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Abstracts—This paper proposes a modified long-run in an electrical-power system. The main idea of computation

incremental cost pricing (LRIC) method for distribution network
pricing considering the diversified contributions of network users
to system peak. The Shapley-value method and modified
coincident factor method are used to determine network users’
various contributions. The comparison between original LRIC
and the Modified LRIC indicates the positive correlation between
the contribution to system peak and network charges for different
network users. This paper also explores the potential users’
behavior to gain bill reductions according to the cooperate-game
theory and the consequential network investment deferral.

Index Terms—Network pricing, Long-run-incremental-cost
pricing, Shapley value, coincident factor, Contributions.

[. INTRODUCTION

Network pricing methods are designed to recover network
reinforcement cost and certain level revenue for network
operators. An advanced pricing method should be able to send
end-users clear signals of network congestion, and network
users can adjust their network usage behaviors according to
financial signals. This can lead to system stresses alleviated and
deferral of network reinforcement.

Currently, the mainly used pricing methods for transmission
and distribution network are Distribution reinforcement model
(DRM), investment-cost-relative pricing (ICRP), long-run-
incremental-cost (LRIC) [1]. DRM averages network costs at
each voltage level. ICRP sets network charges by using the
capacity of lines and distances of supply points. In LRIC, the
incremental cost is calculated based on network maximum
capacity and annual peak utilization [2]. However, none of
aforementioned methods consider that various network users
have different peak load characteristics and individual peak load
may not coincide with each other or the system peak.

Under current LRIC pricing arrangement, at each nodal level,
a demand node of very low level at system peak period is
charged according to the same system peak utilization level
compared to other larger contributors. Under a demand node,
where network users can be categorized into classes with
different criteria and have diversified contributions to network
components, but various loads are charged at the same unit
price. Therefore, it is reasonable to reconsider network pricing
methods by respecting diversified contributions of various loads
to upstream networks peak utilization that defines future
network investment.

Paper [3] presents a new method for determining the
contributions of each load to the power flow through each line

algorithm is to determine the extraction factors of each load
node from the lines incident to it, then moving backward,
propagating these extraction factors to the lines in the upstream
direction up to source nodes.

Paper [4] proposes a coincident demand based smart long run
incremental cost (LRIC) pricing mechanism. Coincidence
factor, which is defined as the fraction of network user’s demand
at upstream asset peak usage to user’s individual peak demand,
is reflective of user’s contribution to network component usage.
The coincident demand is used as power flow input to
accommodate actual asset usage. Compared to original LRIC
pricing mechanism, all network users will obtain network
charges reduction at different extents depending on their
contributions to network asset usage. Paper [5] proposes an
enhanced LRIC pricing mechanism based on the contribution of
generation and load located at various nodes, to network peak of
each upstream asset, the contribution is modeled as a load-to-
asset contribution factor (LACF) and generation-to-asset
contribution factor (GACF) for load and generation users
respectively, to assess the impact of user contributions during
peak load on network investment.

Shapley value based on cooperative game theory is a well-
established concept in common cost allocation and contribution
determination [6]. There are several transmission-related
allocation methods based on the Shapley Value. Paper [7]
provides a transmission loss allocation method based on
equivalent injection current. Similar to power flow analysis, the
proposed method uses current injection analysis to determine
the voltage contribution of each network user on network
components. The Shapley Value is used for final transmission
loss allocation. Paper[8]-[9] propose similar method using
Shapley Value to allocate transmission cost incurred to
accommodate all the loads, where the method overcomes the
drawback of conventionally used methods such as postage-
stamp method and MW-miles method, encouraging the
economically optimal usage of transmission facilities. Proposed
Shapley value methods distribute the common cost of
cooperation based upon the assumption that the cost proportion
of a participant in a coalition is determined by the incremental
cost that the participant generates by joining the coalition.

This paper uses Shapley value of cooperative game theory to
calculate the expected marginal contribution of diversified loads
on the utilization of each network asset, then determines
contribution coefficients based on coincident factor concept,
and finally uses modified utilization levels as input to calculate
Long-run-incremental cost from each network component to
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load. Comparison between original LRIC pricing method and
the proposed method illustrates that large contributors to system
peak is responsible for higher network charges while small
contributors will be rewarded by lower charges. The strong
incentive to network users can guide them to modify demand
pattern. The analysis of users’ strategies proves that by
cooperative demand pattern adjustment, all active participants
will obtain network charges reduction and system utilization is
alleviated, resulting in network reinforcement deferral.

II. MATHAMATICAL FORMULATION OF MODIFIED
LRIC

a) LRIC pricing method

In electricity networks, the time to reinforcement horizon n;
can be determined from the actual power flow peak level (P;)
and the capacity (C;) of network asset j. The present value (PV;)
of future reinforcement can be calculated according to asset cost
and the reinforcement horizon:

long—long

le log(1+1) (l)
_ Assetj
PV, = a+a)"i @)

Where r is the load growth rate; d is the discount rate.

Resulting from the incremental power withdraw (APy) at node
N, the incremental cost of network asset j can be determined by
the power flow change along the network asset (AP).
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Where njp,, and PV, are new asset investment horizon
and the present value with additional power withdrawn or
injection.

The change in the present value as a result of the nodal injection
or withdrawn is given by

APV; = PVjne,, — PV ®)
The annualized incremental cost (IC) of the network component
j is the difference in the present value of the future investment
as aresult of APy at node N multiplied by an annuity factor

IC; = APV; X annual factor (6)

Therefore, for the network, the long-run incremental cost to
support node N (LRICy) can be determined by
_ %16
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b) Shapley value

A cooperative game theoretic approach based on Shapley
Value is used here to determine the expected marginal
contribution of diversified loads to the utilization of network
components in the distribution system. The Shapley value is a
method which divides the value of a coalition between the
players of that coalition based on their contribution to the value
of coalition. Since the contribution of players on the value of a
coalition depends on the selection order of players, some
situations may appear that symmetric players in a game acquire
different values. To handle this problem, Shapley uses averages

over all possible permutations of players to calculate the value,
which is called Shapley value. Let [T, denotes the set of all
possible permutations of network users: {1,..,N}. For a
permutation m € ITy, S. denotes the set of users that are
predecessors of user i in the . In a cooperative game G with N
players and the characteristic function o, Shapley value for user
class i is calculated as:

SV; = =% nemy 0(SE U i) — o(S1) (8)

Where the characteristic function ¢ here is the peak demand
level of a network asset.

The summation over different permutations considers all
possible coalitions in the game. This Shapley value indicates the
expected marginal contribution of each network user.

¢) Maodified Coincident Factor (Contribution Coefficient)
Coincident factor (CF) indicates that how the peak demand of
an individual load coincides to the peak utilization of an
upstream network asset, calculated as:
Djj
CFy = D—izf )
Where D;; is the demand level of load i at network asset j peak
time, D}, is the peak demand level of individual load i.

Here this paper proposes a novel method to calculate the
contribution of diversified loads to system peak, which is called
contribution coefficient (CC). The contribution coefficient is the
fraction of the actual contribution to the expected marginal
contribution:

pP

ij

Where CC;; is the contribution coefficient of load i to network
asset j, Df]‘.p is the actual power flow induced by load i at peak
time of network asset j, presenting the actual contribution of
load i to peak utilization of network asset j, D,-i-" is the expected
marginal contribution of load i to peak utilization of network
asset j which is calculated via Shapley method.

If CC>1, the load is large contributor, vice versus, and if CC=1,
the load is average contributor.

d) Modified LRIC

To determine the LRIC with diversified load classes under
various nodes, firstly power flow analysis is used to determine
the utilization of network components and the actual power
flows along networks induced by each load, then contribution
coefficient matrix is obtained by using equation (8) and (10).
Changes of power flows AP; cross each network asset due to
the incremental demand (APy) of the node N is calculated by
power flow analysis. Then the contribution coefficients as
weights are multiplied by actual power flow at the peak level on
each network asset:

P;j = P; X CC;j (11)

Where P; is actual power flow peak level cross network asset
J, Py isthe modified power flow peak level cross network asset
j considering the contribution of the load i under.

The reinforcement horizon of network asset j and new
reinforcement horizon for various loads due to incremental
demand are determined as:
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Overall LRIC for load i is calculated by using equations (12)-
(13) and equations (5)-(7)

[II. DEMONSTRATION
a) System description

A distribution system with five buses and five branches is
used to demonstrate. For simplicity, here only distribution lines
as sole network component on this distribution system are
considered and the rest of network assets can be analysed by
same method proposed in this paper. System topology is shown
is fig.1. There are three demand nodes in system. Node 1 and
node 2 comprise singular class of load, representing industry
user (load 1) and small business user (load 2) respectively. Node
3 has two differed classes of load, where class 1 is categorized
as domestic unrestricted user and class 2 is domestic user with
smart meters [10]. Load profiles in the system are shown is fig.2.
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Fig. 1 Demo distribution system
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Fig.2 Load profiles at various nodes

Demand peaks of loads in node 1 and node 2 occur in the mid
of the day while load in node 3 class 1 peaks at early evening
and load in node 4 class 2 reaches peak level at late night.
b) LRIC implementation

From available load data at various nodes, the power flow
cross each distribution lines can be determined and power flow
contribution from each load can be calculated by power flow
analysis. DC power flow is applied to the demonstration.

The expected marginal contributions of each load at each
distribution line is calculated from equation (8), and the
contribution coefficients are calculated by using equation (10).

Table.1 shows the contribution coefficients of each load at each
distribution line.

Table.1 Contribution coefficients matrix

Contribution Node 1 Node 2 Node 3
coefficient Load 1 Load2 class 1 class 2
D1 1.0070 0.9612 1.0976 0.9345
D2 1.0343 1.0381 0.8350 0.7042
D3 0.7077 0.8843 1.1713 0.8113
D4 0.9216 0.9947 0.9493 0.8261
D5 0.7984 0.9209 1.2030 0.9020

Power flow (MW)
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Fig.3 Power flow on (a) D2 and (b) D5 and contributions from loads for

example

The modified power flow peak levels of distribution lines varies
from load contributions, rather than are the same for all network
users, calculated by using equation (11). The branch incremental
cost and nodal LRIC then can be calculated by equations (12)-
(13) and equations (5)-(7). Annual factor, load growth rate and
discount rate are assumed to be 0.074, 1.6% and 6.9%
respectively. Network asset cost are assumed to be D1 £12m,
D2 & D5 £6m and D3 & D4 £3m. Results are presented in
table 2.

Table.2 Branch IC and nodal LRIC

Incremental charges | Node1 Node 2 Node 3

(E/yr/MW) Load 1 Load 2 class 1 class 2
D1 14051.2 12105.5 18514.9 11061.3
D2 8070.4 4824.6 829.3 480.6
D3 -277.6 1527.1 1293.3 399.1
D4 743.9 2713.3 -753.0 -482.3
D5 1162.9 5236.1 19905.1 7917.3
LRIC 23750.9  26406.6 39789.6 19376.0

The result indicates that network charges of D1 and D5 is
highest to load in node 3 class 1 while charges of D2 and charges
of D3 and D4 are highest to load 1 and load 2 respectively.
Negative charges occurs when the demand of loads alleviate
network utilizations.

¢) Result analysis



Table.3 presents the branch and total LRIC based on the
original algorithm.

Table.3 Branch IC and nodal LRIC under original algorithm

Incremental charges
Node 1 Node 2 Node 3
(E/yr/MW)

D1 13740.9 13740.9 13740.9
D2 7244.5 4280.1 1477.6
D3 -840.9 2262.9 779.5
D4 966.1 2759.8 -889.7
D5 2391.9 6817.3 11014.9
LRIC 23502.5 29861.0 26123.2

In the original method, LRIC prices defer at nodal level
however diversified load classes under one demand node share
a unit price. The comparison indicates that considering that
diversified loads have different contributions on each network
asset, large peak contributors will be responsible for higher
network charges, vice versus. For load 1, network charges of D1
and D2 increase 2.5% and 11.4%, charges of D4 and D5
decrease by 23% and 51.4%. Since load 2 does small
contribution to D1, D3, D4 and D5 and network charges only
increase at D2 by 12.7%, overall network charge reduces by
11.6%. For load class 1, contribution coefficients at D1, D3 and
D5 are larger than 1, network charges on those branches rise up
34.7%, 65.9% and 80.7% compared to those from the original
LRIC pricing method. For load class 2, the contribution
coefficients are all less than 1 and therefore the users at load
class 2 will receive a large network charge reduction because of
the less system contribution, where overall reduction is 25.8%.
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Fig.4 Branch LRIC at node 3 for example

IV. NETWORK USER’ ENERGY MANAGEMENT

STRATEGY

Under the corporate game theory, users’ strategy will
significantly affect the final payoff of each network user. The
proposed pricing method offers network users the opportunities
to adjust their usage pattern to acquire bill reduction and
benefits.

From table.1, users fall in load class 1 under node 3 would be
the first to change their usage pattern trigged by high LRIC
charges on network asset D1 and D5. Assume users in class 1
shift their peak time to one hour later, the LRIC then is shown
in table.4.

Table.4 Branch IC and nodal LRIC with load class 1 peak time shift

Incremental charges | Node 1 Node 2 Node 3

(E/yr/MW) Load 1 Load 2 class 1 class 2
D1 31252.4  11066.9 6839.6 3270.0
D2 8139.2 4718.8 867.3 468.4
D3 -297.3 1557.2 1340.1 414.1
D4 737.4 2686.1 -773.1 -473.4
D5 1192.2 5136.1 19071.9 7745.1
LRIC 41023.8  25165.2 27345.8 11424.1

From results, it can be observed that users under load3 classl
have a significant branch incremental charge reduction (63%)
on D1 and moderate reduction (4%) on D5 due to peak hour shift
by load3 classl, and the overall LRIC is largely reduced
(31.2%). Meanwhile the branch incremental charge of loadl on
D1 increases by 122.4% and overall LRIC surges to £41023.8,
which is because D1 peak time is shifted from hour 34 to hour
23 where load 1 becomes the largest contributor to D1 peak.
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Fig.5 Power flow on D1 (a) with and (b) without peak time shift

In corporate game theory, users in load1 obtain the information
that users in load3 classl would conduct 1 hour peak shift,
which will significantly increase the network charges to load 1,
and then countermeasure would be taken by users in load 1.
Assuming users in loadl shave peak duration demand by 7%,
the resultant LRIC is shown in table.5.

Table.5 Branch IC & nodal LRIC with load class 1 peak time shift and load 1

peak load shave

Incremental charges Node 1 Node 2 Node 3

(E/yr/MW) Load1 Load 2 class 1 class 2
D1 10517.8 9415.1 16992.4 13529.5
D2 7039.9 4045.3 745.1 401.3
D3 -325.3 1578.9 1387.8 426.3
D4 654.1 2400.0 -693.8 -424.1
D5 1298.8 5133.0 18881.7 7678.5
LRIC 19185.3 22572.4 37313.2 21611.6




Compared with the results in table 2, both active demand users
who conduct demand pattern adjustment benefit from lower
network charges, overall network charges reduce by 19.2% and
6.2% to load 1 and load class 1, but the rest of network users are
not guaranteed for benefits or losses because their contribution
coefficients are related to active users’ energy management
strategies. Based on the strategies from users in node 1 and node
3 class 1, peak utilizations of most of network components
decrease, which indicates most network assets reinforcement
can be deferred.
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] . .
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2 55.5 .
< D3 553 m Without user
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a 70.4
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78.3
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Fig.6 Network utilization with and without users’ energy management

In reality, diversified loads have various demand response
limitations to conduct demand adjustment, and the optimal
demand adjustment for each network user should be analysed
among all network users cooperatively. Minimal network
utilization level with minimal network charges can be used as
the objective function to determine the optimal demand
strategies in terms of Nash-equivalent based on game theory.
The comprehensive optimization process is beyond this paper
and will be explored in the future work.

V. CONCLUSION
This paper proposes a new network pricing method based on
LRIC pricing method combining the diversified load
contributions to upstream systems peak demand levels. Shapley
value method and modified coincident factor concept are used
to determine the contribution of diversified loads. A distribution
system with 3 demand nodes and 4 load clusters is tested. The
numerical results clearly indicate that larger contributors at
network utilization peak receive strong incentives to change
their usage patterns by a high pricing signal, and small
contributors will benefit from lower network charges.
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