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Abstract 

 We have systematically studied quantum transport in a short (of the same order of magnitude as the 

carrier phase-breaking length) trilayer-graphene field-effect transistor. Close to the charge neutrality point, our 

magnetoconductance data are well described by the theory of weak localization in monolayer graphene. 

However, as the carrier density is increased we find a complex evolution of the low field magnetoconductance 

that originates from a combination of the monolayer-like and bilayer-like band structures. The increased phase 

coherence length at high hole densities takes our shortest devices into the mesoscopic regime with the 

appearance of significant conductance fluctuations on top of the localization effects. Although these are 

aperiodic in gate voltage, they exhibit a quasi-periodic behaviour as a function of magnetic field. We show that 

this is consistent with the interference of discrete trajectories in open quantum dots and discuss the possible 

origin of these in our devices. 
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1. Introduction 

 The study of quantum interference in graphene is a powerful tool to investigate its electronic 

properties, for example Fabry-Perot quantum interference in suspended graphene has recently 

revealed a renormalization of the Fermi velocity due to unscreened many-body interactions [1, 2]. The 

pseudospin quantum number and chirality [3, 4] of charge carriers have been shown to lead to 

significant deviations from the usual quantum corrections to the classical conductivity in 2D systems 

[5]. Most striking is the fact that quantum corrections in graphene depend not only on inelastic phase-

breaking scattering but also on several distinct elastic scattering mechanisms. The extra layer in 

bilayer graphene changes the chirality and, as a result, the quantum corrections. Comparisons between 
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the corrections in monolayer and bilayer have highlighted the subtle interplay that exists between 

competing transport mechanisms [6]. The properties of carriers in few-layer graphene also depend 

strongly on the number of layers, for example bilayer graphene exhibits a gate tuneable bandgap and 

trilayer graphene exhibits a gate tuneable band overlap [7, 8], yet how the quantum corrections evolve 

as the layer number increases is currently not understood. 

Trilayer graphene with ABA Bernal stacking or rhombohedral ABC stacking in the absence 

of a symmetry breaking perpendicular electric field have gapless dispersions around the chemical 

potential. For ABA stacking the low energy electronic structure of trilayer graphene consists of 

overlapping linear and quadratic bands. For ABC stacking one finds an approximately cubic 

dispersion, with the conduction and valence bands touching at a point close to the high symmetry K 

and K' points [9]. Trilayer graphene with Bernal (ABA) stacking is a key system to investigate in 

order to bridge the gap between the well-studied mono- and bi-layer graphene systems and the 

complex, little studied multi-layer ones. This is because the low energy band structure of charge 

carriers is composed of monolayer-like and bilayer-like parts. As a result, it is expected that quantum 

corrections in this system can be described by a combination of the corrections arising from the two 

components [10]. Here we describe systematic investigations of weak localization (WL) and 

conductance fluctuations (CFs) as a function of gate voltage, magnetic field and temperature in short 

(of the same order of magnitude as the carrier phase-breaking length) channels in a trilayer graphene FET. 

The constructive interference of an electron circumscribing time-reversed paths along a 

closed loop is the origin of the WL correction to the classical Drude conductivity in 2D systems. At 

the point of intersection, the interference will be constructive if the phase change of the waves is the 

same along the two paths. Consequently, the probability of the electron remaining at the intersection 

increases resulting in an increase of the overall electrical resistance. Magnetic flux that threads such a 

loop adds a random relative phase to the electron waves, which destroys the time reversal symmetry. 

The charge carriers in monolayer graphene are chiral and their wavefunctions have an associated 

Berry phase of 𝜋 [11]. Therefore, a closed trajectory will produce a phase difference of 𝜋 at the 

intercept and weak anti-localization (WAL) occurs. However, under most experimental conditions, 

WL is observed instead [5]. This is a result of two competing elastic scattering mechanisms that occur 

within (intra-valley) and between (inter-valley) the two Dirac cones. Intra-valley scattering breaks 

pseudospin conservation and suppresses localization; inter-valley scattering effectively mixes the two 

cones (that have mirrored chirality) and enhances localization. In bilayer graphene, the Berry phase is 

2𝜋 so WL is expected, even in the absence of elastic [10, 12, 13] scattering. Such scattering has the 

same effect in bilayer graphene as it does in monolayer so no transition to WAL is possible. 

 In the mesoscopic regime (𝐿~𝐿𝜑), electrons that scatter between two points along all 

coherent paths have a random phase at the meeting point. As a result, the conductance of a sample in 
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this regime has a random quantum correction that can be changed by moving the scattering centers, 

applying a perpendicular magnetic field or changing the Fermi energy [14, 15]. For a diffusive 

system (𝑘𝐹𝑙 ≫ 1), where 𝑙 is the carrier mean free path, the standard deviation of these random 

fluctuations is universal, being of the order of 𝑒2 ℎ⁄ . Such universal CFs have been observed in 

monolayer [16] and bilayer graphene [10]. Like WL, they are affected by elastic intra- and inter-

valley scattering though in a rather more complex way [17]. For a ballistic open quantum dot, a quasi-

periodic dependence of the fluctuations on magnetic field can result from the finite size of the system 

[18]. 

2. Sample fabrication and characterization 

 Four-terminal field-effect devices were created by micromechanical cleavage of natural 

graphite (NGS Naturgraphit GmbH, graphenium flakes 1.0 – 1.8 mm) and deposition onto Si/SiO2 

substrates, figure 1(a,b). Highly doped Si substrates with a 297 nm SiO2 top layer were used as these 

are known to give good contrast for deposited graphene flakes under an optical microscope [19, 20]. 

The SiO2 layer also acts as a robust dielectric allowing the highly doped Si substrate to be used as a 

gate up to relatively high voltages at low temperature (𝑉𝑔~ ±  100 V). 

The trilayer graphene flake investigated here has been characterized by both atomic force 

microscopy and Raman spectroscopy in order to establish its quality and layer number, figure 1(c, d). 

The height measurement shown in the inset to figure 1(c) results in a thickness of 0.88 ± 0.17 nm, 

which is close to the value expected for trilayer graphene [21]. The Raman spectrum (taken using a 

532 nm laser) shows the characteristic G band and 2D band peaks as well as the G* band peak. The 

D-band peak is absent suggesting that the sample is relatively free of defects [22, 23]. The trilayer 

nature of the flakes is verified by the need for six Lorentzian components to fully fit the 2D-peak 

shape [24] as can be seen in the inset to figure 1(d), and an I(2D)/I(G) intensity ratio of 0.4, which is 

less than 1 expected for bilayer graphene [25, 26]. 

We have experimented with several different contact metallizations and found that the use of 

a Pd adhesion layer gave the lowest contact resistances (< 100 Ω), presumably due to the fact that Pd 

is chemisorbed at the graphene surface [27]. Two levels of electron beam lithography have been 

employed to pattern both the inner electrodes (Pd/Al 10/50 nm) and the outer bond pads (Cr/Au 

50/250 nm). The spacings between electrodes varied from 250 - 750 nm, electrode widths were 

typically 1.5 µm and the flake was ~ 7 µm wide. Devices were mounted onto a temperature-

controlled sample holder coupled via exchange gas to a liquid helium bath. This system allowed small 

signal magnetoresistance measurements in a perpendicular magnetic field up to 1 T at temperatures 

from 2 to 25 K. Four-terminal resistance measurements were made at a constant current of 1 µA using 

a low frequency (32 Hz) lock-in amplifier technique. Due to the extreme 28:1 aspect ratio of our 
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devices, the resistance of a 250 nm long junction lies in the range 20-90 Ω. Hence the voltage drop 

across the device at 1 µA is no more than 100 µV, equivalent to the thermal energy at ~1K or less.  

 

Figure 1. (Color online) (a, b) Optical micrographs of a trilayer graphene FET at two different 

magnifications. The inset in (b) shows the trilayer flake after exfoliation. (c) 3D AFM image of the 

trilayer graphene device. Inset shows the topographic profile of the flake along the line shown. (d) 

Raman spectrum including expanded view of the 2D-band peak. 

3. Results  

3.1 Classical conduction 

Figure 2 shows the carrier mobility, 𝜇, as a function of gate voltage, 𝑉𝑔, at 4.2 K, estimated 

from measurements of 𝑅(𝑉𝑔) using the standard Drude conductivity formula. Carrier density, 𝑛, was 

estimated from the capacitive coupling between gate and channel,  𝑛 =  𝛼 (𝑉𝑔 − 𝑉𝐷). Here  𝑉𝐷 is the 

gate voltage at the charge neutrality point and 𝛼 = 7.2 × 1010cm−2V−1 is a characteristic coefficient 

for our 297 nm SiO2 gate dielectric. Even in the absence of a gate voltage, our sample is very strongly 

hole-doped due to proximity doping from the Pd/Al contacts. Charge transfer directly under the metal 

contact locally shifts the position of the chemical potential in our flake. Even outside the contact 

region this results in bending of the band structure as the position of the chemical potential relaxes 

back to its undoped level. Indeed, we were unable to reach the charge neutrality point with the 

maximum positive back gate voltage that could be applied without dielectric breakdown occurring. 

However, an extrapolation of the gate voltage-dependent conductivity to zero, figure 2 (inset), allows 
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us to estimate that 𝑉𝐷 = +140 ± 3V. From this we calculate the carrier density dependence on gate 

voltage shown in figure 2. Hole mobilities are found to be in the range 760 - 1030 cm2/Vs and lie 

within the broad range of values obtained for similar devices elsewhere [28-30]. Note that estimates 

of the mobility near the charge neutrality point are unrealistically high due to the fact that the carrier 

density theoretically drops to zero there. 

 

Figure 2. Carrier mobility, 𝜇, (open squares) and density, 𝑛, (filled circles) as a function of gate 

voltage for the trilayer graphene device at 4.2 K. The inset shows the extrapolation of the conductivity 

versus gate voltage that was used to estimate the voltage at the charge neutrality point. 

3.2 The weak localization correction 

Magnetoconductance data for a 250 nm long trilayer sample at 𝑉𝑔 = +100 V are shown in 

figure 3. A very small antisymmetric component of < 5% of ∆𝐺 has been removed from the data by 

symmetrising it to facilitate the fitting process. The sharp dip near B = 0 at 2.16 K is characteristic of 

a WL correction and indicates a relatively long phase coherence length at this temperature. With 

increasing temperature, a pronounced broadening of the WL peak is observed reflecting the reduction 

of the phase coherence length [16, 31]. For all curves, increasing the applied field from zero leads to a 

suppression of WL and positive magnetoconductance. However, above a certain field a negative 

magnetoconductance component is observed, which is more pronounced at low temperatures. This 

has been observed previously in both epitaxial [32] and exfoliated graphene [5, 10, 33] and is a result 

of the increasing relative importance of the elastic scattering mechanisms. 
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To analyse our results, we have used an equation that was derived specifically for graphene 

[3]  and expresses the corrections to the conductance as a function of the inelastic scattering rate (𝜏𝜑
−1) 

and elastic scattering rates (𝜏𝑖
−1, 𝜏∗

−1) [31].  

𝜋ℎ

𝑒2  𝛥𝜎(𝐵) = 𝐹 (
𝜏𝐵

−1

𝜏𝜑
−1) − 𝐹 (

𝜏𝐵
−1

𝜏𝜑
−1+2𝜏𝑖

−1) ± 2𝐹 (
𝜏𝐵

−1

𝜏𝜑
−1+𝜏𝑖

−1+𝜏∗
−1) ,       (1) 

where  𝛥𝜎(𝐵) = 𝜎(𝐵) − 𝜎(0), 𝐹(𝑧) = ln 𝑧 +  𝜓(0.5 +  𝑧−1), 𝜓(𝑧) is the digamma function, 

𝜏𝐵
−1 = (4𝑒𝐷𝐵)/ , 𝜏𝜑

−1 is the phase-breaking rate, 𝜏𝑖
−1 is the inter-valley scattering rate and 𝜏∗

−1 is the 

intra-valley scattering rate. The difference between monolayer and bilayer systems is only in the sign 

of the third term, being negative for monolayer and positive for bilayer. While no specific equation 

has been derived for trilayer graphene it is expected that it is made up of a combination of those for 

monolayer and bilayer. As a result, by fitting our data to equation 1 we can investigate the relative 

monolayer-like and bilayer-like contributions. 

The low temperature data for our trilayer graphene device at 𝑉𝑔 = +100 V could only be 

fitted by equation 1 if we assumed a negative sign for the third term. This would suggest a domination 

of the monolayer-like element. Figure 4 shows representative examples of the fits (solid lines) to 

equation 1 for a 250 nm long sample at three different temperatures. Good agreement is found over 

the full field range, which allows us to extract values for the dephasing and elastic scattering rates. 

 

Figure 3. (Color online) Magnetic field dependence of the conductivity as a function of temperature 

for a 250 nm sample at 𝑉𝑔 = +100 V. Curves have been offset vertically for clarity. 

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0

2

4

6

8

10

12 25 K

15 K

10 K

8 K

6 K

4 K

2.16 K


 

 (


S
)

B (T)



7 

 

 

Figure 4. Magnetoconductivity of a 250 nm sample at 𝑉𝑔 = +100 V at three different temperatures. 

Curves have been offset vertically for clarity. Solid lines are fits to equation 1. 

The three scattering rates, 𝜏𝜑
−1, 𝜏𝑖

−1 and 𝜏∗
−1, extracted from fits to equation 1 are plotted in 

figure 5. Both 𝜏𝑖
−1 and 𝜏∗

−1 have large errors (a result of an interdependence in term 3 of equation 1 

and a data set limited by the transport field), but as they are temperature-independent rates the values 

measured at different temperatures help to reduce this error. We estimate an inter-valley scattering 

length of 97±10 nm, and an intra-valley scattering length of 29±5 nm. The latter is rather close to the 

carrier mean free path (20±2 nm) indicating that the majority of the scattering events that control 

diffusive transport also contribute to intra-valley scattering. 

The dephasing rate varies significantly over the range of temperatures investigated. The 

approximately linear dependence of 𝜏𝜑
−1 on 𝑇 is an indication that electron-electron scattering is the 

dominant phase-breaking mechanism, as seen in monolayer and bilayer systems [32, 34]. The 

inelastic scattering rate at 2.16 K corresponds to a dephasing length of 87±3 nm which is several 

times shorter than the 250 nm length of the channel. This confirms that the sample is not strictly in the 

mesoscopic limit at 𝑉𝑔 = +100 V and explains why pronounced CFs are not observed.  
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Figure 5. Dephasing rate, 𝜏𝜑
−1, and scattering rates 𝜏𝑖

−1 and 𝜏∗
−1 as a function of 𝑇 for a 250 nm long 

sample at  𝑉𝑔 = +100 V. 

3.3 Conductance fluctuations 

As our samples become increasingly hole doped at negative gate voltages there is a 

substantial increase in the dephasing length. Indeed, we estimate that  𝐿𝜑 increases from 87±3 nm 

at 𝑉𝑔 = +100 V to 195±5 nm at  𝑉𝑔 = −100 V where it is comparable to the 250 nm channel length 

of the device. Figure 6 shows the measured conductance as a function of gate voltage in a 250 nm 

long sample at 300 K, 77 K and 4.2 K. (A third order polynomial has been subtracted from all curves 

in order to emphasize the CFs.) The 4.2 K data show strong aperiodic CFs with a magnitude of the 

order of 𝑒2 ℎ⁄  at negative gate voltages that decay in amplitude towards the charge neutrality point. 

This is primarily due to the reduction in the dephasing length as the Dirac point is approached, 

moving our sample out of the mesoscopic limit. 
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Figure 6. ∆𝐺 versus 𝑉𝑔 for a 250 nm long sample at 4.2 K, 77 K and 300 K. A third order polynomial 

has been subtracted in each case. 

Figure 7 shows the conductance as a function of magnetic field for a 250 nm long sample at 

4.2K and various gate voltages (A parabolic magnetoresistance background has been subtracted in all 

cases). Recent experiments have shown that the longitudinal magneto-resistance can be understood as 

the sum of a Drude term plus a correction due to electron−electron interactions. We find a rather 

strong temperature dependence for the concavity of 𝜌𝑥𝑥(𝐵) in our devices suggesting that the later 

may be dominating in our system [35]. At more negative gate voltages, a complex evolution of the 

magnetoconductance is observed, with strong, quasi-periodic oscillations as a function of magnetic 

field. This is a clear indication that the device is entering the mesoscopic regime. 

A fast Fourier transform of the data has been performed to further analyse the observed 

periodicity as a function of magnetic field. Figure 8 shows the power spectrum, 𝐹𝑛, of the Fourier 

component at frequency, 𝑓𝑛 = 2𝜋𝑛 𝑁𝛿𝐵⁄ , for a 250 nm long sample at 𝑉𝑔 = -100 V and 𝑉𝑔 = -50 V. 

Here 𝑁 is the number of points in a dataset and 𝛿𝐵the magnetic field spacing between them. 

Discounting the peak at 𝑛 = 2, which is an artefact of the background subtraction algorithm used, we 

identify one strong peak in the range 𝑓1~4 − 8.5 T−1 at nearly all gate voltages, and in most traces a 

second, much weaker peak at 𝑓2~10 − 15 T−1. This periodic behaviour with a small number of 

dominant frequency components, as opposed to the aperiodic behaviour normally associated with 

universal CFs, has been observed previously in bilayer graphene systems [36] and is well-known in 

the case of open semiconductor-based quantum dots [37]. Assuming this to be a suitable model we 
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can analyse these oscillations in terms of the interference of one or two discrete orbits and estimate 

the area enclosed by a given orbit from the Aharonov–Bohm criterion, 𝐴 = (𝑓𝑛 ∗ ℎ)/𝑒. This yields 

areas of ~ 0.017-0.035 µm2 and ~ 0.041-0.062 µm2 for the long and short periods, respectively. 

These correspond to effective circular dots with diameters ~150-210 nm and ~230-280 nm, which are 

comparable to the 250 nm length of the channel. 

The origin of open dots in our samples is likely to be related to the interface between 

graphene and the Pd/Al contacts. We have already noted that the Pd leads to very strong proximity 

hole doping in our sample due to the large work function difference. This implies that there must be 

strong band bending across the active channel region of our devices which, in the case of homogenous 

contact metallization, would lead to a form of 1D quantum well across the device. However, spatial 

inhomogeneity of the contacts and/or additional disorder due to trapped charges in the gate dielectric 

layer will readily break this symmetry and form local dot-like regions. Both the dot size and the gate 

voltage represent control parameters for the observed dominant CF frequencies [38]. The most likely 

reason for the presence of two dominant frequencies in our CF data is that they arise from two 

differently sized open quantum dots, one of which has much lower transmission probability than the 

other. However, it is also possible that both oscillations arise from the same quantum dot but are 

associated with the monolayer graphene-like and bilayer graphene-like dispersions. 

 

Figure 7. ∆𝐺 versus B for a 250 nm long channel at various fixed values of 𝑉𝑔. A parabolic 

magnetoresistance background has been subtracted from all curves. 
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Figure 8. FFT analysis of the CFs observed in the conductance of a 250 nm channel at 4.2 K. The 

power,  𝐹𝑛, is plotted as a function of Fourier frequency,  𝑓𝑛 = 𝑛 𝑁𝛿𝐵⁄ , at two different gate voltages. 

The two dominant frequencies are indicated by vertical arrows and these are plotted as a function of 

gate voltage in the inset.    

4. Discussion 

 The periodic conductance fluctuations observed as a function of magnetic field are consistent 

with a picture of interfering discrete trajectories around the perimeter of open quantum dots. Since the 

effective diameter of these is estimated to be close to the channel length of our devices it is likely that 

they are bounded by the interfacial regions between the graphene and the Pd/Al contacts. It is well 

established that the large work function difference between Pd and graphene leads to carrier injection 

and strong hole doping in the graphene. This has been investigated theoretically with a view to 

optimising contact resistances to graphene by highly doping the contact region [39, 40]. Using density 

functional theory (DFT) calculations of graphene on different metal substrates, Giovannetti et al. [27] 

developed a phenomenological model that predicts the shift in 𝐸𝐹 of graphene when in contact with a 

number of metals. However, the chemisorption of Pd is particularly strong because of hybridization 

between the graphene 𝑝𝑧 orbitals and the metal d-orbitals, heavily distorting the graphene bands [41]. 

A charge-transfer model was introduced by Nouchi et. al. [42] to describe the doping effect of metal 

contacts in the adjacent graphene sheet. These authors introduced a characteristic length, 𝐿𝑑, over 

which the graphene is doped by the metal contact which is typically of the order of 1 µm. Since this 

length is substantially larger than the channel length of our smallest devices, and the proximity doping 

profiles of two adjacent Pd/Al contacts will strongly overlap, one would expect the band bending 
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along the channel to exhibit a fairly shallow minimum. Nouchi et. al. [42] consider two different 

possible piecewise-linear doping profiles. The first assumes that the charge density is pinned at the 

metal contacts for all gate voltages while the second represents the case where the charge density is 

unpinned at the metal contacts and free to vary with gate voltage. As a consequence band bending in 

the channel can be compensated at an appropriate gate voltage in the pinned model, while it is 

essentially independent of gate voltage in the unpinned model. In our experiments, we observe B-

periodic CFs with approximately the same field period at all gate voltages studied, suggesting that the 

unpinned model appears more appropriate. However, these considerations overlook the additional 

doping caused by molecular adsorption on the graphene surface and/or ionized charge traps in the 

Si/SiO2 substrate, as well as possible inhomogeneity of the metal/graphene contacts. It seems likely 

that these additional phenomena would break the 1D symmetry of the proximity doping profile, 

leading to the formation of one or more open quantum dots within the channel. Hence a much more 

detailed analysis of the data would be required to clearly distinguish between pinned and unpinned 

charge density models. 

There are a number of features in our measurements that point to a subtle interplay between 

transport associated with the monolayer-like and bilayer-like bands present in trilayer graphene. Close 

to the charge neutrality point, where CFs are suppressed due to a relatively short dephasing length, the 

localisation corrections to the classical conductivity are well described by the form of equation 1 for 

monolayer graphene. Indeed the bilayer form of the theory does not even provide a qualitative 

description of the data suggesting that these quantum corrections arise in the monolayer-like band in 

this regime. An increase in hole density at more negative gate voltages is accompanied by a strong 

increase in the dephasing length, and the data become complicated by the presence of additional 

conductance fluctuations in the mesoscopic limit. Nevertheless, it can be seen from Fig. 7 that the 

amplitude of the characteristic WL minimum near B=0 appears to oscillate with gate voltage 

suggesting a complex competition as a function of  𝑉𝑔 between signals arising from the two 

dispersions. 

5. Conclusions 

 We have systematically studied the quantum transport in short trilayer-graphene field-effect 

transistors. Near the charge neutrality point, when the dephasing length is several times smaller than 

the channel length, we observe clear weak localization corrections to the classical conductivity which 

are well described by the theory developed for monolayer graphene. However, as the hole density and 

dephasing length increase at more negative gate voltages we see a complex evolution of the 

conductance minimum near B=0. This suggests a subtle interplay between the contributions of the 

monolayer graphene-like and bilayer graphene-like bands to these quantum corrections in trilayer 

graphene. At high hole densities the dephasing length becomes comparable to the length of the 

channel of the shortest devices. In this limit, we see strong conductance fluctuations with amplitude 
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~ 𝑒2 ℎ⁄  which are aperiodic in gate voltage. The dominant fluctuations are quasi-periodic in magnetic 

field with two dominant magnetic frequencies. We interpret this in terms of the interference of 

discrete carrier trajectories around the perimeter of open quantum dots created by band bending 

induced at the interface between the graphene and Pd contacts.  
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