
        

Citation for published version:
Mezzullo, WG, Mcmanus, MC & Hammond, GP 2013, 'Life cycle assessment of a small-scale anaerobic
digestion plant from cattle waste', Applied Energy, vol. 102, pp. 657-664.
https://doi.org/10.1016/j.apenergy.2012.08.008

DOI:
10.1016/j.apenergy.2012.08.008

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

NOTICE: this is the author’s version of a work that was accepted for publication in Applied Energy. Changes
resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other
quality control mechanisms may not be reflected in this document. Changes may have been made to this work
since it was submitted for publication. A definitive version was subsequently published in Applied Energy, vol
102, 2013, DOI 10.1016/j.apenergy.2012.08.008

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Mar. 2023

https://doi.org/10.1016/j.apenergy.2012.08.008
https://doi.org/10.1016/j.apenergy.2012.08.008
https://researchportal.bath.ac.uk/en/publications/cecd8f15-0111-408e-b39d-c4a8ef98eb4a


Life Cycle Assessment of a Small-Scale Anaerobic Digestion Plant 1 

from Cattle Waste 2 

 3 
William G Mezzullo 4 

 5 

Marcelle C McManus

 Geoff P Hammond 6 

Department of Mechanical Engineering  7 
University of Bath, Bath,UK 8 

email: M.McManus@bath.ac.uk 9 
 10 

 11 

ABSTRACT 12 
This paper outlines the results of a comprehensive life cycle study of the production 13 

of energy, in the form of biogas, using a small scale farm based cattle waste fed 14 

anaerobic digestion (AD) plant. The Life Cycle Assessment (LCA) shows that in 15 

terms of environmental and energy impact the plant manufacture contributes very 16 

little to the whole life cycle impacts. The results show that compared with alternative 17 

energy supply the production and use of biogas is beneficial in terms of greenhouse 18 

gases and fossil fuel use. This is mainly due to the replacement of the alternative, 19 

kerosene, and from fertiliser production from the AD process. However, these 20 

benefits come at a cost to ecosystem health and the production of respiratory 21 

inorganics. These were found to be a result of ammonia emissions during the 22 

production phase of the biogas. These damages can be significantly reduced if further 23 

emission control measures are undertaken.  24 

 25 
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INTRODUCTION 29 
The use of bioenergy may help meet our renewable energy and carbon reduction 30 

targets set by the Renewable Energy Directive [1] and Kyoto [2]. Bioenergy is of 31 

particular interest amongst renewable energy, as it doesn’t suffer from some of the 32 

intermittency or weather dependency that some other renewable technologies do, such 33 

as wind or solar. It is proposed by DECC that bioenergy might be able to produce half 34 

of our renewable energy target requirements by 2020 [3]. In addition, AD is useful to 35 

produce energy in remote areas, including farms, which in the UK are often off the 36 

main gas grid. This means that their energy production is often through the use of oil 37 

or kerosene boilers/burners that have higher impact in terms of greenhouse gas 38 

emissions and fossil fuel depletion than the use of, for example, natural gas. 39 

 40 

However, studies of LCA for biogas production were found to be limited and 41 

incomplete within the literature [4-7].  Although there have been studies examining 42 

LCA of biogas, these do not always follow the methodology of standard LCA 43 

procedure [8,9]. LCA has been more widely used for other bioenergy techniques, 44 

rather than biogas production individually [10-13]. In addition, small farm operations 45 

do not always only use AD to produce energy, but it is one of many benefits 46 

associated with AD, including waste disposal and fertiliser production. It is of 47 

particular benefit in areas of nitrate vulnerability where manure spreading is limited. 48 
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 49 

The majority of published biogas analyses focus on energy and carbon balances [4,5, 50 

6] as opposed to a holistic environmental appraisal. Studies which did focus on wider 51 

environmental impacts suggested that emissions from the AD process can vary 52 

significantly depending on feedstock utilisation and end-use of biogas [5]. Other 53 

studies compared biogas against other transport fuels and showed that biogas from 54 

manure produced the largest reduction in greenhouse gas emissions [7]. However, 55 

biogas from maize silage offered the largest greenhouse gas reductions for heat and 56 

power [7]. A recent British study highlighted a detailed examination of the 57 

environmental impacts of a large-scale AD plant in the UK [15]. However, the study 58 

did not examine the environmental impacts in-line with the relevant ISO standards for 59 

LCA making this study difficult to interpret and compare against other future LCAs. 60 

Similarly, a number of the biogas LCA studies mentioned above have not clearly 61 

defined the study system boundaries. 62 

 63 

As a result, it appeared that a detailed LCA study of UK biogas production had not 64 

been carried out. It was concluded that a holistic LCA of a UK biogas plant should be 65 

undertaken in order to model the environmental implications of using this technology.  66 

The plant reported in this paper is based on a farm in the UK. It is supplied with 100% 67 

dairy cattle waste from a herd of 130 cattle.  Primary data was collected from site, and 68 

supplementary material data was obtained from LCA databases.  69 

 70 

 71 

METHODOLOGY 72 
Life Cycle Assessment methodology was followed in this study. The commonly 73 

accepted methodology for LCA was produced by the Society of Environmental 74 

Toxicology and Chemistry (SETAC) in the 1990's. This method has been adapted into 75 

an ISO series for LCA [8,9]. 76 

 77 

There are four main steps (shown in Figure 1): Goal definition is the stage in which 78 

the scope of the project is outlined. Here the study boundaries are established and the 79 

environmental issues that will be considered are identified. The inventory stage is 80 

where the bulk of the data collection is performed. This can be done via literature 81 

searches, practical data gathering or, most commonly, a combination of the two. 82 

Impact assessment is where the actual effects on the chosen environmental issues are 83 

assessed. This stage is further subdivided into three elements: classification, 84 

characterisation and valuation. The first two of these are fairly well established, 85 

although there is still ongoing research. However, the valuation stage is fairly 86 

subjective and still arouses debate in the literature.  87 

 88 

Classification is where the data in the inventory is assigned to the environmental 89 

impact categories. In each class there will be several different emission types, all of 90 

which will have differing effects in terms of the impact category in question. A 91 

characterisation step is therefore undertaken to enable these emissions to be directly 92 

compared and added together. The characterisation stage yields a list of 93 

environmental impact categories to which a single number can be allocated. These 94 

impact categories are very difficult to compare directly and so the valuation stage is 95 

employed so that their relative contributions can be weighted. This is subjective and 96 

difficult to undertake and many studies omit this stage from their assessment. Instead 97 

they employ normalisation as an intermediate step. Improvement assessment is the 98 



final phase of an LCA in which areas for potential improvement are identified and 99 

implemented.  100 

 101 

 102 

Many people employ the use of LCA software in order to help process inventory data. 103 

Software also often includes some life cycle inventory databases. In this study 104 

SimaPro[17] software was used, and numerous databases were employed. EcoInvent 105 

[18] is the primary database used, but where data were not available from this, other 106 

sources were obtained. There are also a number of commercially available impact 107 

assessment tools. These employ datasets, such as the IPCC data for greenhouse gases, 108 

in order to undertake the classification, characterisation, normalisation and valuation 109 

stages. For this study the EI 99 [19] method was adopted using the hierarchical data in 110 

the impact assessment.  111 

 112 

 113 

GOAL AND SCOPE 114 
The goal of this assessment was to examine and identify the life cycle environmental 115 

impacts from small-scale anaerobic digestion of cattle waste (AD). The objective was 116 

to identify the most important factors that affected the environmental load of a biogas 117 

generation plant. From these factors, the damages caused by the process were 118 

analysed, including the damages avoided from the displacement of a fossilised fuel. 119 

By determining the environmental load of biogas production from AD, it was possible 120 

to identify whether the process had beneficial or detrimental effects on the 121 

environment. This was assessed using a number of environmental impact categories, 122 

including damage to human health, damage to ecosystems and the depletion of global 123 

resources. The assessment examined the production, delivery and the use of the 124 

biogas (cradle to grave). The by‐product of the AD process (the digestate), used as a 125 

source of natural fertiliser, was also examined as a displacement of mineral‐based 126 

fertilisers. Throughout the assessment, the production of the plant was accounted for 127 

and linked to the biogas and natural fertiliser outputs. The environmental impacts 128 

were assessed using EI99 LCIA methodology.  The plant assessed was based on a UK 129 

farm and was supplied with 100% dairy cattle waste from a herd of 130. The waste 130 

was collected during the winter months and during the milking period when the cows 131 

were indoors. The digester was 240m
3
 and digested 653m

3
 of cattle waste per annum 132 

(a mix of slurry and manure). The plant retention time (RT) was 20 days and the 133 

biogas production was measured hourly. On average approximately 8.9m
3
 per hour of 134 

biogas was produced during RT. The feedstock intake rate was 12.5m
3
/day.  135 

 136 

FUNCTIONAL UNIT 137 
The functional unit of the analysis was a cubic metre of biogas. As the methane-138 

quality was known, this was easily converted to an equivalent cubic metre of 139 

methane. The process of AD was described to be a multi-output process; as a result, 140 

the second output (fertiliser) had a functional unit of mass (kilogram). This could be 141 

converted into a biogas equivalent as it was calculated that one cubic metre of biogas 142 

produced 58.47 kg of natural fertiliser (digestate). This was calculated from to the 143 

total annual biogas output and the total annual digestate output from the plant.  144 

 145 

SYSTEM BOUNDARIES  146 
The system boundary of the assessment is shown in Figure 2. The analysis system 147 

boundary commenced when the feedstock was collected from the cattle 148 



housing/milking parlour. The use of biogas was considered up to the point of use for 149 

heating energy. The boundaries did not consider the transport and spreading of the 150 

digestate as it was unclear as to how the digestate was distributed. Emissions 151 

associated with the AD plant construction were considered in terms of material use 152 

(mass) and some key manufacturing processes. The disposal of the plant was not 153 

considered, as the expected operational lifetime was unknown.  154 

 155 

The biogas was understood to displace kerosene heating oil as a fuel, whilst  the 156 

fertiliser was considered up to production and substitution of artificial fertiliser. The 157 

system boundary included the digestate as a potential artificial fertiliser replacement. 158 

The artificial fertiliser displacement was based on the available N, P2O5 and K2O from 159 

the digestate.  160 

 161 

LIFE CYCLE INVENTORY ANALYSIS 162 

The direct inputs into the AD process were the feedstock material, the electricity use 163 

within the plant and the heat energy required to heat the feedstock. Indirect inputs 164 

included the energy consumed in the farming machinery. This was treated as on-site 165 

feedstock handling energy requirements. Other indirect inputs included the water 166 

consumption used to wash the milking parlours and cattle housing. This was carried 167 

out primarily for hygiene purposes, although the addition of water to the feedstock 168 

was beneficial to the AD process. However, it was considered outside the system 169 

boundaries, as the AD process did not affect the quantity of water used.   170 

 171 

Under normal operating conditions, the plant produced 8.89m
3
/hr of biogas. Of this, 172 

around 58-64% was methane (CH4). Using an intake of 12.5m
3
 per day of feedstock 173 

and knowing that the total annual feedstock input was 653 tonnes, resulted in a plant 174 

operational time of 52.24 days per year (1,253 hours per year). The findings suggested 175 

that the capacity factor of the AD plant was as low as 14%. This meant that the 176 

impacts of the manufacturing stage were distributed over a lower output of biogas. 177 

This resulted in a higher environmental impact per unit output of biogas from the 178 

plant manufacture emissions.   179 

 180 

The feedstock used was a mix of farmyard manure (FYM) and cattle slurry. A ratio of 181 

55:45 was chosen, in accordance with other UK studies [20,21]. This was denoted as 182 

‘cattle waste’ within this study. The Total Solids (TS) and Volatile Solids (VS) of the 183 

waste were 8% and 85% respectively. Using data obtained from the site visit, it was 184 

calculated that for every 12.5m
3
 of waste entering the plant; approximately 214m

3
 of 185 

biogas was produced over a 24-hour period. Therefore, the biogas production rate was 186 

17.1m
3
biogas/m

3
waste.  187 

 188 

ENVIRONMENTAL IMPACTS OF AD PLANT MANUFACTURE – 189 

CHARACTERISED RESULTS  190 

The characterised results for the production of the plant only (therefore excluding 191 

use), is shown in Figure 3. The largest contributors towards the impact categories 192 

were the digester and digestate tank manufacturing. These two tanks made a relatively 193 

large contribution towards impact categories: carcinogens, respiratory inorganics, 194 



respiratory organics, climate change, radiation, ozone layer depletion, ecotoxicity, 195 

acidification & eutrophication, minerals and fossil fuel resources. 196 

The reception tank was the third highest contributor (overall) towards the impact 197 

categories. As the construction materials for these three tanks were the same, this 198 

showed that a common material or manufacturing processes could be contributing 199 

towards the impact categories. The heat exchanger unit contributed towards all the 200 

impact categories, with a greater contribution towards ecotoxicity. Although 201 

‘miscellaneous pumps’ and ‘miscellaneous motors’ represented 16 separate 202 

assemblies, the contribution towards the impact categories was insignificant.  203 

The largest contributors to nearly all the impact categories were the largest sub-204 

assemblies within the plant. Both of these assemblies had the highest material usage 205 

(a combined consumption of over 60 tonnes of steel). The impact on carcinogenic 206 

effects was affected greatly by the steel use within the plant. This was due to the 207 

disposal of dust by-products from steel production, which was assumed to be 100% 208 

virgin material. Other contributors to carcinogenic effects were due to the disposal of 209 

coal ash into landfill, which was used for electricity production. The emissions from 210 

iron ore extraction, used for steel production, affected the impact category of 211 

respiratory inorganics. This was due to the particulates emitted from the iron 212 

extraction process. Particulate matter can be generated by crushing, conveyance of 213 

crushed ore, blasting and transportation[22]. 214 

Finally, the impact category ‘land use’ was mostly contributed to by the 215 

transformation of the land (around 700m
2
) into industrial land. The land was assumed 216 

to be converted from normal grazing land for cattle to industrial land. This caused 217 

damage to ecosystems, because of the change in land use. The unit for measuring the 218 

effects of land-use was the potential disappeared fraction of a species on land per year 219 

per square metre (PDF*m
2
yr).  220 

Whilst the characterised data shows the relative contribution of the stages of the LCA 221 

to it doesn’t show the relative significance of the impacts. In order to show this a 222 

normalisation step was undertaken, the result of which are shown in Figure 4. The 223 

most significant impacting categories are shown to be respiratory inorganics and 224 

fossil fuel resource depletion. These were nearly three times greater when combined 225 

than the other impact categories. Respiratory organics, carcinogens, radiation, ozone 226 

layer depletion and acidification/eutrophication were considered to have minimal 227 

impact compared to the other categories.  228 

Depletion in fossil fuel resources occurred through the use of heavy oils, natural gas 229 

and hard coal consumed for electricity production. These resources were also used for 230 

heat generation, for manufacturing of steel components and transportation 231 

requirements. These processes were considered necessary within the manufacturing of 232 

the AD plant. However, efficiency implementations, such as using recycled steel, 233 

reducing overall steel use, minimising transport distances etc. could reduce the impact 234 

on fossil fuel depletion.  235 

The use of insulation material within the digester (polyurethane) was also found to 236 

have an impact on the depletion of fossil fuels, although does play a key part in the 237 



process. It was estimated that the plant used over 600 kg of polyurethane. If other 238 

materials were used such as cork or sheep’s wool (organic materials), the fossil fuel 239 

consumption in the digester tank may have been reduced by over 70%. Polyurethane 240 

requires 85.2 MJ/kg of fossil fuels, whilst sheep wool and cork require around 241 

20MJ/kg of material.   242 

Damages to human respiratory systems can be caused through the emissions of a 243 

number of inorganic substances. In this study these were found to include particulate 244 

matter (PM), nitrate and sulphate, sulphur trioxide (SO3), ozone (O3), carbon 245 

monoxide (CO) and nitrous oxide (NOx). These substances were found to cause 246 

chronic health effects and mortality. The majority of the contribution towards 247 

respiratory inorganics during the plant manufacture was due to the initial stages of 248 

steel manufacture. When obtaining iron ore, blasting techniques were used in order to 249 

separate the ore from the original source. The blasting created particulates of 2.5-10 250 

µm in diameter. This particle size is sufficiently small to penetrate the human 251 

respiratory system and bring about serious health effects. Diesel combustion was also 252 

found to generate particulates, which may have led to similar health effects.  253 

ENVIRONMENTAL IMPACTS OF THE AD PLANT USE PHASE – BIOGAS 254 

PRODUCTION 255 

As there were two outputs from the plant an allocation process was undertaken. Over 256 

all, using an economic allocation 12% of the impacts were allocated to the biogas 257 

production. Using a mass allocation 40% of the results were allocated to the biogas 258 

production [4]. The results from this with an additional unallocated (total impact) 259 

impact are shown in Figure 5.  260 

 261 

The allocation methodology was found to have a very large effect on the scale of the 262 

environmental impacts for biogas production. For some impact categories such as 263 

respiratory inorganics, the difference in allocation percentage had a significant effect 264 

on the damage towards that impact category. The most significant environmental 265 

impact from the normalised results was the effect on respiratory inorganic from 266 

biogas production. Over 70% of the total impact was contributed by the biogas 267 

production and the remaining 29% affected by the plant manufacture. The emissions 268 

contributing towards respiratory inorganics were primarily found to be a result of the 269 

air emissions from the digestate storage. Other emissions from kerosene combustion 270 

at start-up, diesel and biogas combustion for digester heating, also contributed to this 271 

impact category. Emissions such as particulates and sulphur dioxide contributed 272 

towards the high impact on respiratory inorganics.  273 

The production of biogas showed a negative effect on the impact category of climate 274 

change. This was due to the potential carbon dioxide emissions sequestered from the 275 

organic matter. The CO2 fixation was accounted for as a consumption of the CO2 276 

resource. This theory assumed that carbon dioxide was consumed to generate the 277 

feedstock (animal feedstock production) and therefore was required within the plant. 278 

The CO2 is stored within the biogas in the form of CH4 (and some CO2) until the 279 

biogas is combusted. 280 



Another area in which the production of biogas contributed significantly towards the 281 

environment was through the detrimental effect on fossil fuel reserves. This was due 282 

to the depletion of kerosene and diesel fuel used in the process.  283 

 284 

WHOLE LIFE CYCLE IMPACT ASSESSMENT 285 

For the whole life impact assessment a mass based allocation has been selected. This 286 

is because during the 25 year operational life of the system the mass will not fluctuate, 287 

whereas the economics may fluctuate significantly. Figure 6 shows that over the 288 

whole life of biogas production, the emissions from the plant use contributed the most 289 

towards three environmental impact categories: respiratory inorganics, 290 

acidification/eutrophication and fossil fuel resource depletion. The plant construction 291 

was also found to have insignificant contributions towards the environmental impacts, 292 

when compared to the use phase of the AD plant. These emissions were produced 293 

only once within the lifetime of the plant, whilst plant use had reoccurring emissions.  294 

The most significant result came from the consequential displacement of the kerosene 295 

production, using biogas. The energy equivalent of kerosene showed a significant 296 

reduction in fossil fuel resource depletion over the life of the AD process. 297 

Additionally, savings in CO2 emissions also contributed towards a reduction in 298 

climate change impact, giving the plant an overall (net) negative output on climate 299 

change.  300 

Figure 7 shows the whole life normalised environmental impacts for the digestate 301 

output of the AD process. These results also highlighted that the AD plant use phase 302 

contributed significantly towards respiratory inorganics, acidification/eutrophication 303 

and fossil fuels resource depletion. However, due to the mass allocation, the 304 

emissions allocated towards the digestate production were higher. As a result, the 305 

overall contribution of the emissions towards these environmental impact categories 306 

was more significant. Over the life of the plant the emissions associated with the plant 307 

construction had minimal contribution towards the environmental impact categories, 308 

which was similar to the biogas production lifecycle.  309 

The most significant contribution towards the whole-life cycle of the digestate output 310 

from AD was the consequential savings in displacing inorganic fertiliser. Based on 311 

the same quantity of fertiliser (in terms of N, P2O5 and K2O properties) the 312 

displacement of inorganic fertiliser resulted in a significant reduction in impacts 313 

towards four main environmental impact categories: carcinogenic effects, respiratory 314 

inorganics, climate change and fossil fuel resource depletion.  315 

 Overall the key benefits from digestate displacing inorganic fertiliser were savings in 316 

fossil resources which also led to a reduction in carbon emissions (and a lower impact 317 

on climate change). Additionally, other smaller benefits across most of the 318 

environmental impacts were also seen.  319 

The common factor between both lifecycles (Figures 6 & 7) was the high emissions 320 

contributing towards respiratory inorganics and acidification/eutrophication. These 321 

emissions, produced during the use phase of the AD plant, could have a detrimental 322 

impact towards human health and ecosystem quality. It also appeared that although 323 



there were savings in kerosene and inorganic fertilisers, these impact categories were 324 

still significant.   325 

The emissions leading to respiratory inorganics were from the digestate storage, the 326 

combustion of kerosene, diesel and biogas. These emissions can cause smog leading 327 

to respiratory effects such as asthma, chest infections and bronchitis amongst other 328 

chronic obstructive pulmonary disorders. As a result, these emissions could have 329 

potentially serious effects on human health. This was primarily due to the ammonia 330 

emissions during the production phase of biogas, the diesel and kerosene combustion 331 

and emissions from the biogas combustion (used for the production of further biogas). 332 

Ammonia release was especially significant as it contributed towards both impact 333 

categories. These emissions could have been avoided if ammonia filters were put in 334 

place such as the ANAStrip process [23]. This could significantly reduce the impact 335 

of these environmental concerns, as it eliminates traces of ammonia within the 336 

process. Another technique would be to prolong the digestion period so that less 337 

ammonia is emitted during the digestate stage. A final recommendation would be to 338 

create a cover over the digestate tank in order to trap the post digestion emissions. 339 

This would not only reduce air emissions but also recover some of the remaining 340 

biogas.  341 

Acidification can have an impact on ecosystems through the increase in the pH acidity 342 

of waters and soils. Air emissions can also lead to acid rain which can have 343 

detrimental effects especially on vegetation (for example conifer trees can deteriorate 344 

in health through acid rain). Eutrophication can lead to an abnormal increase in 345 

nutrient concentration over specific soil or water volume. The increase in nutrient 346 

availability increases the growth of aquatic plants and algae. An overproduction of 347 

algae and blooms causes an increase of plant life on the water surface, which can lead 348 

to reduced sunlight and oxygen penetrating the top layer of water. Increased nutrients 349 

in soil can lead to leaching into water streams causing eutrophication of lakes, rivers 350 

or bathing waters [24]. 351 

This shows how emissions from an industrial process such as AD could have 352 

detrimental impacts on the delicate balance of natural species and also human health. 353 

The detrimental environmental impacts affected by the use of AD can have direct or 354 

indirect impacts towards human health and ecosystem quality. Measures should be 355 

taken to minimise the emissions within the AD process. Reducing emissions via a 356 

desulphurisation plant could minimise the overall environmental impact of the AD 357 

process, which is significant if the technology were to be used on a large scale. This 358 

would eliminate the hydrogen sulphide within the biogas and subsequently eliminate 359 

the sulphur dioxide emissions from hydrogen sulphide combustion. These systems 360 

can range from very crude devices such as a container of iron filings acting as a filter 361 

for the biogas to pass through; to more expensive computer controlled gas cleaning 362 

processes [25].  363 

CONCLUDING REMARKS 364 

The study analysed the environmental impacts of biogas production and utilisation 365 

through the technique of life cycle assessment (LCA). LCA enabled an understanding 366 

of the factors which contributed most towards detrimental impacts on the 367 

environment, during the life cycle of biogas production. The study also examined the 368 



environmental benefits of using biogas as a domestic heat source, subsequently 369 

displacing the use of domestic heating kerosene fuel. The key findings from the LCA 370 

results can be summarised: 371 

 372 

 The emissions created from the plant manufacture contributed very little 373 

towards the whole life cycle environmental impacts. This would have been 374 

further reduced if a higher operating capacity factor were obtainable.  375 

 The use phase of the AD plant created emissions which appeared to have 376 

significant impacts towards human respiratory systems and 377 

acidification/eutrophication issues within ecosystems.  378 

o The impacts were a result of emissions such as ammonia from the 379 

digestate storage, sulphur dioxide, nitrous oxide and particulates from 380 

the combustion of biogas, kerosene or diesel.  381 

 The production of biogas and fertiliser both created significant impacts 382 

towards fossil fuel depletion due to the use of diesel and kerosene. However, 383 

over the whole life cycle, the consequential displacement of kerosene as an 384 

end-use energy source and inorganic fertilisers, showed a net-benefit in fossil 385 

fuel depletion.  386 

 The study concluded that it is essential to cover the digestate storage tank as 387 

biological reactions are still occurring thus emitting, methane, ammonia and 388 

carbon dioxide. Globally a number of AD units do not cover the digestate 389 

storage.  390 

 Desulphurisation and ammonia removal processes were also considered to be 391 

crucial within the AD system in order to remove these emissions either 392 

entering the atmosphere directly or undergoing the combustion process.  393 

 Ammonia is also released during the spreading of digestate. However, as the 394 

lifecycle system boundary terminated at the fertiliser production stage, this 395 

was not included. This could however be included as a further analysis.  396 

 397 

 398 
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