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Abstract 

In 1948, R.S. Rivlin showed that if a cube of incompressible neo-Hookean 
material is subjected to a sufficiently large uniform, normal, dead-load on its 
boundary, then an asymmetric deformation is the minimiser of the energy in 
the class of homogeneous deformations. J.M. Ball showed in 1982 that, for 
classes of compressible elastic materials, if a ball of the material is subjected 
to a sufficiently large uniform radial dead-load, then a deformation forming a 
cavity is the minimiser of the energy in the class of radial deformations. In this 
paper we treat compressible hyperelastic materials and show that under such 
dead-loading, if a local minimiser of the radial energy forms a cavity, then there 
necessarily exists an asymmetric homogeneous deformation with less energy. 
Our approach extends and generalises previous results of Abeyaratne and Hou 
for the incompressible case. 
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1 Introduction 

Consider a ball of compressible, hyperelastic, isotropic material occupying the region 
� := {x ∈ ℝ� : x < 1} in its reference configuration. We consider deformations 
u : � → ℝ� , u ∈

∣
�
∣
1,�(�; ℝ�) for � = 2, 3 and for � < �. The bulk energy stored in 

the deformed body under such a deformation is given by ∫ 
�(u) = � (∇u(x)) �x, (1.1) 

where � : �+ 
�×� ℝ is the stored energy function and �+ 

�×� denotes the real →
� × � matrices with positive determinant. The equilibrium equations for (1.1) are 
the Euler -Lagrange equations given by [ ]

∂ ∂� 
∂�� ∂� �� 

(∇u) = 0. (1.2) 

It is well known that � is isotropic if and only if there exists a symmetric function 

Φ : ℝ� ℝ, ℝ� = {� = (�1, �2, ..., ��) ∈ ℝ� :++ → ++ �� > 0}, 

such that 
� (F) = Φ(�1, �2, ..., ��) ∀ F ∈ ��×� , (1.3)+ 

where the �� are the singular values of F, which are also called the principal stretches. 
dΦWe write Φ� ≡ 
d�� 

, etc. We assume that Φ�(1, 1, ...) = 0 so that the undeformed 
configuration is a natural state. 

The Piola-Kirchhoff stress tensor S is given by 

∂Φ 
S = . (1.4)

∂F 

In the dead-load traction boundary value problem we specify 

SN = t on ∂�, (1.5) 

where t is given, N is the unit outward normal on ∂� and � > 0 is the applied 
normal stress. The associated energy functional is then given by ∫ ∫ 

�� (u) = � (∇u)dx − t.u d� (1.6) 
� ∂� 
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and (1.5) is then the natural boundary condition associated with (1.6). In this paper 
we consider the case in which the ball is subjected to a uniform radial dead-loading 
on the boundary so that 

SN = � N on ∂�, (1.7) 

where N is the unit outward normal on ∂� and � > 0 is the applied normal stress. 
Hence, the associated energy functional takes the form ∫ ∫ 

�� (u) = � (∇u)dx − � u.N d�. (1.8) 
� ∂� 

1.1 Rivlin Instability 

Homogeneous deformations uℎ are deformations of the form uℎ(x) ≡ �x + c and 
these always satisfy (1.2). The total energy (1.8) of a homogeneous deformation of 
� is then given by1 

��(u ℎ) = 
�� 

[� (�) − � ��(�)] , (1.9) 

and minimisers in the class of homogeneous deformations will satisfy the natural 
boundary condition (1.7). 

Consider the class of purely homogeneous deformations which take the form 

u(x) = (�1�1, ..., ����) �1, ..., �� > 0, (1.10) 

for x = (�1, ..., ��) ∈ �. The principal stretches associated with (1.10) are clearly 
�1, ..., �� and the total energy associated with any such deformation, for the dead-load 
traction problem with radial dead-load � , is then given by 

��(�1, ..., ��) := �� (u) = [Φ(�1, ..., ��) − � (�1 + ... + ��)] . (1.11) 

The Euler-Lagrange equations2 for (1.11) are 

Φ�(�1, ..., ��) − � = 0, for � = 1, ..., �. (1.12) 

Rivlin [1], [2] studied bifurcation of solutions to the dead-load traction problem for 
an incompressible neo-Hookean material in the class of purely homogeneous deforma
tions. He showed that, for small � , the only homogeneous solution was uℎ(x) ≡ x, 

1Where �� denotes the area of the unit sphere in ℝ� . 
2Clearly a minimiser exists for continuous energy functions (1.3) under mild growth assumptions 

such as � 
∣F
(F
∣ 
) → ∞ as ∣F∣ → ∞. 
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but that, for larger values of � , there was a bifurcation into an asymmetric homo
geneous state of the form u(x) ≡ diag(�, �, �)x (here � = 3) with ��2 = 1, � =∕ �. 
This result can be obtained by analysing the bifurcation of solutions �1, �2, �3 to the 
algebraic equations 

Φ,�(�1, �2, �3) − �(�−1) = �, � = 1, 2, 3, (1.13) 

from the trivial solution �1 = �2 = �3 = 1, under the constraint �1�2�3 = 1 (where � 
is the hydrostatic pressure). 

Although Rivlin’s results were derived ostensibly for deformations of a cube, they 
apply to any reference shape of body. Rivlin’s analysis was subsequently extended 
and generalised to separable stored energy functions in an interesting paper by Ball 
and Schaeffer [3] (and they note that their methods extend to more general forms 
of the energy function). In particular, they studied Mooney-Rivlin materials, which 
have the form 

Φ(�1, �2, �3) = (�1
2 + �2

2 + �3
2 − 3) + (�1

−2 + �2
−2 + �3

−2 − 3),
2 2� 

where �, � > 0, and they were able to give a comprehensive analysis of the existence 
and stability properties of the asymmetric bifurcating homogeneous solutions in this 
case. They found that for large dead-loads the trivial solution became unstable and 
that there was a bifurcation into branches of “rod-like” and “plate-like” solutions. 
For � ≤ 3 the plate-like solutions are always unstable and the rod-like ones neutrally 
stable3 . For finite � > 3, the plate-like solutions are initially neutrally stable (with 
the rod -like solutions being unstable) and as the dead-load increases they found a 
secondary bifurcation into a neutrally stable solution with three unequal stretches 
which joined the plate-like branch to the rod-like branch (after this point the rod-like 
solutions became neutrally stable). Ball and Schaeffer also adapted an argument of 
Rivlin [5] to argue that the bifurcation picture would remain qualitatively the same 
in the case of a slightly compressible Mooney-Rivlin stored energy function. 

It is not our intention in this paper to give comprehensive references to the large 
body of existing work on the Rivlin cube problem however, for illustration, we men
tion a number of such contributions and refer the interested reader to these and the 
references therein. Rivlin and Beatty [6] studied the stability of pure homogeneous 
deformations of a compressible cube subjected to a dead-load. They found necessary 
and sufficient conditions for stability of purely homogeneous deformations. They 
found that for neo-Hookean materials, in the limiting case of incompressibility, these 

3In fact, they showed that any non-trivial equilibrium solution is at most neutrally stable (see 
also previous work in [4]). 
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conditions were the same as those found by Rivlin in [1], [2]. Tarantino [7] has also 
studied the compressible problem, including a numerical study for neo-Hookean and 
Mooney-Rivlin materials. His numerical results corroborated the analytic results of 
Ball and Schaeffer [3] for certain compressible versions of the Mooney-Rivlin stored 
energy. Extensions to the case of anisotropic materials are contained in the work of 
[8]. Other interesting contributions include the work of Sawyers [9], Ogden (see, e.g., 
[10]), Chen and MacSithigh (see, e.g., [11], [12],[13]). 

There has also been much work on the related phenomena of bifurcation into 
asymmetric homogeneous deformations of a square membrane of incompressible elas
tic material under uniform planar dead-loading. Steigmann [14] found necessary and 
sufficient conditions for stability in isotropic materials. Haughton [15] has studied 
bifurcation and stability of solutions of a biaxially loaded cube made of a compress
ible material. He found that, for sufficiently large loads, the trivial solution loses 
its stability and bifurcates into a neutrally stable asymmetric homogeneous solution. 
Other contributions include work of Kearsley [16], Macsithigh [17] and Batra et al 
[18]. 

1.2 Cavitation Instability 

Ball [19] studied energy minimisers for the dead-load traction problem in the class 
of radial deformations 

u(x) = 
� 

x for x ∈ �, � = ∣x∣, (1.14) 

of a ball. In the case of radial deformations, the principal stretches are �1 = �� and 
�2 = ... = �� = �� where 

�� = �′(�), �� = �(�)/� for 0 < � < 1. (1.15) 

The the energy functional (1.8) takes the form (∫ 1 ( ) )
�� (u) = ���� (�) = �� ��−1Φ �′, , .., �� − ��(1) , (1.16) 

0 

and the corresponding equilibrium equations (1.2) reduce to the single ordinary dif
ferential equation 

� [ ( � � )] ( � � )
��−1Φ,1 �′, , .., = (� − 1)��−2Φ,2 �′, , .., , (1.17)

�� � � � �
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called the radial equilibrium equation. The dead-load boundary condition (1.7) on 
the outer boundary of the ball takes the form 

Φ,1 (�
′(1), �(1), .., �(1)) = �. (1.18) 

Ball showed that for sufficiently large � any energy minimiser of (1.16) must satisfy 
�(0) > 0 (so that the deformed ball contains a hole of this radius) and the natural 
boundary condition 

lim � (�(�)) = 0, (1.19)
�→∞ 

where � is that radial component of the Cauchy stress given by ( )�−1 ( )
� (�(�)) = 

�(

�

�)
Φ,1 �′(�),

�(

�

�) 
, .., 

�(

�

�) 
. (1.20) 

For further references on this radial problem see [20] and [21]. 

1.3 Relative occurrence of the two instabilities 

For the incompressible case, Ball comments in [19] that the critical value of the 
dead-load at which bifurcation to the Rivlin instability occurs may be greater or 
less than the critical value at which bifurcation into the cavitation instability occurs, 
depending on the material parameters. 

In an interesting paper Abeyaratne and Hou [22] show that for incompressible 
materials, the cavitating radial energy minimiser of Ball is never a global minimiser 
in any class of deformations that includes the radial deformations and the asymmet
ric homogeneous deformations studied by Rivlin. In particular, they showed that, for 
any given value of the applied stress � > 0, if there exists a stable cavitation defor
mation, then necessarily there exists a stable asymmetric homogeneous deformation 
with less energy for the same value of � . 

Hou [23] has taken this comparison further for neo-Hookean materials. He defines 
a class of semi-inverse deformations that includes both radial cavitating deformations 
and asymmetric homogeneous deformations as well as some axisymmetric deforma
tions. In particular, Hou was able to show that the radial cavitated deformations are 
unstable in this larger class of deformations for moderate � but that they become 
stable for sufficiently large � . 

In the current paper we extend and generalise the results of Abeyaratne and 
Hou [22] to the case of compressible materials. A major difficulty in effecting such 
an extension is that, in the incompressible case, the radial cavitation solution is 
explicitly known from the kinematic constraint of incompressibility, whereas, in the 
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Asymmetric Homogeneous 

Figure 1: Cavitation instability and the Rivlin instability 

compressible case, it is only implicitly defined as a solution of the radial equilibrium 
equation (1.17). Though our methods in this compressible case are therefore very 
different, we would like to acknowledge the many insights we have gained from the 
work of Abeyaratne and Hou for the incompressible problem. 

The main steps in the proof of our main result are: 

(i) The total energy (1.8) of a radial cavitation solution u (i.e. of the form (2.3)) 
to the dead-load traction problem can be expressed in terms of the values of u, ∇u 
on the boundary ∂Ω (this follows from a divergence identity due originally to A.E. 
Green) 

(ii) This total energy can be shown to be equal to the total energy of a related 
asymmetric homogeneous deformation, 

(iii) This related (asymmetric) homogeneous deformation is not in general a global 
minimiser of the total energy in the class of all homogeneous deformations (see The
orem 4.2). Hence the radial cavitation solution cannot be a global energy minimiser. 

Our approach yields the results of [22] as a special case (see concluding remarks in 
section 5). 
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2	 The energy of a smooth solution of the dead-
load traction problem. 

In this section we calculate the total energy (1.8) of a smooth (not necessarily sym
metric) solution of the dead-load traction boundary value problem: i.e., a solution 
of (1.2) on some domain Ω that satisfies the boundary condition (1.7) on ∂Ω. To do 
this we use the following divergence identity for smooth solutions of (1.2) which is 
originally due to Green: 

∂� 
Div	 � (∇u)x + 

∂F 
(∇u) (u −∇ux) = �� (∇u). (2.1) 

If we apply this to an equilibrium solution u ∈ �2(Ω) ∩ �1(Ω̄) on the domain Ω with 
an imposed dead-load t = � N, � > 0, on its boundary ∂Ω we find by (1.8) that ∫	 ∫ ∫ 

�� (u) = 
1 

� (∇u)x.N d� − 
� − 1 

���� d� − 
1 

�,�
� ���� d� 

� ∂Ω � ∂Ω � ∂Ω 

=
1 
∫ 

� (∇u)x.N d� − � 
∫ (

(� − 1) 
u + 

1
(∇ux)

) 

.N d�. (2.2)
� ∂Ω ∂Ω � �

Now suppose that Ω = � and that u ∈ �2(�̄∖{0}) is a cavitating radial equilibrium 
solution, then 

u(x) = 
� 

x for x ∈ �, � = ∣x∣,	 (2.3) 

where �(0) > 0 and (1.19) is satisfied. In this case, the singular values of ∇u are 
constant on ∂� and are given by �1 = �′(1), �2 = �(1), ..., �� = �(1) on ∂�. 4 Hence, 
the first part of the energy integral in (2.2) is equal to ∫ ∫	 ∫ 

1	 1 
� (∇u)x.N d� = Φ(�, �, ..., �)x.N d� = � (∇u ℎ) ��, (2.4)

� ∂� � ∂� � 

where uℎ the corresponding homogeneous deformation 

u ℎ(x) ≡ (��1, ��2, ..., ���)	 (2.5) 

4Our derivation of (2.2) assumed smoothness of the solution throughout �. However, the same 
result can be obtained by first excluding a small neighbourhood ��(0) around the origin, then 
applying the above argument to Ω� = �∖��(0), and finally letting � 0. In this process, it can →
be shown that the contribution from the boundary integral on ∂�� converges to zero as � 0 by →
(1.19)- see [24, Section 3]. 
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 �
 �


� �


�

+ �


with 
� = �′(1), � = �(1). (2.6) 

On noting that N = x on ∂�, it follows that the second integral term in (2.2) is 
then given by ∫


∂Ω

(

(� − 1) 1 

u + (∇ux)


)


.N d�


(
(


)


.N d�

∫


(� − 1)
�(1)x + 

1
(�′(1)x)=


∂Ω )
⎛ 

∫

(� − 1)

� + 
1
(�)
 d�
⎞
⎞


=

∂Ω ⎞
⎛
⎛


0 �1∫
 ⎜⎜⎜⎝


⎜⎜
�⎜⎝


�2 
.
.
.


⎟⎟⎟⎠


⎜⎜⎜⎝


0

.
.
.


⎟⎟⎟⎠


⎟⎟⎟⎠

1


.N d�
=

∂Ω 

�� 0 ∫

1 ℎ = u .n d� 
� ∂Ω 

(2.7) 

and hence by (2.4), (2.7) it follows that 

�� (u ℎ) = �� (u), (2.8) 

so that the energy of the radial cavitation solution equals the energy of the corre
sponding homogeneous deformation (2.5). 

Remark 2.1. The last result (2.8) could be obtained more directly using the radial 
version of the conservation law (2.1) (see, e.g., [19, expression (6.12)]), however, our 
intention in the above derivation is to highlight the general n-dimensional structure 
of the underlying problem. 

3	 The energies associated with the cavitation and 
Rivlin instabilities 

Having obtained the above result, our approach in the following sections is to now 
show that the homogeneous deformation (2.5) is not a global minimiser in the sub 
class of asymmetric deformations of the general form 

u ℎ(x) ≡ (��1, ��2, ..., ���), �, � > 0.	 (3.1) 

To this end we first recall a basic property of the radial cavitation solutions. 
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3.1 Energy of the radial cavitation deformations 

Proposition 3.1. Given any cavitation solution � ∈ �2((0, 1)) (i.e. a solution of 
(1.17) satisfying �(0) > 0 and the natural boundary condition (1.19)), this can be 
extended to a solution �0 ∈ �2((0, ∞)) satisfying. Given any cavitation solution � 
of the dead-load traction problem with dead-load � , there exists � > 0 such that ( )
�(�) ≡ ��0 

� . Moreover, by rescaling �0 if necessary, we may assume without loss 
of generality that �0(0) = 1 so that � corresponds to the radius of the cavity formed 
by the deformation. 

For each � ∈ (�crit, ∞) we define �(�) to be the unique positive number satisfying ( )
1 

� = �(�)�0 (3.2) 

so that �(�) corresponds to the radius of the cavity formed by a cavitating deforma
tion that is equal to � on the outer boundary of the ball. 

We refer to [25] for a variety of hypotheses on the stored energy function under 
which the last proposition holds. A simple class of such energy functions is given by 
the class of Ogden materials in the following example. 

Example 3.2. The following class of energy functions are such that Proposition 3.1 
holds: ( ) ( )∑ ∑ ∑ ∑ 

Φ(�1, ..., ��) = �� ��
�� − � + �� ��

�� − � + ℎ(�1...��), 
�=1 �=1 �=1 �=1 

where �, � ≥ 0, �� > 0 for 1 ≤ � ≤ � , �� > 0 for 1 ≤ � ≤ � , � > �1 ≥ ... ≥
�� ≥ 1, �/(� − 1) > �1 ≥ ... ≥ �� ≥ 0 and ℎ : (0, ∞) → ℝ is �2, strictly convex 
and satisfies 

ℎ(�) 
�
lim 

0+ 
ℎ(�) = lim 

� 
= ∞ (3.3) 

→ �→∞ 

and 
∣ℎ′(�)�∣ ≤ �����. (1 + ℎ(�)) , for all � > 0. (3.4) 

We can use (3.2) to parametrise the energy of a cavitation solution using � and 
we correspondingly define ( )

�̂� (�) = ���� (��) , ��(�) := �(�)�0 
�

. (3.5) 
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On making the change of variables �̃ = �/�(�) in (3.5) we obtain [∫ ]
1/�(�) ˆ �)/ ˜�� (�) = �� (�(�))��̃�−1Φ(�0

′ (�̃), �0( ˜ �, ...)d�̃− �� , (3.6) 
0 

where �̂� (�) = �� (��). 
We will now perform a second change of variables so that the new variable of 

integration is the tangential principal stretch through the body, � = �0(˜
�̃) . We note 

here that by definition � = �(�)�0(1/�(�)), which implies that �̃ = 1/�(�). This 
then yields [ ∫ ( ) ]∞ � 1 1ˆ ˆ�� (�) = �� (�(�))� 

�� �(�)� �
Φ(�) d� − �� , (3.7) 

where 
ˆ (3.8)Φ(�) = Φ(�(�), �, ...) 

and �(�) := �0
′ (1/�(�)). 

Remark 3.3. For � = � to minimise �̂� (�) we must have that 

�̂� 
′ (�) = 0, �̂� 

′′ (�) ≥ 0. (3.9) 

Note that if the first condition in (3.9) holds, then the corresponding radial map (see 
Proposition 3.1) is a cavitating equilibrium solution to our dead-load traction problem 
since it satisfies (1.17), (1.18), (1.19). 

Remark 3.4. We note for later use that, in the variables �, �(�) used above, the 
radial equilibrium equation can be written as (see also [19]) 

� 
[Φ,1 (�(�), �, �, ...)] = (� − 1)

[Φ,2 (�(�), �, �, ...) − Φ,1 (�(�), �, �, ...)] 
. (3.10)

�� �(�) − � 

Remark 3.5. It is of interest to note the following alternative expression for �̂� 
′ : 

suppose that u(x, �) is a one-parameter family of solutions of the equilibrium equa
tions (1.2), parametrised by �. We next calculate the derivative of the energy func
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� [ ] 

tional (1.8) evaluated on such a family, at fixed � , with respect to �.
[∫ ∫ ]
��

�� (u(⋅, �)) = 
�� � 

� (∇u(x, �)) �x − 
∂� 

� u(x, �).n dS∫ ∫ 
∂� ∂2�� ∂�� 

= (∇xu) (x, �) �x − � �� �� 
∂� � ∂��∂� ∂� ∫� � [ ] ∫ ∂� 

∂ ∂�� ∂� ∂�� 

= 
� ∂�

� ∂� ∂� � 
(∇u) − 

∂� 
� 

∂� 
�� �� ∫ [ � ]

∂�� ∂� 
= (∇u)�� − ��� �� (3.11)

∂� ∂� � ∂� � 

In the case that u( , �) (given by (1.14)) is a family of solutions of the radial equilib⋅
rium equation (1.17) and the natural boundary condition (1.19), the above derivation 
still holds (see section 2), and if u(x) = �x for x ∈ ∂�, the above expression yields ∫ 

��
�� (u(⋅, �)) = 

∂� 
�� Φ1(�(�), �, �, ...)�

� − ��� �� 

= �� [Φ1(�(�), �, �, ...) − � ] . (3.12) 

Taking a second derivative and using Remark 3.4 then yields 

�2 � 
��2 

�� (u(⋅, �)) = 
�� 

�� [Φ,1 (�(�), �, �, ...) − � ] 

[Φ,2 (�(�), �, �, ...) − Φ,1 (�(�), �, �, ...)] 
= ��(� − 1)

�(�) − �
. (3.13) 

Remark 3.6. It follows from the above calculations that: 
(i) If � = � satisfies �̂� 

′ (�) = 0, �̂� 
′′ (�) =∕ 0, then the radial cavitation solution 

(3.5) satisfies (1.18) and the corresponding asymmetric homogeneous deformation 
(given by (2.5), (2.6), (3.2)) has equal energy by (2.8). However, in this case, (3.13) 
shows that the corresponding asymmetric homogeneous deformation cannot be a so
lution of the Rivlin problem and hence cannot be a critical point of (1.11). 

(ii) If � = � satisfies �̂� 
′ (�) = �̂� 

′′ (�) = 0 it follows from (2.8) that the asymmet
ric homogeneous deformation (2.5) (with � = �(�), � = �) is a solution of the Rivlin 
problem for this dead-load � (and corresponds to a critical point of (1.11)). 
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� 

�	 � 

3.2	 Energy of corresponding asymmetric homogeneous de
formations 

As previously noted, each cavitating deformation considered in the last section gives 
rise to a corresponding homogeneous deformation (via (2.5), (2.6)) with equal energy 
(see (2.8)). We parametrise these axisymmetric homogeneous maps by � and denote 
the corresponding energies by 

ˆ �� 
[
ˆ	

]
��(�) := �� (u ℎ) = Φ(�) − � (�(�) + (� − 1)�) , � ∈ (�crit, ∞), (3.14) 

where	Φ̂ is given by (3.8). From this it follows that 

�̂�
′ (�) = �′(�)(Φ̂1(�) − � ) + (� − 1)(Φ̂2(�) − � ) . (3.15) 

Since �(�) = �− �(�) , it follows that �′(�) = �(�)�
′′(�) and so we can also write (3.15) 

�′(�)	 (�′(�))2 

as	

�̂�
′ (�) = 

�

� 
� 

(
d

d

Φ 
� 

ˆ
(�) − 

(�′(

�

�))2 
((� − 1)�′(�))2 + �(�)�′′(�))

) 

. (3.16) 

Remark 3.7. Note that minimisers of �̂�(�) (or, more generally, solutions of �̂�
′ (�) = 

0) need not necessarily correspond to solutions of the Rivlin problem (1.12). 

The next result which relates the derivative of the energy functional �̂�(�), (3.6), to 
that of �̂�(�) will be central to our main result. 

Proposition 3.8. For each � ∈ (�crit, ∞), ∫ 
� ∞ 1 

�̂� 
′ (�) = (��(�)) �̂�

′ (�) ��.	 (3.17)
�� � ��(�) 

Proof. We first calculate the derivative of �̂� (�) given by (3.7), noting that 
�
�
′
(
(
�
�
)
) = 

�(�)�0(1/�(�)) − �0
′ (1/�(�)), to yield {	 }∫ 

�̂� 
′ (�) = �� 

�′ 
�(�(�))� 

∞ �′(�) ˆ	 Φ(�) . (3.18)Φ(�) d� − � [� − �(�)] − ˆ
� � �(�)�+1 

Performing an integration by parts on the first term in the integral yields ∫	 ∫∞ �′(�) ˆ 1 ˆ
∞ 1 dΦ̂

� Φ(�) d� = Φ(�) +	 (�) d�, 
�(�)�+1 �(�)� �(�)� d� 
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� 

and substituting this into (3.18) then yields ∫ ∞ 1 dΦ̂
�̂� 

′ (�) = �� 

[
�′(�)(�(�))�−1 

�(�)� d� 
(�) d� − � 

] 

. (3.19) 

By the Fundamental Theorem of Calculus, this is equivalent to [ (∫ ∞ 1 dΦ̂
�̂� 

′ (�) = �� �′(�)(�(�))�−1 (�)
�(�)� d� 

− 
(�′(�))2(�(�))� 

((� − 1)(�′(�))2 + �(�)�′′(�))

) 

d�

]
, 

(3.20) 

which can be rewritten as ∫ 
dˆ


�̂� 
′ (�) = ��

[
�′(�)(�(�))�−1 

∞ 
(
�(

1 
�)� 

[
d

Φ 
� 
(�)


− 
(�′(�))2 

((� − 1)(�′(�))2 + �(�)�′′(�))

]) 

d�

]
. 

(3.21) 

The result now follows from (3.16) and (3.21). 

Corollary 3.9. If �� (given by (3.5))is a cavitating solution for the dead-load traction 
boundary value problem, then �̂� 

′ (�) = 0 (see Remark 3.3) and so ∫ � 

�̂� 
′ (�) = 

� 
(��(�)) 

1 
�̂�

′ (�) �� for � ∈ (�crit, ∞). (3.22)
�� � ��(�) 

Remark 3.10. If we rewrite (3.18) using (3.7) and (3.14) we obtain 

�̂� 
′ (�) = 

�

�

′(

(

�

�

)

) 
� 
[�̂� (�) − �̂�(�)]. (3.23) 

This implies (see Remark 3.3) that if we have a cavitating solution of the radial 
equilibrium equations for the dead-load problem, ��(�), then the total energy of the 
deformation is that of an asymmetric homogeneous deformation whose stretches are 
�(�), �, ..., �, as previously shown in (2.8). 
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4 Energy minimising properties 

In this section we will show that for each � > 0 that if there is a cavitating de
formation u��� which minimises (3.6), then necessarily there exists an asymmetric 
homogeneous deformation uℎ which has less energy. Recall that we have so far shown 
that for any deformation u��� which minimises (3.6) the total energy is equal to the 
energy of a corresponding asymmetric homogeneous deformation. Since (1.11) has 
a minimiser for all � , if we show that this asymmetric homogeneous deformation 
is not a minimiser of (1.11), it will then follow that there must necessarily exist an 
asymmetric homogeneous deformation uℎ which has less energy than that of u���. 

Remark 4.1. For fixed � , from differentiating equation (3.23), it follows that if 
� = � minimises �̂� (�), then 

�̂ ′′ (�) = − 
�

�

′(

(

�

�

)

) 
�
�̂ ′ (�). 

It therefore follows immediately that if �̂� 
′′(�) =∕ 0, then �̂�

′ (�) =∕ 0 and so � = � 

cannot be a local minimiser of �̂�(�). Hence, if we suppose further that �̂� 
′ (�) = 0 

then, using Remark 3.10, there must exist �̂ such that 

�̂�(�̂) < �̂� (�) = �̂�(�), (4.1) 

i.e., there exists an asymmetric homogeneous deformation with less energy than the 
symmetric cavitation solution. In particular, any global minimiser of the functional 
(1.11) for the Rivlin problem has less energy than this radial cavitation solution. 

This observation, will yield the main result of this paper in Theorem 4.2. It re
mains to eliminate the possibility that �̂�

′ (�) = 0 and �̂� 
′′(�) = 0. To this end, we 

will henceforth assume that the following non-degeneracy condition holds: 

(N) (Non-degeneracy condition): we assume that �̂� 
′′(�) vanishes at most at a 

finite number of points on the interval [1, ∞). 

Theorem 4.2. If a radially symmetric cavitating deformation u given by (1.14), 
(3.5) and corresponding to � = �, minimises the radial energy (3.6), then there 
exists an asymmetric homogeneous deformation uℎ such that �(u) > �(uℎ). 

Proof. First observe that by Remark 4.1, if �̂� 
′′ (�) > 0 then �̂�

′ (�) = 0 and the result ∕
follows. Hence it remains to treat the case in which �̂� 

′′ (�) = 0. It is in this case 
that the non-degeneracy condition (N) above will play a role. 
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For �̂� and �̂� given by (3.7) and (3.14), we show that if � = � is a minimiser of 
�̂� (�) then there exists a � ∈ (0, ∞) such that �̂� (�) > �̂�(�) and � minimises �̂�. 

To prove this result it suffices to show that � = � is not a minimiser of �̂�. 
Suppose for a contradiction that � = � is simultaneously a minimiser of (3.7) and 
(3.14). 

From Corollary 3.9 it follows that ∫ � 1 
�̂� 

′ (�) = −��(� − 1)�′(�)(�(�))�−1 

�(�)� 
�̂�

′ (�) d�. (4.2) 

Using (N) we know that there is an � > 0 such that �̂ ′ (�) > 0 for all � ∈ (�, � + �). 
As �̂ ′ (�) > 0 for all � ∈ (�, � + �) we see that �̂ ′ (�) < 0 for all � ∈ (�, � + �), 
contradicting the fact that � = � minimises �̂� . 

5 Concluding Remarks 

In the case of incompressible materials, any admissible deformation u must satisfy the 
condition det(∇u) = 1. Next note that the kinematic constraint of incompressibility 
implies that the principle stretches must satisfy �1...�� = 1, which implies that every 
radially symmetric deformation must have the form 

1 
u(x) = 

�(�) 
x, where �(�) = (�� + ��)� , (5.1) 

where � := ∣x∣ and � is the radius of the cavity formed. 
In [22], Abeyaratne and Hou characterise their deformations using the radial 

�(1)boundary stretch �′(1) rather than the tangential boundary stretch 
1 = �(1). In 

the incompressible case, if we perform a corresponding change of independent variable 
in (4.2) from � = 

�
� to 

��
1 
−1 = �′, then we obtain equation (32) in [22]. 

We now show that the main results of [22] for incompressible materials follow 
from our arguments and our main result Theorem 4.2. 

The version of Green’s divergence identity (2.1) for incompressible materials is 

∂� 
Div � (∇u)x + (∇u) − � (adj∇u) (u −∇ux) = �� (∇u), (5.2)

∂F 

where � is an arbitrary hydrostatic pressure. The conclusions of section 2 now follow 
in the incompressible case on replacing (2.1) by (5.2). Next replace � (F) by � (F)+ 
�(det ∇u − 1) and Φ(�1, ..., ��) by Φ(�1, ..., ��) + �(�1...�� − 1) in the arguments of 
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�

section 3. Note that in this incompressible case, the function corresponding to the �0 
1 

given in Proposition 3.1 is then given by �0(�) = (�� + 1) and �(�) = (�� − 1) 
We next recall that our results for compressible materials were obtained under 

1 
� .


the assumption that the stored energy function � satisfies the non-degeneracy con
dition (N) and to obtain the results of [22] we need to replace this condition by its 
incompressible counterpart. We recall that this condition is used to ensure that if 
� = �̂ is a local minimum of �̂�(�) and �̂�

′ (�̂) = �̂� 
′′(�̂) = 0, then ��

′ (�) > 0 on some 
interval (�̂, �̂+ �), � > 0 and similarly that � ′ (�) < 0 on some interval (�̂ − �, �). A 
related non-degeneracy condition arises in section 5 of [22] (see their condition (A)). 

In the incompressible case, it can be shown that Mooney-Rivlin materials and 
certain Ogden materials satisfy the incompressible version of (N). However, it would 
be of interest to identify general conditions which guarantee that a given stored 
energy function satisfies these non-degeneracy conditions. 

Hence, the results of the current paper apply to both incompressible and com
pressible isotropic hyperelastic materials and demonstrate that if a unit ball of an 
elastic material is subjected to a uniform dead-load on the boundary, it is ener
getically favourable for it to bifurcate into a asymmetric homogeneous deformation 
rather than into a radially symmetric cavitated deformation. These results demon
strate that the radial cavitation solution is never a global minimiser of the energy 
but do not rule out the possibility that it is a still a local minimiser in a general class 
of possibly nonsymmetric perturbation. The symmetrisation arguments in [26] may 
be helpful in studying this problem. 

In the compressible case it can be shown that (N) is satisfied by separable stored 
energy functions and stored energy function in [27] given by 

Φ(�1, �2, �3) = (�1
2 + �2

2 + �3
2) + ℎ(�1�2�3), 

where 
ℎ(�) = (��2 − 2(� + 1)� + �) 

for � ≥ 1 and �, � ≥ 0 are constants5 . It is currently unclear to us whether compress
ible Mooney-Rivlin and Ogden materials satisfy (N). 
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