

π(V )(C(V ) ≈ c) V→∞∼ exp
(
− V I0(c)

)
, (2.6)

for some I0 : RY+ → [0,∞]. Finally, we assume that I0 is almost everywhere differ-
entiable, as it holds for example for convex functionals.

By a straightforward extension of Kurtz’ Theorem [6], in the limit V → ∞, the
random path

(
C(V )(t),W (V )(t)

)
converges (in measure) to the deterministic solution

of the coupled equations

ċ(t) = Γẇ(t), and ẇ(t) = κ
(
c(t)
)
, (2.7)

which is the chemical reaction equivalent of (1.1) and (1.2).
Since the noise is essentially a re-scaled Poissonian, a large-deviations principle

holds, which we now recall (see [12] for the precise statement). In the following
theorem and throughout the paper we adapt the notation of the relative entropy:

S(j | κ(c)) :=
∑
r∈R

jr log
jr

κr(c)
− jr + κr(c). (2.8)

Theorem 2.6 ([12]). As in Theorem 2.3, let P(V )

Q(V ),π(V ) be the path measure of

the Markov process (C(V )(t),W (V )(t)) with generator Q(V )and initial distribution
π(V ) × δ0. Then for any (c, w) ∈W 1,1(0, T ;RY × RR)

P(V )

Q(V ),π(V )((C
(V ),W (V )) ≈ (c, w))

V→∞∼ exp

(
−V

[
I0(c(0)) +

∫ T

0

S
(
ẇ(t) | κ(c(t))

)
dt

])
.
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The non-negative cost functional
∫ T

0
S
(
ẇ(t) | κ(c(t))

)
dt can be interpreted as

the free energy required to force the system to follow a given path, (c, w) rather
than the path that solves the macroscopic equation (2.7), whereas I0 measures the
cost of deviating from the given initial data. This interpretation goes back to [11];
see also [10] for a more detailed account.

Example 2.7. For the Chemical Master Equation discussed in Example 2.2, the

corresponding reaction rates are κ(r)(c) = ω(r)
∏
y∈Y c

α(r)
y
y . This specific form of the

reaction rates is called mass-action kinetics [6, 2]. Moreover, in that case I0(c) :=
S(c | ceq), where ceq is the equilibrium concentration 0 = Γκ(ceq) [10].

2.4. Time reversal symmetries and implications. The large-deviation result

Theorem 2.6 also applies to the time-reversed process (
←−
C (V )(t),

←−
W (V )(t)). Com-

bining this with the time reversal result of Theorem 2.3 yields the following time-
reversal symmetry:

Corollary 2.8. For any path (c, w) ∈W 1,1(0, T ;RY × RR), it holds

I0(c(0)) +

∫ T

0

S
(
ẇ(t) | κ(c(t))

)
dt = I0(c(T )) +

∫ T

0

S
(
ẇT(t) | ←−κ (c(t))

)
dt, (2.9)

or (using ċ = Γẇ), for a dense set of (c, j) = (c, ẇ) ∈ RY ×RR for which the chain
rule holds,

S(j | κ(c)))− S(jT | ←−κ (c)) = ∇I0(c) · Γj. (2.10)

Although the reversed propensities
←−
k (V )
r (c) are explicitly known by (2.5) if the

invariant measure π(V ) is known, the reversed reaction rates ←−κr(c) may generally
not be explicit. However, using the fact that (2.10) holds for all j, one finds the
relations [13, Section 4.2], if the quantities are defined,

∇I0(c) · γ(r) = log
←−κbw(r)(c)

κr(c)
, (2.11)∑

r∈R
κr(c) =

∑
r∈R

←−κr(c), (2.12)

κr(c)κbw(r)(c) =←−κr(c)←−κbw(r)(c). (2.13)

Note in particular that the ratio←−κbw(r)(c)/κr(c) is well-defined whenever ∇I0(c) is
well-defined, i.e., on a dense subset. We mention that (2.13) was not stated in [13]
but follows directly from (2.11) and the antisymmetry (2.1).

Remark 2.9. Building further upon Remark 2.4, if microscopic detailed balance
holds, then this is also true for the reaction rates: ←−κ (c) = κ(c), which is often
called chemical detailed balance, or in case of mass-action kinetics, the Wegscheider
condition.

3. Force structures. In this section, we introduce force structures; these can be
seen as a non-equilibrium generalisation of gradient flows. Such structure does
in general not exist unless we consider net fluxes. Therefore, we first introduce
net fluxes, then force structures, and we finally discuss the force structure that
corresponds to the reversed dynamics.
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3.1. Net fluxes: macroscopic limit and large deviations. Since reactions are
ordered in forward-backward pairs with opposite state change vectors (2.1), one can
also introduce the net integrated fluxes as W̄ (V )(t) := W (V )(t)−W (V )(t)T, i.e.,

W̄ (V )

r (t) := W (V )

r (t)−W (V )

bw(r)(t), for r ∈ Rfw. (3.1)

Keeping in mind that these net fluxes are only defined for r ∈ Rfw, we can use the
same notation for the continuity equation, cf. (2.2):

Ċ(V )(t) = ΓẆ (V )(t) =
∑
r∈Rfw

γ(r)Ẇ (V )

r (t) + γbw(r)Ẇ (V )

bw(r)(t)

=
∑
r∈Rfw

γ(r) ˙̄W (V )

r (t) = Γ ˙̄W (V )(t).

Again, by Kurtz’ Theorem [6], the pair (C(V )(t), W̄ (V )(t)) converges in the macro-
scopic limit as V →∞ to

ċ(t) = Γ ˙̄w(t), and ˙̄wr(t) = κr
(
c(t)
)
− κbw(r)

(
c(t)
)
, (3.2)

and, by a contraction principle also satisfies the following large-deviation principle.

Corollary 3.1.

P(V )

Q(V ),π(V )

(
(C(V )(t), W̄ (V )(t)) ≈ (c, w̄)

)
V→∞∼ exp

(
−V

[
I0(c) +

∫ T

0

L
(
c(t), ˙̄w(t)

)
dt

])
,

where for (c, ̄) ∈ RY × RRfw :

L(c, ̄) := inf
j:(0,T )→RR:

̄=j−jT

S(j | κ(c)), (3.3)

=
∑
r∈Rfw

jr log
jr

κr(c)
− jr + κr(c) + (jr − ̄r) log

jr − ̄r

κbw(r)
− (jr − ̄r) + κbw(r),

where jr := 1
2 ̄r +

√
1
4 ̄

2
r + κr(c)κbw(r)(c).

3.2. Force structure of the cost function. Following [15, 7, 8, 5, 13], we now
rewrite the cost function L in terms of forces, affinities and energies. As will be
clear from the formulas, these forces are only defined for concentrations that satisfy
the following condition:

κ(c) �� κbw(c) :⇐⇒
(
κr(c) = 0 ⇐⇒ κbw(r)(c) = 0 for all r ∈ R

)
. (3.4)

Systems for which this condition holds for any concentration c are sometimes said
to be in weak detailed balance.

For any c for which (3.4) holds, the thermodynamic forces are defined as (setting
0/0 = 1)

Fr(c) :=
1

2
log

κr(c)

κbw(r)(c)
, for c satisfying (3.4) and r ∈ Rfw; (3.5)
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these are the affinities of Schnakenberg [15]. We also define the dual and primal
dissipation potentials (which are Legendre duals of each other):

Φ∗(c, ζ) := 2
∑
r∈Rfw

√
κr(c)κbw(r)(c)

(
cosh(ζr)− 1

)
, and (3.6)

Φ(c, ̄) := sup
ζ∈RRfw

ζ · ̄− Φ∗(c, ζ)

=
∑
r∈Rfw

2
√
κr(c)κbw(r)(c)

(
cosh∗

(
̄r

2
√
κr(c)κbw(r)(c)

)
+ 1

)
.

We can then decompose the cost function L as follows.

Theorem 3.2 ([7, 8, 5, 13]). For any c ∈ RY+ for which κ(c) �� κbw(c) and any

̄ ∈ RRfw ,

L(c, ̄) = Φ(c, ̄) + Φ∗
(
c, F (c)

)
− F (c) · ̄, (3.7)

and this choice of Φ∗,Φ and F is unique (assuming Φ∗(c, 0) = 0 = Φ(c, 0) and
Φ(c, ·),Φ∗(c, ·) are Legendre duals of each other [9, Proposition 2.1]).

This decomposition has the following physical interpretation. The solution to (3.2)
is the zero-cost flow L(c(t), ̄(t)) = 0, which is equivalent to

̄(t) = ∇ζ Φ∗
(
c(t), F (c(t))

)
. (3.8)

Since Φ∗ is not quadratic, this represents a non-linear response between forces and
fluxes. Indeed, this also means that the force F must be scaled to be dimensionless;
see [10] for the correct scaling with physical constants. Of particular interest is the
Fisher information:

Φ∗
(
c, F (c)

)
=
∑
r∈Rfw

(√
kr(c)−

√
kbw(r)(c)

)2
.

We interpret this as a Fisher information since for the case of independent Brow-
nian particles Φ∗(c, F (c)) =

∫
Rd|∇

√
c(x)|2 dx, see also [1, 9]; the expression above

has the same form, but with a discrete gradient and non-linear rates. The Fisher
information will be discussed in more detail in Section 5.

Remark 3.3. If chemical detailed balance ←−κ = κ holds, see Remark 2.9, then
from (3.5) and (2.11) we find that the last term in (3.7) reads:

−F (c) · ̄ = 1
2ΓT∇I0(c) · ̄ = 1

2 ∇I0(c) · ċ,
so that the force is indeed conservative as anticipated in Remark 2.4. In this
case, (3.8) describes a nonlinear gradient flow, either in the space of concentra-
tions [10] or in the space of integrated net fluxes [14].

3.3. Force structure for the reversed dynamics. We can also give a similar
decomposition applied to the reversed dynamics, explained in Sections 2.2 and 2.4.
First, we apply Corollary 3.1 to the reversed dynamics, using (2.3):

Corollary 3.4. Set
←−̄
W (V )(t) := −W̄ (V )(T ) + W̄ (V )(T − t), cf. (3.1). Then:

P(V )

Q(V ),π(V )

(
(
←−
C (V )(t),

←−̄
W (V )(t)) ≈ (c, w̄)

)
V→∞∼ exp

(
−V

[
I0(c) +

∫ T

0

←−
L
(
c(t), ˙̄w(t)

)
dt

])
,
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where for (c, ̄) ∈ RY × RRfw :
←−
L (c, ̄) := inf

j:(0,T )→RR:

̄=j−jT

S(j | ←−κ (c)). (3.9)

We may then also decompose the reverse cost function
←−
L as a force structure.

Corollary 3.5 ([13]). For any c ∈ RY+ for which ←−κ(c) ��
←−κbw(c) and any ̄ ∈ RRfw ,

←−
L (c, ̄) = Φ(c, ̄) + Φ∗

(
c,
←−
F (c)

)
−
←−
F (c) · ̄,

where Φ,Φ∗ are given by (3.6), and

←−
Fr(c) =

1

2
log

←−κr(c)
←−κbw(r)(c)

,

and this choice of Φ∗,Φ and
←−
F is unique.

Observe that the potentials Φ,Φ∗ are the same for the reversed dynamics due

to (2.13). In fact also for the Fisher information Φ∗
(
c, F (c)

)
= Φ∗

(
c,
←−
F(c)

)
due

to (2.12) and (2.13).

4. Orthogonal decomposition. We now mimic the arguments from [5] for the
case of general nonlinear reactions. Throughout this section, we shall write forces
F (c) and gradients ∇I0(c) under the standing assumption that the quantities are
well-defined and sufficiently regular. These assumptions will be relaxed in Section 5.
First we explain how the dual dissipation potentials can be decomposed; next we
discuss how the forces can be decomposed accordingly.

4.1. Orthogonal decomposition of the dual dissipation potentials. The idea
of this short subsection is to decompose Φ∗(c, ξ + ζ) in a similar fashion as one
would do in a Hilbert space: 1

2‖ξ + ζ‖2 = 1
2‖ξ‖

2 + 〈ξ, ζ〉 + 1
2‖ζ‖

2, see for exam-
ple [3, Section IIC]. However, since Ψ∗ is not quadratic, the construction is a bit
more involved: the pairing between forces becomes nonlinear, and one of the dual
dissipation potentials must be modified:

θc(ξ, ζ) := 4
∑
r∈Rfw

√
κr(c)κbw(r)(c) sinh(ξr) sinh(ζr),

Φ∗ζ(c, ξ) := 2
∑
r∈Rfw

√
κr(c)κbw(r)(c) cosh(ζr)

(
cosh(ξr)− 1

)
.

We can now write the decomposition as follows.

Proposition 4.1. For any c ∈ RY and ξ, ζ ∈ RR,

Φ∗(c, ξ + ζ) = Φ∗ζ(c, ξ) + θc(ξ, ζ)+ Φ∗(c, ζ)

= Φ∗(c, ξ) + θc(ξ, ζ)+ Φ∗ξ(c, ζ), and

θc(ξ, ζ)= Φ∗(c, ξ + ζ)− Φ∗(c, ξ − ζ).

Proof. Both statements follow from the identity

cosh(ξ + ζ) = cosh(ξ) cosh(ζ) + sinh(ξ) sinh(ζ).

We stress that there is the choice which one of the two dissipation potentials on
the right-hand side is modified. By a slight abuse of notation, we shall also write
Φ∗F (c, ξ) = Φ∗F (c)(c, ξ) for a force field F .
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4.2. Orthogonal decomposition of the forces. The force and its reversed coun-
terpart are connected via the relations (2.11), (2.12), (2.13), see [13, Section 4.6]:

Fr(c) +
←−
Fr(c) = −

(
ΓT∇I0(c)

)
r
, (4.1)

which is twice the force that one would have under chemical detailed balance, see
Remark 3.3. This motivates the splitting of general forces into a symmetric and an
antisymmetric part F (c) = F sym(c) + F asym(c):

F sym
r (c) := 1

2

(
Fr(c) +

←−
Fr(c)

)
= 1

2 log
κr(c)
←−κbw(r)(c)

= − 1
2 (ΓT∇I0(c))r and

F asym
r (c) := 1

2

(
Fr(c)−

←−
Fr(c)

)
= 1

2 log
←−κbw(r)(c)

κbw(r)(c)
,

where the latter indeed vanishes if chemical detailed balance κ = ←−κ holds. More
generally, the antisymmetric force measures how far the system is from chemical
detailed balance. We briefly note that in case of linear reactions, the antisymmetric
force is a constant, independent of the concentration [5], which is no longer true for
nonlinear reactions.

The two force fields F sym, F asym are indeed ‘orthogonal’ to each other if we use
the nonlinear pairing θ·(c, ·) introduced above, as the next statement shows.

Proposition 4.2 (Generalisation of [5, Lemma 1]). For any c ∈ RY+ for which
F sym(c), F asym(c) are well-defined,

θc(F
sym(c), F asym(c))= 0.

Proof. This follows from (2.12) and (2.13).

As a consequence of this and Proposition 4.1, the Fisher information can be
decomposed as follows:

Corollary 4.3 (Generalisation of [5, Lemma 2 and Corollary 4]). For any c ∈ RY+
for which F sym(c), F asym(c) are well-defined,

Φ∗
(
c, F sym(c) + F asym(c)

)
= Φ∗F asym

(
c, F sym(c)

)
+ Φ∗

(
c, F asym(c)

)
= Φ∗

(
c, F sym(c)

)
+ Φ∗F sym

(
c, F asym(c)

)
,

and hence for any c ∈ RY+ for which κr(c) �� κbw(r)(c) and any ̄ ∈ RRfw ,

L(c, ̄) = Φ(c, ̄) + Φ∗
(
c, F asym(c)

)
− F asym(c) · ̄

+ Φ∗F asym

(
c, F sym(c)

)
+ 1

2 ∇I0(c) · Γ̄ (4.2)

= Φ(c, ̄) + Φ∗
(
c, F sym(c)

)
+ 1

2 ∇I0(c) · Γ̄
+ Φ∗F sym

(
c, F asym(c)

)
− F asym(c) · ̄. (4.3)

5. Fisher and entropy bounds. Observe that the forces F sym(c), F asym(c) are
well-defined precisely if κ(c) ��

←−κbw(c) �� κbw(c). It turns out that many terms
in (4.2) and (4.3) remain well-defined even when this condition is violated, see
Example 5.2. More precisely, we may introduce the following notation, where the
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equalities on the right are true if κr(c) �� κbw(r)(c):

Fisa(c) :=
1

2

∑
r∈Rfw∪Rbw

(√
κr(c)−

√
←−κbw(r)(c)

)2

= Φ∗F asym

(
c, F sym(c)

)
, and

Fias (c) :=
1

2

∑
r∈Rfw∪Rbw

(√
κr(c)−

√
←−κr(c)

)2

= Φ∗F sym

(
c, F asym(c)

)
.

Remark 5.1. If we interpret the differences in as abstract gradients, then
both quantities are of the form 1

2

∑
r(∇

√
κ(c))2, which coincides with the usual

continuous-space Fisher information 1
2

∫
|∇
√
c(x)|2 dx = 1

2

∫ |∇c(x)|2
c(x) dx. Recalling

Remark 2.9, the second quantity Fias (c) measures how far the system is from being
in detailed balance.

Example 5.2. Consider a two-state linear network with κxy(c) := axycx/c
eq
0 and

equilibrium concentration ceq > 0, see also [5]. The time-reversed rates are then

given by ←−κ xy(c) := ayxcx/c
eq
x . Then the force is Fxy(c) = 1

2 log
axycxc

eq
y

ayxcyc
eq
x

, which

decomposes into F sym
xy (c) = 1

2 log
cxc

eq
y

cyc
eq
x

and F asym
xy (c) = 1

2 log
axy
ayx

, and the two Fisher

informations are Fisa(c) = 1
2 (a12+a21)(

√
c1/c

eq
1 −

√
c2/c

eq
2 )2 and Fias (c) = 1

2 (c1/c
eq
1 +

c2/c
eq
2 )(
√
a12 −

√
a21)2. We thus see that the forces F (c), F sym(c) are not well-

defined on the boundary c = (1, 0), (0, 1), but the Fisher informations are.

The following proposition then generalises Corollary 4.3 to all concentrations,
which possibly violate κ(c) ��

←−κbw(c) �� κbw(c). The resulting inequality, bounding
Fisher information and entropy by the rate functional, is known as a FIR inequal-
ity [4]. The inequality we prove here corresponds to the inequality in that paper
when choosing their parameter λ = 1/2. Apart from the different proof strategy,
our method shows that the gap is precisely quantified by (4.2), at least for paths
that stay away from the boundary,

Proposition 5.3. Assume that κ satisfies the conditions of [12] needed for the
large-deviations Theorem 2.6 to hold. Let I0 be lower semicontinuous. Then for
any path (c, ̄) ∈ W 1,1(0, T ;RY+) × L1(0, T ;RRfw) such that I0 is continuous in a
neighbourhood of c(0),∫ T

0

L
(
c(t), ̄(t)

)
dt ≥

∫ T

0

Fisa
(
c(t)
)
dt+ 1

2I0

(
c(T )

)
− 1

2I0

(
c(0)

)
. (5.1)

Proof. We use two approximation steps. In the first step we consider (c, ̄) ∈ RY+ ×
RR for which only κ(c) ��

←−κbw(c) holds. While keeping this pair fixed, we define a
new reaction network with propensities and corresponding reaction rates:

k(V,ε)

r (c) := k(V )

r (c) + ε
←−
k (V )

r (c), and κ(ε)

r (c) := κr(c) + ε←−κr(c).

Then κ(ε)(c) �
�
←−κ(ε)

bw(c) �
� κ(ε)

bw(c), so (4.2) holds. By convex duality Φ(c, ̄) +

Φ∗
(
c, F asym(c)

)
− F asym(c) · ̄ ≥ 0, which yields

L(ε)(c, ̄) ≥ Fisa
(ε)(c) + 1

2 ∇I
(ε)

0 · Γ̄,
where the superscript ε denotes the functions corresponding to the modified rates

κ(ε). Recall from Theorem 2.3 that the network with rates
←−
k (V ) has the same

invariant measure π(V ) as the network with rates k(V ); by linearity the same is
true for the network with rates k(V,ε). It follows that the functional I(ε)

0 = I0
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remains unaltered. The Fisher information Fisa
(ε)(c) is continuous in κ(ε)(c) and

hence converges to Fisa(c). Finally for the cost function it follows by continuity that

Fisa(c) + 1
2 ∇I0(c) · Γ̄ = lim

ε→0
Fisa

(ε)(c) + 1
2 ∇I

(ε)

0 (c) · Γ̄

≤ inf
j∈RR+ :jr−jbw(r)=̄r

lim sup
ε→0

S
(
j | κ(ε)(c)

)
= inf
j∈RR+ :jr−jbw(r)=̄r

S
(
j | κ(c)

)
= L(c, j̄). (5.2)

Hence this inequality holds for any (c, j̄) for which κ(c) ��
←−κbw(c).

In the second step, take an arbitrary path (c, ̄) ∈W 1,1(0, T ;RY+)×L1(0, T ;RRfw)
such that I0 is continuous in a neighbourhood of c(0); without loss of generality we

may assume that
∫ T

0
L
(
c(t), ̄(t)

)
dt < ∞. Recall from (2.11) that κ(c) ��

←−κbw(c)
for almost every c. We distinguish between two cases. In the first case the path
c(t) ≡ c is constant in time (and hence Γ̄ = 0). Then we may approximate c(ε) → c
such that κ(c(ε)) ��

←−κbw(c(ε)), hence (5.2) holds for all t, and also in time-integrated
form. Then I0(c(ε)(T )) − I0(c(ε)(0)) = 0 = I0(c(T )) − I0(c(0)), and clearly the
Fisher information converges. Then∫ T

0

Fisa
(
c(t)
)

+ 1
2I0

(
c(T )

)
− 1

2I0

(
c(0)

)
= lim
ε→0

∫ T

0

Fisa
(
c(ε)(t)

)
+ 1

2I0

(
c(ε)(T )

)
− 1

2I0

(
c(ε)(0)

)
≤ lim sup

ε→0

∫ T

0

L
(
c(ε), ̄(t)

)
dt ≤ inf

j∈L1(0,T ;RR+ )
jr−jbw(r)=̄r

lim sup
ε→0

∫ T

0

S
(
j(t) | k(c(ε))

)
dt

= inf
j∈L1(0,T ;RR+ )
jr−jbw(r)=̄r

lim sup
ε→0

∫ T

0

[
S
(
j(t) | k(c)

)
+
∑
r∈R

jr(t) log
κ(c)

κ(c(ε))

]
dt

=

∫ T

0

L
(
c, ̄(t)

)
dt.

In the second case the path c(t) is not constant. Take any j ∈ L1(0, T ;RR+ )
for which jr − jbw(r) = ̄r. Following [12, Lemmas 3.8 & 3.9] we add a little

mass and convolute with a heat kernel so that c(ε), j(ε) → c, j strongly in L1-

norm and
∫ T

0
S
(
j(ε)(t) | κ(c(ε)(t))

)
dt →

∫ T
0
S
(
j(t) | κ(c(t))

)
dt. Since c(t) is not

constant, the convolved path c(ε)(t) only passes through points c(t) that violate
κ(c(ε)(t)) ��

←−κbw(c(ε)(t)) on a t-null set. Hence inequality (5.2) holds for this pair
(c(ε), ̄(ε)) and almost all t, and hence also in integrated form. The convergence of
the Fisher information follows by dominated convergence, where we recall from As-
sumption 2.5 that the rates κ are bounded, and the reversed rates ←−κ are bounded
by (2.12). The convergence of I0(c(ε)(T )) is by lower semicontinuity and the con-
vergence of I0(c(ε)(0)) by assumption. We conclude that the inequality (5.1) holds
for any path as claimed.

We can now also derive an inequality that bounds the other Fisher information
together with the irreversible work.

Proposition 5.4. Assume that κ satisfies the conditions of [12] needed for the
large-deviations Theorem 2.6 to hold. Then for any path (c, ̄) ∈ W 1,1(0, T ;RY+) ×
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L1(0, T ;RR) such that κr(c(t)) ��
←−κ r(c(t)) for almost all t ∈ (0, T ) and r ∈ R,∫ T

0

L
(
c(t), ̄(t)

)
dt ≥

∫ T

0

Fias
(
c(t)
)
dt−

∫ T

0

F asym(c(t)) · ̄(t) dt.

Proof. This is the same argument as Proposition (5.3), but starting from (4.3)
rather then (4.2). Note that the condition κr(c(t)) ��

←−κr(c(t)) is now needed for
F asym(c) to be well-defined.

We finally remark that the irreversible work
∫ T

0
F asym(c(t)) · ̄(t) dt does not

necessarily have a sign, but in the other direction we have by convex duality∫ T

0

F asym(c(t)) · ̄(t) dt ≤
∫ T

0

Φ
(
c(t), ̄(t)

)
dt+

∫ T

0

Φ∗
(
c(t), F asym(c(t))

)
dt.
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