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Preface 

The volume Measurements in Quantum Mechanics explains different aspects of 
measurements in quantum mechanical systems. Understanding of quantum mechanics 
requires a careful definition of measurement. The subject of measurement is a basic 
part of the problem of the interpretation of quantum mechanics, for which there is 
currently no consensus. It is a postulate of quantum mechanics that all measurements 
have an associated observable. The quantum state of a system is a mathematical object 
that fully describes the quantum systems. From the inception of quantum mechanics, 
the concept of measurement proved to be a source of difficulties that found a concrete 
expression in the Einstein-Bohr debates, out of which both the Einstein Podolsky 
Rosen paradox and the Schrödinger's cat paradox developed. In brief, the difficulties 
stemmed from an apparent conflict between several principles of the quantum theory 
of measurement. In particular, the linear dynamics of quantum mechanics seemed to 
conflict with the postulate that during measurement a non-linear collapse of the wave 
packet occurred. The measurement problem is not just an interpretational difficulty 
internal to quantum mechanics. It raises broader issues as well, such as the 
philosophical debate between two different ideas. Quantum mechanics can be 
presented through concrete examples. I believe that most physicists learn through 
specific examples, test the obtained results through measurements and then find it 
easy to generalize. Spin measurements do not need sophisticated experimental 
devices, so the first postulate devoted through Estern-Gerlakh experiments of spin for 
measurements theory. Non-relativistic quantum mechanics has experienced a phase of 
turbulent development in the past few years. Quantum computing, quantum 
teleportation, quantum cryptography, and quantum information are typical 
buzzwords that reflect these developments. In spite of the enormous success of 
quantum mechanics to predict a wide range of physical phenomena, the quantum 
measurement problem through quantum mechanics is accepted as the fundamental 
theory of nature and gives satisfactory predictions to deduce the results of 
measurements.  

This volume contains fourteen chapters that created by a group of invited authors 
from all over the world. A brief outline of the book is as follows: 

Chapter one reviews the coherent and decoherent systems, which is the main goal of 
measurement theory. Time and energy as measurable quantities and their relations 
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through uncertainty principal are discussed in chapter two. The different nature of 
time and energy as a parameter or observable in various parts of physics is also 
reviewed in this chapter. Chapter three deals with the order of time derivative in 
different branches of relativistic and nonrelativistic quantum mechanics. Dirac and 
Clain-Gordon equations, together with a group representation of subject, are also 
studied phenomenologically in this chapter. Chapter four covers the relation between 
the weak value theorem and the measurements in quantum mechanics. 
Supersymmetric quantum mechanics is presented in chapter five. Electronic structure 
of multielectron systems and their relation with the measurement is also discussed in 
this chapter. Chapter six relates to the statistical derivation of quantum mechanics, the 
probability to measure energy as a conjugate observable of time and the minimal 
Fisher information theory. Quantum completeness problem and its relation to 
quantum measurements are discussed in chapter seven. Chapter eight presented the 
quantum correlations in successive spin measurements. Application of 
multimeasurements results to spin 1

2 systems and well-known Bell inequality are also
discussed in this chapter. Spin coherent measurement, electron correlations in 
quantum chemistry and their application in gravitational bach ground are reported in 
chapter nine. Chapter ten deals with vector correlations in the collision of atom and 
diatomic molecule. Different types of mesons and their decay modes are also 
discussed in this chapter. Vector correlations in collision of atoms and diatomic 
molecules, their collision cross section and different angular distributions are reported 
in chapter eleven. Chapter twelve discusses the entanglement in two and three 
quantum mechanical systems and their relations with quantum mechanical 
measurements. Basic conventions of quantum chemistry and their relation with 
measurements in multi-electron systems, together with applications of this new model 
to maximize the intensity of images are reported in chapter thirteen. The last chapter 
deals with the Feynman loop integral in perturbative quantum field theory and their 
application in measurements of new type of colliders.  

This book is a result of collaboration of the international community and I thank all the 
authors. I especially want to thank Ms. Maja Bozicevic for her valuable assistance 
through the publishing process and the InTech publishing team for their efforts in 
preparing the book for publication.  

M. R. Pahlavani
Head of Nuclear Physics Department,  

Mazandaran University, Mazandaran, Babolsar, 
Iran 



1. Introduction

Quantum Mechanics represents one of the greatest triumphs of the scientific enterprise of the
twentieth century. The stunning success of quantum theory has led to many revolutionary
inventions and its extraordinary concepts describe the heart of several important real world
applications like transistors and lasers. The theory makes accurate predictions about a wide
range of physical phenomena and has historically withstood the tests and scrutiny of every
experimental investigation. However, inspite of the fact that quantum theory is widely
regarded by the scientific establishment as the fundamental theory of nature and is immensly
successful and useful, its conceptual framework makes many predictions which are difficult
to comprehend “classically". The theory is, pardoxically, powerful and confusing at the
same time. Quantum theory’s unusual predictions originate from its basic formailsm which
involves concepts like probability amplitudes and the linear superposition principle(Dirac,
1947). The quantum view appears abstract and counterintuitive and at odds with classical
perceptions. Many of the conceptual problems of quantum mechanics are encompassed in
what is known as the quantum measurement problem(Peres, 1986; von Neumann, 1932; Wheeler
& Zurek, 1983). Conventionally, the measurement paradox is supposedly ’resolved’ by forcing
a notion of a sudden collapse of the state vector of the system being measured. However,
the nature of this mechanism is at odds with the basic tenets of quantum mechanics and
hence may lie outside its realm thus questioning the validity of the theory it self. Closely
related with the problem of measurement in quantum mechanics is the question of its
connection with the emergence of classicality and the elusive boundary between quantum
and classical worlds. What is the connection between the ‘classical’ and the ‘quantum’
worlds? Is there a definite relationship? Are classical mechanics and quantum mechanics
two mutually exclusive incompatible theories or are they two aspects of the same underlying
philosophy? Classical objects are eventually composed of elements of the microworld which
can be described quantum mechanically. So, how and where can there be a boundary
between the two worlds? In the following section we begin by introducing the quantum
measurement problem. In the next section we will discuss attempts to understand and
explain away the underlying paradoxes in quantum theory as highlighted in the quantum
measurement problem and the question of the quantum-classical connection. From among
the various explanations that seek a resolution to the conceptual problems of quantum
mechanics, we focus on the ‘environment induced decoherence theory’ - an approach that
employs the methods developed by several authors to analyse the quantum mechanics of
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a system in interaction with its environment(Zeh, 1970). The central idea of this approach
is that classicality is an emergent property triggered in open systems by their environments
and it is the influence of environmental interactions that explains the perceived outcomes
of quantum measurements(Zurek, 1981). We illustrate this approach through some specific
system-apparatus models and highlight some key results of other researchers and ours.
Following this, the next section will address a specific aspect of the decoherence theory, i.e., the
notion of a ’preferred basis’ or a ’pointer basis’. Our experience of the classical world suggests
that unlike quantum systems, which are allowed to exist in all possible states, classical systems
only exist in a few select states. The decoherence approach demonstrates that such states
are singled out by the environment from a larger quantum menu. These special states are
the ’preferred basis’, also referred to as the ’pointer states’ in a quantum-measurement-like
scenario. What is the ’preferred’ or ’pointer’ basis? This question is examined via specific
system-apparatus models and answered through some key results of our work and that
of other researchers. Some of these results show that the ’pointer states’ could emerge
independent of the initial state of the apparatus. In the light of several advances in technology
and high precision experiments, many of the questions relating to the conceptual problems
of quantum mechanics are no longer merely ’academic’ in nature. These questions and
theories like environment-induced decoherence now offer themselves to experimental tests.
Many recent experiments have provided important insights into the role of the environment
in bringing about classicality. The decoherence theory is strengthened by these spectacular
observations and there is no doubt that this approach has provided many important insights
into the actual mechanism of the loss of quantum coherence. However, many researchers
believe that many of the conceptual problems of quantum mechanics are still unresolved and
the decoherence explanation is not adequate. In the concluding section of this chapter we
summarize the main ideas that are presented in it and also highlight some of the difficulties
and unresolved issues and their implications.

2. Measurement in quantum mechanics

Though quantum theory is widely accepted as the fundamental theory of nature and is
immensely successful and satisfying, its conceptual framework makes predictions which are
difficult to comprehend “classically". Many of these conceptual problems are encompassed
in what is known as the quantum measurement problem. While the basic formalism of
quantum mechanics was developed between 1925 and 1927, the standard interpretation of
quantum measurement is attributed to von Neumann’s theory presented in his book in 1932
(von Neumann, 1932). The quantum mechanical description of a system is contained in its
wave function or state vector |ψ� which lives in an abstract “Hilbert space". The dynamics of
the wavefunction is governed by the Schrödinger equation

ih̄
d
dt
|ψ� = H|ψ�. (1)

Here H is the Hamiltonian of the system and the equation is linear, deterministic and the
time evolution governed by it is unitary. Dynamic variables or observables are represented in
quantum mechanics by linear Hermitian operators which act on the state vector. An operator Â,
corresponding to the dynamical quantity A is associated with eigenvalues ai and corresponding
eigenvectors {αis} which form a complete orthonormal set. Any arbitrary state vector, |ψ� can, in
general, be represented as a linear superposition of these eigenvectors:

|ψ� = Σci|αi�. (2)

2 Measurements in Quantum Mechanics Measurement in Quantum Mechanics: Decoherence and the Pointer Basis 3

A basic postulate of quantum mechanics regarding measurement is that any measurement of
the quantity A can only yield one of the eigenvalues, ais, but the result is not definite in the
sense that different measurements for the quantum state |ψ� can yield different eigenvalues.
However, quantum theory predicts only that the probability of obtaining eigenvalue ai is |ci|2.
An additional postulate of quantum mechanics is that the measurement of an observable A,
which yields one of the eigenvalues ai ( with probability |ci|2) culminates with the reduction
or collapse of the state vector |ψ� to the eigenstate |αi�. This means that every term in
the linear superposition vanishes, except one. This reduction is a non unitary process and
hence in complete contrast to the unitary dynamics of quantum mechanics predicted by the
Schrödinger equation and this is where the crux of the conceptual difficulties encountered
in quantum theory lies. These two stages of quantum measurement are captured in the
well-know von Neumann model through two distinct processes - first, where the system
and apparatus interact through linear unitary Schrödinger evolution via an appropriate
interaction Hamiltonian, and second - the nonlinear, indeterministic collapse (von Neumann,
1932). In this sense, the idea of measurement is very different from what we understand
for classical systems. Classical systems are independent from measurements - the act of
measurement does not disturb the state of the system or its ’properties’. In the language
of quantum mechanical wave functions, the von Neumann measurement scheme can be
illustrated as follows:
Measurements are described by treating both the system and the measuring apparatus as
quantum objects. Let the quantum system be in the superposition state |ψS� = ∑n cn|ψSn�,
where |ψSn� are the eigenstates of the operator that needs to be measured. For a measurement
to be affected, the measured system described by |ψS� needs to interact with the measuring
apparatus described by |φA� , so that the total wave function before the interaction is |ψS�|φA�.
During the interaction of the system and the apparatus, the unitary evolution realizes the
following transition from the initial to the final total wave function:

|ψS�|φA� → ∑
n

cn|ψSn�|φAn� (measurement of the first kind). (3)

Here |φAn� are orthonormal states of the measuring apparatus. This unitary evolution is
referred to as premeasurement. The transition

|ψS� → ∑
n
|cn|2|ψSn��ψSn| (4)

is often referred to as the wave function collapse. The final density operator corresponding to
the system is calculated as ∑n |cn|2|ψSn��ψSn|. This density operator describes an ensemble of
system states, which, after the measurement will be found in the state |ψSn� with probability
|cn|2. The transition

|ψS� → ∑
n
|cn|2|ψSn��ψSn| → |ψSn�, (5)

corresponds to an additional selection of a subensemble by means of observation. In
measurements of the second kind, the unitary evolution during the interaction of the system
and measuring apparatus is described as:

|ψS�|φA� → ∑
n

cn|χSn�|φAn�, (6)

in which the states |χSn� of the sytsem are determined by the nature of the interaction between
system and measuring apparatus. As in the case of measurements of the first kind, the

3Measurement in Quantum Mechanics: Decoherence and the Pointer Basis
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time evolution governed by it is unitary. Dynamic variables or observables are represented in
quantum mechanics by linear Hermitian operators which act on the state vector. An operator Â,
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final state of the system will be |χSn� with probability |cn|2. The concept that quantum
mechanics does not yield an objective description of microscopic reality but deals only with
probabilities (as illustrated in the measurement process) is an essential part of the Copenhagen
interpretation of quantum mechanics which is regarded as the "standard" interpretation of
quantum mechanics. The von Neumann measurement scheme is in tune with the Copenhagen
interpretation of quantum mechanics which was one of the first attempts to understand
quantum mechanics, initiated by Niels Bohr, and supported by Werner Heisenberg, Max Born
and others. The von Neumann scheme described above would typically involve a coupling
between the microscopic system and a ’macroscopic’ apparatus (meter), resulting in states
like (3) and (6), called entangled states which are uniquely quantum mechanical states for the
composite. The term entanglement was coined by Schrödinger and describes a correlated state
that is "not separable"(Schrödinger, 1935). Today, entanglement is considered one of the most
defining concepts in quantum mechanics - a uniquely quantum mechanical possibility with
no classical analouge. In quantum information and quantum computation, entanglement is
viewed as a resource for computing tasks that can be performed faster or in a more secure
way than is classically possible and there are intensive experimental efforts to create entangled
states in the labarotory. The entangled state describing the system-apparatus, as in (3) above
should contain one-to-one correlations between the states of the system, {|ψSn�}, and the
states of the apparatus {|φAn�}, so that a read out of the apparatus or ‘meter’ states gives
information about the states of the system. Consider a simple example of a two-level system
for which the entangled system-apparatus state after the measurement interaction should look
like

|ψS�|φA� → |ψS1�|φA1�+ |ψS2�|φA2�. (7)

Such an entangled state is like a two-particle superposition state. The problem with such
an entangled state is that it seems to allow the ’meter’ (apparatus) to exist in a coherent
superposition of the two states |φA1� and |φA2� which could be macroscopically distinct - a
situation hard to reconcile with classical intuition. Historically, it was the Einstein, Podolsky,
Rosen (EPR) paper(Einstein et al., 1935) which first highlighted the problem of quantum
entanglement. In response to the EPR work, Schrödinger posed a thought experiment which
is now famously known as Schrödinger’s Cat paradox(Schrödinger, 1935). Schrödinger’s cat
is the unfortunate victim of a nasty contraption where the decay of a radioactive atom triggers
a device which kills the cat . The quantum mechanical description of this scenario demands
that a superposition state of ‘decayed’ and ‘not decayed’ for the atom lead to an entangled
state of the kind (7) for the atom-cat composite with the cat being in a superposition state of
’dead’ and ’alive’. This amounts to interpreting the quantum state of the cat as being in a
coherent superposition of ’dead’ and ’alive’ states - a situation which is completely at odds
with our familair classical perceptions. Schroödinger’s Cat paradox is often presented as an
illustration of the conceptual problems of quantum mechanics. It is worth mentioning at this
point that the density matrix is a convenient formal tool to compare and contrast quantum
and classical systems in terms of probabilities. Some of the conceptual problems of quantum
measurement become more transparent when analyzed in this language. It can be easily seen
that the density matrix corresponding to the entangled sate (7) is

ρ̂S+A = |ψS1��ψS1||ψA1��ψA1|+ |ψS2��ψS2||ψA2��ψA2| (8)

+ |ψS1��ψS2||ψA1��ψA2|+ |ψS2��ψS1||ψA2��ψA1|.
While (8) represents a perfectly legitimate solution of the Schrödinger equation, the physical
interpretation in the usual language of probabilities leads to difficulties. While the diagonal
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elements ( the first and second terms) can be easily interpreted as probabilities corresponding
to the system being in state |ψS1� or |ψS2� (with the corresponding correlations with the
apparatus states |φA1� and |φA2�, respectively), the off-diagonal elements represented by the
third and fourth terms are difficult to interpret classically in terms of probabilities. In order to
make ’classical’ sense, the density matrix corresponding to the pure state ensemble described
by the entangled state (8) must reduce to a statistical mixture which is diagonal in some basis
with appropriate system-apparatus correlations. Such a mixed density matrix would look like

ρmixed ∼ |ψS1��ψS1||ψA1��ψA1|+ |ψS2��ψS2||ψA2��ψA2|. (9)

Several interpretations of quantum mechanics seek to explain this ρpure → ρmixed transition
(von Neumann’s irreversible ’reduction’ process) and a resolution to the mechanism for the
apparently nonunitary ’collapse’ in a quantum measurement(Wheeler & Zurek, 1983; Zurek,
1991). In recent years, the decoherence approach(Joos et al., 2003) has been widely discussed
and accepted as the mechanism responsible for this transition. The central idea of this
approach has been that ’classicality’ is an emergent property of systems interacting with an
environment. The theory also predicts that in a quantum measurement, the apparatus will
have correlations with the system in a set of ’preferred states’(Joos et al., 2003; Zurek, 1981;
1991) selected by the environment. In the next two sections we describe the progress made in
adopting this approach to explain the mechanism for the perceived outcomes of a quantum
measurement as well as the emergence of classicality from an underlying quantum world. The
strength of this approach lies in the fact that it provides a reasonably satisfying explanation
within the realm of quantum mechanics.

3. Decoherence

In the previous section, we have seen that there is a serious interpretational problem
with the way quantum mechanics deals with the act of measurement. In particular, the
problem lies in von Neumann’s postulate of an irreversible reduction process which takes the
quantum superposition to a statistical mixture which is supposedly classically interpretable
and meaningful. However, the non-unitary nature of this reduction is at odds with the
inherent unitary nature of the Schrodinger equation, implying, somehow that the mechanism
seems to lie outside the realm of quantum mechanics. From among the various explanations
that seek a resolution to the conceptual problems of quantum mechanics, in this section we
focus on the ‘environment induced decoherence theory’. As pointed out in the previous
section, the problem lies with the off-diagonal elements of the density matrix describing the
entangled state of the system-apparatus composite, (8). These off-diagonal elements are the
signatures of quantum correlations. In quantum mechanics, wave functions evolve according
to the Schrödinger equation which is linear and deterministic and this evolution is unitary
in nature. Unitary evolutions ensure that eigenvalues are preserved. There is no way that
some terms of the density matrix can vanish in the course of a unitary evolution. How, then,
can ‘classical behaviour’ (as discussed above) ever emerge from this substrate of the quantum
world where entanglements and coherences are ubiquitous and inevitable? How can a pure
state density matrix become a "classically interpretable" statistical mixture? The decoherence
approach seeks to answer this problem by providing a mechanism which leads to the loss
of quantum coherence, thus bringing about the much desired ρpure → ρmixed transition, and
hence, classicality. The answer lies in realizing the fact that the Schrödinger equation driving
unitary evolutions is strictly applicable only to completely isolated systems. In reality, we know
that macroscopic systems are almost never isolated from their surroundings but are known to
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final state of the system will be |χSn� with probability |cn|2. The concept that quantum
mechanics does not yield an objective description of microscopic reality but deals only with
probabilities (as illustrated in the measurement process) is an essential part of the Copenhagen
interpretation of quantum mechanics which is regarded as the "standard" interpretation of
quantum mechanics. The von Neumann measurement scheme is in tune with the Copenhagen
interpretation of quantum mechanics which was one of the first attempts to understand
quantum mechanics, initiated by Niels Bohr, and supported by Werner Heisenberg, Max Born
and others. The von Neumann scheme described above would typically involve a coupling
between the microscopic system and a ’macroscopic’ apparatus (meter), resulting in states
like (3) and (6), called entangled states which are uniquely quantum mechanical states for the
composite. The term entanglement was coined by Schrödinger and describes a correlated state
that is "not separable"(Schrödinger, 1935). Today, entanglement is considered one of the most
defining concepts in quantum mechanics - a uniquely quantum mechanical possibility with
no classical analouge. In quantum information and quantum computation, entanglement is
viewed as a resource for computing tasks that can be performed faster or in a more secure
way than is classically possible and there are intensive experimental efforts to create entangled
states in the labarotory. The entangled state describing the system-apparatus, as in (3) above
should contain one-to-one correlations between the states of the system, {|ψSn�}, and the
states of the apparatus {|φAn�}, so that a read out of the apparatus or ‘meter’ states gives
information about the states of the system. Consider a simple example of a two-level system
for which the entangled system-apparatus state after the measurement interaction should look
like

|ψS�|φA� → |ψS1�|φA1�+ |ψS2�|φA2�. (7)

Such an entangled state is like a two-particle superposition state. The problem with such
an entangled state is that it seems to allow the ’meter’ (apparatus) to exist in a coherent
superposition of the two states |φA1� and |φA2� which could be macroscopically distinct - a
situation hard to reconcile with classical intuition. Historically, it was the Einstein, Podolsky,
Rosen (EPR) paper(Einstein et al., 1935) which first highlighted the problem of quantum
entanglement. In response to the EPR work, Schrödinger posed a thought experiment which
is now famously known as Schrödinger’s Cat paradox(Schrödinger, 1935). Schrödinger’s cat
is the unfortunate victim of a nasty contraption where the decay of a radioactive atom triggers
a device which kills the cat . The quantum mechanical description of this scenario demands
that a superposition state of ‘decayed’ and ‘not decayed’ for the atom lead to an entangled
state of the kind (7) for the atom-cat composite with the cat being in a superposition state of
’dead’ and ’alive’. This amounts to interpreting the quantum state of the cat as being in a
coherent superposition of ’dead’ and ’alive’ states - a situation which is completely at odds
with our familair classical perceptions. Schroödinger’s Cat paradox is often presented as an
illustration of the conceptual problems of quantum mechanics. It is worth mentioning at this
point that the density matrix is a convenient formal tool to compare and contrast quantum
and classical systems in terms of probabilities. Some of the conceptual problems of quantum
measurement become more transparent when analyzed in this language. It can be easily seen
that the density matrix corresponding to the entangled sate (7) is

ρ̂S+A = |ψS1��ψS1||ψA1��ψA1|+ |ψS2��ψS2||ψA2��ψA2| (8)

+ |ψS1��ψS2||ψA1��ψA2|+ |ψS2��ψS1||ψA2��ψA1|.
While (8) represents a perfectly legitimate solution of the Schrödinger equation, the physical
interpretation in the usual language of probabilities leads to difficulties. While the diagonal
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be constantly interacting with a complex environment. In a measurement like situation, the
apparatus is almost always a macroscopic object from which one reads out the measured
property of the system. In fact, the apparatus is not only considered macroscopic, it is also
regarded as ‘classical’ in its dynamics. How does the apparatus (which starts off as a quantum
object) end up appearing ’classical’?
The ‘decoherence’ explanation is that it is the influence of the environment that makes a
quantum system appear ‘classical’. The environment ‘washes away’ quantum coherence
(’deoherence’), leaving behind a system which looks and behaves like a classical object of
our cherished commonsense world. The system no longer constitutes a closed system but an
‘open system’ which is coupled to a large number degrees of freedom which constitute the
environment. However, one is always monitoring only a few degrees of freedom, which are
of relevance. Technically, this amounts to ’tracing’ over all other degress of freedom. This
tracing over has the effect of causing the transition:

ρpure → ρmixed. (10)

An illuminating and popular paradigm for understanding decoherence is the phenomenon
of Brownian motion which describes the motion of a particle suspended in a liquid. Such a
suspended particle, when examined closely, is seen to bounce around in a random, irregular,
‘zig-zag’ fashion. Einstein showed that this behaviour is exactly what should be expected if the
suspended particle is being repeatedly ‘kicked’ by other unseen smaller particles. The random
motion of the suspended particle can be statistically explained by taking into account its
interaction with a large number of particles which constitute the reservoir of liquid molecules
or the ’environment’. When we see Brownian motion, we are only focussing on the dynamics
of the suspended particle and do not monitor each and every particle of the environment.
Mathematically, we trace over all the degrees of freedom of the environment and look only at
the reduced system -the suspended particle. As a consequence, the tagged particle is found to
show a dynamics that contains dissipation (a steady loss of energy or relaxation) and diffusion
(the random zig-zag motion). Quantum Brownian motion describes a similar situation at the
quantum mechanical level(Agarwal, 1971; Caldeira & Leggett, 1983). A simple example by
Zurek(Zurek, 1991) illustrates this point (see Figure 1). Here an initial pure state constructed
as a coherent superposition of two spatially separated Gaussian wavepackets decoheres into
a statistical mixture (diagonal density matrix) when its dynamics incorporates the coupling
to a large number of environmental degrees of freedom. While the pure state density matrix
of the system (Fig. 1(a)) has both diagonal and off-diagonal elements, it can be seen that
after a certain time, impacted by the environmental influence, the off-diagonal elements of the
reduced system are diminished to give us a statistical mixture (Fig1(b)).
Let us now look at the quantum measurement situation through this approach. The
microscopic system couples to a macroscopic apparatus, which in turn is interacting with
a large number of degrees of freedom which conststitutes the environment . Schrödinger’s
equation is applied to the entire closed universe of system-apparatus-environment.
Hamiltonian evolution drives this closed system from an initial uncoupled state into a gigantic
entangled state containing all the degrees of freedom. A tracing over all the environmental
degrees of freedom salvages the reduced system-apparatus combine from this mess. After
a characteristic time, the apparatus, impacted by the environment, appears classical in its
dynamics. Thus, the environment causes a general quantum state to decay into a statistical
mixture of "pointer states" which can be understood and interpreted as classical probability
distributions. This, in essence, is the approach of the decoherence theory to explain the
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emergence of classicality and the perceived outcomes of quantum measurements(Zurek,
1991). In the following subsections we highlight studies done on two measurement models
where the outcome of the system-apparatus interaction is explained by the decoherence
approach.

XX’

X
X’

(a)

(b)

Fig. 1. (a)Density matrix of a superposition of two Gaussian wave packets (b) Density matrix
after the off-daigonal elements have been partially washed away by decoherence

3.1 Decoherence and the Stern-Gerlach measurement
Venugopalan et al(Venugopalan et al., 1995a;b) first anaylsed a Stern-Gerlach-like
measurement model through the decoherence approach. Their analysis shows that
decoherence would bring out the desired ’classical-like’ outcome in such a measurement
scenario. Consider a simple model of measurement consisting of a free particle with spin
(for simplicity, consider a two-state system or spin-1/2 which could represent a qubit). Here
the spin degrees of freedom represent the system and the position and momentum degrees
represent the apparatus. Let us first look at the bare system without the inclusion of additional
environment degrees of freedom. The system and apparatus are coupled by a Stern-Gerlach
measurementlike interaction such that the trajectory of the particle (position and momentum
degrees) correlates with the spin states. The Hamiltonian describing this model is:

H = λσz +
p2

2m
+ �zσz. (11)

While the first two terms represent the self Hamiltonians of the system and apparatus,
respectively, the last term is the interaction Hamiltonian. z and p denote the position and
momentum of the particle of mass m, λσz the Hamiltonian of the system and � the product of
the field gradient and the magnetic moment of the particle. The most general initial state for
the system-apparatus combine can be written as

ψ = {a| ↑�+ b| ↓�} ⊗ φ(z). (12)
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This is a product state of the most general spin state for the system and an arbitrary state,
φ(z) for the apparatus (free particle). | ↑� and | ↓� are the eigenstates of σz. Following the
measurement interaction governed by Hamiltonian evolution, this initial state becomes an
entangled state between the system and apparatus. The density matrix of the entangled state,
when the initial state, (12), undergoes a Hamiltonian evolution via (11) will be of the form

ρS+A = |a|2| ↑��↑ |ρ↑↑(z, z�, t) + |b|2| ↓��↓ |ρ↓↓(z, z�, t)

+ ab∗| ↑��↓ |ρ↑↓(z, z�, t) + a∗b| ↓��↑ |ρ↓↑(z, z�, t). (13)

Here ρ↑↑ and ρ↓↓ correspond to the diagonal elements (in spin) of the density matrix (ρd) for
the apparatus which could correlate with up and down spin states of the system and ρ↑↓ and
ρ↓↑ correspond to the off-diagonal elements (ρod), and ρ(z, z�, t) = �z|ρ|z��. The specific form
of ρd and ρod and the system correlations they would (or would not) contain depends on the
initial state of the apparatus. When they contain one-to-one system-apparatus correlations,
the states corresponding to ρd would be candidate pointer states. For the purpose of illustration
we look at the situation when the apparatus starts off in an initial state which is a Gaussian
wave packet as was first analyzed by Venugopalan et al. The initial system-apparatus state is
thus given as

{a| ↑�+ b| ↓�} ⊗ φ(z) = {a| ↑�+ b| ↓�} ⊗ 1√
σ
√

π
exp{−z2

2σ2 }. (14)

Here σ is the width of the wavepacket. The wavepacket in quantum mechanics is often viewed
as the most "nearly classical" state and is known to exhibit many striking classical properties
and hence is a reasonably good choice for the initial state of the apparatus. Following
Hamiltonian evolution via (11), the system-apparatus composite ends up in an entangled state
whose density matrix is of the form (13). One examining the detailed form of the complete
density matrix representing this entangled state, one can identify the parts of the "apparatus",
i.e., ρ↑↑ and ρ↓↓ that correlate with the up and down spins, and it can be shown that the
diagonal elements of ρ↑↑ and ρ↓↓ are

ρ↑↑, ρ↓↓ → ρd(z, t) =
2
σ

√
π

N(t)
exp{− 4

σ
√

N(t)

(
z ∓ �t2

2m

)2}, (15)

in the position representation and

ρ↑↑, ρ↓↓ → ρd(p, t)) = 2σ
√

π exp{−4σ2
(

p ∓ �t
h̄

)2}, (16)

in the momentum representation. It must be kept in mind, though, that the density
matrix represents a pure state which has ’nonlocal’ quantum correlations both in the spin
space and the position and momentum space. In (15) & (16) above, we are looking at
the diagonal elements of the position and momentum space density matrix and these show
system-apparatus correlations. The up and down spin states of the system correlate with
a Gaussian wavepackets centered round − �t2

2m and + �t2

2m , in the position space, respectively,
and around − �t

h̄ and + �t
h̄ in the momentum space. This pure entangled state of the system

and the apparatus is akin to a ’Schroödinger cat state’ which contains one-to-one correlations
between the system and ’macroscopic’ apparatus states with all quantum coherences intact.
Since the dynamics, as governed by the Hamiltonian (11), is purely unitary, there is no
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dissipation/decoherence involved, and the state remains a pure entangled state with all its
non-diagonal elements (ρ↑↓, ρ↓↑) as well as the spatial nonlocality. The establishment of
system-apparatus correlations, therefore, is not enough to affect a measurement as the off diagonal
elements of the density matrix have not vanished and we do not have the desired mixed state density
matrix.
Now let us look at the situation where we include the interaction with the environment. A
commonly used model to describe the environment is to consider it as a reservoir of quantum
oscillators, each of which interacts with the apparatus in our case and is describd by the
Hamiltonian

H = λσz +
p2

2m
+ �zσz + ∑

j

P2
j

2Mj
+

M2
j Ω2

j

2

(
Zj −

Cjz

MjΩ2
j

)2
. (17)

Here z and p denote the position and momentum of the particle (apparatus) of mass
m. λσz is the Hamiltonian of the system and � is the strength of the system-apparatus
coupling as mentioned earlier. The last term represents the Hamiltonian for the bath of
oscillators (environment) and the apparatus-environment interaction. Zj and Pj are the
position and momentum coordinates of the jth harmonic oscillator of the bath, Cjs are
the coupling strengths and Ωjs are the frequencies of the oscillators comprising the bath.
Note that the coupling of the apparatus with the many environmental degrees of freedom
is a coordinate-coordinate coupling. The dynamics for the closed universe of the system,
apparatus and environment is governed by the Hamiltonian evolution via (17) and the
Schrödinger equation. In the decoherence approach, a tracing over all the degrees of freedom
of the environment results in an equation describing the dynamics of the reduced density matrix
of the system-apparatus combine. The reduced density matrix evolves according to a master
equation which is obtained by solving the Schröinger equation for the entire universe of the
system, apparatus and the environment and then tracing over the environment degrees of
freedom. Several authors like Zeh and Zurek, among others, have worked extensively on the
decoherence approach using the master equation for the reduced density matrix. The master
equation for this kind of model of the environment was first derived separately by Caldeira
and Leggett, Agarwal, Dekker(Dekker, 1977) and others in the context of quantum Brownian
motion and is a popular equation for the study of open quantum systems. For our purpose,
we deal with the mater equation for the system-apparatus-environment composite described
by (17). The master equation for the density matrix, corresponding to the four elements of
spin space (↑↑, ↑↓, ↓↑, ↓↓) (see (13)) is

∂ρss� (z, z�, t)
∂t

=
[
− h̄

2im

( ∂2

∂z2 − ∂2

∂z�2
)
− γ(z − z�)

( ∂

∂z
− ∂

∂z�
)

(18)

− D
4h̄2 (z − z�)2 +

i�(zs − z�s�)
h̄

+
iλ(s − s�)

h̄

]
ρss� (z, z�, t),

where s, s� = +1 (for ↑) or −1 (for ↓). Here γ is the Langevin friction coefficient and D has
the usual interpretation of the diffusion coefficient. γ and D are related to the parameters
of the Hamiltonin of the total system. Without going into further details of the master
equation, it suffices to point out that the equation naturally separates into three distinct
terms, namely (i) a term describing the von Neumann equation which can be derived from
the Schrödinger equation and thus represents the pure quantum evolution, (ii) a term that
causes dissipation, which can be understood as a steady loss in energy or a relaxation process,
and (iii) a term causing diffusion, which can be understood as the fluctuctions or zig-zag
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ρ↑↑, ρ↓↓ → ρd(z, t) =
2
σ

√
π

N(t)
exp{− 4

σ
√

N(t)

(
z ∓ �t2

2m

)2}, (15)

in the position representation and

ρ↑↑, ρ↓↓ → ρd(p, t)) = 2σ
√

π exp{−4σ2
(

p ∓ �t
h̄

)2}, (16)

in the momentum representation. It must be kept in mind, though, that the density
matrix represents a pure state which has ’nonlocal’ quantum correlations both in the spin
space and the position and momentum space. In (15) & (16) above, we are looking at
the diagonal elements of the position and momentum space density matrix and these show
system-apparatus correlations. The up and down spin states of the system correlate with
a Gaussian wavepackets centered round − �t2

2m and + �t2

2m , in the position space, respectively,
and around − �t

h̄ and + �t
h̄ in the momentum space. This pure entangled state of the system

and the apparatus is akin to a ’Schroödinger cat state’ which contains one-to-one correlations
between the system and ’macroscopic’ apparatus states with all quantum coherences intact.
Since the dynamics, as governed by the Hamiltonian (11), is purely unitary, there is no
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dissipation/decoherence involved, and the state remains a pure entangled state with all its
non-diagonal elements (ρ↑↓, ρ↓↑) as well as the spatial nonlocality. The establishment of
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Hamiltonian

H = λσz +
p2

2m
+ �zσz + ∑

j

P2
j

2Mj
+

M2
j Ω2

j

2

(
Zj −

Cjz

MjΩ2
j

)2
. (17)

Here z and p denote the position and momentum of the particle (apparatus) of mass
m. λσz is the Hamiltonian of the system and � is the strength of the system-apparatus
coupling as mentioned earlier. The last term represents the Hamiltonian for the bath of
oscillators (environment) and the apparatus-environment interaction. Zj and Pj are the
position and momentum coordinates of the jth harmonic oscillator of the bath, Cjs are
the coupling strengths and Ωjs are the frequencies of the oscillators comprising the bath.
Note that the coupling of the apparatus with the many environmental degrees of freedom
is a coordinate-coordinate coupling. The dynamics for the closed universe of the system,
apparatus and environment is governed by the Hamiltonian evolution via (17) and the
Schrödinger equation. In the decoherence approach, a tracing over all the degrees of freedom
of the environment results in an equation describing the dynamics of the reduced density matrix
of the system-apparatus combine. The reduced density matrix evolves according to a master
equation which is obtained by solving the Schröinger equation for the entire universe of the
system, apparatus and the environment and then tracing over the environment degrees of
freedom. Several authors like Zeh and Zurek, among others, have worked extensively on the
decoherence approach using the master equation for the reduced density matrix. The master
equation for this kind of model of the environment was first derived separately by Caldeira
and Leggett, Agarwal, Dekker(Dekker, 1977) and others in the context of quantum Brownian
motion and is a popular equation for the study of open quantum systems. For our purpose,
we deal with the mater equation for the system-apparatus-environment composite described
by (17). The master equation for the density matrix, corresponding to the four elements of
spin space (↑↑, ↑↓, ↓↑, ↓↓) (see (13)) is

∂ρss� (z, z�, t)
∂t

=
[
− h̄

2im

( ∂2

∂z2 − ∂2

∂z�2
)
− γ(z − z�)

( ∂

∂z
− ∂

∂z�
)

(18)

− D
4h̄2 (z − z�)2 +

i�(zs − z�s�)
h̄

+
iλ(s − s�)

h̄

]
ρss� (z, z�, t),

where s, s� = +1 (for ↑) or −1 (for ↓). Here γ is the Langevin friction coefficient and D has
the usual interpretation of the diffusion coefficient. γ and D are related to the parameters
of the Hamiltonin of the total system. Without going into further details of the master
equation, it suffices to point out that the equation naturally separates into three distinct
terms, namely (i) a term describing the von Neumann equation which can be derived from
the Schrödinger equation and thus represents the pure quantum evolution, (ii) a term that
causes dissipation, which can be understood as a steady loss in energy or a relaxation process,
and (iii) a term causing diffusion, which can be understood as the fluctuctions or zig-zag
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movement seen in Brownian motion. The initial work of Zeh, Zurek and subsequent work
where the decoherence approach has been applied to typical quantum-measurement-like
situations like the Stern Gerlach experiment have shown that in the dynamics governed by
the master equation, coherent quantum superpositions persist for a very short time. They
are rapidly destroyed by the action of the environment. In fact, results show that the larger
the quantum superposition, the faster the decoherence. For truly macroscopic superpositions
such as Schrödinger’s cat, decoherence occurs on such a short time scale that it is impossible
to observe these quantum coherences. As mentioned above, the simple example by Zurek
(Fig.1) illustrates this point. Several other authors have studied decoherence in other systems
and their calculations are seen to contain two main features which can be seen as signatures
of decoherence: (a) the decoherence time, over which the superpositions decay is much much
shorter than any characteristic time scale of the system (the thermal relaxation time, γ−1, and
(b) the decoherence time varies versely as the square of a quantity that indicates the ‘size’ of
the quantum superposition (e.g. �t2

m in (15) is the "separation" in position space of the two
Gaussians correlating with up and down spin states).
Venugopalan et al(Venugopalan et al., 1995a;b) have shown that if the evolution of the
initial state (14) is via the mater equation, (18), there is a one-to-one correlation established
between the system states (spin) and the apparatus states (position and momentum degrees
of freedom). Further, the coupling with the environmental degrees of freedom causes
decoherence of the pure density matrix of the entangled state into a statistical mixture. For
more details of the exact solutions, the interested reader may see(Kumar, 1998; Venugopalan
et al., 1995a;b; Venugopalan, 1997). The density matrix for an initial system-apparatus state
described by (14), evolving via the master equation (18) has the form

ρS+A = |a|2| ↑��↑ |ρ↑↑(z, z�, t) + |b|2| ↓��↓ |ρ↓↓(z, z�, t)

+
[

ab∗| ↑��↓ |ρ↑↓(z, z�, t) + a∗b| ↓��↑ |ρ↓↑(z, z�, t).
]
e−αt3

. (19)

Here the off-diagonal elements of the density matrix (last two terms) contain a multiplicative
factor of the form e−αt3

which causes the decay of these terms to zero over a characteristic
time making the density matrix diagonal in spin space. Thus, we are left with a mixed state
density matrix which can be interpreted in terms of classical probbilities. It also turns out that
the spatial nonlocality of the diagonal components ρ↑↑ and ρ↓↓ disappear over time and these
are rendered completely diagonal in momentum space. The density matrix, thus ends up
being completely diagonal with perfect correlations between the spin component value and
the average momentum of the particle(Kumar, 1998; Venugopalan et al., 1995a). Thus, the
inclusion of environmental interaction has destroyed the quantum corelations (signified by
the off-diagonal elements of the density matrix) and rendered the reduced system-apparatus
combine into a statistical mixture. This, in effect, explains the mechanism leading to the
"collapse" in a quantum measurement, as well as the description of the way classicality
emerges from an underlying quantum substrate.

3.2 Decoherence and the harmonic oscillator apparatus
In the previous section we have seen a measurement-like scenario where the apparatus was
represented by the continuous position and momentum degrees of freedom of the particle
who’s spin was measured. Venugopalan(Venugopalan, 2000) has looked at the same problem
where the apparatus is a harmonic osillator. The interaction of a quantum system (spin-1/2)
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with a macroscopic quantum apparatus (harmonic oscillator) coupled to a bath of harmonic
oscillators was analysed. The Hamiltonian for this system would be

H = λσz +
1
2

mω2z2 + �zσz + ∑
j

P2
j

2Mj
+

M2
j Ω2

j

2

(
Zj −

Cjz

MjΩ2
j

)2
. (20)

Here ω is the frequency of the oscillator and all the other symbols have the same meaning as
explained in the previous section. The master equation for this system can be written exactly
in the same way as for the free particle in the previous section. The initial system-apparatus
state is considered to be a product state of any arbitrary state of the apparatus and a general
superposition state of the spin-1/2 state of the system, of the form

ψ = {a| ↑�+ b| ↓�} ⊗ φ(z). (21)

Exact solutions of the master equation show that the reduced density matrix of the
system-apparatus combine decoheres to a statistical mixture where up and down spins
eventually correlate with pointer states of the apparatus. The strength of this analysis is
that unlike in the previous section where the initial state of the apparatus was considered
to be a Gaussian wavepacket, no particular initial state of the harmonic oscillator was chosen.
Venugopalan shows that for the zero temperature bath the system-apparatus combine ends
up with spin-apparatus correlations in the coherent states of the harmonic oscillator for arbitrary
initial states of the apparatus. For a high temperature bath, pointer states are Gaussian
distributions or generalized coherent states(Venugopalan, 2000). For both cases, the off-diagonal
elements in spin-space decohere over a time scale which goes inversely as the square of the
"separation" between the "pointers". The "statistical mixture" into which the density matrix
decoheres looks like

ρS+A ∼ |a|2| ↑��↑ |ρ↑↑(z, z�, t) + |b|2| ↓��↓ |ρ↓↓(z, z�, t) (22)

where the apparatus states are

ρ↑↑ =

√
mω

πh̄
exp

{
− mω

h̄

(
R +

�

mω2

)2 − mωr2

4h̄

}
, (23)

ρ↓↓ =

√
mω

πh̄
exp

{
− mω

h̄

(
R − �

mω2

)2 − mωr2

4h̄

}
. (24)

with R = (z + z�)/2, and r = (z − z�). This is nothing but the density matrix corresponding
to a coherent state, |α�, of a harmonic oscillator with zero mean momentum and mean
positions=±�/mω2, and

|α|2 =
mω

2h̄

( �

mω2

)
. (25)

The above result is for a zero temperature bath. For a high temperature bath, generalized
coherent states constitute the pointer states. Exact results also demonstrate in an unambiguous
way that the pointer states in this measurement model emerge independent of the initial state
of the apparatus. For details of the analysis and exact solutions, the reader is referred to
(Venugopalan, 2000). For both the zero temperature and high temperature cases analysed,
the exact solutions for this model demonstrate the two main signatures of the decoherence
mechanism in a quantum measurement, namely, (a) the decoherence time is much smaller
than the thermal relaxation time, and (b) the decoherence time is inversely proportional to the

11Measurement in Quantum Mechanics: Decoherence and the Pointer Basis



10 Will-be-set-by-IN-TECH

movement seen in Brownian motion. The initial work of Zeh, Zurek and subsequent work
where the decoherence approach has been applied to typical quantum-measurement-like
situations like the Stern Gerlach experiment have shown that in the dynamics governed by
the master equation, coherent quantum superpositions persist for a very short time. They
are rapidly destroyed by the action of the environment. In fact, results show that the larger
the quantum superposition, the faster the decoherence. For truly macroscopic superpositions
such as Schrödinger’s cat, decoherence occurs on such a short time scale that it is impossible
to observe these quantum coherences. As mentioned above, the simple example by Zurek
(Fig.1) illustrates this point. Several other authors have studied decoherence in other systems
and their calculations are seen to contain two main features which can be seen as signatures
of decoherence: (a) the decoherence time, over which the superpositions decay is much much
shorter than any characteristic time scale of the system (the thermal relaxation time, γ−1, and
(b) the decoherence time varies versely as the square of a quantity that indicates the ‘size’ of
the quantum superposition (e.g. �t2

m in (15) is the "separation" in position space of the two
Gaussians correlating with up and down spin states).
Venugopalan et al(Venugopalan et al., 1995a;b) have shown that if the evolution of the
initial state (14) is via the mater equation, (18), there is a one-to-one correlation established
between the system states (spin) and the apparatus states (position and momentum degrees
of freedom). Further, the coupling with the environmental degrees of freedom causes
decoherence of the pure density matrix of the entangled state into a statistical mixture. For
more details of the exact solutions, the interested reader may see(Kumar, 1998; Venugopalan
et al., 1995a;b; Venugopalan, 1997). The density matrix for an initial system-apparatus state
described by (14), evolving via the master equation (18) has the form

ρS+A = |a|2| ↑��↑ |ρ↑↑(z, z�, t) + |b|2| ↓��↓ |ρ↓↓(z, z�, t)

+
[

ab∗| ↑��↓ |ρ↑↓(z, z�, t) + a∗b| ↓��↑ |ρ↓↑(z, z�, t).
]
e−αt3

. (19)

Here the off-diagonal elements of the density matrix (last two terms) contain a multiplicative
factor of the form e−αt3

which causes the decay of these terms to zero over a characteristic
time making the density matrix diagonal in spin space. Thus, we are left with a mixed state
density matrix which can be interpreted in terms of classical probbilities. It also turns out that
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Exact solutions of the master equation show that the reduced density matrix of the
system-apparatus combine decoheres to a statistical mixture where up and down spins
eventually correlate with pointer states of the apparatus. The strength of this analysis is
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to be a Gaussian wavepacket, no particular initial state of the harmonic oscillator was chosen.
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The above result is for a zero temperature bath. For a high temperature bath, generalized
coherent states constitute the pointer states. Exact results also demonstrate in an unambiguous
way that the pointer states in this measurement model emerge independent of the initial state
of the apparatus. For details of the analysis and exact solutions, the reader is referred to
(Venugopalan, 2000). For both the zero temperature and high temperature cases analysed,
the exact solutions for this model demonstrate the two main signatures of the decoherence
mechanism in a quantum measurement, namely, (a) the decoherence time is much smaller
than the thermal relaxation time, and (b) the decoherence time is inversely proportional to the
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square of the "separation" between the two "pointers" that correlate with the system states.
Thus, one again, one can see that the inclusion of the environmental degrees of freedom takes
a pure entangled system-apparatus state to a statistical mixture which lets us interpret the
measurement in terms of classical probabilities as well as lets us explain the emergence of
classical correlations from an underlying quantum substrate.

4. Decoherence and the pointer basis

Finally, we focus on a specific aspect of the decoherence theory, i.e., the notion of a ’preferred
basis’ or a ’pointer basis’. Our experience of the classical world suggests that unlike quantum
systems, which are allowed to exist in all possible states, classical systems only exist in a few
select states which are singled out by the environment from a larger quantum menu(Joos et al.,
2003; Zurek, 1981). These special states are the preferred basis, also referred to as the "pointer
states" in a quantum-measurement-like scenario. In a measurement-like scenario the pointer
basis should also be understood as those states of the apparatus in which correlations with
the system states are eventually established (irrespective of the initial states of the apparatus).
Inspite of many theoretical studies on the decoherence approach, not many systems have been
analysed with the aim of predicting what the pointer basis should be in a given situation. Let
us look at the issue of the pointer basis a little more closely by once again referring to the two
quantum measurement examples discussed in the previous sections: (i)the spin-1/2 system
with the free particle as an apparatus in the Stern-Gerlach-like interaction described in section
3.1 (ii) the spin-1/2 system with the harmonic oscillator as an apparatus described in section
3.2.
What is the preferred basis in a given scenario, and what decides in which pointer basis
the system-apparatus will be finally established? For simplified models where the self
Hamiltonian of the system has either been ignored or considered co-diagonal with the
interaction Hamiltonian, the pointer variable has been shown to be the one which commutes
with the interaction Hamiltonian(Zurek, 1981). However, in more general situations where
all terms are included, as in the two examples discussed here, the various parts of the
Hamiltonian may not commute. In such situations it is not obvious what decides the
preferred basis. For example, in the case of the spin system and free particle apparatus
with Stern-Gerlach like interaction discussed above, the coordinate-coordinate coupling
indicates that the position basis is intuitively expected to emerge as the preferred basis.
However, as we have seen, this is contrary to the conclusion of Venugopalan et al(Kumar,
1998; Venugopalan, 1994; Venugopalan et al., 1995a) in their analysis of the Stern-Gerlach
measurement model where the spin components eventually correlate with distributions
which are completely diagonal in the momentum basis and only approximately diagonal in
the position basis(Kumar, 1998).
In the literature, the preferred basis has been variously described as the one in which the
final state density matrix becomes diagonal or that set of basis states which are characterized
by maximum stability or a minimum increase in linear or statistical entropy, decided by a
predictability sieve(Zurek et al. , 1993). Using the Markovian Master equation for a harmonic
oscillator coupled to a heat bath and the criterion of the predictability sieve Zurek argues that
coherent states emerge as the preferred basis. This is in tune with the results for the harmonic
oscillator apparatus model where we have seen that pointer states end up being coherent
states or generalized coherent states , irrespective of the initial state in which the apparatus
starts off. This result also agrees with a study by Tegmark and Shapiro(Tegmark & Shapiro,
1999) where they show that generalized coherent states tend to be produced naturally when
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one looks at the reduced Wigner distributions of infinite systems of coupled oscillatirs as t →
∞. Paz and Zurek(Paz & Zurek, 1999) have investigated decoherence in the limit of weak
interaction with the environment and show that the eigenstates of energy emerge as pointer
states. Roy and Venugopalan have also obtained the exact solutions of the Master equation for
a harmonic oscillator and a free particle in a compact factorizable form and have shown that
the density matrix diagonalizes in the energy basis which is number states for the oscillator
and momentum states for the free particle for arbitrary initial conditions(Roy & Venugopalan,
1999). It is intuitive that the pointer states should naturally be a consequence of the interplay
between the various components of the total Hamiltonian and one should also expect them to
be independent of the initial state of the system/apparatus.
The studies mentioned above do shed light on the nature of the preferred basis but are
inadequate and there is a need to analyze more systems. In particular, it is important to
look at systems like the harmonic oscillator apparatus model which is fairly generic and
exact solutions make it an interesting candidate to explore experimentally in the context of
decoherence and quantum measurements. Also, this example indicates that it seems pertinent
to look at a system-apparatus-environment like scenario for measurement to analyse the issue
of the pointer basis and the states singled out by the environment.
Finally, we would like to refer to a recent work of Venugopalan(Venugopalan, 2011)
which indicates that there is a need to look at the bare system-apparatus interaction in a
measurement like scenaorio more carefully to get insights into what states would eventually
end up as pointer states and be selected in the event of environmental influence. Venugopalan
has looked at a simple one dimensional model for the system-apparatus interaction where
the system is a spin-1/2 particle, and its position and momentum degrees constitutes
the apparatus, like the Stern-Gerlach model discussed above. An analysis involving
only unitary Schrödinger dynamics illustrates the nature of the correlations established
in the system-apparatus entangled state. It is shown that even in the absence of any
environment-induced decoherence, or any other measurement model, certain initial states
of the apparatus -like localized Gaussian wavepackets - are preferred over others, in terms of
the establishment of measurementlike one-to-one correlations in the pure system-apparatus
entangled state. This result indicates that perhaps there already exist special states of the
apparatus within the quantum menu, and it is these that end up being ultimately selected by
the environment as the preferred states.

5. Conclusions

The central theme of the decoherence approach has been to explain, within the realm of
quantum theory, the appearance of classicality in the macrosopic, familiar physical world.
The strength of the theory has been often claimed to be the fact that it is within the realm
of quantum mechanics, and uses the rules of quantum theory to explain the emergence of
classicality. In the case of quantum measurement, decoherence is believed to "mimic" wave
function collapse. This is achieved via the transition from a pure state density matrix to a
statistical mixture with ’classically’ meaningful terms. In a sense, decoherence explains the
washing away of quantum coherences and the emergence of a state which makes classical
sense. In this chapter we have seen this happen in the two measurement models considered
above - one with free particle as an apparatus and one with a harmonic oscillator as the
apparatus. We have seen that the environmental influence is crucial in not only destroying
the quantum coherences, but also is selecting a special state or a preferred basis. A criticism
levelled against the decoherence approach is often that it does not explain the fact that only
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square of the "separation" between the two "pointers" that correlate with the system states.
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states or generalized coherent states , irrespective of the initial state in which the apparatus
starts off. This result also agrees with a study by Tegmark and Shapiro(Tegmark & Shapiro,
1999) where they show that generalized coherent states tend to be produced naturally when
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one looks at the reduced Wigner distributions of infinite systems of coupled oscillatirs as t →
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interaction with the environment and show that the eigenstates of energy emerge as pointer
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between the various components of the total Hamiltonian and one should also expect them to
be independent of the initial state of the system/apparatus.
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of the pointer basis and the states singled out by the environment.
Finally, we would like to refer to a recent work of Venugopalan(Venugopalan, 2011)
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end up as pointer states and be selected in the event of environmental influence. Venugopalan
has looked at a simple one dimensional model for the system-apparatus interaction where
the system is a spin-1/2 particle, and its position and momentum degrees constitutes
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the environment as the preferred states.

5. Conclusions

The central theme of the decoherence approach has been to explain, within the realm of
quantum theory, the appearance of classicality in the macrosopic, familiar physical world.
The strength of the theory has been often claimed to be the fact that it is within the realm
of quantum mechanics, and uses the rules of quantum theory to explain the emergence of
classicality. In the case of quantum measurement, decoherence is believed to "mimic" wave
function collapse. This is achieved via the transition from a pure state density matrix to a
statistical mixture with ’classically’ meaningful terms. In a sense, decoherence explains the
washing away of quantum coherences and the emergence of a state which makes classical
sense. In this chapter we have seen this happen in the two measurement models considered
above - one with free particle as an apparatus and one with a harmonic oscillator as the
apparatus. We have seen that the environmental influence is crucial in not only destroying
the quantum coherences, but also is selecting a special state or a preferred basis. A criticism
levelled against the decoherence approach is often that it does not explain the fact that only
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one of the mixed outcomes is actually observed, nor does it allow us to predict exactly which
one will be observed. Inspite of these criticism, it is generally accepted that the decoherence
explanation has certainly provided valuable insights into the actual mechanism of the loss
of quantum coherences. In recent years, the predictions of the decoherence theory have
been tested in several spectacular experiments which put the theory on a firm footing. Of
these, two experiments are particularly noteworthy as they have succeeded in monitoring the
decoherence mechanism, i.e., the actual transition from a pure entangled state to a statistical
mixture. Moreover, the experiments also give a quantitative estimate of the decoherence time.
These experiments have done no less than create Schrödinger-cat-like entangled states in the
laboratory and seen them transform into classically recognizable objects under the influence
of environmental coupling. Among the first successful attempts is an experiment by Brune et
al(Brune et al., 1996) at the Ecole Normale Superieure in Paris. Using Rubidium atoms and
high technology superconducting microwave cavities, Brune et al created a superposition of
quantum states involving radiation fields. The superposition was the equivalent of a "system+
measuring apparatus" situation in which the "meter" was pointing simultaneously towards
two different directions. This is a Schrönger-Cat-like entangled state. Through a series of
ingenious "atom-interferometry" experiments, Brune et al. managed to not only "read" this
pure state but also monitored the decoherence phenomenon as it unfolded, transforming this
superposition state to a statistical mixture. Besides providing a direct insight into the role
of the environment in a quantum measurement process, their experiment also confirmed the
basic tenets of the decoherence theory. The two main signatures of the decoherence theory
were clearly observed in this classic experiment. The environment in this experiment are
the "modes" of the electromagnetic field in the cavity. At the National Institute of Standards
and Technology, Boulder, Colorado, the group headed by Wineland(Monroe et al., 1996)
created a Schrödinger-Cat-like state using a series of laser pulses to entangle the internal
(electronic) and the external (motional) states of a Beryllium ion in a "Paul trap". The motion
of this trapped ion couples to an electric field which changes randomly, thus simulating an
environment . Monroe et al call this environment an engineered reservoir whose state and
coupling can be controlled. Through their measurements, Wineland et al. have successfully
demonstrated the two important signatures of the decoherence mechanism. Thus one can see
that the qualitative and quantitative predictions of the decoherence theory are experimentally
tested. These tests would be highly relevant to all experimental implementations of the novel
ideas of quantum information and computation as decoherence would ruin the functioning
of devices which use uniquely quantum mechanical effects for information processing. The
above two experiments, along with others have provided important insights into the role of
the environment in bringing about classicality and thus decoherence theory is strengthened
by these spectacular observations. What, then, is the final verdict of the decoherence theory?
Has it resolved the conceptual problems of quantum mechanics? There are many who believe
that the conceptual problems of quantum mechanics are still unresolved and decoherence
does not answer many issues. At the end of the day we can say that the decoherence
explanation takes away some of the mystery from the idea of ’wave function collapse’ and
provides a conventional mechanism to explain the appearance of a classical world. Many
physicists find this a satisfactory explanation and there is no doubt that the experiments
discussed clearly show how decoherence washes away quantum coherences providing a fairly
convincing evidence for explaining the absence of Schödinger’s Cats in the real world. For all
practical purposes, the decoherence explanation finds favour as a satisfactory settlement of
the quantum measurement problem.
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1. Introduction

Time, as well as 3-position, sometimes is a parameter, but sometimes is an observable that
in quantum theory would be expected to be associated with an operator. However, almost
from the birth of quantum mechanics (cf., e.g., Ref.(Pauli, 1926; 1980)), it is known that time
cannot be represented by a selfadjoint operator, except in the case of special systems (such
as an electrically charged particle in an infinite uniform electric field)1. The list of papers
devoted to the problem of time in quantum mechanics is extremely large (see, for instance,
Refs. (Aharonov et al., 1998; Atmanspacher & Amann, 1998; Blanchard P & Jadczyk, 1996;
Busch et al., 1994; Delgado, 1999; Egusquiza & Muga, 1999; Giannitrapani, 1997; Góźdź A &
Dȩbicki, 2007; Grot et al., 1996; Holevo, 1978; 1982; Kijowski, 1997; Kobe et al., 1994; Kocha’nski
& Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami, 1968; 1969; 1970;
Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; 1990; 1992; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky, 1998; Olkhovsky et
al., 2004; Olkhovsky & Recami, 2007; Olkhovsky, 2009; 2011; Recami, 1976; 1977; Srinivas &
Vijayalakshmi, 1981; Toller, 1999; Wang & Xiong, 2007), and references therein). The same
situation had to be faced also in quantum electrodynamics and, more in general, in relativistic
quantum field theory (see, for instance, Refs.(Olkhovsky & Recami, 1968; 1969; Olkhovsky et
al., 2004; Olkhovsky & Recami, 2007)).
As to quantum mechanics, the very first relevant articles are probably Refs. (Holevo, 1978;
1982; Olkhovsky & Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al., 1974;
Olkhovsky, 1984; 1990; 1992; 1998; Recami, 1976; 1977), and refs. therein. A second set of
papers on time in quantum physics (Aharonov et al., 1998; Atmanspacher & Amann, 1998;
Blanchard P & Jadczyk, 1996; Busch et al., 1994; Delgado, 1999; Egusquiza & Muga, 1999;
Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Grot et al., 1996; Kijowski, 1997; Kobe et al.,

1 This is a consequence of the semi-boundedness of the continuous energy spectra from below (usually
from zero). Only for an electrically charged particle in an infinite uniform electric field, and other very
rare special systems, the continuous energy spectrum is not bounded and extends over the whole axis
from −∞ to +∞. It is curious that for systems with continuous energy spectra bounded from above
and from below, the time operator is however selfadjoint and yields a discrete time spectrum.
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1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007; Srinivas & Vijayalakshmi, 1981; Toller, 1999; Wang & Xiong, 2007) appeared in
the nineties, stimulated partially by the need of a consistent definition for the tunneling time.
It is noticeable, and let us stress it right now, that this second set of papers seems however to
have ignored Naimark’s theorem(Naimark, 1940), which had previously constituted (directly
or indirectly) an important basis for the results in Refs. (Holevo, 1978; 1982; Olkhovsky &
Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; 1990;
1992; 1998; Recami, 1976; 1977), moreover, all the papers (Aharonov et al., 1998; Atmanspacher
& Amann, 1998; Blanchard P & Jadczyk, 1996; Busch et al., 1994; Grot et al., 1996; Kobe et al.,
1994; Leo’n, 1997; Srinivas & Vijayalakshmi, 1981) attempted at solving the problem of time
as a quantum observable by means of formal mathematical operations performed outside the
usual Hilbert space of conventional quantum mechanics. Let us recall that Naimark’s theorem
states(Naimark, 1940) that the non-orthogonal spectral decomposition of a hermitian operator
can be approximated by an orthogonal spectral function (which corresponds to a selfadjoint
operator), in a weak convergence, with any desired accuracy.
The main goal of the first part of the present paper is to justify the use of time as a quantum
observable, basing ourselves on the properties of the hermitian (or, rather, maximal hermitian)
operators for the case of continuous energy spectra: cf., e.g., the Refs. (Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007)).
The question of time as a quantum-theoretical observable is conceptually connected with the
much more general problem of the four-position operator and of the canonically conjugate
four-momentum operator, both endowed with an hermitian and an anti-hermitian part, for
relativistic spin-zero particles: This problem is analyzed in the second part of the present
paper.
In the third part of this work, it is shown how non-hermitian operators can be meaningfully
and extensively used, for instance, for describing unstable states (decaying resonances). Brief
mentions are added of the cases of quantum dissipation, and of the nuclear optical potential.

2. Time operator in non-relativistic quantum mechanics and in quantum
electrodynamics

2.1 On Time as an observable in non-relativistic quantum mechanics for systems with
continuous energy spectra

The last part of the above-mentioned list (Aharonov et al., 1998; Atmanspacher & Amann,
1998; Blanchard P & Jadczyk, 1996; Busch et al., 1994; Delgado, 1999; Egusquiza & Muga, 1999;
Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Grot et al., 1996; Kijowski, 1997; Kobe et al.,
1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007; Toller, 1999; Wang & Xiong, 2007), of papers, in particular Refs. (Aharonov et al.,
1998; Atmanspacher & Amann, 1998; Blanchard P & Jadczyk, 1996; Delgado, 1999; Egusquiza
& Muga, 1999; Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Grot et al., 1996; Kijowski,
1997; Kobe et al., 1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Toller,
1999; Wang & Xiong, 2007), appeared in the nineties, devoted to the problem of Time in
non-relativistic quantum mechanics, essentially because of the need to define the tunnelling
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time. As remarked, those papers did not refer to the Naimark theorem2 (Naimark, 1940) which
had mathematically supported, on the contrary, the results in (Holevo, 1978; 1982; Olkhovsky
& Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; 1990;
1992; 1998; Recami, 1976; 1977), and afterwards in (Olkhovsky & Recami, 1992; Olkhovsky
et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007).
Indeed, already in the seventies (in Refs. (Olkhovsky & Recami, 1968; 1969; 1970; Olkhovsky,
1973; Olkhovsky et al., 1974; Recami, 1976; 1977) while more detailed presentations and
reviews can be found in (Olkhovsky, 1984; 1990; 1992; 1998) and independently in (Holevo,
1978; 1982)), it was proven that, for systems with continuous energy spectra, Time is a
quantum-mechanical observable, canonically conjugate to energy. Namely, it had been shown
the time operator

t̂ =

{
t, in the time (t-)representation, (a)

−ih̄
∂

∂E
, in the energy (E-)representation (b)

(1)

to be not selfadjoint, but hermitian, and to act on square-integrable space-time wave packets in
the representation (1a), and on their Fourier-transforms in (1b), once point E = 0 is eliminated
(i. e., once one deals only with moving packets, excluding any non-moving rear tails and the
cases with zero fluxes)3 In Refs.(Olkhovsky, 1984; 1990; 1992; 1998) and (Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky
& Recami, 2007), the operator t̂ (in the t-representation) had the property that any averages
over time, in the one-dimensional (1D) scalar case, were to be obtained by use of the following
measure (or weight):

W (t, x) dt =
j (x, t) dt

+∞∫
−∞

j (x, t) dt
, (2)

where the the flux density j (x, t) corresponds to the (temporal) probability for a particle
to pass through point x during the unit time centered at t, when traveling in the positive
x-direction. Such a measure is not postulated, but is a direct consequence of the well-known
probabilistic spatial interpretation of ρ (x, t) and of the continuity relation ∂ρ (x, t)/∂ t +
divj (x, t) = 0. Quantity ρ(x, t) is, as usual, the probability of finding the considered moving
particle inside a unit space interval, centered at point x, at time t.
Quantities ρ(x, t) and j (x, t) are related to the wave function Ψ (x, t) by the ordinary
definitions ρ (x, t) = |Ψ (x, t)|2 and j (x, t) = �[Ψ∗(x, t) (h̄/iμ)Ψ (x, t))]). When the flux
density j (x, t) changes its sign, quantity W (x, t) dt is no longer positive-definite and, as
in Refs.(Olkhovsky, 1984; Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; Olkhovsky &
Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007), it acquires the physical
meaning of a probability density only during those partial time-intervals in which the flux

2 The Naimark theorem states in particular the following(Naimark, 1940): The non-orthogonal spectral
decomposition of a maximal hermitian operator can be approximated by an orthogonal spectral
function (which corresponds to a selfadjoint operator), in a weak convergence, with any desired
accuracy.

3 Such a condition is enough for operator (1a,b) to be a hermitian, or more precisely a maximal
hermitian[2–8] operator (see also (Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; Olkhovsky &
Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007)); but it can be dispensed with by
recourse to bilinear forms (see, e.g., Refs.(Recami, 1976; 1977; Recami et al., 1983) and refs. therein), as
we shall see below.
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1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007; Srinivas & Vijayalakshmi, 1981; Toller, 1999; Wang & Xiong, 2007) appeared in
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& Amann, 1998; Blanchard P & Jadczyk, 1996; Busch et al., 1994; Grot et al., 1996; Kobe et al.,
1994; Leo’n, 1997; Srinivas & Vijayalakshmi, 1981) attempted at solving the problem of time
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2. Time operator in non-relativistic quantum mechanics and in quantum
electrodynamics

2.1 On Time as an observable in non-relativistic quantum mechanics for systems with
continuous energy spectra
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Quantities ρ(x, t) and j (x, t) are related to the wave function Ψ (x, t) by the ordinary
definitions ρ (x, t) = |Ψ (x, t)|2 and j (x, t) = �[Ψ∗(x, t) (h̄/iμ)Ψ (x, t))]). When the flux
density j (x, t) changes its sign, quantity W (x, t) dt is no longer positive-definite and, as
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decomposition of a maximal hermitian operator can be approximated by an orthogonal spectral
function (which corresponds to a selfadjoint operator), in a weak convergence, with any desired
accuracy.

3 Such a condition is enough for operator (1a,b) to be a hermitian, or more precisely a maximal
hermitian[2–8] operator (see also (Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; Olkhovsky &
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we shall see below.
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density j (x, t) does keep its sign. Therefore, let us introduce the two measures(Olkhovsky
& Recami, 1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007) by separating the
positive and the negative flux-direction values (that is, the flux signs)

W± (t, x) dt =
j± (x, t) dt

+∞∫
−∞

j± (x, t) dt
(3)

with j± (x, t) = j (x, t) θ(±j).
Then, the mean value �t±(x)� of the time t at which the particle passes through position x,
when traveling in the positive or negative direction, is, respectively,

�t±(x)� =

+∞∫

−∞

t j± (x, t) dt

+∞∫

−∞

j± (x, t) dt

=

+∞∫

0

1
2

[
G∗(x, E) t̂ v G (x, E) + v G∗(x, E) t̂ G (x, E)

]
dE

+∞∫

0

v
∣∣G (x, E)

∣∣2 dE

, (4)

where G (x, E) is the Fourier-transform of the moving 1D wave-packet

Ψ (x, t) =
+∞∫

0

G (x, E) exp(−iEt/h̄) dE =

=

+∞∫

0

g(E) ϕ(x, E) exp(−iEt/h̄) dE

when going on from the time to the energy representation. For free motion, one has G(x, E) =
g(E) exp(ikx), and ϕ(x, E) = exp(ikx), while E = μ h̄2k2/ 2 = μ v2/ 2. In Refs. (Olkhovsky &
Recami, 1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007), there were defined the
mean time durations for the particle 1D transmission from xi to x f > xi , and reflection from
the region (xi, +∞) back to the interval x f ≤ xi. Namely

�τT(xi, x f )� = �t+(x f )� − �t+(xi)� (5)

and
�τR(xi, x f )� = �t−(x f )� − �t+(xi)�, (6)

respectively. The 3D generalization for the mean durations of quantum collisions and nuclear
reactions appeared in (Olkhovsky, 1984; 1990; 1992; 1998). Finally, suitable definitions of the
averages �tn� on time of tn, with n = 1, 2 . . ., and of � f (t)�, quantity f (t) being any analytical
function of time, can be found in (Olkhovsky & Recami, 2007; 2008), where single-valued
expressions have been explicitly written down.
The two canonically conjugate operators, the time operator (1) and the energy operator

Ê =

{
E, in the energy (E-) representation, (a)

ih̄
∂

∂t
, in the time (t-) representation (b)

(7)
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do clearly satisfy the commutation relation(Olkhovsky & Recami, 2007; 2008; Recami, 1976;
1977)

[Ê, t̂] = ih̄. (8)

The Stone and von Neumann theorem(Stone, 1930), has been always interpreted as
establishing a commutation relation like (8) for the pair of the canonically conjugate operators
(1) and (7), in both representations, for selfadjoint operators only. However, it can be
generalized for (maximal) hermitian operators, once one introduces t̂ by means of the
single-valued Fourier transformation from the t-axis (−∞ < t < ∞) to the E-semiaxis (0 < E <
∞), and utilizes the properties(Akhiezer & Glazman, 1981; D ter Haar, 1971) of the “(maximal)
hermitian” operators: This has been shown, e.g., in the last one of Refs.(Olkhovsky & Recami,
1968; 1969) as well as in Refs.(Olkhovsky & Recami, 2007; 2008).
Indeed, from eq. (8) the uncertainty relation

ΔE Δt ≥ h̄/2 (9)

(where the standard deviations are Δa =
√

Da, quantity Da being the variance Da =
�a2� − �a�2, and a = E, t, while �. . .� denotes the average over t with the measures W (x, t) dt
or W± (x, t) dt in the t-representation) can be derived also for operators which are simply
hermitian, by a straightforward generalization of the procedures which are common in the
case of selfadjoint (canonically conjugate) quantities, like coordinate x̂ and momentum p̂x .
Moreover, relation (8) satisfies(Olkhovsky & Recami, 2007; 2008) the Dirac “correspondence”
principle, since the classical Poisson brackets {q0, p0}, with q0 = t and p0 = −E, are equal
to 1. In Refs. (Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; Recami, 1976;
1977), and (Olkhovsky & Recami, 2007; 2008), it was also shown that the differences, between
the mean times at which a wave-packet passes through a pair of points, obey the Ehrenfest
correspondence principle.
As a consequence, one can state that, for systems with continuous energy spectra, the
mathematical properties of (maximal) hermitian operators, like t̂ in eq. (1), are sufficient for
considering them as quantum observables. Namely, the uniqueness(Akhiezer & Glazman,
1981) of the spectral decomposition (although not orthogonal) for operators t̂, and t̂n (n > 1),
guarantees the “equivalence” of the mean values of any analytical function of time when
evaluated in the t and in the E-representations. In other words, such an expansion is
equivalent to a completeness relation, for the (approximate) eigenfunctions of t̂n (n > 1),
which with any accuracy can be regarded as orthogonal, and corresponds to the actual
eigenvalues for the continuous spectrum. These approximate eigenfunctions belong to the
space of the square-integrable functions of the energy E (cf., for instance, see, for instance
Refs. (Olkhovsky, 1984; 1990; 1992; 1998; Olkhovsky & Recami, 2007; Recami, 1976; 1977) and
refs. therein).
From this point of view, there is no practical difference between selfadjoint and maximal
hermitian operators for systems with continuous energy spectra. Let us repeat that the
mathematical properties of t̂n (n > 1) are enough for considering time as a quantum
mechanical observable (like energy, momentum, space coordinates, etc.) without having to
introduce any new physical postulates.
It is remarkable that von Neumann himself(Von Neumann, 1955), before confining himself for
simplicity to selfajoint operators, stressed that operators like our time t̂ may represent physical
observables, even if they are not selfadjoint. Namely, he explicitly considered the example of
the operator − ih̄ ∂/∂x associated with a particle living in the right semi-space bounded by a
rigid wall located at x = 0; that operator is not selfadjoint (acting on wave packets defined
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on the positive x-axis) only, nevertheless it obviously corresponds to the x-component of the
observable momentum for that particle: See Fig.1.

Fig. 1. For a particle Q free to move in a semi-space, bounded by a rigid wall located at x = 0,
the operator −i∂/∂x has the clear physical meaning of the particle momentum x-component
even if it is not selfadjoint (cf. von Neumann(Von Neumann, 1955), and Ref. (Recami, 1976;
1977)): See the text.

At this point, let us emphasize that our previously assumed boundary condition E �= 0 can be
dispensed with, by having recourse (Olkhovsky & Recami, 1968; 1969; Recami, 1976; 1977) to
the bi-linear hermitian operator

t̂ =
−ih̄

2

↔
∂

∂E
(10)

where the meaning of the sign ↔ is clear from the accompanying definition

( f , t̂ g) =
(

f , − ih
2

∂

∂E
g
)
+

(
− ih

2
∂

∂E
f , g

)
.

By adopting this expression for the time operator, the algebraic sum of the two terms in the
r.h.s. of the last relation results to be automatically zero at point E = 0. This question will
be exploited below, in Sect. 3 (when dealing with the more general case of the four-position
operator). Incidentally, such an “elimination” (Olkhovsky & Recami, 1968; 1969; Recami, 1976;
1977) of point E = 0 is not only simpler, but also more physical, than other kinds of elimination
obtained much later in papers like (Egusquiza & Muga, 1999; Muga et al., 1999).
In connection with the last quotation, leu us for briefly comment on the so-called
positive-operator-value-measure (POVM) approach, often used or discussed in the second set
of papers on time in quantum physics mentioned in our Introduction. Actually, an analogous
procedure had been proposed, since the sixties (Aharonov & Bohm, 1961), in some approaches
to the quantum theory of measurements. Afterwards, and much later, the POVM approach
has been applied, in a simplified and shortened form, to the time-operator problem in the
case of one-dimensional free motion: for instance, in Refs. (Delgado, 1999; Egusquiza &
Muga, 1999; Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Kijowski, 1997; Kobe et al., 1994;
Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Srinivas & Vijayalakshmi,
1981; Toller, 1999; Wang & Xiong, 2007) and especially in (Egusquiza & Muga, 1999; Muga et
al., 1999). These papers stated that a generalized decomposition of unity (or “POV measure”)
could be obtained from selfadjoint extensions of the time operator inside an extended Hilbert
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space (for instance, adding the negative values of the energy, too), by exploiting the Naimark
dilation-theorem(Naimark, 1943): But such a program has been realized till now only in the
simple cases of one-dimensional particle free motion.
By contrast, our approach is based on a different Naimark’s theorem(Naimark, 1940), which,
as already mentioned above, allows a much more direct, simple and general –and at
the same time non less rigorous– introduction of a quantum operator for Time. More
precisely, our approach is based on the so-called Carleman theorem(Carleman, 1923), utilized
in Ref.(Naimark, 1940), about approximating a hermitian operator by suitable successions of
“bounded” selfadjoint operators: That is, of selfadjoint operators whose spectral functions
do weakly converge to the non-orthogonal spectral function of the considered hemitian
operator. And our approach is applicable to a large family of three-dimensional (3D)
particle collisions, with all possible Hamiltonians. Actually, our approach was proposed in
the early Refs. (Olkhovsky & Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al.,
1974; Olkhovsky, 1984; Recami, 1976; 1977) and in the first one of Ref. (Olkhovsky & Recami,
1992; Olkhovsky et al., 1995), and applied therein for the time analyzis of quantum collisions,
nuclear reactions and tunnelling processes.

2.2 On the momentum representation of the Time operator
In the continuous spectrum case, instead of the E-representation, with 0 < E < +∞, in
eqs.(1)–(4) one can also use the k-representation(Holevo, 1978; 1982), with the advantage that
−∞ < k < +∞:

Ψ (x, t) =
+∞∫

−∞

g(k) ϕ(x, k) exp(−iEt/h̄) dk (11)

with E = h̄2k2/ 2μ, and k �= 0.
For the extension of the momentum representation to the case of �tn�, with n > 1, we confine
ourselves here to refer the reader to the papers (Olkhovsky & Recami, 2007; 2008).

2.3 An alternative weight for time averages (in the cases of particle dwelling inside a certain
spatial region)

We recall that the weight (2) [as well as its modifications (3)] has the meaning of a probability
for the considered particle to pass through point x during the time interval (t, t + dt). Let
us follow the procedure presented in Refs. (Olkhovsky & Recami, 1992; Olkhovsky et al.,
1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007) and
refs. therein, and analyze the consequences of the equality

+∞∫

−∞

j (x, t) dt =
+∞∫

−∞

∣∣ Ψ(x, t)
∣∣2 dx (12)

obtained from the 1D continuity equation. One can easily realize that a second, alternative
weight can be adopted:

d P(x, t) ≡ Z (x, t) dx =

∣∣Ψ(x, t)
∣∣2 dx

+∞∫

−∞

∣∣ Ψ(x, t)
∣∣2 dx

(13)

2.3 An alternative weight for time averages (in the cases of particle dwelling inside a 
certain spatial region) 
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on the positive x-axis) only, nevertheless it obviously corresponds to the x-component of the
observable momentum for that particle: See Fig.1.
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∂

∂E
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which possesses the meaning of probability for the particle to be located (or to sojourn, i. e.,
to dwell) inside the infinitesimal space region (x, x + dx) at the instant t, independently of its
motion properties. Then, the quantity

P(x1, x2, t) =

x2∫

x1

∣∣Ψ(x, t)
∣∣2 dx

+∞∫

−∞

∣∣ Ψ(x, t)
∣∣2 dx

(14)

will have the meaning of probability for the particle to dwell inside the spatial interval (x1, x2)
at the instant t.
As it is known (see, for instance, Refs.(Olkhovsky & Recami, 1992; Olkhovsky et al., 1995;
2004; Olkhovsky & Recami, 2007) and refs. therein), the mean dwell time can be written in the
two equivalent forms:

�τ(xi, x f )� =

+∞∫

−∞

dt

x f∫

xi

|Ψ(x, t)|2 dx

+∞∫

−∞

jin(xi, t) dt

(15)

and

�τ(xi , x f )� =

+∞∫

−∞

t j(x f , t) dt −
+∞∫

−∞

t j(xi, t) dt

+∞∫

−∞

jin(xi, t) dt

, (16)

where it has been taken account, in particular, of relation (12), which follows — as already
said — from the continuity equation.
Thus, in correspondence with the two measures (2) and (13), when integrating over time one
gets two different kinds of time distributions (mean values, variances...), which refer to the
particle traversal time in the case of measure (2), and to the particle dwelling in the case of
measure (13). Some examples for 1D tunneling are contained in Refs.(Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007).

2.4 Extension of the notion of Time as a quantum-theoretical observable for the case of
photons

As is known (see, for instance, Refs. (Akhiezer & Berestezky, 1959; Olkhovsky et al., 2004;
Schweber, 1961)), in first quantization the single-photon wave function can be probabilistically
described in the 1D case by the wave-packet4

A(r, t) =
∫

k0

d3k
k0

χ(k) ϕ(k, r) exp(−ik0t) , (17)

4 The gauge condition divA = 0 is assumed.

2.4 Extension of the notion of Time as a quantum-theoretical observable for the case 
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where, as usual, A(r, t) is the electromagnetic vector potential, while r = {x, y, z}, k =
{kx , ky, kz}, k0 ≡ w/c = ε/ h̄c, and k ≡ |k| = k0. The axis x has been chosen as the
propagation direction. Let us notice that χ(k) = ∑

i=y,z
χi(k) ei(k), with eiej = δij, and

xi , xj = y, z, while χi(k) is the probability amplitude for the photon to have momentum k and
polarization ej along xj. Moreover, it is ϕ(k, r) = exp(ikxx) in the case of plane waves, while
ϕ(k, r) is a linear combination of evanescent (decreasing) and anti-evanescent (increasing)
waves in the case of “photon barriers” (i.e., band-gap filters, or even undersized segments
of waveguides for microwaves, or frustrated total-internal-reflection regions for light, and so
on). Although it is not easy to localize a photon in the direction of its polarization(Akhiezer
& Berestezky, 1959; Schweber, 1961), nevertheless for 1D propagations it is possible to use the
space-time probabilistic interpretation of eq. (17), and define the quantity

ρem(x, t) dx =
S0 dx∫
S0 dx

, S0 =
∫ ∫

s0 dy dz (18)

(s0 = [E∗ · E + H∗ · H]/ 4π being the energy density, with the electromagnetic field H =
rot A, and E = −1/c ∂A/∂t), which represents the probability density of a photon to be found
(localized) in the spatial interval (x, x + dx) along the x-axis at the instant t; and the quantity

jem(x, t) dt =
Sx dt∫

Sx(x, t) dt
, Sx(x, t) =

∫ ∫
sx dy dz (19)

(sx = c �[E∗ ∧ H]x / 8π being the energy flux density), which represents the flux probability
density of a photon to pass through point x in the time interval (t, t + dt): in full analogy with the
probabilistic quantities for non-relativistic particles. The justification and convenience of such
definitions is self-evident, when the wave-packet group velocity coincides with the velocity of
the energy transport; in particular: (i) the wave-packet (17) is quite similar to wave-packets
for non-relativistic particles, and (ii) in analogy with conventional non-relativistic quantum
mechanics, one can define the “mean time instant” for a photon (i.e., an electromagnetic
wave-packet) to pass through point x, as follows

�t(x)� =
+∞∫

−∞

t Jem, x dt =

+∞∫

−∞

t Sx(x, t) dt

+∞∫

−∞

Sx(x, t) dt

.

As a consequence [in the same way as in the case of equations (1)–(2)], the form (1) for the
time operator in the energy representation is valid also for photons, with the same boundary
conditions adopted in the case of particles, that is, with χi (0) = χi (∞) and with E = h̄ c k0.
The energy density s0 and energy flux density sx satisfy the relevant continuity equation

∂s0

∂t
+

∂sx

∂x
= 0 (20)

which is Lorentz-invariant for 1D spatial propagation(Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007) processes.
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2.5 Introducing the analogue of the “Hamiltonian” for the case of the Time operator: A new
hamiltonian approach

In non-relativistic quantum theory, the Energy operator acquires (cf., e.g., Refs. (Olkhovsky,

1990; 1992; 1998; Olkhovsky & Recami, 2007)) the two forms: (i) ih̄
∂

∂t
in the t-representation,

and (ii) Ĥ ( p̂x , x̂, . . .) in the hamiltonianian formalism. The “duality” of these two forms can

be easily inferred from the Schröedinger equation itself, ĤΨ = ih̄
∂Ψ
∂t

. One can introduce in

quantum mechanics a similar duality for the case of Time: Besides the general form (1) for
the Time operator in the energy representation, which is valid for any physical systems in
the region of continuous energy spectra, one can express the time operator also in a “hamiltonian
form”, i.e., in terms of the coordinate and momentum operators, by having recourse to their
commutation relations. Thus, by the replacements

Ê → Ĥ ( p̂x , x̂, . . .),

t̂ → T̂ ( p̂x , x̂, . . .),
(21)

and on using the commutation relation [similar to eq. (3)]

[Ĥ, T̂] = ih̄ , (22)

one can obtain(Rosenbaum, 1969), given a specific ordinary Hamiltonian, the corresponding
explicit expression for T̂ ( p̂x , x̂, . . .).
Indeed, this procedure can be adopted for any physical system with a known Hamiltonian
Ĥ ( p̂x, x̂, . . .), and we are going to see a concrete example. By going on from the coordinate
to the momentum representation, one realizes that the formal expressions of both the
hamiltonian-type operators Ĥ ( p̂x, x̂, . . .) and T̂ ( p̂x, x̂, . . .) do not change, except for an obvious
change of sign in the case of operator T̂ ( p̂x , x̂, . . .).
As an explicit example, let us address the simple case of a free particle whose Hamiltonian is

Ĥ =

⎧⎨
⎩

p̂2
x/ 2μ, p̂x = −ih̄

∂

∂x
, in the coordinate representation (a)

p2
x/ 2μ . in the momentum representation (a)

(23)

Correspondingly, the Hamilton-type time operator, in its symmetrized form, will write

T̂ =

⎧⎪⎨
⎪⎩

μ

2

�
p̂−1

x x + xp̂−1
x + ih̄ ; p̂−2

x

�
, in the coordinate representation (a)

−μ

2

�
p−1

x x̂ + x̂p−1
x + ih̄/p2

x

�
, in the momentum representation (b)

(24)

where

p̂−1
x =

i
h̄

�
dx . . . , x̂ = ih̄

∂

∂px
.

Incidentally, operator (24b) is equivalent to −ih̄ ∂
∂E , since E = p2

x/ 2μ; and therefore it is also
a (maximal) hermitian operator. Indeed, by applying the operator T̂ ( p̂x , x̂, . . .), for instance, to
a plane-wave of the type exp(ikx), we obtain the same result in both the coordinate and the
momentum representations:

T̂ exp(ikx) =
x
v

exp(ikx) (25)

2.5 Introducing the analogue of the “Hamiltonian” for the case of the Time operator: A new 
hamiltonian approach 
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quantity x/v being the free-motion time (for a particle with velocity v ) for traveling the
distance x.
On the basis of what precedes, it is possible to show that the wave function Ψ(x, t) of a
quantum system satisfies the two (dual) equations

Ĥ Ψ = ih̄
∂Ψ
∂t

and T̂ Ψ = t Ψ . (26)

In the energy representation, and in the stationary case, we obtain again two (dual) equations

Ĥ ϕε = ε ϕε and T̂ ϕε = −ih̄
∂ϕε

∂ε
, (27)

quantity ϕε being the Fourier-transform of Ψ:

ϕε =
1

2πh̄

+∞∫

−∞

Ψ(x, t) eiεt/h̄ dt . (28)

It might be interesting to apply the two pairs of the last dual equations also for
investigating tunnelling processes through the quantum gravitational barrier, which appears
during inflation, or at the beginning of the big-bang expansion, whenever a quasi-linear
Schrödinger-type equation does approximately show up.

2.6 Time as an observable (and the time-energy uncertainty relation), for
quantum-mechanical systems with discrete energy spectra

For describing the time evolution of non-relativistic quantum systems endowed with a purely
discrete (or a continuous and discrete) spectrum, let us now introduce wave-packets of the
form (Olkhovsky, 1990; 1992; 1998; Olkhovsky & Recami, 2007; 2008):

ψ (x, t) = ∑
n=0

gn ϕn(x) exp[−i(εn − ε0)t/h̄] , (29)

where ϕn(x) are orthogonal and normalized bound states which satisfy the equation
Ĥ ϕn(x) = εn ϕn(x), quantity Ĥ being the Hamiltonian of the system; while the coefficients
gn are normalized: ∑

n=0
|gn|2 = 1. We omitted the non-significant phase factor exp(−iε0t/h̄)

of the fundamental state.
Let us first consider the systems whose energy levels are separated by intervals admitting a
maximum common divisor D (for ex., harmonic oscillator, particle in a rigid box, and spherical
spinning top), so that the wave packet (29) is a periodic function of time possessing as period
the Poincaré cycle time T = 2πh̄/D. For such systems it is possible (Olkhovsky, 1990; 1992;
1998; Olkhovsky & Recami, 2007; 2008) to construct a selfadjoint time operator with the form
(in the time representation) of a saw-function of t, choosing t = 0 as the initial time instant:

t̂ = t − T
∞

∑
n=0

Θ(t − [2n + 1]T/2) + T
∞

∑
n=0

Θ(−t − [2n + 1]T/2 . (30)

This periodic function for the time operator is a linear (increasing) function of time t within
each Poincarè cycle: see Fig.2.

2.6 Time as an observable (and the time-energy uncertainty relation), for quantum-
mechanical systems with discrete energy spectra 
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and (ii) Ĥ ( p̂x , x̂, . . .) in the hamiltonianian formalism. The “duality” of these two forms can

be easily inferred from the Schröedinger equation itself, ĤΨ = ih̄
∂Ψ
∂t

. One can introduce in

quantum mechanics a similar duality for the case of Time: Besides the general form (1) for
the Time operator in the energy representation, which is valid for any physical systems in
the region of continuous energy spectra, one can express the time operator also in a “hamiltonian
form”, i.e., in terms of the coordinate and momentum operators, by having recourse to their
commutation relations. Thus, by the replacements

Ê → Ĥ ( p̂x , x̂, . . .),

t̂ → T̂ ( p̂x , x̂, . . .),
(21)

and on using the commutation relation [similar to eq. (3)]

[Ĥ, T̂] = ih̄ , (22)

one can obtain(Rosenbaum, 1969), given a specific ordinary Hamiltonian, the corresponding
explicit expression for T̂ ( p̂x , x̂, . . .).
Indeed, this procedure can be adopted for any physical system with a known Hamiltonian
Ĥ ( p̂x, x̂, . . .), and we are going to see a concrete example. By going on from the coordinate
to the momentum representation, one realizes that the formal expressions of both the
hamiltonian-type operators Ĥ ( p̂x, x̂, . . .) and T̂ ( p̂x, x̂, . . .) do not change, except for an obvious
change of sign in the case of operator T̂ ( p̂x , x̂, . . .).
As an explicit example, let us address the simple case of a free particle whose Hamiltonian is

Ĥ =

⎧⎨
⎩

p̂2
x/ 2μ, p̂x = −ih̄

∂

∂x
, in the coordinate representation (a)

p2
x/ 2μ . in the momentum representation (a)

(23)

Correspondingly, the Hamilton-type time operator, in its symmetrized form, will write

T̂ =

⎧⎪⎨
⎪⎩

μ

2

�
p̂−1

x x + xp̂−1
x + ih̄ ; p̂−2

x

�
, in the coordinate representation (a)

−μ

2

�
p−1

x x̂ + x̂p−1
x + ih̄/p2

x

�
, in the momentum representation (b)

(24)

where

p̂−1
x =

i
h̄

�
dx . . . , x̂ = ih̄

∂

∂px
.

Incidentally, operator (24b) is equivalent to −ih̄ ∂
∂E , since E = p2

x/ 2μ; and therefore it is also
a (maximal) hermitian operator. Indeed, by applying the operator T̂ ( p̂x , x̂, . . .), for instance, to
a plane-wave of the type exp(ikx), we obtain the same result in both the coordinate and the
momentum representations:

T̂ exp(ikx) =
x
v

exp(ikx) (25)
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quantity x/v being the free-motion time (for a particle with velocity v ) for traveling the
distance x.
On the basis of what precedes, it is possible to show that the wave function Ψ(x, t) of a
quantum system satisfies the two (dual) equations

Ĥ Ψ = ih̄
∂Ψ
∂t

and T̂ Ψ = t Ψ . (26)

In the energy representation, and in the stationary case, we obtain again two (dual) equations

Ĥ ϕε = ε ϕε and T̂ ϕε = −ih̄
∂ϕε

∂ε
, (27)

quantity ϕε being the Fourier-transform of Ψ:

ϕε =
1

2πh̄

+∞∫

−∞

Ψ(x, t) eiεt/h̄ dt . (28)

It might be interesting to apply the two pairs of the last dual equations also for
investigating tunnelling processes through the quantum gravitational barrier, which appears
during inflation, or at the beginning of the big-bang expansion, whenever a quasi-linear
Schrödinger-type equation does approximately show up.

2.6 Time as an observable (and the time-energy uncertainty relation), for
quantum-mechanical systems with discrete energy spectra

For describing the time evolution of non-relativistic quantum systems endowed with a purely
discrete (or a continuous and discrete) spectrum, let us now introduce wave-packets of the
form (Olkhovsky, 1990; 1992; 1998; Olkhovsky & Recami, 2007; 2008):

ψ (x, t) = ∑
n=0

gn ϕn(x) exp[−i(εn − ε0)t/h̄] , (29)

where ϕn(x) are orthogonal and normalized bound states which satisfy the equation
Ĥ ϕn(x) = εn ϕn(x), quantity Ĥ being the Hamiltonian of the system; while the coefficients
gn are normalized: ∑

n=0
|gn|2 = 1. We omitted the non-significant phase factor exp(−iε0t/h̄)

of the fundamental state.
Let us first consider the systems whose energy levels are separated by intervals admitting a
maximum common divisor D (for ex., harmonic oscillator, particle in a rigid box, and spherical
spinning top), so that the wave packet (29) is a periodic function of time possessing as period
the Poincaré cycle time T = 2πh̄/D. For such systems it is possible (Olkhovsky, 1990; 1992;
1998; Olkhovsky & Recami, 2007; 2008) to construct a selfadjoint time operator with the form
(in the time representation) of a saw-function of t, choosing t = 0 as the initial time instant:

t̂ = t − T
∞

∑
n=0

Θ(t − [2n + 1]T/2) + T
∞

∑
n=0

Θ(−t − [2n + 1]T/2 . (30)

This periodic function for the time operator is a linear (increasing) function of time t within
each Poincarè cycle: see Fig.2.
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Fig. 2. The periodic saw-tooth function for the time operator in the case of quantum
mechanical systems with discrete energy spectra: Namely, for the case of eq. (30).

The commutation relations of the Energy and Time operators, now both selfajoint, acquires in
the case of discrete energies and of a periodic Time operator the form

[Ê, t̂] = ih̄

�
1 − T

∞

∑
n=0

δ(t − [2n + 1]T)

�
, (31)

wherefrom the uncertainty relation follows in the new form

(ΔE)2 (Δt)2 = h̄2

⎡
⎣1 − T|ψ(T/2 + γ)|2� T/2

−T/2 |ψ(t)|2dt

⎤
⎦ , (32)

where it has been introduced a parameter γ, with −T/2 < γ < T/2, in order to assure that
the r.h.s. integral is single-valued(Olkhovsky & Recami, 2007; 2008).
When ΔE → 0 (that is, when |gn| → δnn� ), the r.h.s. of eq. (32) tends to zero too, since
|ψ(t)|2 tends to a constant value. In such a case, the distribution of the time instants at which
the wave-packet passes through point x becomes flat within each Poincaré cycle. When, by
contrast, ΔE >> D and |ψ(T + γ)|2 << (

� T/2
−T/2 |ψ(t)|2dt)/T, the periodicity condition

may become inessential whenever Δt << t. In other words, our uncertainty relation (32)
transforms into the ordinary uncertainty relation for systems with continuous spectra.
In more general cases, for excited states of nuclei, atoms and molecules, the energy-level
intervals, for discrete and quasi-discrete (resonance) spectra, are not multiples of a maximum common
divisor, and hence the Poincaré cycle is not well-defined for such systems. Nevertheless, even
for those systems one can introduce an approximate description (sometimes, with any desired
degree of accuracy) in terms of Poincaré quasi-cycles and a quasi-periodical evolution; so that
for sufficiently long time intervals the behavior of the wave-packets can be associated with a a
periodical motion (oscillation), sometimes — e.g., for very narrow resonances — with any desired
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accuracy. For them, when choosing an approximate Poincaré-cycle time, one can include in
one cycle as many quasi-cycles as it is necessary for the demanded accuracy. Then, with the
chosen accuracy, a quasi-selfadjoint time operator can be introduced.

3. Multiple internal reflections approach in description of tunneling

3.1 Tunneling in consideration of multiple internal reflections of waves between internal
boundaries

An approach for description of one-dimensional motion of a non-relativistic particle above a
barrier on the basis of multiple internal reflections of stationary waves relatively boundaries
has been studied in number of papers and is known (see (Anderson, 1989; Fermor, 1966;
McVoy et al., 1967) and references therein). Tunneling of the particle under the barrier
was described successfully on the basis of multiple internal reflections of the wave packets
relatively boundaries (approach was called as method of multiple internal reflections or method
MIR, see Refs. (Maydanyuk et al., 2002a;b; Maydanyuk, 2003; Olkhovsky, 2000)). In such
approach it succeeded in connecting: 1) continuous transition of solutions for packets
after each reflection, total packets between the above-barrier motion and the under-barrier
tunneling; 2) coincidence of transmitted and reflected amplitudes of stationary wave function
in each spatial region obtained by approach MIR with the corresponding amplitudes obtained
by standard method of quantum mechanics; 3) all non-stationary fluxes in each step, are
non-zero that confirms propagation of packets under the barrier (i. e. their “tunneling”).
In frameworks of such a method, non-stationary tunneling obtained own interpretation,
allowing to study this process at interesting time moment or space point. In calculation
of phase times this method turns out to be enough simple and convenient (Cardone et al.,
2006). It has been adapted for scattering of the particle on nucleus and α-decay in the
spherically symmetric approximation with the simplest radial barriers (Maydanyuk et al.,
2002a; Maydanyuk, 2003; Olkhovsky, 2000) and for tunneling of photons (Cardone et al.,
2006; Maydanyuk et al., 2002a). However, further realization of the MIR approach meets with
three questions. 1) Question on effectiveness. The multiple reflections have been proved for the
motion above one rectangular barrier and for tunneling under it (Anderson, 1989; Cardone
et al., 2006; Maydanyuk et al., 2002a). However, after addition of the second step it becomes
unclear how to separate the needed reflected waves from all their variety in calculation of
all needed amplitudes. After obtaining exact solutions of the stationary amplitudes for two
arbitrary rectangular barriers (Maydanyuk, 2003; Olkhovsky, 2000), it becomes unclear how to
generalize such approach for barriers with arbitrary complicate shape. So, we come to a serious
unresolved problem of realization of the approach of multiple reflections in real quantum systems with
complicated barriers, and clear algorithms of calculation of amplitudes should be constructed.
2) Question on correctness. Whether is interference between packets formed relatively different
boundaries appeared? Whether does this come to principally different results of the approach
of multiple internal reflections and direct methods of quantum mechanics? Note that such
interference cannot be appeared in tunneling through one rectangular barrier and, therefore,
it could not visible in the previous papers.
3) Question on uncertainty in radial problem. Calculations of half-lives of different types of
decays based on the semiclassical approach are prevailing today. For example, in Ref. (Buck
et al., 1993) agreement between experimental data of α-decay half-lives and ones calculated
by theory is demonstrated in a wide region of nuclei from 106Te up to nucleus with Ad =
266 and Zd = 109 (see Ref. (Denisov & Ikezoe, 2005) for some improved approaches).
In review (Sobiczewski & Pomorski, 2007) methodology of calculation of half-lives for
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Fig. 2. The periodic saw-tooth function for the time operator in the case of quantum
mechanical systems with discrete energy spectra: Namely, for the case of eq. (30).
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where it has been introduced a parameter γ, with −T/2 < γ < T/2, in order to assure that
the r.h.s. integral is single-valued(Olkhovsky & Recami, 2007; 2008).
When ΔE → 0 (that is, when |gn| → δnn� ), the r.h.s. of eq. (32) tends to zero too, since
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In more general cases, for excited states of nuclei, atoms and molecules, the energy-level
intervals, for discrete and quasi-discrete (resonance) spectra, are not multiples of a maximum common
divisor, and hence the Poincaré cycle is not well-defined for such systems. Nevertheless, even
for those systems one can introduce an approximate description (sometimes, with any desired
degree of accuracy) in terms of Poincaré quasi-cycles and a quasi-periodical evolution; so that
for sufficiently long time intervals the behavior of the wave-packets can be associated with a a
periodical motion (oscillation), sometimes — e.g., for very narrow resonances — with any desired
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accuracy. For them, when choosing an approximate Poincaré-cycle time, one can include in
one cycle as many quasi-cycles as it is necessary for the demanded accuracy. Then, with the
chosen accuracy, a quasi-selfadjoint time operator can be introduced.

3. Multiple internal reflections approach in description of tunneling

3.1 Tunneling in consideration of multiple internal reflections of waves between internal
boundaries

An approach for description of one-dimensional motion of a non-relativistic particle above a
barrier on the basis of multiple internal reflections of stationary waves relatively boundaries
has been studied in number of papers and is known (see (Anderson, 1989; Fermor, 1966;
McVoy et al., 1967) and references therein). Tunneling of the particle under the barrier
was described successfully on the basis of multiple internal reflections of the wave packets
relatively boundaries (approach was called as method of multiple internal reflections or method
MIR, see Refs. (Maydanyuk et al., 2002a;b; Maydanyuk, 2003; Olkhovsky, 2000)). In such
approach it succeeded in connecting: 1) continuous transition of solutions for packets
after each reflection, total packets between the above-barrier motion and the under-barrier
tunneling; 2) coincidence of transmitted and reflected amplitudes of stationary wave function
in each spatial region obtained by approach MIR with the corresponding amplitudes obtained
by standard method of quantum mechanics; 3) all non-stationary fluxes in each step, are
non-zero that confirms propagation of packets under the barrier (i. e. their “tunneling”).
In frameworks of such a method, non-stationary tunneling obtained own interpretation,
allowing to study this process at interesting time moment or space point. In calculation
of phase times this method turns out to be enough simple and convenient (Cardone et al.,
2006). It has been adapted for scattering of the particle on nucleus and α-decay in the
spherically symmetric approximation with the simplest radial barriers (Maydanyuk et al.,
2002a; Maydanyuk, 2003; Olkhovsky, 2000) and for tunneling of photons (Cardone et al.,
2006; Maydanyuk et al., 2002a). However, further realization of the MIR approach meets with
three questions. 1) Question on effectiveness. The multiple reflections have been proved for the
motion above one rectangular barrier and for tunneling under it (Anderson, 1989; Cardone
et al., 2006; Maydanyuk et al., 2002a). However, after addition of the second step it becomes
unclear how to separate the needed reflected waves from all their variety in calculation of
all needed amplitudes. After obtaining exact solutions of the stationary amplitudes for two
arbitrary rectangular barriers (Maydanyuk, 2003; Olkhovsky, 2000), it becomes unclear how to
generalize such approach for barriers with arbitrary complicate shape. So, we come to a serious
unresolved problem of realization of the approach of multiple reflections in real quantum systems with
complicated barriers, and clear algorithms of calculation of amplitudes should be constructed.
2) Question on correctness. Whether is interference between packets formed relatively different
boundaries appeared? Whether does this come to principally different results of the approach
of multiple internal reflections and direct methods of quantum mechanics? Note that such
interference cannot be appeared in tunneling through one rectangular barrier and, therefore,
it could not visible in the previous papers.
3) Question on uncertainty in radial problem. Calculations of half-lives of different types of
decays based on the semiclassical approach are prevailing today. For example, in Ref. (Buck
et al., 1993) agreement between experimental data of α-decay half-lives and ones calculated
by theory is demonstrated in a wide region of nuclei from 106Te up to nucleus with Ad =
266 and Zd = 109 (see Ref. (Denisov & Ikezoe, 2005) for some improved approaches).
In review (Sobiczewski & Pomorski, 2007) methodology of calculation of half-lives for
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spontaneous-fission is presented (see eqs. (21)–(24) in p. 321). Let us consider proton-decay
of nucleus where proton penetrates from the internal region outside with its tunneling
through the barrier. At the same boundary condition, reflected and incident waves turn
out to be defined with uncertainty. How to determine them? The semiclassical approach
gives such answer: according to theory, in construction of well known formula for probability we
neglect completely by the second (increasing) item of the wave function inside tunneling region (see
Ref. (Landau & Lifshitz, 1989), eq. (50.2), p. 221). In result, equality T2 + R2 = 1 has no any
sense (where T and R are coefficients of penetrability and reflection). Condition of continuity
for the wave function and for total flux is broken at turning point. So, we do not find reflection
R. We do not suppose on possible interference between incident and reflected waves which
can be non zero. The penetrability is determined by the barrier shape inside tunneling region,
while internal and external parts do not take influence on it. The penetrability does not
dependent on depth of the internal well (while the simplest rectangular well and barrier give
another exact result). But, the semiclassical approach is so prevailing that one can suppose
that it has enough well approximation of the penetrability estimated. It turns out that if in
fully quantum approach to determine the penetrability through the barrier (constructed on the
basis of realistic potential of interaction between proton and daughter nucleus) then one can
obtain answer “no”. Fully quantum penetrability is a function of new additional independent
parameters, it can achieve essential difference from semiclassical one (at the same boundary
condition imposed on the wave function). This will be demonstrated below.

3.2 Tunneling of packet through one-dimensional rectangular step
Let us consider a problem of tunneling of a particle in a positive x-direction through an
one-dimensional rectangular potential barrier (see Fig. 3). Let us label a region I for x < 0, a
region II for 0 < x < a and a region III for x > a, accordingly. In standard approach, with

Fig. 3. Tunneling of the particle through one-dimensional rectangular barrier

energy less than the barrier height the tunneling evolution of the particle is described using a
non-stationary propagation of WP

ψ(x, t) =
+∞∫

0

g(E − Ē)ϕ(k, x)e−iEt/h̄dE, (33)
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where stationary WF is:

ϕ(x) =

⎧⎨
⎩

eikx + ARe−ikx, for x < 0;
αeξx + βe−ξx, for 0 < x < a;
ATeikx, for x > a;

(34)

and k = 1
h̄

√
2mE, ξ = 1

h̄

�
2m(V1 − E), E and m are the total energy and mass of the particle,

accordingly. The weight amplitude g(E − Ē) can be written in a form of gaussian and satisfies
to a requirement of the normalization

� |g(E − Ē)|2dE = 1, value Ē is an average energy of
the particle. One can calculate coefficients AT, AR, α and β analytically, using a requirements
of a continuity of WF ϕ(x) and its derivative on each boundary of the barrier. Substituting
in eq. (33) instead of ϕ(k, x) the incident ϕinc(k, x), transmitted ϕtr(k, x) or reflected part
of WF ϕre f (k, x), defined by eq. (34), we receive the incident, transmitted or reflected WP,
accordingly.
We assume, that a time, for which the WP tunnels through the barrier, is enough small. So,
the time necessary for a tunneling of proton through a barrier of decay in proton-decay of a
nucleus, is about 10−21 seconds. We consider, that one can neglect a spreading of the WP for
this time. And a breadth of the WP appears essentially more narrow on a comparison with a
barrier breadth. Considering only sub-barrier processes, we exclude a component of waves
for above-barrier energies, having included the additional transformation

g(E − Ē) → g(E − Ē)θ(V1 − E), (35)

where θ-function satisfies to the requirement

θ(η) =

�
0, for η < 0;
1, for η > 0.

The method of multiple internal reflections considers the propagation process of the WP
describing a motion of the particle, sequentially on steps of its penetration in relation to each
boundary of the barrier (Anderson, 1989; Fermor, 1966; McVoy et al., 1967). Using this method,
we find expressions for the transmitted and reflected WP in relation to the barrier. At the first
step we consider the WP in the region I, which is incident upon the first (initial) boundary of
the barrier. Let us assume, that this package transforms into the WP, transmitted through
this boundary and tunneling further in the region II, and into the WP, reflected from the
boundary and propagating back in the region I. Thus we consider, that the WP, tunneling in
the region II, is not reached the second (final) boundary of the barrier because of a terminating
velocity of its propagation, and consequently at this step we consider only two regions I and
II. Because of physical reasons to construct an expression for this packet, we consider, that
its amplitude should decrease in a positive x-direction. We use only one item β exp(−ξx)
in eq. (34), throwing the second increasing item α exp(ξx) (in an opposite case we break a
requirement of a finiteness of the WF for an indefinitely wide barrier). In result, in the region
II we obtain:

ψ1
tr(x, t) =

+∞�

0

g(E − Ē)θ(V1 − E)β0e−ξx−iEt/h̄dE, for 0 < x < a. (36)

Thus the WF in the barrier region constructed by such way, is an analytic continuation of
a relevant expression for the WF, corresponding to a similar problem with above-barrier
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boundary of the barrier (Anderson, 1989; Fermor, 1966; McVoy et al., 1967). Using this method,
we find expressions for the transmitted and reflected WP in relation to the barrier. At the first
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the barrier. Let us assume, that this package transforms into the WP, transmitted through
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+∞�

0
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Thus the WF in the barrier region constructed by such way, is an analytic continuation of
a relevant expression for the WF, corresponding to a similar problem with above-barrier
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energies, where as a stationary expression we select the wave exp(ik2x), propagated to the
right.
Let us consider the first step further. One can write expressions for the incident and the
reflected WP in relation to the first boundary as follows

ψinc(x, t) =
+∞∫
0

g(E − Ē)θ(V1 − E)eikx−iEt/h̄dE, for x < 0,

ψ1
re f (x, t) =

+∞∫
0

g(E − Ē)θ(V1 − E)A0
Re−ikx−iEt/h̄dE, for x < 0.

(37)

A sum of these expressions represents the complete WF in the region I, which is dependent
on a time. Let us require, that this WF and its derivative continuously transform into the
WF (36) and its derivative at point x = 0 (we assume, that the weight amplitude g(E − Ē)
differs weakly at transmitting and reflecting of the WP in relation to the barrier boundaries).
In result, we obtain two equations, in which one can pass from the time-dependent WP to the
corresponding stationary WF and obtain the unknown coefficients β0 and A0

R.
At the second step we consider the WP, tunneling in the region II and incident upon the second
boundary of the barrier at point x = a. It transforms into the WP, transmitted through this
boundary and propagated in the region III, and into the WP, reflected from the boundary and
tunneled back in the region II. For a determination of these packets one can use eq. (33) with
account eq. (35), where as the stationary WF we use:

ϕ2
inc(k, x) = ϕ1

tr(k, x) = β0e−ξx, for 0 < x < a,
ϕ2

tr(k, x) = A0
Teikx, for x > a,

ϕ2
re f (k, x) = α0eξx, for 0 < x < a.

(38)

Here, for forming an expression for the WP reflected from the boundary, we select an
increasing part of the stationary solution α0 exp(ξx) only. Imposing a condition of continuity
on the time-dependent WF and its derivative at point x = a, we obtain 2 new equations, from
which we find the unknowns coefficients A0

T and α0.
At the third step the WP, tunneling in the region II, is incident upon the first boundary of the
barrier. Then it transforms into the WP, transmitted through this boundary and propagated
further in the region I, and into the WP, reflected from boundary and tunneled back in the
region II. For a determination of these packets one can use eq. (33) with account eq. (35),
where as the stationary WF we use:

ϕ3
inc(k, x) = ϕ2

re f (k, x), for 0 < x < a,
ϕ3

tr(k, x) = A1
Re−ikx, for x < 0,

ϕ3
re f (k, x) = β1e−ξx, for 0 < x < a.

(39)

Using a conditions of continuity for the time-dependent WF and its derivative at point x = 0,
we obtain the unknowns coefficients A1

R and β1.
Analyzing further possible processes of the transmission (and the reflection) of the WP
through the boundaries of the barrier, we come to a deduction, that any of following steps
can be reduced to one of 2 considered above. For the unknown coefficients αn , βn,An

T and
An

R, used in expressions for the WP, forming in result of some internal reflections from the
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boundaries, one can obtain the recurrence relations:

β0 =
2k

k + iξ
, αn = βn iξ − k

iξ + k
e−2ξa, βn+1 = αn iξ − k

iξ + k
,

A0
R =

k − iξ
k + iξ

, An
T = βn 2iξ

iξ + k
e−ξa−ika, An+1

R = αn 2iξ
iξ + k

.
(40)

Considering the propagation of the WP by such way, we obtain expressions for the WF on
each region which can be written through series of multiple WP. Using eq. (33) with account
eq. (35), we determine resultant expressions for the incident, transmitted and reflected WP in
relation to the barrier, where one can need to use following expressions for the stationary WF:

ϕinc(k, x) = eikx, for x < 0,

ϕtr(k, x) =
+∞
∑

n=0
An

Teikx, for x > a,

ϕre f (k, x) =
+∞
∑

n=0
An

Re−ikx, for x < 0.

(41)

Now we consider the WP formed in result of sequential n reflections from the boundaries of
the barrier and incident upon one of these boundaries at point x = 0 (i = 1) or at point x = a
(i = 2). In result, this WP transforms into the WP ψi

tr(x, t), transmitted through boundary
with number i, and into the WP ψi

re f (x, t), reflected from this boundary. For an independent
on x parts of the stationary WF one can write:

ϕ1
tr

exp(−ξx)
= T+

1
ϕ1
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exp(ikx)

,
ϕ1

re f

exp(−ikx)
= R+

1
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,
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2
ϕ2
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exp(−ξx)

,
ϕ2

re f

exp(ξx)
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2
ϕ2
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exp(−ξx)

,

ϕ1
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exp(−ikx)
= T−

1
ϕ1
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exp(ξx)

,
ϕ1

re f

exp(−ξx)
= R−

1
ϕ1
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exp(ξx)

,

(42)

where the sign “+” (or “-”) corresponds to the WP, tunneling (or propagating) in a positive (or
negative) x-direction and incident upon the boundary with number i. Using T±

i and R±
i , one

can precisely describe an arbitrary WP which has formed in result of n-multiple reflections, if
to know a “path” of its propagation along the barrier. Using the recurrence relations eq. (40),
the coefficients T±

i and R±
i can be obtained.

T+
1 = β0, T+

2 =
An

T
βn , T−

1 =
An+1

R
αn ,

R+
1 = A0

R, R+
2 =

αn

βn , R−
1 =

βn+1

αn .
(43)

Using the recurrence relations, one can find series of coefficients αn, βn, An
T and An

R. However,
these series can be calculated easier, using coefficients T±

i and R±
i . Analyzing all possible
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“paths” of the WP propagations along the barrier, we receive:
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(R+
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�
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Fsub
,

+∞
∑
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βn = β0

�
1 +

+∞
∑

i=1
(R+

2 R−
1 )n

�
=

2k(iξ + k)
Fsub

,

(44)

where
Fsub = (k2 − ξ2)D− + 2ikξD+ ,
D± = 1 ± e−2ξa,

k2
0 = k2 + ξ2 =

2mV1

h̄2 .
(45)

All series ∑ αn, ∑ βn, ∑ An
T and ∑ An

R, obtained using the method of multiple internal
reflections, coincide with the corresponding coefficients α, β, AT and AR of the eq. (34),
calculated by a stationary methods. Using the following substitution

iξ → k2, (46)

where k2 = 1
h̄

�
2m(E − V1) is a wave number for a case of above-barrier energies, expression

for the coefficients αn, βn, An
T and An

R for each step, expressions for the WF for each step,
the total eqs. (44) and (45) transform into the corresponding expressions for a problem
of the particle propagation above this barrier. At the transformation of the WP and the
time-dependent WF one can need to change a sign of argument at θ-function. Besides the
following property is fulfilled:

����
+∞

∑
n=0

An
T

����
2

+

����
+∞

∑
n=0

An
R

����
2

= 1. (47)

3.3 Exact solutions for wave function for tunneling through radial barrier composed from
arbitrary number of potential steps

Now we shall come to radial problem (Maydanyuk & Belchikov, 2011). Let us assume that
starting from some time moment before decay the nucleus could be considered as system
composite from daughter nucleus and fragment emitted. Its decay is described by a particle
with reduced mass m which moves in radial direction inside a radial potential with a barrier.
We shall be interesting in the radial barrier of arbitrary shape, which has successfully been
approximated by finite number N of rectangular steps:

V(r) =

⎧⎪⎪⎨
⎪⎪⎩

V1, at Rmin < r ≤ r1 (region 1),
V2, at r1 ≤ r ≤ r2 (region 2),
. . . . . . . . .
VN , at rN−1 ≤ r ≤ Rmax (region N),

(48)

where Vi are constants (i = 1 . . . N). We define the first region 1 starting from point Rmin,
assuming that the fragment is formed here and then it moves outside. We shall be interesting
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in solutions for above barrier energies while the solution for tunneling could be obtained after
by change i ξi → ki. A general solution of the wave function (up to its normalization) has the
following form:

ψ(r, θ, ϕ) =
χ(r)

r
Ylm(θ, ϕ), (49)

χ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eik1r + AR e−ik1r , at Rmin < r ≤ r1 (region 1),
α2 eik2r + β2 e−ik2r, at r1 ≤ r ≤ r2 (region 2),
. . . . . . . . .
αn−1 eikN−1r + βN−1 e−ikN−1r, at rN−2 ≤ r ≤ rN−1 (region N − 1),
AT eikNr, at rN−1 ≤ r ≤ Rmax (region N),

(50)

where αj and βj are unknown amplitudes, AT and AR are unknown amplitudes of
transmission and reflection, Ylm(θ, ϕ) is spherical function, ki =

1
h̄

�
2m(E − Vi) are complex

wave numbers. We shall be looking for solution for such problem in approach of multiple
internal reflections (we restrict ourselves by a case of orbital moment l = 0 while its non-zero
generalization changes the barrier shape which was used as arbitrary before in development
of formalism MIR and, so, is absolutely non principal).
According to the method of multiple internal reflections, scattering of the particle on the
barrier is considered on the basis of wave packet consequently by steps of its propagation
relatively to each boundary of the barrier (the most clearly idea of such approach can be
understood in the problem of tunneling through the simplest rectangular barrier, see (Cardone
et al., 2006; Maydanyuk et al., 2002a; Maydanyuk, 2003) where one can find proof of this
fully quantum exactly solvable method, one can analyze its properties). Each step in such
consideration of propagation of the packet will be similar to one from the first 2N − 1
steps, independent between themselves. From analysis of these steps recurrent relations are
found for calculation of unknown amplitudes A(n), S(n), α(n) and β(n) for arbitrary step
n, summation of these amplitudes are calculated. We shall be looking for the unknown
amplitudes, requiring wave function and its derivative to be continuous at each boundary.
We shall consider the coefficients T±

1 , T±
2 , T±

3 . . . and R±
1 , R±

2 , R±
3 . . . as additional factors to

amplitudes e±i k x. Here, bottom index denotes number of the boundary, upper (top) signs
“+” and “−” denote directions of the wave to the right or to the left, correspondingly. At the
first, we calculate T±

1 , T±
2 . . . T±

N−1 and R±
1 , R±

2 . . . R±
N−1:

T+
j =

2kj

kj + kj+1
ei(kj−kj+1)rj , T−

j =
2kj+1

kj + kj+1
ei(kj−kj+1)rj ,

R+
j =

kj − kj+1

kj + kj+1
e2ikjrj , R−

j =
kj+1 − kj

kj + kj+1
e−2ikj+1rj .

(51)

Using recurrent relations:
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(52)
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where
Fsub = (k2 − ξ2)D− + 2ikξD+ ,
D± = 1 ± e−2ξa,

k2
0 = k2 + ξ2 =

2mV1

h̄2 .
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All series ∑ αn, ∑ βn, ∑ An
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reflections, coincide with the corresponding coefficients α, β, AT and AR of the eq. (34),
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h̄
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for the coefficients αn, βn, An
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R for each step, expressions for the WF for each step,
the total eqs. (44) and (45) transform into the corresponding expressions for a problem
of the particle propagation above this barrier. At the transformation of the WP and the
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3.3 Exact solutions for wave function for tunneling through radial barrier composed from
arbitrary number of potential steps

Now we shall come to radial problem (Maydanyuk & Belchikov, 2011). Let us assume that
starting from some time moment before decay the nucleus could be considered as system
composite from daughter nucleus and fragment emitted. Its decay is described by a particle
with reduced mass m which moves in radial direction inside a radial potential with a barrier.
We shall be interesting in the radial barrier of arbitrary shape, which has successfully been
approximated by finite number N of rectangular steps:
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where Vi are constants (i = 1 . . . N). We define the first region 1 starting from point Rmin,
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in solutions for above barrier energies while the solution for tunneling could be obtained after
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and selecting as starting the following values:

R̃+
N−1 = R+

N−1, R̃−
1 = R−

1 , T̃+
1 = T+

1 , (53)

we calculate successively coefficients R̃+
N−2 . . . R̃+

1 , R̃−
2 . . . R̃−

N−1 and T̃+
2 . . . T̃+

N−1. At finishing,
we determine coefficients βj :

βj = T̃+
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j R̃−
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m
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the amplitudes of transmission and reflection:

AT = T̃+
N−1, AR = R̃+

1 (55)

and corresponding coefficients of penetrability T and reflection R:

TMIR =
kn

k1

∣∣AT
∣∣2, RMIR =

∣∣AR
∣∣2. (56)

We check the property:

kn

k1
|AT |2 + |AR|2 = 1 or TMIR + RMIR = 1, (57)

which should be the test, whether the method MIR gives us proper solution for wave function.
Now if energy of the particle is located below then height of one step with number m, then for
description of transition of this particle through such barrier with its tunneling it shall need to
use the following change:

km → i ξm. (58)

For the potential from two rectangular steps (with different choice of their sizes) after
comparison between the all amplitudes obtained by method of MIR and the corresponding
amplitudes obtained by standard approach of quantum mechanics, we obtain coincidence up
to first 15 digits. Increasing of number of steps up to some thousands keeps such accuracy
and fulfillment of the property (57). This is important test which confirms reliability of the
method MIR. So, we have obtained full coincidence between all amplitudes, calculated by
method MIR and by standard approach of quantum mechanics, and that is way we generalize
the method MIR for description of tunneling of the particle through potential, consisting from
arbitrary number of rectangular barriers and wells of arbitrary shape.

3.4 Analysis of the proton-decay for 157
73 Ta, 161

75 Re, 167
77 Ir and 185

83 Bi
Today, there are a lot of modern methods able to calculate half-lives, which have been studied
experimentally well. So, we have a rich theoretical and experimental material for analysis.
We shall use these nuclei: 157

73 Ta, 161
75 Re, 167

77 Ir for l = 0, and 109
53 I, 112

55 Cm, 147
69 Tm for l �= 0.

Such a choice we explain by that they have small coefficient of quadruple deformation β2
and at good approximation can be considered as spherical. We shall study proton-decay on
the basis of leaving of the particle with reduced mass from the internal region outside with
its tunneling through the barrier. This particle is supposed to start from Rmin ≤ r ≤ r1 and
move outside (r1 is defined in eq. (1)). Using technique of the T±

j and R±
j coefficients in

eqs. (51)–(53), we calculate total amplitudes of transmission AT and reflection AR by eqs. (55),
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the penetrability coefficient TMIR by eqs. (56). We check the found amplitudes, coefficients
TMIR and RMIR comparing them with corresponding amplitudes and coefficients calculated
by standard approach of quantum mechanics. We restrict ourselves by eq. (50) for F1 and find
width Γ by eq. (48) and half-live τMIR by eq. (52). We define the penetrability TWKB by eq. (49),
calculate Γ-width and half-live τWKB by eqs. (48) and (52).

3.4.1 Dependence of the penetrability on the starting point
The first interesting result which we have obtained is essential dependence of penetrability on
the position of the first region where we localize the wave incidenting on the barrier. In particular,
we have analyzed how much the internal boundary Rmin takes influence on the penetrability.
Taking into account that width of each interval is 0.01 fm, we consider left boundary Rmin
of the first interval as a starting point (with error up to 0.01 fm), from here proton begins
to move outside and is incident on the internal part of the barrier in the first stage of the
proton decay. In the Fig. 4 [left panel] one can see that half-live of the proton decay of 157

73 Ta
is changed essentially at displacement of Rmin. So, we establish essential dependence of the
penetrability on the starting point Rstart, where the proton starts to move outside by approach MIR. At

Fig. 4. Proton-decay for the 157
73 Ta nucleus: the left panel is for dependence of the half-life

τMIR on the starting point Rmin, the right panel is for dependence of the half-live τMIR on
Rmax (here, we use Rform = 7.2127 fm where calculated τMIR at Rmax = 250 fm coincides
with experimental data τexp for this nucleus). In all calculations factor F is the same.

Rform = 7.2127 fm this dependence allows us to achieve very close coincidence between the
half-live calculated by the approach MIR and experimental data.

3.4.2 Dependence of the penetrability on the external region
The region of the barrier located between turning points R2 and R3 is main part of the
potential used in calculation of the penetrability in the semiclassical approach (up to the
second correction), while the internal and external parts of this potential do not take influence
on it. Let us analyze whether convergence exists in calculations of the penetrability in the
approach MIR if to increase the external boundary Rmax (Rmax > R3). Keeping width of
each interval (step) to be the same, we shall increase Rmax (through increasing number of
intervals in the external region), starting from the external turning point R3, and calculate the
corresponding penetrability TMIR. In Fig. 4 [central panel] one can see how the penetrability
is changed for 157

73 Ta with increasing Rmax. Dependence of the half-life τMIR on Rmax is shown
in the next figure 4 [right panel]. One can see that the method MIR gives convergent values for
the penetrability and half-life at increasing of Rmax. From such figures we find that inclusion
of the external region into calculations changes the half-life up to 1.5 times (τmin = 0.20 sec is the
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and fulfillment of the property (57). This is important test which confirms reliability of the
method MIR. So, we have obtained full coincidence between all amplitudes, calculated by
method MIR and by standard approach of quantum mechanics, and that is way we generalize
the method MIR for description of tunneling of the particle through potential, consisting from
arbitrary number of rectangular barriers and wells of arbitrary shape.

3.4 Analysis of the proton-decay for 157
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77 Ir and 185

83 Bi
Today, there are a lot of modern methods able to calculate half-lives, which have been studied
experimentally well. So, we have a rich theoretical and experimental material for analysis.
We shall use these nuclei: 157

73 Ta, 161
75 Re, 167

77 Ir for l = 0, and 109
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Such a choice we explain by that they have small coefficient of quadruple deformation β2
and at good approximation can be considered as spherical. We shall study proton-decay on
the basis of leaving of the particle with reduced mass from the internal region outside with
its tunneling through the barrier. This particle is supposed to start from Rmin ≤ r ≤ r1 and
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the penetrability coefficient TMIR by eqs. (56). We check the found amplitudes, coefficients
TMIR and RMIR comparing them with corresponding amplitudes and coefficients calculated
by standard approach of quantum mechanics. We restrict ourselves by eq. (50) for F1 and find
width Γ by eq. (48) and half-live τMIR by eq. (52). We define the penetrability TWKB by eq. (49),
calculate Γ-width and half-live τWKB by eqs. (48) and (52).

3.4.1 Dependence of the penetrability on the starting point
The first interesting result which we have obtained is essential dependence of penetrability on
the position of the first region where we localize the wave incidenting on the barrier. In particular,
we have analyzed how much the internal boundary Rmin takes influence on the penetrability.
Taking into account that width of each interval is 0.01 fm, we consider left boundary Rmin
of the first interval as a starting point (with error up to 0.01 fm), from here proton begins
to move outside and is incident on the internal part of the barrier in the first stage of the
proton decay. In the Fig. 4 [left panel] one can see that half-live of the proton decay of 157

73 Ta
is changed essentially at displacement of Rmin. So, we establish essential dependence of the
penetrability on the starting point Rstart, where the proton starts to move outside by approach MIR. At

Fig. 4. Proton-decay for the 157
73 Ta nucleus: the left panel is for dependence of the half-life

τMIR on the starting point Rmin, the right panel is for dependence of the half-live τMIR on
Rmax (here, we use Rform = 7.2127 fm where calculated τMIR at Rmax = 250 fm coincides
with experimental data τexp for this nucleus). In all calculations factor F is the same.

Rform = 7.2127 fm this dependence allows us to achieve very close coincidence between the
half-live calculated by the approach MIR and experimental data.

3.4.2 Dependence of the penetrability on the external region
The region of the barrier located between turning points R2 and R3 is main part of the
potential used in calculation of the penetrability in the semiclassical approach (up to the
second correction), while the internal and external parts of this potential do not take influence
on it. Let us analyze whether convergence exists in calculations of the penetrability in the
approach MIR if to increase the external boundary Rmax (Rmax > R3). Keeping width of
each interval (step) to be the same, we shall increase Rmax (through increasing number of
intervals in the external region), starting from the external turning point R3, and calculate the
corresponding penetrability TMIR. In Fig. 4 [central panel] one can see how the penetrability
is changed for 157

73 Ta with increasing Rmax. Dependence of the half-life τMIR on Rmax is shown
in the next figure 4 [right panel]. One can see that the method MIR gives convergent values for
the penetrability and half-life at increasing of Rmax. From such figures we find that inclusion
of the external region into calculations changes the half-life up to 1.5 times (τmin = 0.20 sec is the
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Parent nucleus Half-live-values, sec
Nucleus Q, MeV Orbit Sth

p τ̃WKB τ̃MIR τexp
157
73 Ta84 0.947 2s1/2 0.66 2.813 · 10−1 2.789 · 10−1 3.0 · 10−1

161
75 Re84 1.214 2s1/2 0.59 2.720 · 10−4 2.673 · 10−4 3.7 · 10−4

167
77 Ir90 1.086 2s1/2 0.51 5.85 · 10−2 5.84 · 10−2 1.1 · 10−2

109
53 I56 0.829 1d5/2 0.76 3.937 · 10−6 3.992 · 10−6 1.0 · 10−4

112
55 Cm57 0.823 1d5/2 0.59 3.526 · 10−5 3.539 · 10−5 5.0 · 10−4

147
69 Tm78 1.132 1d5/2 0.79 7.911 · 10−5 7.796 · 10−5 3.6 · 10−4

Table 1. Experimental and calculated half-lives of some proton emitters. Here, Sth
p is

theoretical spectroscopic factor, τWKB is half-life calculated by in the semiclassical approach,
τMIR is half-life calculated by in the approach MIR, τ̃WKB = τWKB/ Sth

p , τ̃MIR = τMIR/Sth
p ,

τexp is experimental data. Values for Sth
p , τexp are used from Table IV in Ref. (Aberg et al.,

1997) (see p. 1770); in calculations for each nucleus we use: Rmin = 0.11 fm, Rmax = 250 fm;
number of intervals in region from Rmin to maximum of the barrier is 10000, from maximum
of the barrier to Rmax is 10000.

minimal half-life calculated at R3 ≤ Rmax ≤ 250 fm, τas = 0.30 sec is the half-life calculated
at Rmax = 250 fm, error = τas/τmin ≈ 1.5 or 50 percents). So, error in determination of the
penetrability in the semiclassical approach (if to take the external region into account) is expected to be
the same as a minimum on such a basis.

3.4.3 Results of calculations of half-lives in our and semiclassical approaches
As we have demonstrated above, the fully quantum calculations of the penetrability of the
barrier for the proton decay give us its essential dependence on the starting point. In order
to give power of predictions of half-lives calculated by the approach MIR, we need to find
recipe able to resolve such uncertainty in calculations of the half-lives. So, we shall introduce
the following hypothesis: we shall assume that in the first stage of the proton decay proton starts
to move outside the most probably at the coordinate of minimum of the internal well. If such a point
is located in the minimum of the well, the penetrability turns out to be maximal and half-life
minimal. So, as criterion we could use minimum of half-live for the given potential, which
has stable basis. We should take into account that the half-lives obtained before are for the
proton occupied ground state while it needs to take into account probability that this state is
empty in the daughter nucleus. In order to obtain proper values for the half-lives we should
divide them on the spectroscopic factor S (which we take from (Aberg et al., 1997)), and then
to compare them with experimental data. Results of such calculations and experimental data
for some proton emitters are presented in Table 1. To complete a picture, we add half-lives
calculated by the semiclassical approach to these data.

4. On four-position operators in quantum field theory, in terms of bilinear
operators

In this Section we approach the relativistic case, taking into consideration — therefore — the
space-time (four-dimensional) “position” operator, starting however with an analysis of the
3-dimensional (spatial) position operator in the simple relativistic case of the Klein-Gordon
equation. Actually, this analysis will lead us to tackle already with non-hermitian operators.

4. On four-position operators in quantum field theory, in terms of bilinear 
operators 
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Moreover, while performing it, we shall meet the opportunity of introducing bilinear
operators, which will be used even more in the next case of the full 4-position operator.
Let us recall that in Sect.2.1 we mentioned that the boundary condition E �= 0, therein imposed
to guarantee (maximal) hermiticity of the time operator, can be dispensed with just by having
recourse to bilinear forms. Namely, by considering the bilinear hermitian operator(Recami,

1976; 1977; Recami et al., 1983) t̂ = (−ih̄
↔
∂ /∂E)/2, where the sign ↔ is defined through the

accompanying equality ( f , t̂ g) =
(

f , − ih
2

∂
∂E g

)
+

(
− ih

2
∂

∂E f , g
)

.

4.1 The Klein-Gordon case: Three-position operators
The standard position operators, being hermitian and moreover selfadjoint, are known to
possess real eigenvalues: i.e., they yield a point-like localization. J. M. Jauch showed, however,
that a point-like localization would be in contrast with “unimodularity”. In the relativistic
case, moreover, phenomena so as the pair production forbid a localization with precision
better than one Compton wave-length. The eigenvalues of a realistic position operator ẑ are
therefore expected to represent space regions, rather than points. This can be obtained only
by having recourse to non-hermitian (and therefore non-selfadjoint) position operators ẑ (a
priori, one can have recourse either to non-normal operators with commuting components,
or to normal operators with non-commuting components). Following, e.g., the ideas in
Ref. (Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967),
we are going to show that the mean values of the hermitian (selfadjoint) part of ẑ will yield a
mean (point-like) position (Baldo & Recami, 1969; Recami, 1970), while the mean values of the
anti-hermitian (anti-selfadjoint) part of ẑ will yield the sizes of the localization region(Olkhovsky
& Recami, 1968; 1969).
Let us consider, e.g., the case of relativistic spin-zero particles, in natural units and with metric
(+ − −−). The position operator i ∇p, is known to be actually non-hermitian, and may be
in itself a good candidate for an extended-type position operator. To show this, we want to
split (Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967) it
into its hermitian and anti-hermitian (or skew-hermitian) parts.
Consider, then, a vector space V of complex differentiable functions on a 3-dimensional
phase-space(Recami et al., 1983) equipped with an inner product defined by

(Ψ, Φ) =
∫ d3 p

p0
Ψ∗(p)Φ(p) (59)

quantity p0 being
√

p2 + m2
0. Let the functions in V satisfy moreover the condition

lim
R→∞

∫

SR

dS
p0

Ψ∗(p) Φ(p) = 0 (60)

where the integral is taken over the surface of a sphere of radius R. If U : V → V is a
differential operator of degree one, condition (60) allows a definition of the transpose UT by

(UTΨ, Φ) = (Ψ, U Φ) for all Ψ, Φ ∈ V , (61)

where U is changed into UT, or vice-versa, by means of integration by parts.
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Parent nucleus Half-live-values, sec
Nucleus Q, MeV Orbit Sth
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anti-hermitian (anti-selfadjoint) part of ẑ will yield the sizes of the localization region(Olkhovsky
& Recami, 1968; 1969).
Let us consider, e.g., the case of relativistic spin-zero particles, in natural units and with metric
(+ − −−). The position operator i ∇p, is known to be actually non-hermitian, and may be
in itself a good candidate for an extended-type position operator. To show this, we want to
split (Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967) it
into its hermitian and anti-hermitian (or skew-hermitian) parts.
Consider, then, a vector space V of complex differentiable functions on a 3-dimensional
phase-space(Recami et al., 1983) equipped with an inner product defined by

(Ψ, Φ) =
∫ d3 p

p0
Ψ∗(p)Φ(p) (59)

quantity p0 being
√

p2 + m2
0. Let the functions in V satisfy moreover the condition

lim
R→∞

∫

SR

dS
p0

Ψ∗(p) Φ(p) = 0 (60)

where the integral is taken over the surface of a sphere of radius R. If U : V → V is a
differential operator of degree one, condition (60) allows a definition of the transpose UT by

(UTΨ, Φ) = (Ψ, U Φ) for all Ψ, Φ ∈ V , (61)

where U is changed into UT, or vice-versa, by means of integration by parts.

39Time as Quantum Observable, Canonical Conjugated to Energy



24 Will-be-set-by-IN-TECH

This allows, further, to introduce a dual representation(Recami et al., 1983) (U1, U2) of a single
operator UT

1 + U2 by

(U1Ψ, Φ) + (Ψ, U2Φ) = (Ψ, (UT
1 + U2) Φ). (62)

With such a dual representation, it is easy to split any operator into its hermitian and
anti-hermitian parts

(Ψ, UΦ) =
1
2

(
(Ψ, UΦ) + (U∗Ψ, Φ)

)
+

1
2

(
(Ψ, UΦ)− (U∗Ψ, Φ)

)
. (63)

Here the pair
1
2
(U∗, U) ≡↔

Uh , (64)

corresponding to (1/2) (U + U∗T), represents the hermitian part, while

1
2
(−U∗, U) ≡↔

Ua (65)

represents the anti-hermitian part.
Let us apply what precedes to the case of the Klein-Gordon position-operator ẑ = i ∇p. When

U = i
∂

∂pj
(66)

we have(Olkhovsky & Recami, 1968; 1969)

1
2
(U∗, U) =

1
2

(
−i

∂

∂pj
, i

∂

∂pj

)
≡ i

2

↔
∂

∂pj
, (a)

1
2
(−U∗, U) =

1
2

(
i

∂

∂pj
, i

∂

∂pj

)
≡ i

2

↔
∂ +

∂pj
. (b)

(67)

And the corresponding single operators turn out to be

1
2
(U + U∗T) = i

∂

∂pj
− i

2
pj

p2 + m2
0

, (a)

1
2
(U − U∗T) =

i
2

pj

p2 + m2
0

. (b)
(68)

It is noteworthy(Olkhovsky & Recami, 1968; 1969) that, as we are going to see, operator (68a)
is nothing but the usual Newton-Wigner operator, while (68b) can be interpreted (Gallardo
et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Olkhovsky &
Recami, 1968; 1969; Toller, 1999) as yielding the sizes of the localization-region (an ellipsoid)
via its average values over the considered wave-packet.
Let us underline that the previous formalism justifies from the mathematical point of view the
treatment presented in papers like (Baldo & Recami, 1969; Gallardo et al., 1967b;c; Ka’lnay,
1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Recami, 1970). We can split(Olkhovsky
& Recami, 1968; 1969) the operator ẑ into two bilinear parts, as follows:

ẑ = i ∇p =
i
2

↔
∇p +

i
2

↔
∇

(+)

p (69)
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where Ψ∗ ↔
∇p Φ ≡ Ψ∗∇pΦ − Φ∇pΨ∗ and Ψ∗ ↔

∇
(+)

p Φ ≡ Ψ∗∇pΦ + Φ∇pΨ∗ , and where
we always referred to a suitable (Baldo & Recami, 1969; Gallardo et al., 1967b;c; Ka’lnay, 1966;
Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Recami, 1970; 1976; 1977; Recami et al., 1983)
space of wave packets. Its hermitian part (Baldo & Recami, 1969; Gallardo et al., 1967b;c;
Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Recami, 1970)

x̂ =
i
2

↔
∇p , (70)

which was expected to yield an (ordinary) point-like localization, has been derived also by
writing explicitly

(Ψ, x̂ Φ) = i
∫ d3 p

p0
Ψ∗(p)∇p Φ(p) (71)

and imposing hermiticity, i.e., imposing the reality of the diagonal elements. The calculations
yield

� (
Φ, x̂ Φ

)
= i

∫ d3 p
p0

Φ∗(p)
↔
∇p Φ(p) , (72)

suggesting to adopt just the Lorentz-invariant quantity (70) as a bilinear hermitian position
operator. Then, on integrating by parts (and due to the vanishing of the surface integral), we
verify that eq. (70) is equivalent to the ordinary Newton-Wigner operator:

x̂h ≡ i
2

↔
∇p ≡ i ∇p − i

2
p

p2 + m2 ≡ N − W . (73)

We are left with the (bilinear) anti-hermitian part

ŷ =
i
2

↔
∇

(+)

p (74)

whose average values over the considered state (wave-packet) can be regarded as
yielding (Baldo & Recami, 1969; Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967;
Olkhovsky et al., 1967; Recami, 1970; 1976; 1977; Recami et al., 1983)the sizes of an ellipsoidal
localization-region.
After the digression associated with eqs.(69)–(74), let us go back to the present formalism, as
expressed by eqs.(59)–(68).
In general, the extended-type position operator ẑ will yeld

�Ψ| ẑ |Ψ� = (α + Δα) + i (β + Δβ) , (75)

where Δα and Δβ are the mean-errors encountered when measuring the point-like position
and the sizes of the localization region, respectively. It is interesting to evaluate the
commutators (i, j = 1, 2, 3):

(
i
2

↔
∂

∂pi
,

i
2

↔
∂ (+)

∂pj

)
=

i
2 p2

0

(
δij −

2 pi pj

p2
0

)
, (76)

wherefrom the noticeable “uncertainty correlations” follow:

Δαi Δβj ≥ 1
4

∣∣∣∣
〈

1
p2

0

(
δij −

2 pi pj

p2
0

)〉∣∣∣∣ . (77)
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4.2 Four-position operators
It is tempting to propose as four-position operator the quantity ẑμ = x̂μ + i ŷμ, whose hermitian
(Lorentz-covariant) part can be written

x̂μ = − i
2

↔
∂

∂pμ
, (78)

to be associated with its corresponding “operator” in four-momentum space

p̂μ
h = +

i
2

↔
∂

∂xμ
. (79)

Let us recall the proportionality between the 4-momentum operator and the 4-current density
operator in the chronotopical space, and then underline the canonical correspondence (in the
4-position and 4-momentum spaces, respectively) between the “operators” (cf. the previous
subsection):

m0 ρ̂ ≡ p̂0 =
i
2

↔
∂
∂t

(a)

m0 ĵ ≡ p̂ = − i
2

↔
∂
∂r

, (b)

(80)

and the operators

t̂ ≡ − i
2

↔
∂

∂p0
(a)

x̂ ≡ i
2

↔
∂

∂p
, (b)

(81)

where the four-position “operator” (81) can be considered as a 4-current density operator in
the energy-impulse space. Analogous considerations can be carried on for the anti-hermitian
parts (see the last one of Refs.(Olkhovsky & Recami, 1968; 1969)).
Finally, by recalling the properties of the time operator as a maximal hermitian operator in
the non-relativistic case (Sec.2.1), one can see that the relativistic time operator (81a) (for the
Klein-Gordon case) is also a selfadjoint bilinear operator for the case of continuous energy
spectra, and a (maximal) hermitian linear operator for free particles [due to the presence of
the lower limit zero for the kinetic energy, or m0 for the total energy].

5. Decoherence (without instantaneous wave-function collapse5)

In this paper we want to show, within the density matrix formalism, that a simple way to get
decoherence is through the introduction of a “quantum” of time (or rather of a chronon): thus
replacing the differential Liouville–von Neumann equation with a finite-difference version of
it. In this way, one is given the possibility of using a very simple quantum equation to describe
the decoherence effects due to dissipation, and of partially solving the measurement-problem
in quantum mechanics (avoiding any recourse to the wave-function collapse). Namely,
the mere introduction (not of a “time-lattice”, but simply) of the “chronon” allows us to
go on from differential to finite-difference equations; and in particular to write down the

5 This section is developed by Erasmo Recami.
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Schröedinger equation (as well as the Liouville–von Neumann equation) in three different
ways: “retarded”, “symmetrical”, and “advanced”. One of such three formulations — the
retarded one — describes in an elementary way a system which is exchanging (and losing)
energy with the environment. In its density-matrix version, indeed, it can be easily shown
that all non-diagonal terms go to zero very rapidly.
Let us refer, in particular, to the theory of the chronon as proposed by P. Caldirola. Let us
recall that such an interesting “finite difference” theory, forwards — at the classical level —
a solution for the motion of a particle endowed with a non-negligible charge in an external
electromagnetic field, overcoming all the known difficulties met by Abraham-Lorentz’s and
Dirac’s approaches (and even allowing a clear answer to the question whether a free falling
charged particle does or does not emit radiation), and — at the quantum level — yields a
remarkable mass spectrum for leptons.
It is easy to compare one another the new representations of Quantum Mechanics (QM)
resulting from it, in the Schröedinger, Heisenberg and densityŰoperator (Liouville–von
Neumann) pictures, respectively.
For each representation, three (retarded, symmetric and advanced) formulations are possible,
which refer either to times t and t − τ0, or to times t − τ0/2 and t + τ0/2, or to times t and
t+ τ0, respectively. It is interesting to notice that, when the chronon tends to zero, the ordinary
QM is obtained as the limiting case of the “symmetric” formulation only; while the “retarded”
one does naturally appear to describe QM with friction, i. e., to describe dissipative quantum
systems (like a particle moving in an absorbing medium).
In this sense, discretized QM is much richer than the ordinary one. Here, we want to pay
attention to the fact that, when applying the density matrix formalism to the solution of the
measurement problem in QM, interesting results are met, as, for instance, a natural explication
of the “decoherence” due to dissipation: which seem to reveal the power of dicretized (in
particular, retarded) QM.

5.1 On discretized Quantum Mechanics
Let us approach our eventual application of the discretization procedures for a possible
solution of the measurement problem in Quantum Mechanics, without having to make
recourse to the reduction (wave-packet instantaneous collapse) postulate. Namely, let us focus
our attention, now, on the consequences for QM of the introduction of a chronon. In QM, time
will still be a continuous variable, but the evolution of the system along its world line will be
regarded as discontinuous. In analogy with the electron theory in the non-relativistic limit, one
has to substitute the corresponding finite-difference expression for the time derivatives; e. g.:

d f (t)
dt

=
f (t)− f (t − Δt)

Δt
, (82)

where proper time is now replaced by the local time t. The chronon procedure can then be
applied to obtain the finite-difference form of the Schröedinger equation. As for the electron
case, there are three different ways to perform the discretization, and three “Schröedinger
equations” can be obtained:

i
h̄
τ
[Ψ(x, t)− Ψ(x, t − τ)] = Ĥ Ψ(x, t), (83)

i
h̄

2τ
[Ψ(x, t + τ)− Ψ(x, t − τ)] = Ĥ Ψ(x, t), (84)
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h̄
τ
[Ψ(x, t)− Ψ(x, t − τ)] = Ĥ Ψ(x, t), (83)

i
h̄

2τ
[Ψ(x, t + τ)− Ψ(x, t − τ)] = Ĥ Ψ(x, t), (84)
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i
h̄
τ
[Ψ(x, t + τ)− Ψ(x, t)] = Ĥ Ψ(x, t), (85)

which are, respectively, the retarded, symmetric and advanced Schröedinger equations, all of
them transforming into the (same) continuous equation when the fundamental interval of
time (that can now be called just τ) goes to zero.
Since the equations are different, the solutions they provide are also fundamentally different.
In the classical theory of the electron the symmetric equation represented a non-radiating
motion, providing only an approximate description of the motion (without taking into account
the effects due to the self fields of the electron). However, in the quantum theory it plays a
fundamental role. In the discrete formalism too, the symmetrical equation constitutes the only
way to describe a bound non-radiating particle.
However, the solutions of the retarded (and advanced) equations show a completely different
behaviour. For a Hamiltonian explicitly independent of time, the solutions have a general
form given by

Ψ(x, t) =
[
1 + i

τ

h̄
Ĥ
]−t/τ

f (x) (86)

and, expanding f (x) in terms of the eigenfunctions of Ĥ:

Ĥ un(x) = Wn un(x), (87)

that is, writing f (x) = ∑
n

cn un(x), with ∑
n
|cn|2 = 1, one can obtain that

Ψ(x, t) = ∑
n

cn

[
1 + i

τ

h̄
Wn

]−t/τ
un(x). (88)

The norm of this solution is given by

|Ψ(x, t)|2 = ∑
n
|cn|2 exp (−γnt) (89)

with

γn =
1
τ

ln
(

1 +
τ2

h̄2 W2
n

)
=

W2
n

h̄2 τ + O (τ3), (90)

where it is apparent that the damping factor depends critically on the value τ of the chronon.
This dissipative behaviour originates from the character of the retarded equation; in the case of
the electron, the retarded equation possesses intrinsically dissipative solutions, representing
a radiating system. The Hamiltonian has the same status as in the ordinary (continuous) case:
It is an observable, since it is a hermitian operator and its eigenvectors form a basis of the state
space. However, as we have seen, the norm of the state vector is not constant any longer, due
to the damping factor. An opposite behaviour is observed for the solutions of the advanced
equation, in the sense that they increase exponentially.

5.2 Discretized (retarded) Liouville equation, and a solution of the measurement problem:
Decoherence from dissipation

Suppose we want to measure the dynamical variable R of a (microscopic) object O, by utilizing
a (macroscopic) measuring apparatus A.
In the discrete case the interaction is embedded in the Hamiltonian Ĥ, with the following
consequences. Let us consider the energy representation, where |n� are the states with defined

5.2 Discretized (retarded) Liouville equation, and a solution of the measurement 
problem: Decoherence from dissipation 
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energy: H|n� = En|n�. Since the time evolution operator is a function of the Hamiltonian, and
commutes with it, the basis of the energy eigenstates will be a basis also for this operator.
The discretized (retarded) Liouville-von Neumann equation is

ρ(t)− ρ(t − τ)

τ
= −iL ρ(t), (91)

which reduces to the LvN equation when τ → 0. The essential point is that, following e.g. a
procedure similar to Bonifacio’s, one gets in this case a non-unitary time-evolution operator:

V(t, 0) =
[
1 +

iτL
h̄

]−t/τ
, (92)

which, as all non-unitary operators, does not preserve the probabilities associated with each
of the energy eigenstates (that make up the expansion of the initial state in such a basis of
eigenstates). We are interested in the time instants t = kτ, with k an integer.
Thus, the time-evolution operator (92) takes the initial density operator ρin to a final state for
which the non-diagonal terms decay exponentially with time; namely, to

ρfin
rs = �r|V(t, 0)|s� = ρin

rs
[
1 + iwrsτ

]−t/τ, (93)

where
wrs ≡ 1

h̄
(Er − Es) ≡ 1

h̄
(ΔE)rs. (94)

Expression (93) can be written

ρrs(t) = ρrs(0) e−γrst e−iνrst, (95)

with
γrs ≡ 1

2τ
ln
(
1 + w2

rsτ2), (96)

νrs ≡ 1
τ

tan−1(wrsτ). (97)

One can observe, indeed, that the non-diagonal terms tend to zero with time, and that the
larger the value of τ, the faster the decay becomes. Actually, the chronon τ is now an interval
of time related no longer to a single electron, but to the whole system O+A. If one imagines
the time interval τ to be linked to the possibility of distinguishing two successive, different
states of the system, then τ can be significantly larger than 10−23 sec, implying an extremely
faster damping of the non-diagonal terms of the density operator.
Thus, the reduction to the diagonal form occurs, provided that τ possesses a finite value, no
matter how small, and provided that wnmτ, for every n, m, is not much smaller than 1; where

wnm = (En − Em)/h̄ (98)

are the transition frequencies between the different energy eigenstates (the last condition being
always satisfied, e. g., for non-bounded systems).
It is essential to notice that decoherence has been obtained above, without having recourse to any
statistical approach, and in particular without assuming any “coarse graining” of time. The reduction
to the diagonal form illustrated by us is a consequence of the discrete (retarded) LiouvilleŰvon
Neumann equation only, once the inequality wnmτ � 1 is not verified.
Moreover, the measurement problem is still controversial even with regard to its mathematical
approach: In the simplified formalization introduced above, however, we have not included
any consideration beyond those common to the quantum formalism, allowing an as clear as
possible recognition of the effects of the introduction of a chronon.
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i
h̄
τ
[Ψ(x, t + τ)− Ψ(x, t)] = Ĥ Ψ(x, t), (85)
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Ψ(x, t) =
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1 + i

τ

h̄
Ĥ
]−t/τ

f (x) (86)
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Ĥ un(x) = Wn un(x), (87)
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n

cn un(x), with ∑
n
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Ψ(x, t) = ∑
n

cn

[
1 + i

τ

h̄
Wn

]−t/τ
un(x). (88)
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|Ψ(x, t)|2 = ∑
n
|cn|2 exp (−γnt) (89)
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γn =
1
τ

ln
(

1 +
τ2

h̄2 W2
n

)
=

W2
n

h̄2 τ + O (τ3), (90)
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consequences. Let us consider the energy representation, where |n� are the states with defined

5.2 Discretized (retarded) Liouville equation, and a solution of the measurement 
problem: Decoherence from dissipation 

44 Measurements in Quantum Mechanics Time as Quantum Observable, Canonical Conjugated to Energy 29
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commutes with it, the basis of the energy eigenstates will be a basis also for this operator.
The discretized (retarded) Liouville-von Neumann equation is

ρ(t)− ρ(t − τ)

τ
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iτL
h̄

]−t/τ
, (92)
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rs
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1 + iwrsτ

]−t/τ, (93)
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h̄
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h̄
(ΔE)rs. (94)
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νrs ≡ 1
τ
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always satisfied, e. g., for non-bounded systems).
It is essential to notice that decoherence has been obtained above, without having recourse to any
statistical approach, and in particular without assuming any “coarse graining” of time. The reduction
to the diagonal form illustrated by us is a consequence of the discrete (retarded) LiouvilleŰvon
Neumann equation only, once the inequality wnmτ � 1 is not verified.
Moreover, the measurement problem is still controversial even with regard to its mathematical
approach: In the simplified formalization introduced above, however, we have not included
any consideration beyond those common to the quantum formalism, allowing an as clear as
possible recognition of the effects of the introduction of a chronon.
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6. Non-hermitian Hamiltonians and microscopic quantum dissipation

Various different approached are known, aimed at getting dissipation — and possibly
decoherence — within quantum mechanics. First of all, the simple introduction of a
“chronon” (see, e.g., Refs. (Caldirola et al., 1978; Caldirola, 1979; Caldirola & Montaldi, 1979;
Caldirola & Lugiato, 1982; Caldirola, 1983; Farias & Recami, 2007)) allows one to go on
from differential to finite-difference equations, and in particular to write down the quantum
theoretical equations (Schrödinger’s, Liouville-von Neumann’s, etc.) in three different ways:
symmetrical, retarded, and advanced. The retarded “Schrödinger” equation describes in a
rather simple and natural way a dissipative system, which exchanges (loses) energy with the
environment. The corresponding non-unitary time-evolution operator obeys a semigroup law
and refers to irreversible processes. The retarded approach furnishes, moreover, an interesting
way for solving the “measurement problem” in quantum mechanics, without any need for
a wave-function collapse: see Refs.(Bonifacio, 1983; Bonifacio & Caldirola, 1983; Farias &
Recami, 2007; Ghirardi & Weber, 1984; Recami & Farias, 2002). The chronon theory can be
regarded as a peculiar “coarse grained” description of the time evolution.
Let us stress that it has been shown that the mentioned discrete approach can be replaced
with a continuous one, at the price of introducing a non-hermitian Hamiltonian: see, e.g.,
Ref.(Casagrande & Montaldi, 1977).
Further relevant work can be found, for instance, in papers like (Caldirola, 1941; Janussis et
al., 1980; 1981a;b; 1982a;b;c; 1984; 1991; 1995; Mignani, 1983) and refs. therein.
Let us add, at this point, that much work is still needed for the description of time
irreversibility at the microscopic level. Indeed, various approaches have been proposed,
in which new parameters are introduced (regulation or dissipation) into the microscopic
dynamics (building a bridge, in a sense, between microscopic structure and macroscopic
characteristics). Besides the Caldirola-Kanai(Caldirola, 1941; Kanai, 1948) Hamiltonian

ĤCK(t) = − h̄2

2m
∂2

∂x2 e−γt + V(x) eγt (99)

(which has been used, e.g., in Ref.(Angelopoulon et al., 1995)), other rather simple approaches,
based of course on the Schrödinger equation

ih̄
∂

∂t
Ψ(x, t) = Ĥ Ψ(x, t) , (100)

and adopting a microscopic dissipation defined via a coefficient of extinction γ, are for
instance the following ones:
A) Non-linear (non-hermitian) Hamiltonians

Ĥnl = − h̄2

2m
∂2

∂x2 + V(x) + Ŵ , (101)

with “potential” operators Ŵ of the type:

1. Kostin’s operator (see Ref.(Kostin, 1972)):

ŴK = − ih̄
2m

{
ln Ψ
Ψ∗ −

〈
ln Ψ
Ψ∗

〉}
; (102)
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2. Albrecht’s operator (see Ref.(Albrecht, 1975)):

ŴA(x) = �p � (x − �x�) , (103)

where � � is the averaging produced over |Ψ(x)|2;

3. Ref.(Hasse, 1975):

ŴH(x) =
1
4

[
x − �x�, p + �p �

]
+

, (104)

where [A, B]+ is the anticommutator: [A, B]+ = AB + BA.

B) Linear (non-hermitian) Hamiltonians:

1. Ref.(Gisin, 1982):
ĤG = (1 − iγ) Ĥ + iγ�Ĥ� ; (105)

2. Ref.(Exner, 1983):
ĤE = Ĥ + i Ŵ(x)− i �Ŵ(x) � . (106)

One might recall also the important, so-called “microscopic models”(Caldeira & Leggett,
1983), even if they are not based on the Schröedinger equation.
All such proposals are to be further investigated, and completed, since they have not been
apparently exploited enough, till now. Let us remark, just as an example, that it would be
desirable to take into deeper consideration other related phenomena, like the ones associated
with the “Hartman effect” (and “generalized Hartman effect”) (Aharonov, 2002; Olkhovsky &
Recami, 1992; Olkhovsky et al., 1995; 2002; 2004; 2005; Recami, 2004), in the case of tunneling
with dissipation: a topic faced in few papers, like (Nimtz et al., 1994; Raciti & Salesi, 1994).
As a small contribution of ours, in the Appendix we present a scheme of iterations (successive
approximations) as a possible tool for explicit calculations of wave-functions in the presence
of dissipation, by using as an example the simple Albreht’s potential. Our scheme may be
useful, in any case, for the investigation of possible violations of the Hartman effect, as well
as for analyzing a few irreversible phenomena. See the Appendix.
At last, let us incidentally recall that two generalized Schröedinger equations, introduced
by Caldirola (Caldirola, 1941; 1976a;b; 1977) in order to describe two different dissipative
processes (behavior of open systems, and the radiation of a charged particle) have been
shown — see, e.g., Ref.(Mignani, 1983)) — to possess the same algebraic structure of the
Lie-admissible type(Santilli, 1983).

7. Some conclusions

1. We have shown that the Time operator (1), hermitian even if non-selfadjoint, works for any
quantum collisions or motions, in the case of a continuum energy spectrum, in non-relativistic
quantum mechanics and in one-dimensional quantum electrodynamics. The uniqueness
of the (maximal) hermitian time operator (1) directly follows from the uniqueness of the
Fourier-transformations from the time to the energy representation. The time operator (1)
has been fruitfully used in the case, for instance, of tunnelling times (see Refs. (Olkhovsky
& Recami, 1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004;
Olkhovsky & Recami, 2007)), and of nuclear reactions and decays (see Refs. (Olkhovsky, 1984;
1990; 1992; 1998) and also Ref. (Olkhovsky et al., 2006)). We have discussed the advantages
of such an approach with respect to POVM’s, which is not applicable for three-dimensional
particle collisions, within a wide class of Hamiltonians.

47Time as Quantum Observable, Canonical Conjugated to Energy



30 Will-be-set-by-IN-TECH

6. Non-hermitian Hamiltonians and microscopic quantum dissipation

Various different approached are known, aimed at getting dissipation — and possibly
decoherence — within quantum mechanics. First of all, the simple introduction of a
“chronon” (see, e.g., Refs. (Caldirola et al., 1978; Caldirola, 1979; Caldirola & Montaldi, 1979;
Caldirola & Lugiato, 1982; Caldirola, 1983; Farias & Recami, 2007)) allows one to go on
from differential to finite-difference equations, and in particular to write down the quantum
theoretical equations (Schrödinger’s, Liouville-von Neumann’s, etc.) in three different ways:
symmetrical, retarded, and advanced. The retarded “Schrödinger” equation describes in a
rather simple and natural way a dissipative system, which exchanges (loses) energy with the
environment. The corresponding non-unitary time-evolution operator obeys a semigroup law
and refers to irreversible processes. The retarded approach furnishes, moreover, an interesting
way for solving the “measurement problem” in quantum mechanics, without any need for
a wave-function collapse: see Refs.(Bonifacio, 1983; Bonifacio & Caldirola, 1983; Farias &
Recami, 2007; Ghirardi & Weber, 1984; Recami & Farias, 2002). The chronon theory can be
regarded as a peculiar “coarse grained” description of the time evolution.
Let us stress that it has been shown that the mentioned discrete approach can be replaced
with a continuous one, at the price of introducing a non-hermitian Hamiltonian: see, e.g.,
Ref.(Casagrande & Montaldi, 1977).
Further relevant work can be found, for instance, in papers like (Caldirola, 1941; Janussis et
al., 1980; 1981a;b; 1982a;b;c; 1984; 1991; 1995; Mignani, 1983) and refs. therein.
Let us add, at this point, that much work is still needed for the description of time
irreversibility at the microscopic level. Indeed, various approaches have been proposed,
in which new parameters are introduced (regulation or dissipation) into the microscopic
dynamics (building a bridge, in a sense, between microscopic structure and macroscopic
characteristics). Besides the Caldirola-Kanai(Caldirola, 1941; Kanai, 1948) Hamiltonian
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The mathematical properties of the present Time operator have actually demonstrated
— without introducing any new physical postulates — that time can be regarded as a
quantum-mechanical observable, at the same degree of other physical quantities (energy,
momentum, spatial coordinates,...).
The commutation relations (eqs. (8), (22), (31)) here analyzed, and the uncertainty relations
(9), result to be analogous to those known for other pairs of canonically conjugate observables
(as for coordinate x̂ and momentum p̂x, in the case of eq. (9)). Of course, our new relations do
not replace, but merely extend the meaning of the classic time and energy uncertainties, given
e.g. in Ref. (Olkhovsky & Recami, 2008). In subsection 2.6, we have studied the properties of
Time, as an observable, for quantum-mechanical systems with discrete energy spectra.
2. Let us recall that the Time operator (1), and relations (2), (3), (4), (15), (16), have been used
for the temporal analysis of nuclear reactions and decays in Refs. (Olkhovsky, 1984; 1990;
1992; 1998); as well as of new phenomena, about time delays-advances in nuclear physics and
about time resonances or explosions of highly excited compound nuclei, in Refs. (D’Arrigo
et al., 1992; 1993; Olkhovsky & Doroshko, 1992; Olkhovsky et al., 2006). Let us also recall
that, besides the time operator, other quantities, to which (maximal) hermitian operators
correspond, can be analogously regarded as quantum-physical observables: For example,
von Neumann himself (Recami, 1976; 1977; Von Neumann, 1955)) considered the case of the
momentum operator −i∂/∂x in a semi-space with a rigid wall orthogonal to the x-axis at
x = 0, or of the radial momentum −i∂/∂r, even if both act on packets defined only over the
positive x or r axis, respectively.
Subsection 2.5 has been devoted to a new “hamiltonian approach”: namely, to the introduction
of the analogue of the “Hamiltonian” for the case of the Time operator.
3. In Section 3, we have proposed a suitable generalization for the Time operator (or, rather, for
a Space-Time operator) in relativistic quantum mechanics. For instance, for the Klein-Gordon
case, we have shown that the hermitian part of the three-position operator x̂ is nothing but the
Newton-Wigner operator, and corresponds to a point-like position; while its anti-hermitian
part can be regarded as yielding the sizes of an extended-type (ellipsoidal) localization.
When dealing with a 4-position operator, one finds that the Time operator is selfadjoint for
unbounded energy spectra, while it is a (maximal) hermitian operator when the kinetic energy,
and the total energy, are bounded from below, as for a free particle. We have extensively made
recourse, in the latter case, to bilinear forms, which dispense with the necessity of eliminating
the lower point — corresponding to zero velocity — of the spectra. It would be interesting
to proceed to further generalizations of the 3- and 4-position operator for other relativistic
cases, and analyze the localization problems associated with Dirac particles, or in 2D and
3D quantum electrodynamics, etc. Work is in progress on time analyses in 2D quantum
electrodynamic, for application, e.g., to frustrated (almost total) internal reflections. Further
work has still to be done also about the joint consideration of particles and antiparticles.
4. Section 4 has been devoted to the association of unstable states (decaying ”resonances”)
with the eigenvectors of quasi-hermitian (Agodi et al., 1973; Olkhovsky et al., 2006; Recami et
al., 1983) Hamiltonians.
5. Non-hermitian Hamiltonians, and non-unitary time-evolution operators, can play an
important role also in microscopic quantum dissipation (Bonifacio, 1983; Bonifacio &
Caldirola, 1983; Caldirola, 1941; Caldirola et al., 1978; Caldirola, 1979; Caldirola & Montaldi,
1979; Caldirola & Lugiato, 1982; Caldirola, 1983; Casagrande & Montaldi, 1977; Farias &
Recami, 2007; Ghirardi & Weber, 1984; Janussis et al., 1980; 1981a;b; 1982a;b;c; 1984; 1991; 1995;
Mignani, 1983; Recami & Farias, 2002): namely, in getting decoherence through interaction
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with the environment (Farias & Recami, 2007; Recami & Farias, 2002). This topic is touched in
Section 5; together with questions related with collisions in absorbing media. In particular, in
Sec.5 we mention also the case of the optical model in nuclear physics; without forgetting
that non-hermitian operators show up even in the case of tunnelling — e. g., in fission
phenomena — with quantum dissipation, and of quantum friction. As to the former topic
of microscopic quantum dissipation, among the many approaches to quantum irreversibility
we have discussed in Sec. 5.2 a possible solution of the quantum measurement problem (via
interaction with the environment) by the introduction of finite-difference equations (e. g., in
terms of a “chronon”).
6. Let us eventually observe that the “dual equations” (26) and (27) seem to be promising
also for the study the initial stage of our cosmos, when tunnellings can take place through
the barriers which appear in quantum gravity in the limiting case of quasi-Schröedinger
equations.
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9. Appendix

Time-dependent Schrödinger equation with dissipative terms
9.1 Introduction
Let’s consider the time-dependent Schrödinger equation:

i
∂

∂t
Ψ(x, t) =

(
− ∂2

∂x2 + V(x, t)
)

Ψ(x, t), (107)

where we put h̄ = 1. Let us rewrite the time-dependent wave function (WF), Ψ(x, t) (which
can be considered as a wave-packet (WP)), in the form of a Fourier integral:

Ψ(x, t) =
E0∫

0

g(E) e−iEt ϕ(E, x) dE , (108)

where ϕ(E, x) is the WF component independent of time, and g(E) is a weight factor. One can
choose the function g(E) to be, e.g., a Gaussian:

g(E) = A e−a2(k−k̄)2
. (109)

Here, A and a are constants, and k̄ is the selected value for the impulse, constituting the center
of the WP. We substitute the Fourier-expansion (108) of WF into eq. (107). Thus, the l.h.s. of
this equation transforms into

i
∂

∂t
Ψ(x, t) =

E0∫

0

g(E) e−iEt ϕ(E, x) EdE . (110)
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4. Section 4 has been devoted to the association of unstable states (decaying ”resonances”)
with the eigenvectors of quasi-hermitian (Agodi et al., 1973; Olkhovsky et al., 2006; Recami et
al., 1983) Hamiltonians.
5. Non-hermitian Hamiltonians, and non-unitary time-evolution operators, can play an
important role also in microscopic quantum dissipation (Bonifacio, 1983; Bonifacio &
Caldirola, 1983; Caldirola, 1941; Caldirola et al., 1978; Caldirola, 1979; Caldirola & Montaldi,
1979; Caldirola & Lugiato, 1982; Caldirola, 1983; Casagrande & Montaldi, 1977; Farias &
Recami, 2007; Ghirardi & Weber, 1984; Janussis et al., 1980; 1981a;b; 1982a;b;c; 1984; 1991; 1995;
Mignani, 1983; Recami & Farias, 2002): namely, in getting decoherence through interaction
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with the environment (Farias & Recami, 2007; Recami & Farias, 2002). This topic is touched in
Section 5; together with questions related with collisions in absorbing media. In particular, in
Sec.5 we mention also the case of the optical model in nuclear physics; without forgetting
that non-hermitian operators show up even in the case of tunnelling — e. g., in fission
phenomena — with quantum dissipation, and of quantum friction. As to the former topic
of microscopic quantum dissipation, among the many approaches to quantum irreversibility
we have discussed in Sec. 5.2 a possible solution of the quantum measurement problem (via
interaction with the environment) by the introduction of finite-difference equations (e. g., in
terms of a “chronon”).
6. Let us eventually observe that the “dual equations” (26) and (27) seem to be promising
also for the study the initial stage of our cosmos, when tunnellings can take place through
the barriers which appear in quantum gravity in the limiting case of quasi-Schröedinger
equations.
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9. Appendix

Time-dependent Schrödinger equation with dissipative terms
9.1 Introduction
Let’s consider the time-dependent Schrödinger equation:

i
∂

∂t
Ψ(x, t) =

(
− ∂2

∂x2 + V(x, t)
)

Ψ(x, t), (107)

where we put h̄ = 1. Let us rewrite the time-dependent wave function (WF), Ψ(x, t) (which
can be considered as a wave-packet (WP)), in the form of a Fourier integral:

Ψ(x, t) =
E0∫

0

g(E) e−iEt ϕ(E, x) dE , (108)

where ϕ(E, x) is the WF component independent of time, and g(E) is a weight factor. One can
choose the function g(E) to be, e.g., a Gaussian:

g(E) = A e−a2(k−k̄)2
. (109)

Here, A and a are constants, and k̄ is the selected value for the impulse, constituting the center
of the WP. We substitute the Fourier-expansion (108) of WF into eq. (107). Thus, the l.h.s. of
this equation transforms into

i
∂

∂t
Ψ(x, t) =

E0∫

0

g(E) e−iEt ϕ(E, x) EdE . (110)
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Afterwards, the r.h.s. of eq. (107) gets transformed into

(
− ∂2

∂x2 + V(x, t)
)

Ψ(x, t) = −
E0∫

0

g(E)e−iEt ∂2 ϕ(E, x)
∂x2 dE +

E0∫

0

g(E)V(x, Ē, t)e−iEt ϕ(E, x) dE.

(111)
Therefore, the whole equation (107) has been transformed into

E0∫

0

g(E) e−iEt ϕ(E, x) EdE = −
E0∫

0

g(E) e−iEt ∂2 ϕ(E, x)
∂x2 dE +

E0∫

0

g(E)V(x, Ē, t) e−iEt ϕ(E, x) dE.

(112)
Let us now apply the inverse Fourier-transformation to this equation. Its left part becomes

1
2π

∫
dt eiE�t

E0∫

0

g(E) e−iEt ϕ(E, x) EdE =
1

2π

E0∫

0

dE E g(E) ϕ(E, x)
∫

ei(E�−E)tdt =

=

E0∫

0

g(E) ϕ(E, x)δ(E� − E) EdE = g(E�) E� ϕ(E�, x) ;

(113)

while its right part becomes

− 1
2π

∫
dt eiE� t

E0∫

0

g(E) e−iEt ∂2 ϕ(E, x)
∂x2 dE +

1
2π

∫
dt eiE�t

E0∫

0

g(E)V(x, Ē, t) e−iEt ϕ(E, x) dE =

= − 1
2π

E0∫

0

dE g(E)
∂2 ϕ(E, x)

∂x2

∫
ei(E�−E)t dt +

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)−t dt =

= −g(E�) ∂2 ϕ(E�, x)
∂x2 +

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)t dt.

(114)
As a result, we obtain eq. (112) in the form

g(E�) E� ϕ(E�, x) = −g(E�) ∂2 ϕ(E�, x)
∂x2 +

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)t dt. (115)

9.2 The case of the simple Albreht’s potential
Just as an example of a possible potential V(x, t), let us choose

V(x, t) = V0(x) + γ WA(x) . (116)

where WA(x) is the simple Albreht’s dissipation term. Here, γ is a constant, V0(x) is the usual
stationary component of V(x), and the dissipative component of V(x) has the form

WA(x) =< p > (x− < x >), (117)
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where the averages are fulfilled by integrating over x by means of the functions Ψ∗(x, t) and
Ψ(x, t). For the right part of eq. (117) one gets

< p > = −i
∫

dx

E0∫

0

dE1

E0∫

0

dE2 g(E1) g(E2) ei(E1−E2)t ϕ∗(E1, x)
∂ϕ(E2, x)

∂x
,

< x > =
∫

dx
E0∫

0

dE3

E0∫

0

dE4 g(E3) g(E4) ei(E3−E4)t x ϕ∗(E3, x) ϕ(E4, x) ;

(118)

so that the total potential V(x, t) becomes

V(x, t) = V0(x)− iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4)

× ei(E1−E2+E3−E4)t
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2).

(119)

Taking into account this, we find the second term, in the r.h.s. of eq. (115), to be:

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)t dt =

=

E0∫

0

dE g(E) ϕ(E, x) V0(x) δ(E� − E)−

− iγ
E0∫

0

dE g(E) ϕ(E, x)
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) δ(E� − E + E1 − E2 + E3 − E4) =

= g(E�) ϕ(E�, x)V0(x)−

− iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4) g(E��)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E��, x),

(120)
where

E�� = E� + E1 − E2 + E3 − E4. (121)

As a consequence, the whole eq. (115) gets transformed into

g(E�) E� ϕ(E�, x) = −g(E�) ∂2 ϕ(E�, x)
∂x2 + g(E�) ϕ(E�, x)V0(x)

− iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4) g(E��)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E��, x)
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Afterwards, the r.h.s. of eq. (107) gets transformed into

(
− ∂2

∂x2 + V(x, t)
)

Ψ(x, t) = −
E0∫

0

g(E)e−iEt ∂2 ϕ(E, x)
∂x2 dE +

E0∫

0

g(E)V(x, Ē, t)e−iEt ϕ(E, x) dE.

(111)
Therefore, the whole equation (107) has been transformed into

E0∫

0

g(E) e−iEt ϕ(E, x) EdE = −
E0∫

0

g(E) e−iEt ∂2 ϕ(E, x)
∂x2 dE +

E0∫

0

g(E)V(x, Ē, t) e−iEt ϕ(E, x) dE.

(112)
Let us now apply the inverse Fourier-transformation to this equation. Its left part becomes

1
2π

∫
dt eiE�t

E0∫

0

g(E) e−iEt ϕ(E, x) EdE =
1

2π

E0∫

0

dE E g(E) ϕ(E, x)
∫

ei(E�−E)tdt =

=

E0∫

0

g(E) ϕ(E, x)δ(E� − E) EdE = g(E�) E� ϕ(E�, x) ;

(113)

while its right part becomes

− 1
2π

∫
dt eiE� t

E0∫

0

g(E) e−iEt ∂2 ϕ(E, x)
∂x2 dE +

1
2π

∫
dt eiE�t

E0∫

0

g(E)V(x, Ē, t) e−iEt ϕ(E, x) dE =

= − 1
2π

E0∫

0

dE g(E)
∂2 ϕ(E, x)

∂x2

∫
ei(E�−E)t dt +

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)−t dt =

= −g(E�) ∂2 ϕ(E�, x)
∂x2 +

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)t dt.

(114)
As a result, we obtain eq. (112) in the form

g(E�) E� ϕ(E�, x) = −g(E�) ∂2 ϕ(E�, x)
∂x2 +

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)t dt. (115)

9.2 The case of the simple Albreht’s potential
Just as an example of a possible potential V(x, t), let us choose

V(x, t) = V0(x) + γ WA(x) . (116)

where WA(x) is the simple Albreht’s dissipation term. Here, γ is a constant, V0(x) is the usual
stationary component of V(x), and the dissipative component of V(x) has the form

WA(x) =< p > (x− < x >), (117)
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where the averages are fulfilled by integrating over x by means of the functions Ψ∗(x, t) and
Ψ(x, t). For the right part of eq. (117) one gets

< p > = −i
∫

dx

E0∫

0

dE1

E0∫

0

dE2 g(E1) g(E2) ei(E1−E2)t ϕ∗(E1, x)
∂ϕ(E2, x)

∂x
,

< x > =
∫

dx
E0∫

0

dE3

E0∫

0

dE4 g(E3) g(E4) ei(E3−E4)t x ϕ∗(E3, x) ϕ(E4, x) ;

(118)

so that the total potential V(x, t) becomes

V(x, t) = V0(x)− iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4)

× ei(E1−E2+E3−E4)t
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2).

(119)

Taking into account this, we find the second term, in the r.h.s. of eq. (115), to be:

1
2π

E0∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E�−E)t dt =

=

E0∫

0

dE g(E) ϕ(E, x) V0(x) δ(E� − E)−

− iγ
E0∫

0

dE g(E) ϕ(E, x)
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) δ(E� − E + E1 − E2 + E3 − E4) =

= g(E�) ϕ(E�, x)V0(x)−

− iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4) g(E��)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E��, x),

(120)
where

E�� = E� + E1 − E2 + E3 − E4. (121)

As a consequence, the whole eq. (115) gets transformed into

g(E�) E� ϕ(E�, x) = −g(E�) ∂2 ϕ(E�, x)
∂x2 + g(E�) ϕ(E�, x)V0(x)

− iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4 g(E1) g(E2) g(E3) g(E4) g(E��)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E��, x)
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or (with the change of variables E� → E)
(
− ∂2

∂x2 + V0(x)− E
)

ϕ(E, x) =

= iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E��)

g(E)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E��, x) .

(122)

We have thus obtained for this case the time-independent Schröedinger equation, by taking
however into account dissipation via the parameter γ. Of course, when γ tends to zero, one
goes back to the stationary Schrödinger equation.

9.3 Method of the successive approximations
Assuming the coefficient γ to be small, one can find the unknown function ϕ(x) in the
simplified form

ϕ(x) = ϕ0(x) + γ ϕ1(x), (123)

where as function ϕ0(x) it has been used the standard WF of the time-independent
Schrödinger equation with potential V0(x) and energy E0:

(
− ∂2

∂x2 + V0(x)
)

ϕ0(x) = E0 ϕ0(x). (124)

Substituting solution (123) into eq. (124), we obtain a new equation containing all the powers
n of γ, namely, the γn. Let us confine ourselves, however, to write down this equation with
accuracy up to γ1 only:

(
− ∂2

∂x2 + V0(x)− E
)(

ϕ0(E, x) + γϕ1(E, x)
)
=

= iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E��)

g(E)

×
(

x − x2

)
ϕ∗

0(E1, x1)
∂ϕ0(E2, x1)

∂x1
ϕ∗

0(E3, x2) ϕ0(E4, x2) ϕ0(E
��, x) ,

(125)

where the unknown ϕ1(x) does not appear any longer, of course,into the r.h.s. of this equation.
Taking E = E0, we can rewrite in eq. (125), separately, the various terms with different powers
of γ. When limiting ourselves to n = 0, 1, we obtain

γ0 :
(
− ∂2

∂x2 + V0(x)− E0

)
ϕ0(E0, x) = 0,

γ1 :
(
− ∂2

∂x2 + V0(x)− E0

)
ϕ1(E0, x) =

= iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E��)

g(E0)

×
(

x − x2

)
ϕ∗

0(E1, x1)
∂ϕ0(E2, x1)

∂x1
ϕ∗

0(E3, x2) ϕ0(E4, x2) ϕ0(E
��, x),

(126)
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where
E�� = E0 + E1 − E2 + E3 − E4. (127)

The first equation holds when dissipation is absent. The second equation determines the
unknown function ϕ1 in terms of the given ϕ0: It results to be an ordinary differential equation
of the second order, that can be solved by the ordinary numerical methods.
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or (with the change of variables E� → E)
(
− ∂2

∂x2 + V0(x)− E
)

ϕ(E, x) =

= iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E��)

g(E)

×
(

x − x2

)
ϕ∗(E1, x1)

∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E��, x) .

(122)

We have thus obtained for this case the time-independent Schröedinger equation, by taking
however into account dissipation via the parameter γ. Of course, when γ tends to zero, one
goes back to the stationary Schrödinger equation.

9.3 Method of the successive approximations
Assuming the coefficient γ to be small, one can find the unknown function ϕ(x) in the
simplified form

ϕ(x) = ϕ0(x) + γ ϕ1(x), (123)

where as function ϕ0(x) it has been used the standard WF of the time-independent
Schrödinger equation with potential V0(x) and energy E0:

(
− ∂2

∂x2 + V0(x)
)

ϕ0(x) = E0 ϕ0(x). (124)

Substituting solution (123) into eq. (124), we obtain a new equation containing all the powers
n of γ, namely, the γn. Let us confine ourselves, however, to write down this equation with
accuracy up to γ1 only:

(
− ∂2

∂x2 + V0(x)− E
)(

ϕ0(E, x) + γϕ1(E, x)
)
=

= iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E��)

g(E)

×
(

x − x2

)
ϕ∗

0(E1, x1)
∂ϕ0(E2, x1)

∂x1
ϕ∗

0(E3, x2) ϕ0(E4, x2) ϕ0(E
��, x) ,

(125)

where the unknown ϕ1(x) does not appear any longer, of course,into the r.h.s. of this equation.
Taking E = E0, we can rewrite in eq. (125), separately, the various terms with different powers
of γ. When limiting ourselves to n = 0, 1, we obtain

γ0 :
(
− ∂2

∂x2 + V0(x)− E0

)
ϕ0(E0, x) = 0,

γ1 :
(
− ∂2

∂x2 + V0(x)− E0

)
ϕ1(E0, x) =

= iγ
∫

dx1

∫
dx2

E0∫

0

dE1

E0∫

0

dE2

E0∫

0

dE3

E0∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E��)

g(E0)

×
(

x − x2

)
ϕ∗

0(E1, x1)
∂ϕ0(E2, x1)

∂x1
ϕ∗

0(E3, x2) ϕ0(E4, x2) ϕ0(E
��, x),

(126)
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where
E�� = E0 + E1 − E2 + E3 − E4. (127)

The first equation holds when dissipation is absent. The second equation determines the
unknown function ϕ1 in terms of the given ϕ0: It results to be an ordinary differential equation
of the second order, that can be solved by the ordinary numerical methods.
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1. Introduction

The problem is rather old, almost as quantum mechanics itself. The first, primary idea of
Schrödinger was the relativistic one, with the d’Alembert operator on the left-hand side of
quantum-mechanical equation, so, with the second-order time derivatives. Unfortunately, it
turned out that the following results were in a rather clear contradiction with experimental
data, although some kind of compatibility did exist. Schrödinger felt disappointed and
at least temporarily he rejected his primary equation. Later on, basic on the idea of
Lagrange-Hamilton optical-mechanical analogy and on certain de Broglie ideas, he in a
sense derived his famous equation which seemed to remain in a beautiful agreement
with spectroscopic data and was approximately compatible with the Bohr-Sommerfeld
quantization rules. Nevertheless, it was of course drastically incompatible with the relativistic
idea of Poincare symmetry. But, after the fall of the primary substantial interpretation by
Schrödinger, it was compatible with the Born statistical interpretation of his formalism, and
with the corresponding continuity equation for the probabilistic density (Veltman, 2003).
Later on history was rather complicated. Dirac formulated his relativistic quantum theory
of electrons based on first-order space-time derivatives of multicomponent wave functions.
The multicomponent character of waves had to do obviously with the particle spin. It
was also understood that the relativistic velocity-dependence of the electron mass and the
spin phenomena act in opposite directions, and because of this non-relativistic Schrödinger
equation seemed to be better than his second order equation, rediscovered later on by Klein
and Gordon. The formalism of quantum field theory rehabilitated the Klein-Gordon equation,
i.e., primaevally the relativistic Schrödinger equation, as one describing some physics. And,
let us also mention that the field-theoretic approach based on the Pauli exclusion principle
removed certain problems with the quantum-mechanical Dirac equation for a single electron.
And certain inconsistencies on one-particle relativistic theory were resolved. The only, and
fundamental inadequacy which remained, was one connected with the essential non-linearity
of the quantum field-theoretic equations for the field operators and the resulting interpretation
difficulties. Nevertheless, they were in a sense solvable on the basis of renormalization
procedure.
But in spite of everything said, the problem is still alive. There are certain not completely clear
facts within the framework of field theory based on the Dirac-Clifford paradigm of first-order
differential equations of quantum mechanics with h̄/2-spin. One can show that they become
more clear when we assume that in a sense some second-order equations are primary and
the first-order ones are some approximations valid for slowly-varying fields. There are also
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5B, Pawińskiego str., 02-106 Warsaw, Poland

1. Introduction

The problem is rather old, almost as quantum mechanics itself. The first, primary idea of
Schrödinger was the relativistic one, with the d’Alembert operator on the left-hand side of
quantum-mechanical equation, so, with the second-order time derivatives. Unfortunately, it
turned out that the following results were in a rather clear contradiction with experimental
data, although some kind of compatibility did exist. Schrödinger felt disappointed and
at least temporarily he rejected his primary equation. Later on, basic on the idea of
Lagrange-Hamilton optical-mechanical analogy and on certain de Broglie ideas, he in a
sense derived his famous equation which seemed to remain in a beautiful agreement
with spectroscopic data and was approximately compatible with the Bohr-Sommerfeld
quantization rules. Nevertheless, it was of course drastically incompatible with the relativistic
idea of Poincare symmetry. But, after the fall of the primary substantial interpretation by
Schrödinger, it was compatible with the Born statistical interpretation of his formalism, and
with the corresponding continuity equation for the probabilistic density (Veltman, 2003).
Later on history was rather complicated. Dirac formulated his relativistic quantum theory
of electrons based on first-order space-time derivatives of multicomponent wave functions.
The multicomponent character of waves had to do obviously with the particle spin. It
was also understood that the relativistic velocity-dependence of the electron mass and the
spin phenomena act in opposite directions, and because of this non-relativistic Schrödinger
equation seemed to be better than his second order equation, rediscovered later on by Klein
and Gordon. The formalism of quantum field theory rehabilitated the Klein-Gordon equation,
i.e., primaevally the relativistic Schrödinger equation, as one describing some physics. And,
let us also mention that the field-theoretic approach based on the Pauli exclusion principle
removed certain problems with the quantum-mechanical Dirac equation for a single electron.
And certain inconsistencies on one-particle relativistic theory were resolved. The only, and
fundamental inadequacy which remained, was one connected with the essential non-linearity
of the quantum field-theoretic equations for the field operators and the resulting interpretation
difficulties. Nevertheless, they were in a sense solvable on the basis of renormalization
procedure.
But in spite of everything said, the problem is still alive. There are certain not completely clear
facts within the framework of field theory based on the Dirac-Clifford paradigm of first-order
differential equations of quantum mechanics with h̄/2-spin. One can show that they become
more clear when we assume that in a sense some second-order equations are primary and
the first-order ones are some approximations valid for slowly-varying fields. There are also

3



2 Will-be-set-by-IN-TECH

some arguments from geometrodynamics and gauge theories, one of fundamental methods in
modern fields theory. It is known that there are certain disadvantages in geometrodynamical
gauge models based on the Poincare group as a gauge group, in spite of certain correct results
following from that approach. It seems that the main reason is the fact that Poincare group
is not semi-simple. The best way out seems to take the simplest semisimple extension of
this group, namely the conformal group of Minkowski space. It must be stressed that this
group does not act in the space-time manifold, which in geometrodynamics is a general
non-flat manifold of a dynamical structure. Instead, it acts as a purely internal group
operating with internal degrees of freedom of our matter fields. To be more precise, instead
its universal conformal group CO(1, 3), one should use its universal covering group SU(2, 2)
of pseudo-unitary mappings with the signature (+,+,−,−), acting in the target spaces of
matter fields and on the gauge connection components. The primary field equations are
differential ones of the second-order in matter fields. After the careful rewriting in terms of
the basic elements of Lie algebra SU(2, 2)�, the internal group rules both matter and geometry
(gravitation). The use of conformal group is interesting in itself. It is the smallest semi-simple
group containing Poincare group. It is also the largest group which in the geometrically
Minkowskian formulation preserves the family of relativistic uniformly accelerated motions
(described by the flat time-like hyperboles). It turns out that there are interesting aspects
of this approach, having some correspondence with the usual gravitation theory and with
generally-relativistic spinor fields. In the specially-relativistic limit, the theory seems to
predict the existence of pairs of fundamental quarks and leptons, just as it is really in Nature.
We mean here the quark pairs (u, d), (c, s), (t, b) and those of leptons (νe, e), (νμ, μ), (ντ , τ).
It is interesting that in this limit the fermion fields are described by the Klein-Gordon-Dirac
equation combining the Klein-Gordon and Dirac operators, and that in this limit the Dirac
behaviour of fields seems to be more remarkable. There are certain interesting facts concerning
the spin-statistics problem. It seems that on the very fundamental level some fermion-boson
mixing may appear, or that the two possibilities will be unified by some quite new approach.
This framework seems to be related, in a rather unexpected way, to another aspect of the
problem of the order of time derivatives in quantum mechanics. Namely, certain quite
interesting aspects of the quantum-mechanical and quantum field-theoretic problems appears,
when one temporarily forgets about the quantum nature of equations, and considers them
simply as some Hamiltonian systems of mathematical physics. Certain primary ideas
concerning this problem were formulated in our papers a few years ago (Sławianowski &
Kovalchuk, 2002; 2008; 2010; Sławianowski et al., 2004; 2005). There are some arguments
which seem to show that there is some so-to-speak inadequacy in the first-order Schrödinger
equation. In any case, the second-order corrections seem to be just admissible if not desirable.
There are also certain indications for that from the theory of stochastic processes. This
approach has certain common points with the former gauge-theoretic one. Namely, once using
the language of Hamiltonian dynamics (perhaps infinite-dimensional one) we do not feel any
longer the usual reluctance of quantum people to the idea of non linearity. In particular, it
turns out that the dynamical scalar product, i.e., one non-constant, but satisfying a closed
system of equations with the wave amplitudes, is a natural constituent of the approach. The
theory becomes then essentially nonlinear. Essentially, i.e., in such a way that nonlinearity
is not an accidental term imposed onto some basic linear background. Everything is then
nonlinear in the zeroth-order approximation. Nonlinearity is an essential feature, similar to
one used in non-Abelian gauge theories and may be perhaps responsible for the decoherence
and measurement paradoxes.
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We have formulated some arguments in favour of SU(2, 2) as a fundamental gauge group.
Let us mention, incidentally, that this simply provokes the next question: Why the subgroup
SU(2, 2) ⊂ GL(4, C) but not just the whole GL(4, C)? The latter group appears in a natural
way as the structure group of the principal fibre bundle of the complexification of the usual
bundle of frames over the four-dimensional space-time manifold. Obviously, it preserves
the signature of sesquilinear forms, nevertheless changing them otherwise. Therefore, the
bispinor sesquilinear Hermitian form G of signature (+,+,−,−) becomes an a priori free
Hermitian form, the signature however being in a sense an integral of motion.

2. On the track of the scalar Klein-Gordon-Dirac formalism

The generally-relativistic Lagrangian of the Dirac field is given by the expression:

L =
i
2

eμ
AγAr

s

(
Ψ̃rDμΨs − DμΨ̃rΨs

)√
|g| − mΨ̃rΨr

√
|g| (1)

with the following meaning of symbols:
(a) Ψ̃ denote the Dirac-conjugation of Ψ,

Ψ̃r = ΨsGsr, (2)

where G denotes the Dirac-conjugation form of mass, i.e., sesquilinear Hermitian form of the
natural signature (+,+,−,−). If the Finkelstein-Penrose-Weizsäcker-van der Waerden point
of view on the two-component spinors is accepted, then G is intrinsic, because the C4-space is
then expressed as the Cartesian product of two mutually antidual copies of C2. Without this
point of view, analytically Ψ is C4-valued.
(b) Dirac matrices γA satisfy the following anticommutation rules:

{
γA, γB

}
= γAγB + γBγA = 2ηAB I4, (3)

[
γAB

]
= diag (1,−1,−1,−1) . (4)

Besides, γA are Hermitian with respect to Γ:

ΓA
rs = ΓAsr = ΓAsr = GrzγAz

s. (5)

(c) The quantities eμ
A are components of the tetrad field. Its dual cotetrad eA

μ is analytically
given by the reciprocal expression

eA
μeμ

B = δA
B. (6)

(d) The metric tensor gμν is built of eA
μ in a quadratic way:

gμν = ηABeA
μeB

ν, [ηAB] = diag (1,−1,−1,−1) . (7)

The Greek and capital Latin indices are shifted with the help of gμν and ηAB.
(e) The operation Dμ symbolizes the covariant differentiation of bispinors. It is given by the
following sequence of expressions:

Γα
βμ = eα

AΓA
BμeB

β + eα
AeA

β,μ, (8)

ΓA
Bμ =

1
2

Tr
(

γAωμγB

)
, (9)
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ωμ =
1
2

ΓLKμΣLK =
1
2

ηLMΓM
KμΣLK , (10)

ΣLK =
1
4

(
γLγK − γKγL

)
, (11)

where, obviously, the following identities hold:

ηACΓC
Bμ + ηBCΓC

Aμ = 0, ∇Γ
μgαβ = 0. (12)

This means that the following is satisfied:

Γα
βμ =

{
α
βμ

}
+ Sα

βμ + Sβμ
α − Sμ

α
β.

This means that
{

α
βμ

}
are coefficients of the Levi-Civita connection built of the metric g, and

Sα
βμ = Γα

[βμ] is the torsion tensor of Γα
βμ.

In a sense this is a gauge theory. There are, however, certain objections against it, although
from some point of view the theory works in a satisfactory way as a gauge frame. Let us quote
mentioned objections:
(a) The use of tetrads seems to be essential here. This is important. In the standard gauge
theories, e.g., in Salam-Weinberg model, or in quantum chromodynamics, the field of frames
does not occur explicitly in the formalism. The idea of the local gauge Minkowski translations
leads us far beyond the ground of the theory.
(b) Another non-pleasant and strange feature of the theory is the doubtful meaning of
the gauge invariance under the group SU(2, 2), just as its quotient SL(2, C). Namely, for
the massless particles it is so that field equations are SU(2, 2)/conformally invariant. But
Lagrangian is not so, and because of this the Noether theorem is not either. And at the same
time the mass form Grs just underlies the inertial properties of those Lagrangians. So, it is
natural to expect that it should be essential for the invariance of Lagrangian. Therefore,
perhaps Lagrangian should be transformed exactly up to the purely internal rule under
SU(2, 2), just like it is done under the subgroup SL(2, C) in Einstein-Cartan theory. Namely,
that for any A ∈ SU(2, 2) it should be modified as follows under A ∈ SL(2, C) in (1):

(AΨ)r (x) = Ar
sΨs (x) . (13)

This is a purely internal rule, like those for SL(2, C) in (1), without any external correction.
In this way, the number of geometric degrees of freedom is increased, but it should be so if
SU(2, 2) are to be Hamiltonian symmetries.
(c) Finally, there is a strange feature of Lagrangian (1), namely, the one that it is essentially
based on the covariant vector density

Jr
sμ :=

(
DμΨ̃sΨr − Ψ̃sDμΨr

)√
|g|, (14)

or, to be more honest, on its contravariant upper-index version

Jr
s
μ := gμν

(
DνΨ̃sΨr − Ψ̃sDνΨr

)√
|g|. (15)

The idea is that Jr
s
μ looks as a typical bosonic current. What is the symmetry group

responsible for it? The algebraic prescription for Jr
s
μ does suggest that it is the group U(2, 2)
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and that the corresponding Lagrangian for Ψ should be just the complex-four-dimensional
Lagrangian for the field Ψ, this time invariant under the total U(2, 2), no longer by SL(2, C).
Nevertheless, some fundamental question remains, namely one concerning the relationship
between Klein-Gordon equation of order two and first-order Dirac equation. It is though clear
that the structural properties of differential equations are in very malicious way sensitive to
the removing highest-order derivative term.
It is interesting to begin the analysis from some rather academic example of the scalar
complex field interacting in a minimal way with the gauge filed eμ, i.e., dynamically ruled
by the unitary group U(1). Namely, let us assume the primeval globally invariant by U(1)
Lagrangian for Ψ : M → C,

Lm =

(
1
2

gμν∂μΨ∂νΨ − c
2

ΨΨ
)√

|g|. (16)

Now, as usually we introduce the covector gauge field eμ and the covariant derivative of Ψ,

DμΨ := ∂μΨ − iqeμΨ. (17)

Substituting Dμ instead of ∂μ to (16) we obtain as usual the locally-invariant expression

Lm =
1
2

gμνDμΨDνΨ
√
|g| − c

2
ΨΨ

√
|g|. (18)

This is Lagrangian for Ψ. The corresponding term for

fμν = ∂μeν − ∂νeμ (19)

is as usually given by

Lg = −1
4

gμκgνλ fμν fκλ

√
|g|, (20)

and the total Lagrangian for (Ψ, f ) is given by the sum

L = Lm + Lg (21)

(the subscripts m, g refer respectively to the matter and gauge field).
Let us rewrite the matter term in the following form:

Lm = qgμνeμ
i
2

(
Ψ∂νΨ − ∂νΨΨ

)√
|g|

−
(

c
2
− q2

2
gμνeμeν

)
ΨΨ

√
|g|+ 1

2
gμν∂μΨ∂νΨ

√
|g|. (22)

The first term, built of the first derivatives and of the algebraic expressions of fields, leads to
first-order differential equations with respect to Ψ. The last, Klein-Gordon term leads through
variational principle to the second-order equations in Ψ. The rigorous field equations have
the following form:

qieμ∂μΨ −
(

c
2
− q2

2
eμeμ − iq

2
eμ

;μ

)
− 1

2
gμν∂μ∂νΨ = 0, (23)

∂ν f μν =
qi
2
(
Ψ∂μΨ − (∂μΨ)Ψ

)
+ q2eμΨΨ. (24)
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ωμ =
1
2

ΓLKμΣLK =
1
2

ηLMΓM
KμΣLK , (10)

ΣLK =
1
4

(
γLγK − γKγL

)
, (11)

where, obviously, the following identities hold:

ηACΓC
Bμ + ηBCΓC

Aμ = 0, ∇Γ
μgαβ = 0. (12)

This means that the following is satisfied:

Γα
βμ =

{
α
βμ

}
+ Sα

βμ + Sβμ
α − Sμ

α
β.

This means that
{

α
βμ

}
are coefficients of the Levi-Civita connection built of the metric g, and

Sα
βμ = Γα

[βμ] is the torsion tensor of Γα
βμ.

In a sense this is a gauge theory. There are, however, certain objections against it, although
from some point of view the theory works in a satisfactory way as a gauge frame. Let us quote
mentioned objections:
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sΨs (x) . (13)
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(c) Finally, there is a strange feature of Lagrangian (1), namely, the one that it is essentially
based on the covariant vector density

Jr
sμ :=

(
DμΨ̃sΨr − Ψ̃sDμΨr

)√
|g|, (14)

or, to be more honest, on its contravariant upper-index version

Jr
s
μ := gμν

(
DνΨ̃sΨr − Ψ̃sDνΨr

)√
|g|. (15)

The idea is that Jr
s
μ looks as a typical bosonic current. What is the symmetry group

responsible for it? The algebraic prescription for Jr
s
μ does suggest that it is the group U(2, 2)
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and that the corresponding Lagrangian for Ψ should be just the complex-four-dimensional
Lagrangian for the field Ψ, this time invariant under the total U(2, 2), no longer by SL(2, C).
Nevertheless, some fundamental question remains, namely one concerning the relationship
between Klein-Gordon equation of order two and first-order Dirac equation. It is though clear
that the structural properties of differential equations are in very malicious way sensitive to
the removing highest-order derivative term.
It is interesting to begin the analysis from some rather academic example of the scalar
complex field interacting in a minimal way with the gauge filed eμ, i.e., dynamically ruled
by the unitary group U(1). Namely, let us assume the primeval globally invariant by U(1)
Lagrangian for Ψ : M → C,

Lm =
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gμν∂μΨ∂νΨ − c
2
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)√

|g|. (16)

Now, as usually we introduce the covector gauge field eμ and the covariant derivative of Ψ,
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√
|g|. (18)

This is Lagrangian for Ψ. The corresponding term for

fμν = ∂μeν − ∂νeμ (19)

is as usually given by

Lg = −1
4

gμκgνλ fμν fκλ

√
|g|, (20)

and the total Lagrangian for (Ψ, f ) is given by the sum

L = Lm + Lg (21)

(the subscripts m, g refer respectively to the matter and gauge field).
Let us rewrite the matter term in the following form:

Lm = qgμνeμ
i
2

(
Ψ∂νΨ − ∂νΨΨ
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|g|

−
(

c
2
− q2

2
gμνeμeν

)
ΨΨ

√
|g|+ 1

2
gμν∂μΨ∂νΨ

√
|g|. (22)

The first term, built of the first derivatives and of the algebraic expressions of fields, leads to
first-order differential equations with respect to Ψ. The last, Klein-Gordon term leads through
variational principle to the second-order equations in Ψ. The rigorous field equations have
the following form:

qieμ∂μΨ −
(

c
2
− q2

2
eμeμ − iq

2
eμ

;μ

)
− 1

2
gμν∂μ∂νΨ = 0, (23)

∂ν f μν =
qi
2
(
Ψ∂μΨ − (∂μΨ)Ψ

)
+ q2eμΨΨ. (24)
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Obviously, the semicolon symbol in (23) denotes the g-metric Levi-Civita affine connection,
or rather divergence. It is interesting that the vector field eμ plays a role similar to that of
gravitational tetrad, in spite of all differences. And in general, the pair (Ψ, eμ) is formally
analogous to the pair (Ψr, eμ

A), or equivalently
(
Ψr, eA

μ
)
, i.e., bispinor and tetrad/cotetrad.

But there is no rigorous Clifford analogy. It is interesting that on the right hand side of (24)
there is a combination of two terms: Dirac-like current and Schrödinger current.
It is interesting that the system of equations (23), (24) may be simplified by assuming that the
system of first-order derivatives of Ψ is smaller than the system of quantities built of Ψ in an
algebraic way, and similarly, the system of second derivatives of Ψ is smaller than the first- and
zeroth-order derivatives of Ψ. But this means that the system (23), (24) may be approximated
by the following one:

ieμ∂μΨ −
(

c
2q

− q
2

eμeμ − i
2

eμ
;μ

)
Ψ = 0, (25)

∂ν f μν = q2eμΨΨ. (26)

It is interesting that this system, except the Clifford analogy, is structurally similar to the Dirac
system of equations. It is difficult to state a priori if the essentially nonlinear system (25),
(26) may have anything to do with reality. Nevertheless, the point is that it is both nonlinear,
and as a system imposed on the pair

(
Ψ, eμ

)
it shows certain similarity to the Dirac-Maxwell

system. And the bosonic current i
(
∂μΨΨ − Ψ∂μΨ

)√|g| is an obvious counterpart of the

SU(2, 2) current given by i
(

DμΨ̃sΨr − Ψ̃sDμΨr
)√|g|. Obviously, the model (25), (26) is a

bit non-physical and crazy, especially with its separation of terms. Nevertheless, it seems to
follow from it that the above demands and objections concerning the U(2, 2)-invariance and
the particular role of the bosonic currents and tetrads may be easily answered on the basis of
the spinor counterpart of Lm (22) and its first-order limit (23), (24).

3. Second order Klein-Gordon equation

We need a few things, for instance, affine connection in space-time manifold, spinor
connection, U(2, 2)-gauge field, metric tensor, and in certain approaches some field of frames,
e.g., generalization of the tetrad field. The space-time manifold M is assumed structure-less
and nothing but the differential-geometric structure is assumed in it. Unlike this, in the target
space C4, we assume some internal geometry based on the use of some sesquilinear Hermitian
G form of signature (+,+,−,−), as mentioned above. This form does belong to the internal
structure of C4, and to be more rigorous, we can assume it to be a complex linear space of
dimension four, endowed with the mentioned neutral signature. When this form is fixed,
it distinguishes within the complex group GL(4, C), the pseudounitary group consisting of
transformations preserving G, so that the following holds:

Gr̄s = Gz̄tU
z̄

rUt
s. (27)

The Lie algebra of this group consists of linear mappings u which satisfy:

Gr̄zuz
s + Gs̄zuzr = 0. (28)

So, roughly speaking, U(2, 2)� consists of matrices (linear mapping of the target space) which
are G-anti-Hermitian. Let us mention that any particular choice of Γ is only a matter of
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convenience. It is only its global signature that matters. As mentioned, in the Weyl, Penrose,
Finkelstein and Weizsäcker procedure the typical choice is

[Gr̄s] =

[
0 I2
I2 0

]
. (29)

In the Dirac procedure one prefers the choice:

[Gr̄s] =

[
I2 0
0 −I2

]
. (30)

Transition between these representations is described by the matrix

1√
2

[
I2 I2
I2 −I2

]
. (31)

Similarly, the Weyl, Penrose, Finkelstein and Weizsäcker procedure leads to the following
expressions for the Dirac matrices:

γA = ηABγB =

[
0 σ̃A

σA 0

]
=

[
0 ηABσB

σA 0

]
. (32)

In the Dirac representation we have that

γ0 =

[
I2 0
0 −I2

]
=

[
σ0 0
0 −σ0

]
, γR =

[
0 σR

−σR 0

]
, R = 1, 2, 3. (33)

Obviously, those are two particular choices, we quote them only as the two most important
ones.
The globally U(2, 2)-invariant second-order Klein-Gordon Lagrangian for the C4-valued
scalar field on M is given by

Lm(Ψ; g) =
b
2

gμν∂μΨr̄
∂νΨsGr̄s

√
|g| − c

2
Gr̄sΨr̄Ψs

√
|g|. (34)

Making use of the Dirac-conjugate field,

Ψ̃r := Ψs̄Gs̄r, (35)

we can rewrite (34) in the following form:

Lm(Ψ; g) =
b
2

gμν∂μΨ̃∂νΨ
√
|g| − c

2
Ψ̃Ψ

√
|g|. (36)

First let us consider the problem of the local U(2, 2) � U(4, G)-invariance. To do that we must
begin with introducing the connection form of the U(4, G)-connection. This is a u(4, G)-valued
differential form

M � x �→ ϑx ∈ L (Tx M, u(4, G)) (37)

transforming under the local U(4, G)-valued local transformations U : M → U(4, G) as
follows:

(Uϑ)x = U(x)ϑxU(x)−1 − dUxU(x)−1. (38)
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or rather divergence. It is interesting that the vector field eμ plays a role similar to that of
gravitational tetrad, in spite of all differences. And in general, the pair (Ψ, eμ) is formally
analogous to the pair (Ψr, eμ

A), or equivalently
(
Ψr, eA

μ
)
, i.e., bispinor and tetrad/cotetrad.

But there is no rigorous Clifford analogy. It is interesting that on the right hand side of (24)
there is a combination of two terms: Dirac-like current and Schrödinger current.
It is interesting that the system of equations (23), (24) may be simplified by assuming that the
system of first-order derivatives of Ψ is smaller than the system of quantities built of Ψ in an
algebraic way, and similarly, the system of second derivatives of Ψ is smaller than the first- and
zeroth-order derivatives of Ψ. But this means that the system (23), (24) may be approximated
by the following one:

ieμ∂μΨ −
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eμeμ − i
2

eμ
;μ

)
Ψ = 0, (25)

∂ν f μν = q2eμΨΨ. (26)

It is interesting that this system, except the Clifford analogy, is structurally similar to the Dirac
system of equations. It is difficult to state a priori if the essentially nonlinear system (25),
(26) may have anything to do with reality. Nevertheless, the point is that it is both nonlinear,
and as a system imposed on the pair

(
Ψ, eμ

)
it shows certain similarity to the Dirac-Maxwell

system. And the bosonic current i
(
∂μΨΨ − Ψ∂μΨ

)√|g| is an obvious counterpart of the

SU(2, 2) current given by i
(

DμΨ̃sΨr − Ψ̃sDμΨr
)√|g|. Obviously, the model (25), (26) is a

bit non-physical and crazy, especially with its separation of terms. Nevertheless, it seems to
follow from it that the above demands and objections concerning the U(2, 2)-invariance and
the particular role of the bosonic currents and tetrads may be easily answered on the basis of
the spinor counterpart of Lm (22) and its first-order limit (23), (24).

3. Second order Klein-Gordon equation

We need a few things, for instance, affine connection in space-time manifold, spinor
connection, U(2, 2)-gauge field, metric tensor, and in certain approaches some field of frames,
e.g., generalization of the tetrad field. The space-time manifold M is assumed structure-less
and nothing but the differential-geometric structure is assumed in it. Unlike this, in the target
space C4, we assume some internal geometry based on the use of some sesquilinear Hermitian
G form of signature (+,+,−,−), as mentioned above. This form does belong to the internal
structure of C4, and to be more rigorous, we can assume it to be a complex linear space of
dimension four, endowed with the mentioned neutral signature. When this form is fixed,
it distinguishes within the complex group GL(4, C), the pseudounitary group consisting of
transformations preserving G, so that the following holds:

Gr̄s = Gz̄tU
z̄

rUt
s. (27)

The Lie algebra of this group consists of linear mappings u which satisfy:

Gr̄zuz
s + Gs̄zuzr = 0. (28)

So, roughly speaking, U(2, 2)� consists of matrices (linear mapping of the target space) which
are G-anti-Hermitian. Let us mention that any particular choice of Γ is only a matter of
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convenience. It is only its global signature that matters. As mentioned, in the Weyl, Penrose,
Finkelstein and Weizsäcker procedure the typical choice is

[Gr̄s] =

[
0 I2
I2 0

]
. (29)

In the Dirac procedure one prefers the choice:

[Gr̄s] =

[
I2 0
0 −I2

]
. (30)

Transition between these representations is described by the matrix

1√
2

[
I2 I2
I2 −I2

]
. (31)

Similarly, the Weyl, Penrose, Finkelstein and Weizsäcker procedure leads to the following
expressions for the Dirac matrices:

γA = ηABγB =

[
0 σ̃A

σA 0

]
=

[
0 ηABσB

σA 0

]
. (32)

In the Dirac representation we have that

γ0 =

[
I2 0
0 −I2

]
=

[
σ0 0
0 −σ0

]
, γR =

[
0 σR

−σR 0

]
, R = 1, 2, 3. (33)

Obviously, those are two particular choices, we quote them only as the two most important
ones.
The globally U(2, 2)-invariant second-order Klein-Gordon Lagrangian for the C4-valued
scalar field on M is given by

Lm(Ψ; g) =
b
2

gμν∂μΨr̄
∂νΨsGr̄s

√
|g| − c

2
Gr̄sΨr̄Ψs

√
|g|. (34)

Making use of the Dirac-conjugate field,

Ψ̃r := Ψs̄Gs̄r, (35)

we can rewrite (34) in the following form:

Lm(Ψ; g) =
b
2

gμν∂μΨ̃∂νΨ
√
|g| − c

2
Ψ̃Ψ

√
|g|. (36)

First let us consider the problem of the local U(2, 2) � U(4, G)-invariance. To do that we must
begin with introducing the connection form of the U(4, G)-connection. This is a u(4, G)-valued
differential form

M � x �→ ϑx ∈ L (Tx M, u(4, G)) (37)

transforming under the local U(4, G)-valued local transformations U : M → U(4, G) as
follows:

(Uϑ)x = U(x)ϑxU(x)−1 − dUxU(x)−1. (38)
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This connection form is controlled by the two real parameters corresponding to SU(2, 2) �
SU(4, G) and to the one-parameter dilatation group. The corresponding covariant derivative
of the four-component Klein-Gordon field has the following form:

∇μΨ = ∂μΨ + g
(

ϑμ − 1
4

Tr ϑμI
)

Ψ +
q
4

Tr ϑμΨ = ∂μΨ + gϑμΨ +
q − g

4
Tr ϑμΨ. (39)

Similarly for the Dirac-conjugate field we have the following dual formula:

∇μΨ̃ = ∂μΨ̃ − gΨ̃
(

ϑμ − 1
4

Tr ϑμI
)
− q

4
Ψ̃Tr ϑμ = ∂μΨ̃ − gΨ̃ϑμ − q − g

4
Ψ̃Tr ϑμ. (40)

The curvature form Φ = Dϑ is then expressed as follows:

Φμν = dϑμν + g
[
ϑμ, ϑν

]
= ∂μϑν − ∂νϑμ + g

[
ϑμ, ϑν

]
. (41)

Let us observe that the conserved Noether current following from the Noether theorem
applied to (34) is given by

jrsμ =
b
2

(
Ψr∂μΨ̃s − ∂μΨrΨ̃s

)√
|g|. (42)

One can show that the gauge invariant Lagrangian for the Ψ-matter has the following form:

Lm(Ψ, ϑ, g) =
b
2

gμν∇μΨ̃∇νΨ
√
|g| − c

2
Ψ̃Ψ

√
|g|. (43)

The gauge-invariant current

J(Ψ, ϑ, g)r
sμ =

b
2

(
Ψr∇μΨ̃s −∇μΨrΨ̃s

)√
|g| (44)

may be obtained from the Lagrangian (43) by performing its differentiation with respect to the
connection ϑ,

∂Lm(Ψ, ϑ, g)
∂ϑrsμ

= gJs
r
μ +

q − g
4

Jz
zμδs

r. (45)

This was about the matter Lagrangian. What concerns the gauge Lagrangian, the simplest
possibility of the gauge-invariant model is the following one:

LYM(ϑ, g) =
a
4

Tr
(
ΦμνΦκλ

)
gμκgνλ

√
|g|+ a�

4
Tr ΦμνTr Φκλgμκgνλ

√
|g|, (46)

where a, a� are constants. The first term, controlled by the parameter a is the main,
Maxwell-like expressions. The second term is additional one, built of the traces of field
strengths. It is an auxiliary expression, nevertheless it is geometrically admissible and it
may be some reasonable, helpful correction to the first one. In any case, it is a merely
supplementary expression, although it may be convenient and physically justified.
Let us observe that in spite of the non-homogeneous transformation rule (38), the curvature
two-form (41) transforms according to the tensorial homogeneous rule under (37), (38):

(UΦ)x = U(x)Φ(x)U(x)−1. (47)
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Because of this the Yang-Mills Lagrangian (46) is invariant under the local U(2, 2) � U(H, G)
transformations (38). And similarly, the matter Lagrangian (43) is invariant.
This is the main, gauge constituent of the theory. Let us now mention only about the
relationship of SU(2, 2)-matrices Φ to the representations SL(2, C) � A �→ U[A] ∈ U(2, 2)
corresponding to the Weyl-Penrose-Finkelstein-Weizsäcker and to the Dirac representation of
Gr̄s. In the first group of representation (W-P-F-W) we have the following realizations of U[A]:

U[A] =

[
A 0
0 A−1+

]
, u[a] =

[
a 0
0 −a+

]
(48)

respectively for SL(2, C) and its Lie algebra. In Dirac representation

U[A] =
1
2

[
A + A−1+ A − A−1+

A − A−1+ A + A−1+

]
, u[a] =

1
2

[
a − a+ a + a+

a + a+ a − a+

]
(49)

for the group and algebra. The right “plus” superscript denotes obviously the Hermitian
matrix conjugate. Obviously, quite independently of the choice of any representation the
following holds:

U[A]γKU[A]−1 = γLP[A]LK , (50)

where P : SL(2, C) → SO(1, 3)↑ is the covering projection. The mappings U : SL(2, C) →
U(2, 2) and P : SL(2, C) → SO(1, 3)↑ generate the corresponding homomorphisms of Lie
algebras, u : SL(2, C)� → U(2, 2)� and p : SL(2, C)� → SO(1, 3)�. They are synchronized by

[u[a], (γ)K ] = γL p[a]LK . (51)

It is also worth to note the following expressions:

P[A]LK =
1
4

Tr
(

γLU[A]γKU[A]−1
)

, (52)

p[a]LK =
1
2

Tr
(

γLu[a]γK

)
, (53)

and
u[a] =

1
2

p[a]LKΣL
K , (54)

where after the shift of indices we have that

ΣLK =
1
4

(
γLγK − γKγL

)
=

1
4

[
γL, γK

]
. (55)

4. What about the metric tensor?

In the gauge Lagrangians above, the metric tensor in a sense played the parameter role.
Our idea was to construct the U(2, 2) � U(H, G)-invariant theory of gravitation. The main
constituents of the theory were the four-component complex Klein-Gordon field and the
corresponding Maxwell-like gauge field. We will show that there are interesting and very
important points for which this is important, perhaps even just exciting. But there is some
weak point which was not yet completely explained. It is just the role and physical status of
the metric tensor, which is present in the Klein-Gordon and gauge Lagrangian, however its
geometric and physical sense is not yet full understood. It is clear that it must occur there if we
are to be able to construct Lagrangians. But what is its meaning and how to identify properly
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Φμν = dϑμν + g
[
ϑμ, ϑν

]
= ∂μϑν − ∂νϑμ + g

[
ϑμ, ϑν

]
. (41)

Let us observe that the conserved Noether current following from the Noether theorem
applied to (34) is given by

jrsμ =
b
2

(
Ψr∂μΨ̃s − ∂μΨrΨ̃s

)√
|g|. (42)

One can show that the gauge invariant Lagrangian for the Ψ-matter has the following form:

Lm(Ψ, ϑ, g) =
b
2

gμν∇μΨ̃∇νΨ
√
|g| − c

2
Ψ̃Ψ

√
|g|. (43)

The gauge-invariant current

J(Ψ, ϑ, g)r
sμ =

b
2

(
Ψr∇μΨ̃s −∇μΨrΨ̃s

)√
|g| (44)

may be obtained from the Lagrangian (43) by performing its differentiation with respect to the
connection ϑ,

∂Lm(Ψ, ϑ, g)
∂ϑrsμ

= gJs
r
μ +

q − g
4

Jz
zμδs

r. (45)

This was about the matter Lagrangian. What concerns the gauge Lagrangian, the simplest
possibility of the gauge-invariant model is the following one:

LYM(ϑ, g) =
a
4

Tr
(
ΦμνΦκλ

)
gμκgνλ

√
|g|+ a�

4
Tr ΦμνTr Φκλgμκgνλ

√
|g|, (46)

where a, a� are constants. The first term, controlled by the parameter a is the main,
Maxwell-like expressions. The second term is additional one, built of the traces of field
strengths. It is an auxiliary expression, nevertheless it is geometrically admissible and it
may be some reasonable, helpful correction to the first one. In any case, it is a merely
supplementary expression, although it may be convenient and physically justified.
Let us observe that in spite of the non-homogeneous transformation rule (38), the curvature
two-form (41) transforms according to the tensorial homogeneous rule under (37), (38):

(UΦ)x = U(x)Φ(x)U(x)−1. (47)
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Because of this the Yang-Mills Lagrangian (46) is invariant under the local U(2, 2) � U(H, G)
transformations (38). And similarly, the matter Lagrangian (43) is invariant.
This is the main, gauge constituent of the theory. Let us now mention only about the
relationship of SU(2, 2)-matrices Φ to the representations SL(2, C) � A �→ U[A] ∈ U(2, 2)
corresponding to the Weyl-Penrose-Finkelstein-Weizsäcker and to the Dirac representation of
Gr̄s. In the first group of representation (W-P-F-W) we have the following realizations of U[A]:

U[A] =

[
A 0
0 A−1+

]
, u[a] =

[
a 0
0 −a+

]
(48)

respectively for SL(2, C) and its Lie algebra. In Dirac representation

U[A] =
1
2

[
A + A−1+ A − A−1+

A − A−1+ A + A−1+

]
, u[a] =

1
2

[
a − a+ a + a+

a + a+ a − a+

]
(49)

for the group and algebra. The right “plus” superscript denotes obviously the Hermitian
matrix conjugate. Obviously, quite independently of the choice of any representation the
following holds:

U[A]γKU[A]−1 = γLP[A]LK , (50)

where P : SL(2, C) → SO(1, 3)↑ is the covering projection. The mappings U : SL(2, C) →
U(2, 2) and P : SL(2, C) → SO(1, 3)↑ generate the corresponding homomorphisms of Lie
algebras, u : SL(2, C)� → U(2, 2)� and p : SL(2, C)� → SO(1, 3)�. They are synchronized by

[u[a], (γ)K ] = γL p[a]LK . (51)

It is also worth to note the following expressions:

P[A]LK =
1
4

Tr
(

γLU[A]γKU[A]−1
)

, (52)

p[a]LK =
1
2

Tr
(

γLu[a]γK

)
, (53)

and
u[a] =

1
2

p[a]LKΣL
K , (54)

where after the shift of indices we have that

ΣLK =
1
4

(
γLγK − γKγL

)
=

1
4

[
γL, γK

]
. (55)

4. What about the metric tensor?

In the gauge Lagrangians above, the metric tensor in a sense played the parameter role.
Our idea was to construct the U(2, 2) � U(H, G)-invariant theory of gravitation. The main
constituents of the theory were the four-component complex Klein-Gordon field and the
corresponding Maxwell-like gauge field. We will show that there are interesting and very
important points for which this is important, perhaps even just exciting. But there is some
weak point which was not yet completely explained. It is just the role and physical status of
the metric tensor, which is present in the Klein-Gordon and gauge Lagrangian, however its
geometric and physical sense is not yet full understood. It is clear that it must occur there if we
are to be able to construct Lagrangians. But what is its meaning and how to identify properly
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its physical role? As one of potentials of gravitation, or as some secondary variable? And if the
second possibility is to be chosen, what are the primary variables the byproduct of which is
the metric tensor? Situation in this respect was clear only in the standard Einstein General
Relativity. There it was just the only gravitational potential (or perhaps a superpotential
if the connection coefficients were interpreted as proper potentials). But within any gauge
framework the metric tensor is a merely one of a few potentials.In this paper we concentrate
on the theory aspects not very sensitive to this problem. Instead, we shall present a few
possibilities.
First of all, let us notice that quite naively, one can assume the Hilbert-Einstein term for the
metric tensor g,

LHE(g) = −dR(g)
√
|g|+ l

√
|g|. (56)

where d, l are real constants. The special case d = 0 is not to be a priori rejected. Namely, if
d = 0 and perhaps l = 0, then variation of the action functional with respect to gμν enables one
to express gμν through the other variables. But of course, the choice (56) looks rather naive.
In any case, the total Lagrangian of the form

L(Ψ, ϑ, g) := Lm(Ψ, ϑ, g) + LYM(ϑ, g) + LHE(g) (57)

leads, after the variational procedure for the action, to the following system of equations:

gμν
g
∇μ

g
∇νΨ +

c
b

Ψ = 0, (58)

χμν
;ν + g [ϑν, χμν] = gJμ +

q − g
4

Tr JμI, (59)

d
(

R(g)μν − 1
2

R(g)gμν

)
=

l
2

gμν +
1
2

Tμν, (60)

with the meaning of symbols as below:

1. The semicolon “;” is the g-Levi-Civita covariant differentiation.

2. The symbol
g
∇μ denotes the complete covariant differentiation. The Levi-Civita covariant

differentiation of the space-time indices is joined there with the U(2, 2) � U(H, G)
covariant differentials of internal indices. Let us quote a typical example:

g
∇μYr

ν + gϑr
sμYs

ν +
q − g

4
ϑz

zμYr
ν − g

{
λ

μν

}
Yr

λ, (61)

and similarly, i.e., dually, or in the Leibniz-multiplication sense, for other quantities.

3. χ is the field momentum conjugate to ϑ, so

χr
s
μν =

∂LYM
∂ϑsrμ,ν

= −aΦr
sαβgαμgβν

√
|g| (62)

−a�δr
sΦz

zαβgαμgβν
√
|g|,

or in the shortened form with the g-shifting of indices,

χμν = −aΦμν
√
|g| − a�I Tr Φμν

√
|g|. (63)
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4. Tμν denotes the symmetric energy-momentum tensor of the fields ϑ, Ψ, so we have that

Tμν = Tμν
m + Tμν

YM, (64)

where, obviously,

Tμν
m = − 2√|g|

(
∂Lm

∂gμν
−

(
∂Lm

∂gμν,α

)

,α

)
, (65)

Tμν
YM = − 2√|g|

(
∂LYM
∂gμν

−
(

∂LYM
∂gμν,α

)

,α

)
. (66)

We do not quote the explicit formulae.

As mentioned, the Hilbert-Einstein term of Lagrangian in (57) looks rather naive, although
perhaps it may be reasonable. Equations resulting from the version with vanishing coefficients
(or vanishing “d” at least) also seem to be not bad, and in any case not to be a priori rejected.
And, as mentioned, the field equations following from the first two terms of (57) seem
promisible. But, as said above, the Hilbert-Einstein term seems to spoil the whole taste of
the gauge approach. In Einstein-Cartan theory it was the tetrad field who saved the situation,
nevertheless, also for some price (as mentioned, in no other gauge theory one explicitly uses
the field of frames as a dynamical variable). What may be done in our formalism to replace in
a reasonable way the role of tetrad? We would like to answer this question before the further
development of our theory. There are a few, at least three natural ways. Certainly there is no
possibility to build the metric tensor from the gauge field, in the sense:

gμν := pϑr
sμϑs

rν + qϑr
rμϑs

sν, (67)

what apparently might seem natural. The point is, however that (67) is only globally, but not
locally U(2, 2)-invariant. But one can do it in a local way, by introducing some fields more
elementary than the metric itself.

1. We may assume that besides the connection form ϑ, the geometrodynamical sector
involves some additional C4-valued (H-valued, let us say) differential one-form W:

M � x �→ Wx ∈ L(Tx M, C4).

Analytically we describe this object as Wr
μ. And we assume that it is homogeneously

transformable under the locally acting U(2, 2),

Wx �→ U(x)Wx, i.e., �Wr
μ = Ur

s(x)Ws
μ. (68)

This form gives rise to the metric tensor field on M as follows:

g(W)μν := Re
(

W̃rμWr
ν

)
= Re

(
W̃μWν

)
. (69)

Therefore, this expression is the symmetric, thus real part of the Hermitian tensor W∗
x G.

The quantity is locally U(2, 2)-invariant. The simplest gauge-invariant Lagrangian is given
by

L(W, ϑ) = a∇W̃μν∇Wκλgμκgνλ
√
|g|+ b

√
|g|. (70)
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1. We may assume that besides the connection form ϑ, the geometrodynamical sector
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In this expression a, b are some real constants, gμαgαν = δμ
ν, and ∇W denotes the exterior

covariant differential of W, so that

∇Wμν = dWμν + g
(
ϑμWν − ϑνWμ

)
+

�q − g
4

(
Tr ϑμWν − Tr ϑνWμ

)
. (71)

Here �q, the coupling constant, is the kind of electric charge of W. Let us stress,
the Lagrangian (70) is locally invariant under U(2, 2). It is interesting that after the
SL(2, C)-reduction W is a 3/2-spin particle. This resembles the super-symmetric idea of
gravitino.

2. Let us suppose that besides of ϑ, the geometric sector contains also another U(2, 2)�-valued
differential form W, M � x �→ Wx ∈ L(Tx M, U(2, 2)�). Analytically it is represented by the
system of quantities Wr

sμ. But unlike the connection form ϑ, just like in the previous idea,
it suffers a homogeneous transformation rule under U(2, 2),

Wx �→ U(x)WxU(x)−1, �Wr
sμ = Ur

zWz
tμU−1t

s. (72)

The corresponding metric field g(W) on M is given by

g(W)μν = aTr
(
WμWν

)
+ bTr WμTr Wν, (73)

where a, b are constants and obviously a �= 0; the a-term is dominant, whereas the b-term
is a merely correction.
The exterior covariant differential of W is given by

∇Wμν = dWμν + g
[
ϑμ, Wν

]− g
[
Wν, ϑμ

]
. (74)

The corresponding Maxwell Lagrangian for the form W is given by

L(W, ϑ) = aTr
(∇Wμν∇Wκλ

)
gμκgνλ

√
|g|

+ bTr
(∇Wμν

)
Tr (∇Wκλ) gμκgνλ

√
|g|+ c

√
|g| (75)

with constant coefficients a, b, c.

3. There is also a different model, maximally economic in the sense that its only dynamical
variables are ϑ and Ψ. There is neither g nor any other geometric quantity used as
Lagrangian argument. Instead, we use the metric-like tensor built in a locally-invariant
gauge way from the basic field quantities:

g(Ψ, ϑ)μν = aRe
(
∇μΨ̃∇νΨ

)
= aRe

(
Gr̄s∇μΨr̄∇νΨs

)
. (76)

Obviously, it would be meaningless to substitute this metric to the usual Klein-Gordon
Lagrangian, because the result would be trivial. However, there are modified Born-Infeld
type schemes, in a sense very interesting ones, as usual Born-Infeld schemes are. The typical
Born-Infeld scheme for (Ψ, ϑ) is the following one:

L(Ψ, ϑ) =

√∣∣∣∣det
[

b
2

gμν +
a
4

Tr
(

FμκFνλ

)
gκλ +

a�
4

Tr FμκTr Fνλgκλ

]∣∣∣∣. (77)
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This is the most natural Born-Infeld scheme.
Let us mention, there are also similar, but modified expressions with some “potential” terms,
e.g.,

L(Ψ, ϑ) =
a
4

Tr
(

FμνFκλ

)
gμκgνλ

√
|g|

+
a�
4

Tr FμνTr Fκλgμκgνλ
√
|g|+ b

√
|g|. (78)

In both expressions (77), (78) the space-time metric is given by (76), and a, a�, b are some real
constants.

5. The main ideas of the Klein-Gordon U(2, 2)-ruled theory

Without judging the three presented models of the metric field, or rather the four of them if
the Hilbert-Einstein possibility is admitted, we have nevertheless formulated them. And from
the point of view of aesthetic criteria, they look quite reasonable. But now, let us discuss the
main results of the very U(2, 2)-invariant Klein-Gordon gauge model of gravity as ruled by
the first two terms of (57), or even by the total (57).
The field equations (58), (59), (60) become qualitatively readable when some special basis is
chosen in the Lie algebra of U(2, 2). This basis is somehow related to the twistor geometry,
although literally it is something else than the conformal geometry in Minkowskian space.
The basis elements are built algebraically of γA-matrices.
Let us introduce the following matrices built algebraically of γA-s:

γ5 = −γ5 = −γ0γ1γ2γ3, (79)
Aγ = iγAγ5 = −iγ5γA, (80)

ΣAB =
1
4

(
γAγB − γBγA

)
. (81)

It is clear that Aγ-s satisfy the opposite-sign anticommutation rules
{

Aγ, Bγ
}
= −2ηAB I. (82)

One can show that

Aγ = BγηBA = − i
6

εABCDγBγCγD, (83)

where the convention ε0123 = 1 is used.
The Lie algebra U(2, 2)� = U(H, G)� may be spanned in the R-sense on the matrices

iγA, iAγ, ΣAB, iγ5, iI4. (84)

Removing from this system the imaginary matrix iI4, we obtain the basis of SU(2, 2)� =
SU(H, G)�. The matrices iγA, iAγ do not R-span Lie algebras. But it is clear that their sum
and difference are bases of Abelian Lie subalgebras:

τA :=
1
2
(γA + Aγ) , χA :=

1
2

(
γA − Aγ

)
, (85)

[τA, τB] = 0,
[
χA, χB

]
= 0. (86)
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Aγ = iγAγ5 = −iγ5γA, (80)

ΣAB =
1
4

(
γAγB − γBγA

)
. (81)

It is clear that Aγ-s satisfy the opposite-sign anticommutation rules
{

Aγ, Bγ
}
= −2ηAB I. (82)

One can show that

Aγ = BγηBA = − i
6

εABCDγBγCγD, (83)

where the convention ε0123 = 1 is used.
The Lie algebra U(2, 2)� = U(H, G)� may be spanned in the R-sense on the matrices

iγA, iAγ, ΣAB, iγ5, iI4. (84)
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and difference are bases of Abelian Lie subalgebras:

τA :=
1
2
(γA + Aγ) , χA :=

1
2

(
γA − Aγ

)
, (85)

[τA, τB] = 0,
[
χA, χB

]
= 0. (86)
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In the twistor language the quantities τA generate Minkowskian translations, while χA are
generators of the group of proper conformal mappings. Obviously, this interpretation is true
only within the framework of Minkowskian-conformal geometry. The literal meaning of this
interpretation is lost within the internal interpretation of those mappings. Nevertheless, the
commutation rules of the conformal group are still valid. It becomes internal group just like
the Lorentz group in Einstein-Cartan theory.
The connection from ϑ may be expanded as follows:

ϑμ =
1
2

Ω̆AB
μΣAB + Bμ

1
i

γ5 + AμiI + eA
μiτA + fAμiχA, (87)

where, obviously, Ω̆AB
μ = −Ω̆BA

μ.
It may be convenient to introduce the object

ΩA
Bμ := Ω̆A

Bμ + 2BμδA
B, (88)

where the following holds:

Bμ =
1
8

ΩA
Aμ, Ω̆A

Bμ = ΩA
Bμ − 1

4
ΩC

CμδA
B. (89)

Therefore, 8Bμ may be identified with the trace, and Ω̆A
Bμ — with the trace-less part of the

object ΩA
Bμ. So, it may be natural to write ϑμ as follows:

ϑμ =
1
2

ΩAB
μ

(
ΣAB +

1
4

nAB
1
i

γ5
)
+ eA

μiτA + fAμiχA + AμiI, (90)

or alternatively

ϑμ =
1

2g
Γ̆AB

μΣAB +
1

4g
Qμ

1
i

γ5 +
1
g

εA
μiτA +

1
g

ϕAμiχA + AμiI, (91)

or just as

ϑμ =
1

2g
ΓAB

μ

(
ΣAB +

1
4

nAB
1
i

γ5
)
+

1
g

εA
μiτA +

1
g

ϕAμiχA + AμiI, (92)

where the following auxiliary gauge symbols are used:

ΓA
Bμ = gΩA

Bμ, Γ̆A
Bμ = ΓA

Bμ − 1
4

ΓC
CμδA

B, (93)

Qμ = 4gBμ =
g
2

ΩA
Aμ =

1
2

ΓA
Aμ, (94)

εA
μ = geA

μ, ϕAμ = g fAμ. (95)

The systems of differential forms
[
ΩA

B = (1/g)ΓA
B
]
,
[
eA], [ fA] are parts of the connection

form ϑ, and because of this, the action of x-dependent matrices U on them is inhomogeneous.
But when we restrict ourselves to the U-injected group SL(2, C), the transformation rule
for

[
eA], [ fA] becomes homogeneous. It is just the correspondence rule with the situation

of Einstein-Cartan theory where
[
eA] was a gravitational cotetrad. Let us remind that in

GL(2, C)-invariant spinor theory, Qμ = (1/2)ΓA
Aμ was the Weyl covector, and there was
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necessity to use an additional version of the cotetrad, transforming under dilatations in the
inverse way. If we used the world metric gμν, then Qμ was the Killing covector, i.e.,

∇λgμν = −Qλgμν, (96)

in the sense of the GL(2, C)-part of the U(2, 2)-connection.
Let us stress that in certain formulae it is still more convenient to use the γA, Aγ-expansion
than those based on τA, χA, namely,

ϑμ =
1
2

ΩAB
μΣAB + Bμ

1
i

γ5 + AμiI + EAμiγA + FAμiAγ, (97)

where the following notation is used:

EA =
1
2

(
eA + ηAB fB

)
= ηABEB, FA =

1
2

(
eA − ηAB fB

)
= ηABFB. (98)

Let us now take the following expansion of the curvature vector-valued two-form:

Φ = T(e)AiτA + T( f )AiχA +
1
2

R̃ABΣAB + G
1
i

γ5 + FiI, (99)

where the following partially clear symbols are used:

T(e)A = deA + gΩA
B ∧ eB = deA + ΓA

B ∧ eB, (100)

T( f )A = d fA + g fB ∧ ΩB
A = d fA + fB ∧ ΓB

A, (101)

R̃A
B = R(Ω)A

B − 1
4

R(Ω)C
CδA

B − 2geA ∧ fB

+2gηACηBDeD ∧ fC =
1
g

(
R(Γ)A

B − 1
4

R(Γ)C
CδA

B

−2g2eA ∧ fB + 2g2ηACηBDeD ∧ fC

)
, (102)

G =
1

4g
dQ − geA ∧ fA =

1
g

(
1
8

R(Γ)A
A − g2eA ∧ fa

)
, (103)

F = dA, (104)

where R(Γ), R(Ω) denote the curvature two-form:

R(Γ)A
B = dΓA

B + ΓA
C ∧ ΓC

B, R(Ω)A
B = dΩA

B + gΩA
C ∧ ΩC

B. (105)

Let us remember that the torsion of a linear connection may be interpreted as a contribution
to affine connection. The corresponding space-time objects, i.e., connections, torsions and
curvatures are given by

Γ(e)k
ij = ek

AΓA
BjeB

i + ek
AeA

i,j, (106)

Γ( f )k
ij = − fAiΓ

A
Bj f kB + f kA fAi,j, (107)

S(e)k
ij = Γ(e)k

[ij] = −1
2

ek
AT(e)A

ij, (108)

S( f )k
ij = Γ( f )k

[ij] = −1
2

f kAT( f )Aij, (109)

R(e)m
kij = em

AeB
kRA

Bij, (110)

R( f )m
kij = − fAk f mBRA

Bij. (111)
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We do not quote the total explicit form of field equations. Being generally-covariant, they are
over-determined, therefore, as usual suspected to be inconsistent. Nevertheless, substituting
to the field equations the non-excited matter Ψ = 0, and the above equations (106)–(111),
one can show that there are certain non-trivial solutions. Namely, let us take the following
Einstein-Dirac metrics:

h(e, η)μν = ηABeA
μeB

ν,

h( f , η)μν = ηAB fAμ fBν. (112)

And now, let us substitute the following conditions to the field equations (58), (59), (60):

Ψ = 0, fAμ = kηABeB
μ, gμν = ph(e, η)μν, (113)

Qμ = 0, Aμ = 0, S(e)λ
μν = S( f )λ

μν = 0. (114)

It is simply marvellous that the very complicated system of equations following from (58),
(59), (60) after substituting (106)–(114) is solvable, moreover, it is reducible to something very
simple. Namely, the very complicated system of equations for the geometric fields reduces
step by step to

Rμν − 1
2

Rgμν = −12
g2k
p

gμν, (115)

where Rμν denotes the twice contravariant Ricci tensor built of gαβ, and R is the curvature
scalar. Substituting there k = 1, p = 1, one obtains simply the following equation

Rμν − 1
2

Rgμν = −12g2gμν. (116)

In any case one deals here with the Einstein equation with the cosmological constant. It is
remarkable that this coupling constant is proportional to the gauge coupling constant. Such
a coupling between microphysical model and macroscopic or even just cosmic scale physics
is marvellous and philosophically fascinating. When the Einstein-Hilbert dynamics of gμν is
used, we obtain also the condition

Tμν = 0. (117)

But there is no contradiction between (117) and (115)/(116). There exist some common
solutions, namely, ones corresponding to the constant curvature spaces:

Rαβμν =
4g2k

p

(
gαμgβν − gανgβμ

)
. (118)

It is again the fascinating idea that the conformal flatness of space-time, expressed by (118)
is so nicely compatible with the assumption that the theory is invariant under the covering
group of the conformal group.
The field sector of the model corresponds smoothly to the gauge Poincare gravitation. When
the field Lagrangian is expressed in terms of the above quantities e, f , S(e), S( f ), R(e),
R( f ), one obtains expression quadratic in field variables just like in Poincare gauge models.
However, the use of the semisimple SU(2, 2) results in well-defined, rigorous ratio of constant
coefficients, not accidental one like in Poincare model.
What concerns material sector, the use of the second-order Klein-Gordon equation and the
presence of second-order derivatives of the matter field, is a drastic difference in comparison
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with the first-order Dirac equation. However, the situation is not very bad, on the contrary, it
may seem promising and desirable. If we substitute to the matter equation the Dirac-Einstein
assumption, e.g., with p = 1, k = 1, then we obtain the following Dirac-Klein-Gordon
equation:

eμ
AiγA (∇μ + Sν

νμ I4
)

Ψ − 4bg2 − c
2bg

Ψ +
1

2g

g
∇μ

g
∇νΨ = 0, (119)

where ∇μ is the SL(2, C)-part of the U(2, 2)-covariant derivative and
g
∇μ joints that

differentiation with ΓA
B-differentiation of objects with the capital Lorentz indices and with

the g-Levi-Civita differentiation. It is interesting that the first two terms of (119) correspond
exactly with the Dirac theory in Einstein-Cartan space-time. However, there is quite a
natural question if the third, second-order d’Alembert term does not destroy completely this
similarity.
The simplest way to answer this question is to consider the specially-relativistic situation,
when gμν = ημν, ΓA

Bμ = 0, eA
μ = δA

μ. It is clear that under this substitution one obtains the
Dirac-Klein-Gordon differential equation

iγμ∂μΨ − 4bg2 − c
2bg

Ψ +
1

2g
ημν∂μ∂νΨ = 0. (120)

It is obvious that the general solution of this equation is a combination of two Dirac waves
with two possible masses, namely, m±, where

m2± =
c
b
− 2g2

(
1 ±

√
c

bg2 − 3
)

. (121)

This result is obtained when the amplitudes U(p) exp
(
ipμxμ

)
are substituted to (120). This

means that there is a range of “Dirac" behaviour, c/b > 3g2. The primeval mass parameter
must be sufficiently large for that. Then the solution of (120) will be a superposition of two
Dirac fields. If c/b = 3g2, then one obtains the exactly Dirac behaviour. This means that there
is no splitting of mass and that m = |g|. Below this threshold we are dealing with tachyonic
or decay phenomena. It is also very interesting that if c/b = 4g2, then one of the partner
states is massless, namely, m− = 0, m+ = 2|g|. Obviously, the doubling of mass within the
Dirac behaviour needs some explanation in terms of experimental data. Let us quote three
possibilities (Sławianowski & Kovalchuk, 2008):

• If the energy gap m+ − m− is very small (i.e., |g| is small enough), then perhaps it is below
the present accuracy of our experimental abilities.

• If the energy gap m+ − m− is so large that perhaps it is too difficult to create/excite the
state of higher mass.

• And finally, the most important and promising explanation. Perhaps the
mass-state-doubling does exist and is just observed. This would be just the explanation
of the mysterious relationship between fundamental quarks and fermions in the standard
model of weak interactions. We mean their occurance in pairs (u, d), (c, s), (t, b) (quarks)
and (νe, e), (νμ, μ), (ντ , τ) (leptons) (Veltman, 2003). For example, the situation c/b = 4g2

might be a naive explanation of the pairing between heavy leptons and their nuetrinos.
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6. Some additional interpretation problems

In one of our earlier papers we have discussed the idea of higher-order derivatives just from
the point of view of the order of time derivatives (Sławianowski & Kovalchuk, 2002; 2010;
Sławianowski et al., 2004; 2005), because the other continuous variables were absent. The
Schrödinger equation was then interpreted as a Hamiltonian system of mathematical physics.
And it was just then where the second-order time derivatives seemed not only admissible,
but just necessary. In the field problems, this concerns, of course, the occurrence of all
second-order space-time derivatives of the field quantities/wave functions. And, as shown
above, those second-order space-time derivatives just seem desirable, not only admissible.
The next important question is: why just U(2, 2) ⊂ GL(4, C), not the total GL(4, C)? But
it is seen that it is only signature (+,+,−,−) of Hermitian G-forms, not the group U(2, 2)
itself that matters. Namely, the mass form Grs must by present in Lagrangian, however
not as a fixed constant Hermitian form but as a dynamical, x-dependent form of signature
(+,+,−,−). The corresponding Lagrangian term would be proportional to

GszGtr ∂Grs
∂xμ

∂Gzt
∂xν

gμν, (122)

or perhaps to the Born-Infeld term
√

det
[
GszGtrGrs,μGzt,ν

]
(123)

independent on the mentioned choice of the space-time metric gμν. This term is evidently
GL(4, C)-invariant.
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1. Introduction

Quantum mechanics provides us many perspectives and insights on Nature and our daily life.
However, its mathematical axiom initiated by von Neumann (121) is not satisfied to describe
nature phenomena. For example, it is impossible not to explain a non self-adjoint operator, i.e.,
the momentum operator on a half line (See, e.g., Ref. (154).), as the physical observable. On
considering foundations of quantum mechanics, the simple and specific expression is needed.
One of the candidates is the weak value initiated by Yakir Aharonov and his colleagues (4).
It is remarked that the idea of their seminal work is written in ref. (3). Furthermore, this
quantity has a potentiality to explain the counter-factual phenomena, in which there is the
contradiction under the classical logic, e.g., the Hardy paradox (64). If so, it may be possible
to quantitatively explain quantum mechanics in the particle picture. In this review based on
the author thesis (152), we consider the theory of the weak value and construct a measurement
model to extract the weak value. See the other reviews in Refs. (12; 14; 15; 20).
Let the weak value for an observable A be defined as

f �A�w
i :=

� f |A|i�
� f |i� , (1)

where |i� and | f � are called a pre- and post-selected state, respectively. As the naming of
the “weak value", this quantity is experimentally accessible by the weak measurement as
explained below. As seen in Fig. 1, the weak value can be measured as the shift of a meter
of the probe after the weak interaction between the target and the probe with the specific
post-selection of the target. Due to the weak interaction, the quantum state of the target
is only slightly changed but the information of the desired observable A is encoded in the
probe by the post-selection. While the previous studies of the weak value since the seminal
paper (4), which will be reviewed in Sec. 3, are based on the measurement scheme, there are
few works that the weak value is focused on and is independent of the measurement scheme.
Furthermore, in these 20 years, we have not yet understood the mathematical properties of the
weak value. In this chapter, we review the historical backgrounds of the weak value and the
weak measurement and recent development on the measurement model to extract the weak
value.

2. Review of quantum operation

The time evolution for the quantum state and the operation for the measurement are called a
quantum operation. In this section, we review a general description of the quantum operation.
Therefore, the quantum operation can describe the time evolution for the quantum state, the
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Fig. 1. Schematic figure of the weak measurement.

control of the quantum state, the quantum measurement, and the noisy quantum system in
the same formulation.

2.1 Historical remarks
Within the mathematical postulates of quantum mechanics (121), the state change is subject
to the Schrödinger equation. However, the state change on the measurement is not subject
to this but is subject to another axiom, conventionally, von Neumann-Lüders projection
postulate (105). See more details on quantum measurement theory in the books (31; 40; 194).
Let us consider a state change from the initial state |ψ� on the projective measurement 1 for the
operator A = ∑j aj|aj��aj|. From the Born rule, the probability to obtain the measurement
outcome, that is, the eigenvalue of the observable A, is given by

Pr[A = am] = |�am|ψ�|2 = Tr [|ψ��ψ| · |am��am|] = Tr ρPam , (2)

where ρ := |ψ��ψ| and Pam = |am��am|. After the measurement with the measurement outcome
am, the quantum state change is given by

|ψ� → |am�, (3)

which is often called the “collapse of wavefunction" or “state reduction". This implies that it is
necessary to consider the non-unitary process even in the isolated system. To understand the
measuring process as quantum dynamics, we need consider the general theory of quantum
operations.

2.2 Operator-sum representation
Let us recapitulate the general theory of quantum operations of a finite dimensional quantum
system (122). All physically realizable quantum operations can be generally described by a
completely positive (CP) map (127; 128), since the isolated system of a target system and an
auxiliary system always undergoes the unitary evolution according to the axiom of quantum
mechanics (121). Physically speaking, the operation of the target system should be described
as a positive map, that is, the map from the positive operator to the positive operator, since the
density operator is positive. Furthermore, if any auxiliary system is coupled to the target one,

1 This measurement is often called the von Neumann measurement or the strong measurement.
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the quantum dynamics in the compound system should be also described as the positive map
since the compound system should be subject to quantum mechanics. Given the positive map,
the positive map is called a CP map if and only if the positive map is also in the compound
system coupled to any auxiliary system. One of the important aspects of the CP map is that
all physically realizable quantum operations can be described only by operators defined in
the target system. Furthermore, the auxiliary system can be environmental system, the probe
system, and the controlled system. Regardless to the role of the auxiliary system, the CP
map gives the same description for the target system. On the other hand, both quantum
measurement and decoherence give the same role for the target system.
Let E be a positive map from L(Hs), a set of linear operations on the Hilbert space Hs, to
L(Hs). If E is completely positive, its trivial extension K from L(Hs) to L(Hs ⊗He) is also
positive such that

K(|α�) := (E ⊗ 1)(|α��α|) > 0, (4)

for an arbitrary state |α� ∈ Hs ⊗Hp, where 1 is the identity operator. We assume without loss
of generality dimHs = dimHe < ∞. Throughout this chapter, we concentrate on the case that
the target state is pure though the generalization to mixed states is straightforward. From the
complete positivity, we obtain the following theorem for quantum state changes.

Theorem 2.1. Let E be a CP map from Hs to Hs. For any quantum state |ψ�s ∈ Hs, there exist a
map σ and a pure state |α� ∈ Hs ⊗He such that

E(|ψ�s�ψ|) = e�ψ̃|K(|α�)|ψ̃�e, (5)

where
|ψ�s = ∑

k
ψk|k�s, |ψ̃�e = ∑

k
ψ∗

k |k�e, (6)

which represents the state change for the density operator.

Proof. We can write in the Schmidt form as

|α� = ∑
m
|m�s|m�e. (7)

We rewrite the right hand sides of Eq. (5) as

K(|α�) = (E ⊗ 1)

(
∑
m,n

|m�s|m�e s�n|e�n|
)

= ∑
m,n

|m�e�n|E(|m�s�n|), (8)

to obtain
e�m|K(|α�)|n�e = E(|m�s�n|). (9)

By linearity, the desired equation (5) can be derived.

From the complete positivity, K(|α�) > 0 for all |α� ∈ Hs ⊗He, we can express σ(|α�) as

K(|α�) = ∑
m

sm|ŝm��ŝm| = ∑
m
|sm��sm|, (10)
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where sm’s are positive and {|ŝm�} is a complete orthonormal set with |sm� :=
√

sm|ŝm�. We
define the Kraus operator Em (95) as

Em|ψ�s := e�ψ̃|sm�. (11)

Then, the quantum state change becomes the operator-sum representation,

∑
m

Em|ψ�s�ψ|E†
m = ∑

m
e�ψ̃|sm��sm|ψ̃�e = e�ψ̃|K(|α�)|ψ̃�e = E(|ψ�s�ψ|).

It is emphasized that the quantum state change is described solely in terms of the quantities
of the target system.

2.3 Indirect quantum measurement
In the following, the operator-sum representation of the quantum state change is related to

the indirect measurement model. Consider the observable As and Bp for the target and probe
systems given by

As = ∑
j

aj|aj�s�aj|, Bp = ∑
j

bj|bj�p�bj|, (12)

respectively. We assume that the interaction Hamiltonian is given by

Hint(t) = g(As ⊗ Bp) δ(t − t0), (13)

where t0 is measurement time. Here, without loss of generality, the interaction is impulsive
and the coupling constant g is scalar. The quantum dynamics for the compound system is
given by

|sm��sm| = U(|ψ�s�ψ| ⊗ |φ�p�φ|)U†, (14)

where |ψ�s and |φ�p are the initial quantum state on the target and probe systems, respectively.
For the probe system, we perform the projective measurement for the observable Bp. The
probability to obtain the measurement outcome bm is given by

Pr[Bp = bm] = Trs�bm|U(|ψ�s�ψ| ⊗ |φ�p�φ|)U†|bm�,
= Trs Em|ψ�s�ψ|E†

m = Trs |ψ�s�ψ|Mm, (15)

where the Kraus operator Em is defined as

Em := p�bm|U|φ�p, (16)

and Mm := E†
mEm is called a positive operator valued measure (POVM) (45). The POVM has

the same role of the spectrum of the operator As in the case of the projective measurement.
To derive the projective measurement from the indirect measurement, we set the spectrum
of the operator As as the POVM, that is, Mm = |am�s�am|. Since the sum of the probability
distribution over the measurement outcome equals to one, we obtain

∑
m

Pr[Bp = bm] = 1 ⇐⇒ ∑
m

Tr |ψ�s�ψ|Mm = Tr |ψ�s�ψ|∑
m

Mm = 1

→ ∑
m

Mm = 1. (17)

Here, the last line uses the property of the density operator, Tr |ψ�s�ψ| = 1 for any |ψ�.
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3. Review of weak value

In Secs. 2.1 and 2.3, the direct and indirect quantum measurement schemes, we only get
the probability distribution. However, the probability distribution is not the only thing that
is experimentally accessible in quantum mechanics. In quantum mechanics, the phase is
also an essential ingredient and in particular the geometric phase is a notable example of
an experimentally accessible quantity (150). The general experimentally accessible quantity
which contains complete information of the probability and the phase seems to be the weak
value advocated by Aharonov and his collaborators (4; 14). They proposed a model of weakly
coupled system and probe, see Sec. 4.3, to obtain information to a physical quantity as a “weak
value" only slightly disturbing the state. Here, we briefly review the formal aspects of the
weak value.
For an observable A, the weak value �A�w is defined as

�A�w :=
� f |U(t f , t)AU(t, ti)|i�

� f |U(t f , ti)|i� ∈ C, (18)

where |i� and � f | are normalized pre-selected ket and post-selected bra state vectors,
respectively (4). Here, U(t2, t1) is an evolution operator from the time t1 to t2. The weak
value �A�w actually depends on the pre- and post-selected states |i� and � f | but we omit them
for notational simplicity in the case that we fix them. Otherwise, we write them explicitly as
f �A�w

i instead for �A�w. The denominator is assumed to be non-vanishing. This quantity is,
in general, in the complex number C. Historically, the terminology “weak value" comes from
the weak measurement, where the coupling between the target system and the probe is weak,
explained in the following section. Apart from their original concept of the weak value and the
weak measurement, we emphasize that the concept of the weak value is independent of the
weak measurement 2. To take the weak value as a priori given quantity in quantum mechanics,
we will construct the observable-independent probability space. In the conventional quantum
measurement theory, the probability space, more precisely speaking, the probability measure,
depends on the observable (151, Sec. 4.1) 3.
Let us calculate the expectation value in quantum mechanics for the quantum state |ψ� as

Ex[A] = �ψ|A|ψ� =
∫

dφ �ψ|φ��φ|A|ψ� =
∫

dφ �ψ|φ� · �φ|ψ� �φ|A|ψ�
�φ|ψ� ,

=
∫

dφ |�ψ|φ�|2 φ�A�w
ψ , (19)

where hA[|φ�] = φ�A�w
ψ is complex random variable and dP := |�φ|ψ�|2dφ is the probability

measure and is independent of the observable A. Therefore, the event space Ω = {|φ�} is
taken as the set of the post-selected state. This formula means that the extended probability
theory corresponds to the Born rule. From the conventional definition of the variance in

2 This concept is shared in Refs. (1; 49; 51; 78; 81; 82; 117; 130).
3 Due to this, the probability in quantum mechanics cannot be applied to the standard probability theory.

As another approach to resolve this, there is the quantum probability theory (138).
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where |i� and � f | are normalized pre-selected ket and post-selected bra state vectors,
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f �A�w

i instead for �A�w. The denominator is assumed to be non-vanishing. This quantity is,
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Ex[A] = �ψ|A|ψ� =
∫

dφ �ψ|φ��φ|A|ψ� =
∫

dφ �ψ|φ� · �φ|ψ� �φ|A|ψ�
�φ|ψ� ,

=
∫

dφ |�ψ|φ�|2 φ�A�w
ψ , (19)

where hA[|φ�] = φ�A�w
ψ is complex random variable and dP := |�φ|ψ�|2dφ is the probability

measure and is independent of the observable A. Therefore, the event space Ω = {|φ�} is
taken as the set of the post-selected state. This formula means that the extended probability
theory corresponds to the Born rule. From the conventional definition of the variance in

2 This concept is shared in Refs. (1; 49; 51; 78; 81; 82; 117; 130).
3 Due to this, the probability in quantum mechanics cannot be applied to the standard probability theory.

As another approach to resolve this, there is the quantum probability theory (138).
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quantum mechanics, we obtain the variance as

Var[A] =
∫

|hA[|φ�]|2dP −
(∫

hA[|φ�]dP
)2

=
∫ ∣∣∣∣

�φ|A|ψ�
�φ|ψ�

∣∣∣∣
2
|�φ|ψ�|2dφ −

(∫ �φ|A|ψ�
�φ|ψ� |�φ|ψ�|2dφ

)2

=
∫

|�φ|A|ψ�|2 dφ −
(∫

�ψ|φ��φ|A|ψ�dφ

)2

=
∫
�ψ|A|φ��φ|A|ψ�dφ − (�ψ|A|ψ�)2

= �ψ|A2|ψ� − (�ψ|A|ψ�)2. (20)

This means that the observable-independent probability space can be characterized by the
weak value (155). From another viewpoint of the weak value, the statistical average of the
weak value coincides with the expectation value in quantum mechanics (7). This can be
interpreted as the probability while this allows the “negative probability" 4. On this idea, the
uncertainty relationship was analyzed on the Robertson inequality (58; 163) and on the Ozawa
inequality (106), which the uncertainty relationships are reviewed in Ref. (151, Appendix
A). Also, the joint probability for the compound system was analyzed in Refs. (27; 30).
Furthermore, if the operator A is a projection operator A = |a��a|, the above identity becomes
an analog of the Bayesian formula,

|�a|ψ�|2 =
∫

φ�|a��a|�w
ψ |�φ|ψ�|2dφ. (21)

The left hand side is the probability to obtain the state |a� given the initial state |ψ�. From
this, one may get some intuition by interpreting the weak value φ�|a��a|�w

ψ as the complex
conditional probability of obtaining the result |a� under an initial condition |i� and a final
condition | f � in the process |i� → |a� → | f � (170; 171) 5. Of course, we should not take the
strange weak values too literally but the remarkable consistency of the framework of the weak
values due to Eq. (21) and a consequence of the completeness relation,

∑
a
�|a��a|�w = 1, (22)

may give a useful concept to further push theoretical consideration by intuition.
This interpretation of the weak values gives many possible examples of strange phenomena
like a negative kinetic energy (11), a spin 100h̄ for an electron (4; 23; 52; 60) and a
superluminal propagation of light (142; 162) and neutrino (28; 176) motivated by the

4 The concept of negative probability is not new, e.g., see Refs. (47; 57; 65; 66; 71). The weak value defined
by Eq. (18) is normally called the transition amplitude from the state |ψ� to �φ| via the intermediate
state |a� for A = |a��a|, the absolute value squared of which is the probability for the process. But the
three references quoted above seem to suggest that they might be interpreted as probabilities in the
case that the process is counter-factual, i.e., the case that the intermediate state |a� is not projectively
measured. The description of intermediate state |a� in the present work is counter-factual or virtual in
the sense that the intermediate state would not be observed by projective measurements. Feynman’s
example is the counter-factual “probability" for an electron to have its spin up in the x-direction and
also spin down in the z-direction (57).

5 The interpretation of the weak value as a complex probability is suggested in the literature (118).

80 Measurements in Quantum Mechanics Theory of “Weak Value" and Quantum Mechanical Measurements 7

OPERA experiment (125). The framework of weak values has been theoretically applied
to foundations of quantum physics, e.g., the derivation of the Born rule from the
alternative assumption for a priori measured value (74), the relationship to the uncertainty
relationship (72), the quantum stochastic process (190), the tunneling traverse time (135;
170; 171), arrival time and time operator (21; 39; 146; 147), the decay law (46; 187),
the non-locality (32; 180; 181), especially, quantum non-locality, which is characterized
by the modular variable, consistent history (87; 188), Bohmian quantum mechanics (98),
semi-classical weak values on the tunneling (175), the quantum trajectory (192), and classical
stochastic theory (177). Also, in quantum information science, the weak value was analyzed
on quantum computation (35; 126), quantum communications (29; 36), quantum estimation,
e.g., state tomography (67–69; 111; 158) and the parameter estimation (70; 73; 157), the
entanglement concentration (113), the quasi-probability distribution (24; 61; 148; 183) and
the cloning of the unknown quantum state with hint (161). Furthermore, this was applied
to the cosmological situations in quantum-mechanical region, e.g., the causality (22), the
inflation theory (42), backaction of the Hawking radiation from the black hole (34; 54; 55),
and the new interpretation of the universe (9; 53; 62). However, the most important fact is
that the weak value is experimentally accessible so that the intuitive argument based on the
weak values can be either verified or falsified by experiments. There are many experimental
proposals to obtain the weak value in the optical (2; 44; 88; 101; 112; 159; 197) and the
solid-state (83; 84; 94; 115; 143; 144; 191; 200) systems. Recently, the unified viewpoint was
found in the weak measurement (92).
On the realized experiments on the weak value, we can classify the three concepts: (i) testing
the quantum theory, (ii) the amplification of the tiny effect in quantum mechanics, and (iii) the
quantum phase.

(i) Testing the quantum theory. The weak value can solve many quantum paradoxes seen
in the book (14). The Hardy paradox (64), which there occurs in two Mach-Zehnder
interferometers of the electron and the position, was resolved by the weak value (8) and
was analyzed deeper (75). This paradoxical situation was experimentally demonstrated in
the optical setup (107; 198). By the interference by the polarization (131) and shifting the
optical axis (141), the spin beyond the eigenvalue is verified. By the latter technique, the
three-box paradox (16; 188) was realized (139). Thereafter, the theoretical progresses are the
contextuality on quantum mechanics (178), the generalized N-box paradox (99), and the
relationship to the Kirkpatrick game (137). The weak value is used to show the violation of
the Leggett-Garg inequality (110; 191). This experimental realizations were demonstrated
in the system of the superconducting qubit (97), the optical systems (50; 134). Furthermore,
since the weak value for the position observable |x��x| with the pre-selected state |ψ� and
the post-selection |p� is given by

�|x��x|�w =
�p|x��x|ψ�

�p|ψ� =
eixpψ(x)

φ(p)
, (23)

we obtain the wavefunction ψ(x) := �x|ψ� as the weak value with the multiplication
factor 1/φ(0) with φ(p) := �p|ψ� in the case of p = 0. Using the photon transverse
wavefunction, there are experimentally demonstrated by replacing the weak measurement
for the position as the polarization measurement (109). This paper was theoretically
criticized to compare the standard quantum state tomography for the phase space in
Ref. (63) and was generalized to a conventionally unobservable (108). As other examples,
there are the detection of the superluminal signal (37), the quantum non-locality (165), and
the Bohmian trajectory (91; 149) on the base of the theoretical analysis (193).
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(ii) Amplification of the tiny effect in quantum mechanics. Since the weak value has the
denominator, the weak value is very large when the pre- and post-selected states are
almost orthogonal6. This is practical advantage to use the weak value. While the
spin Hall effect of light (124) is too tiny effect to observe its shift in the conventional
scheme, by almost orthogonal polarizations for the input and output, this effect was
experimentally verified (76) to be theoretically analyzed from the viewpoint of the spin
moments (96). Also, some interferometers were applied. The beam deflection on the
Sagnac interferometer (48) was shown to be supported by the classical and quantum
theoretical analyses (77) 7. Thereafter, optimizing the signal-to-noise ratio (166; 184),
the phase amplification (168; 169), and the precise frequency measurement (167) were
demonstrated. As another example, there is shaping the laser pulse beyond the
diffraction limit (136). According to Steinberg (172), in his group, the amplification
on the single-photon nonlinearity has been progressed to be based on the theoretical
proposal (56). While the charge sensing amplification was proposed in the solid-state
system (200), there is no experimental demonstration on the amplification for the
solid-state system. Furthermore, the upper bound of the amplification has not yet solved.
Practically, this open problem is so important to understand the relationship to the weak
measurement regime.

(iii)Quantum phase. The argument of the weak value for the projection operator is the
geometric phase as

γ := arg�ψ1|ψ2��ψ2|ψ3��ψ3|ψ1�
= arg

�ψ1|ψ2��ψ2|ψ3��ψ3|ψ1�
|�ψ3|ψ1�|2

= arg
�ψ1|ψ2��ψ2|ψ3�

�ψ1|ψ3�
= arg ψ1 �|ψ2��ψ2|�w

ψ3
. (24)

where the quantum states, |ψ1�, |ψ2�, and |ψ3�, are the pure states (160). Here, the quantum
states, |ψ1� and |ψ3�, are the post- and pre-selected states, respectively. Therefore, we can
evaluate the weak value from the phase shift (174). Of course, vice versa (38). Tamate
et al. proposal was demonstrated on the relationship to quantum eraser (90) and by
the a three-pinhole interferometer (89). The phase shift from the zero mode to π mode
was observed by using the interferometer with a Cs vapor (41) and the phase shift in
the which-way path experiment was demonstrated (116). Furthermore, by the photonic
crystal, phase singularity was demonstrated (164).

(iv)Miscellaneous. The backaction of the weak measurement is experimentally realized
in the optical system (79). Also, the parameter estimation using the weak value is
demonstrated (73).

4. Historical background – two-state vector formalism

In this section, we review the original concept of the two-state vector formalism. This theory
is seen in the reviewed papers (15; 20).

6 Unfortunately, the signal to noise ratio is not drastically changed under the assumption that the probe
wavefunction is Gaussian on a one-dimensional parameter space.

7 Unfortunately, the experimental data are mismatched to the theoretical prediction. While the authors
claimed that this differences results from the stray of light, the full-order calculation even is not
mismatched (93). However, this difference remains the open problem.

(iii) Quantum phase. 

(iv) Miscellaneous. 
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4.1 Time symmetric quantum measurement
While the fundamental equations of the microscopic physics are time symmetric, for example,
the Newton equation, the Maxwell equation, and the Schrödinger equation 8, the quantum
measurement is not time symmetric. This is because the quantum state after quantum
measurement depends on the measurement outcome seen in Sec. 2. The fundamental
equations of the microscopic physics can be solved to give the initial boundary condition.
To construct the time symmetric quantum measurement, the two boundary conditions, which
is called pre- and post-selected states, are needed. The concept of the pre- and post-selected
states is called the two-state vector formalism (6). In the following, we review the original
motivation to construct the time symmetric quantum measurement.
Let us consider the projective measurement for the observable A = ∑i ai|ai��ai| with the initial
boundary condition denoted as |i� at time ti. To take quantum measurement at time t0, the
probability to obtain the measurement outcome aj is given by

Pr[A = aj] =� �aj|U|i� �2, (25)

with the time evolution U := U(t0, ti). After the projective measurement, the quantum state
becomes |aj�. Thereafter, the quantum state at t f is given by |ϕj� := V|aj� with V = U(t f , t0).
the probability to obtain the measurement outcome aj can be rewritten as

Pr[A = aj] =
� �ϕj|V|aj� �2� �aj|U|i� �2

∑j � �ϕj|V|aj� �2� �aj|U|i� �2 . (26)

It is noted that � �ϕj|V|aj� �2= 1. Here, we consider the backward time evolution from the
quantum state |ϕj� at time t f . We always obtain the quantum state |aj� after the projective
measurement at time t0. Therefore, the quantum state at time ti is given by

|ĩ� := U†|aj��aj|V†|ϕj� = U†|aj�. (27)

In general, |ĩ� is different from |i�. Therefore, projective measurement is time asymmetric.
To construct the time-symmetric quantum measurement, we add the boundary condition
at time t f . Substituting the quantum state |ϕj� to the specific one denoted as | f �, which is
called the post-selected state, the probability to obtain the measurement outcome aj, Eq. (26),
becomes

Pr[A = aj] =
� � f |V|aj� �2� �aj|U|i� �2

∑j � � f |V|aj� �2� �aj|U|i� �2 . (28)

This is called the Aharonov-Bergmann-Lebowitz (ABL) formula (6). From the analogous
discussion to the above, this measurement is time symmetric. Therefore, describing quantum
mechanics by the pre- and post-selected states, |i� and � f |, is called the “two-state vector
formalism”.

4.2 Protective measurement
In this subsection, we will see the noninvasive quantum measurement for the specific
quantum state on the target system. Consider a system of consisting of a target and a probe
defined in the Hilbert space Hs ⊗ Hp. The interaction between the target and the probe is

8 It is, of course, noted that thermodynamics does not have the time symmetric properties from the
second law of thermodynamics.
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given by
Hint(t) = g(t)(A ⊗ P̂), (29)

where ∫ T

0
g(t)dt =: g0. (30)

The total Hamiltonian is given by

Htot(t) = Hs(t) + Hp(t) + Hint(t). (31)

Here, we suppose that Hs(t) has discrete and non-degenerate eigenvalues denoted as Ei(t).
Its corresponding eigenstate is denoted as |Ei(t)� for any time t. Furthermore, we consider the
discretized time from the time interval [0, T];

tn =
n
N

T (n = 0, 1, 2, . . . , N), (32)

where N is a sufficiently large number. We assume that the initial target state is the energy
eigenvalue |Ei(t)� 9 the initial probe state is denoted as |ξ(0)�. Under the adiabatic condition,
the compound state for the target and probe systems at time T is given by

|Φ(T)� := |Ei(tN)��Ei(tN)|e−i T
N Htot(tN)|Ei(tN−1)��Ei(tN−1)|e−i T

N Htot(tN−1) · · ·
× |Ei(t2)��Ei(t2)|e−i T

N Htot(t2)|Ei(t1)��Ei(t1)|e−i T
N Htot(t1)|Ei(0)� ⊗ |ξ(0)�. (33)

Applying the Trotter-Suzuki theorem (173; 182), one has

|Φ(T)� := |Ei(tN)��Ei(tN)|e−i T
N Hint(tN)|Ei(tN)��Ei(tN−1)|e−i T

N Hint(tN−1) · · ·
× |Ei(t3)��Ei(t2)|e−i T

N Hint(t2)|Ei(t2)��Ei(t1)|e−i T
N Hint(t1)|Ei(1)� ⊗ |ξ(T)�. (34)

By the Taylor expansion with the respect to N, the expectation value is

�Ei(tn)|e−i T
N g(tn)A⊗P̂|Ei(tn)� = 1 − i

T
N

g(tn)Ex[A(tn)]P̂ − 1
2

T2

N2 g2(tn)(Ex[A(tn)])
2P̂2

− 1
2

T2

N2 g2(tn)Var[A(tn)]P̂2 + O
(

1
N3

)

∼ e−i T
N g(tn)Ex[A(tn)]P̂

(
1 − 1

2
T2

N2 g2(tn)Var[A(tn)]P̂2
)

. (35)

9 Due to this assumption, it is impossible to apply this to the arbitrary quantum state. Furthermore, while
we seemingly need the projective measurement, that is, destructive measurement, for the target system
to confirm whether the initial quantum state is in the eigenstates (145; 186), they did not apply this to
the arbitrary state. For example, if the system is cooled down, we can pickup the ground state of the
target Hamiltonian Hs(0).
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In the limit of N → ∞, by quadrature by parts, we obtain

|Φ(T)� ∼ |Ei(T)� exp
[
−i

(∫ T

0
g(t)Ex[A(t)]dt

)
P̂
]

×
[

1 − T
N

(∫ T

0
g2(t)Var[A(t)]dt

)
P̂2

]
|ξ(T)�+ O

(
1
N

)

= |Ei(T)� exp
[
−i

(∫ T

0
g(t)Ex[A(t)]dt

)
P̂
]
|ξ(T)�. (36)

Therefore, the shift of the expectation value for the position operator on the probe system is
given by

Δ[Q] =
∫ T

0
g(t)Ex[A(t)]dt. (37)

It is emphasized that the quantum state on the target system remains to be the energy
eigenstate of Hs. Therefore, this is called the protective measurement (5; 18). It is remarked
that the generalized version of the protective measurement in Ref. (19) by the pre- and
post-selected states and in Ref. (10) by the meta-stable state.

4.3 Weak measurement
From the above discussions, is it possible to combine the above two concepts, i.e., the
time-symmetric quantum measurement without destroying the quantum state (189)? This
answer is the weak measurement (4). Consider a target system and a probe defined in the Hilbert
space Hs ⊗Hp. The interaction of the target system and the probe is assumed to be weak and
instantaneous,

Hint(t) = g(A ⊗ P̂)δ(t − t0), (38)

where an observable A is defined in Hs, while P̂ is the momentum operator of the probe. The
time evolution operator becomes e−ig(A⊗P̂). Suppose the probe initial state is |ξ�. For the
transition from the pre-selected state |i� to the post-selected state | f �, the probe wave function
becomes |ξ �� = � f |Ve−ig(A⊗P̂)U|i�|ξ�, which is in the weak coupling case,

|ξ �� = � f |Ve−ig(A⊗P̂)U|i�|ξ� = � f |V[1 − ig(A ⊗ P̂)]U|i�|ξ�+ O(g2)

= � f |VU|i� − ig� f |VAU|i� ⊗ P̂|ξ�+ O(g2) = � f |VU|i� (1 − ig�A�wP̂
) |ξ�+ O(g2) (39)

where � f |VAU|i�/� f |VU|i� = �A�w. Here, the last equation uses the approximation that
g�A�w � 1 10. We obtain the shifts of the expectation values for the position and momentum
operators on the probe as the following theorem:

Theorem 4.1 (Jozsa (85)). We obtain the shifts of the expectation values for the position and
momentum operators on the probe after the weak measurement with the post-selection as

Δ[Q̂] = gRe�A�w + mgIm�A�w
d Var[Q̂]

dt

∣∣∣∣∣
t=t0

, (40)

Δ[P̂] = 2gIm�A�w Var[P̂], (41)

10 It is remarked that Wu and Li showed the second-order correction of the weak measurement (196). A
further analysis was shown in Refs. (129; 132).
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where

Δ[Q̂] :=
�ξ � |Q̂|ξ ��
�ξ � |ξ �� − �ξ|Q̂|ξ�, (42)

Δ[P̂] :=
�ξ � |P̂|ξ ��
�ξ � |ξ �� − �ξ|P̂|ξ�, (43)

Var[Q̂] := �ξ|Q̂2|ξ� − (�ξ|Q̂|ξ�)2, (44)

Var[P̂] := �ξ|P̂2|ξ� − (�ξ|P̂|ξ�)2. (45)

Here, the probe Hamiltonian is assumed as

Ĥ =
P̂2

2m
+ V(Q), (46)

where V(Q) is the potential on the coordinate space.

Proof. For the probe observable M̂, we obtain

�ξ � |M̂|ξ ��
�ξ � |ξ �� =

�ξ|M̂|ξ� − ig�A�w�ξ|M̂P̂|ξ�+ ig�A�w�ξ|P̂M̂|ξ�
�ξ|ξ� − ig�A�w�ξ|P̂|ξ�+ ig�A�w�ξ|P̂|ξ�

=
�ξ|M̂|ξ�+ igRe�A�w�ξ|[P̂, M̂]|ξ�+ gIm�A�w�ξ|{P̂, M̂}|ξ�

�ξ|ξ�+ 2gIm�A�w�ξ|P̂|ξ�
=

(�ξ|M̂|ξ�+ igRe�A�w�ξ|[P̂, M̂]|ξ�+ gIm�A�w�ξ|{P̂, M̂}|ξ�)

× (
1 − 2gIm�A�w�ξ|P̂|ξ�

)
+ O(g2)

= �ξ|M̂|ξ�+ igRe�A�w�ξ|[P̂, M̂]|ξ�
+ gIm�A�w

(�ξ|{P̂, M̂}|ξ� − 2�ξ|M̂|ξ��ξ|P̂|ξ�)+ O(g2). (47)

If we set M̂ = P̂, one has
Δ[P̂] = 2gIm�A�w Var[P̂]. (48)

If instead we set M̂ = Q̂, one has

Δ[Q̂] = gRe�A�w + gIm�A�w
(�ξ|{P̂, Q̂}|ξ� − 2g�ξ|Q̂|ξ��ξ|P̂|ξ�) (49)

since [P̂, Q̂] = −i. From the Heisenberg equation with the probe Hamiltonian (46), we obtain
the Ehrenfest theorem;

i
d
dt
�ξ|Q̂|ξ� = �ξ|[Q̂, Ĥ]|ξ� = i

�ξ|P̂|ξ�
m

(50)

i
d
dt
�ξ|Q̂2|ξ� = �ξ|[Q̂2, Ĥ]|ξ� = i

�ξ|{P̂, Q̂}|ξ�
m

. (51)
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Substituting them into Eq. (49), we derive

Δ[Q̂] = gRe�A�w + mgIm�A�w
d Var[Q̂]

dt

∣∣∣∣∣
t=t0

(52)

since the interaction to the target system is taken at time t = t0.

Putting together, we can measure the weak value �A�w by observing the shift of the
expectation value of the probe both in the coordinate and momentum representations. The
shift of the probe position contains the future information up to the post-selected state.

Corollary 4.2. When the probe wavefunction is real-valued in the coordinate representation, Eq. (40)
can be reduced to

Δ[Q̂] = gRe�A�w. (53)

Proof. From the Schrödinger equation in the coordinate representation;

i
∂

∂t
ξ(Q) =

1
2m

∂2

∂Q2 ξ(Q) + V(Q)ξ(Q), (54)

where ξ(Q) ≡ �Q|ξ�, putting ξ(Q) = R(Q)eiS(Q), we obtain the equation for the real part as

∂

∂t
R(Q) +

∂

∂Q

(
R(Q) ∂

∂Q S(Q)

m

)
= 0. (55)

Therefore, if the probe wavefunction is real-valued in the coordinate representation, one has
∂

∂Q S(Q) = 0 to obtain ∂
∂t R = 0. Therefore, we obtain

d Var[Q̂]

dt
= 0 (56)

for any time t. Vice versa. From this statement, we obtain the desired result from Eq. (40).

It is noted that there are many analyses on the weak measurement, e.g., on the phase
space (102), on the finite sample (179), on the counting statics (26; 104), on the non-local
observable (32; 33), and on the complementary observable (197).
Summing up this section, the two-state vector formalism is called if the pre- and post-selected
states are prepared and the weak or strong measurement is taken in the von-Neumann type
Hamiltonian, H = gAP̂δ(t − t0) between the pre- and post-selected states. In the case of the
strong measurement, we obtain the expectation value Ex(A) in the probe. On the other hand,
in the case of the weak measurement, we obtain the weak value �A�w in the probe.

5. Weak-value measurement for a qubit system

In this subsection, we consider the weak measurement in the case that the probe system is a
qubit system (195). In general, the interaction Hamiltonian is given by

Hint = g[A ⊗ (�v ·�σ)]δ(t − t0), (57)

where�v is a unit vector. Expanding the interaction Hamiltonian for the pre- and post-selected
states, |ψ� and |φ�, respectively up to the first order for g, we obtain the shift of the expectation
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value for�q ·�σ as

Δ[�q ·�σ] = �ξ � |[�q ·�σ]|ξ ��
�ξ � |ξ �� − �ξ|[�q ·�σ]|ξ� = g�ξ|i[�v ·�σ,�q ·�σ]|ξ�Re�A�w

+ g (�ξ| {�v ·�σ,�q ·�σ} |ξ� − 2�ξ|�v ·�σ|ξ��ξ|�q ·�σ|ξ�) Im�A�w + O(g2)

= 2g{(�q ×�v) · �m}Re�A�w + 2g{�v ·�q − (�v · �m)(�q · �m)}Im�A�w + O(g2), (58)

where

|ξ �� = �φ|e−ig[A⊗(�v·�σ)]|ψ�|ξ�, (59)

|ξ��ξ| =:
1
2
(1 + �m ·�σ). (60)

Furthermore, the pre- and post-selected states are assumed to be

|ψ��ψ| =:
1
2
(1 +�ri ·�σ),

|φ��φ| =:
1
2
(1 +�r f ·�σ).

(61)

Since the weak value of the observable�n ·�σ is

��n ·�σ�w =
�φ|�n ·�σ|ψ��ψ|φ�

|�φ|ψ�|2 = �n · �ri +�r f + i(�ri ×�r f )

1 +�ri ·�r f
, (62)

we obtain

Δ[�q ·�σ] = 2g{(�q ×�v) · �m}�n · (�ri +�r f )

1 +�ri ·�r f
+ 2g{�v ·�q − (�v · �m)(�q · �m)}�n · (�ri ×�r f )

1 +�ri ·�r f
+ O(g2). (63)

From Eq. (63), we can evaluate the real and imaginary parts of the weak value changing
the parameter of the measurement direction �q. This calculation is used in the context of the
Hamiltonian estimation (157).
Next, as mentioned before, we emphasize that the weak measurement is only one of the
methods to obtain the weak value. There are many other approaches to obtain the weak value,
e.g., on changing the probe state (59; 80; 103; 119), and on the entangled probe state (114). Here,
we show another method to obtain the weak value in the case that the target and the probe
systems are both qubit systems (133).
Let |ψ�s := α|0�s + β|1�s be the pre-selected state for the target system. The initial probe
state can described as |ξ�p := γ|0�p + η|1�p. It is emphasized that the initial probe state is
controllable. Here, the initial states are normalized, that is, |α|2 + |β|2 = 1 and |γ|2 + |η|2 = 1.
Applying the Controlled-NOT (C-NOT) gate, we make a transform of the quantum state for
the compound system to

|ψ�s ⊗ |ξ�p
C−NOT−−−−−→ |Ψc� := (αγ|0�s + βη|1�s)|0�p + (αη|0�s + βγ|1�s)|1�p. (64)

In the case of γ ∼ 1, we obtain the compound state as

α|0�s|0�p + β|1�s|1�p, (65)
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and similarly, in the case of η ∼ 1, one has

α|0�s|1�p + β|1�s|0�p. (66)

Those cases can be taken as the standard von Neumann projective measurement. For the
post-selected state |φ�, the probability to obtain the measurement outcome k on the probe is

Pr[k] :=
� (

s�φ| ⊗ p�k|
) |Ψc� �2

∑m∈{0,1} � (
s�φ| ⊗ p�m|) |Ψc� �2

=

∣∣( s�φ|0�s�0|ψ�sγ + s�φ|1�s�1|ψ�sη) δk,0 + ( s�φ|0�s�0|ψ�sη + s�φ|1�s�1|ψ�sγ) δk,1
∣∣2

∑m∈{0,1} � (
s�φ| ⊗ p�m|) |Ψc� �2

=
|(γ − η) s�φ|k�s�k|ψ�s + η s�φ|ψ�s|2

|(γ − η) s�φ|0�s�0|ψ�s + η s�φ|ψ�s|2 + |(γ − η) s�φ|1�s�1|ψ�s + η s�φ|ψ�s|2

=
|(γ − η) φ�|k�s�k|�w

ψ + η|2
1 − (γ − η)2(1 − ∑m∈{0,1} | φ�|m�s�m|�w

ψ |2)
. (67)

Here, in the last line, the parameters γ and η are assumed to be real. Without the
post-selection, the POVM to obtain the measurement outcome k is

Ek = (γ2 − η2)|k�s�k|+ η2. (68)

Here, the coefficient of the first term means that the strength of measurement and the second
term is always added. Therefore, we define the quantity to distinguish the probability for the
measurement outcome k as

R[k] :=
Pr[k]− η2

(γ2 − η2)
. (69)

Putting together Eqs. (67) and (69), we obtain

R[k] =
2η(γ − η)Re φ�|k�s�k|�w

ψ + (γ − η)2[| φ�|k�s�k|�w
ψ |2 + η2(1 − | φ�|k�s�k|�w

ψ |2)]
(γ2 − η2)[1 − (γ − η)2(1 − ∑m∈{0,1} | φ�|m�s�m|�w

ψ |2)]
. (70)

Setting the parameters;

γ =

√
1
2
+ �, η =

√
1
2
− �, (71)

one has

R[k] =
(1 − �)Re φ�|k�s�k|�w

ψ + �
[
| φ�|k�s�k|�w

ψ |2 +
(

1
2 − �

)
(1 − | φ�|k�s�k|�w

ψ |2)
]

2
[
1 − �2

(
1 − ∑m∈{0,1} | φ�|m�s�m|�w

ψ |2
)] + O(�2),

=
1
2

Re φ�|k�s�k|�w
ψ − �

2

(
Re φ�|k�s�k|�w

ψ − 1
2
| φ�|k�s�k|�w

ψ |2
)
+ O(�2). (72)

From Eq. (72), it is possible to obtain the real part of the weak value from the first term and its
imaginary part from the second term. Since the first order of the parameter � is the gradient on
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value for�q ·�σ as

Δ[�q ·�σ] = �ξ � |[�q ·�σ]|ξ ��
�ξ � |ξ �� − �ξ|[�q ·�σ]|ξ� = g�ξ|i[�v ·�σ,�q ·�σ]|ξ�Re�A�w

+ g (�ξ| {�v ·�σ,�q ·�σ} |ξ� − 2�ξ|�v ·�σ|ξ��ξ|�q ·�σ|ξ�) Im�A�w + O(g2)

= 2g{(�q ×�v) · �m}Re�A�w + 2g{�v ·�q − (�v · �m)(�q · �m)}Im�A�w + O(g2), (58)
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|ξ �� = �φ|e−ig[A⊗(�v·�σ)]|ψ�|ξ�, (59)

|ξ��ξ| =:
1
2
(1 + �m ·�σ). (60)

Furthermore, the pre- and post-selected states are assumed to be

|ψ��ψ| =:
1
2
(1 +�ri ·�σ),

|φ��φ| =:
1
2
(1 +�r f ·�σ).

(61)

Since the weak value of the observable�n ·�σ is

��n ·�σ�w =
�φ|�n ·�σ|ψ��ψ|φ�

|�φ|ψ�|2 = �n · �ri +�r f + i(�ri ×�r f )

1 +�ri ·�r f
, (62)
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Δ[�q ·�σ] = 2g{(�q ×�v) · �m}�n · (�ri +�r f )

1 +�ri ·�r f
+ 2g{�v ·�q − (�v · �m)(�q · �m)}�n · (�ri ×�r f )

1 +�ri ·�r f
+ O(g2). (63)

From Eq. (63), we can evaluate the real and imaginary parts of the weak value changing
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changing the initial probe state from |ξ�p = 1√
2
(|0�p + |1�p), realistically, we can evaluate the

imaginary part of the weak value from the gradient of the readout. This method is also used in
Ref. (198) on the joint weak value. It is emphasized that the weak value can be experimentally
accessible by changing the initial probe state while the interaction is not weak 11.

6. Weak values for arbitrary coupling quantum measurement

We just calculate an arbitrary coupling between the target and the probe systems (93; 120; 199).
Throughout this section, we assume that the desired observable is the projection operator to
be denoted as A2 = A (153). In the case of the von-Neumann interaction motivated by the
original work (4), when the pre- and post-selected states are |i� and | f �, respectively, and the
probe state is |ξ�, the probe state |ξ �� after the interaction given by Hint = gAP̂ becomes

|ξ �� = � f |e−igAP̂|i�|ξ� = � f |
(

1 +
∞

∑
k=1

1
k!
(−igAP̂)k

)
|i�|ξ� = � f |

(
1 + A

∞

∑
k=1

1
k!
(−igP̂)k

)
|i�|ξ�

= � f |
(

1 − A + A
∞

∑
k=0

1
k!
(−igP̂)k

)
|i�|ξ� = � f |

(
1 − A + Ae−igP̂

)
|i�|ξ�

= � f |i�
(

1 − �A�w + �A�we−igP̂
)
|ξ�. (73)

It is remarked that the desired observable B, which satisfies B2 = 1 (93; 120), corresponds to
B = 2A − 1. Analogous to Theorem 4.1, we can derive the expectation values of the position
and the momentum after the weak measurement. These quantities depends on the weak value
�A�w and the generating function for the position and the momentum of the initial probe state
|ξ�.

7. Weak value with decoherence

The decoherence results from the coupled system to the environment and leads to the
transition from the quantum to classical systems. The general framework of the decoherence
was discussed in Sec. 2. In this section, we discuss the analytical expressions for the weak
value.
While we directly discuss the weak value with decoherence, the weak value is defined as
a complex number. To analogously discuss the density operator formalism, we need the
operator associated with the weak value. Therefore, we define a W operator W(t) as

W(t) := U(t, ti)|i�� f |U(t f , t). (74)

To facilitate the formal development of the weak value, we introduce the ket state |ψ(t)� and
the bra state �φ(t)| as

|ψ(t)� = U(t, ti)|i�, �φ(t)| = � f |U(t f , t), (75)

so that the expression for the W operator simplifies to

W(t) = |ψ(t)��φ(t)|. (76)

11 This point seems to be misunderstood. According to Ref. (134), the violation of the Leggett-Garg
inequality (100) was shown, but the macroscopic realism cannot be denied since the noninvasive
measurability is not realized.
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By construction, the two states |ψ(t)� and �φ(t)| satisfy the Schrödinger equations with the
same Hamiltonian with the initial and final conditions |ψ(ti)� = |i� and �φ(t f )| = � f |. In a
sense, |ψ(t)� evolves forward in time while �φ(t)| evolves backward in time. The time reverse
of the W operator (76) is W† = |φ(t)��ψ(t)|. Thus, we can say the W operator is based on the
two-state vector formalism formally described in Refs. (16; 17). Even an apparently similar
quantity to the W operator (76) was introduced by Reznik and Aharonov (140) in the name of
“two-state" with the conceptually different meaning. This is because the W operator acts on
a Hilbert space H but the two-state vector acts on the Hilbert space

−→H1 ⊗
←−H2. Furthermore,

while the generalized two-state, which is called a multiple-time state, was introduced (13),
this is essentially reduced to the two-state vector formalism. The W operator gives the weak
value of the observable A 12 as

�A�W =
Tr(WA)

Tr W
, (77)

in parallel with the expectation value of the observable A by

Ex[A] =
Tr(ρA)

Tr ρ
(78)

from Born’s rule. Furthermore, the W operator (74) can be regarded as a special case of a
standard purification of the density operator (185). In our opinion, the W operator should be
considered on the same footing of the density operator. For a closed system, both satisfy the
Schrödinger equation. In a sense, the W operator W is the square root of the density operator
since

W(t)W†(t) = |ψ(t)��ψ(t)| = U(t, ti)|i��i|U†(t, ti), (79)

which describes a state evolving forward in time for a given initial state |ψ(ti)��ψ(ti)| = |i��i|,
while

W†(t)W(t) = |φ(t)��φ(t)| = U(t f , t)| f �� f |U†(t f , t), (80)

which describes a state evolving backward in time for a given final state |φ(t f )��φ(t f )| =

| f �� f |. The W operator describes the entire history of the state from the past (ti) to the
future (t f ) and measurement performed at the time t0 as we shall see in Appendix 4.3.
This description is conceptually different from the conventional one by the time evolution
of the density operator. From the viewpoint of geometry, the W operator can be taken as the
Hilbert-Schmidt bundle. The bundle projection is given by

Π : W(t) → ρi(t) := W(t)W†(t). (81)

When the dimension of the Hilbert space is N: dimH = N, the structure group of this bundle
is U(N) (25, Sec. 9.3). Therefore, the W operator has richer information than the density
operator formalism as we shall see a typical example of a geometric phase (155). Furthermore,
we can express the probability to get the measurement outcome an ∈ A due to the ABL
formula (28) using the W operator W as

Pr[A = an] =
|Tr WPan |2

∑n |Tr WPan |2
, (82)

12 While the original notation of the weak values is �A�w indicating the “w"eak value of an observable
A, our notation is motivated by one of which the pre- and post-selected states are explicitly shown as
f �A�w

i .
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where A = ∑n an|an��an| =: ∑n anPan . This shows the usefulness of the W operator.
Let us discuss a state change in terms of the W operator and define a map X as

X (|α�, |β�) := (E ⊗ 1) (|α��β|) , (83)

for an arbitrary |α�, |β� ∈ Hs ⊗He. Then, we obtain the following theorem on the change of
the W operator such as Theorem 2.1.

Theorem 7.1. For any W operator W = |ψ(t)�s�φ(t)|, we expand

|ψ(t)�s = ∑
m

ψm|αm�s, |φ(t)�s = ∑
m

φm|βm�s, (84)

with fixed complete orthonormal sets {|αm�s} and {|βm�s}. Then, a change of the W operator can be
written as

E (|ψ(t)�s�φ(t)|) = e�ψ̃(t)|X (|α�, |β�)|φ̃(t)�e, (85)

where
|ψ̃(t)�e = ∑

k
ψ∗

k |αk�e, |φ̃(t)�e = ∑
k

φ∗
k |βk�e, (86)

and |α� and |β� are maximally entangled states defined by

|α� := ∑
m
|αm�s|αm�e, |β� := ∑

m
|βm�s|βm�e. (87)

Here, {|αm�e} and {|βm�e} are complete orthonormal sets corresponding to {|αm�s} and {|βm�s},
respectively.

The proof is completely parallel to that of Theorem 2.1.

Theorem 7.2. For any W operator W = |ψ(t)�s�φ(t)|, given the CP map E , the operator-sum
representation is written as

E(W) = ∑
m

EmWF†
m, (88)

where Em and Fm are the Kraus operators.

It is noted that, in general, E(W)E(W†) �= E(ρ) although ρ = WW†.

Proof. We take the polar decomposition of the map X to obtain

X = Ku, (89)

noting that
XX † = Kuu†K = K2. (90)

The unitary operator u is well-defined on Hs ⊗He because K defined in Eq. (4) is positive.
This is a crucial point to obtain this result (88), which is the operator-sum representation for
the quantum operation of the W operator. From Eq. (10), we can rewrite X as

X = ∑
m
|sm��sm|u = ∑

m
|sm��tm|, (91)

where
�tm| = �sm|u. (92)
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Similarly to the Kraus operator (16), we define the two operators, Em and F†
m, as

Em|ψ(t)�s := e�ψ̃(t)|sm�, s�φ(t)|F†
m := �tm|φ̃(t)�e, (93)

where |ψ̃(t)�e and |φ̃(t)�e are defined in Eq. (86). Therefore, we obtain the change of the W
operator as

∑
m

Em|ψ(t)�s�φ(t)|F†
m = ∑

m
e�ψ̃(t)|sm��tm|φ̃(t)�e = e�ψ̃(t)|X |φ̃(t)�e

= E (|ψ(t)�s�φ(t)|) , (94)

using Theorem 7.1 in the last line. By linearity, we obtain the desired result.

Summing up, we have introduced the W operator (74) and obtained the general form of the
quantum operation of the W operator (88) in an analogous way to the quantum operation of
the density operator assuming the complete positivity of the physical operation. This can be
also described from information-theoretical approach (43) to solve the open problem listed in
Ref. (13, Sec. XII). However, this geometrical meaning has still been an open problem.
It is well established that the trace preservation, Tr(E(ρ)) = Tr ρ = 1 for all ρ, implies that
∑m E†

mEm = 1. As discussed in Eq. (17), the proof goes through as

1 = Tr(E(ρ)) = Tr

(
∑
m

EmρE†
m

)
= Tr

(
∑
m

E†
mEmρ

)
(∀ρ). (95)

This argument for the density operator ρ = WW† applies also for W†W to obtain ∑m F†
mFm = 1

because this is the density operator in the time reversed world in the two-state vector
formulation as reviewed in Sec. 4. Therefore, we can express the Kraus operators,

Em = e�em|U|ei�e, F†
m = e�e f |V|em�e, (96)

where
U = U(t, ti), V = U(t f , t), (97)

are the evolution operators, which act on Hs ⊗He. |ei� and |e f � are some basis vectors and
|em� is a complete set of basis vectors with ∑m |em��em| = 1. We can compute

∑
m

F†
mEm = ∑

m
e�e f |V|em�e�em|U|ei�e = e�e f |VU|ei�e. (98)

The above equality (98) may be interpreted as a decomposition of the history in analogy to the
decomposition of unity because

e�e f |VU|ei�e = e�e f |S|ei�e = S f i (99)

is the S-matrix element. On this idea, Ojima and Englert have developed the formulation on
the S-matrix in the context of the algebraic quantum field theory (123) and the backaction of
the Hawking radiation (55), respectively.

8. Weak measurement with environment

Let us consider a target system coupled with an environment and a general weak
measurement for the compound of the target system and the environment. We assume that
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where A = ∑n an|an��an| =: ∑n anPan . This shows the usefulness of the W operator.
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m

ψm|αm�s, |φ(t)�s = ∑
m

φm|βm�s, (84)
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|ψ̃(t)�e = ∑

k
ψ∗

k |αk�e, |φ̃(t)�e = ∑
k

φ∗
k |βk�e, (86)

and |α� and |β� are maximally entangled states defined by

|α� := ∑
m
|αm�s|αm�e, |β� := ∑

m
|βm�s|βm�e. (87)

Here, {|αm�e} and {|βm�e} are complete orthonormal sets corresponding to {|αm�s} and {|βm�s},
respectively.

The proof is completely parallel to that of Theorem 2.1.
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E(W) = ∑
m

EmWF†
m, (88)

where Em and Fm are the Kraus operators.

It is noted that, in general, E(W)E(W†) �= E(ρ) although ρ = WW†.
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X = Ku, (89)

noting that
XX † = Kuu†K = K2. (90)

The unitary operator u is well-defined on Hs ⊗He because K defined in Eq. (4) is positive.
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X = ∑
m
|sm��sm|u = ∑

m
|sm��tm|, (91)

where
�tm| = �sm|u. (92)
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Similarly to the Kraus operator (16), we define the two operators, Em and F†
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∑
m

Em|ψ(t)�s�φ(t)|F†
m = ∑

m
e�ψ̃(t)|sm��tm|φ̃(t)�e = e�ψ̃(t)|X |φ̃(t)�e

= E (|ψ(t)�s�φ(t)|) , (94)
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The above equality (98) may be interpreted as a decomposition of the history in analogy to the
decomposition of unity because
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is the S-matrix element. On this idea, Ojima and Englert have developed the formulation on
the S-matrix in the context of the algebraic quantum field theory (123) and the backaction of
the Hawking radiation (55), respectively.
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Let us consider a target system coupled with an environment and a general weak
measurement for the compound of the target system and the environment. We assume that
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there is no interaction between the probe and the environment and the same interaction
between the target and probe systems (38). The Hamiltonian for the target system and the
environment is given by

H = H0 ⊗ 1e + H1, (100)

where H0 acts on the target system Hs and the identity operator 1e is for the environment He,
while H1 acts on Hs ⊗He. The evolution operators U := U(t, ti) and V := U(t f , t) as defined
in Eq. (97) can be expressed by

U = U0K(t0, ti), V = K(t f , t0)V0, (101)

where U0 and V0 are the evolution operators forward in time and backward in time,
respectively, by the target Hamiltonian H0. K’s are the evolution operators in the interaction
picture,

K(t0, ti) = T e−i
∫ t0

ti
dtU†

0 H1U0 , K(t f , t0) = T e−i
∫ t f

t0
dtV0 H1V†

0 , (102)

where T and T stand for the time-ordering and anti time-ordering products.
Let the initial and final environmental states be |ei� and |e f �, respectively. The probe state now
becomes

|ξ �� = � f |�e f |VU|ei�|i�
(

1 − g
� f |�e f |VAU|ei�|i�
� f |�e f |VU|ei�|i� P̂ + O(g2)

)
|ξ�. (103)

Plugging the expressions for U and V into the above, we obtain the probe state as

|ξ �� = Nξ

(
1 − g

� f |�e f |K(t f , t0)V0 AU0K(t0, ti)|ei�|i�
N

P̂

)
|ξ�+ O(g2), (104)

where N = � f |�e f |K(t f , t0)V0U0K(t0, ti)|ei�|i� is the normalization factor. We define the dual
quantum operation as

E∗(A) := �e f |K(t f , t0)V0 AU0K(t0, ti)|ei� = ∑
m

V0F†
m AEmU0, (105)

where

F†
m := V†

0 �e f |K(t f , t0)|em�V0, (106)

Em := U0�em|K(t0, ti)|ei�U†
0 (107)

are the Kraus operators. Here, we have inserted the completeness relation ∑m |em��em| = 1
with |em� being not necessarily orthogonal. The basis |ei� and |e f � are the initial and final
environmental states, respectively. Thus, we obtain the wave function of the probe as

|ξ �� = N
(

1 − g
� f |E∗(A)|i�

N
P̂
)
|ξ�+ O(g2) = N

(
1 − g ∑m� f |V0F†

m AEmU0|i�
∑m� f |V0F†

mEmU0|i�
P̂
)
|ξ�+ O(g2)

= N

(
1 − g

Tr
[
A ∑m EmU0|i�� f |V0F†

m
]

Tr
[
∑m EmU0|i�� f |V0F†

m
] P̂

)
|ξ�+ O(g2)

= N
(

1 − g
Tr[E(W)A]

Tr[E(W)]
P̂
)
|ξ�+ O(g2) = N(1 − g�A�E(W) P̂)|ξ�+ O(g2), (108)
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Analogous to Theorem 4.1, the shift of the expectation value of the position operator on the
probe is

Δ[Q] = g · Re[�A�E(W)] + mg · Im[�A�E(W)]
d Var[Q]

dt

∣∣∣∣
t=t0

. (109)

From an analogous discussion, we obtain the shift of the expectation value of the momentum
operator on the probe as

Δ[P] = 2g · Var[P] · Im[�A�E(W)]. (110)

Thus, we have shown that the probe shift in the weak measurement is exactly given by the
weak value defined by the quantum operation of the W operator due to the environment.

9. Summary

We have reviewed that the weak value is defined independent of the weak measurement in the
original idea (4) and have explained its properties. Furthermore, to extract the weak value, we
have constructed some measurement model to extract the weak value. I hope that the weak
value becomes the fundamental quantity to describe quantum mechanics and quantum field
theory and has practical advantage in the quantum-mechanical world.
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1. Introduction

Symmetry has long been recognized as a powerful formal and computational tool in quantum
mechanics, beginning with the seminal work of Wigner Wigner & Fano (1960) and Weyl Weyl
(1950). Indeed, it is well understood that so-called “accidental degeneracies” were, in fact, not
accidents at all but rather the result of “hidden symmetry” (e.g. the 2l+1 degeneracy of the
hydrogen atom energy states ). Because of this fundamental role in quantum mechanics, the
discovery of new symmetries (and their possible “breaking” by interactions) is of enormous
interest Griffiths (1987). In the latter half of the 20th century, a new hidden symmetry was
discovered that led to much speculation in relativistic quantum field theory as applied to
elementary particles. The essence of this so-called “supersymmetry” (SUSY) is that for every
boson, there is also a fermion of the same mass (energy) and vice versa. Of course, this has
not been observed in nature, leading to speculation that there exists some interaction in nature
that “breaks” the symmetry. On the other hand, there is also substantial opinion held by many
physicists that SUSY has no connection to physical reality.
This chapter is not aimed at addressing such issues. Rather, it was observed by many Junker
(1996) that one did not have to deal with quantum field theory to encounter SUSY. Indeed,
SUSY is also an intrinsic feature of ordinary, non-relativistic quantum mechanics (SUSY-QM).
In this case, attention has not been focused on whether the symmetry exists in nature. Instead,
it has been used primarily as a pedagogical tool. The reason for this lies in the intimate
connection of SUSY-QM and the ladder operator approach to the harmonic oscillator, angular
momentum, and the hydrogen atom Dirac (1958).
The essence of SUSY-QM is the factorization of the Hamiltonian for a one dimensional system
in analogy with the harmonic oscillator. For most bound-state quantum systems, it is possible
to define operators analogous to the lowering (â) and raising (â†) operators that factor the
harmonic oscillator Hamiltonian. However, in the general case, these operators do not possess
all the properties of the harmonic oscillator â and â†, but rather they behave as so-called
“charge operators”. As such, the SUSY charge operators not only allow factorization of the
one dimensional Hamiltonian, they form a Lie algebraic structure. This structure results in the
generation of isospectral “sector Hamiltonians”. Unfortunately, almost all previous research
concentrated on exactly soluble, one dimensional model systems. We became interested in the
possibility of taking computational advantage of SUSY. Our idea was that symmetry in QM
has long been known to lead to significant computational simplifications and advantages. We
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possibility of taking computational advantage of SUSY. Our idea was that symmetry in QM
has long been known to lead to significant computational simplifications and advantages. We
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therefore asked whether this could be the case for SUSY. It turns out that SUSY does, in fact,
lead to significant computational advantages Kouri et al. (2010a); Kouri, Markovich, Maxwell
& Bittner (2009); Kouri, Markovich, Maxwell & Bodman (2009). In particular, the structure
of the degeneracies between sector Hamiltonians makes it possible to achieve significant
progress in more accurate calculations of excited state energies and wave functions. Below
we outline how the theory can be used as a new computational tool, first for one dimension
and later for higher dimensional systems. In addition, we also introduce an entirely new class
of system dependent coherent states.
There have been a number of suggested generalizations of SUSY-QM to treat more than
one dimensional systems Andrianov et al. (1985); Andrianov, Borisov & Ioffe (1984a;b;c);
Andrianov et al. (1986); Andrianov, Borisov, Ioffe & Eides (1984); Andrianov & Ioffe (1988);
Andrianov et al. (2002); Cannata et al. (2002); Das & Pernice (1996). For the most part,
these have involved the introduction of new “spin-like” variables. One early study instead
introduced tensorial operators Stedman (1985), but at the cost of seriously affecting the nature
of the energy level degeneracies. In addition, in the tensorial operator approach, he did not
consider the application to any system in detail other than writing down the equations for
the hydrogen atom without exploring their solutions. In the following sections, we present
our generalization of SUSY-QM to allow the treatment of multi-particle, multi-dimensional
systems. These include clusters of distinguishable particles and the electronic structure of
atoms.

2. Introduction to supersymmetric quantum mechanics in one dimension

The general starting point is to define the so-called “superpotential”, usually denoted as W.
In the theory, W is related to the ground state wave function through the well-known Riccati
substitution Jafarpour & Afshar (2002):

ψ1
0(x) = Ne−

∫ x
0 W(x�) dx�

. (2.1)

The relationship between the superpotential W and the physical interaction V(x) results from
assuming that Equation (2.1) solves the standard Schrödinger equation with energy zero. This
does not impose any restriction since the energy can be changed by adding any constant to
the Hamiltonian. Thus,

− h̄2

2m
d2ψ1

0
dx2 + V1ψ1

0 = 0 (2.2)

If we solve for W1 in Equation (2.1), we find that

W1 = −
dψ1

0
dx
ψ1

0
= − d

dx
ln ψ1

0 (2.3)

and, if W1 is known, V1 is given by

V1(x) =
h̄2

2m

(
W2

1 (x)− dW1
dx

)
(2.4)

It is then evident that

− d2ψ1
0

dx2 +

(
W2

1 (x)− dW1
dx

)
ψ1

0 = 0 (2.5)
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The Hamiltonian operator now can be factored in the form

− d2

dx2 + W2
1 (x)− dW1

dx
=

[
− d

dx
+ W1(x)

] [
d

dx
+ W1(x)

]
(2.6)

We define the “charge” operator and its adjoint by (assuming W1 is hermitian; i.e., ψ1
0 is real)

Q1 =
d

dx
+ W1, Q†

1 = − d
dx

+ W1 (2.7)

Then the “first sector” Hamiltonian is defined as

H1 = Q†
1Q1 (2.8)

Then it follows that for n > 0, (since for n = 0, E0 = 0),

Q†
1Q1ψ1

n = E1
nψ1

n (2.9)

We then apply Q1 to the equation, to obtain

Q1Q†
1(Q1ψ1

n) = E1
nQ1ψ1

n (2.10)

Thus, Q1ψ1
n is an eigenstate of H2 with the same energy, E1

n, as the state ψ1
n. Similarly, consider

the eigenstates of H2:

H2ψ2
n = Q1Q†

1ψ2
n = E2

nψ2
n. (2.11)

Application of Q†, then implies that Q†
1ψ2

n is an eigenstate of H1:

(Q†
1Q1)(Q†

1ψ2
n) = E2

nQ†
1ψ2

n (2.12)

It follows that the Hamiltonians H1 and H2 have identical spectra with the exception of the
ground state, since the E1

0 = 0 wave function is unique. In the case of the ground state ψ1
0,

we recall that

Q1ψ1
0 = 0 (2.13)

which shows that the quantity Q1ψ1
0 cannot be used to generate the ground state of the second

sector. Indeed, Equation (2.13) indicates that such a ψ2
0 would vanish identically.

Because of the uniqueness of the E1
0 = 0 state, the indexing of the first and second sector levels

must be modified. Consider

Q1Q†
1ψ2

n = E2
nψ2

n (2.14)

Then

Q†
1Q1(Q†

1ψ1
n+1) = E1

n+1(Q
†
1ψ1

n+1) (2.15)

since Qψ1
0 ≡ 0. So

E2
n = E1

n+1 (2.16)

and we conclude that
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ψ2
n =

Q1ψ1
n+1√

E1
n+1

and ψ1
n+1 =

Q†
1ψ2

n√
E2

n
(2.17)

The next step in building a hierarchy of isospectral Hamiltonians is to define a second
superpotential, W2, according to

W2 = − d
dx

ln ψ2
0 (2.18)

in much the same way as we did before. It is then clear that we can define an alternate form
for H2, given by

H2 = Q†
2Q2 + E2

0, (2.19)

where

Q2 =
d

dx
+ W2 (2.20)

We observe that ψ2
0 is automatically an eigenstate of this form for H2

H2ψ2
0 = E2

0ψ2
0 (2.21)

Next consider the first excited state eigenvalue equation for the second sector:

H2ψ2
1 = E2

1ψ2
1 (2.22)

We apply Q2 to Equation (2.22) to find
(

Q2Q†
2 + E2

0

)
Q2ψ2

1 = E2
nQ2ψ2

1 (2.23)

Then, by similar reasoning, we deduce that

Q2ψ2
1 =

√
E2

1 − E2
0ψ3

0. (2.24)

Using the new charge operators Q2 and Q†
2, we then define the third sector Hamiltonian,

H3 = Q2Q†
2 + E2

0, (2.25)

with ground state equation
H3ψ3

0 = E3
0ψ3

0 (2.26)

It follows that

Q†
2ψ3

0 =
√

E2
1 − E2

0ψ2
1 (2.27)

and,

Q2Q†
2ψ3

0 =
(

E2
1 − E2

0

)
ψ3

0 = E3
0ψ3

0 (2.28)

Thus, we conclude that

E3
0 = E2

1 − E2
0 (2.29)

It is clear that this procedure can be continued until one exhausts the number of bound excited
states supported by H1. We also see that determining the excited state energies and wave
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Fig. 1. Above, we display graphically how this hierarchical degenarcy is realized.

functions for H1 involves solving for the ground state energies and wave functions for each
sector Hamiltonian, Hj, j > 1.
For a more concrete example, we present a general family of anharmonic oscillator. The
ubiquity of this example in chemistry and physics is best exemplified by the fact that all
nuclear vibrations in molecules are anharmonic, with the effect increasing as the vibrational
energy gets closer to the dissociation limit Wilson et al. (1955). Additionally, anharmonicity is
also present when studying the effects of rotation, through the centrifugal potential. For the
one dimensional case, we consider an oscillator on the domain −∞ < x < ∞. In order to have
potentials that are guaranteed to possess bound states, we shall postulate a superpotential

W(x) =
J

∑
j=0

djx2j+1 (2.30)

Then the corresponding sector one potential, V1(x), is

V1(x) =
J

∑
j=0

J

∑
j�=0

djdj� x2(j+j�+1) −
J

∑
j = 0

dJ(2j + 1)x2j (2.31)

The “charge” operators are given by

Q1 =
d

dx
+ W1 and Q†

1 = − d
dx

+ W1. (2.32)

Then the first sector ground state for a general member of this family is

ψ+
0 (x) = Ne−∑J

j=0
dj x2j+2

(2j+2) (2.33)

We stress that contrary to the periodic case Kouri, Markovich, Maxwell & Bodmann (2009),
the solution of the sector two equation,

Q†ψ2
0(x) = 0 (2.34)

is not allowed because it is not normalizable. Thus, the ground state for the second sector
satisfies
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ψ2
n =

Q1ψ1
n+1√

E1
n+1

and ψ1
n+1 =

Q†
1ψ2

n√
E2

n
(2.17)

The next step in building a hierarchy of isospectral Hamiltonians is to define a second
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dx

ln ψ2
0 (2.18)
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H2 = Q†
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0, (2.19)
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d

dx
+ W2 (2.20)
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H2ψ2
0 = E2

0ψ2
0 (2.21)
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H2ψ2
1 = E2

1ψ2
1 (2.22)

We apply Q2 to Equation (2.22) to find
(

Q2Q†
2 + E2

0

)
Q2ψ2

1 = E2
nQ2ψ2

1 (2.23)
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Q2ψ2
1 =

√
E2

1 − E2
0ψ3

0. (2.24)
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H3 = Q2Q†
2 + E2

0, (2.25)

with ground state equation
H3ψ3

0 = E3
0ψ3

0 (2.26)
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Q†
2ψ3

0 =
√

E2
1 − E2

0ψ2
1 (2.27)
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Q2Q†
2ψ3

0 =
(

E2
1 − E2

0

)
ψ3

0 = E3
0ψ3

0 (2.28)
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E3
0 = E2

1 − E2
0 (2.29)

It is clear that this procedure can be continued until one exhausts the number of bound excited
states supported by H1. We also see that determining the excited state energies and wave
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Fig. 1. Above, we display graphically how this hierarchical degenarcy is realized.
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Q1Q†
1ψ2

0(x) = E2
0ψ2

0(x) = E1
1ψ2

0(x) (2.35)

where

E1
1 �= 0 (2.36)

However, once ψ2
0(x) is known, one can generate the first excited state ψ1

1(x) according to

Q†
1ψ2

0(x) =
√

E2
0ψ1

0(x) (2.37)

The energy, E1
1, of ψ1

1(x) is, of course, equal to E2
0.

We remark that the ground state, ψ1
0(x) is equal to the product of the ground states for each

separate term in W. This is to say that,

ψ1
0(x) = N

J

∏
j = 0

e
dj x2j+2

(2j+2) , (2.38)

where N is the normalization constant. This is true even though V1(x) contains cross terms of
the form

djdj� x2(j+j�+1), j �= j� (2.39)

In fact, even more general anharmonic oscillators can be dealt with. Thus, any function, g(x)
can be added to W(x) in Equation (2.30), provided only that e−

∫ x
0 g(x�) dx�

is L2. Thus, not only
polynomic anharmonic potentials can be treated but many others.

3. Computational examples

In the following section we will explore the computational aspects of our SUSY-QM approach
using two example anharmonic oscillator systems. To illustrate this approach to polynomic
anharmonic oscillation we define W(x) to be

W1(x) = x3 + 2x, (3.1)

which obviously yields a potential for the first sector of

V1(x) = x6 + 4x4 + x2 − 2. (3.2)

Where x is defined on the domain −∞ < x < ∞. We can thus define H1 as:

H1 =

[
− d

dx
+ W1(x)

] [
d

dx
+ W1(x)

]
(3.3)

which satisfies the equation

H1ψ(x)(1)0 = 0, (3.4)

and possesses an analytic ground state wave function of

ψ
(1)
0 = Ne−( x4

4 +x2). (3.5)

To get the second Hamiltonian in the hierarchy we next define H2 as

H2 =

[
d

dx
+ W1(x)

] [
− d

dx
+ W1(x)

]
(3.6)
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so
V2 = x6 + 4x4 + 7x2 + 2 (3.7)

and we must solve the equation

H2ψ
(2)
0 = E(2)

0 ψ
(2)
0 . (3.8)

Possessing ψ
(2)
0 , we may develop the next Hamiltonian in the hierarchy. To do so, we begin

by expressing H2 in the following form

H2 =

[
− d

dx
+ W2(x)

] [
d

dx
+ W2(x)

]
+ E(2)

0 (3.9)

where

W2(x) = − d
dx

ln ψ
(2)
0 . (3.10)

with

ψ
(3)
0 =

Q2ψ
(2)
1√

E(2)
1 − E(2)

0

. (3.11)

From this point, one can obviously generate as many Hamiltonians as needed. It should also
be noted that the excited state wave functions can be obtained by using the charge operators
we have previously defined. We now turn to the proof of principle for this approach as a
computational scheme to obtain improved excited state energies and wave functions in the
Rayleigh-Ritz variational method. We should note that these results can be generalized to
any system where a hierarchy of hamiltonians can be generated because of the nature of
the Rayleigh-Ritz scheme. In the standard approach one calculates the energies and wave
functions variationally, relying on the Hylleraas-Undheim theorem for convergence Hylleraas
& Undheim (1930). This, however, is unattractive for higher energy states because they require
a much larger basis to converge to the same error. We stress that this is true regardless of
the specific basis set used. Of course, some bases will be more efficient than others but it is
generally true that for a given basis, the Rayleigh-Ritz result is less accurate for excited states.
We address this situation by always solving for ground states in the variational part of the
problem.
To demonstrate our computational scheme, we investigate the first example system from the
previous section. For this potential Equation (3.2), exact solutions are known for all states of
H1. We use the exact results to assess the accuracy of the variational calculations. For our first
variational calculations, we use the harmonic oscillator basis functions where:

φn(x) =
1√

2nn!
√

π
Hn(x)e−

x2
2 , (3.12)

with each matrix element determined using

�φn� |Hi|φn� (3.13)

Using the hierarchy of hamiltonians, we present the converged eigenvalues in Table 1. In
Table 1, all energies were obtained for each of the Hamiltonians, H1 and H2, by standard
variational calculations using basis set sizes to achieve an accuracy of 10−6. It is easily seen
that the ground state of H2 is degenerate with the first excited state of H1. More interesting
is the behavior of the excited state wave functions. Using the Cauchy criterion to measure
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H1. We use the exact results to assess the accuracy of the variational calculations. For our first
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Using the hierarchy of hamiltonians, we present the converged eigenvalues in Table 1. In
Table 1, all energies were obtained for each of the Hamiltonians, H1 and H2, by standard
variational calculations using basis set sizes to achieve an accuracy of 10−6. It is easily seen
that the ground state of H2 is degenerate with the first excited state of H1. More interesting
is the behavior of the excited state wave functions. Using the Cauchy criterion to measure
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convergence, we show the basis set size (N) needed in a standard variational approach to
obtain various eigenstates to the accuracy shown in Table 2. Clearly, excited state wave
functions require substantially larger basis sets to achieve a high degree of accuracy. In Table 3
we show the results obtained for the same excited state wave functions obtained by applying
the charge operator to the ground state wave function for H2. Again, N denotes the basis set
required, and ΔN is the reduction of basis set achieved by use of the charge operators.

n Nψn
0 H1 Nψn

1 H2 Δ N

0 44ψ1
0 6.9441187e-07 34ψ1

0 5.024450 18
1 52ψ1

1 5.024449 42ψ1
0 11.696825 20

2 62ψ1
2 11.696820 50ψ1

0 19.497666 -

Table 1. Energies for the Anharmonic Polynomic Oscillator using Hierarchy of Hamiltonians.

n Nψn
0 L2 L∞

0 56ψ1
0 5.835283e-07 1.110223-16

1 78ψ1
1 1.975656e-07 4.019723e-16

0 68ψ2
0 2.303928e-07 2.220446e-16

Table 2. Wave function errors for the Anharmonic Polynomic Oscillator using the standard
variational method for each hierarchy Hamiltonian. Each value has six significant figures.

n ΔN Nψn
0 L2 L∞

1 4 74ψ1
1 4.083823e-07 2.086041e-16

Table 3. Wave function errors for the Anharmonic Polynomic Oscillator using Charge
Operators to find excited states. Each value has six significant figures.

To find the solutions we used LAPACK routines to find these eigenvalues and vectors and
GSL routines for numerical integration. Clearly, the use of the hierarchy of hamiltonians and
charge operators provides more rapid convergence, which provides us with better methods
to calculate the excited states.
The second example results from taking

W1(x) = x3 + x + ex. (3.14)

In this case,

V1(x) = x6 + 2x4 + 2x3ex+

2xex + x2 + e2x − 3x2 − ex − 1
(3.15)

Then

H1 =

[
− d

dx
+ x3 + x + ex

] [
d

dx
+ x3 + x + ex

]
(3.16)
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with
H1ψ1

0 = 0 (3.17)

and the analytical ground state is

ψ
(1)
0 = Ne−( x4

4 + x2
2 +ex). (3.18)

Then the second sector Hamiltonian is

H2 =

[
d

dx
+ x3 + x + ex

] [
− d

dx
+ x3 + x + ex

]
(3.19)

The ground state satisfies

H2ψ2
0 = E2

0ψ2
0 (3.20)

which must be solved numerically.
We performed the Rayleigh-Ritz calculations and found similar results for the second system
described by W = x3 + x + ex. Because the excited states of this oscillator are not known
analytically, we use the Cauchy convergence criterion

∫ ∞

−∞
|Nψn − N−1ψn|2 dx, (3.21)

where N is the basis size. In Table 4, we give the converged energy levels (to 5 significant
figures) obtained by standard variational calculations applied to H1 and H2. In Table 5, we
show the basis set sizes needed in standard variational calculations to converge the wave
functions for H1 and H2 (again, the Cauchy criterion of convergence was used.) Finally, in
Table 6, we show the results for excited states obtained using the charge operators applied
to the ground state wave functions of H2. Again, ΔN shows the reduction in the basis size
gained by the charge operator approach.
Finally, we compared the numerical accuracy of the first excitation energy of the anharmonic
oscillator described by Equation (3.2), but now using a n-point discrete variable representation
(DVR) based upon the Tchebychev polynomials to compute the eigenspectra of the first and
second sectors. In Figure 2 we show the numerical error in the first excitation energy by
comparing E1

1(n) (the first excited state energy from the standard variational calculation
with n-DVR basis functions) and E2

0(n) (the ground state of the sector two Hamiltonian
computed with n-DVR basis functions) from an n point DVR to the numerically “exact” value
corresponding to a 100 DVR points,

�1
1(n) = log10 |E1

1(n)− E1
1(exact)|.

Likewise,
�2

0(n) = log10 |E2
0(n)− E1

1(exact)|.
For any given basis size, �2

0 < �1
1. Moreover, over a range of 15 < n < 40 points, the excitation

energy computed using the second sector’s ground state is between 10 and 100 times more
accurate than E1

1(n). This effectively reiterates our point that by using the SUSY hierarchy,
one can systematically improve upon the accuracy of a given variational calculation. It also
illustrates that our conclusion does not depend on the basis set used.
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n Nψn
0 H1 Nψn

1 H2

0 50ψ1
0 2.703955e-06 44ψ1

0 5.263075
1 60ψ1

1 5.263075 56ψ1
0 12.109712

2 64ψ1
2 12.109717 66ψ1

0 20.186019

Table 4. Energies for the Anharmonic Non-Polynomic Oscillator using Hierarchy of
Hamiltonians, determined variationally.

n Nψn
0 L2 L∞

0 70ψ1
0 3.7158761e-07 2.220446e-16

1 88ψ1
1 6.477328e-08 1.221245e-15

0 76ψ2
0 5.659010e-07 2.109424e-15

Table 5. Errors for the Anharmonic Non-Polynomic Oscillator wave functions using
Hierarchy of Hamiltonians all determined variationally.

n ΔN Nψn
0 L2 L∞

1 14 74ψ1
1 9.750546e-07 3.181791e-16

Table 6. Errors for the Anharmonic Non-Polynomic Oscillator using wave functions Charge
Operators to find excited states by applying the correct charge operator to the appropriate
ground state
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Fig. 2. Convergence of first excitation energy E1
1 for model potential V1 = x6 + 4x4 + x2 − 2

using a n-point discrete variable representation (DVR). Gray squares:
� = log10 |E1
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1(exact)|, Black squares: � = log10 |E2

0(n)− E1
1(exact)|. Dashed lines are

linear fits.
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Another way to approximate excited state energies and wave functions of bound quantum
systems is to take advantage of the Ricatti substitution for the purpose of constructing
dynamically-adapted, system-specific coherent states. Perhaps the simplest procedure for
creating an overcomplete set of such coherent states is to follow the work of Kouri, et al.
Klauder & Skagerstam (1985); Kouri et al. (2003). In their approach, it was observed that the
"fiducial" function, �x|ψ(0)� = ψ1

0(x), could be translated an amount x0 by application of the

shift operator e−x0
d

dx

ψ(α|x) = Neik0(x−x0)e−x0
d

dx ψ(0|x)
= Neik0(x−x0)e−

∫ x−x0
0 W(x�) dx�

,
(3.22)

where α = x0 + ik0 is a point in the phase space Klauder & Skagerstam (1985) which
completely describes the coherent state and the de Broglie relation tells us that � p̂x� = k0.
Using the set of coherent states defined above, we can select a finite subset which remains
overcomplete by discretizing the otherwise continuous label α = q + ik and setting up a von
Neumann lattice in phase space with an appropriate density, D. We define an overcomplete
basis of coherent states

{φ(αi|x) = Neiki(x−qi)e−
∫ x−qi

0 W(x�) dx�
: 1 ≤ i ≤ M, M ∈ N}, (3.23)

where M is the number of basis functions and the phase space grid points are given by

{(qi, ki)} =

{(
mΔx

√
2π

D
,

n
Δx

√
2π

D

)}
, m, n ∈ Z, (3.24)

and i being a joint index consisting of m and n Andersson (2001).
Due to the fact that the ground state of the system of interest solves the time-independent
Schrödinger equation for the corresponding Hamiltonian, the coherent states defined above
build in the dynamics of the system under investigation. This property leads to the
expectation that these system-specific coherent states will prove more rapidly convergent
in the approximation of excited state energies of bound quantum systems using variational
methods.
For W(x) = x3, and thus V(x) = x6 − 3x2, we carried out a variational calculation
using the system-specific coherent states defined above and compared the accuracy in the
approximation of the first three excited state energy eigenvalues with that achieved using the
standard harmonic oscillator basis and the harmonic oscillator coherent states. To evaluate
the accuracy of each method, we compare the results with a Chebyshev polynomial DVR
(Discrete Variable Representation) calcuation using 1000 points Littlejohn (2002). The number
of decimal places reported in Tables 7-10 correspond to the number of decimal places of
agreement with the DVR plus an additional significant figure which is either rounded up
or down.

E0 E1 E2 E3

0.000000000 1.935482104 6.298495901 11.680970886

Table 7. DVR Comparison.
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n Nψn
0 H1 Nψn

1 H2

0 50ψ1
0 2.703955e-06 44ψ1

0 5.263075
1 60ψ1

1 5.263075 56ψ1
0 12.109712

2 64ψ1
2 12.109717 66ψ1

0 20.186019

Table 4. Energies for the Anharmonic Non-Polynomic Oscillator using Hierarchy of
Hamiltonians, determined variationally.

n Nψn
0 L2 L∞

0 70ψ1
0 3.7158761e-07 2.220446e-16

1 88ψ1
1 6.477328e-08 1.221245e-15

0 76ψ2
0 5.659010e-07 2.109424e-15

Table 5. Errors for the Anharmonic Non-Polynomic Oscillator wave functions using
Hierarchy of Hamiltonians all determined variationally.

n ΔN Nψn
0 L2 L∞

1 14 74ψ1
1 9.750546e-07 3.181791e-16

Table 6. Errors for the Anharmonic Non-Polynomic Oscillator using wave functions Charge
Operators to find excited states by applying the correct charge operator to the appropriate
ground state
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where α = x0 + ik0 is a point in the phase space Klauder & Skagerstam (1985) which
completely describes the coherent state and the de Broglie relation tells us that � p̂x� = k0.
Using the set of coherent states defined above, we can select a finite subset which remains
overcomplete by discretizing the otherwise continuous label α = q + ik and setting up a von
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, m, n ∈ Z, (3.24)

and i being a joint index consisting of m and n Andersson (2001).
Due to the fact that the ground state of the system of interest solves the time-independent
Schrödinger equation for the corresponding Hamiltonian, the coherent states defined above
build in the dynamics of the system under investigation. This property leads to the
expectation that these system-specific coherent states will prove more rapidly convergent
in the approximation of excited state energies of bound quantum systems using variational
methods.
For W(x) = x3, and thus V(x) = x6 − 3x2, we carried out a variational calculation
using the system-specific coherent states defined above and compared the accuracy in the
approximation of the first three excited state energy eigenvalues with that achieved using the
standard harmonic oscillator basis and the harmonic oscillator coherent states. To evaluate
the accuracy of each method, we compare the results with a Chebyshev polynomial DVR
(Discrete Variable Representation) calcuation using 1000 points Littlejohn (2002). The number
of decimal places reported in Tables 7-10 correspond to the number of decimal places of
agreement with the DVR plus an additional significant figure which is either rounded up
or down.
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M E0 E1 E2 E3

9 0.000000000 1.9355 6.3 11.69
15 0.000000000 1.93548218 6.2985 11.681

Table 8. System-Specific Coherent States.

M E0 E1 E2 E3

9 0.2 2.0 15.0 43.0
15 0.2 2.0 9.0 43.0

Table 9. Harmonic Oscillator Coherent States.

M E0 E1 E2 E3

9 0.07 2.0 6.9 23.0
15 0.01 1.99 6.5 12.0

Table 10. Harmonic Oscillator Basis.

The results indicate that, in fact, the system-specific coherent states provide more accurate
approximations of the excited state energies for the anharmonic oscillator given by V(x) =
x6 − 3x2 when compared with other bases. Namely, they give seven decimal places
of agreement with the DVR when 15 basis functions are used. The same number of
harmonic oscillator basis functions only provides one decimal point of agreement, and 15
harmonic oscillator coherent states fails to give agreement in the ones place with the DVR.
Despite the accuracy achieved using a small number of system-specific coherent states, the
non-orthogonality and complex-valued nature of the basis necessitates the calculation of
a complex overlap matrix, whose elements must be computed by numerical integration,
which is computationally demanding. In order to eliminate numerical integration from the
calculation, one can expand the ground state wave function used in the construction of the
coherent states into an incomplete set of scaled Gaussians centered about the {qi : 1 ≤ i ≤
M}. This expansion would allow us to compute the overlap matrix elements analytically,
replacing numerical integration with function evaluation. In particular, we propose to use the
Levenberg-Marquardt least-squares curve-fitting algorithm to build an arbitrarily-accurate
approximation of each system-specific coherent state in the following manner:

φ(αi|x) ≈ Neiki(x−qi)
M̃

∑
j=1

cje−(x−qi)
2/σj . (3.25)

4. Generalization to multi-dimensions

In our generalization, we make use of a vectorial approach that simultaneously treats more
than one dimension and any number of distinguishable particles. We consider, therefore,
a system of n-particles in three-dimensional space. We denote the coordinates of particle
i by (xi, yi, zi). We then define an orthogonal hyperspace of dimension 3n. We take the
Hamiltonian for this system to be given by

H1 = −∇2 + V1 (4.1)
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where
�∇ = ∑

j
��j

∂

∂uj
(4.2)

and ��j ·��k = δjk. The subscript “1” indicates this is the “sector one” Hamiltonian. For
simplicity we take the masses of the particles to be equal and use units such that h̄2/2m = 1.
For the development here we assume a Cartesian coordinate space, but have provided an
extension to more general curvilinear coordinates in a previous publication Kouri et al.
(2010b).
As per usual in quantum mechanics, the ground-state wave function is a solution of the
Schrödinger equation,

H1ψ
(1)
0 = E(1)

0 ψ
(1)
0 . (4.3)

We also emphasize that the lowest energy state, ψ
(1)
0 , is nodeless.

We now define a vector superpotential, �W, as

�W = −�∇ ln ψ
(1)
0 , (4.4)

which is to say

�W =
3n

∑
j=1

��jWj = −
3n

∑
j=1

��j
∂

∂uj
ln ψ

(1)
0 . (4.5)

It is straightforward to see that one can write H1 in terms of �W as

(H1 − E(1)
0 ) = (−�∇+ �W) · (+�∇+ �W)

= (−∂i + Wi)(∂i + Wi)

= Q†
i · Qi,

(4.6)

where, according to the Einstein convention, we sum over repeated indices. Since (�∇ +

�W)ψ
(1)
0 ≡ �Qψ

(1)
0 ≡ �0, it is clear that (H1 − E(1)

0 )ψ
(1)
0 = 0 as required. We can now define

the sector two Hamiltonian such that, above the ground-state (E(1)
0 ), it is isospectral with H1.

We do this as follows: for the first excited state in sector one we can write

Q†
i · Qiψ

(1)
1 = (E(1)

1 − E(1)
0 )ψ

(1)
1 . (4.7)

We then form the tensor product by operating on the left with �Q so that

(�Q�Q†) · �Qψ
(1)
1 = (E(1)

1 − E(1)
0 )�Qψ

(1)
1 . (4.8)

That is to say, using Einstein notation,

(QiQ†
j )Qjψ

(1)
1 = (E(1)

1 − E(1)
0 )Qiψ

(1)
1 . (4.9)

It then follows that �Qψ
(1)
1 is an eigenstate of the tensor Hamiltonian

←→H 2 = (�Q�Q†) with energy

E(2)
0 = E(1)

1 − E(1)
0 . Since we are free to set the energy origin, taking E(1)

0 = 0 gives E(2)
0 = E(1)

1 .

It is also clear that �Qψ
(1)
0 cannot generate a lower energy eigenstate of

←→H 2 since �Qψ
(1)
0 =�0, so
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that �Qψ
(1)
1 is indeed proportional to the ground state of

←→H 2. The precise relation for obtaining
the sector one state from a sector two state is given by

ψ
(1)
n+1 =

1√
E(1)

n+1 − E(1)
0

�Q† · �ψ(2)
n . (4.10)

It is very instructive to illustrate this by considering a simple two dimensional separable
harmonic oscillator model problem. This is because we can learn something of how our SUSY
formalism works with an exactly soluble problem. We therefore consider a system described
by the Hamiltonian

H = − ∂2

∂u2
1
− ∂2

∂u2
2
+ u2

1 + u2
1 (4.11)

where again, we set h̄2/2m1 = h̄2/2m2 = 1. The solution of the Schrödinger equation is well
known to be the product of one dimensional harmonic oscillator states,

ψ
(1)
(n1,n2)

= Nn1,n2Hn1 (u1)Hn2 (u2)e−(u2
1+u2

2)/2 (4.12)

where Nn1,n2 is the normalization constant and Hn denotes the nth Hermite polynomial. The
ground state is

ψ
(1)
(0,0) = N0,0e−(u2

1+u2
2)/2 (4.13)

with the zero point energy in this case equals to 2. We next generate the vector superpotential,
�W1, as

�W1 = −�∇ ln ψ
(1)
(0,0) = u1�̂1 + u2�̂2 (4.14)

where

�∇ = �̂1
∂

∂u1
+ �̂2

∂

∂u2
. (4.15)

We consider

(−�∇+ �W1) · (�∇+ �W1) = −∇2 + �W1 · �W1 − �∇ · �W1 (4.16)

we see that �W1 · �W1 − �∇ · �W1 = u2
1 + u2

2 − 2 = V − 2, so that

H1 = �Q†
1 · �Q1 + 2 (4.17)

It is easily verified that

H1ψ
(1)
(0,0) = 2ψ

(1)
(0,0), (4.18)

as required. The first excited states of H1 are doubly degenerate with energy E(1)
(1,0) = E(1)

(0,1) =

3 and denoted by ψ
(1)
(1,0) and ψ

(1)
(0,1). The next excited state, ψ

(1)
(1,1) is degenerate with ψ

(1)
(0,2) and

ψ
(1)
(2,0) with energy E(1)

(1,1) = E(1)
(2,0) = E(1)

(0,2) = 4.
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We construct the rigorous sector two Hamiltonian as

←→H 2 = �Q1�Q†
1 + 2

←→
1 ,

←→
1 = �̂1�̂1 + �̂2�̂2, (4.19)

which is a second rank tensor in this case. The Hamiltonian
←→
H 2 is then given by

←→H 2 = �̂1�̂1[− ∂2

∂u2
1
+ u2

1 + 3] + �̂1�̂2[− ∂2

∂u1∂u2
+ u1u2 − u1

∂

∂u2
+ u2

∂

∂u1
]

+ �̂2�̂1[− ∂2

∂u1∂u2
+ u1u2 − u2

∂

∂u1
+ u1

∂

∂u2
] + �̂2�̂2[− ∂2

∂u2
2
+ u2

2 + 3]. (4.20)

The eigenvalue equation is

←→H 2 · �ψ(2)
(n) = E(2)

(n)
�ψ
(2)
(n) (4.21)

with eigenstates

�ψ
(2)
(n) = �̂1ψ

(2)
(n)1 + �̂2ψ

(2)
(n)2. (4.22)

It is not difficult to show that there are two degenerate ground state solutions given by

�ψ
(2)
(0)1 = �̂1e−(u2

1+u2
2)/2 (4.23)

and

�ψ
(2)
(0)2 = �̂2e−(u2

1+u2
2)/2, (4.24)

respectively. This is extremely interesting and in contrast to the usual situation in quantum
mechanics. For most systems (excluding spin effects) the ground state is unique, i.e.,
non-degenerate.
We shall see that the degenerate states, Equation (4.23)-(4.24), are exactly what is required for

the charge operator, �Q†
1 to produce the doubly degenerate states ψ

(1)
(1,0) and ψ

(1)
(0,1). Thus, recall

that

�Q†
1 = �̂1(− ∂

∂u1
+ u1) + �̂2(− ∂

∂u2
+ u2) (4.25)

Then

�Q†
1 · �ψ(2)

0(1) = 2u1e−(u2
1+u2

2)/2 ∝ ψ
(1)
(1,0) and �Q†

1 · �ψ(2)
0(2) = 2u2e−(u2

1+u2
2)/2 ∝ ψ

(1)
(0,1) (4.26)

Our results Equation (4.23)-(4.24) possess a remarkable property. Only one component is
nonzero! We shall see that this is indicative of an extremely interesting property that we
observe in the non-separable examples that we consider next. Indeed, we recall that in
relativistic quantum mechanics, one obtains a tensor Hamiltonian and the solutions are
characterized by large and small components. In the present case, the small component is
exactly zero. In the degenerate pair of solutions, which component is zero changes. We stress,
however, that any linear combination of the two degenerate solutions is also a solution of the
same energy.
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∂u2
1
+ u2

1 + 3] + �̂1�̂2[− ∂2

∂u1∂u2
+ u1u2 − u1

∂

∂u2
+ u2

∂

∂u1
]

+ �̂2�̂1[− ∂2

∂u1∂u2
+ u1u2 − u2

∂

∂u1
+ u1

∂

∂u2
] + �̂2�̂2[− ∂2

∂u2
2
+ u2

2 + 3]. (4.20)

The eigenvalue equation is

←→H 2 · �ψ(2)
(n) = E(2)

(n)
�ψ
(2)
(n) (4.21)

with eigenstates

�ψ
(2)
(n) = �̂1ψ

(2)
(n)1 + �̂2ψ

(2)
(n)2. (4.22)

It is not difficult to show that there are two degenerate ground state solutions given by

�ψ
(2)
(0)1 = �̂1e−(u2

1+u2
2)/2 (4.23)

and

�ψ
(2)
(0)2 = �̂2e−(u2

1+u2
2)/2, (4.24)

respectively. This is extremely interesting and in contrast to the usual situation in quantum
mechanics. For most systems (excluding spin effects) the ground state is unique, i.e.,
non-degenerate.
We shall see that the degenerate states, Equation (4.23)-(4.24), are exactly what is required for

the charge operator, �Q†
1 to produce the doubly degenerate states ψ

(1)
(1,0) and ψ

(1)
(0,1). Thus, recall

that

�Q†
1 = �̂1(− ∂

∂u1
+ u1) + �̂2(− ∂

∂u2
+ u2) (4.25)

Then

�Q†
1 · �ψ(2)

0(1) = 2u1e−(u2
1+u2

2)/2 ∝ ψ
(1)
(1,0) and �Q†

1 · �ψ(2)
0(2) = 2u2e−(u2

1+u2
2)/2 ∝ ψ

(1)
(0,1) (4.26)

Our results Equation (4.23)-(4.24) possess a remarkable property. Only one component is
nonzero! We shall see that this is indicative of an extremely interesting property that we
observe in the non-separable examples that we consider next. Indeed, we recall that in
relativistic quantum mechanics, one obtains a tensor Hamiltonian and the solutions are
characterized by large and small components. In the present case, the small component is
exactly zero. In the degenerate pair of solutions, which component is zero changes. We stress,
however, that any linear combination of the two degenerate solutions is also a solution of the
same energy.
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With a view toward the next section, where we consider a two dimensional, nonseparable
anharmonic oscillator(or equivalently a pair of one dimensional coupled oscillators), we form
the equivalent degenerate solutions

�φ
(2)
(0)1 = Ne−(u2

1+u2
2)/2[�̂1 + �̂2] and e−(u2

1+u2
2)/2[�̂1 − �̂2] (4.27)

In this case, both components of the 2-degenerate solutions are non-zero, of the same
magnitude and of definite sign. In dealing with the two dimensional separable harmonic
oscillator, the most convenient form is given by Equation (4.26).
A major concern is whether our approach satisfies the supersymmetric algebra which we will
consider here. It is clear that we can define our Hamiltonian operator by

H =

�
�Q† · �Q 0

0 �Q�Q†·

�
=

�
H1 0
0

←→H2

�
(4.28)

where the zero in the upper right is a row vector and the zero in the lower left is a column
vector. This Hamiltonian will act on the state

�ψ =

�
ψ
(1)
n

�ψ
(2)
n−1

�
. (4.29)

Then, we can define a “super-charge” operator as

Q =

�
0 0
�Q 0

�
=

⎛
⎝

0 0 0
Q1 0 0
Q2 0 0

⎞
⎠ (4.30)

with the adjoint being

Q† =

�
0 �Q†

0 0

�
=

⎛
⎝

0 Q†
1 Q†

2
0 0 0
0 0 0

⎞
⎠ . (4.31)

If we take the product of Q† and Q, we find that

←→H 1 =

�
�Q† · �Q 0

0 0

�
(4.32)

and similarly, if we take the product of Q and Q†, we find that

←→H 2 =

�
0 0
0 �Q�Q†·

�
. (4.33)

It’s straightforward to show that
[Q,H] = 0, (4.34)

[Q†Q,QQ†] = 0, (4.35)

QQ = Q†Q† = 0, (4.36)

and ←→H = {Q,Q†} (4.37)
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where the braces indicate the anticommutator bracket. According to Wess and Bagger’s text
on supersymmetry, these are the necessary conditions for a superalgebra Wess & Bagger
(1992).
We now consider in more detail the degeneracy between the two sectors, �Q1 and �Q†

1 and the

sector Hamiltonians H1 and
←→H 2. An important consequence of the algebra is the existence

of "inter-twining" relations. These are of fundamental importance because they underlie the
isospectral property and in addition, they can be used to establish the unique correspondence
between the eigenstates of sectors 1 and 2. Indeed, they are responsible for establishing the

completeness of the eigenvectors {�ψ(2)
n } of

←→H 2. It is of interest to note that inter-twining
relations are essential to the fact that in ordinary quantum scattering, the continua of the full
Hamiltonian, H, and the unperturbed Hamiltonian H0 ( where H = H0 + V, with V the
perturbation responsible for scattering) coincide. In that case, the inter-twining relation is

Ω+eiH0t/h̄ = eiHt/h̄Ω+. (4.38)

It is useful to derive the SUSY inter-twining relations explicitly. We have

H1ψ
(1)
n = E(1)

n ψ
(1)
n , (4.39)

where H1 is a standard Schrödinger operator (comprised of a Laplacian for the kinetic

energy and a Hermitian potential V1). One result of this fact is that the ground state of H1
is nodeless. In addition, H1 is Hermitian and a well known postulate of quantum mechanics
asserts that its eigenstates are complete. Essentially from a physical standpoint (as opposed
to pure mathematics) H1 is required to be Hermitian because (a) it represents an observable,
implying only real eigenvalues (b) quantum mechanics further asserts that these eigenvalues
are the only values that can be obtained when measuring the energy for the physical system
represented by H1. This implies that any physically realizable state, ψ, of the system must be
a superposition (in general) of these and only these eigenvectors. This then implies that the

set {ψ
(1)
n } is complete on the physically allowed space of state vectors.

To derive the inter-twining relation, we again recall that the charge operator (which exactly
factors H1) is such that

H1 = �Q†
1 · �Q1 + E(1)

0 (4.40)

where

�Q1ψ
(1)
0 ≡�0 (4.41)

The general sector 1 Schrödinger equation is

(�Q†
1 · �Q1 + E(1)

0 )ψ
(1)
n = E(1)

n ψ
(1)
n (4.42)

where we now assume that n > 0; i.e., ψ
(1)
n is an excited state of H1. We apply �Q1 to Equation

(4.42) to find

(�Q1�Q†
1 · �Q1 + E(1)

0 )ψ
(1)
n = E(1)

n �Q1ψ
(1)
n (4.43)
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We define
←→H 2 as

←→H 2 ≡ �Q1�Q†
1 + E(1)

0 (4.44)

so that Equation (4.43) yields

�Q1H1 =
←→H 2 · �Q1. (4.45)

This is the inter-twining relation. Let us explore inter-twining consequences further. Suppose

we consider an eigenstate , ψ
(1)
n of H1. It follows from Equation (4.45) that there is also a

unique eigenstate of
←→H 2, �Q1ψ

(1)
n with the same energy. Next, assume that

←→H 2 possesses an

eigenvalue E(2)
λ that differs from all of the E(1)

n . Then we have

←→H 2 · �ψ(2)
λ = E(2)

λ
�ψ
(2)
λ (4.46)

Now
←→H 2 and H1 are manifestly Hermitian. Taking the adjoint of Equation (4.45) yields

H1�Q†
1 = �Q†

1 ·
←→H 2 (4.47)

which is again an inter-twining relation. We then take the scalar product of Equation (4.46)
with �Q†

1

�Q†
1 ·

←→H 2 · �ψ(2)
λ = E(2)

λ
�Q†

1 · �ψ(2)
λ (4.48)

But by the adjoint inter-twining relation, we have

H1�Q†
1 · �ψ(2)

λ = E(2)
λ

�Q†
1 · �ψ(2)

λ (4.49)

Thus, we find that H1 also has the scalar eigenvector

ψ
(1)
λ ∝ �Q†

1 · �ψ(2)
λ (4.50)

and its eigenvalue is equal to E(2)
λ . This violates our initial assertion that H1 did not have

the eigenvalue E(2)
λ . We conclude that for eigenvectors �ψ

(2)
n , there corresponds a unique

eigenvector ψ
(1)
n� , where n� ≡ n + 1. That is, �ψ0

(2) must have the same energy as the first

excited state ψ
(1)
1 . It can not be lower than E(1)

1 because it is the lowest eigenvalue of
←→H 2 and

it cannot equal E(1)
0 . In fact, the inter-twining relation is sufficient to establish that

←→H 2 is a
Schrödinger operator and as such, its eigenvectors must be complete on the space �ψ. Note

that we are not saying that the �ψ
(2)
n span the the space generated by H1. They are completely

separate vector spaces arising from two distinct Hermitian Hamiltonians. All of the above can
be made mathematically rigorous but our purpose here is to supply a physically reasonable
argument for the properties of the tensor sector. Finally, at no point in this discussion have we
imposed a condition that the spectra of H1 (and

←→H 2) are strictly discrete. The inter-twining
relations hold for systems with a mixed discrete and continuous spectra and even for systems
with a purely continuous spectrum.
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5. Clusters of distinguishable particles

5.1 Degenerate case
We next consider a model non-separable two dimensional anharmonic oscillator system for
sector one for which the ground state energy is zero and the ground state wave function is
exactly given by

ψ
(1)
(0)(u1, u2) = N exp(−u2

1u2
2 − u2

1 − u2
2) (5.1)

We can generate the superpotential corresponding to this ground state as

�W1 = −�∇ ln ψ
(1)
(0)(u1, u2) (5.2)

having the components W11 = (2u1u2
2 + 2u1) and W12 = (2u2

1u2 + 2u2), respectively. Now
using these components we can generate the model potential for sector one. Thus we get the
Hamiltonian for sector one of the following form

H1 = −∇2 + V1(u1, u2) = − ∂2

∂u2
1
− ∂2

∂u2
2
+ (2u1u2

2 + 2u1)
2 + (2u2

1u2 + 2u2)
2

− 2(u2
1 + 1)− 2(u2

2 + 1) (5.3)

In this case, the exact ground state energy is E(1)
0 = 0. The sector two tensor Hamiltonian

can be generated with �∇ and �W1. The calculation for sector one and sector two eigenvalues
and eigenfunctions is done variationally by diagonalizing each sector Hamiltonian in an
approximate truncated basis. We choose to employ a basis of the direct product of the
eigenstates of a harmonic oscillator in each dimension, each with frequency ω = 2

√
2. The

trial wave function for sector one is

ψ
(1)
(trial)(u1, u2) = ∑

m,n
C(1)

m,nφm(α, u1)φn(α, u2) (5.4)

where α =
√

mω/h̄. Similarly for the sector two the trial wave functions for each component
are

ψ
(2)
(trial)1(u1, u2) = ∑

m,n
C(2)

1m,n
φm(α, u1)φn(α, u2)

ψ
(2)
(trial)2(u1, u2) = ∑

m,n
C(2)

2m,n
φm(α, u1)φn(α, u2) (5.5)

Using these trial wave functions and treating the Cm,n as a variational parameters, we arrive
at the Hermitian eigenvalue equation for both sectors. For sector one the form is

H1C(1) = EC(1) (5.6)

and that for sector two is
(
H(2)

11 H(2)
12

H(2)
21 H(2)

22

)(
C(2)

1
C(2)

2

)
= E

(
C(2)

1
C(2)

2

)
(5.7)
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Each term of the Hamiltonian matrix can be calculated analytically in the harmonic oscillator
basis.
We have calculated energies and wave functions of the Hamiltonian in Equation (5.3) for
sectors one and two using the variational approach we just described. In all calculations,

we use the exact ψ
(1)
0 to generate �W1 and

←→H 2 exactly. In Table 11 we compare sector one
and sector two energies for different harmonic oscillator basis set sizes. The notation Nu1 ,
Nu2 gives the number of basis functions for the variable u1, u2, respectively. The first row

gives the approximate results for E(1)
0 . The next is the doubly degenerate first excited state

energy, E(1)
1 followed by the sector two ground state energy, E(2)

0 . The third row contains

E(1)
2 and E(2)

1 , for different basis sets. It is easily seen that the doubly degenerate ground
state of sector two is also isospectral with the doubly degenerate first excited state of sector
one. This correspondence is clearly in accordance with the general SUSY prediction about the
eigenstates for the two supersymmetric partner potentials. For the higher excited states this
precise correspondence between the two sectors breaks down when we use a small number
of basis functions (i.e., there appear some "spurious" solutions) but it is gradually restored by
increasing the basis size. We attribute this apparent breakdown of the SUSY-correspondence
for higher states to the error that arises in the calculation due to the truncation of an infinite
basis to a finite one. Essentially, some "spurious" eigenvalues appear in the SUSY-QM sector
two spectrum, but they disappear as the basis size is increased. This may raise a question
regarding the precise nature of the Hylleraas-Undheim theorem for the SUSY sector two
tensor Hamiltonian.
The accuracy of the variational results are known for the ground state of sector one, since we

know the exact energy is E(1)
0 = 0. Thus, the (10, 10) basis gives an error of 9 × 10−3 while

the (60, 60) basis gives an error of 4.9 × 10−9. In the case of the first excited state of sector
one, the error for the (10, 10) basis (computed relative to (60, 60) basis result) is 0.0634. By
contrast, the error in the (10, 10) basis result for the sector two ground state (again, relative to
the (60, 60) basis result) is 2.2× 10−4. Consequently, the use of the sector two Hamiltonian for
a ground state calculation enables us to obtain much improved accuracy for the first excitation
energy of sector one. Basically, we estimate an increase in accuracy (defined as the ratio of the
accuracy of the sector one result to that of the sector two result) to be a factor of 280. Our
exploratory calculation thus clearly reveals that for the calculation of excited state energies,
the SUSY-variational method requires a smaller number of basis functions to achieve the same
order of accuracy. Of course, this level of accuracy resulted in part because we have used the
exact

←→H 2.
As this model problem has no analytical solution for the excited states, we have taken the
results of the (60, 60) basis set calculation as the reference result for both sectors in order to
check the convergence in wave functions. In Tables 12 and 13 we compare the L∞ and L2
error of the first excited states of the sector one that we have obtained by the SUSY-variational
calculation and the simple variational calculation. The L∞ error is defined as the absolute
maximum difference between the solution computed with an infinite basis set (ψ(1)(∞))

which we approximate with the (60,60) basis, and a smaller finite (n, n) basis set (ψ(1)(n))

L∞ = Max{|ψ(1)(∞)− ψ(1)(n)|}.
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The L2 error is defined by

L2 =

∞∫

−∞

du1

∞∫

−∞

du2|ψ(1)(∞)− ψ(1)(n)|2.

In the first column of Table 12 we show the difference in the number of basis states used (in
each degree of freedom) and the maximum, Nu1 = Nu2 = 60, used for the reference result. Since
L2 and L∞ are computed relative to the Nu1 , Nu2 = 60, 60 basis, they measure the degree of
convergence of the calculations. It is clear from Tables 13 and 13 that the state obtained from

the SUSY relation ψ
(1)
(1,0) = �Q†

1.�ψ(2)
(0) converges more rapidly than the result obtained directly

from the variational solution for sector one. We note that the same level of convergence is
obtained for both of the degenerate wave functions. Since the analytical solution for the
ground state wave function of the sector one is known, we also have calculated the L2 and L∞
error for this wave function, comparing the analytical and variational wave function of sector
one for different numbers of basis states to determine a basis size which gives a satisfactory
convergence. The results are given in Table 14. It is again clear that the variational results for
the sector one ground state wave function are very well converged.

sector one sector two sector one sector two sector one sector two
Nu1 , Nu2 = 10 Nu1 , Nu2 = 10 Nu1 , Nu2 = 40 Nu1 , Nu2 = 40 Nu1 , Nu2 = 60 Nu1 , Nu2 = 60

(in a.u.) (in a.u.) (in a.u.) (in a.u.) (in a.u.) (in a.u.)

9.0×10−3 - 4.0×10−7 - 5.0×10−9 -
4.6 4.5849 4.58473 4.5847275 4.5847275 4.58472742
8.3 8.005 8.00007 8.0000005 8.000001 8.000000005

Table 11. Comparison of energy eigenvalues of sector one and sector two for different
number of basis functions (Nu1 , Nu2 ).

ΔN = Nre f − n Error ψ
(1)
(1,0) =

�Q†
1.�ψ(2)

(0) ψ
(1)
(1,0)

40 = 60 - 20 L∞ 1.1×10−4 4.9×10−4

30 = 60 - 30 L∞ 2.2×10−5 8.5×10−5

20 = 60 - 40 L∞ 5.3×10−6 1.9×10−5

10 = 60 - 50 L∞ 1.6×10−6 3.9×10−6

Table 12. Comparison between wave-function L∞ -Error for the doubly-degenerate sector
one excited state, (1, 0) generated by standard variational calculation of the sector one and
variational SUSY calculation for sector two ground state, followed by application of the SUSY
Charge Operator for different number of basis(n = Nu1 , Nu2 ). (Nre f = (Nu1 = 60, Nu2 = 60)).

In Figures 3(a-b) we show the two components of one of the degenerate sector two ground
state wave functions and in Figures 3(c-d) we show the two components for the other
degenerate sector two ground state wave function. It may seem problematic that the

components ψ
(2)
(0)1 and ψ

(2)
(0�)2 for the pair of sector two ground state wave functions have nodes.

We shall see below that these nodes can be eliminated in a very simple manner. However,
we stress that for each of the degenerate sector two ground state wave functions, there is a
large and small component. Unlike the two dimensional separable harmonic oscillator case,
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Each term of the Hamiltonian matrix can be calculated analytically in the harmonic oscillator
basis.
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sectors one and two using the variational approach we just described. In all calculations,

we use the exact ψ
(1)
0 to generate �W1 and

←→H 2 exactly. In Table 11 we compare sector one
and sector two energies for different harmonic oscillator basis set sizes. The notation Nu1 ,
Nu2 gives the number of basis functions for the variable u1, u2, respectively. The first row

gives the approximate results for E(1)
0 . The next is the doubly degenerate first excited state

energy, E(1)
1 followed by the sector two ground state energy, E(2)

0 . The third row contains

E(1)
2 and E(2)

1 , for different basis sets. It is easily seen that the doubly degenerate ground
state of sector two is also isospectral with the doubly degenerate first excited state of sector
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exploratory calculation thus clearly reveals that for the calculation of excited state energies,
the SUSY-variational method requires a smaller number of basis functions to achieve the same
order of accuracy. Of course, this level of accuracy resulted in part because we have used the
exact

←→H 2.
As this model problem has no analytical solution for the excited states, we have taken the
results of the (60, 60) basis set calculation as the reference result for both sectors in order to
check the convergence in wave functions. In Tables 12 and 13 we compare the L∞ and L2
error of the first excited states of the sector one that we have obtained by the SUSY-variational
calculation and the simple variational calculation. The L∞ error is defined as the absolute
maximum difference between the solution computed with an infinite basis set (ψ(1)(∞))

which we approximate with the (60,60) basis, and a smaller finite (n, n) basis set (ψ(1)(n))

L∞ = Max{|ψ(1)(∞)− ψ(1)(n)|}.
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The L2 error is defined by

L2 =
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−∞

du1
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du2|ψ(1)(∞)− ψ(1)(n)|2.

In the first column of Table 12 we show the difference in the number of basis states used (in
each degree of freedom) and the maximum, Nu1 = Nu2 = 60, used for the reference result. Since
L2 and L∞ are computed relative to the Nu1 , Nu2 = 60, 60 basis, they measure the degree of
convergence of the calculations. It is clear from Tables 13 and 13 that the state obtained from

the SUSY relation ψ
(1)
(1,0) = �Q†

1.�ψ(2)
(0) converges more rapidly than the result obtained directly

from the variational solution for sector one. We note that the same level of convergence is
obtained for both of the degenerate wave functions. Since the analytical solution for the
ground state wave function of the sector one is known, we also have calculated the L2 and L∞
error for this wave function, comparing the analytical and variational wave function of sector
one for different numbers of basis states to determine a basis size which gives a satisfactory
convergence. The results are given in Table 14. It is again clear that the variational results for
the sector one ground state wave function are very well converged.

sector one sector two sector one sector two sector one sector two
Nu1 , Nu2 = 10 Nu1 , Nu2 = 10 Nu1 , Nu2 = 40 Nu1 , Nu2 = 40 Nu1 , Nu2 = 60 Nu1 , Nu2 = 60

(in a.u.) (in a.u.) (in a.u.) (in a.u.) (in a.u.) (in a.u.)

9.0×10−3 - 4.0×10−7 - 5.0×10−9 -
4.6 4.5849 4.58473 4.5847275 4.5847275 4.58472742
8.3 8.005 8.00007 8.0000005 8.000001 8.000000005

Table 11. Comparison of energy eigenvalues of sector one and sector two for different
number of basis functions (Nu1 , Nu2 ).

ΔN = Nre f − n Error ψ
(1)
(1,0) =

�Q†
1.�ψ(2)

(0) ψ
(1)
(1,0)

40 = 60 - 20 L∞ 1.1×10−4 4.9×10−4

30 = 60 - 30 L∞ 2.2×10−5 8.5×10−5

20 = 60 - 40 L∞ 5.3×10−6 1.9×10−5

10 = 60 - 50 L∞ 1.6×10−6 3.9×10−6

Table 12. Comparison between wave-function L∞ -Error for the doubly-degenerate sector
one excited state, (1, 0) generated by standard variational calculation of the sector one and
variational SUSY calculation for sector two ground state, followed by application of the SUSY
Charge Operator for different number of basis(n = Nu1 , Nu2 ). (Nre f = (Nu1 = 60, Nu2 = 60)).

In Figures 3(a-b) we show the two components of one of the degenerate sector two ground
state wave functions and in Figures 3(c-d) we show the two components for the other
degenerate sector two ground state wave function. It may seem problematic that the

components ψ
(2)
(0)1 and ψ

(2)
(0�)2 for the pair of sector two ground state wave functions have nodes.

We shall see below that these nodes can be eliminated in a very simple manner. However,
we stress that for each of the degenerate sector two ground state wave functions, there is a
large and small component. Unlike the two dimensional separable harmonic oscillator case,
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ΔN = Nre f − n Error ψ
(1)
(1,0) =

�Q†
1.�ψ(2)

(0) ψ
(1)
(1,0)

40 = 60 - 20 L2 3.0×10−6 1.8×10−5

30 = 60 - 30 L2 1.1×10−7 5.7×10−7

20 = 60 - 40 L2 6.2×10−9 3.0×10−8

10 = 60 - 50 L2 3.5×10−10 1.5×10−9

Table 13. Comparison between wave-function L2-Error for the doubly-degenerate sector one
Excited state, (1, 0) generated by standard variational calculation of the sector one and
variational SUSY calculation for the sector two ground state, followed by application of the
SUSY charge operator for different size basis(n = Nu1 , Nu2 ). (Nre f = (Nu1 = 60, Nu2 = 60)).

Nu1 , Nu2 L∞ L2

20, 20 9.3×10−5 1.5 ×10−6

30, 30 1.5×10−5 3.9×10−8

40, 40 3.4×10−6 2.0×10−9

50, 50 9.1×10−7 1.4×10−10

60, 60 2.8×10−7 1.3×10−11

Table 14. Comparison between wave-function L2 and L∞ -Error for the 1st sector exact

ground state wave function ψ
(1)
(0,0)(∞) and variationally calculated ground state wave

function ψ
(1)
(0,0)(n) for different number of basis states(n = Nu1 , Nu2 ).

the small component is not only non-zero but it has nodes. It is roughly ten times smaller
in magnitude than the large component. The two degenerate states are 90o out of phase

so far as their signs. In Figures 4(a-b) we show the first excited states ψ
(1)
(0,1) and ψ

(1)
(1,0) of

the sector one that we have obtained after applying the SUSY charge operator to the sector
two ground states and Figures 4(c-d) present the same states that were found variationally
from the sector one Hamiltonian. The similarity of Figure 4a to 4c and 4b to 4d clearly

reflects the correctness of our method. To eliminate the nodes in the components of �ψ(2)
(0) and

�ψ
(2)
(0�), we note that since they are degenerate, any linear combination of them is also a valid

wave function. Accordingly, in analogy to the separable two dimensional harmonic oscillator

considered previously we can define �φ(2)
(0) and �φ

(2)
(0�) by combining the components of �ψ(2)

(0) and

�ψ
(2)
(0�) according to

φ
(2)
(0)1 = ψ

(2)
(0)1 + ψ

(2)
(0�)1 (5.8)

φ
(2)
(0)2 = ψ

(2)
(0)2 + ψ

(2)
(0�)2 (5.9)

φ
(2)
(0�)1 = ψ

(2)
(0)1) − ψ

(2)
(0�)1 (5.10)

φ
(2)
(0�)2 = ψ

(2)
(0)2 − ψ

(2)
(0�)2. (5.11)
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(a) ψ
(2)
(0)1 (b) ψ

(2)
(0)2

(c) ψ
(2)
(0�)1 (d) ψ

(2)
(0�)2

Fig. 3. (a-b) represent the two components of one of the degenerate sector two ground states.
(c-d) represent the same for the other sector two ground state. Contour shading is such that
red indicates positive amplitude and blue indicates negative amplitude. The prime on the
quantum number "0" denotes the second of the 2 degenerate ground states.

In Figures 5(a-d) we show the components of �φ(2)
(0) and �φ

(2)
(0�). These combinations are nodeless

and have definite symmetry. We stress that the forms of the above �φ(2)
(0) and �φ

(2)
(0�) are analogous

to the results in Equation (4.27), obtained for the degenerate separable two dimensional
harmonic oscillator.
For sector two, in the case of a doubly degenerate first excited state of H1 , we obtain a
doubly degenerate ground state and the energies obtained by the Rayleigh-Ritz method are
consistently lower for all the excited states of the sector one Hamiltonian, for the same basis
size. In addition, the SUSY-QM sector two result for the first excited state energy is always
several orders of magnitude more accurate than the Rayleigh-Ritz result for sector one for
any given basis set size. Assessing the accuracy of the excited state wave functions is more
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ΔN = Nre f − n Error ψ
(1)
(1,0) =

�Q†
1.�ψ(2)
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(1)
(1,0)
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10 = 60 - 50 L2 3.5×10−10 1.5×10−9

Table 13. Comparison between wave-function L2-Error for the doubly-degenerate sector one
Excited state, (1, 0) generated by standard variational calculation of the sector one and
variational SUSY calculation for the sector two ground state, followed by application of the
SUSY charge operator for different size basis(n = Nu1 , Nu2 ). (Nre f = (Nu1 = 60, Nu2 = 60)).
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Table 14. Comparison between wave-function L2 and L∞ -Error for the 1st sector exact

ground state wave function ψ
(1)
(0,0)(∞) and variationally calculated ground state wave

function ψ
(1)
(0,0)(n) for different number of basis states(n = Nu1 , Nu2 ).
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in magnitude than the large component. The two degenerate states are 90o out of phase

so far as their signs. In Figures 4(a-b) we show the first excited states ψ
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(0,1) and ψ

(1)
(1,0) of

the sector one that we have obtained after applying the SUSY charge operator to the sector
two ground states and Figures 4(c-d) present the same states that were found variationally
from the sector one Hamiltonian. The similarity of Figure 4a to 4c and 4b to 4d clearly

reflects the correctness of our method. To eliminate the nodes in the components of �ψ(2)
(0) and

�ψ
(2)
(0�), we note that since they are degenerate, any linear combination of them is also a valid

wave function. Accordingly, in analogy to the separable two dimensional harmonic oscillator

considered previously we can define �φ(2)
(0) and �φ

(2)
(0�) by combining the components of �ψ(2)

(0) and

�ψ
(2)
(0�) according to

φ
(2)
(0)1 = ψ

(2)
(0)1 + ψ

(2)
(0�)1 (5.8)
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Fig. 3. (a-b) represent the two components of one of the degenerate sector two ground states.
(c-d) represent the same for the other sector two ground state. Contour shading is such that
red indicates positive amplitude and blue indicates negative amplitude. The prime on the
quantum number "0" denotes the second of the 2 degenerate ground states.

In Figures 5(a-d) we show the components of �φ(2)
(0) and �φ

(2)
(0�). These combinations are nodeless

and have definite symmetry. We stress that the forms of the above �φ(2)
(0) and �φ

(2)
(0�) are analogous

to the results in Equation (4.27), obtained for the degenerate separable two dimensional
harmonic oscillator.
For sector two, in the case of a doubly degenerate first excited state of H1 , we obtain a
doubly degenerate ground state and the energies obtained by the Rayleigh-Ritz method are
consistently lower for all the excited states of the sector one Hamiltonian, for the same basis
size. In addition, the SUSY-QM sector two result for the first excited state energy is always
several orders of magnitude more accurate than the Rayleigh-Ritz result for sector one for
any given basis set size. Assessing the accuracy of the excited state wave functions is more
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(a) �Q†
1 · �ψ(2)

(0) (b) �Q†
1 · �ψ(2)

(0�)

(c) ψ
(1)
(0,1) (d) ψ

(1)
(1,0)

Fig. 4. (a-b) show the doubly degenerate 1st excited states of the sector one. The two states
are generated by the SUSY -variational method. (c-d) the corresponding states of the sector
one Hamiltonian, which are generated variationally.

difficult. We chose to do this in terms of convergence of the wave functions relative to the
largest basis set results. However, we are able to assess the accuracy of our variational results
quantitatively in the case of the sector one ground state , since it is exactly known. We
report our results in terms of L2 and L∞ measures, as is typical for assessing convergence
and accuracy of functions in a Hilbert space. We find that the L2 and L∞ accuracies of the
SUSY-QM results are consistently better than the Rayleigh-Ritz results for excited states of
sector one. As a further proof of this, we also consider the accuracy for the ground state
of sector one ( where we have the exact wave function), with the variational result. In fact,
we find that the convergence of the sector two ground state is consistently better than the
convergence of the variationally obtained ground state wave function for sector one.
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(a) φ
(2)
(0)1 = ψ

(2)
(0)1 + ψ

(2)
(0�)1 (b) φ

(2)
(0)2 = ψ

(2)
(0)2 + ψ

(2)
(0�)2

(c) φ
(2)
(0�)1 = ψ

(2)
(0)1 − ψ

(2)
(0�)1 (d) φ

(2)
(0�)2 = ψ

(2)
(0)2 − ψ

(2)
(0�)2

Fig. 5. Components of linear combinations of the two degenerate ground states of the sector
two.

5.2 Non-degenerate case
For completeness of our presentation, we also consider a non-degenerate, two dimensional
anharmonic oscillator model. To generate such a Hamiltonian, we modify the ground state in
(5.1) to the form

ψ
(1)
(0)(u1, u2) = N exp(−2u2

1u2
2 − u2

1 −
√

2u2
2) (5.12)

Then the exact Hamiltonians H1 and
←→H 2 are readily generated. However, we also shall

generate an approximate
←→H 2 using the variationally determined, approximate ground state

wave function. The formal structure of the equations is the same as that above. In the case
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report our results in terms of L2 and L∞ measures, as is typical for assessing convergence
and accuracy of functions in a Hilbert space. We find that the L2 and L∞ accuracies of the
SUSY-QM results are consistently better than the Rayleigh-Ritz results for excited states of
sector one. As a further proof of this, we also consider the accuracy for the ground state
of sector one ( where we have the exact wave function), with the variational result. In fact,
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5.2 Non-degenerate case
For completeness of our presentation, we also consider a non-degenerate, two dimensional
anharmonic oscillator model. To generate such a Hamiltonian, we modify the ground state in
(5.1) to the form

ψ
(1)
(0)(u1, u2) = N exp(−2u2

1u2
2 − u2

1 −
√

2u2
2) (5.12)

Then the exact Hamiltonians H1 and
←→H 2 are readily generated. However, we also shall

generate an approximate
←→H 2 using the variationally determined, approximate ground state

wave function. The formal structure of the equations is the same as that above. In the case
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where ψ
(1)
0,approx is used to develop �W1 and

←→H 2, we shall see that its accuracy is an extremely
important consideration.
In the non-degenerate example, we have performed two distinct calculations. First we used
the exact �W1 to construct the exact

←→H 2. The results are given in Tables 15 - 17. In Table
15, we see basically the same behavior as was obtained in the non-separable degenerate two
dimensional example. The errors in the ground state energy are of similar size for both
the degenerate and non-degenerate cases, with the same variation with basis set size. This
behavior extends also to the first and second excited state energies. We conclude that the
presence or absence of degeneracy does not affect the performance of our SUSY approach
when the exact �W1 is used.
In the case of the L∞ and L2 errors obtained when using the exact �W1, we again see the same
basic behavior with regard to the convergence of the wave functions.
However, the situation is more interesting when we use the variationally obtained

approximate ground state, ψ
(1)
0,approx to generate �Wapprox

1 and thereby
←→
H 2,approx. These results

are shown in Table 18 and are compared to the exact �W1 results (the columns labeled E(1)
1

and E(2)
0 ). Results are shown for three different basis set sizes, (10,10), (20,20) , and (30,30).

Now because we are using an approximate ψ
(1)
0 to generate �Wapprox

1 , it is important to note

how the accuracy depends not only on basis size (which affects the accuracy of ψ
(1)
0 ) but also

how the accuracy of �Wapprox
1 is affected by errors in ψ

(1)
0 . We have found that �Wapprox

1 is

most sensitive to errors in region where ψ
(1)
0 is small in magnitude. This is reasonable since

�Wapprox
1 = −�∇ ln ψ

(1)
0,approx and we expect that (∂ψ

(1)
0 /∂uj)/ψ

(1)
0 to be most sensitive to errors

in regions where ψ
(1)
0 is smallest in magnitude. In view of this, we have introduced ψcuto f f

levels at which we cease calculating �W1. These correspond to cutoff values of ψ
(1)
0,cuto f f = 10−10,

10−5, 10−3 and 10−2. Those results are in columns 4 - 7 in Table 18. It is clear that the SUSY
result is always better than the sector one variational result, although this is only marginally

the case with the very small cutoff values (i.e., ψ
(1)
0,cuto f f ≤ 10−5). The best results are obtained

with the 10−2 cutoff value. While obviously, this is a single computational example, it is
encouraging. However, additional careful studies are underway.

sector one sector two sector one sector two sector one sector two
Nu1 , Nu2 = 10 Nu1 , Nu2 = 10 Nu1 , Nu2 = 40 Nu1 , Nu2 = 40 Nu1 , Nu2 = 60 Nu1 , Nu2 = 60

(in a.u.) (in a.u.) (in a.u.) (in a.u.) (in a.u.) (in a.u.)

6.4×10−3 - 3.4×10−7 - 3.6×10−9 -
4.80 4.752 4.75181 4.75180771 4.75180778 4.75180770
6.70 6.65 6.64636 6.64634938 6.6463495 6.64634937

Table 15. Comparison of energy eigenvalues of sector one and sector two for different
number of basis functions (Nu1 , Nu2 ). Exact sector one and sector two Hamiltonians are used.

Finally, in Figures 6(a-b), we give the two components of the (non-degenerate) ground state,

ψ
(2)
(0)1 and ψ

(2)
(0)2. In Figures 6(c-d), we display the components of the first excited state, ψ

(2)
(1)1

and ψ
(2)
(1)2. We note that they are qualitatively similar to the results obtained for the degenerate
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ΔN = Nre f − n Error ψ
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�Q†
1.�ψ(2)
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(1)

40 = 60 - 20 L∞ 9.5×10−5 4.5×10−4

30 = 60 - 30 L∞ 1.9×10−5 7.5×10−5

20 = 60 - 40 L∞ 4.5×10−6 1.7×10−5

10 = 60 - 50 L∞ 9.9×10−7 4.3×10−6

Table 16. Comparison between wave-function L∞ -Error for the sector one excited state,
generated by standard variational calculation of the sector one and variational SUSY
calculation for sector two ground state, followed by application of the SUSY Charge
Operator for different number of basis(n = Nu1 , Nu2 ). (Nre f = (Nu1 = 60, Nu2 = 60)). Exact
sector one and sector two Hamiltonians are used.

ΔN = Nre f − n Error ψ
(1)
(1) =

�Q†
1.�ψ(2)

(0) ψ
(1)
(1)

40 = 60 - 20 L2 1.5×10−6 8.9×10−6

30 = 60 - 30 L2 5.8×10−8 2.7×10−7

20 = 60 - 40 L2 3.2×10−9 1.5×10−8

10 = 60 - 50 L2 1.8×10−10 1.1×10−9

Table 17. Comparison between wave-function L2 -Error for the sector one excited state,
generated by standard variational calculation of the sector one and variational SUSY
calculation for sector two ground state, followed by application of the SUSY Charge
Operator for different number of basis(n = Nu1 , Nu2 ). (Nre f = (Nu1 = 60, Nu2 = 60)). Exact
sector one and sector two Hamiltonians are used.

ψ
(1)
(0),cuto f f ψ

(1)
(0),cuto f f ψ

(1)
(0),cuto f f ψ

(1)
(0),cuto f f

n E(1)
1 E(2)

0 = = = =
10−10 10−5 10−3 10−2

10, 10 4.80 4.752 4.794 4.791 4.78 4.756
20, 20 4.7532 4.75181 4.75317 4.75313 4.7526 4.75181
30, 30 4.752 4.751808 4.75187 4.75187 4.75186 4.751808

Table 18. Comparison among 1st excited state energy of sector one (calculated using
analytical �W1), ground state energy of sector two (calculated using analytical �W1) and
different sector two ground state energy that we obtained using �Wapprox

1 with different

degrees of approximation for ψ
(1)
0,approx for different basis size (n = Nu1 , Nu2 ).

case ( Figures 3(a-b) and (c-d))! This suggests to us that the non-degenerate and degenerate
cases are very similar so far as the wave functions are concerned. Again, in all cases the large
component is nodeless and the small component has nodes. In Figures 7(a-b) we show the first

(ψ(1)
1 ) and second excited state (ψ(1)

2 ) , of the sector one that we have obtained after applying

the SUSY charge operator to the sector two ground (�ψ(2)
0 ) and first excited state (�ψ(2)

1 ) and
the Figures 7(c-d) presents the same states that were found variationally from the sector one
Hamiltonian. These results also reflect the similarity between degenerate and non-degenerate
case.
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where ψ
(1)
0,approx is used to develop �W1 and

←→H 2, we shall see that its accuracy is an extremely
important consideration.
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(1)
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1 and thereby
←→
H 2,approx. These results

are shown in Table 18 and are compared to the exact �W1 results (the columns labeled E(1)
1

and E(2)
0 ). Results are shown for three different basis set sizes, (10,10), (20,20) , and (30,30).

Now because we are using an approximate ψ
(1)
0 to generate �Wapprox

1 , it is important to note

how the accuracy depends not only on basis size (which affects the accuracy of ψ
(1)
0 ) but also

how the accuracy of �Wapprox
1 is affected by errors in ψ

(1)
0 . We have found that �Wapprox

1 is

most sensitive to errors in region where ψ
(1)
0 is small in magnitude. This is reasonable since

�Wapprox
1 = −�∇ ln ψ

(1)
0,approx and we expect that (∂ψ

(1)
0 /∂uj)/ψ

(1)
0 to be most sensitive to errors

in regions where ψ
(1)
0 is smallest in magnitude. In view of this, we have introduced ψcuto f f

levels at which we cease calculating �W1. These correspond to cutoff values of ψ
(1)
0,cuto f f = 10−10,
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the case with the very small cutoff values (i.e., ψ
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(a) ψ
(2)
(0)1 (b) ψ

(2)
(0)2

(c) ψ
(2)
(1)1 (d) ψ

(2)
(1)2

Fig. 6. (a-b) display the two components of the sector two ground state. (c-d) represent the
two components for the sector two first excited state. Contour shading is such that red
indicates positive amplitude and blue indicates negative amplitude.

For comparison, we display in Figures 8(a-b) the sum of �ψ(2)
0 and �ψ

(2)
1 and in Figures 8(c-d)

the difference of �ψ
(2)
0 and �ψ

(2)
1 . The results are qualitatively the same as those in the two

dimensional separable and two dimensional non-separable degenerate cases. That is, both
linear combinations are nodeless and of definite sign.
The two dimensional non-seperable, non-degenerate case is interesting in that it appears that

there is a similar relationship between �ψ
(2)
0 and �ψ

(2)
1 to that which was seen for the degenerate

states �ψ(2)
(0) and �ψ

(2)
(0′) . That is, one component is nodeless and large and the second component

has nodes and is smaller in magnitude. As in the degenerate case, sums and differences
yield states with both components being nodeless. In this case, however, the non degenerate

character of the states precludes simply using two different nodeless, orthogonal �φ(2)
trial states
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(a) �Q†
1 · �ψ(2)

(0) (b) �Q†
1 · �ψ(2)

(1)

(c) ψ
(1)
1 (d) ψ

(1)
2

Fig. 7. (a-b) show the 1st and 2nd excited states of the sector one. The two states are generated
by the SUSY -variational method. (c-d) the corresponding states of the sector one
Hamiltonian, which are generated variationally. The exact �W1 is used.

for the quantum Monte Carlo method. Thus, the implementation of the quantum Monte Carlo
method in the non-degenerate case appears to require further consideration. We are currently
exploring this aspect of our multi-dimensional SUSY approach.
It is important to stress that our basic strategy is to use only the ground state results of the
higher SUSY sectors. We believe that this will allow us to obtain the best results for both
excited state energies and wave functions of the sector one Hamiltonian, while requiring the
least computational effort.
Our upcoming computational studies will be to apply the present approach to more
interesting, non-separable higher dimensional systems such as rare-gas atomic clusters where
the structure and thermodynamics seem to require a fully quantum many-body treatment.
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Fig. 8. Components of linear combinations of non-degenerate ground and first excited state.

Chakravarty (1995a;b); Derrickson & Bittner (2006; 2007); Franke et al. (1993); Lynden-Bell
& Wales (1994); Rick et al. (1991); Schmidt et al. (2001); Wales & Doye (1997) For systems
composed of a single type atom or molecule, we expect to encounter degeneracies. Thus, we
expect the situation to mirror the present two dimensional non-separable degenerate case.
In dealing with such systems, we anticipate that as the number of particles is increased, we
will find that a Monte Carlo based approach may be preferred.
Finally, we stress that this is the first formulation of a general SUSY approach for
multi-dimensional and/or multi-particle systems. There remain many formal and
computational questions, which we are continuing to explore. Our main conclusion is that
there is sufficient promise that such studies are justified.
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6. Electronic structure of atoms: Hydrogen and helium

In the previous sections, we have provided a generalization of SUSY-QM to treat any number
of dimensions or particles with a focus on its usefulness as a computational tool for calculating
accurate excited state energies and wave functions.
Because of the significant analytical and computational ramifications, and motivated by the
future study of more complex electronic systems, we here apply our multi-dimensional
generalization of SUSY-QM to the hydrogen atom in full three-dimensional detail. This is
of interest because, until now, the standard application of SUSY-QM to the hydrogen atom
required that we first separate out the angular degrees of freedom – effectively reducing
the problem to a one-dimensional treatment [Kirchberg et al. (2003); Lahiri et al. (1987);
Tangerman & Tjon (1993)]. With our vector superpotential approach, one can deal with the
full three-dimensional nature of the hydrogen atom.
Our approach provides, for the first time, a SUSY-QM framework that can be employed to
treat non-hydrogenic atoms. For example, the standard SUSY-QM treatment of the hydrogen
atom cannot be extended readily to the helium atom because it is impossible reduce it to a
one-dimensional system. In addition, the form of the three-dimensional vector superpotential
for the hydrogen atom is of interest in its own right. It is quite different from the radial
superpotential obtained in earlier SUSY-QM studies of the hydrogen atom. The present study
thus lays the groundwork for a systematic SUSY-QM study of excited state energies and wave
functions of atoms.

6.1 SUSY-QM for the three-dimensional hydrogen atom
We now consider the hydrogen atom. We begin by noting that the ground state is exactly
given by

ψ1,0,0 =
e−r
√

π
, (6.1)

where we have set the Bohr radius equal to 1. The Hamiltonian (in atomic units) is simply

H = −1
2
∇2 − 1

r
. (6.2)

Then, the vector superpotential is given by

�W = −∇ ln ψ1,0,0 = r̂, (6.3)

where r̂ is a unit vector in the direction of �r. This is an extremely interesting result. First,
we see that the superpotential for the Coulomb interaction is, itself, non-singular. Second, in
the standard approach, because the angular degrees of freedom have already been separated
out, the superpotential is a scalar and it depends on the angular momentum squared (i.e. on
l(l + 1)). The precise form for the ground state (l = 0) is

Wradial = 1 (6.4)

In three dimensions, we have

�W = ��x
x
r
+ ��y

y
r
+ ��z

z
r
= r̂. (6.5)

The magnitude of �W is equal to the radial superpotential, as one expects, but the individual
components are radically different. Note that these components can also be written solely
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in terms of angular functions (the direction cosines of�r). To obtain the atomic potential for
hydrogen, we form

�W · �W −∇ · �W = 1 −
(

3
r
− x2 + y2 + z2

r3

)
(6.6)

= 1 − 2
r
= −2E0 − 2

r
. (6.7)

Now we recall that
Hψml = Enψml (6.8)

and

− 1
2
∇2ψml =

[
En +

1
r

]
ψml (6.9)

yields

∇2ψ1,0,0 = −
[

2E0 +
2
r

]
ψ1,0,0. (6.10)

Since the ground state energy of hydrogen in atomic units is -1/2, we find that Equations (6.7)
and (6.10) are consistent and we have obtained the correct vector superpotential. Of great
interest is the wave equation for the sector two problem. This Hamiltonian is given by

←→H 2 = −1
2
∇∇+

1
2

[
�W�W +∇�W

]
. (6.11)

In the case of the hydrogen atom, because we have exact analytical expressions for the excited
states of H1, it is a simple matter to generate analytical expressions for all the states of the
sector two Hamiltonian. It is convenient to label the sector two states with an index indicating
the nth energy state (i.e., we use the principle quantum number n = 1,2,...) along with the
quantum numbers of the sector one excited state from which they are obtained. Thus, the four

degenerate ground states of
←→H 2 will be denoted by �ψ

(2)
1,2px

, �ψ(2)
1,2py

, �ψ(2)
1,2pz

, �ψ(2)
1,2s. We choose here

to use the real states rather than those labeled by ml = ±1 and ml = 0 values. We find that
these solutions are given by

�ψ
(2)
1,2px

= N
[

îe−r/2 +
xr̂
2

e−r/2
]

, (6.12)

�ψ
(2)
1,2py

= N
[

ĵe−r/2 +
yr̂
2

e−r/2
]

, (6.13)

�ψ
(2)
1,2pz

= N
[

k̂e−r/2 +
zr̂
2

e−r/2
]

, (6.14)

�ψ
(2)
1,2s = −N

�r
2

e−r/2. (6.15)

These equations can be verified by simply applying �Q to the first excited state wave functions

of sector one. It is also easily verified that �Q† acting on these states regenerates the ψ
(1)
2p and

ψ
(1)
2s states. Furthermore, in Figures 9 and 10, we provide plots of the �ψ

(2)
1,2s and �ψ

(2)
1,2px

. It is

straight forward to see that �ψ(2)
1,2py

and �ψ
(2)
1,2pz

are both similar to �ψ
(2)
1,2px

.
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Fig. 9. The three components of the wave function for �ψ(2)
1,S . Here, blue corresponds to

positive values and red to negative.

Fig. 10. The three components of the wave function for �ψ(2)
1,px

. Here, blue corresponds to
positive values and red to negative.

6.2 An approximate superpotential for the helium atom
It is of interest to begin exploring how our approach to multidimensional SUSY-QM would
deal with a two electron atom. It is clear that the usual radial (one-dimensional) hydrogen
atom SUSY-QM treatment is not readily generalizable to deal with helium. We have carried
out a Quantum Monte Carlo study of the sector one ground state of helium using the Padè
Jastrow trial wave function Umrigar & Wilson (1988):

ψ
(1)
T,α = e−2r1 e−2r2 e

r12
2(1+αr12) , (6.16)

with the optimum α given by α = 0.353. This yields an energy of E(1)
1 ≈ 2.878, which is

in error by about 1%. This error is reasonable for a simple treatment neglecting relativistic
interactions. The approximate �W is generated from

�W(�r1, �r2) = −�∇ ln ψ
(1)
T,α (6.17)
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in terms of angular functions (the direction cosines of�r). To obtain the atomic potential for
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(

3
r
− x2 + y2 + z2

r3

)
(6.6)

= 1 − 2
r
= −2E0 − 2

r
. (6.7)

Now we recall that
Hψml = Enψml (6.8)

and

− 1
2
∇2ψml =

[
En +

1
r

]
ψml (6.9)
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∇2ψ1,0,0 = −
[

2E0 +
2
r

]
ψ1,0,0. (6.10)

Since the ground state energy of hydrogen in atomic units is -1/2, we find that Equations (6.7)
and (6.10) are consistent and we have obtained the correct vector superpotential. Of great
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←→H 2 = −1
2
∇∇+

1
2

[
�W�W +∇�W

]
. (6.11)

In the case of the hydrogen atom, because we have exact analytical expressions for the excited
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sector two Hamiltonian. It is convenient to label the sector two states with an index indicating
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degenerate ground states of
←→H 2 will be denoted by �ψ

(2)
1,2px

, �ψ(2)
1,2py

, �ψ(2)
1,2pz

, �ψ(2)
1,2s. We choose here
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1,2px

= N
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[
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�ψ
(2)
1,2s = −N

�r
2

e−r/2. (6.15)

These equations can be verified by simply applying �Q to the first excited state wave functions

of sector one. It is also easily verified that �Q† acting on these states regenerates the ψ
(1)
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ψ
(1)
2s states. Furthermore, in Figures 9 and 10, we provide plots of the �ψ

(2)
1,2s and �ψ

(2)
1,2px

. It is

straight forward to see that �ψ(2)
1,2py

and �ψ
(2)
1,2pz

are both similar to �ψ
(2)
1,2px

.
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Fig. 9. The three components of the wave function for �ψ(2)
1,S . Here, blue corresponds to

positive values and red to negative.

Fig. 10. The three components of the wave function for �ψ(2)
1,px

. Here, blue corresponds to
positive values and red to negative.

6.2 An approximate superpotential for the helium atom
It is of interest to begin exploring how our approach to multidimensional SUSY-QM would
deal with a two electron atom. It is clear that the usual radial (one-dimensional) hydrogen
atom SUSY-QM treatment is not readily generalizable to deal with helium. We have carried
out a Quantum Monte Carlo study of the sector one ground state of helium using the Padè
Jastrow trial wave function Umrigar & Wilson (1988):
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r12
2(1+αr12) , (6.16)

with the optimum α given by α = 0.353. This yields an energy of E(1)
1 ≈ 2.878, which is

in error by about 1%. This error is reasonable for a simple treatment neglecting relativistic
interactions. The approximate �W is generated from
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= −�∇
[
−2r1 − 2r2 +

r12
2(1 + αr12)

]
. (6.18)

Here,
�∇ = ˆ�1x

∂

∂x1
+ ˆ�1y

∂

∂y1
+ ˆ�1z

∂

∂z1
+ ˆ�2x

∂

∂x2
+ ˆ�2y

∂

∂y2
+ ˆ�2z

∂

∂z2
, (6.19)

where the {�̂ij} are orthonormal vectors. The resulting vector superpotential for the
Padè-Jastrow trial function is readily found to be

�WHe(PJ) = 2r̂1 + 2r̂2 − r̂12

[
1 − α

(1 + αr12)

]
. (6.20)

Thus, the structure of �WHe(PJ) is analogous to �WH in that Coulomb interactions generate
vector superpotentials that involve unit vectors anti-parallel to the direction of the forces.
This is true in general for Coulombic interactions. This emphasizes the important distinction
between our three-dimensional SUSY-QM treatment of an atom and the standard hydrogen
atom one-dimensional radial SUSY-QM.

7. Aufbau approach for excited states

For multielectron atoms, it becomes necessary to consider how the aufbau principle acts in
the second sector to permit efficient calculations of sector one excited states. This is because
we can use this principle to design reasonable trial wave functions for a variational approach
to the sector two ground state. In this section, we consider a simple aufbau description of the
sector one helium excited states in order to design an approximate sector two ground state of
helium. We assume that in the first excited state of sector one, we have one electron in the 1S
orbital, given by wave function α, and one electron in the 2S orbital, given by wave function
β where

α(r) =
e−2r
√

π
and β(r) =

e−r

4
√

2π
(1 − r). (7.1)

Then, it is of interest to take the product of these states such that we have α(r1)β(r2), to which
we can apply our �Q to find

�Q (α(r1)β(r2)) = −e−2r1−r2 [2r̂1 (1 − r2) + r̂2] ≡ �φ
(2)
1 . (7.2)

The first excited sector one state of Helium is a triplet so the wave function is anti-symmetric
under spatial electron exchange. It is clear that we require the second sector ground state
also be anti-symmetric when we interchange labels 1 and 2. To obtain this, we apply P12 to
Equation (7.2) to get

�Q (α(r2)β(r1)) = −e−2r2−r1 [2r̂2 (1 − r1) + r̂2] ≡ P12�φ
(2)
1 , (7.3)

where P12 exchanges the electron labels. Then, we can use Equations (7.2) and (7.3) as a
“building blocks” to construct our ground state in the second sector by subtracting the first
building block from the second. This gives us a second sector result of

�ψ
(2)
1,triplet =− e−2r1−r2 [2r̂1 (1 − r2) + r̂2] +

e−2r2−r1 [2r̂2 (1 − r1) + r̂1] .
(7.4)
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And similarly, we can find the second sector first excited singlet state by simply adding the
two building blocks as given below.

�ψ
(2)
1,singlet =− e−2r1−r2 [2r̂1 (1 − r2) + r̂2]−

e−2r2−r1 [2r̂2 (1 − r1) + r̂1] .
(7.5)

Indeed, by taking the scalar product with �Q†, we can verify that �ψ(2)
1,triplet and �ψ

(2)
1,singlet give the

appropriate spatial wave functions. This is to say that, to within a multiplicative constant, we
get that

�Q† · �ψ(2)
1,triplet = ψ

(1)
1 = α(r1)β(r2)− α(r2)β(r1) (7.6)

and
�Q† · �ψ(2)

1,singlet = ψ
(1)
2 = α(r1)β(r2) + α(r2)β(r1). (7.7)

From this, we observe that the aufbau principle in the second sector is remarkably simple for

Helium. We merely need to take the building block �φ
(2)
1 and antisymmetrize or symmetrize

appropriately. Of course our “building block”,
�

φ
(2)
1 , is neither symmetric nor antisymmetric

under particle exchange.
However, this basis doesn’t include the correlation. To do this, we can multiply our
antisymmetrized second sector wave function by a correlation function, given by the
Padé-Jastrow function which only depends on r12. It is clear, then, that because our correlation
function is only a function of r12, its symmetry will not be affected by the application of �Q
and, thus, we can simply multiply it by our second sector state of interest (where the minus
corresponds to the triplet and the plus to the singlet):

�ψ
(2)
1,triplet =e

r12
2(1+δr12)

(
−e−2r1−r2 [2r̂1 (1 − r2) + r̂2]∓

e−2r2−r1 [2r̂2 (1 − r1) + r̂1]
)

.
(7.8)

Higher accuracy will result if we insert additional variational parameters (e.g., effective
charges, etc.) when doing computations.

8. Conclusions and perspectives

In this chapter, we began by presenting our computational approach to one dimensional
systems. We showed with the anharmonic oscillator that we were able to achieve significant
computational gains in a robust fashion, permitting more exact numerical solutions of one
dimensional problems. Although anharmonic oscillator models are useful for a wide variety
of problems in both chemistry and physics, it should be clear that other systems should show
similar behaviour. The SUSY-QM approach enabled us to develop a hierarchy of isospectral
Hamiltonians. This also led to the introduction of charge operators that transform wave
functions between the various sectors, and the energies are always determined in a ground
state setting. Because these are most easily and accurately obtained by the variational method,
we realize a significant reduction in the basis size needed to yield accurate excited state
wave functions. We then considered 2 specific examples of anharmonic oscillators. We
concluded that using the SUSY hierarchy of hamiltonians and charge operators, provided
faster convergence to the same level of accuracy and thus, provides a better method than the
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we can use this principle to design reasonable trial wave functions for a variational approach
to the sector two ground state. In this section, we consider a simple aufbau description of the
sector one helium excited states in order to design an approximate sector two ground state of
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β where
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The first excited sector one state of Helium is a triplet so the wave function is anti-symmetric
under spatial electron exchange. It is clear that we require the second sector ground state
also be anti-symmetric when we interchange labels 1 and 2. To obtain this, we apply P12 to
Equation (7.2) to get
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where P12 exchanges the electron labels. Then, we can use Equations (7.2) and (7.3) as a
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building block from the second. This gives us a second sector result of
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function is only a function of r12, its symmetry will not be affected by the application of �Q
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corresponds to the triplet and the plus to the singlet):

�ψ
(2)
1,triplet =e

r12
2(1+δr12)

(
−e−2r1−r2 [2r̂1 (1 − r2) + r̂2]∓

e−2r2−r1 [2r̂2 (1 − r1) + r̂1]
)

.
(7.8)

Higher accuracy will result if we insert additional variational parameters (e.g., effective
charges, etc.) when doing computations.

8. Conclusions and perspectives

In this chapter, we began by presenting our computational approach to one dimensional
systems. We showed with the anharmonic oscillator that we were able to achieve significant
computational gains in a robust fashion, permitting more exact numerical solutions of one
dimensional problems. Although anharmonic oscillator models are useful for a wide variety
of problems in both chemistry and physics, it should be clear that other systems should show
similar behaviour. The SUSY-QM approach enabled us to develop a hierarchy of isospectral
Hamiltonians. This also led to the introduction of charge operators that transform wave
functions between the various sectors, and the energies are always determined in a ground
state setting. Because these are most easily and accurately obtained by the variational method,
we realize a significant reduction in the basis size needed to yield accurate excited state
wave functions. We then considered 2 specific examples of anharmonic oscillators. We
concluded that using the SUSY hierarchy of hamiltonians and charge operators, provided
faster convergence to the same level of accuracy and thus, provides a better method than the
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standard variational approach. In most cases, only half as many basis functions were needed
to generate the ground state wave function as were required for the first excited state of the
same sector. As a result, the computational time for molecular models using anharmonic
potentials will be significantly reduced, without sacrificing accuracy.
We also stress that our results do not depend on precisely what basis set is used for
the calculations. Rather we are capitalizing on the general behavior of the Rayleigh-Ritz
variational method with regard to accuracy and convergence rate for ground versus excited
states of a given Hamiltonian.
We then presented our approach to generalizing SUSY-QM to deal with more than one
dimension and more than one (distinguishable) particle. In general, previous attempts to do
this have typically introduced Pauli spin matrices and so far as we are aware, none of these has
been proved useful for the general case. Andrianov et al. (1985); Andrianov, Borisov & Ioffe
(1984a;b;c); Andrianov et al. (1986); Andrianov, Borisov, Ioffe & Eides (1984); Andrianov &
Ioffe (1988); Andrianov et al. (2002); Cannata et al. (2002); Das & Pernice (1996) One principle
difficulty is that while the coordinates of different particles are independent variables, they
are not defined relative to orthogonal axes. That is, there are only 3 independent, physical
axes along which all particle positions are measured. Our approach introduces a higher
dimensional vector space in which there is an orthonormal basis vector associated with each
independent particle coordinate. This is analogous to the relativistic situation where each
particle has its own coordinate system(and, of course, in the relativistic case, its own "proper
time"). Here, however the device is a mathematical convenience (so far as we are currently
aware) and it is, of course, non-relativistic. That is, we assume Gallilean transformations. The
most striking consequence similar to relativistic quantum mechanics is that our second sector
Hamiltonian becomes a tensor in the expanded space. This does not increase the number
of independent variables (i.e., the wave function for the second sector is a vector in the
new hyperspace). It is shown that this tensor character is then absent from the 3rd sector
Hamiltonian (which is once again a scalar operator). One in general obtains an alternating
series of scalar and tensor Hamiltonians. The occurrence of a tensor sector Hamiltonian is, of
course, an added computational cost to the approach. This is mitigated , to some degree, by the fact
that we never must calculate an accurate wave function and energy except for ground states
. It is this feature that makes the SUSY-QM approach attractive, since ground state energies
and wave functions are the least computationally demanding of all and typically are obtained
with the highest accuracy. Thus the computational effort of obtaining the second excited state
energy and wave function again involves solving an equation comparable to that generated
by the original H1. A complication, however, arises due to the observed fact that for the
ground state sector 2 wave function in both the degenerate and non-degenerate cases, one of
the two components possesses nodes while the other component is nodeless. This is mitigated
(in terms of accuracy of the sector 2 ground state calculation) by the fact that the component
containing the node is (in the present computational examples) an order of magnitude smaller
that the nodeless component. This appears to enable the variational evaluation of the ground
state of the sector 2 to yield better accuracy for the first excited state energy and wave function
than a comparable basis set calculation applied to H1.
An extremely important question is, however, raised by the fact that the small component

of �ψ
(2)
0 has nodes. This is whether the presence of nodes will prevent us from applying a

simple variational quantum Monte-Carlo method to obtain �ψ
(2)
0 . We are currently exploring

this question. However, in the present context, it does not appear to create difficulties for the
variational approach.
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Finally, we have shown how our multi-dimensional generalization of SUSY-QM can be
applied to the hydrogen atom. Previously, most detailed attempts to treat the hydrogen
atom first separated the angular degrees of freedom, leaving a one-dimensional radial wave
equation. It was then possible to obtain the SUSY-QM factorization, yielding a scalar
superpotential that, for the l = 0 states, is simply W = 1. While these results are interesting,
the one-dimensional radial SUSY-QM approach is not readily generalizable to treat even the
helium atom.
In our approach, the full three-dimensional character of the hydrogen atom is considered, with
the result being a vector-valued superpotential, �W, which for the hydrogen atom, is �W = r̂.
That is, the vector superpotential points in the opposite direction of the attractive Coulomb
force between the electron and the nucleus. This is interesting also because, although the
Coulomb potential is singular, its vector superpotential is not. It is important to note that such
a superpotential was also obtained earlier by Stedman Stedman (1985). However, his sector
two Hamiltonian differs from ours and produces “extra” states that are not degenerate with
sector one.
The fact that �W for the three-dimensional hydrogen atom is a vector does not, in any way,
modify the sector one dynamical equation. However, the sector two situation is radically
affected! In the one-dimensional SUSY-QM case, there is no significant change in the basic
mathematical structure of the sector two partner Hamiltonian. In the multi-dimensional
case, the sector two Hamiltonian is a tensor. However, we have shown in previous studies,
that many of the standard computational techniques remain valid. Of particular interest
is the Dirac-Frankel-McLachlan Variational Method, since this is known to deal better with
higher-dimensional systemsRaab (2000).
In the case of the hydrogen atom, it is straight forward to generate all the sector two
eigenstates. This is a consequence of the fact that exact analytical eigenstates of the
three-dimensional hydrogen atom are known. It is then easy to apply the charge operator, �Q,
to the excited hydrogen atom states and obtain sector two eigenstates. (We note that because
of the four fold degeneracy for the sector two ground state, the resulting eigenstates can be
super-posed in any manner convenient for the study at hand). It is of considerable interest to
begin exploring how our multi-dimensional SUSY-QM treatment can be applied to the helium
atom. In this case, the exact sector one ground state is, of course, unavailable. In our previous
one and two-dimensional studies we have considered other systems for which an exact �W
was not possible. In the case of helium, we chose to examine an accurate Padè-Jastrow
approximation to the sector one ground state. In this case, it is easy to obtain an analytical
(albeit approximate) �W that displays very reasonable intuitive character. In direct analogy
with the exact hydrogen atom �W, we find that the �WHe(PJ) vector superpotential consists of a
combination of unit vectors that again, are anti-parallel to the Coulomb forces associated with
the helium atom potential energy. The next step in our study will consist of computations of
a sector two ground state, which will allow us to obtain an approximate helium atom sector
one first excited state energy and wave function.
Future studies will explore extending the approach to more than two electron atoms. There,
the issue will be taking account of the electrons’ spin degrees of freedom. Our current plan
is to employ the “spin-free” techniques of Matsen Matsen (1964; 1966; 1970); Matsen & Cantu
(1968; 1969); Matsen et al. (1966); Matsen & Ellzey (1969); Matsen & Junker (1971); Matsen &
Klein (1969; 1971); Matsen et al. (1971) and othersPauncz (1995).
We have also generalized the aufbau principle to work in the second sector Hamiltonian,
demonstrating that we are able to produce reasonable forms of excited states by simply using
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standard variational approach. In most cases, only half as many basis functions were needed
to generate the ground state wave function as were required for the first excited state of the
same sector. As a result, the computational time for molecular models using anharmonic
potentials will be significantly reduced, without sacrificing accuracy.
We also stress that our results do not depend on precisely what basis set is used for
the calculations. Rather we are capitalizing on the general behavior of the Rayleigh-Ritz
variational method with regard to accuracy and convergence rate for ground versus excited
states of a given Hamiltonian.
We then presented our approach to generalizing SUSY-QM to deal with more than one
dimension and more than one (distinguishable) particle. In general, previous attempts to do
this have typically introduced Pauli spin matrices and so far as we are aware, none of these has
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difficulty is that while the coordinates of different particles are independent variables, they
are not defined relative to orthogonal axes. That is, there are only 3 independent, physical
axes along which all particle positions are measured. Our approach introduces a higher
dimensional vector space in which there is an orthonormal basis vector associated with each
independent particle coordinate. This is analogous to the relativistic situation where each
particle has its own coordinate system(and, of course, in the relativistic case, its own "proper
time"). Here, however the device is a mathematical convenience (so far as we are currently
aware) and it is, of course, non-relativistic. That is, we assume Gallilean transformations. The
most striking consequence similar to relativistic quantum mechanics is that our second sector
Hamiltonian becomes a tensor in the expanded space. This does not increase the number
of independent variables (i.e., the wave function for the second sector is a vector in the
new hyperspace). It is shown that this tensor character is then absent from the 3rd sector
Hamiltonian (which is once again a scalar operator). One in general obtains an alternating
series of scalar and tensor Hamiltonians. The occurrence of a tensor sector Hamiltonian is, of
course, an added computational cost to the approach. This is mitigated , to some degree, by the fact
that we never must calculate an accurate wave function and energy except for ground states
. It is this feature that makes the SUSY-QM approach attractive, since ground state energies
and wave functions are the least computationally demanding of all and typically are obtained
with the highest accuracy. Thus the computational effort of obtaining the second excited state
energy and wave function again involves solving an equation comparable to that generated
by the original H1. A complication, however, arises due to the observed fact that for the
ground state sector 2 wave function in both the degenerate and non-degenerate cases, one of
the two components possesses nodes while the other component is nodeless. This is mitigated
(in terms of accuracy of the sector 2 ground state calculation) by the fact that the component
containing the node is (in the present computational examples) an order of magnitude smaller
that the nodeless component. This appears to enable the variational evaluation of the ground
state of the sector 2 to yield better accuracy for the first excited state energy and wave function
than a comparable basis set calculation applied to H1.
An extremely important question is, however, raised by the fact that the small component
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Finally, we have shown how our multi-dimensional generalization of SUSY-QM can be
applied to the hydrogen atom. Previously, most detailed attempts to treat the hydrogen
atom first separated the angular degrees of freedom, leaving a one-dimensional radial wave
equation. It was then possible to obtain the SUSY-QM factorization, yielding a scalar
superpotential that, for the l = 0 states, is simply W = 1. While these results are interesting,
the one-dimensional radial SUSY-QM approach is not readily generalizable to treat even the
helium atom.
In our approach, the full three-dimensional character of the hydrogen atom is considered, with
the result being a vector-valued superpotential, �W, which for the hydrogen atom, is �W = r̂.
That is, the vector superpotential points in the opposite direction of the attractive Coulomb
force between the electron and the nucleus. This is interesting also because, although the
Coulomb potential is singular, its vector superpotential is not. It is important to note that such
a superpotential was also obtained earlier by Stedman Stedman (1985). However, his sector
two Hamiltonian differs from ours and produces “extra” states that are not degenerate with
sector one.
The fact that �W for the three-dimensional hydrogen atom is a vector does not, in any way,
modify the sector one dynamical equation. However, the sector two situation is radically
affected! In the one-dimensional SUSY-QM case, there is no significant change in the basic
mathematical structure of the sector two partner Hamiltonian. In the multi-dimensional
case, the sector two Hamiltonian is a tensor. However, we have shown in previous studies,
that many of the standard computational techniques remain valid. Of particular interest
is the Dirac-Frankel-McLachlan Variational Method, since this is known to deal better with
higher-dimensional systemsRaab (2000).
In the case of the hydrogen atom, it is straight forward to generate all the sector two
eigenstates. This is a consequence of the fact that exact analytical eigenstates of the
three-dimensional hydrogen atom are known. It is then easy to apply the charge operator, �Q,
to the excited hydrogen atom states and obtain sector two eigenstates. (We note that because
of the four fold degeneracy for the sector two ground state, the resulting eigenstates can be
super-posed in any manner convenient for the study at hand). It is of considerable interest to
begin exploring how our multi-dimensional SUSY-QM treatment can be applied to the helium
atom. In this case, the exact sector one ground state is, of course, unavailable. In our previous
one and two-dimensional studies we have considered other systems for which an exact �W
was not possible. In the case of helium, we chose to examine an accurate Padè-Jastrow
approximation to the sector one ground state. In this case, it is easy to obtain an analytical
(albeit approximate) �W that displays very reasonable intuitive character. In direct analogy
with the exact hydrogen atom �W, we find that the �WHe(PJ) vector superpotential consists of a
combination of unit vectors that again, are anti-parallel to the Coulomb forces associated with
the helium atom potential energy. The next step in our study will consist of computations of
a sector two ground state, which will allow us to obtain an approximate helium atom sector
one first excited state energy and wave function.
Future studies will explore extending the approach to more than two electron atoms. There,
the issue will be taking account of the electrons’ spin degrees of freedom. Our current plan
is to employ the “spin-free” techniques of Matsen Matsen (1964; 1966; 1970); Matsen & Cantu
(1968; 1969); Matsen et al. (1966); Matsen & Ellzey (1969); Matsen & Junker (1971); Matsen &
Klein (1969; 1971); Matsen et al. (1971) and othersPauncz (1995).
We have also generalized the aufbau principle to work in the second sector Hamiltonian,
demonstrating that we are able to produce reasonable forms of excited states by simply using
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hydrogenic orbitals. The equations have a reasonable structure but variational computations
are necessary. We shall report these results later.
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1. Introduction

Quantum theory (QT) may either be defined by a set of axioms or otherwise be ’derived’ from
classical physics by using certain assumptions. Today, QT is frequently identified with a set
of axioms defining a Hilbert space structure. This mathematical structure has been created
(by von Neumann) by abstraction from the linear solution space of the central equation of
QT, the Schrödinger equation. Thus, deriving Schrödinger’s equation is basically the same as
deriving QT. To derive the most general version of the time-dependent Schrödinger equation,
describing N particles with spin in an external gauge field, means to derive essentially the
whole of non-relativistic QT.
The second way of proceeding is sometimes called ’quantization’. In the standard (canonical)
quantization method one starts from a classical Hamiltonian whose basic variables are then
’transformed’, by means of well-known correspondence rules,

p → h̄
ı

d
dx

, E → − h̄
ı

d
dt

, (1)

into operators. Then, all relevant classical observables may be rewritten as operators acting on
states of a Hilbert space etc; the details of the ’derivation’ of Schrödinger’s equation along this
lines may be found in many textbooks. There are formal problems with this approach which
have been identified many years ago, and can be expressed e.g. in terms of Groenewold’s
theorem, see Groenewold (1946), Gotay (1999). Even more seriously, there is no satisfactory
explanation for this ’metamorphosis’ of observables into operators. This quantization method
(as well as several other mathematically more sophisticated versions of it) is just a recipe or,
depending on one’s taste, "black magic", Hall (2005). Note that the enormous success of this
recipe in various contexts - including field quantization - is no substitute for an explanation.
The choice of a particular quantization procedure will be strongly influenced by the preferred
interpretation of the quantum theoretical formalism. If QT is interpreted as a theory describing
individual events, then the Hamiltonian of classical mechanics becomes a natural starting
point. This ’individuality assumption’ is an essential part of the dominating ’conventional’,
or ’Copenhagen’, interpretation (CI) of QT. It is well-known, that QT becomes a source of
mysteries and paradoxes1 whenever it is interpreted in the sense of CI, as a (complete) theory
for individual events. Thus, the canonical quantization method and the CI are similar in

1 I cannot report here a list, all the less a description, of all the quantum mechanical paradoxes found in
the last eighty years.
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1. Introduction

Quantum theory (QT) may either be defined by a set of axioms or otherwise be ’derived’ from
classical physics by using certain assumptions. Today, QT is frequently identified with a set
of axioms defining a Hilbert space structure. This mathematical structure has been created
(by von Neumann) by abstraction from the linear solution space of the central equation of
QT, the Schrödinger equation. Thus, deriving Schrödinger’s equation is basically the same as
deriving QT. To derive the most general version of the time-dependent Schrödinger equation,
describing N particles with spin in an external gauge field, means to derive essentially the
whole of non-relativistic QT.
The second way of proceeding is sometimes called ’quantization’. In the standard (canonical)
quantization method one starts from a classical Hamiltonian whose basic variables are then
’transformed’, by means of well-known correspondence rules,
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into operators. Then, all relevant classical observables may be rewritten as operators acting on
states of a Hilbert space etc; the details of the ’derivation’ of Schrödinger’s equation along this
lines may be found in many textbooks. There are formal problems with this approach which
have been identified many years ago, and can be expressed e.g. in terms of Groenewold’s
theorem, see Groenewold (1946), Gotay (1999). Even more seriously, there is no satisfactory
explanation for this ’metamorphosis’ of observables into operators. This quantization method
(as well as several other mathematically more sophisticated versions of it) is just a recipe or,
depending on one’s taste, "black magic", Hall (2005). Note that the enormous success of this
recipe in various contexts - including field quantization - is no substitute for an explanation.
The choice of a particular quantization procedure will be strongly influenced by the preferred
interpretation of the quantum theoretical formalism. If QT is interpreted as a theory describing
individual events, then the Hamiltonian of classical mechanics becomes a natural starting
point. This ’individuality assumption’ is an essential part of the dominating ’conventional’,
or ’Copenhagen’, interpretation (CI) of QT. It is well-known, that QT becomes a source of
mysteries and paradoxes1 whenever it is interpreted in the sense of CI, as a (complete) theory
for individual events. Thus, the canonical quantization method and the CI are similar in

1 I cannot report here a list, all the less a description, of all the quantum mechanical paradoxes found in
the last eighty years.
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2 Will-be-set-by-IN-TECH

two respects: both rely heavily on the concept of individual particles and both are rather
mysterious.
This situation confronts us with a fundamental alternative. Should we accept the mysteries
and paradoxes as inherent attributes of reality or should we not, instead, critically reconsider
our assumptions, in particular the ’individuality assumption’. As a matter of fact, the
dynamical numerical output of quantum mechanics consists of probabilities. A probability is a
"deterministic" prediction which can be verified in a statistical sense only, i.e. by performing
experiments on a large number of identically prepared individual systems, see Belinfante
(1978), Margenau (1963). Therefore, the very structure of QT tells us that it is a theory about
statistical ensembles only, see Ballentine (1970). If dogmatic or philosophical reasons ’force’ us
to interpret QT as a theory about individual events, we have to create complicated intellectual
constructs, which are not part of the physical formalism, and lead to unsolved problems and
contradictions.
The present author believes, like several other physicists [see e.g. Ali (2009); Ballentine
(1970); Belinfante (1975); Blokhintsev (1964); Einstein (1936); Kemble (1929); Krüger (2004);
Margenau (1935); Newman (1980); Pippard (1986); Ross-Bonney (1975); Toyozawa (1992);
Tschudi (1987); Young (1980)] that QT is a purely statistical theory whose predictions can only
be used to describe the behavior of statistical ensembles and not of individual particles. This
statistical interpretation (SI) of QT eliminates all mysteries and paradoxes - and this shows
that the mysteries and paradoxes are not part of QT itself but rather the result of a particular
(mis)interpretation of QT. In view of the similarity discussed above, we adopt the statistical
point of view, not only for the interpretation of QT itself, but also in our search for quantization
conditions. The general strategy is to find a new set of (as) simple (as possible) statistical
assumptions which can be understood in physical terms and imply QT. Such an approach
would also provide an explanation for the correspondence rules (1).
The present paper belongs to a series of works aimed at such an explanation. Quite generally,
the present work continues a long tradition of attempts, see Frieden (1989; 2004); Hall &
Reginatto (2002a); Lee & Zhu (1999); Motz (1962); Rosen (1964); Schiller (1962a); Schrödinger
(1926), to characterize QT by mathematical relations which can be understood in physical
terms2 (in contrast to the axiomatic approach). More specifically, it continues previous
attempts to derive Schrödinger’s equation with the help of statistical concepts, see Hall &
Reginatto (2002b), Reginatto (1998a); Syska (2007), Klein (2009). These works, being quite
different in detail, share the common feature that a statistical ensemble and not a particle
Hamiltonian is used as a starting point for quantization. Finally, in a previous work, Klein
(2011), of the present author an attempt has been undertaken to construct a complete statistical
approach to QT with the help of a small number of very simple (statistical) assumptions. This
work will be referred to as I. The present paper is a continuation and extension of I.
The quantization method reported in I is based on the following general ideas:

• QT should be a probabilistic theory in configuration space (not in phase space).

• QT should fullfil abstract versions of (i) a conservation law for probability (continuity
equation) , and (ii) Ehrenfest’s theorem. Such relations hold in all statistical theories no
matter whether quantum or classical.

• There are no laws for particle trajectories in QT anymore. This arbitrariness, which
represents a crucial difference between QT and classical statistics, should be handled by
a statistical principle analogous to the principle of maximal entropy in classical statistics.

2 The listing given here is far from complete.
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These general ideas lead to the mathematical assumptions which represent the basis for
the treatment reported in I. This work was restricted to a one-dimensional configuration
space (a single particle ensemble with a single spatial degree of freedom). The present
work generalizes the treatment of I to a 3N−dimensional configuration space ( ensembles
representing an arbitrary number N of particles allowed to move in three-dimensional space),
gauge-coupling, and spin. In a first step the generalization to three spatial dimensions is
performed; the properly generalized basic relations are reported in section 2. This section
contains also a review of the fundamental ideas.
In section 3 we make use of a mathematical freedom, which is already contained in our
basic assumptions, namely the multi-valuedness of the variable S. This leads to the
appearance of potentials in statistical relations replacing the local forces of single-event
(mechanical) theories. The mysterious non-local action of the vector potential (in effects of
the Aharonov-Bohm type) is explained as a consequence of the statistical nature of QT. In
section 4 we discuss a related question: Which constraints on admissible forces exist for
the present class of statistical theories ? The answer is that only macroscopic (elementary)
forces of the form of the Lorentz force can occur in nature, because only these survive the
transition to QT . These forces are statistically represented by potentials, i.e. by the familiar
gauge coupling terms in matter field equations. The present statistical approach provides a
natural explanation for the long-standing question why potentials play an indispensable role
in the field equations of physics.
In section 5 it is shown that among all statistical theories only the time-dependent Schrödinger
equation follows the logical requirement of maximal disorder or minimal Fisher information.
Spin one-half is introduced, in section 6, as the property of a statistical ensemble to respond to
an external gauge field in two different ways. A generalized calculation, reported in sections 6
and 7, leads to Pauli’s (single-particle) equation. In section 8 an alternative derivation,
following Arunsalam (1970), and Gould (1995) is reported, which is particularly convenient
for the generalization to arbitrary N. The latter is performed in section 9, which completes
our statistical derivation of non-relativistic QT.
In section 10 the classical limit of QT is studied and it is stressed that the classical limit of
QT is not classical mechanics but a classical statistical theory. In section 11 various questions
related to the present approach, including the role of potentials and the interpretation of QT,
are discussed. The final section 12 contains a short summary and mentions a possible direction
for future research.

2. Basic equations for a class of statistical theories

In I three different types of theories have been defined which differ from each other with
regard to the role of probability. We give a short review of the defining properties and supply
some additional comments characterizing these theories.
The dogma underlying theories of type 1 is determinism with regard to single events;
probability does not play any role. If nature behaves according to this dogma, then
measurements on identically prepared individual systems yield identical results. Classical
mechanics is obviously such a deterministic type 1 theory. We shall use below (as a ’template’
for the dynamics of our statistical theories) the following version of Newton’s law, where
the particle momentum pk(t) plays the role of a second dynamic variable besides the spatial
coordinate xk(t):

d
dt

xk(t) =
pk(t)

m
,

d
dt

pk(t) = Fk(x, p, t). (2)
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In classical mechanics there is no restriction as regards the admissible forces. Thus, Fk is
an arbitrary function of xk, pk, t; it is, in particular, not required that it be derivable from a
potential. Note that Eqs. (2) do not hold in the present theory; these relations are just used to
establish a correspondence between classical mechanics and associated statistical theories.
Experimental data from atomic systems, recorded since the beginning of the last century,
indicate that nature does not behave according to this single-event deterministic dogma. A
simple but somewhat unfamiliar idea is, to construct a theory which is deterministic only
in a statistical sense. This means that measurements on identically prepared individual
systems do not yield identical results (no determinism with regard to single events) but
repeated measurements on ensembles [consisting each time of a large (infinite) number
of measurements on individual systems] yield identical results. In this case we have
’determinism’ with regard to ensembles (expectation values, or probabilities).
Note that such a theory is far from chaotic even if our macroscopic anticipation of
(single-event) determinism is not satisfied. Note also that there is no reason to assume that
such a statistical theory for microscopic events is incompatible with macroscopic determinism.
It is a frequently observed (but not always completely understood) phenomenon in nature
that systems with many (microscopic) degrees of freedom can be described by a much
smaller number of variables. During this process of elimination of variables the details of
the corresponding microscopic theory for the individual constituents are generally lost. In
other words, there is no reason to assume that a fundamental statistical law for individual
atoms and a deterministic law for a piece of matter consisting of, say, 1023 atoms should not
be compatible with each other. This way of characterizing the relation between two physical
theories is completely different from the common reductionistic point of view. Convincing
arguments in favor of the former may, however, be found in Anderson (1972), Laughlin (2005).
As discussed in I two types (referred to as type 2 and type 3) of indeterministic theories
may be identified. In type 2 theories laws for individual particles exist (roughly speaking the
individuality of particles remains intact) but the initial values are unknown and are described
by probabilities only. An example for such a (classical-statistical) type 2 theory is statistical
thermodynamics. On the other hand, in type 3 theories the amount of uncertainty is still greater,
insofar as no dynamic laws for individual particles exist any more. A possible candidate for
this ’extreme’ type of indeterministic theory is quantum mechanics.
The method used in I to construct statistical theories was based on the following three
assumptions,

• A local conservation law of probability with a particular form of the probability current.

• Two differential equations which are similar in structure to the canonical equations (2) but
with observables replaced by expectation values.

• A differential version (minimal Fisher information) of the statistical principle of maximal
disorder.

These (properly generalized) assumptions represent also the formal basis of the present work.
The first and second of these cover type 2 as well as type 3 theories, while it will be shown
that the third - the requirement of maximal disorder - does only hold for a single type 3 theory,
namely quantum mechanics. In this sense quantum mechanics may be considered as the most
reasonable theory among all statistical theories defined by the first two assumptions. There
is obviously an analogy between quantum mechanics and the principle of minimal Fisher
information on the one hand and classical statistical mechanics and the principle of maximal
entropy on the other hand; both theories are realizations of the principle of maximal disorder.
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Let us now generalize the basic equations of I (see section 3 of I) with respect to the number
of spatial dimensions and with respect to gauge freedom. The continuity equation takes the
form

∂ρ(x, t)
∂t

+
∂

∂xk

ρ(x, t)
m

∂S̃(x, t)
∂xk

= 0. (3)

We use the summation convention, indices i, k, ... run from 1 to 3 and are omitted if the
corresponding variable occurs in the argument of a function. The existence of a local
conservation law for the probability density ρ(x, t) is a necessity for a probabilistic theory. The
same is true for the fact that the probability current takes the form jk(x, t) = ρ(x, t) p̃k(x, t)/m,
where p̃k(x, t) is the k−th component of the momentum probability density. The only
non-trivial assumption contained in (3), is the fact that p̃k(x, t) takes the form of the gradient,

p̃k(x, t) =
∂S̃(x, t)

∂xk
, (4)

of a function S̃(x, t). In order to gain a feeling for the physical meaning of (4) we could refer
to the fact that a similar relation may be found in the Hamilton-Jacobi formulation of classical
mechanics Synge (1960); alternatively we could also refer to the fact that this condition
characterizes ’irrotational flow’ in fluid mechanics. Relation (4) could also be justified by
means of the principle of simplicity; a gradient is the simplest way to represent a vector field,
because it can be derived from a single scalar function.
In contrast to I we allow now for multi-valued functions S̃(x, t). At first sight this seems strange
since a multi-valued quantity cannot be an observable and should, consequently, not appear
in equations bearing a physical meaning. However, only derivatives of S̃(x, t) occur in our
basic equations. Thus, this freedom is possible without any additional postulate; we just have
to require that

S̃(x, t) multi-valued,
∂S̃
∂t

,
∂S̃
∂xk

single-valued. (5)

(the quantity p̃ defined in (4) is not multi-valued; this notation is used to indicate that this
quantity has been defined with the help of a multi-valued S̃). As discussed in more detail in
section 3 this new ’degree of freedom’ is intimately related to the existence of gauge fields. In
contrast to S̃, the second dynamic variable ρ is a physical observable (in the statistical sense)
and is treated as a single-valued function.
The necessary and sufficient condition for single-valuedness of a function S̃(x, t) (in a
subspace G ⊆ R4) is that all second order derivatives of S̃(x, t) with respect to xk and t
commute with each other (in G) [see e.g. Kaempfer (1965)]. As a consequence, the order of
two derivatives of S̃ with respect to anyone of the variables xk, t must not be changed. We
introduce the (single-valued) quantities

S̃[j,k] =

[
∂2S̃

∂xj∂xk
− ∂2S̃

∂xk∂xj

]
, S̃[0,k] =

[
∂2S̃

∂t∂xk
− ∂2S̃

∂xk∂t

]
(6)

in order to describe the non-commuting derivatives in the following calculations.
The second of the assumptions listed above has been referred to in I as ’statistical conditions’.
For the present three-dimensional theory these are obtained in the same way as in I,
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by replacing the observables xk(t), pk(t) and the force field Fk(x(t), p(t), t) of the type 1
theory (2) by averages xk, pk and Fk. This leads to the relations

d
dt

xk =
pk
m

(7)

d
dt

pk = Fk(x, p, t), (8)

where the averages are given by the following integrals over the random variables xk, pk
(which should be clearly distinguished from the type I observables xk(t), pk(t) which will not
be used any more):

xk =
∫ ∞

−∞
d3x ρ(x, t) xk (9)

pk =
∫ ∞

−∞
d3 p w(p, t) pk (10)

Fk(x, p, t) =
∫ ∞

−∞
d3x d3 p W(x, p, t)Fk(x, p, t). (11)

The time-dependent probability densities W, ρ, w should be positive semidefinite and
normalized to unity, i.e. they should fulfill the conditions

∫ ∞

−∞
d3x ρ(x, t) =

∫ ∞

−∞
d3 p w(p, t) =

∫ ∞

−∞
d3x d3 p W(x, p, t) = 1 (12)

The densities ρ and w may be derived from the fundamental probability density W by means
of the relations

ρ(x, t) =
∫ ∞

−∞
d3 p W(x, p, t); w(p, t) =

∫ ∞

−∞
d3x W(x, p, t). (13)

The present construction of the statistical conditions (7) and (8) from the type 1 theory (2)
shows two differences as compared to the treatment in I. The first is that we allow now for a
p−dependent external force. This leads to a more complicated probability density W(x, p, t)
as compared to the two decoupled densities ρ(x, t) and w(p, t) of I. The second difference,
which is in fact related to the first, is the use of a multi-valued S̃(x, t).
Note, that the p−dependent probability densities w(p, t) and W(x, p, t) have been introduced
in the above relations in a purely formal way. We defined an expectation value pk [via Eq. (7)]
and assumed [in Eq. (10) ] that a random variable pk and a corresponding probability density
w(p, t) exist. But the validity of this assumption is not guaranteed . There is no compelling
conceptual basis for the existence of these quantities in a pure configuration-space theory. If
they exist, they must be defined with the help of additional considerations (see section 6 of I).
The deeper reason for this problem is that the concept of measurement of momentum (which
is proportional to the time derivative of position) is ill-defined in a theory whose observables
are defined in terms of a large number of experiments at one and the same instant of time
(measurement of a derivative requires measurements at different times). Fortunately, these
considerations, which have been discussed in more detail in I, play not a prominent role
[apart from the choice of W(x, p, t) discussed in section 4], for the derivation of Schrödinger’s
equation reported in the present paper3.

3 These considerations seem relevant for attempts to define phase-space densities, e.g. of the Wigner
type, in QT
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Using the continuity equation (3) and the statistical conditions (7) and (8) the present
generalization of the integral equation Eq. (24) of I may be derived. The steps leading to
this result are very similar to the corresponding steps in I and may be skipped. The essential
difference to the one-dimensional treatment is - apart from the number of space dimensions
- the non-commutativity of the second order derivatives of S̃(x, t) leading to non-vanishing
quantities S̃[j,k], S̃[0,k] defined in Eq. (6). The result takes the form
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� ∞

−∞
d3x

∂ρ

∂xk

⎡
⎣ ∂S̃

∂t
+

1
2m ∑

j

�
∂S̃
∂xj

�2

+ V
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� ∞
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m
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�
= F(e)

k (x, p, t)

, (14)

In the course of the calculation leading to (14) it has been assumed that the macroscopic
force Fk(x, p, t) entering the second statistical condition (8) may be written as a sum of two

contributions, F(m)
k (x, t) and F(e)

k (x, p, t),

Fk(x, p, t) = F(m)
k (x, t) + F(e)

k (x, p, t), (15)

where F(m)
k (x, t) takes the form of a negative gradient of a scalar function V(x, t) (mechanical

potential) and F(e)
k (x, p, t) is the remaining p−dependent part.

Comparing Eq. (14) with the corresponding formula obtained in I [see Eq. (24) of I] we see that
two new terms appear now, the expectation value of the p−dependent force on the r.h.s., and
the second term on the l.h.s. of Eq. (14). The latter is a direct consequence of our assumption
of a multi-valued variable S̃. In section 4 it will be shown that for vanishing multi-valuedness
Eq. (14) has to agree with the three-dimensional generalization of the corresponding result
[Eq. (24) of I] obtained in I. This means that the p−dependent term on the r.h.s. has to vanish
too in this limit and indicates a relation between multi-valuedness of S̃ and p−dependence of
the external force.

3. Gauge coupling as a consequence of a multi-valued phase

In this section we study the consequences of the multi-valuedness [London (1927), Weyl
(1929), Dirac (1931)] of the quantity S̃(x, t) in the present theory. We assume that S̃(x, t) may
be written as a sum of a single-valued part S(x, t) and a multi-valued part Ñ. Then, given
that (5) holds, the derivatives of S̃(x, t) may be written in the form

∂S̃
∂t

=
∂S
∂t

+ eΦ,
∂S̃
∂xk

=
∂S
∂xk

− e
c

Ak, (16)

where the four functions Φ and Ak are proportional to the derivatives of Ñ with respect to t
and xk respectively (Note the change in sign of Φ and Ak in comparison to Klein (2009); this
is due to the fact that the multi-valued phase is now denoted by S̃). The physical motivations
for introducing the pre-factors e and c in Eq. (16) have been extensively discussed elsewhere,
see Kaempfer (1965), Klein (2009), in an electrodynamical context. In agreement with Eq. (16),
S̃ may be written in the form [Kaempfer (1965), Klein (2009)]

S̃(x, t; C) = S(x, t)− e
c

� x,t

x0,t0;C
�
dx�k Ak(x�, t�)− cdt�φ(x�, t�)

�
, (17)
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as a path-integral performed along an arbitrary path C in four-dimensional space; the
multi-valuedness of S̃ simply means that it depends not only on x, t but also on the path C
connecting the points x0, t0 and x, t.
The quantity S̃ cannot be a physical observable because of its multi-valuedness. The
fundamental physical quantities to be determined by our (future) theory are the four
derivatives of S̃ which will be rewritten here as two observable fields −Ẽ(x, t), p̃k(x, t),

−Ẽ(x, t) =
∂S(x, t)

∂t
+ eΦ(x, t), (18)

p̃k(x, t) =
∂S(x, t)

∂xk
− e

c
Ak(x, t), (19)

with dimensions of energy and momentum respectively.
We encounter a somewhat unusual situation in Eqs. (18), (19): On the one hand the left hand
sides are observables of our theory, on the other hand we cannot solve our (future) differential
equations for these quantities because of the peculiar multi-valued structure of S̃. We have to
use instead the decompositions as given by the right hand sides of (18) and (19). The latter
eight terms (the four derivatives of S and the four scalar functions Φ and Ak) are single-valued
(in the mathematical sense) but need not be unique because only the left hand sides are
uniquely determined by the physical situation. We tentatively assume that the fields Φ and Ak
are ’given’ quantities in the sense that they represent an external influence (of ’external forces’)
on the considered statistical situation. An actual calculation has to be performed in such a way
that fixed fields Φ and Ak are chosen and then the differential equations are solved for S (and
ρ). However, as mentioned already, what is actually uniquely determined by the physical
situation is the sum of the two terms on the right hand sides of (18) and (19). Consequently, a
different set of fixed fields Φ

�
and A

�
k may lead to a physically equivalent, but mathematically

different, solution S
�

in such a way that the sum of the new terms [on the right hand sides
of (18) and (19)] is the same as the sum of the old terms. We assume here, that the formalism
restores the values of the physically relevant terms. This implies that the relation between the
old and new terms is given by

S
�
(x, t) = S(x, t) + ϕ(x, t) (20)

Φ
�
(x, t) = Φ(x, t)− 1

e
∂ϕ(x, t)

∂t
(21)

A
�
k(x, t) = Ak(x, t) +

c
e

∂ϕ(x, t)
∂xk

, (22)

where ϕ(x, t) is an arbitrary, single-valued function of xk, t. Consequently, all ’theories’
(differential equations for S and ρ defined by the assumptions listed in section 2) should
be form-invariant under the transformations (20)-(22). These invariance transformations,
predicted here from general considerations, are (using an arbitrary function χ = cϕ/e instead
of ϕ) denoted as ’gauge transformations of the second kind’.
The fields Φ(x, t) and Ak(x, t) describe an external influence but their numerical value is
undefined; their value at x, t may be changed according to (21) and (22) without changing
their physical effect. Thus, these fields cannot play a local role in space and time like forces and
fields in classical mechanics and electrodynamics. What, then, is the physical meaning of these
fields ? An explanation which seems obvious in the present context is the following: They
describe the statistical effect of an external influence on the considered system (ensemble of

148 Measurements in Quantum Mechanics A Statistical Derivation of Non-Relativistic Quantum Theory 9

identically prepared individual particles). The statistical effect of a force field on an ensemble
may obviously differ from the local effect of the same force field on individual particles; thus
the very existence of fields Φ and Ak different from �E and �B is no surprise. The second
common problem with the interpretation of the ’potentials’ Φ and Ak is their non-uniqueness.
It is hard to understand that a quantity ruling the behavior of individual particles should not
be uniquely defined. In contrast, this non-uniqueness is much easier to accept if Φ and Ak
rule the behavior of ensembles instead of individual particles. We have no problem to accept
the fact that a function that represents a global (integral) effect may have many different local
realizations.
It seems that this interpretation of the potentials Φ and Ak is highly relevant for the
interpretation of the effect found by Aharonov & Bohm (1959). If QT is interpreted as a
theory about individual particles, the Aharonov-Bohm effects imply that a charged particle
may be influenced in a nonlocal way by electromagnetic fields in inaccessible regions.
This paradoxical prediction, which is however in strict agreement with QT, led even to a
discussion about the reality of these effects, see Bocchieri & Loinger (1978), Roy (1980), Klein
(1981), Peshkin & Tonomura (1989). A statistical interpretation of the potentials has apparently
never been suggested, neither in the vast literature about the Aharonov-Bohm effect nor in
papers promoting the statistical interpretation of QT; most physicists discuss this nonlocal
’paradox’ from the point of view of ’the wave function of a single electron’. Further comments
on this point may be found in section 11.

The expectation value F(e)
k (x, p, t) on the right hand side of (14) is to be calculated using local,

macroscopic forces whose functional form is still unknown. Both the potentials and these
local forces represent an external influence, and it is reasonable to assume that the (nonlocal)
potentials are the statistical representatives of the local forces on the r.h.s. of Eq. (14). The
latter have to be determined by the potentials but must be uniquely defined at each space-time
point. The gauge-invariant fields

Ek = −1
c

∂Ak
∂t

− ∂Φ
∂xk

, Bk = �kij
∂Aj

∂xi
, (23)

fulfill these requirements. As a consequence of the defining relations (23) they obey
automatically the homogeneous Maxwell equations.
In a next step we rewrite the second term on the l.h.s. of Eq. (14). The commutator terms (6)
take the form

S̃[0,k] = −e
�

1
c

∂Ak
∂t

+
∂Φ
∂xk

�
, S̃[j,k] =

e
c

�
∂Aj

∂xk
− ∂Ak

∂xj

�
. (24)

As a consequence, they may be expressed in terms of the local fields (23), which have been
introduced above for reasons of gauge-invariance. Using (24), (23) and the relation (19) for the
momentum field, Eq. (14) takes the form

−
� ∞

−∞
d3x

∂ρ

∂xk

⎡
⎣ ∂S̃

∂t
+

1
2m ∑

j

�
∂S̃
∂xj

�2

+ V

⎤
⎦

+
� ∞

−∞
d3xρ

� e
c

�kij ṽiBj + eEk

�
= F(e)

k (x, p, t)

, (25)

with a velocity field defined by ṽi = p̃i/m. Thus, the new terms on the l.h.s. of (25) - stemming
from the multi-valuedness of S̃ - take the form of an expectation value (with R3 as sample
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space) of the Lorentz force field

�FL(x, t) = e�E(x, t) +
e
c
�̃v(x, t)× �B(x, t), (26)

if the particle velocity is identified with the velocity field �̃v(x, t).
The above steps imply a relation between potentials and local fields. From the present
statistical (nonlocal) point of view the potentials are more fundamental than the local fields.
In contrast, considered from the point of view of macroscopic physics, the local fields are the
physical quantities of primary importance and the potentials may (or may not) be introduced
for mathematical convenience.

4. A constraint for forces in statistical theories

Let us discuss now the nature of the macroscopic forces F(e)
k (x, p, t) entering the expectation

value on the r.h.s. of Eq. (25). In our type I parent theory, classical mechanics, there are no

constraints for the possible functional form of F(e)
k (x, p, t). However, this need not be true

in the present statistical framework. As a matter of fact, the way the mechanical potential
V(x, t) entered the differential equation for S (in the previous work I) indicates already that
such constraints do actually exist. Let us recall that in I we tacitly restricted the class of
forces to those derivable from a potential V(x, t). If we eliminate this restriction and admit
arbitrary forces, with components Fk(x, t), we obtain instead of the above relation (25) the
simpler relation [Eq. (24) of I, generalized to three dimensions and arbitrary forces of the form
Fk(x, t)]

−
� ∞

−∞
d3x

∂ρ

∂xk

⎡
⎣ 1

2m ∑
j

�
∂S
∂xj

�2

+
∂S
∂t

⎤
⎦ =

� ∞

−∞
dxρFk(x, t). (27)

This is a rather complicated integro-differential equation for our variables ρ(x, t) and S(x, t).
We assume now, using mathematical simplicity as a guideline, that Eq. (27) can be written
in the common form of a local differential equation. This assumption is of course not
evident; in principle the laws of physics could be integro-differential equations or delay
differential equations or take an even more complicated mathematical form. Nevertheless,
this assumption seems rather weak considering the fact that all fundamental laws of physics
take this ’simple’ form. Thus, we postulate that Eq. (27) is equivalent to a differential equation

1
2m ∑

j

�
∂S
∂xj

�2

+
∂S
∂t

+ T = 0, (28)

where the unknown term T describes the influence of the force Fk but may also contain other
contributions. Let us write

T = −L0 + V, (29)

where L0 does not depend on Fk, while V depends on it and vanishes for Fk → 0. Inserting (28)
and (29) in (27) yields

�
d3x

∂ρ

∂xk
(−L0 + V) =

�
d3x ρFk(x, t). (30)
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For Fk → 0 Eq. (30) leads to the relation
�

d3x
∂ρ

∂xk
L0 = 0, (31)

which remains true for finite forces because L0 does not depend on Fk. Finally, performing a
partial integration, we see that a relation

Fk = − ∂V
∂xk

+ sk,
� ∞

−∞
d3x ρsk = 0, (32)

exists between Fk and V, with a vanishing expectation value of the (statistically irrelevant)
functions sk. This example shows that the restriction to gradient fields, made above and
in I, is actually not necessary. We may admit force fields which are arbitrary functions of x
and t; the statistical conditions (which play now the role of a ’statistical constraint’) eliminate
automatically all forces that cannot be written after statistical averaging as gradient fields.
This is very interesting and indicates the possibility that the present statistical assumptions
leading to Schrödinger’s equation may also be responsible, at least partly, for the structure of
the real existing (gauge) interactions of nature.
Does this statistical constraint also work in the present p−dependent case ? We assume that
the force in (25) is a standard random variable with the configuration space as sample space

(see the discussion in section 4 of I) and that the variable p in F(e)
k (x, p, t) may consequently

be replaced by the field p̃(x, t) [see (19)]. Then, the expectation value on the r.h.s. of (25) takes
the form

F(e)
k (x, p, t) =

� ∞

−∞
d3xρ(x, t)Hk(x,

∂S̃(x, t)
∂x

, t). (33)

The second term on the l.h.s. of (25) has the same form. Therefore, the latter may be eliminated
by writing

Hk(x,
∂S̃
∂x

, t) =
e
c

�kij
1
m

∂S̃
∂xi

Bj + eEk + hk(x,
∂S̃
∂x

, t), (34)

with hk(x, p, t) as our new unknown functions. They obey the simpler relations

−
� ∞

−∞
d3x

∂ρ

∂xk

⎡
⎣ ∂S̃

∂t
+

1
2m ∑

j

�
∂S̃
∂xj

�2

+ V

⎤
⎦ =

� ∞

−∞
d3xρhk(x,

∂S̃
∂x

, t). (35)

On a first look this condition for the allowed forces looks similar to the p−independent
case [see (27)]. But the dependence of hk on x, t cannot be considered as ’given’
(externally controlled), as in the p−independent case, because it contains now the unknown
x, t-dependence of the derivatives of S̃. We may nevertheless try to incorporate the r.h.s by
adding a term T̃ to the bracket which depends on the derivatives of the multivalued quantity
S̃. This leads to the condition

hk(x,
∂S̃
∂x

, t) = − ∂T̃(x, ∂S̃
∂x , t)

∂xk
+ sk,

� ∞

−∞
d3x ρsk = 0. (36)

But this relation cannot be fulfilled for nontrivial hk, T̃ because the derivatives of S̃ cannot be
subject to further constraints beyond those given by the differential equation; on top of that
the derivatives with regard to x on the r.h.s. create higher order derivatives of S̃ which are
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space) of the Lorentz force field

�FL(x, t) = e�E(x, t) +
e
c
�̃v(x, t)× �B(x, t), (26)
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−
� ∞

−∞
d3x

∂ρ

∂xk

⎡
⎣ 1

2m ∑
j

�
∂S
∂xj

�2

+
∂S
∂t

⎤
⎦ =

� ∞

−∞
dxρFk(x, t). (27)

This is a rather complicated integro-differential equation for our variables ρ(x, t) and S(x, t).
We assume now, using mathematical simplicity as a guideline, that Eq. (27) can be written
in the common form of a local differential equation. This assumption is of course not
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differential equations or take an even more complicated mathematical form. Nevertheless,
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1
2m ∑

j

�
∂S
∂xj

�2

+
∂S
∂t

+ T = 0, (28)

where the unknown term T describes the influence of the force Fk but may also contain other
contributions. Let us write

T = −L0 + V, (29)

where L0 does not depend on Fk, while V depends on it and vanishes for Fk → 0. Inserting (28)
and (29) in (27) yields

�
d3x

∂ρ

∂xk
(−L0 + V) =

�
d3x ρFk(x, t). (30)
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d3x

∂ρ
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1
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j

�
∂S̃
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� ∞
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∂x
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the derivatives with regard to x on the r.h.s. create higher order derivatives of S̃ which are
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not present at the l.h.s. of Eq. (36). The only possibility to fulfill this relation is for constant
∂S̃
∂x , a special case which has in fact already be taken into account by adding the mechanical
potential V. We conclude that the statistical constraint leads to hk = T̃ = 0 and that the
statistical condition (35) takes the form

−
�

d3x
∂ρ

∂xk

⎡
⎣ ∂S̃

∂t
+

1
2m ∑

j

�
∂S̃
∂xj

�2

+ V

⎤
⎦ = 0. (37)

Thus, only a mechanical potential and the four electrodynamic potentials are compatible with
the statistical constraint and will consequently - assuming that the present statistical approach
reflects a fundamental principle of nature - be realized in nature. As is well known all existing
interactions follow (sometimes in a generalized form) the gauge coupling scheme derived
above. The statistical conditions imply not only Schrödinger’s equation but also the form of
the (gauge) coupling to external influences and the form of the corresponding local force, the
Lorentz force,

�FL = e�E +
e
c
�v × �B, (38)

if the particle velocity �v is identified with the velocity field �̃v(x, t).
In the present derivation the usual order of proceeding is just inverted. In the conventional
deterministic treatment the form of the local forces (Lorentz force), as taken from experiment,
is used as a starting point. The potentials are introduced afterwards, in the course of a
transition to a different formal framework (Lagrange formalism). In the present approach the
fundamental assumptions are the statistical conditions. Then, taking into account an existing
mathematical freedom (multi-valuedness of a variable) leads to the introduction of potentials.
From these, the shape of the macroscopic (Lorentz) force can be derived, using the validity of
the statistical conditions as a constraint.

5. Fisher information as the hallmark of quantum theory

The remaining nontrivial task is the derivation of a local differential equation for S and ρ from
the integral equation (37). As our essential constraint we will use, besides general principles
of simplicity (like homogeneity and isotropy of space) the principle of maximal disorder, as
realized by the requirement of minimal Fisher information. Using the abbreviation

L̄(x, t) =
∂S̃
∂t

+
1

2m

�
∂S̃(x, t)

∂x

�2

+ V(x, t), (39)

the general solution of (37) may be written in the form

∂ρ

∂xk
L̄(x, t) = Gk(x, t), (40)

where the three functions Gk(x, t) have to vanish upon integration over R3 and are otherwise
arbitrary. If we restrict ourselves to an isotropic law, we may write

Gk(x, t) =
∂ρ

∂xk
L0. (41)

152 Measurements in Quantum Mechanics A Statistical Derivation of Non-Relativistic Quantum Theory 13

Then, our problem is to find a function L0 which fulfills the differential equation

L̄(x, t)− L0 = 0, (42)

and condition (31). The method used in I for a one-dimensional situation, to determine L0
from the requirement of minimal Fisher information, remains essentially unchanged in the
present three-dimensional case. The reader is referred to the detailed explanations reported
in I.
In I it has been shown that this principle of maximal disorder leads to an anomalous
variational problem and to the following conditions for our unknown function L0:

L̄(x, t)− L0

�
ρ,

∂ρ

∂x
,

∂2ρ

∂x∂x

�
= 0 (43)

δ
�

d3xρ

�
L̄(x, t)− L0

�
ρ,

∂ρ

∂x
,

∂2ρ

∂x∂x

��
= 0, (44)

where L0 contains only derivatives of ρ up to second order and does not explicitely depend
on x, t. If Eq. (43) is taken into account, the Euler-Lagrange equations of the variational
problem (44) lead to the following differential equation

− ∂

∂xk

∂

∂xi

∂β

∂
�

∂2ρ
∂xk∂xi

� +
∂

∂xk

∂β

∂
�

∂ρ
∂xk

� − ∂β

∂ρ
+

β

ρ
= 0 (45)

for the variable β = ρL0. Eq. (45) is a straightforward generalization of the corresponding
one-dimensional relation [equation (68) of I] to three spatial dimensions.
Besides (45) a further (consistency) condition exists, which leads to a simplification of the
problem. The function L0 may depend on second order derivatives of ρ but this dependence
must be of a special form not leading to any terms in the Euler-Lagrange equations [according
to (43) our final differential equation for S and ρ must not contain higher than second order
derivatives of ρ]. Consequently, the first term in Eq. (45) (as well as the sum of the remaining
terms) has to vanish separately and (45) can be replaced by the two equations

∂

∂xk

∂

∂xi

∂β

∂
�

∂2ρ
∂xk∂xi

� = 0 (46)

∂

∂xk

∂β

∂
�

∂ρ
∂xk

� − ∂β

∂ρ
+

β

ρ
= 0. (47)

In I a new derivation of Fisher’s functional has been obtained, using the general solution
of the one-dimensional version of (45), as well as the so-called composition law. In the
present three-dimensional situation we set ourselves a less ambitious aim. We know that
Fisher’s functional describes the maximal amount of disorder. If we are able to find a solution
of (46), (47) that agrees with this functional (besides ’null-terms’ giving no contribution to the
Euler-Lagrange equations) then we will accept it as our correct solution. It is easy to see that
this solution is given by

L0 = B0

⎡
⎣− 1

2ρ2 ∑
j

�
∂ρ

∂xj

�2

+
1
ρ ∑

j

∂2ρ

∂x2
j

⎤
⎦ , (48)
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��
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∂xk

∂

∂xi

∂β

∂
�

∂2ρ
∂xk∂xi

� +
∂

∂xk
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∂
�
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β

ρ
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∂

∂xk

∂

∂xi

∂β

∂
�

∂2ρ
∂xk∂xi

� = 0 (46)

∂

∂xk

∂β

∂
�

∂ρ
∂xk

� − ∂β

∂ρ
+

β

ρ
= 0. (47)
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L0 = B0

⎡
⎣− 1

2ρ2 ∑
j

�
∂ρ

∂xj

�2

+
1
ρ ∑

j

∂2ρ

∂x2
j

⎤
⎦ , (48)
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where B0 is an arbitrary constant. Eq. (48) presents again the three-dimensional (and isotropic)
generalization of the one-dimensional result obtained in I. By means of the identity

∂

∂xi

∂
√

ρ

∂xi

∂
√

ρ

∂xk
=

∂
√

ρ

∂xk

∂

∂xi

∂
√

ρ

∂xi
+

1
2

∂

∂xk

∂
√

ρ

∂xi

∂
√

ρ

∂xi
, (49)

it is easily verified that the solution (48) obeys also condition (31). Using the
decomposition (16) and renaming B according to B = h̄2/4m, the continuity equation (3)
and the second differential equation (43) respectively, take the form

∂ρ

∂t
+

∂

∂xk

ρ

m

(
∂S
∂xk

− e
c

Ak

)
= 0, (50)

∂S
∂t

+ eφ +
1

2m ∑
k

(
∂S
∂xk

− e
c

Ak

)2
+ V − h̄2

2m
�√

ρ√
ρ

= 0. (51)

The function S occurring in (50), (51) is single-valued but not unique (not gauge-invariant). If
now the complex-valued variable

ψ =
√

ρeı S
h̄ , (52)

is introduced, the two equations (50), (51) may be written in compact form as real and
imaginary parts of the linear differential equation

( h̄
ı

∂

∂t
+ eφ

)
ψ +

1
2m

( h̄
ı

∂

∂�x
− e

c
�A
)2

ψ + Vψ = 0, (53)

which completes our derivation of Schrödinger’s equation in the presence of a gauge field.
Eq. (53) is in manifest gauge-invariant form. The gauge-invariant derivatives of S̃ with respect
to t and �x correspond to the two brackets in (53). In particular, the canonical momentum
∂S/∂�x corresponds to the momentum operator proportional to ∂/∂�x. Very frequently, Eq. (53)
is written in the form

− h̄
ı

∂

∂t
ψ = Hψ, , (54)

with the Hamilton operator

H =
1

2m
( h̄

ı
∂

∂�x
− e

c
�A
)2

+ V + eφ, (55)

Our final result, Eqs. (54), (55), agrees with the result of the conventional quantization
procedure. In its simplest form, the latter starts from the classical relation H(x, p) = E,
where H(x, p) is the Hamiltonian of a classical particle in a conservative force field, and E
is its energy. To perform a "canonical quantization" means to replace p and E by differential
expressions according to (1) and let then act both sides of the equation H(x, p) = E on states ψ
of a function space. The ’black magic’ involved in this process has been eliminated, or at least
dramatically reduced, in the present approach, where Eqs. (54), (55) have been derived from
a set of assumptions which can all be interpreted in physical terms.
The Hamiltonian (55) depends on the potentials Φ and �A and is consequently a non-unique
(not gauge-invariant) mathematical object. The same is true for the time-development
operator U(H) which is an operator function of H, see e.g. Kobe & Yang (1985). This
non-uniqueness is a problem if U(H) is interpreted as a quantity ruling the time-evolution
of a single particle. It is no problem from the point of view of the SI where H and
U(H) are primarily convenient mathematical objects which occur in a natural way if the
time-dependence of statistically relevant (uniquely defined) quantities, like expectation values
and transition probabilities, is to be calculated.
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6. Spin as a statistical degree of freedom

Spin is generally believed to be a phenomenon of quantum-theoretic origin. For a
long period of time, following Dirac’s derivation of his relativistic equation, it was also
believed to be essentially of relativistic origin. This has changed since the work of Schiller
(1962b), Levy-Leblond (1967), Arunsalam (1970), Gould (1995), Reginatto (1998b) and others,
who showed that spin may be derived entirely in the framework of non-relativistic QT
without using any relativistic concepts. Thus, a new derivation of non-relativistic QT like
the present one should also include a derivation of the phenomenon of spin. This will be done
in this and the next two sections.
A simple idea to extend the present theory is to assume that sometimes - under certain external
conditions to be identified later - a situation occurs where the behavior of our statistical
ensemble of particles cannot longer be described by ρ, S alone but requires, e.g., the double
number of field variables; let us denote these by ρ1, S1, ρ2, S2 (we restrict ourselves here to
spin one-half). The relations defining this generalized theory should be formulated in such a
way that the previous relations are obtained in the appropriate limits. One could say that we
undertake an attempt to introduce a new (discrete) degree of freedom for the ensemble. If we
are able to derive a non-trivial set of differential equations - with coupling between ρ1, S1 and
ρ2, S2 - then such a degree of freedom could exist in nature.
Using these guidelines, the basic equations of the generalized theory can be easily formulated.
The probability density and probability current take the form ρ = ρ1 + ρ2 and�j =�j1 +�j2, with
�ji (i = 1, 2) defined in terms of ρi, Si exactly as before (see section 2). Then, the continuity
equation is given by

∂(ρ1 + ρ2)

∂t
+

∂

∂xl

(
ρ1
m

∂S̃1
∂xl

+
ρ2
m

∂S̃2
∂xl

)
= 0, (56)

where we took the possibility of multi-valuedness of the “phases“ already into account, as
indicated by the notation S̃i. The statistical conditions are given by the two relations

d
dt

xk =
pk
m

(57)

d
dt

pk = F(T)
k (x, p, t), (58)

which are similar to the relations used previously (in section 2 and in I), and by an additional
equation

d
dt

sk = F(R)
k (x, p, t), (59)

which is required as a consequence of our larger number of dynamic variables. Eq. (59) is

best explained later; it is written down here for completeness. The forces F(T)
k (x, p, t) and

F(R)
k (x, p, t) on the r.h.s. of (58) and (59) are again subject to the “statistical constraint“, which

has been defined in section 3. The expectation values are defined as in (9)-(11).
Performing mathematical manipulations similar to the ones reported in section 2, the l.h.s. of
Eq. (58) takes the form

d
dt

pk =
∫

d3x
[ ∂ρ1

∂t
∂S̃1
∂xk

+
∂ρ2
∂t

∂S̃2
∂xk

− ∂ρ1
∂xk

∂S̃1
∂t

− ∂ρ2
∂xk

∂S̃2
∂t

+ ρ1S̃(1)
[0,k] + ρ2S̃(2)

[0,k]

]
,

(60)
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where B0 is an arbitrary constant. Eq. (48) presents again the three-dimensional (and isotropic)
generalization of the one-dimensional result obtained in I. By means of the identity

∂

∂xi

∂
√

ρ

∂xi

∂
√

ρ

∂xk
=

∂
√

ρ

∂xk

∂

∂xi

∂
√

ρ

∂xi
+

1
2

∂

∂xk

∂
√

ρ

∂xi

∂
√

ρ

∂xi
, (49)

it is easily verified that the solution (48) obeys also condition (31). Using the
decomposition (16) and renaming B according to B = h̄2/4m, the continuity equation (3)
and the second differential equation (43) respectively, take the form

∂ρ

∂t
+

∂

∂xk

ρ

m

(
∂S
∂xk

− e
c

Ak

)
= 0, (50)

∂S
∂t

+ eφ +
1

2m ∑
k

(
∂S
∂xk

− e
c

Ak

)2
+ V − h̄2

2m
�√

ρ√
ρ

= 0. (51)

The function S occurring in (50), (51) is single-valued but not unique (not gauge-invariant). If
now the complex-valued variable

ψ =
√

ρeı S
h̄ , (52)

is introduced, the two equations (50), (51) may be written in compact form as real and
imaginary parts of the linear differential equation

( h̄
ı

∂

∂t
+ eφ

)
ψ +

1
2m

( h̄
ı

∂

∂�x
− e

c
�A
)2

ψ + Vψ = 0, (53)

which completes our derivation of Schrödinger’s equation in the presence of a gauge field.
Eq. (53) is in manifest gauge-invariant form. The gauge-invariant derivatives of S̃ with respect
to t and �x correspond to the two brackets in (53). In particular, the canonical momentum
∂S/∂�x corresponds to the momentum operator proportional to ∂/∂�x. Very frequently, Eq. (53)
is written in the form

− h̄
ı

∂

∂t
ψ = Hψ, , (54)

with the Hamilton operator

H =
1

2m
( h̄

ı
∂

∂�x
− e

c
�A
)2

+ V + eφ, (55)

Our final result, Eqs. (54), (55), agrees with the result of the conventional quantization
procedure. In its simplest form, the latter starts from the classical relation H(x, p) = E,
where H(x, p) is the Hamiltonian of a classical particle in a conservative force field, and E
is its energy. To perform a "canonical quantization" means to replace p and E by differential
expressions according to (1) and let then act both sides of the equation H(x, p) = E on states ψ
of a function space. The ’black magic’ involved in this process has been eliminated, or at least
dramatically reduced, in the present approach, where Eqs. (54), (55) have been derived from
a set of assumptions which can all be interpreted in physical terms.
The Hamiltonian (55) depends on the potentials Φ and �A and is consequently a non-unique
(not gauge-invariant) mathematical object. The same is true for the time-development
operator U(H) which is an operator function of H, see e.g. Kobe & Yang (1985). This
non-uniqueness is a problem if U(H) is interpreted as a quantity ruling the time-evolution
of a single particle. It is no problem from the point of view of the SI where H and
U(H) are primarily convenient mathematical objects which occur in a natural way if the
time-dependence of statistically relevant (uniquely defined) quantities, like expectation values
and transition probabilities, is to be calculated.
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6. Spin as a statistical degree of freedom

Spin is generally believed to be a phenomenon of quantum-theoretic origin. For a
long period of time, following Dirac’s derivation of his relativistic equation, it was also
believed to be essentially of relativistic origin. This has changed since the work of Schiller
(1962b), Levy-Leblond (1967), Arunsalam (1970), Gould (1995), Reginatto (1998b) and others,
who showed that spin may be derived entirely in the framework of non-relativistic QT
without using any relativistic concepts. Thus, a new derivation of non-relativistic QT like
the present one should also include a derivation of the phenomenon of spin. This will be done
in this and the next two sections.
A simple idea to extend the present theory is to assume that sometimes - under certain external
conditions to be identified later - a situation occurs where the behavior of our statistical
ensemble of particles cannot longer be described by ρ, S alone but requires, e.g., the double
number of field variables; let us denote these by ρ1, S1, ρ2, S2 (we restrict ourselves here to
spin one-half). The relations defining this generalized theory should be formulated in such a
way that the previous relations are obtained in the appropriate limits. One could say that we
undertake an attempt to introduce a new (discrete) degree of freedom for the ensemble. If we
are able to derive a non-trivial set of differential equations - with coupling between ρ1, S1 and
ρ2, S2 - then such a degree of freedom could exist in nature.
Using these guidelines, the basic equations of the generalized theory can be easily formulated.
The probability density and probability current take the form ρ = ρ1 + ρ2 and�j =�j1 +�j2, with
�ji (i = 1, 2) defined in terms of ρi, Si exactly as before (see section 2). Then, the continuity
equation is given by

∂(ρ1 + ρ2)

∂t
+

∂

∂xl

(
ρ1
m

∂S̃1
∂xl

+
ρ2
m

∂S̃2
∂xl

)
= 0, (56)

where we took the possibility of multi-valuedness of the “phases“ already into account, as
indicated by the notation S̃i. The statistical conditions are given by the two relations

d
dt

xk =
pk
m

(57)

d
dt

pk = F(T)
k (x, p, t), (58)

which are similar to the relations used previously (in section 2 and in I), and by an additional
equation

d
dt

sk = F(R)
k (x, p, t), (59)

which is required as a consequence of our larger number of dynamic variables. Eq. (59) is

best explained later; it is written down here for completeness. The forces F(T)
k (x, p, t) and

F(R)
k (x, p, t) on the r.h.s. of (58) and (59) are again subject to the “statistical constraint“, which

has been defined in section 3. The expectation values are defined as in (9)-(11).
Performing mathematical manipulations similar to the ones reported in section 2, the l.h.s. of
Eq. (58) takes the form

d
dt

pk =
∫

d3x
[ ∂ρ1

∂t
∂S̃1
∂xk

+
∂ρ2
∂t

∂S̃2
∂xk

− ∂ρ1
∂xk

∂S̃1
∂t

− ∂ρ2
∂xk

∂S̃2
∂t

+ ρ1S̃(1)
[0,k] + ρ2S̃(2)

[0,k]

]
,

(60)
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where the quantities S̃(i)
[j,k], i = 1, 2 are defined as above [see Eq. (6)] but with S̃ replaced by S̃i.

Let us write now S̃ in analogy to section 2 in the form S̃i = Si + Ñi, as a sum of a single-valued
part Si and a multi-valued part Ñi. If Ñ1 and Ñ2 are to represent an external influence, they
must be identical and a single multi-valued part Ñ = Ñ1 = Ñ2 may be used instead. The
derivatives of Ñ with respect to t and xk must be single-valued and we may write

∂S̃i
∂t

=
∂Si
∂t

+ eΦ,
∂S̃i
∂xk

=
∂Si
∂xk

− e
c

Ak, (61)

using the same familiar electrodynamic notation as in section 2. In this way we arrive at eight
single-valued functions to describe the external conditions and the dynamical state of our
system, namely Φ, Ak and ρi, Si.
In a next step we replace ρi, Si by new dynamic variables ρ, S, ϑ, ϕ defined by

ρ1 = ρ cos2 ϑ

2
, S1 = S +

h̄
2

ϕ,

ρ2 = ρ sin2 ϑ

2
, S2 = S − h̄

2
ϕ.

(62)

A transformation similar to Eq. (62) has been introduced by Takabayasi (1955) in his
reformulation of Pauli’s equation. Obviously, the variables S, ρ describe ’center of mass’
properties (which are common to both states 1 and 2) while ϑ, ϕ describe relative (internal)
properties of the system.
The dynamical variables S, ρ and ϑ, ϕ are not decoupled from each other. It turns out (see
below) that the influence of ϑ, ϕ on S, ρ can be described in a (formally) similar way as the
influence of an external electromagnetic field if a ’vector potential’ �A(s) and a ’scalar potential’
φ(s), defined by

A(s)
l = − h̄c

2e
cos ϑ

∂ϕ

∂xl
, φ(s) =

h̄
2e

cos ϑ
∂ϕ

∂t
, (63)

are introduced. Denoting these fields as ’potentials’, we should bear in mind that they are
not externally controlled but defined in terms of the internal dynamical variables. Using the
abbreviations

Âl = Al + A(s)
l , φ̂ = φ + φ(s), (64)

the second statistical condition (58) can be written in the following compact form

−
∫

d3x
∂ρ

∂xl

[(
∂S
∂t

+ eφ̂

)
+

1
2m ∑

j

(
∂S
∂xj

− e
c

Âj

)2]

+
∫

d3xρ

[
− e

c
vj

(
∂Âl
∂xj

− ∂Âj

∂xl

)
− e

c
∂Âl
∂t

− e
∂φ̂

∂xl

]

= F(T)
l (x, p, t) =

∫
d3xρF(T)

l (x, p, t),

(65)

which shows a formal similarity to the spinless case [see (14) and (24)]. The components of
the velocity field in (65) are given by

vj =
1
m

(
∂S
∂xj

− e
c

Âj

)
. (66)
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If now fields El , Bl and E(s)
l , B(s)

l are introduced by relations analogous to (23), the second line
of (65) may be written in the form

∫
d3xρ

[(
e�E +

e
c
�v × �B

)
l +

(
e �E(s) +

e
c
�v × �B(s)

)
l

]
, (67)

which shows that both types of fields, the external fields as well as the internal fields due to
ϑ, ϕ, enter the theory in the same way, namely in the form of a Lorentz force.
The first, externally controlled Lorentz force in (67) may be eliminated in exactly the same
manner as in section 3 by writing

F(T)
l (x, p, t) =

∫
d3xρ

(
e�E +

e
c
�v × �B

)
l +

∫
d3xρF(I)

l (x, p, t). (68)

This means that one of the forces acting on the system as a whole is again given by a Lorentz
force; there may be other nontrivial forces F(I) which are still to be determined. The second
’internal’ Lorentz force in (67) can, of course, not be eliminated in this way. In order to proceed,
the third statistical condition (59) must be implemented. To do that it is useful to rewrite
Eq. (65) in the form

−
∫

d3x
∂ρ

∂xl

[(
∂S
∂t

+ eφ̂

)
+

1
2m ∑

j

(
∂S
∂xj

− e
c

Âj

)2]

+
∫

d3x
h̄
2

ρ sin ϑ

(
∂ϑ

∂xl

[
∂ϕ

∂t
+ vj

∂ϕ

∂xj

]
− ∂ϕ

∂xl

[
∂ϑ

∂t
+ vj

∂ϑ

∂xj

])

= F(I)
l (x, p, t) =

∫
d3xρF(I)

l (x, p, t),

(69)

using (67), (68) and the definition (63) of the fields A(s)
l and φ(s).

We interpret the fields ϕ and ϑ as angles (with ϕ measured from the y−axis of our coordinate
system) determining the direction of a vector

�s =
h̄
2
(

sin ϑ sin ϕ�ex + sin ϑ cos ϕ�ey + cos ϑ�ez
)
, (70)

of constant length h̄
2 . As a consequence, �̇s and �s are perpendicular to each other and the

classical force �F(R) in Eq. (59) should be of the form �D ×�s, where �D is an unknown field. In
contrast to the ’external force’, we are unable to determine the complete form of this ’internal’
force from the statistical constraint [an alternative treatment will be reported in section 8] and
set

�F(R) = − e
mc

�B ×�s, (71)

where �B is the external ’magnetic field’, as defined by Eq. (23), and the factor in front of �B has
been chosen to yield the correct g−factor of the electron.
The differential equation

d
dt
�s = − e

mc
�B ×�s (72)

for particle variables ϑ(t), ϕ(t) describes the rotational state of a classical magnetic dipole in
a magnetic field, see Schiller (1962b). Recall that we do not require that (72) is fulfilled in the
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part Si and a multi-valued part Ñi. If Ñ1 and Ñ2 are to represent an external influence, they
must be identical and a single multi-valued part Ñ = Ñ1 = Ñ2 may be used instead. The
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are introduced. Denoting these fields as ’potentials’, we should bear in mind that they are
not externally controlled but defined in terms of the internal dynamical variables. Using the
abbreviations

Âl = Al + A(s)
l , φ̂ = φ + φ(s), (64)

the second statistical condition (58) can be written in the following compact form
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Âj

)2]

+
∫

d3xρ

[
− e

c
vj

(
∂Âl
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a magnetic field, see Schiller (1962b). Recall that we do not require that (72) is fulfilled in the
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present theory. The present variables are the fields ϑ(x, t), ϕ(x, t) which may be thought of as
describing a kind of ’rotational state’ of the statistical ensemble as a whole, and have to fulfill
the ’averaged version’ (59) of (72).
Performing steps similar to the ones described in I (see also section 2), the third statistical
condition (59) implies the following differential relations,

ϕ̇ + vj
∂ϕ

∂xj
=

e
mc

1
sin ϑ

(
Bz sin ϑ − By cos ϑ cos ϕ − Bz cos ϑ sin ϕ

)

+
cos ϕ

sin ϑ
G1 − sin ϕ

sin ϑ
G2, (73)

ϑ̇ + vj
∂ϑ

∂xj
=

e
mc

(
Bx cos ϕ − By sin ϕ

)− G3
sin ϑ

, (74)

for the dynamic variables ϑ and ϕ. These equations contain three fields Gi(x, t), i = 1, 2, 3
which have to obey the conditions

∫
d3xρ Gi = 0, �G�s = 0, (75)

and are otherwise arbitrary. The ’total derivatives’ of ϕ and ϑ in (69) may now be eliminated
with the help of (73),(74) and the second line of Eq. (69) takes the form

∫
d3x

∂ρ

∂xl

e
mc

sjBj +
∫

d3xρ
e

mc
sj

∂

∂xl
Bj

+
∫

d3xρ
h̄
2
(

cos ϕ
∂ϑ

∂xl
G1 − sin ϕ

∂ϑ

∂xl
G2 +

∂ϕ

∂xl
G3

)
.

(76)

The second term in (76) presents an external macroscopic force. It may be eliminated from (69)
by writing

F(I)
l (x, p, t) =

∫
d3xρ

(− μj
∂

∂xl
Bj) + F(V)

l (x, p, t), (77)

where the magnetic moment of the electron μi = −(e/mc)si has been introduced. The
first term on the r.h.s. of (77) is the expectation value of the well-known electrodynamical
force exerted by an inhomogeneous magnetic field on the translational motion of a magnetic
dipole; this classical force plays an important role in the standard interpretation of the
quantum-mechanical Stern-Gerlach effect. It is satisfying that both translational forces, the
Lorentz force as well as this dipole force, can be derived in the present approach. The
remaining unknown force �F(V) in (77) leads (in the same way as in section 3) to a mechanical
potential V, which will be omitted for brevity.
The integrand of the first term in (76) is linear in the derivative of ρ with respect to xl . It
may consequently be added to the first line of (69) which has the same structure. Therefore, it
represents (see below) a contribution to the generalized Hamilton-Jacobi differential equation.
The third term in (76) has the mathematical structure of a force term, but does not contain any
externally controlled fields. Thus, it must also represent a contribution to the generalized
Hamilton-Jacobi equation. This implies that this third term can be written as

∫
d3xρ

h̄
2
(

cos ϕ
∂ϑ

∂xl
G1 − sin ϕ

∂ϑ

∂xl
G2 +

∂ϕ

∂xl
G3

)
=

∫
d3x

∂ρ

∂xl
L�

0, (78)
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where L�
0 is an unknown field depending on G1, G2, G3.

Collecting terms and restricting ourselves, as in section 5, to an isotropic law, the statistical
condition (69) takes the form of a generalized Hamilton-Jacobi equation:

L̄ :=
(

∂S
∂t

+ eφ̂

)
+

1
2m ∑

j

(
∂S
∂xj

− e
c

Âj

)2

+ μiBi = L0. (79)

The unknown function L0 must contain L�
0 but may also contain other terms, let us write

L0 = L�
0 + ΔL0.

7. ’Missing’ quantum spin terms from Fisher information

Let us summarize at this point what has been achieved so far. We have four coupled
differential equations for our dynamic field variables ρ, S, ϑ, ϕ. The first of these is the
continuity equation (56), which is given, in terms of the present variables, by

∂ρ

∂t
+

∂

∂xl

[
ρ

m
( ∂S

∂xj
− e

c
Âj

)]
= 0. (80)

The three other differential equations, the evolution equations (73), (74) and the generalized
Hamilton-Jacobi equation (79), do not yet possess a definite mathematical form. They contain
four unknown functions Gi, L0 which are constrained, but not determined, by (75), (78).
The simplest choice, from a formal point of view, is Gi = L0 = 0. In this limit the present
theory agrees with Schiller’s field-theoretic (Hamilton-Jacobi) version, see Schiller (1962b), of
the equations of motion of a classical dipole. This is a classical (statistical) theory despite
the fact that it contains [see (63)] a number h̄. But this classical theory is not realized in
nature; at least not in the microscopic domain. The reason is that the simplest choice from a
formal point of view is not the simplest choice from a physical point of view. The postulate of
maximal simplicity (Ockham’s razor) implies equal probabilities and the principle of maximal
entropy in classical statistical physics. A similar principle which is able to ’explain’ the
nonexistence of classical physics (in the microscopic domain) is the principle of minimal Fisher
information Frieden (2004). The relation between the two (classical and quantum-mechanical)
principles has been discussed in detail in I.
The mathematical formulation of the principle of minimal Fisher information for the present
problem requires a generalization, as compared to I, because we have now several fields with
coupled time-evolution equations. As a consequence, the spatial integral (spatial average)
over ρ(L̄ − L0) in the variational problem (44) should be replaced by a space-time integral,
and the variation should be performed with respect to all four variables. The problem can be
written in the form

δ
∫

dt
∫

d3xρ (L̄ − L0) = 0 (81)

Ea = 0, a = S, ρ, ϑ, ϕ, (82)

where Ea = 0 is a shorthand notation for the equations (80), (79), (74) (73). Eqs. (81), (82)
require that the four Euler-Lagrange equations of the variational problem (81) agree with
the differential equations (82). This imposes conditions for the unknown functions L0, Gi.
If the solutions of (81), (82) for L0, Gi are inserted in the variational problem (81), the four
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present theory. The present variables are the fields ϑ(x, t), ϕ(x, t) which may be thought of as
describing a kind of ’rotational state’ of the statistical ensemble as a whole, and have to fulfill
the ’averaged version’ (59) of (72).
Performing steps similar to the ones described in I (see also section 2), the third statistical
condition (59) implies the following differential relations,
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∂ϑ
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, (74)

for the dynamic variables ϑ and ϕ. These equations contain three fields Gi(x, t), i = 1, 2, 3
which have to obey the conditions

∫
d3xρ Gi = 0, �G�s = 0, (75)

and are otherwise arbitrary. The ’total derivatives’ of ϕ and ϑ in (69) may now be eliminated
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The second term in (76) presents an external macroscopic force. It may be eliminated from (69)
by writing

F(I)
l (x, p, t) =

∫
d3xρ

(− μj
∂

∂xl
Bj) + F(V)

l (x, p, t), (77)

where the magnetic moment of the electron μi = −(e/mc)si has been introduced. The
first term on the r.h.s. of (77) is the expectation value of the well-known electrodynamical
force exerted by an inhomogeneous magnetic field on the translational motion of a magnetic
dipole; this classical force plays an important role in the standard interpretation of the
quantum-mechanical Stern-Gerlach effect. It is satisfying that both translational forces, the
Lorentz force as well as this dipole force, can be derived in the present approach. The
remaining unknown force �F(V) in (77) leads (in the same way as in section 3) to a mechanical
potential V, which will be omitted for brevity.
The integrand of the first term in (76) is linear in the derivative of ρ with respect to xl . It
may consequently be added to the first line of (69) which has the same structure. Therefore, it
represents (see below) a contribution to the generalized Hamilton-Jacobi differential equation.
The third term in (76) has the mathematical structure of a force term, but does not contain any
externally controlled fields. Thus, it must also represent a contribution to the generalized
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where L�
0 is an unknown field depending on G1, G2, G3.

Collecting terms and restricting ourselves, as in section 5, to an isotropic law, the statistical
condition (69) takes the form of a generalized Hamilton-Jacobi equation:
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)
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(
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Âj

)2

+ μiBi = L0. (79)

The unknown function L0 must contain L�
0 but may also contain other terms, let us write

L0 = L�
0 + ΔL0.

7. ’Missing’ quantum spin terms from Fisher information

Let us summarize at this point what has been achieved so far. We have four coupled
differential equations for our dynamic field variables ρ, S, ϑ, ϕ. The first of these is the
continuity equation (56), which is given, in terms of the present variables, by
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The three other differential equations, the evolution equations (73), (74) and the generalized
Hamilton-Jacobi equation (79), do not yet possess a definite mathematical form. They contain
four unknown functions Gi, L0 which are constrained, but not determined, by (75), (78).
The simplest choice, from a formal point of view, is Gi = L0 = 0. In this limit the present
theory agrees with Schiller’s field-theoretic (Hamilton-Jacobi) version, see Schiller (1962b), of
the equations of motion of a classical dipole. This is a classical (statistical) theory despite
the fact that it contains [see (63)] a number h̄. But this classical theory is not realized in
nature; at least not in the microscopic domain. The reason is that the simplest choice from a
formal point of view is not the simplest choice from a physical point of view. The postulate of
maximal simplicity (Ockham’s razor) implies equal probabilities and the principle of maximal
entropy in classical statistical physics. A similar principle which is able to ’explain’ the
nonexistence of classical physics (in the microscopic domain) is the principle of minimal Fisher
information Frieden (2004). The relation between the two (classical and quantum-mechanical)
principles has been discussed in detail in I.
The mathematical formulation of the principle of minimal Fisher information for the present
problem requires a generalization, as compared to I, because we have now several fields with
coupled time-evolution equations. As a consequence, the spatial integral (spatial average)
over ρ(L̄ − L0) in the variational problem (44) should be replaced by a space-time integral,
and the variation should be performed with respect to all four variables. The problem can be
written in the form

δ
∫

dt
∫

d3xρ (L̄ − L0) = 0 (81)

Ea = 0, a = S, ρ, ϑ, ϕ, (82)

where Ea = 0 is a shorthand notation for the equations (80), (79), (74) (73). Eqs. (81), (82)
require that the four Euler-Lagrange equations of the variational problem (81) agree with
the differential equations (82). This imposes conditions for the unknown functions L0, Gi.
If the solutions of (81), (82) for L0, Gi are inserted in the variational problem (81), the four
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relations (82) become redundant and ρ(L̄ − L0) becomes the Lagrangian density of our
problem. Thus, Eqs. (81) and (82) represent a method to construct a Lagrangian.
We assume a functional form L0(χα, ∂kχα, ∂k∂lχα), where χα = ρ, ϑ, ϕ. This means L0
does not possess an explicit x, t-dependence and does not depend on S (this would lead
to a modification of the continuity equation). We further assume that L0 does not depend
on time-derivatives of χα (the basic structure of the time-evolution equations should not be
affected) and on spatial derivatives higher than second order. These second order derivatives
must be taken into account but should not give contributions to the variational equations (a
more detailed discussion of the last point has been given in I).
The variation with respect to S reproduces the continuity equation which is unimportant
for the determination of L0, Gi. Performing the variation with respect to ρ, ϑ, ϕ and taking
the corresponding conditions (79), (74) (73) into account leads to the following differential
equations for L0, G1 cos ϕ − G2 sin ϕ and G3,

− ∂

∂xk

∂

∂xi

∂ρL0

∂
∂2ρ

∂xk∂xi

+
∂

∂xk

∂ρL0

∂
∂ρ
∂xk

− ρ
∂L0
∂ρ

= 0 (83)
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+
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∂ ∂ϑ
∂xk

− ∂ρL0
∂ϑ

− h̄ρ

2
(G1 cos ϕ − G2 sin ϕ) = 0 (84)

− ∂
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∂
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+
∂
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∂ρL0

∂
∂ϕ
∂xk

− ∂ρL0
∂ϕ

− h̄
2

ρG3 = 0. (85)

The variable S does not occur in (83)-(85) in agreement with our assumptions about the form
of L0. It is easy to see that a proper solution (with vanishing variational contributions from
the second order derivatives) of (83)-(85) is given by
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h̄2
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[
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(86)

h̄G1 cos ϕ − h̄G2 sin ϕ =
h̄2
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[
1
2
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(
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)2
− 1

ρ

∂

∂�x
ρ
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]
(87)

h̄G3 = − h̄2

2m
1
ρ

∂

∂�x
(
ρ sin ϑ2 ∂ϕ

∂�x
)
. (88)

A new adjustable parameter appears on the r.h.s of (86)- (88) which has been identified with
h̄2/2m, where h̄ is again Planck’s constant. This second h̄ is related to the quantum-mechanical
principle of maximal disorder. It is in the present approach not related in any obvious way to
the previous "classical" h̄ which denotes the amplitude of a rotation; compare, however, the
alternative derivation of spin in section 8.
The solutions for G1, G2 may be obtained with the help of the second condition (�G�s = 0) listed
in Eq. (75). The result may be written in the form

G1 =
h̄

2m
1
ρ

∂
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(
1
2

sin 2ϑ sin ϕ
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)
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1
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(
1
2

sin 2ϑ cos ϕ
∂ϕ

∂�x
+ sin ϕ

∂ϑ

∂�x

)
.

(89)
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Eqs. (88) and (89) show that the first condition listed in (75) is also satisfied. The last condition
is also fulfilled: L0 can be written as L�

0 + ΔL0, where

L�
0 = − h̄2

8m

�
sin2 ϑ

�
∂ϕ

∂�x

�2
−

�
∂ϑ

∂�x

�2 �
, ΔL0 =

h̄2

2m
1√
ρ

∂

∂�x
∂

∂�x
√

ρ, (90)

and L�
0 fulfills (78). We see that L�

0 is a quantum-mechanical contribution to the rotational
motion while ΔL0 is related to the probability density of the ensemble (as could have been
guessed considering the mathematical form of these terms). The last term is the same as in the
spinless case [see (51)].
The remaining task is to show that the above solution for L0 does indeed lead to a
(appropriately generalized) Fisher functional. This can be done in several ways. The simplest
is to use the following result due to Reginatto (1998b):

�
d3x (−ρL0) =

h̄2

8m

3

∑
j=1

�
d3x

3

∑
k=1

1
ρ(j)

�
∂ρ(j)

∂xk

�2

, (91)

ρ(1) := ρ sin2 ϑ

2
cos2 ϕ

2
, ρ(2) := ρ sin2 ϑ

2
sin2 ϕ

2
, ρ(3) := ρ cos2 ϑ

2
. (92)

The functions ρ(j) represent the probability that a particle is at space-time point x, t and �s
points into direction j. Inserting (86) the validity of (91) may easily be verified. The r.h.s.
of Eq. (91) shows that the averaged value of L0 represents indeed a Fisher functional, which
completes our calculation of the ’quantum terms’ L0, Gi.
Summarizing, our assumption, that under certain external conditions four state variables
instead of two may be required, led to a nontrivial result, namely the four coupled differential
equations (80), (79), (74), (73) with L0, Gi given by (86), (89), (88). The external condition which
stimulates this splitting is given by a gauge field; the most important case is a magnetic field
�B but other possibilities do exist (see below). These four differential equations are equivalent
to the much simpler differential equation

� h̄
ı

∂

∂t
+ eφ

�
ψ̂ +

1
2m

� h̄
ı

∂

∂�x
− e

c
�A
�2

ψ̂ + μB�σ�Bψ̂ = 0, (93)

which is linear in the complex-valued two-component state variable ψ̂ and is referred to
as Pauli equation (the components of the vector �σ are the three Pauli matrices and μB =
−eh̄/2mc). To see the equivalence one writes, see Takabayasi (1955), Holland (1995),

ψ̂ =
√

ρ e
ı
h̄ S

⎛
⎜⎝

cos ϑ
2 eı ϕ

2

ı sin ϑ
2 e−ı ϕ

2

⎞
⎟⎠ , (94)

and evaluates the real and imaginary parts of the two scalar equations (93). This leads to the
four differential equations (80), (79), (74) (73) and completes the present spin theory.
In terms of the real-valued functions ρ, S, ϑ, ϕ the quantum-mechanical
solutions (86), (88), (89) for L0, Gi look complicated in comparison to the classical solutions
L0 = 0, Gi = 0. In terms of the variable ψ̂ the situation changes to the contrary: The
quantum-mechanical equation becomes simple (linear) and the classical equation, which has
been derived by Schiller (1962b), becomes complicated (nonlinear). The simplicity of the
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relations (82) become redundant and ρ(L̄ − L0) becomes the Lagrangian density of our
problem. Thus, Eqs. (81) and (82) represent a method to construct a Lagrangian.
We assume a functional form L0(χα, ∂kχα, ∂k∂lχα), where χα = ρ, ϑ, ϕ. This means L0
does not possess an explicit x, t-dependence and does not depend on S (this would lead
to a modification of the continuity equation). We further assume that L0 does not depend
on time-derivatives of χα (the basic structure of the time-evolution equations should not be
affected) and on spatial derivatives higher than second order. These second order derivatives
must be taken into account but should not give contributions to the variational equations (a
more detailed discussion of the last point has been given in I).
The variation with respect to S reproduces the continuity equation which is unimportant
for the determination of L0, Gi. Performing the variation with respect to ρ, ϑ, ϕ and taking
the corresponding conditions (79), (74) (73) into account leads to the following differential
equations for L0, G1 cos ϕ − G2 sin ϕ and G3,
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The variable S does not occur in (83)-(85) in agreement with our assumptions about the form
of L0. It is easy to see that a proper solution (with vanishing variational contributions from
the second order derivatives) of (83)-(85) is given by
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A new adjustable parameter appears on the r.h.s of (86)- (88) which has been identified with
h̄2/2m, where h̄ is again Planck’s constant. This second h̄ is related to the quantum-mechanical
principle of maximal disorder. It is in the present approach not related in any obvious way to
the previous "classical" h̄ which denotes the amplitude of a rotation; compare, however, the
alternative derivation of spin in section 8.
The solutions for G1, G2 may be obtained with the help of the second condition (�G�s = 0) listed
in Eq. (75). The result may be written in the form
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Eqs. (88) and (89) show that the first condition listed in (75) is also satisfied. The last condition
is also fulfilled: L0 can be written as L�

0 + ΔL0, where
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and L�
0 fulfills (78). We see that L�

0 is a quantum-mechanical contribution to the rotational
motion while ΔL0 is related to the probability density of the ensemble (as could have been
guessed considering the mathematical form of these terms). The last term is the same as in the
spinless case [see (51)].
The remaining task is to show that the above solution for L0 does indeed lead to a
(appropriately generalized) Fisher functional. This can be done in several ways. The simplest
is to use the following result due to Reginatto (1998b):
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2
sin2 ϕ

2
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The functions ρ(j) represent the probability that a particle is at space-time point x, t and �s
points into direction j. Inserting (86) the validity of (91) may easily be verified. The r.h.s.
of Eq. (91) shows that the averaged value of L0 represents indeed a Fisher functional, which
completes our calculation of the ’quantum terms’ L0, Gi.
Summarizing, our assumption, that under certain external conditions four state variables
instead of two may be required, led to a nontrivial result, namely the four coupled differential
equations (80), (79), (74), (73) with L0, Gi given by (86), (89), (88). The external condition which
stimulates this splitting is given by a gauge field; the most important case is a magnetic field
�B but other possibilities do exist (see below). These four differential equations are equivalent
to the much simpler differential equation
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ψ̂ + μB�σ�Bψ̂ = 0, (93)

which is linear in the complex-valued two-component state variable ψ̂ and is referred to
as Pauli equation (the components of the vector �σ are the three Pauli matrices and μB =
−eh̄/2mc). To see the equivalence one writes, see Takabayasi (1955), Holland (1995),
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and evaluates the real and imaginary parts of the two scalar equations (93). This leads to the
four differential equations (80), (79), (74) (73) and completes the present spin theory.
In terms of the real-valued functions ρ, S, ϑ, ϕ the quantum-mechanical
solutions (86), (88), (89) for L0, Gi look complicated in comparison to the classical solutions
L0 = 0, Gi = 0. In terms of the variable ψ̂ the situation changes to the contrary: The
quantum-mechanical equation becomes simple (linear) and the classical equation, which has
been derived by Schiller (1962b), becomes complicated (nonlinear). The simplicity of the
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underlying physical principle (principle of maximal disorder) leads to a simple mathematical
representation of the final basic equation (if a complex-valued state function is introduced).
One may also say that the linearity of the equations is a consequence of this principle of
maximal disorder. This is the deeper reason why it has been possible, see Klein (2009), to
derive Schrödinger’s equation from a set of assumptions including linearity.
Besides the Pauli equation we found, as a second important result of our spin calculation, that
the following local force is compatible with the statistical constraint:

�FL + �FI = e
(
�E +

1
c
�v × �B

)
−�μ · ∂

∂�x
�B. (95)

Here, the velocity field �̃v(x, t) and the magnetic moment field �μ(x, t) = −(e/mc)�s(x, t) have
been replaced by corresponding particle quantities �v(t) and �μ(t); the dot denotes the inner
product between �μ and �B. The first force in (95), the Lorentz force, has been derived here from
first principles without any additional assumptions. The same cannot be said about the second
force which takes this particular form as a consequence of some additional assumptions
concerning the form of the ’internal force’ �FR [see (71)]. In particular, the field appearing
in �FR was arbitrary as well as the proportionality constant (g-factor of the electron) and had
to be adjusted by hand. It is well-known that in a relativistic treatment the spin term appears
automatically if the potentials are introduced. Interestingly, this unity is not restricted to the
relativistic regime. Following Arunsalam (1970) and Gould (1995) we report in the next section
an alternative (non-relativistic) derivation of spin, which does not contain any arbitrary fields
or constants - but is unable to yield the expression (95) for the macroscopic electromagnetic
forces.
In the present treatment spin has been introduced as a property of an ensemble and not of
individual particles. Similar views may be found in the literature, see Ohanian (1986). Of
course, it is difficult to imagine the properties of an ensemble as being completely independent
from the properties of the particles it is made from. The question whether or not a property
’spin’ can be ascribed to single particles is a subtle one. Formally, we could assign a probability
of being in a state i (i = 1, 2) to a particle just as we assign a probability for being at a position
�x ∈ R3. But contrary to position, no classical meaning - and no classical measuring device -
can be associated with the discrete degree of freedom i. Experimentally, the measurement of
the ’spin of a single electron’ is - in contrast to the measurement of its position - a notoriously
difficult task. Such experiments, and a number of other interesting questions related to spin,
have been discussed by Morrison (2007).

8. Spin as a consequence of a multi-valued phase

As shown by Arunsalam (1970), Gould (1995), and others, spin in non-relativistic QT may be
introduced in exactly the same manner as the electrodynamic potentials. In this section we
shall apply a slightly modified version of their method and try to derive spin in an alternative
way - which avoids the shortcoming mentioned in the last section.
Arunsalam (1970) and Gould (1995) introduce the potentials by applying the well-known
minimal-coupling rule to the free Hamiltonian. In the present treatment this is achieved
by making the quantity S multi-valued. The latter approach seems intuitively preferable
considering the physical meaning of the corresponding classical quantity. Let us first review
the essential steps [see Klein (2009) for more details] in the process of creating potentials in
the scalar Schrödinger equation:
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• Chose a free Schrödinger equation with single-valued state function.

• ’Turn on’ the interaction by making the state function multi-valued (multiply it with a
multi-valued phase factor)

• Shift the multi-valued phase factor to the left of all differential operators, creating new
terms (potentials) in the differential equation.

• Skip the multi-valued phase. The final state function is again single-valued.

Let us adapt this method for the derivation of spin (considering spin one-half only). The first
and most important step is the identification of the free Pauli equation. An obvious choice is

[
h̄
ı

∂

∂t
+

1
2m

( h̄
ı

∂

∂�x
)2

+ V
]

ψ̄ = 0, (96)

where ψ̄ is a single-valued two-component state function; (96) is essentially a duplicate of
Schrödinger’s equation. We may of course add arbitrary vanishing terms to the expression
in brackets. This seems trivial, but some of these terms may vanish only if applied to a
single-valued ψ̄ and may lead to non-vanishing contributions if applied later (in the second of
the above steps) to a multi-valued state function ψ̄multi.
In order to investigate this possibility, let us rewrite Eq. (96) in the form

[
p̂0 +

1
2m

�̂p�̂p + V
]

ψ̄ = 0, (97)

where p̂0 is an abbreviation for the first term of (96) and the spatial derivatives are given by

�̂p = p̂k�ek, p̂k =
h̄
ı

∂

∂xk
. (98)

All terms in the bracket in (97) are to be multiplied with a 2x2 unit-matrix E which has not be
written down. Replace now the derivatives in (97) according to

p̂0 ⇒ p̂0 M0, �̂p ⇒ �̂pk Mk, (99)

where M0, Mk are hermitian 2x2 matrices with constant coefficients, which should be
constructed in such a way that the new equation agrees with (97) for single-valued ψ̄, i.e.
assuming the validity of the condition

( p̂i p̂k − p̂k p̂i) ψ̄ = 0. (100)

This leads to the condition
M−1

0 Mi Mk = Eδik + Tik, (101)

where Tik is a 2x2 matrix with two cartesian indices i, k, which obeys Tik = −Tki. A solution
of (101) is given by M0 = σ0, Mi = σi, where σ0, σi are the four Pauli matrices. In terms of this
solution, Eq. (101) takes the form

σiσk = σ0δik + ıεiklσl . (102)

Thus, an alternative free Pauli-equation, besides (96) is given by
[

h̄
ı

∂

∂t
+

1
2m

(
h̄
ı

)2
σi

∂

∂xi
σk

∂

∂xk
+ V

]
ψ̄ = 0. (103)
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underlying physical principle (principle of maximal disorder) leads to a simple mathematical
representation of the final basic equation (if a complex-valued state function is introduced).
One may also say that the linearity of the equations is a consequence of this principle of
maximal disorder. This is the deeper reason why it has been possible, see Klein (2009), to
derive Schrödinger’s equation from a set of assumptions including linearity.
Besides the Pauli equation we found, as a second important result of our spin calculation, that
the following local force is compatible with the statistical constraint:

�FL + �FI = e
(
�E +

1
c
�v × �B

)
−�μ · ∂

∂�x
�B. (95)

Here, the velocity field �̃v(x, t) and the magnetic moment field �μ(x, t) = −(e/mc)�s(x, t) have
been replaced by corresponding particle quantities �v(t) and �μ(t); the dot denotes the inner
product between �μ and �B. The first force in (95), the Lorentz force, has been derived here from
first principles without any additional assumptions. The same cannot be said about the second
force which takes this particular form as a consequence of some additional assumptions
concerning the form of the ’internal force’ �FR [see (71)]. In particular, the field appearing
in �FR was arbitrary as well as the proportionality constant (g-factor of the electron) and had
to be adjusted by hand. It is well-known that in a relativistic treatment the spin term appears
automatically if the potentials are introduced. Interestingly, this unity is not restricted to the
relativistic regime. Following Arunsalam (1970) and Gould (1995) we report in the next section
an alternative (non-relativistic) derivation of spin, which does not contain any arbitrary fields
or constants - but is unable to yield the expression (95) for the macroscopic electromagnetic
forces.
In the present treatment spin has been introduced as a property of an ensemble and not of
individual particles. Similar views may be found in the literature, see Ohanian (1986). Of
course, it is difficult to imagine the properties of an ensemble as being completely independent
from the properties of the particles it is made from. The question whether or not a property
’spin’ can be ascribed to single particles is a subtle one. Formally, we could assign a probability
of being in a state i (i = 1, 2) to a particle just as we assign a probability for being at a position
�x ∈ R3. But contrary to position, no classical meaning - and no classical measuring device -
can be associated with the discrete degree of freedom i. Experimentally, the measurement of
the ’spin of a single electron’ is - in contrast to the measurement of its position - a notoriously
difficult task. Such experiments, and a number of other interesting questions related to spin,
have been discussed by Morrison (2007).

8. Spin as a consequence of a multi-valued phase

As shown by Arunsalam (1970), Gould (1995), and others, spin in non-relativistic QT may be
introduced in exactly the same manner as the electrodynamic potentials. In this section we
shall apply a slightly modified version of their method and try to derive spin in an alternative
way - which avoids the shortcoming mentioned in the last section.
Arunsalam (1970) and Gould (1995) introduce the potentials by applying the well-known
minimal-coupling rule to the free Hamiltonian. In the present treatment this is achieved
by making the quantity S multi-valued. The latter approach seems intuitively preferable
considering the physical meaning of the corresponding classical quantity. Let us first review
the essential steps [see Klein (2009) for more details] in the process of creating potentials in
the scalar Schrödinger equation:
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where Tik is a 2x2 matrix with two cartesian indices i, k, which obeys Tik = −Tki. A solution
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The quantity in the bracket is the generalized Hamiltonian constructed by Arunsalam (1970)
and Gould (1995). In the present approach gauge fields are introduced by means of a
multi-valued phase. This leads to the same formal consequences as the minimal coupling rule
but allows us to conclude that the second free Pauli equation (103) is more appropriate than the
first, Eq. (96), because it is more general with regard to the consequences of multi-valuedness.
This greater generality is due to the presence of the second term on the r.h.s. of (102).
The second step is to turn on the multi-valuedness in Eq. (103), ψ̄ ⇒ ψ̄multi, by multiplying
ψ̄ with a multi-valued two-by-two matrix. This matrix must be chosen in such a way that the
remaining steps listed above lead to Pauli’s equation (93) in presence of an gauge field. Since
in our case the final result (93) is known, this matrix may be found by performing the inverse
process, i.e. performing a singular gauge transformation ψ̂ = Γψ̄multi of Pauli’s equation (93)
from ψ̂ to ψ̄multi, which removes all electrodynamic terms from (93) and creates Eq. (103). The
final result for the matrix Γ is given by

Γ = E exp
{

ı
e

h̄c

∫ x,t [
dx�k Ak(x�, t�)− cdt�φ(x�, t�)

] }
, (104)

and agrees, apart from the unit matrix E, with the multi-valued factor introduced previously
[see (17) and (52)] leading to the electrodynamic potentials. The inverse transition from (103)
to (93), i.e. the creation of the potentials and the Zeeman term, can be performed by using the
inverse of (104).
The Hamiltonian (103) derived by Arunsalam (1970) and Gould (1995) shows that spin can
be described by means of the same abelian gauge theory that leads to the standard quantum
mechanical gauge coupling terms; no new adjustable fields or parameters appear. The only
requirement is that the appropriate free Pauli equation (103) is chosen as starting point. The
theory of Dartora & Cabrera (2008), on the other hand, started from the alternative (from the
present point of view inappropriate) free Pauli equation (96) and leads to the conclusion that
spin must be described by a non-abelian gauge theory.
As far as our derivation of non-relativistic QT is concerned we have now two alternative,
and in a sense complementary, possibilities to introduce spin. The essential step in the
second (Arunsalam-Gould) method is the transition from (96) to the equivalent free Pauli
equation (103). This step is a remarkable short-cut for the complicated calculations, performed
in the last section, leading to the various terms required by the principle of minimal Fisher
information. The Arunsalam-Gould method is unable to provide the shape (95) of the
corresponding macroscopic forces but is very powerful insofar as no adjustable quantities are
required. It will be used in the next section to perform the transition to an arbitrary number
of particles.

9. Transition to N particles as final step to non-relativistic quantum theory

In this section the present derivation of non-relativistic QT is completed by deriving
Schrödinger’s equation for an arbitrary number N of particles or, more precisely, for statistical
ensembles of identically prepared experimental arrangements involving N particles.
In order to generalize the results of sections 2 and 5, a convenient set of n = 3N coordinates
q1, ...qn and masses m1, ...mn is defined by

(q1, q2, q3, ...qn−2, qn−1, qn) = (x1, y1, z1, ..., xN , yN , zN) ,

(m1, m2, m3, ...mn−2, mn−1, mn) = (m1, m1, m1, ..., mN , mN , mN) .
(105)
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The index I = 1, ...N is used to distinguish particles, while indices i, k, .. are used here to
distinguish the 3N coordinates q1, ...qn. No new symbol has been introduced in (105) to
distinguish the masses mI and mi since there is no danger of confusion in anyone of the
formulas below. However, the indices of masses will be frequently written in the form m(i)
in order to avoid ambiguities with regard to the summation convention. The symbol Q in
arguments denotes dependence on all q1, ...qn. In order to generalize the results of section 8
a notation xI,k, �xI , and mI (with I = 1, ..., N and k = 1, 2, 3) for coordinates, positions, and
masses will be more convenient.
The basic relations of section 2, generalized in an obvious way to N particles, take the form

∂ρ(Q, t)
∂t

+
∂

∂qk

ρ(Q, t)
m(k)

∂S(Q, t)
∂qk

= 0 (106)

d
dt

qk =
1

m(k)
pk (107)

d
dt

pk = Fk(Q, t) (108)

qk =
∫

dQ ρ(Q, t) qk (109)

Here, S is a single-valued variable; the multi-valuedness will be added later, following the
method of section 8.
The following calculations may be performed in complete analogy to the corresponding steps
of section 2. For the present N−dimensional problem, the vanishing of the surface integrals,
occurring in the course of various partial integrations, requires that ρ vanishes exponentially
in arbitrary directions of the configuration space. The final conclusion to be drawn from
Eqs. (106)- (109) takes the form

n

∑
j=1

1
2m(j)

(
∂S
∂qj

)2

+
∂S
∂t

+ V = L0,
∫

dQ
∂ρ

∂qk
L0 = 0, (110)

The remaining problem is the determination of the unknown function L0, whose form is
constrained by the condition defined in Eq. (110).
L0 can be determined using again the principle of minimal Fisher information, see I for details.
Its implementation in the present framework takes the form

δ
∫

dt
∫

dQ ρ (L − L0) = 0 (111)

Ea = 0, a = S, ρ, (112)

where ES = 0, Eρ = 0 are shorthand notations for the two basic equations (110) and (106). As
before, Eqs. (111), (112) represent a method to construct a Lagrangian. After determination
of L0 the three relations listed in (111), (112) become redundant and (112) become the
fundamental equations of the N−particle theory.
The following calculation can be performed in complete analogy to the case N = 1 reported
in section 5. All relations remain valid if the upper summation limit 3 is replaced by 3N. This
is also true for the final result, which takes the form

L0 =
h̄2

4ρ

[
− 1

2ρ

1
m(j)

∂ρ

∂qj

∂ρ

∂qj
+

1
m(j)

∂2ρ

∂qj∂qj

]
. (113)
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If a complex-valued variable ψ, defined as in (52), is introduced, the two basic relations Ea = 0
may be condensed into the single differential equation,

[
h̄
ı

∂

∂t
+

N

∑
I=1

1
2m(I)

(
h̄
ı

∂

∂xI,k

)(
h̄
ı

∂

∂xI,k

)
+ V

]
ψ = 0, (114)

which is referred to as N−particle Schrödinger equation, rewritten here in the more familiar
form using particle indices. As is well-known, only approximate solutions of this partial
differential equation of order 3N + 1 exist for realistic systems. The inaccessible complexity
of quantum-mechanical solutions for large N is not reflected in the abstract Hilbert space
structure (which is sometimes believed to characterize the whole of QT) but plays probably
a decisive role for a proper description of the mysterious relation between QT and the
macroscopic world.
Let us now generalize the Arunsalam-Gould method, discussed in section 8, to an arbitrary
number of particles. We assume, that the considered N−particle statistical ensemble
responds in 2N ways to the external electromagnetic field. This means we restrict ourselves
again, like in section 6, 7 to spin one-half. Then, the state function may be written as
ψ(x1, s1; ....xI , sI ; ...xN , sN) where sI = 1, 2. In the first of the steps listed at the beginning
of section 8, a differential equation, which is equivalent to Eq. (114) for single-valued ψ but
may give non-vanishing contributions for multi-valued ψ, has to be constructed. The proper
generalization of Eq. (103) to arbitrary N takes the form

[
h̄
ı

∂

∂t
+

N

∑
I=1

1
2m(I)

(
h̄
ı

σ
(I)
k

∂

∂xI,k

)(
h̄
ı

σ
(I)
l

∂

∂xI,l

)
+ V

]
ψ = 0, (115)

where the Pauli matrices σ
(I)
k operate by definition only on the two-dimensional subspace

spanned by the variable sI . In the second step we perform the replacement

ψ ⇒ exp
{
− ı

h̄

N

∑
I=1

eI
c

3

∑
k=1

∫ �xI ,t [
dx�I,k Ak(x�I , t�)− cdt�φ(x�I , t�)

] }
ψ, (116)

using a multi-valued phase factor, which is an obvious generalization of Eq. (104). The
remaining steps, in the listing of section 8, lead in a straightforward way to the final result

[
h̄
ı

∂

∂t
+

N

∑
I=1

eIφ(xI , t) +
N

∑
I=1

3

∑
k=1

1
2m(I)

(
h̄
ı

∂

∂xI,k
− eI

c
Ak(xI , t)

)2

+
N

∑
I=1

μ
(I)
B σ

(I)
k Bk(xI , t) + V(x1, ..., xN , t)

]
ψ = 0

, (117)

where μ
(I)
B = −h̄eI/2mIc and �B = rot�A. The mechanical potential V(x1, ..., xN , t) describes a

general many-body force but contains, of course, the usual sum of two-body potentials as a
special case. Eq. (117) is the N−body version of Pauli’s equation and completes - in the sense
discussed at the very beginning of this paper - the present derivation of non-relativistic QT.
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10. The classical limit of quantum theory is a statistical theory

The classical limit of Schrödinger’s equation plays an important role for two topics discussed
in the next section, namely the interpretation of QT and the particular significance of
potentials in QT; to study these questions it is sufficient to consider a single-particle ensemble
described by a single state function. This ’classical limit theory’ is given by the two differential
equations

∂ρ

∂t
+

∂

∂xk

ρ

m

(
∂S
∂xk

− e
c

Ak

)
= 0, (118)

∂S
∂t

+ eφ +
1

2m ∑
k

(
∂S
∂xk

− e
c

Ak

)2
+ V = 0, (119)

which are obtained from Eqs. (50) and (51) by performing the limit h̄ → 0. The quantum
mechanical theory (50) and (51) and the classical theory (118) and (119) show fundamentally
the same mathematical structure; both are initial value problems for the variables S and ρ
obeying two partial differential equations. The difference is the absence of the last term on the
l.h.s. of (51) in the corresponding classical equation (119). This leads to a decoupling of S and
ρ in (119); the identity of the classical object described by S is no longer affected by statistical
aspects described by ρ.
The field theory (118), (119) for the two ’not decoupled’ fields S and ρ is obviously very
different from classical mechanics which is formulated in terms of trajectories. The fact that
one of these equations, namely (119), agrees with the Hamilton-Jacobi equation, does not
change the situation since the presence of the continuity equation (118) cannot be neglected.
On top of that, even if it could be neglected, Eq. (119) would still be totally different from
classical mechanics: In order to construct particle trajectories from the partial differential
equation (119) for the field S(x, t), a number of clearly defined mathematical manipulations,
which are part of the classical theory of canonical transformations, see Greiner (1989), must be
performed. The crucial point is that the latter theory is not part of QT and cannot be added ’by
hand’ in the limit h̄ → 0. Thus, (118), (119) is, like QT, an indeterministic theory predicting not
values of single event observables but only probabilities, which must be verified by ensemble
measurements.
Given that we found a solution S(x, t), ρ(x, t) of (118), (119) for given initial values, we may
ask which experimental predictions can be made with the help of these quantities. Using the
fields �̃p(x, t), Ẽ(x, t) defined by Eqs. (19), (18), the Hamilton-Jacobi equation (119) takes the
form

�̃p2(x, t)
2m

+ V(x, t) = Ẽ(x, t), (120)

The l.h.s. of (120) depends on the field �̃p in the same way as a classical particle Hamiltonian
on the (gauge-invariant) kinetic momentum �p. We conclude that the field �̃p(x, t) describes
a mapping from space-time points to particle momenta: If a particle (in an external
electromagnetic field) is found at time t at the point x, then its kinetic momentum is given
by �̃p(x, t). This is not a deterministic prediction since we can not predict if a single particle
will be or will not be at time t at point x; the present theory gives only a probability ρ(x, t) for
such an event. Combining our findings about �̃p(x, t) and x we conclude that the experimental
prediction which can be made with the help of S(x, t), ρ(x, t) is given by the following phase
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If a complex-valued variable ψ, defined as in (52), is introduced, the two basic relations Ea = 0
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which is referred to as N−particle Schrödinger equation, rewritten here in the more familiar
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using a multi-valued phase factor, which is an obvious generalization of Eq. (104). The
remaining steps, in the listing of section 8, lead in a straightforward way to the final result
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where μ
(I)
B = −h̄eI/2mIc and �B = rot�A. The mechanical potential V(x1, ..., xN , t) describes a

general many-body force but contains, of course, the usual sum of two-body potentials as a
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10. The classical limit of quantum theory is a statistical theory
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space probability density:

w(x, p, t) = ρ(x, t)δ(3)(p − ∂S̃(x, t)
∂x

). (121)

Eq. (121) confirms our claim that the classical limit theory is a statistical theory. The
one-dimensional version of (121) has been obtained before by means of a slightly different
method in I. The deterministic element [realized by the delta-function shaped probability
in (121)] contained in the classical statistical theory (118), (119) is absent in QT, see I.
Eqs. (118), (119) constitute the mathematically well-defined limit h̄ → 0 of Schrödinger’s
equation. Insofar as there is general agreement with regard to two points, namely that (i)
’non-classicality’ (whatever this may mean precisely) is expressed by a nonzero h̄, and that
(ii) Schrödinger’s equation is the most important relation of quantum theory, one would
also expect general agreement with regard to a further point, namely that Eqs. (118), (119)
present essentially (for a three-dimensional configuration space) the classical limit of quantum
mechanics. But this is, strangely enough, not the case. With a few exceptions, see Van Vleck
(1928), Schiller (1962a), Ballentine (1994), Shirai (1998), Klein (2009), most works (too many to
be quoted) take it for granted that the classical limit of quantum theory is classical mechanics.
The objective of papers like Rowe (1991), Werner & Wolff (1995), Landau (1996), Allori &
Zanghi (2009) devoted to “..the classical limit of quantum mechanics..“ is very often not the
problem: ”what is the classical limit of quantum mechanics ?” but rather: “how to bridge
the gap between quantum mechanics and classical mechanics ?”. Thus, the fact that classical
mechanics is the classical limit of quantum mechanics is considered as evident and any facts
not compatible with it - like Eqs. (118), (119) - are denied.
What, then, is the reason for this widespread denial of reality ? One of the main reasons
is the principle of reductionism which still rules the thinking of most physicists today. The
reductionistic ideal is a hierarchy of physical theories; better theories have an enlarged
domain of validity and contain ’inferior’ theories as special cases. This principle which
has been extremely successful in the past dictates that classical mechanics is a special case
of quantum theory. Successful as this idea might have been during a long period of time
it is not necessarily universally true; quantum mechanics and classical mechanics describe
different domains of reality, both may be true in their own domains of validity. Many
phenomena in nature indicate that the principle of reductionism (alone) is insufficient to
describe reality, see Laughlin & Pines (2000). Releasing ourselves from the metaphysical
principle of reductionism, we accept that the classical limit of quantum mechanics for a
three-dimensional configuration space is the statistical theory defined by Eqs. (118), (119).
It is clear that this theory is not realized in nature (with the same physical meaning of the
variables) because h̄ is different from zero. But this is a different question and does not affect
the conclusion.

11. Extended discussion

In this paper it has been shown, continuing the work of I, that the basic differential equation
of non-relativistic QT may be derived from a number of clearly defined assumptions of a
statistical nature. Although this does not exclude the possibility of other derivations, we
consider this success as a strong argument in favor of the statistical interpretation of QT.
This result explains also, at least partly, the success of the canonical quantization rules (1).
Strictly speaking, these rules have only be derived for a particular (though very important)
special case, the Hamiltonian. However, one can expect that (1) can be verified for all
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meaningful physical observables4. On the other hand, it cannot be expected that the rules (1)
hold for arbitrary functions of x, p; each case has to be investigated separately. Thus, the
breakdown of (1), as expressed by Groenewold’s theorem, is no surprise.
The fundamental Ehrenfest-like relations of the present theory establish [like the formal
rules (1)] a correspondence between particle mechanics and QT. Today, philosophical questions
concerning, in particular, the ’reality’ of particles play an important role in the thinking of
some physicists. So: ’What is this theory about.. ?’ While the present author is no expert in
this field, the concept of indeterminism, as advocated by the philosopher Popper (1982), seems
to provide an appropriate philosophical basis for the present work.
The present method to introduce gauge fields by means of a multi-valued dynamic variable
(’phase function’) has been invented many years ago but leads, in the context of the present
statistical theory, nevertheless to several new results. In particular, it has been shown
in section 3, that only the Lorentz force can exist as fundamental macroscopic force if the
statistical assumptions of section 2 are valid. It is the only force (in the absence of spin
effects, see the remarks below) that can be incorporated in a ’standard’ differential equation
for the dynamical variables ρ, S. The corresponding terms in the statistical field equations,
representing the Lorentz force, are given by the familiar gauge (minimal) coupling terms
containing the potentials. The important fact that all forces in nature follow this ’principle
of minimal coupling’ is commonly explained as a consequence of local gauge invariance. The
present treatment offers an alternative explanation.
Let us use the following symbolic notation to represent the relation between the local force
and the terms representing its action in a statistical context:

Φ, �A ⇒ e�E +
e
c
�v × �B. (122)

The fields �E and �B are uniquely defined in terms of the potentials φ and �A [see (23)] while the
inverse is not true. Roughly speaking, the local fields are ’derivatives’ of the potentials - and
the potentials are ’integrals’ of the local field; this mathematical relation reflects the physical
role of the potentials φ and �A as statistical representatives of the the local fields �E and �B,
as well as their non-uniqueness. It might seem that the logical chain displayed in (122) is
already realized in the classical treatment of a particle-field system, where potentials have to
be introduced in order to construct a Lagrangian, see e.g. Landau & Lifshitz (1967). However,
in this case, the form of the local force is not derived but postulated. The present treatment
’explains’ the form of the Lagrangian - as a consequence of the basic assumptions listed in
section 2.
The generalization of the present theory to spin, reported in sections 6 and 7, leads to a
correspondence similar to Eq. (122), namely

�μ�B → �μ · ∂

∂�x
�B. (123)

The term linear in �B, on the l.h.s. of (123), plays the role of a ’potential’ for the local force on the
r.h.s. The points discussed after Eq. (122) apply here as well [As a matter of fact we consider
�B as a unique physical quantity; it would not be unique if it would be defined in terms of the
tensor on the r.h.s. of (123)]. We see here a certain analogy between gauge and spin interaction
terms. Unfortunately, the derivation of the spin force on the r.h.s. of (123) requires - in contrast
to the Lorentz force - additional assumptions (see the remarks in sections 7, 8).

4 As indicated by preliminary calculations of the angular momentum relation corresponding to Eq. (8)
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Our notation for potentials φ, �A, fields �E, �B, and parameters e, c suggests that these quantities
are electrodynamical in nature. However, this is not necessarily true. By definition, the fields
�E, �B obey four equations (the homogeneous Maxwell equations), which means that additional
conditions are required in order to determine these six fields. The most familiar possibility
is, of course, the second pair of Maxwell’s equations. A second possible realization for the
fields �E, �B is given by the inertial forces acting on a mass m in an arbitrarily accelerated
reference frame, see Hughes (1992). The inertial gauge field may also lead to a spin response
of the ensemble; such experiments have been proposed by Mashhoon & Kaiser (2006). It is
remarkable that the present theory establishes a (admittedly somewhat vague) link between
the two extremely separated physical fields of inertia and QT.
It is generally assumed that the electrodynamic potentials have a particular significance in
QT which they do not have in classical physics. Let us analyze this statement in detail. The
first part of the statement, concerning the significance of the potentials, is of course true. The
second part, asserting that in classical physics all external influences can be described solely
in terms of field strengths, is wrong. More precisely, it is true for classical mechanics but not
for classical physics in general. A counterexample - a theory belonging to classical physics but
with potentials playing an indispensable role - is provided by the classical limit (118),(119)
of Schrödinger’s equation. In this field theory the potentials play an indispensable role
because (in contrast to particle theories, like the canonical equations) no further derivatives
of the Hamiltonian, which could restore the fields, are to be performed. This means that
the significance of the potentials is not restricted to quantum theory but rather holds for
the whole class of statistical theories discussed above, which contains both quantum theory
and its classical limit theory as special cases. This result is in agreement with the statistical
interpretation of potentials proposed in section 3.
The precise characterization of the role of the potentials is of particular importance for
the interpretation of the Aharonov-Bohm effect. The ’typical quantum-mechanical features’
observed in these phase shift experiments should be identified by comparing the quantum
mechanical results not with classical mechanics but with the predictions of the classical
statistical theory (118), (119). The predictions of two statistical theories, both of which use
potentials to describe the influence of the external field, have to be compared.
The limiting behavior of Schrödinger’s equation as h̄ → 0, discussed in section 10, is very
important for the proper interpretation of QT. The erroneous belief (wish) that this limit can
(must) be identified with classical mechanics is closely related to the erroneous belief that QT
is able to describe the dynamics of individual particles. In this respect QT is obviously an
incomplete theory, as has been pointed out many times before, during the last eighty years,
see e.g. Einstein (1949), Margenau (1935) , Ballentine (1970), Held (2008). Unfortunately, this
erroneous opinion is historically grown and firmly established in our thinking as shown by
the ubiquitous use of phrases like ’the wave function of the electron’. But it is clear that
an erroneous identification of the domain of validity of a physical theory will automatically
create all kinds of mysteries and unsolvable problems - and this is exactly what happens.
Above, we have identified one of the (more subtle) problems of this kind, concerning the role
of potentials in QT, but many more could be found. Generalizing the above argumentation
concerning potentials, we claim that characteristic features of QT cannot be identified by
comparison with classical mechanics. Instead, quantum theory should be compared with its
classical limit, which is in the present 3D-case given by (118), (119) - we note in this context
that several ’typical’ quantum phenomena have been explained by Kirkpatrick (2003) in terms
of classical probability theory. One has to compare the solutions of the classical, nonlinear
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equations (118), (119) with those of the quantum mechanical, linear equations, (50), (51),
in order to find out which ’typical quantum-mechanical features’ are already given by
statistical (nonlocal) correlations of the classical limit theory and which features are really
quantum-theoretical in nature - related to the nonzero value of h̄.

12. Summary

In the present paper it has been shown that the method reported in I, for the derivation
of Schrödingers’s equation, can be generalized in such a way that essentially all aspects of
non-relativistic QT are taken into account. The success of this derivation from statistical
origins is interpreted as an argument in favor of the SI. The treatment of gauge fields
and spin in the present statistical framework led to several remarkable new insights. We
understand now why potentials (and not local fields) occur in the field equations of QT. The
non-uniqueness of the potentials and the related concept of gauge invariance is not a mystery
any more. Spin is derived as a kind of two-valuedness of a statistical ensemble. The local
forces associated with the gauge potentials, the Lorentz force and the force experienced by
a particle with magnetic moment, can also be derived. Apart from some open questions
in the area of non-relativistic physics, a major problem for future research is a relativistic
generalization of the present theory.
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of the Hamiltonian, which could restore the fields, are to be performed. This means that
the significance of the potentials is not restricted to quantum theory but rather holds for
the whole class of statistical theories discussed above, which contains both quantum theory
and its classical limit theory as special cases. This result is in agreement with the statistical
interpretation of potentials proposed in section 3.
The precise characterization of the role of the potentials is of particular importance for
the interpretation of the Aharonov-Bohm effect. The ’typical quantum-mechanical features’
observed in these phase shift experiments should be identified by comparing the quantum
mechanical results not with classical mechanics but with the predictions of the classical
statistical theory (118), (119). The predictions of two statistical theories, both of which use
potentials to describe the influence of the external field, have to be compared.
The limiting behavior of Schrödinger’s equation as h̄ → 0, discussed in section 10, is very
important for the proper interpretation of QT. The erroneous belief (wish) that this limit can
(must) be identified with classical mechanics is closely related to the erroneous belief that QT
is able to describe the dynamics of individual particles. In this respect QT is obviously an
incomplete theory, as has been pointed out many times before, during the last eighty years,
see e.g. Einstein (1949), Margenau (1935) , Ballentine (1970), Held (2008). Unfortunately, this
erroneous opinion is historically grown and firmly established in our thinking as shown by
the ubiquitous use of phrases like ’the wave function of the electron’. But it is clear that
an erroneous identification of the domain of validity of a physical theory will automatically
create all kinds of mysteries and unsolvable problems - and this is exactly what happens.
Above, we have identified one of the (more subtle) problems of this kind, concerning the role
of potentials in QT, but many more could be found. Generalizing the above argumentation
concerning potentials, we claim that characteristic features of QT cannot be identified by
comparison with classical mechanics. Instead, quantum theory should be compared with its
classical limit, which is in the present 3D-case given by (118), (119) - we note in this context
that several ’typical’ quantum phenomena have been explained by Kirkpatrick (2003) in terms
of classical probability theory. One has to compare the solutions of the classical, nonlinear
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equations (118), (119) with those of the quantum mechanical, linear equations, (50), (51),
in order to find out which ’typical quantum-mechanical features’ are already given by
statistical (nonlocal) correlations of the classical limit theory and which features are really
quantum-theoretical in nature - related to the nonzero value of h̄.

12. Summary

In the present paper it has been shown that the method reported in I, for the derivation
of Schrödingers’s equation, can be generalized in such a way that essentially all aspects of
non-relativistic QT are taken into account. The success of this derivation from statistical
origins is interpreted as an argument in favor of the SI. The treatment of gauge fields
and spin in the present statistical framework led to several remarkable new insights. We
understand now why potentials (and not local fields) occur in the field equations of QT. The
non-uniqueness of the potentials and the related concept of gauge invariance is not a mystery
any more. Spin is derived as a kind of two-valuedness of a statistical ensemble. The local
forces associated with the gauge potentials, the Lorentz force and the force experienced by
a particle with magnetic moment, can also be derived. Apart from some open questions
in the area of non-relativistic physics, a major problem for future research is a relativistic
generalization of the present theory.
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1. Introduction 
Quantum mechanics (QM) is complete in a precise sense. It cannot be supplemented by 
more informative descriptions of physical systems given certain reasonable assumptions; 
this is what the no-hidden-variables proofs show. Theorems of Kochen-Specker-type (KS 
theorems) crucially employ an assumption of context-independence of the observables 
considered while those of Bell-type theorems use an assumption of locality. Since locality 
amounts to context-independence of local observables the former theorems can be 
considered as more general than the latter. What exactly do these theorems show in terms of 
physics? In which sense do they prove QM to be complete? 
The standard answer to these questions is indeed older than the theorems themselves. It was 
given by the inventors of QM, notably von Neumann (who himself devised a no-hidden-
variables argument) and Dirac. It says that the mathematical entity representing the 
maximal QM information we can have about a system S represents all the physical 
properties that S has. This is an informative physical interpretation of the theorems. Since it 
embodies the idea that the QM information about S is the complete representation of its 
physical state it may be called the completeness assumption. 
In this paper, I will try to show that the completeness assumption is not the correct 
interpretation of the KS theorems for an ultimately simple reason: it cannot be squared with 
QM itself. The argument proceeds as follows. Initially, I explicate four properties of QM – 
properties not mentioned but represented in standard axiomatisations – that will drive the 
argument, and moreover cast the completeness assumption into a precise form: COMP 
(basically a weakened version of the well-known eigenstate-eigenvalue link) (sec.2). Then I 
consider the central equation of the QM statistical algorithm: the trace formula. From the 
QM properties I conclude that the formula must be explicated in one of two ways. Neither 
option, however, can be harmonised with both QM and a general probability principle 
(sec.3). I discuss whether the argument is just an involved form of the measurement 
problem or else unduly neglects the notion of QM measurement – both with a negative 
result (sec.4). I consider a fundamental objection that indeed circumvents the argument and 
show that it violates one of the four QM properties (sec.5). Finally, I briefly consider what 
the KS theorems tell us about QM given that the argument against COMP is correct (sec.6).  

2. Preliminaries 
2.1 Properties of quantum mechanics 
Initially, we must identify the features of QM needed for the argument. The theory can be 
introduced in various ways, hence comes in different versions but the four properties we 
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need are shared by all of them. I choose a standard formulation of QM, using the 
Schrödinger picture and density operators, and illustrate everything from there but the 
argument in no way hinges on this choice. Suppose that the standard formulation comes as 
a set of axioms. The number of the axioms and their individual details will differ but the 
axioms will rule three important things. First, there will be an axiom fixing the mathematical 
entity representing the state of a QM system S for a fixed time t0: a density operator W (t0) 
on an appropriate Hilbert space. Second, there will be an axiom ruling the time evolution of 
state W (t0): an equation W (t) = U (t) W (t0) U (t)–1 where U (t) = exp [–iHt] is a function of 
time, and H, possibly time-dependent (H = H(t)), is a unitary operator representing S’s total 
energy. Finally, there will be an axiom decreeing how QM generates predictions. It will 
either be or directly imply a statistical algorithm. Assuming a nondegenerate and discrete 
observable A on S with eigenvalues ai (with i = 1, 2, …) and ak an arbitrary one of the ai, one 
form of the algorithm will include an equivalent of the following equation: p (ak) = Tr (W Pak)), 
called the trace formula. Note that p (ak), on the left abbreviates p ([A] = ak) where ‘[A] = ak’ 
means ‘the value of A on S equals ak’ or equivalently ‘S has value ak of A’.  
This little sketch of one form of QM illustrates four crucial properties that it shares with all 
other forms. These properties are independent of the axiomatisation details. In particular, 
they are independent of: a) which specific form the statistical algorithm (often called the 
Born Rule) takes, wherein the trace formula ultimately resides; b) whether or not we have 
projection in QM. The properties are dependent on the Schrödinger picture but have 
counterparts in the Heisenberg picture such that an argument parallel to the one given here 
can be constructed. (I will, however, not try to show this and leave the Heisenberg picture 
mostly out of discussion.) The first property is this: 
Time Parameter Uniqueness: QM contains a unique time-parameter t.  
The time-parameter in QM has a clear role to play. Given an initial value t0 of t, variable 
values of t relate states to W (t0) by W (t) = U (t) W (t0) U (t)–1. The variable t can be assumed 
to take values ad libitum, but there is no second time parameter in QM. In particular, QM 
leaves no conceptual room for re-interpreting two occurrences of t in any QM equation as 
two independent parameters (t and t′, say) capable of taking different values. (The evolution 
equation W (t) = U (t) W (t0) U (t)–1 where t, if it takes a value, must take the same in all three 
places is one trivial example of this property.)  
The second property is a trivial consequence of the Schrödinger picture: 
Time Reference:  If QM ascribes to S a state W, then W = W (t), i.e. W is time-dependent 
throughout. 
Given W = W (t0), Time Reference is satisfied. Up to a measurement, all other states are 
produced from W (t0) via time evolution, so are time-dependent by construction. The 
situation will be different upon measurement – but only if we have a form of QM where 
unitary evolution is interrupted: projection. As I said, the argument below will be 
independent of whether or not QM contains a projection postulate because it employs just 
time-evolution up to a “first” measurement. But note that Time Reference is also 
respected, given projection, in the situation during or after a measurement. If we accept 
projection we assume a “collapse” of S’s state upon measurement of W (t1). There will be 
an immediate problem about specifying the time-reference for collapsed state W′. But 
collapse interpretations (like the GRW theory) usually assume that a collapsed state W′ 
can be an input for a new unitary evolution. For this to be possible, the collapsed state 
must also be time-dependent: W′ = W′ (t2) (where t1, t2 are two different values of the 
same parameter t). 
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State Uniqueness: If QM attributes a state W (t) to S, then for all W′ (t) attributed to S,  
W (t) = W′ (t).  
This property again is a trivial consequence of our using the Schrödinger picture. QM would 
break down if the state attributed to S per time were not unique. This would simply result in 
conflicting inputs for the trace formula, hence lead to conflicting predictions. 
The last property relates to the trace formula p (ak) = Tr (W Pak)) and may be called 
Generality. 
Generality: Given an arbitrary state W of S and an arbitrary observable A, it is the case that 
p (ak) = Tr (W Pak). 
The emphasis here is on arbitrary W and A. When representing a physical system in QM, we 
pick a Hilbert space whose dimension depends on the observables we are interested in. 
Given that such a choice has been made, Generality simply says that the trace formula holds 
good for all states and observables on that space.  
These four properties suffice to create a conflict with the completeness assumption that I call 
the completeness problem. Plainly, the properties are shared by all versions of QM using the 
Schrödinger picture and density operators. Moreover, they have counterparts in versions 
making other choices. I thus assume that QM as such leads to the completeness problem.  

2.2 Completeness 
KS theorems show the impossibility of assigning values to QM observables given essentially 
two constraints. These theorems translate the idea of assigning properties (values of 
observables) to S into the task of assigning values to operators forming a certain algebra. 
Because the algebra is non-Boolean it is possible to find finite sets of operators such that not 
all of them can consistently be assigned the real numbers that are the allowed values of the 
associated observables. One condition of the arguments is that the algebra is based on a 
Hilbert space H with dim H > 2. This condition is unquestionable because most QM systems 
require representation on a Hilbert space H with at least dim H = 3. But there are two 
substantial assumptions going into the theorems that can be questioned: (1) Algebraic 
relations among operators representing QM observables are mirrored exactly in the 
associated values; this is a condition known in the literature as Functional Composition.  
(2) There is a one-one correspondence between observables and the operators representing 
them; since this can be interpreted as an assumption of independence of any single 
observable from the observables considered in conjunction with it this condition is generally 
called Noncontextuality.1 Given these two assumptions, relations among operators translate 
straightforwardly into relations among values of observables that cannot simultaneously be 
satisfied.2 Trivially, all the sets of operators are such that they cannot all have one eigenstate 
in common. 
Generally, the completeness assumption is seen as being embodied in the so-called 
eigenstate-eigenvalue link (EE)3 stating that S has ak if and only if it is in the pertaining 
eigenstate Pak. Following this policy we can, as a first stab, rule this equivalence:  
                                                                 
1 See Redhead (1987, ch. 5) for a (by now classic) discussion. 
2 See Kochen and Specker (1967). For a simple and unified form of the Bell and Kochen-Specker 
theorems for two and three particles, see Mermin (1990); see also Held (2009). For the simplest Kochen-
Specker type arguments in three and more dimensions see the references in Bub (1999, 118-9). 
3 For the expression and a clear formulation see Fine (1973), 20. The link was first proposed, however, 
by Dirac (1930/1958, 46-7) and von Neumann (1932/1955, 253); see Bub (1999, 29) for a discussion.  
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need are shared by all of them. I choose a standard formulation of QM, using the 
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 [A] = ak if and only if S is in Pak.  (*) 

This is insufficient, for a formal and a physical reason. In the Schrödinger picture due to 
Time Reference, the state is time-dependent: Pak = Pak (t). So in (*) there is an implicit time 
reference on the right. Now, while it is logically possible to have no matching time reference 
on the left this would clearly leave (*) incomplete. Moreover, the statement that [A] = ak is 
physically void if not referring to time concretely. In particular, we will want to tell stories 
such that at certain times it is true of S that [A] = ak, but not at certain others. The only 
natural way to make (*) meaningful formally and physically is explication on both sides: 

 [A] = ak at t if and only if S is in Pak (t). (EE)  

This is the full-fledged EE.4 One of its directions will suffice to make sense of the KS 
impossibility results. The ‘only if’-direction is: 

If S is not in Pak (t), then  [A] = ak at t. 

Now, we know (by State Uniqueness) that the state W (t) of S is unique, i.e. that if S is in a 
state W (t)  Pak, then S is not in Pak (t). Hence, from the ‘only if’ direction of EE: 

If S is in a state W (t)  Pak, then  [A] = ak at t. 

Let’s weaken this one step further – to see what is minimally needed to make sense of the 
results.5 Assume only that when S is in a pure state other than Pak (t), then it does not have ak 
at t. Identify this as our completeness assumption (COMP): 

 If S is in a pure state W (t)  Pak, then  [A] = ak at t. (COMP) 

COMP makes eminent physical sense of the KS impossibility results. Every KS set includes 
observables that do not all have one eigenstate in common. Whatever S’s state – if it’s a pure 
state then the set contains observables for which it is not an eigenstate. These observables do 
not have values while the others may have. The contradiction that would arise from 
attributing values to all observables is avoided.  
The crucial role of time in this reasoning should be made as explicit as possible. The starting 
point is that certain relations among values [A], [B], [C] … of certain observables A, B, C … 
(that do not all have one eigenstate in common) cannot jointly be satisfied. We want to 
concretize this in terms of physics in the sense that A, B, C … cannot all simultaneously have 
values. Suppose that we want to express that A has a value while B and C have none, at the 
same time t: ‘[A] = ak at t’, ‘ [A] = ai at t’ (for all i ≠ k), ‘ [B] = bi at t’ (for all i), ‘ [C] = ci at t’ 
(for all i). An interpretive principle can imply this set of propositions only if it provides time 
references for the value ascriptions. COMP does just this in the only conceivable way. It uses 
the time reference attached to state W (t) and transfers it to negations of value ascriptions. It 
is hence crucial to relate these negations to time t in order for COMP to explicate the 
interpretation of the KS results we intend.  
                                                                 
4 While I say that (*) must be explicated as EE to make formal and physical sense, a competing intuition has 
it that (*) is perfectly o.k. as an expression of the eigenstate-eigenvalue link and simply implies EE. The net 
result is the same, of course. We are entitled to proceed with EE as the legitimate explication of the link. 
5 This intention can also be put another way. The full EE is not needed to make sense of the KS results. 
Modal interpretations reject EE (assume that if S’s state is a reduction mixture, then it is possible that 
[A] = ak), but accept COMP. The ensuing argument creates a problem for these interpretations, too.  

 
The Quantum Completeness Problem 179 

3. Main argument 
3.1 Explicating the trace formula 
From Time Reference, we know that the trace formula inevitably carries a time-reference on 
the right: p (ak) = Tr (W (t) Pak). This creates a problem that has been little discussed in the 
foundational literature. The equation has a time-reference on the right, but it is unclear 
whether and eventually where there is a matching one on the left. Does p (ak) also have a 
time-reference? If so it deserves to be explicated. Recall that p (ak) is the probability for the 
event referred to by proposition ‘[A] = ak’. So we interpret p (ai) as a probability function 
(for a fixed pair of operators) from a set of propositions into [0, 1]. So we can cast the 
problem in these questions: Is p (ak) a function of time? And if so, then in which sense is it 
such a function? 
The first question must be answered positively because of the composition of functions. The 
trace formula identifies a magnitude (a probability) that is a function of propositions 
(attributing to S the different eigenvalues of A) with another magnitude (the trace) that is a 
function of operators (state times measured observable) one of which in turn is a function of 
a certain parameter (time), hence the probability function is itself a function of the parameter 
(time).  
Now in which sense is p (ak) time-dependent? Since formally it is a function there are 
basically two possibilities. Either this function depends on t implicitly – ‘p (ak (t))’ – or 
explicitly – ‘p (ak, t)’. In the first case, it depends on time because its argument, the 
proposition ‘[A] = ak’, does. The argument then, in fact is the proposition ‘[A] = ak at t’. In 
the second case, it depends on two arguments directly, on the proposition ‘[A] = ak’ and on 
time t. For a clearer visual distinction I rewrite this second option as ‘p (t) (ak)’. 
Schematically then the explication must be either ‘p (ak (t))’ or ‘p (t) (ak)’. Of course, the 
index could also be in both places at once. I ignore this third possibility here but consider it 
below (in sec. 3.3). We have just seen that the index must turn up somewhere and these are 
the two minimal possibilities. For obvious reasons the first reading can be called the internal 
interpretation: 

p (ak (t)) = Tr (W (t) Pak). 

and the second the external interpretation:  

p (t) (ak) = Tr (W (t) Pak). 

These two are the only apparent choices. Without arguing for it further, I assume that there 
are no others. 

3.2 The internal interpretation 
I imagine that QM can be condensed into a number of theorems and, if applied to a certain 
system, a number of state specifications as necessary. I then can assume QM (applied to a 
certain system) to be a conjunction of theorems and state specifications. I can also speak of 
QM as a conjunct in a conjunction and henceforth will speak of the conjunction of QM and 
COMP (applied to system S with observable A) as complete QM.  
I begin with a fundamental idea about probability that I hope finds universal acceptance: 
Probability is quantified possibility. More precisely: If a physical theory assigns an event a 
non-zero probability, then, given the theory’s truth, this event is possible. The weakest form 
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of possibility is logical possibility. Using it we can implement the idea in the following 
probability principle: If a theory T for a proposition F (describing an event) yields another 
proposition p (F) > 0 then it must be compatible with F, i.e. it is not the case that the set {T, F} 
makes derivable a contradiction (in first-order logic, I shall assume).  
Now suppose that S is in a pure state W (t1)  Pak, for some value t1 of t, such that for the 
probability calculated from the trace formula it is the case that 1 > p (ak) > 0. (This is a state 
specification such that S is in a pure non-eigenstate of A at t1.) From COMP, we know that in 
state W (t1)  Pak S does not have value ak at t1, i.e.  [A] = ak at t1. But from the internal 
interpretation we know that p (ak) = p (ak (t1)) which is the probability that [A] = ak at t1. 
This probability is strictly positive, hence the theory producing it should be compatible with 
[A] = ak at t1 – which complete QM evidently is not (given the state specification in 
question). Contradiction. It would not be correct to say that the internal interpretation 
contradicts COMP. In fact, the correct thing to say is that complete QM (including a trivially 
admissible state specification) plus the internal interpretation contradicts the probability 
principle. I trust that the reader finds this principle as fundamental as I do. So, the internal 
interpretation is untenable in complete QM.6  

3.3 The external interpretation 
There is only one tangible alternative and hence only one conclusion to be drawn. Since the 
internal interpretation is in conflict with complete QM we must employ the external 
interpretation to make sense of it. 
We must consider (briefly) the following idea. Assuming that the time-parameter, in the 
external interpretation, refers to the probability for an event (not the event itself) we might 
still be free to assume that the parameter also refers to the event. Explicitly, the probability 
calculated from the trace formula, given a state W (t1), might be p (t1) (ak (t1)). Obviously, 
this is not a helpful idea because we now have a strictly positive probability at t1 for  
S having ak at t1, i.e. for [A] = ak at t1. But we also still have, from W (t1)  Pak (t1) and COMP, 
that S does not have value ak at t1, i.e.  [A] = ak at t1. So, there still is a contradiction with 
our probability principle. The only way out is to assume that the time-parameter (here its 
value t1), which, given the external interpretation, the probability inherits from the state 
W (t1), does not also refer to the event for whose realization the probability is given. What it 
does refer to is only the probability itself.  
However, we know from Time Parameter Uniqueness that QM contains just one  
parameter t. If it is not this parameter whose values are time-references for the predicted 
events in the trace formula, then these events can carry no time-references, at all. Hence, the 
expression ‘ak’ in the formula ‘p (t) (ak) = Tr (W (t) Pak)’ is necessarily timeless in complete 
QM. Note also the following fact. The trace formula can be suitably generalised to 
encompass discrete and continuous observables. The relevant counterpart of proposition 
‘[A] = ak’ in that generalised form must of course also be timeless to match the discrete case. 
But then this must also hold for the continuous case, i.e. for a continuous observable A, a 
value a and an arbitrary Borel subset B of the real line it must be the case that:  

 p (t) (a  B) = Tr (W (t) PA (B)) (3.1) 

where the proposition ‘a  B’ is necessarily timeless.  
                                                                 
6 See Held (2008, sec.s 2 and 3) for an earlier version of this argument. 
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Serious problems ensue. Familiar interpretations of QM notions cannot be maintained and 
important applications collapse. E.g., the so-called conventional interpretation of the wave-
function turns out to be false in complete QM. However, modern approaches to QM gravity 
(reasonably) construct probabilities for spacetime events that have this interpretation as a 
limiting case, so these approaches are also endangered. Similarly, QM transition 
probabilities and propagators cannot be defined in their usual textbook ways.7 These 
problems should convince us right away that the external interpretation is not the one we 
use in real-life QM. Of course, the factual practice of QM does not constitute a knock-down 
objection in matters foundational but indeed such an objection is comparatively easy to 
come by. We can, with standard QM techniques, construct probabilities that carry an explicit 
internal time-reference – despite the fact that complete QM now forbids it.  
The idea is as follows. In eq. (3.1) set A = X (the observable position), a = x and B = Δx   
(a value and value range of X). Proposition ‘x  Δx’ cannot carry the index t. And as in the 
discrete case this entails that the proposition cannot carry an index at all. Instead, the 
probability itself is time-indexed, i.e. we have another instance of the external 
interpretation: 

p (x  Δx) = p (t) (x  Δx). 

Consider now an observable that is a function of position, e.g. S’s potential energy V (x) 
and assume it to be explicitly time-dependent, i.e. V (x, t). (Since the Hamiltonian H is  
a function of V, it is here that we use the possibility that H = H (t).) Since V is a function of 
position (we can measure it via position measurements), we can exploit the Statistical 
Functional Composition Principle (a direct consequence of the trace formula; see Redhead 
1987, 18) to construct probabilities for values V of V (x, t) and equate them with those for 
position:  

p (V  ΔV (t)) = p (x  Δx)   

(where ΔV (t) is time-dependent because V (x, t) is). The values V of V (x, t) on the left are 
manifestly time-dependent.8 We thus have constructed a probability that explicitly has an 
internal time-reference and identified it with one that, given the external interpretation 
tailored to complete QM, cannot have such an internal time-reference. Contradiction, 
again. 
So the external interpretation of the trace formula cannot be correct, either. We need time-
references for the events predicted by the trace formula to do sensible QM. But the internal 
interpretation was so easily brought into a conflict with complete QM that it seems 
implausible to maintain. So in the presence of COMP, neither interpretation is tenable and 
there is no obvious third possibility. The argument, at this point, is inescapably turning 
against COMP. But COMP is our best (at any rate, most generally accepted) shot at how to 
interpret the KS no-hidden variables results. So we should very thoroughly look at possible 
objections. In the next section, I will consider whether the argument is a variant of the 
infamous measurement problem or otherwise trades on a neglect of the notion of QM 
measurement. Neither will turn out to be the case. I will then look at the only clear objection 
to the argument.  
                                                                 
7 Both these claims are substantiated in a companion paper (Held, in preparation).  
8 Details of the construction are again given in Held (in preparation). 
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of possibility is logical possibility. Using it we can implement the idea in the following 
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interpretation we know that p (ak) = p (ak (t1)) which is the probability that [A] = ak at t1. 
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 p (t) (a  B) = Tr (W (t) PA (B)) (3.1) 

where the proposition ‘a  B’ is necessarily timeless.  
                                                                 
6 See Held (2008, sec.s 2 and 3) for an earlier version of this argument. 
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Serious problems ensue. Familiar interpretations of QM notions cannot be maintained and 
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and assume it to be explicitly time-dependent, i.e. V (x, t). (Since the Hamiltonian H is  
a function of V, it is here that we use the possibility that H = H (t).) Since V is a function of 
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1987, 18) to construct probabilities for values V of V (x, t) and equate them with those for 
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(where ΔV (t) is time-dependent because V (x, t) is). The values V of V (x, t) on the left are 
manifestly time-dependent.8 We thus have constructed a probability that explicitly has an 
internal time-reference and identified it with one that, given the external interpretation 
tailored to complete QM, cannot have such an internal time-reference. Contradiction, 
again. 
So the external interpretation of the trace formula cannot be correct, either. We need time-
references for the events predicted by the trace formula to do sensible QM. But the internal 
interpretation was so easily brought into a conflict with complete QM that it seems 
implausible to maintain. So in the presence of COMP, neither interpretation is tenable and 
there is no obvious third possibility. The argument, at this point, is inescapably turning 
against COMP. But COMP is our best (at any rate, most generally accepted) shot at how to 
interpret the KS no-hidden variables results. So we should very thoroughly look at possible 
objections. In the next section, I will consider whether the argument is a variant of the 
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to the argument.  
                                                                 
7 Both these claims are substantiated in a companion paper (Held, in preparation).  
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4. Measurement 
4.1 The measurement problem 
An obvious intuition about the previous argument is that it constitutes just a peculiar form 
of the measurement problem and it is old wisdom that any interpretation of QM endorsing 
COMP must try to deal with that difficulty. But only the second half of this intuition is 
correct, not the first. Indeed it is true that a formulation of the measurement problem, in 
general, presupposes COMP. Let me quickly recall this.  
For simplicity, assume that observable A on S has just two distinct eigenvalues a1 and a2.  
Let S be measured by an A-measurement apparatus M and let [t1, t3] be an interval such that 
t1 is the time of measurement onset and t3 some later time. Assume that S is in a 
superposition of A-eigenstates, e.g. in Pb (t1) = | b > < b | where | b > = 1/2 (| a1 > + | a2 >). 
First, assume that from our observation of a suitable pointer observable M on M we learn 
that [M] = m1 at t3. From this we want to conclude something about S’s value of A,  
e.g. [A] = a1 at t2 – where t2 is an arbitrary time from [t1, t3], including the boundaries. 
All choices of t2 are perfectly possible. In particular, it is consistent to assume jointly that S is 
in Pb (t1) (a projector onto a non-eigenstate of A) and [A] = a1 at t1. Similarly, if S is in Pb (t2), 
where t2 is an arbitrary time with t2  ]t1, t3], (S stays in the superposition due to unitary 
time evolution) we can consistently assume [A] = a1 at t2. Now, assume also EE plus State 
Uniqueness (from sec.2.1) or alternatively COMP. Then on pain of contradiction, we can 
assume jointly neither Pb (t1) and [A] = a1 at t1 nor Pb (t2) and [A] = a1 at t2. We can no longer 
draw any conclusions from our assumed observation [M] = m1 at t3 to S – which is what 
generally a measurement of S by means of M is intended to deliver. 
In its more familiar form, the measurement problem refers not to conclusions from observed 
pointer values to S values but instead to the QM state of the apparatus M. Let an  
A-measurement on S by M be modelled in the combined system S + M by initial states  
PRi (t1) = | Ri > < Ri |, where | Ri > = | ai >| mready > and final states PAi (t2) = | Ai > < Ai |, 
where | Ai > = | ai >| mi >, for i = 1,2, and where t2  ]t1, t3]. Then, if S + M is in state  
PR (t1) = | R > < R |, where | R > = | b >| mready > and | b > as before, it follows that S + M 
is in state PB (t2) = | B > < B | with | B > = 1/2 (| a1 >| m1 > + | a2 >| m2 >). Again, it is 
perfectly consistent to assume that S + M is in PB (t2) and [M] = m1 at t2 (or alternatively  
[M] = m1 at t2). Now, assume EE in the form: [M] = mi at t if and only if S is in Pmi (t) (for i = 1,2) 
plus again State Uniqueness. Then, again on pain of contradiction, we can assume jointly 
neither PB (t2) and [M] = m1 at t2 nor PB (t2) and [M] = m2 at t2 for any t2  ]t1, t3]. The 
apparatus has been pushed into a QM state such that, given EE, it is impossible to assume it 
as showing one of the pointer values – in contradiction with what we really observe. (As is 
well-known, COMP here is too weak to generate the contradiction because M’s state at t2 is a 
reduction mixture. As is also well-known, moving from EE to COMP alone does not suffice 
to avoid the measurement problem since the M reduction mixture cannot be given an 
ignorance interpretation.) 
So, the measurement problem confronts QM states and hypothetical observations by means 
of EE plus State Uniqueness or COMP – which means that it presupposes EE or COMP. The 
argument of sec.3 is not a form of the measurement problem simply because it does not 
mention any observations at all that could be confronted with QM states. On the other hand, 
the measurement problem requires COMP or the stronger EE for its formulation. And the 
argument of sec.3 shows that COMP is incompatible with QM, even without that 
confrontation. If sound the argument provides grounds to reject the measurement problem 
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because it rests on a combination of COMP (or EE) and QM, which is in a deeper sense 
incoherent, i.e. leads to a consistency problem without invoking observations (though using 
other assumptions).  

4.2 The value assumption 
Now, while the previous argument cannot be said to be a version of the measurement 
problem one may still think that it unduly neglects the crucial role of measurement in QM.  
I will try to dispel this impression. Evidently, the argument has not mentioned 
measurement. This would be inevitable if the two readings of the trace formula were 
integrated into a full axiom system for QM. Such a system would contain a statistical 
algorithm and that algorithm would be (or directly entail) one for generating probabilities 
via the trace formula. In formulating the latter algorithm – the Born Rule – we would have 
to take a stand on the notion of measurement. Generally, measurements and outcomes are 
mentioned explicitly and many think that this is an unavoidable feature of the Born Rule.9 
But considering the appropriate wording of the Born Rule here would just needlessly 
complicate the argument – which requires nothing but the trace formula itself.10 
Let me however explicate an assumption that has tacitly been made in the argument (and 
will be tentatively questioned below, in sec.5). Recall that in the trace formula I took p (ak) to 
be the probability for [A] = ak, i.e. explicitly for ‘S has value ak of A’. The argument in sec.3.2 
would not get off the ground if p (ak) were not this probability for [A] = ak, because the 
conflict arises between p (ak) > 0 (from the trace formula and an admissible state 
specification) and  [A] = ak (from COMP). The conflict becomes sharp, if both statements 
are nailed to the same time and we assume that p (F) > 0 entails that F can consistently be 
added as an assumption (our probability principle). But even then a contradiction will only 
arise if in ‘p (ak)’ the “inner” expression ‘ak’ really means ‘S has value ak of A’. If that is not 
the case then even fixing the same time for both propositions will not generate any problem. 
So the assumption at work in the previous argument is that in the trace formula: 

p (ak) = p ([A] = ak), 

i.e. p (ak) is the probability that S has value ak of A.  
This very elementary assumption may be called the value assumption because it amounts to 
the claim that the events concerning S, for which QM encodes probabilities, are simply 
identical to S having a value of an observable. Note carefully that this assumption does not 
involve a claim about when S eventually has value ak of A and hence is not per se in a 
conflict with certain widespread intuitions about QM probabilities. Instead it helps to 
disentangle these intuitions – because we can separate the question of what the QM events 
(“inside” the probability of the trace formula) are from the one when they eventually occur.  
I will consider three intuitions about measurement. First, there is the intuition that QM 
probabilities concern events that are conditional upon measurement. We can implement this in 
QM in different ways. First of all, we can write the following version of the Born Rule:  
If S is in state W (t) and A is an observable on S and if an A-measurement on S is made then: 
p (ak) = Tr (W (t) Pak). Here measurement is mentioned as one of several conditions for the 
                                                                 
9 Among many possible references see Redhead (1987, 8), Hughes (1989, 70), van Fraassen (1991, 142-
143), Albert (1992, 35), Bub (1999, 31), Nielsen & Chuang (2000, 84-85), Landsman (2009, 66). 
10 In this sense, the version of the argument of sec.3.2 given in Held (2008) is inferior to the present one.  
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that [M] = m1 at t3. From this we want to conclude something about S’s value of A,  
e.g. [A] = a1 at t2 – where t2 is an arbitrary time from [t1, t3], including the boundaries. 
All choices of t2 are perfectly possible. In particular, it is consistent to assume jointly that S is 
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because it rests on a combination of COMP (or EE) and QM, which is in a deeper sense 
incoherent, i.e. leads to a consistency problem without invoking observations (though using 
other assumptions).  

4.2 The value assumption 
Now, while the previous argument cannot be said to be a version of the measurement 
problem one may still think that it unduly neglects the crucial role of measurement in QM.  
I will try to dispel this impression. Evidently, the argument has not mentioned 
measurement. This would be inevitable if the two readings of the trace formula were 
integrated into a full axiom system for QM. Such a system would contain a statistical 
algorithm and that algorithm would be (or directly entail) one for generating probabilities 
via the trace formula. In formulating the latter algorithm – the Born Rule – we would have 
to take a stand on the notion of measurement. Generally, measurements and outcomes are 
mentioned explicitly and many think that this is an unavoidable feature of the Born Rule.9 
But considering the appropriate wording of the Born Rule here would just needlessly 
complicate the argument – which requires nothing but the trace formula itself.10 
Let me however explicate an assumption that has tacitly been made in the argument (and 
will be tentatively questioned below, in sec.5). Recall that in the trace formula I took p (ak) to 
be the probability for [A] = ak, i.e. explicitly for ‘S has value ak of A’. The argument in sec.3.2 
would not get off the ground if p (ak) were not this probability for [A] = ak, because the 
conflict arises between p (ak) > 0 (from the trace formula and an admissible state 
specification) and  [A] = ak (from COMP). The conflict becomes sharp, if both statements 
are nailed to the same time and we assume that p (F) > 0 entails that F can consistently be 
added as an assumption (our probability principle). But even then a contradiction will only 
arise if in ‘p (ak)’ the “inner” expression ‘ak’ really means ‘S has value ak of A’. If that is not 
the case then even fixing the same time for both propositions will not generate any problem. 
So the assumption at work in the previous argument is that in the trace formula: 

p (ak) = p ([A] = ak), 

i.e. p (ak) is the probability that S has value ak of A.  
This very elementary assumption may be called the value assumption because it amounts to 
the claim that the events concerning S, for which QM encodes probabilities, are simply 
identical to S having a value of an observable. Note carefully that this assumption does not 
involve a claim about when S eventually has value ak of A and hence is not per se in a 
conflict with certain widespread intuitions about QM probabilities. Instead it helps to 
disentangle these intuitions – because we can separate the question of what the QM events 
(“inside” the probability of the trace formula) are from the one when they eventually occur.  
I will consider three intuitions about measurement. First, there is the intuition that QM 
probabilities concern events that are conditional upon measurement. We can implement this in 
QM in different ways. First of all, we can write the following version of the Born Rule:  
If S is in state W (t) and A is an observable on S and if an A-measurement on S is made then: 
p (ak) = Tr (W (t) Pak). Here measurement is mentioned as one of several conditions for the 
                                                                 
9 Among many possible references see Redhead (1987, 8), Hughes (1989, 70), van Fraassen (1991, 142-
143), Albert (1992, 35), Bub (1999, 31), Nielsen & Chuang (2000, 84-85), Landsman (2009, 66). 
10 In this sense, the version of the argument of sec.3.2 given in Held (2008) is inferior to the present one.  
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trace formula which itself remains formally untouched. In particular, no reason emerges for 
assuming that the event for which a probability (given the conditions) is encoded should not 
be just that S has value ak of A. Alternatively, we could insist that this special condition be 
directly written into the trace formula itself. Now, it is well-known that if conditional 
probabilities are introduced via the familiar Kolmogorov definition, then a conditional 
probability p (ak | MA), where MA is the “event” of an A-measurement being initiated, is not 
generally well-defined.11 Suppose nevertheless, for a moment, that QM probabilities were 
simple conditional probabilities. Again, the value assumption could stay essentially 
unaffected. Probability p (ak) would now equal p (ak | MA) but in that latter expression the 
component ‘ak’ could keep its meaning. If, on independent grounds we can manage to nail 
the ‘ak’ in p (ak | MA) to the same time t, for which an A-value is prohibited via COMP, the 
conflict is just the same as before. Finally, consider p (ak given MA), where ‘given’ is a 
conditional connective awaiting further analysis.12 The situation will still be the same. 
Appreciating that QM probabilities are conditional on measurement will not in itself 
contradict the assumption that the conditioned events just consist in S having a value of an 
observable. All in all, conditioning on measurement is not in itself, in conflict with the value 
assumption. 
Second, there is a strong intuition that, because QM probabilities are conditional on 
measurement, the events they concern are measurement outcomes. What is the consequence 
of this? Again, nothing in itself prohibits that a measurement outcome be reported in the 
statement ‘S has value ak of A’. Indeed, it is not entirely implausible to assume that a 
measurement outcome just is a value possessed (at some time) conditional on a 
measurement (at an earlier time). So, we can call the events in question by the name of 
outcomes and still respect the value assumption. Admittedly, the notion of an outcome is 
ambiguous enough to be interpreted, alternatively, as not meaning a possessed value but 
something else. This ambiguity, however, should tell against a use of “outcome” in the 
foundations of QM without clarifying whether or not an outcome is a (perhaps 
conditionally) possessed value of S or not. 
Finally, it is sometimes said that QM systems upon measurement display or show values of 
observables13 and hence QM probabilities should be interpreted as concerning such 
displaying or showing events. Since displaying or showing something is representing 
something, this is just a terribly misplaced metaphor. But even if we take QM systems as 
representing something upon measurement, there still are only two options. Does S have or 
possess what it represents (or displays or shows) upon measurement? If so the value 
assumption is met, if no it isn’t. Again, the idea in itself is ambiguous enough to be 
interpreted in a sense that is not in conflict with that assumption.   
Before moving on I describe a simple non-QM example where all three intuitions plus the 
value assumption are respected. Our present picture of QM measurement may be described 
by using the following analogy. Such measurement is not like opening a box and 
determining the colour of the ball inside. Instead, it is like rolling a die and recording the 
result. Consider this latter picture. Assume that we have a fair die and want to define 
probabilities for the experiment of rolling it. We understand that the type of event, for which 
we define probabilities, is that the die shows a certain one of its six faces at the end of the 
                                                                 
11 See van Fraassen and Hooker (1976), 229. 
12 See Halpin (1991), Butterfield (1993), Held (2008, sec.5) for more on the appropriate analysis. 
13 See Earman’s portrayal of a ‘non-realist’ interpretation of QM measurement in Earman (1986), 219. 
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experiment. The probability p (6) = 1/6 is directly understood as being the probability at the 
start of the experiment and as being conditional upon actually rolling the die. If measuring 
what the die shows is indeed doing the experiment of rolling it then, if the die in the end 
shows 6, that event is indeed conditional upon measurement. That event is also naturally 
described as the experiment’s outcome and the die can meaningfully be said to display or 
show the number 6. Yet, there can be no doubt that the die in the end also has the value 6 (of 
the observable ‘which face is up’). It would be confused here to assume that outcomes are 
not possessed values. Yes, they are but they are not values possessed initially – in contrast 
with what we assume about the ball in the box. The whole burden of distinguishing the die 
“measurement” from the “classical” colour measurement in the ball is carried by implicit 
time-references. In particular, in the case of the die p (6) = 1/6 is the measurement outcome 
probability at the beginning of the experiment and the eventual outcome 6 is an event at its 
end. Accordingly, I now turn to a school of thought about QM measurement where 
probability and QM event refer to different times but the value assumption is respected.  
I will not try to be exhaustive but only consider two prominent authors representing that 
school, one a founding father of QM (von Neumann), the other a leading contemporary 
interpreter (van Fraassen).  

4.3 Von Neumann’s account 
As has been pointed out many times before, Dirac and von Neumann can be credited with 
having first assumed EE – even if only implicitly.14 In von Neumann’s formulation of the 
Born Rule the key expression is that, given a state W and an observable A, p ([A] = ak) 
(or equivalently p ([Pak] = 1) is the probability that A (or Pak) ‘takes on’ a value ak (or 1) (see 
von Neumann 1932/1955, 200, 206, 211). There is only one sentence, however, where he 
explicitly says that the Born Rule ‘does not tell us what values [the observables] have in the 
state W, but only with what probability they take on all possible values’ (ibid., 206; my italics 
and notation). (In passing, I note that von Neumann does not explicitly claim this taking-on 
to be conditional on measurement.) Only here we explicitly learn that ‘taking on’ a value is 
opposed to ‘having’ it, i.e. that ‘taking on’ is a dynamical process.15 By a dynamical process 
I mean a transition in time from S having no value of A to having one of the ai – which 
(since von Neumann accepts EE) simultaneously is a transition from W  Pai (for any i) to Pai 
(for some i): the famous “collapse of the wave-function”. As that latter expression suggests, 
the transition is construed best as taking place instantaneously; at any rate, this is the 
standard understanding. 
What are we to say about this instantaneous transition? Suppose, quite unreasonably, that it 
is instantaneous in the sense of taking up no interval of time, at all. Because of Time 
Reference (also explicitly endorsed by von Neumann; see 1932/1955, 198) W = W (t). Now, 
are we to think that the transition is from W (t)  Pai (for any i) to Pai (for some i), where  
Pai = Pai (t)? Given State Uniqueness, this is contradictory. So this interpretation is 
implausible. Suppose, more reasonably, that the transition is instantaneous in the sense of 
                                                                 
14 See note 3 above. 
15 The other two passages are ambiguous. Suppose that for a function F (t) of parameter t, a real number 
f and value t1 of t, F (t1) = f. One might describe this by saying that F takes on value f at t1. But of course F 
can simultaneously be said to have value f at t1. Accordingly, the taking-on here is not a dynamical 
process. This interpretation, though implausible in a physics context, is at least possible for the passages 
on p. 200 and p. 211.  
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trace formula which itself remains formally untouched. In particular, no reason emerges for 
assuming that the event for which a probability (given the conditions) is encoded should not 
be just that S has value ak of A. Alternatively, we could insist that this special condition be 
directly written into the trace formula itself. Now, it is well-known that if conditional 
probabilities are introduced via the familiar Kolmogorov definition, then a conditional 
probability p (ak | MA), where MA is the “event” of an A-measurement being initiated, is not 
generally well-defined.11 Suppose nevertheless, for a moment, that QM probabilities were 
simple conditional probabilities. Again, the value assumption could stay essentially 
unaffected. Probability p (ak) would now equal p (ak | MA) but in that latter expression the 
component ‘ak’ could keep its meaning. If, on independent grounds we can manage to nail 
the ‘ak’ in p (ak | MA) to the same time t, for which an A-value is prohibited via COMP, the 
conflict is just the same as before. Finally, consider p (ak given MA), where ‘given’ is a 
conditional connective awaiting further analysis.12 The situation will still be the same. 
Appreciating that QM probabilities are conditional on measurement will not in itself 
contradict the assumption that the conditioned events just consist in S having a value of an 
observable. All in all, conditioning on measurement is not in itself, in conflict with the value 
assumption. 
Second, there is a strong intuition that, because QM probabilities are conditional on 
measurement, the events they concern are measurement outcomes. What is the consequence 
of this? Again, nothing in itself prohibits that a measurement outcome be reported in the 
statement ‘S has value ak of A’. Indeed, it is not entirely implausible to assume that a 
measurement outcome just is a value possessed (at some time) conditional on a 
measurement (at an earlier time). So, we can call the events in question by the name of 
outcomes and still respect the value assumption. Admittedly, the notion of an outcome is 
ambiguous enough to be interpreted, alternatively, as not meaning a possessed value but 
something else. This ambiguity, however, should tell against a use of “outcome” in the 
foundations of QM without clarifying whether or not an outcome is a (perhaps 
conditionally) possessed value of S or not. 
Finally, it is sometimes said that QM systems upon measurement display or show values of 
observables13 and hence QM probabilities should be interpreted as concerning such 
displaying or showing events. Since displaying or showing something is representing 
something, this is just a terribly misplaced metaphor. But even if we take QM systems as 
representing something upon measurement, there still are only two options. Does S have or 
possess what it represents (or displays or shows) upon measurement? If so the value 
assumption is met, if no it isn’t. Again, the idea in itself is ambiguous enough to be 
interpreted in a sense that is not in conflict with that assumption.   
Before moving on I describe a simple non-QM example where all three intuitions plus the 
value assumption are respected. Our present picture of QM measurement may be described 
by using the following analogy. Such measurement is not like opening a box and 
determining the colour of the ball inside. Instead, it is like rolling a die and recording the 
result. Consider this latter picture. Assume that we have a fair die and want to define 
probabilities for the experiment of rolling it. We understand that the type of event, for which 
we define probabilities, is that the die shows a certain one of its six faces at the end of the 
                                                                 
11 See van Fraassen and Hooker (1976), 229. 
12 See Halpin (1991), Butterfield (1993), Held (2008, sec.5) for more on the appropriate analysis. 
13 See Earman’s portrayal of a ‘non-realist’ interpretation of QM measurement in Earman (1986), 219. 
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experiment. The probability p (6) = 1/6 is directly understood as being the probability at the 
start of the experiment and as being conditional upon actually rolling the die. If measuring 
what the die shows is indeed doing the experiment of rolling it then, if the die in the end 
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“measurement” from the “classical” colour measurement in the ball is carried by implicit 
time-references. In particular, in the case of the die p (6) = 1/6 is the measurement outcome 
probability at the beginning of the experiment and the eventual outcome 6 is an event at its 
end. Accordingly, I now turn to a school of thought about QM measurement where 
probability and QM event refer to different times but the value assumption is respected.  
I will not try to be exhaustive but only consider two prominent authors representing that 
school, one a founding father of QM (von Neumann), the other a leading contemporary 
interpreter (van Fraassen).  

4.3 Von Neumann’s account 
As has been pointed out many times before, Dirac and von Neumann can be credited with 
having first assumed EE – even if only implicitly.14 In von Neumann’s formulation of the 
Born Rule the key expression is that, given a state W and an observable A, p ([A] = ak) 
(or equivalently p ([Pak] = 1) is the probability that A (or Pak) ‘takes on’ a value ak (or 1) (see 
von Neumann 1932/1955, 200, 206, 211). There is only one sentence, however, where he 
explicitly says that the Born Rule ‘does not tell us what values [the observables] have in the 
state W, but only with what probability they take on all possible values’ (ibid., 206; my italics 
and notation). (In passing, I note that von Neumann does not explicitly claim this taking-on 
to be conditional on measurement.) Only here we explicitly learn that ‘taking on’ a value is 
opposed to ‘having’ it, i.e. that ‘taking on’ is a dynamical process.15 By a dynamical process 
I mean a transition in time from S having no value of A to having one of the ai – which 
(since von Neumann accepts EE) simultaneously is a transition from W  Pai (for any i) to Pai 
(for some i): the famous “collapse of the wave-function”. As that latter expression suggests, 
the transition is construed best as taking place instantaneously; at any rate, this is the 
standard understanding. 
What are we to say about this instantaneous transition? Suppose, quite unreasonably, that it 
is instantaneous in the sense of taking up no interval of time, at all. Because of Time 
Reference (also explicitly endorsed by von Neumann; see 1932/1955, 198) W = W (t). Now, 
are we to think that the transition is from W (t)  Pai (for any i) to Pai (for some i), where  
Pai = Pai (t)? Given State Uniqueness, this is contradictory. So this interpretation is 
implausible. Suppose, more reasonably, that the transition is instantaneous in the sense of 
                                                                 
14 See note 3 above. 
15 The other two passages are ambiguous. Suppose that for a function F (t) of parameter t, a real number 
f and value t1 of t, F (t1) = f. One might describe this by saying that F takes on value f at t1. But of course F 
can simultaneously be said to have value f at t1. Accordingly, the taking-on here is not a dynamical 
process. This interpretation, though implausible in a physics context, is at least possible for the passages 
on p. 200 and p. 211.  
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taking up an infinitesimal interval dt – where, as usual, “infinitesimal” means arbitrarily 
small but finite. Then the instantaneous transition can be viewed as being one from W (t) to 
Pai (t + dt) (for some i) and from S having no value of A at t to having one of the ai at t + dt – 
a perfectly consistent interpretation of von Neumann’s idea. But notice that [t, t +dt] though 
arbitrarily small is finite and cannot go to zero (on pain of reproducing the previous 
contradiction).  
Now, should von Neumann be interpreted as proposing a version of the Born Rule for 
transitions or for the values possessed at the end of such transitions? Naively, it seems 
legitimate to equate a probability for S taking on a value of A in the interval [t, t +dt] as the 
probability for S having that value of A at t + dt but is this interpretation admissible here? 
Indeed, it is not only legitimate but a necessity. Clearly, if W (t) = Pak , then p ([Pak] = 1 at  
t + dt) cannot be the probability for S taking on ak within [t, t +dt] for that would entail that 
at t S does not have ak at t – which contradicts EE. But Generality requires that we give the 
trace formula a uniform interpretation (either transitions or possessed values) for all states. 
Hence, it must be possessed values. One must interpret von Neumann’s Born probabilities 
as being for the events of S having that value of A at t + dt.16 This is to say that von Neumann 
must endorse the value assumption.17 Moreover, he must endorse the following version of 
the trace formula: 

 p ([Pak] = 1 at t + dt) = Tr (W(t) Pak) (4.1) 

(where p ([Pak] = 1 at t + dt) = p([A] = ak at t + dt). But why should an interpreter propose 
this? For an answer, I can only refer back to sec. 3.2. Von Neumann endorses COMP 
(because he assumes EE and certainly endorses State Uniqueness). In the presence of COMP, 
p ([Pak] = 1 at t) = Tr (W(t) Pak) looks implausible (for W(t)  Pai, for any i) and indeed, given 
the probability principle, does yield a contradiction. It is just natural to avoid the threat of 
that contradiction by forcing apart time references for state and possible value.  
However, against this line of thought the second part of the above argument (sec.3.3) now is 
seen to have bite. If (4.1) is the proposed explication of the trace formula for a state W (t) and 
observable Pak then this proposal is in trouble. Obviously, a value of the time-reference  
t + dt on the left cannot come from W (t) because t and t + dt are supposed to take different 
values while the size of dt is nowhere determined. (Recall that the infinitesimal size of dt 
                                                                 
16 Explicitly, the argument is this. Assume that p (T (ai)) = Tr (W(t) Pai) where T (ai) is the transition from 
S not having ai at t to S having ai at t +dt (for all i). Presupposing Generality, assume W (t) = Pak (t). 
Hence, S is in the eigenstate pertaining to ak at t. Then by EE, S has ak at t. But the p (T (ai)) have just 
been defined as probabilities for transitions starting from S not having ai (for all i). Hence, S does not 
have any of the values ai at t and a fortiori not ak. Contradiction. In words: von Neumann’s Born 
probabilities cannot concern transitions from no value of A to value of A, in general, on pain of violating 
EE, when W projects onto an eigenstate of A.  
17 In fact, at a much later point von Neumann in a sense denies the value assumption when he writes: 
‘Indeed experience only makes statements of this type: an observer has made a certain (subjective) 
observation; and never any like this: a physical quantity has a certain value.’ (von Neumann 1932/1955, 
420). This idea is a denial of the value assumption if we assume that QM probabilities concern what we 
experience rather than what is the case. Note however that the present context is different because it 
speaks not of experience but of what is the case: von Neumann’s decree that the trace formula fixes 
‘with what probability [observables] take on … possible values’ (206) implies that such taking-on of a 
value can happen. If it does then, as a result, the observable has a value – regardless of whether an 
observer has a mere ‘(subjective) observation’ of that or more.  
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does absolutely no work here. The interval cannot be set to zero without reproducing the 
previous contradiction, so the limit of making dt ever smaller simply does not exist. But 
which time value then is t + dt ?) So there is nothing at all in QM to provide a value of  
t + dt on the left because (due to Time Parameter Uniqueness) there is no second time-
parameter in QM. Hence (4.1) cannot be a formula of QM. Instead the outcome [Pak] = 1 in 
(4.1) must lack a time-reference. And, as we saw in sec.3.3, this in turn can be shown to be 
incompatible with QM itself. 

4.4 Van Fraassen’s account 
A detailed discussion of QM measurement is presented in van Fraassen (1991).While this 
discussion is critical of von Neumann’s classical account, it is in one sense similar to the 
latter. Both are part of a school of thought that distributes state plus probability and 
eventual outcome to different times in order to make sense of QM measurement in light of 
COMP. Moreover, van Fraassen also respects the value assumption. I quote a longer 
passage, where he characterizes QM measurement before differentiating collapse and no-
collapse (modal) interpretations (one version of which he advocates). Van Fraassen writes: 

Born’s Rule says [… that the] probability that a measurement of yes-no observable P 
will yield value 1, if made in state W, equals Tr (W P). This statement gives us the 
probability of the occurrence of an event, conditional on the occurrence of a certain 
measurement process in a given state. […] But what is this event? During the 
measurement process we see an initial situation change into a final situation. The initial 
situation can be analysed into two parts: the system of interest is in state W, and the 
environment (presence of and interaction with the measuring apparatus in its 
groundstate) has a certain character – call it IN. In the final situation, this system’s state 
will have evolved into, say, W′, and the environment will have a new character – call it 
OUT – which includes e.g. that the pointer on the apparatus now sits at the number 1. So 
we have the transition: IN, W  W′, OUT. This transition could be indeterministic in two 
ways. Recall that we have a probability for OUT. Another possible transition – one that 
could have occurred but did not – may be described as IN, W  W′′, OUT′ and it too had 
a probability. (1991, 244-5; my italics)   

The two ways of indeterminism then differentiate two types of interpretation. Either, in a 
no-collapse interpretation, given ‘the initial situation (IN, W), the final state W′ is completely 
determined (so W′′ = W′), and the probability we are given is really the probability of 
character OUT, given that the system is then in state W′.’ Or, in a collapse interpretation, 
given ‘the final state, the outcome character is completely determined (OUT  OUT′ then  
W′  W′′), and the probability we are given is the probability of the transition from state W 
to W′, when the initial situation has character IN.’ (1991, 245). 
From this passage, we learn two things about QM measurement. First, although van 
Fraassen does not explicate time-references for W and W′ (or W′′) it is entirely obvious from 
(the italicised portions of) the text that W′ (or W′′) is the system’s state at a time later than the 
one of W. Second, it is also clear from the text that the Born Rule probability is one for an 
event at the later time: W′ and character OUT are both part of the ‘final situation’ and the 
original probability is either one for OUT only or for OUT plus W′. All in all, van Fraassen 
straightforwardly explains that in the trace formula p ([P] = 1) = Tr (W P) the elements ‘W’ 
(state) and ‘[P] = 1’ (value) refer to different times. In a collapse interpretation, this 
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taking up an infinitesimal interval dt – where, as usual, “infinitesimal” means arbitrarily 
small but finite. Then the instantaneous transition can be viewed as being one from W (t) to 
Pai (t + dt) (for some i) and from S having no value of A at t to having one of the ai at t + dt – 
a perfectly consistent interpretation of von Neumann’s idea. But notice that [t, t +dt] though 
arbitrarily small is finite and cannot go to zero (on pain of reproducing the previous 
contradiction).  
Now, should von Neumann be interpreted as proposing a version of the Born Rule for 
transitions or for the values possessed at the end of such transitions? Naively, it seems 
legitimate to equate a probability for S taking on a value of A in the interval [t, t +dt] as the 
probability for S having that value of A at t + dt but is this interpretation admissible here? 
Indeed, it is not only legitimate but a necessity. Clearly, if W (t) = Pak , then p ([Pak] = 1 at  
t + dt) cannot be the probability for S taking on ak within [t, t +dt] for that would entail that 
at t S does not have ak at t – which contradicts EE. But Generality requires that we give the 
trace formula a uniform interpretation (either transitions or possessed values) for all states. 
Hence, it must be possessed values. One must interpret von Neumann’s Born probabilities 
as being for the events of S having that value of A at t + dt.16 This is to say that von Neumann 
must endorse the value assumption.17 Moreover, he must endorse the following version of 
the trace formula: 

 p ([Pak] = 1 at t + dt) = Tr (W(t) Pak) (4.1) 

(where p ([Pak] = 1 at t + dt) = p([A] = ak at t + dt). But why should an interpreter propose 
this? For an answer, I can only refer back to sec. 3.2. Von Neumann endorses COMP 
(because he assumes EE and certainly endorses State Uniqueness). In the presence of COMP, 
p ([Pak] = 1 at t) = Tr (W(t) Pak) looks implausible (for W(t)  Pai, for any i) and indeed, given 
the probability principle, does yield a contradiction. It is just natural to avoid the threat of 
that contradiction by forcing apart time references for state and possible value.  
However, against this line of thought the second part of the above argument (sec.3.3) now is 
seen to have bite. If (4.1) is the proposed explication of the trace formula for a state W (t) and 
observable Pak then this proposal is in trouble. Obviously, a value of the time-reference  
t + dt on the left cannot come from W (t) because t and t + dt are supposed to take different 
values while the size of dt is nowhere determined. (Recall that the infinitesimal size of dt 
                                                                 
16 Explicitly, the argument is this. Assume that p (T (ai)) = Tr (W(t) Pai) where T (ai) is the transition from 
S not having ai at t to S having ai at t +dt (for all i). Presupposing Generality, assume W (t) = Pak (t). 
Hence, S is in the eigenstate pertaining to ak at t. Then by EE, S has ak at t. But the p (T (ai)) have just 
been defined as probabilities for transitions starting from S not having ai (for all i). Hence, S does not 
have any of the values ai at t and a fortiori not ak. Contradiction. In words: von Neumann’s Born 
probabilities cannot concern transitions from no value of A to value of A, in general, on pain of violating 
EE, when W projects onto an eigenstate of A.  
17 In fact, at a much later point von Neumann in a sense denies the value assumption when he writes: 
‘Indeed experience only makes statements of this type: an observer has made a certain (subjective) 
observation; and never any like this: a physical quantity has a certain value.’ (von Neumann 1932/1955, 
420). This idea is a denial of the value assumption if we assume that QM probabilities concern what we 
experience rather than what is the case. Note however that the present context is different because it 
speaks not of experience but of what is the case: von Neumann’s decree that the trace formula fixes 
‘with what probability [observables] take on … possible values’ (206) implies that such taking-on of a 
value can happen. If it does then, as a result, the observable has a value – regardless of whether an 
observer has a mere ‘(subjective) observation’ of that or more.  
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does absolutely no work here. The interval cannot be set to zero without reproducing the 
previous contradiction, so the limit of making dt ever smaller simply does not exist. But 
which time value then is t + dt ?) So there is nothing at all in QM to provide a value of  
t + dt on the left because (due to Time Parameter Uniqueness) there is no second time-
parameter in QM. Hence (4.1) cannot be a formula of QM. Instead the outcome [Pak] = 1 in 
(4.1) must lack a time-reference. And, as we saw in sec.3.3, this in turn can be shown to be 
incompatible with QM itself. 

4.4 Van Fraassen’s account 
A detailed discussion of QM measurement is presented in van Fraassen (1991).While this 
discussion is critical of von Neumann’s classical account, it is in one sense similar to the 
latter. Both are part of a school of thought that distributes state plus probability and 
eventual outcome to different times in order to make sense of QM measurement in light of 
COMP. Moreover, van Fraassen also respects the value assumption. I quote a longer 
passage, where he characterizes QM measurement before differentiating collapse and no-
collapse (modal) interpretations (one version of which he advocates). Van Fraassen writes: 

Born’s Rule says [… that the] probability that a measurement of yes-no observable P 
will yield value 1, if made in state W, equals Tr (W P). This statement gives us the 
probability of the occurrence of an event, conditional on the occurrence of a certain 
measurement process in a given state. […] But what is this event? During the 
measurement process we see an initial situation change into a final situation. The initial 
situation can be analysed into two parts: the system of interest is in state W, and the 
environment (presence of and interaction with the measuring apparatus in its 
groundstate) has a certain character – call it IN. In the final situation, this system’s state 
will have evolved into, say, W′, and the environment will have a new character – call it 
OUT – which includes e.g. that the pointer on the apparatus now sits at the number 1. So 
we have the transition: IN, W  W′, OUT. This transition could be indeterministic in two 
ways. Recall that we have a probability for OUT. Another possible transition – one that 
could have occurred but did not – may be described as IN, W  W′′, OUT′ and it too had 
a probability. (1991, 244-5; my italics)   

The two ways of indeterminism then differentiate two types of interpretation. Either, in a 
no-collapse interpretation, given ‘the initial situation (IN, W), the final state W′ is completely 
determined (so W′′ = W′), and the probability we are given is really the probability of 
character OUT, given that the system is then in state W′.’ Or, in a collapse interpretation, 
given ‘the final state, the outcome character is completely determined (OUT  OUT′ then  
W′  W′′), and the probability we are given is the probability of the transition from state W 
to W′, when the initial situation has character IN.’ (1991, 245). 
From this passage, we learn two things about QM measurement. First, although van 
Fraassen does not explicate time-references for W and W′ (or W′′) it is entirely obvious from 
(the italicised portions of) the text that W′ (or W′′) is the system’s state at a time later than the 
one of W. Second, it is also clear from the text that the Born Rule probability is one for an 
event at the later time: W′ and character OUT are both part of the ‘final situation’ and the 
original probability is either one for OUT only or for OUT plus W′. All in all, van Fraassen 
straightforwardly explains that in the trace formula p ([P] = 1) = Tr (W P) the elements ‘W’ 
(state) and ‘[P] = 1’ (value) refer to different times. In a collapse interpretation, this 
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probability simultaneously is one for W′ = P such that we can rewrite the formula as  
p (P) = Tr (W P). This of course implies the weaker formula. Moreover, since by assumption 
W′ is a state later than W, in this rewritten version the two time references are even more 
obvious.  
Explicitly, van Fraassen starts with W, the initial state of S (‘the system of interest’) as an 
input for the trace formula. Hence, he proposes a version of formula p ([Pak] = 1) = Tr (W 
Pak), where ‘W’ (initial state of S) and ‘[Pak] = 1’ (value of S) refer to different times. This is a 
literal interpretation of the passage and I emphasize right away that it is doubtful whether it 
really catches van Fraassen’s intention but leave that worry aside for a moment. What 
van Fraassen clearly does endorse is the value assumption. When expounding his own 
interpretation he takes the Born Rule to deliver probabilities for ‘value states’ or better for 
the truth of ‘value attributing propositions’ where such a proposition ‘says that observable 
A actually has a value ak’ (van Fraassen 1991, 275; my italics and notation). 
Assume now that in van Fraassen’s equation p ([Pak] = 1) = Tr (W Pak) the state W equals  
W (t1) where t1 is the time of the onset of interaction between S and M. This is clearly 
suggested by his characterizing W as the ‘initial state’. Assume that the second half of my 
interpretation is also correct, i.e. that ‘[Pak] = 1’ is an equivalent of his value attributing 
proposition which, if true, is true at a later time. Van Fraassen then is effectively putting 
forward this version of the trace formula:     

 p ([Pak] = 1 at t′) = Tr (W(t) Pak) (4.2) 

where t′ > t. But of course, the problem with (4.2) is the same as with von Neumann’s (4.1). 
QM contains no theory giving us t′ for a given t, so (4.2) cannot be a formula of QM. This 
means that also in van Fraassen’s version of the trace formula the internal time-reference 
must be cancelled as a matter of principle – which in sec. 3.3 was shown to be in conflict 
with QM.  
I have recorded doubts whether van Fraassen should be saddled with the interpretation 
leading to (4.2).18 Indeed, it is very clear that his account of measurement aims at another 
state. To quote him again, in a no-collapse interpretation the trace formula provides ‘the 
probability of character OUT, given that the system is then in state W′.’ We may read this as 
saying that really W′ (t2) of S is the appropriate input for the formula. This reading is 
corroborated by looking at van Fraassen’s own version of a no-collapse interpretation. 
Referring back to my discussion of a superposition measurement in sec.4.1, the 
interpretation holds that the state of composite system S + M at t2 equals PB′ (t2) = 
| B′ > < B′ | with | B′ > = 1/2 (| a1 >| m1 > + | a2 >| m2 >). At t2, S and M have become 
correlated, their reduced states are mixtures and denial of EE allows us to ascribe values to 
                                                                 
18 I here refer to van Fraassen (1991). In an earlier exposition of his modal interpretation van Fraassen 
formulates an equivalent of (4.2) explicitly. He gives this version of the Born Rule: ‘When A is an 
observable pertaining to S and the process w (t1)  w (t2) is a measurement of A on S by M, with pointer 
observable M, then 1 (t1) (<A, E>) is the probability that w (t2) is in < A, E> and equally the probability 
that it is in < M, E>’ (van Fraassen 1981, 305; notation adapted). Van Fraassen’s ‘S is in < A, E>’ is 
equivalent to ‘[A]  E’ and for discrete A may be simplified to ‘[A] = ak’ or equivalently ‘[Pak] = 1’.  is a 
map from the set of value attributions into [0, 1] given by  (<A, E>) = Tr (PM, E), where  is a density 
operator, i.e. in the present notation we can introduce a similar map W with: W ([Pak] = 1) = Tr (W Pak). 
Putting in time references from the quotation, we get p ([Pak] = 1 at t2) = Tr (W(t1) Pak) – which is an 
instance of (4.2).  
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observables A and M (on S and M). This again seems to imply that it is a state W′ (t2) (e.g. a 
reduced state of S) that should go into the trace formula – at least in a no-collapse 
interpretation. (Note that for a collapse interpretation using W′ (t2), a collapsed state as an 
input for the formula would not, generally make sense.)  
Van Fraassen’s exposition only suggests this alternative interpretation but another 
interpreter, Vermaas (1999, 195), explicates it – for a certain type of state W′ (t2).19 Vermaas 
also endorses a no-collapse interpretation and is motivated by a similar account of 
measurement. He uses W′ (t2), where this is the reduced state of the apparatus M, in order to 
calculate probabilities for values of the pointer observable M or explicitly: p ([P] = 1 at t2) = 
Tr (W′ (t2) P) (where P now is a projector onto an eigenspace of M).20 Apparently, it seems 
unobjectionable in this particular situation to write the trace formula like this. But of course the 
formula cannot plausibly be restricted to this situation. We cannot help ourselves to a version 
here which we are not obliged to in general. When we consider possible interpretations of the 
trace formula any restriction to a certain type of state (apparatus mixture) is illegitimate. 
Neither the formula nor any standard version of the Born Rule (where it ultimately resides) 
nor the algorithm for expectation values know of any such restriction. And it is this fact that 
has led me to explicitly claim Generality of the trace formula as a property of QM. Now, if we 
read Vermaas’ version as a general proposal for interpreting the trace formula then clearly we 
are back to square one. We must allow W (t1) as a possible input for the formula, where W (t1) 
is S’s state at an arbitrary time (it might be measurement onset or not). According to the 
proposal Vermaas makes (using W′ (t2)!), we then have, for (the equally admissible) W (t1), 
the formula p ([Pak] = 1 at t1) = Tr (W (t1) Pak). But this just is the internal interpretation of the 
formula from sec.3.2. If W (t1) is a superposition of A-eigenstates this interpretation is 
straightforwardly brought into conflict with COMP.  
One may question whether I am doing justice to the proposal. What is intended is a version 
of the trace formula: p ([P] = 1 at t2) = Tr (W′ (t2) P), where W′ (t2) is an arbitrary state in the 
sense of pertaining either to S, M or S + M, but a non-arbitrary one in the sense of referring 
to a time t2 after measurement onset. By contrast, W (t1) does not unambiguously refer to such 
a time, indeed can be taken to be the state at measurement onset. So the idea is to formulate 
a version of the trace formula roughly like this: 

 p ([Pak] = 1 at t2) = Tr (W′ (t2) Pak) (4.3) 

where W′ (t2) explicitly is considered as a state after measurement onset. Taking t1 to be 
measurement onset, W (t1) is not a legitimate input for (4.2). I understand the idea but still 
cannot see how it respects the QM property of Generality. At an arbitrary time t, the 
system’s state is represented by an arbitrary member W (t) of the set of all possible density 
operators on the appropriate space and the trace formula processes that state. So to respect 
Generality, W (t1) has to be an admissible input. 
One may propose that Generality should be relinquished. I have two replies. First of all, I 
insist that Generality is a feature of ordinary QM. No version of the trace formula known to 
me makes any restrictions on the allowed input states and observables.21 KS type theorems 
                                                                 
19 Vermaas here characterizes a common property of three modal interpretations that are all stronger 
than van Fraassen’s (see Vermaas 1999, ch.4), so we may take his proposal as an interpretation of the 
trace formula in modal interpretations, in general. 
20 This explicitly is the content of Vermaas’ proposal (1999, 195). 
21 In particular, this is true for the references in note 9 above. 
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probability simultaneously is one for W′ = P such that we can rewrite the formula as  
p (P) = Tr (W P). This of course implies the weaker formula. Moreover, since by assumption 
W′ is a state later than W, in this rewritten version the two time references are even more 
obvious.  
Explicitly, van Fraassen starts with W, the initial state of S (‘the system of interest’) as an 
input for the trace formula. Hence, he proposes a version of formula p ([Pak] = 1) = Tr (W 
Pak), where ‘W’ (initial state of S) and ‘[Pak] = 1’ (value of S) refer to different times. This is a 
literal interpretation of the passage and I emphasize right away that it is doubtful whether it 
really catches van Fraassen’s intention but leave that worry aside for a moment. What 
van Fraassen clearly does endorse is the value assumption. When expounding his own 
interpretation he takes the Born Rule to deliver probabilities for ‘value states’ or better for 
the truth of ‘value attributing propositions’ where such a proposition ‘says that observable 
A actually has a value ak’ (van Fraassen 1991, 275; my italics and notation). 
Assume now that in van Fraassen’s equation p ([Pak] = 1) = Tr (W Pak) the state W equals  
W (t1) where t1 is the time of the onset of interaction between S and M. This is clearly 
suggested by his characterizing W as the ‘initial state’. Assume that the second half of my 
interpretation is also correct, i.e. that ‘[Pak] = 1’ is an equivalent of his value attributing 
proposition which, if true, is true at a later time. Van Fraassen then is effectively putting 
forward this version of the trace formula:     

 p ([Pak] = 1 at t′) = Tr (W(t) Pak) (4.2) 

where t′ > t. But of course, the problem with (4.2) is the same as with von Neumann’s (4.1). 
QM contains no theory giving us t′ for a given t, so (4.2) cannot be a formula of QM. This 
means that also in van Fraassen’s version of the trace formula the internal time-reference 
must be cancelled as a matter of principle – which in sec. 3.3 was shown to be in conflict 
with QM.  
I have recorded doubts whether van Fraassen should be saddled with the interpretation 
leading to (4.2).18 Indeed, it is very clear that his account of measurement aims at another 
state. To quote him again, in a no-collapse interpretation the trace formula provides ‘the 
probability of character OUT, given that the system is then in state W′.’ We may read this as 
saying that really W′ (t2) of S is the appropriate input for the formula. This reading is 
corroborated by looking at van Fraassen’s own version of a no-collapse interpretation. 
Referring back to my discussion of a superposition measurement in sec.4.1, the 
interpretation holds that the state of composite system S + M at t2 equals PB′ (t2) = 
| B′ > < B′ | with | B′ > = 1/2 (| a1 >| m1 > + | a2 >| m2 >). At t2, S and M have become 
correlated, their reduced states are mixtures and denial of EE allows us to ascribe values to 
                                                                 
18 I here refer to van Fraassen (1991). In an earlier exposition of his modal interpretation van Fraassen 
formulates an equivalent of (4.2) explicitly. He gives this version of the Born Rule: ‘When A is an 
observable pertaining to S and the process w (t1)  w (t2) is a measurement of A on S by M, with pointer 
observable M, then 1 (t1) (<A, E>) is the probability that w (t2) is in < A, E> and equally the probability 
that it is in < M, E>’ (van Fraassen 1981, 305; notation adapted). Van Fraassen’s ‘S is in < A, E>’ is 
equivalent to ‘[A]  E’ and for discrete A may be simplified to ‘[A] = ak’ or equivalently ‘[Pak] = 1’.  is a 
map from the set of value attributions into [0, 1] given by  (<A, E>) = Tr (PM, E), where  is a density 
operator, i.e. in the present notation we can introduce a similar map W with: W ([Pak] = 1) = Tr (W Pak). 
Putting in time references from the quotation, we get p ([Pak] = 1 at t2) = Tr (W(t1) Pak) – which is an 
instance of (4.2).  
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measurement. He uses W′ (t2), where this is the reduced state of the apparatus M, in order to 
calculate probabilities for values of the pointer observable M or explicitly: p ([P] = 1 at t2) = 
Tr (W′ (t2) P) (where P now is a projector onto an eigenspace of M).20 Apparently, it seems 
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straightforwardly brought into conflict with COMP.  
One may question whether I am doing justice to the proposal. What is intended is a version 
of the trace formula: p ([P] = 1 at t2) = Tr (W′ (t2) P), where W′ (t2) is an arbitrary state in the 
sense of pertaining either to S, M or S + M, but a non-arbitrary one in the sense of referring 
to a time t2 after measurement onset. By contrast, W (t1) does not unambiguously refer to such 
a time, indeed can be taken to be the state at measurement onset. So the idea is to formulate 
a version of the trace formula roughly like this: 

 p ([Pak] = 1 at t2) = Tr (W′ (t2) Pak) (4.3) 

where W′ (t2) explicitly is considered as a state after measurement onset. Taking t1 to be 
measurement onset, W (t1) is not a legitimate input for (4.2). I understand the idea but still 
cannot see how it respects the QM property of Generality. At an arbitrary time t, the 
system’s state is represented by an arbitrary member W (t) of the set of all possible density 
operators on the appropriate space and the trace formula processes that state. So to respect 
Generality, W (t1) has to be an admissible input. 
One may propose that Generality should be relinquished. I have two replies. First of all, I 
insist that Generality is a feature of ordinary QM. No version of the trace formula known to 
me makes any restrictions on the allowed input states and observables.21 KS type theorems 
                                                                 
19 Vermaas here characterizes a common property of three modal interpretations that are all stronger 
than van Fraassen’s (see Vermaas 1999, ch.4), so we may take his proposal as an interpretation of the 
trace formula in modal interpretations, in general. 
20 This explicitly is the content of Vermaas’ proposal (1999, 195). 
21 In particular, this is true for the references in note 9 above. 
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concern observables in ordinary QM, COMP was intended as an interpretation of these 
theorems referring to ordinary QM, and it is ordinary QM that has been shown to be in a 
conflict with COMP. So the proposal to relinquish Generality amounts to a change of the 
subject because it does not talk about ordinary QM.  
Second, I do not see how (4.3) really could work. Since Generality is a formal property of 
QM, to abandon it means to substantially revise the formalism and it is not a priori clear 
whether the revision will give us a sensible new QM. Consider this. Regardless of whether 
we interpret W′ (t2) in (4.3) as a state of S, M or S + M, it is a state at some time during (or at 
the end of) an A-measurement, hence is not independent of a choice of observable A. 
Accordingly, the trace formula is no longer general in yet another sense, i.e. it no longer 
processes arbitrary observables. Suppose that we want to calculate W′ (t2) via the QM time-
evolution directly from the preparation W (t0) – insisting with (4.2) that an A-measurement 
must start at some time t1 in between, but not specifying a state W (t1) – then W (t0) has to 
include some state of the A-measurement apparatus leading to the appropriate ‘ready’-state, 
i.e. we would no longer be able to refer to states of QM systems apart from devices 
measuring specific observables on them. Suppose alternatively that we want to recover 
something like Generality, given (4.3). Assume that, for observables A and B with [A, B]  0, 
we want the trace formula to yield probabilities for both choices. This inevitably will force 
that we do explicate a state W (t1) of S alone (calculated from W (t0) and with t0 < t1 < t2) that 
is neutral between those choices. So the algorithm containing the new trace formula (4.3)  
(a new version of the Born Rule) will have to make reference to two different states W (t1) 
and W′ (t2). And this will have to involve an exact theory about how the two states are 
related, i.e. given W (t1), where t1 may be measurement onset, we must name sufficient 
conditions for how to pick time t2 such that W′ (t2) can be put into the trace formula. The 
usual choice – that t2 is a time when S and M have become perfectly correlated (see van 
Fraassen 1991, 200) – is unavailable because that correlation presupposes an apparatus 
measuring a specific observable, mention of which we just wanted to avoid. 
In sum, (4.3) simply does not respect one of the properties of QM, i.e. Generality. Giving up 
this property forces a formidable revision of QM that does not yet exist. I don’t think that 
modal interpreters like van Fraassen or Vermaas really intend such a revision. But the only 
alternative to (4.3) is the literal interpretation of van Fraassen’s general account of 
measurement – in effect (4.2). The argument of sec.3.2 can be viewed as explaining why 
interpreters put forward proposals like this. (Van Fraassen, though exceptionally clear on 
the matter, certainly is not the only interpreter doing so; vide von Neumann.) And sec.3.3 
above presents an argument why (4.2), like (4.1) before, cannot be a component of QM. All 
in all, both van Fraassen and von Neumann exemplify an important tradition of thought 
about QM measurement that as a whole is challenged by the above argument. Our 
consideration of this tradition, rather than showing how to avoid or mitigate the original 
completeness problem, exposes it even more starkly.  

5. Objection 
The mentioned school of thought about QM measurement tries to accommodate COMP by 
accepting the value assumption and suggesting two time references, either by separating the 
time references of state and eventual value ((4.1 and (4.2)) or by tacitly referring to a state at 
a time after measurement onset ((4.3)). Both roads, I have argued, are blocked. So we should 
now consider the remaining alternative. Could the value assumption be dropped?  
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This is a fundamental objection and it makes the whole argument of sec.3.2 collapse 
immediately. To repeat: Given the value assumption, in the trace formula p (ak) = p ([A] = ak) 
where ‘[A] = ak’ means that S has value ak of A. Now, choose W (t) such that p (ak) > 0 and, 
by COMP, [A] = ak at t. Setting p (ak) = p (ak (t)) we get an implausibility and, assuming 
the probability principle, a contradiction. It all depends on the first step: the value 
assumption. To drop it means to assume that QM probabilities do not concern events that 
can be identified with S having a value (of an observable) at a specific time. Instead they 
concern events of another type – but events that can be assumed to occur at time t, where t is 
the parameter from W (t).  
We can very broadly delimit what these events are. The purpose of giving up the value 
assumption is to find a replacement for ‘[A] = ak at t’ in p ([A] = ak at t) such that the latter 
does not (via the probability principle) get into conflict with [A] = ak at t, from COMP 
(given a pure non-eigenstate of A). A positive suggestion for the events is that they are 
situations which are as if [A] = ak at t. Let’s write p (“[A] = ak at t”) – using double quotes – 
for the probability that the situation at t is as if S had ak at t. In fact, this is the broadest 
construal of an alternative to p ([A] = ak at t) – no double quotes – that I can think of. Its 
appeal, I believe, comes from the following intuition. A physical situation can have features 
that are as if some fact F were the case while in fact it must, for whatever reason, remain open 
whether really F is the case.22 Think, e.g., of a concrete reading of a value of pointer 
observable M from which we draw conclusions to S values (perhaps at the same or perhaps 
at an earlier time). Isn’t the whole situation at the end of a measurement as if S had ak  
(at some time, leave that open for the moment)? And isn’t it plausible that one can remain 
agnostic whether S really had ak (at that time)? 
This interpretation of the ‘as if’-proposal may be appealing but here it is not available. Recall 
once more the structure of the argument in sec.3.2 and plug in the ‘as if’-proposal. Choose 
W (t) such that p (“[A] = ak at t”) > 0 and, by COMP, [A] = ak at t. Since the probability is 
positive the probability principle applies, i.e. the proposition “within” the probability must 
be consistent with [A] = ak at t. For a check, resolve the double quotes of that proposition 
in the manner suggested: ‘It is as if [A] = ak at t but in fact it remains open whether [A] = ak at t’. 
Clearly this sentence does not safely avoid a contradiction with ‘[A] = ak at t’. So the 
appealing version of the ‘as if’-interpretation is not the one that can salvage the consistency 
of complete QM. Instead what we need is that propositions of type “[A] = ak at t” (with 
double quotes) are interpreted as follows: ‘It is as if [A] = ak at t but in fact  
it is not the case that [A] = ak at t’. This statement is the only explication safely consistent with 
‘[A] = ak at t’ and hence is the only available reading of the ‘as if’-interpretation. But now 
recall that the proposal must be taken as an alternative reading of all probabilities within the 
trace formula. So, if we adopt the ‘as if’-proposal we automatically propose what QM 
probabilities are, in general. Such probabilities now concern the mere display of values. (For 
contrast, recall the display of number 6 in the die in sec.4.2). Writing the display of a value 
                                                                 
22 This also is a plausible interpretation of von Neumann’s idea that in a QM context experience only 
consists in statements of ‘(subjective) observation’, not statements ascertaining what is the case (see note 
17). I have argued above that in the context of his ‘taking on’-idea probabilities must concern what is the 
case, hence the value assumption must be respected. Here, I explore the idea that probabilities do 
concern only what we experience, not what is the case, i.e. that the value assumption is rejected. I do not 
think that von Neumann can coherently maintain both his ideas but I will not try to show this as it 
would embroil me in questions of text exegesis.  
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concern observables in ordinary QM, COMP was intended as an interpretation of these 
theorems referring to ordinary QM, and it is ordinary QM that has been shown to be in a 
conflict with COMP. So the proposal to relinquish Generality amounts to a change of the 
subject because it does not talk about ordinary QM.  
Second, I do not see how (4.3) really could work. Since Generality is a formal property of 
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we interpret W′ (t2) in (4.3) as a state of S, M or S + M, it is a state at some time during (or at 
the end of) an A-measurement, hence is not independent of a choice of observable A. 
Accordingly, the trace formula is no longer general in yet another sense, i.e. it no longer 
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must start at some time t1 in between, but not specifying a state W (t1) – then W (t0) has to 
include some state of the A-measurement apparatus leading to the appropriate ‘ready’-state, 
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and W′ (t2). And this will have to involve an exact theory about how the two states are 
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conditions for how to pick time t2 such that W′ (t2) can be put into the trace formula. The 
usual choice – that t2 is a time when S and M have become perfectly correlated (see van 
Fraassen 1991, 200) – is unavailable because that correlation presupposes an apparatus 
measuring a specific observable, mention of which we just wanted to avoid. 
In sum, (4.3) simply does not respect one of the properties of QM, i.e. Generality. Giving up 
this property forces a formidable revision of QM that does not yet exist. I don’t think that 
modal interpreters like van Fraassen or Vermaas really intend such a revision. But the only 
alternative to (4.3) is the literal interpretation of van Fraassen’s general account of 
measurement – in effect (4.2). The argument of sec.3.2 can be viewed as explaining why 
interpreters put forward proposals like this. (Van Fraassen, though exceptionally clear on 
the matter, certainly is not the only interpreter doing so; vide von Neumann.) And sec.3.3 
above presents an argument why (4.2), like (4.1) before, cannot be a component of QM. All 
in all, both van Fraassen and von Neumann exemplify an important tradition of thought 
about QM measurement that as a whole is challenged by the above argument. Our 
consideration of this tradition, rather than showing how to avoid or mitigate the original 
completeness problem, exposes it even more starkly.  
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The mentioned school of thought about QM measurement tries to accommodate COMP by 
accepting the value assumption and suggesting two time references, either by separating the 
time references of state and eventual value ((4.1 and (4.2)) or by tacitly referring to a state at 
a time after measurement onset ((4.3)). Both roads, I have argued, are blocked. So we should 
now consider the remaining alternative. Could the value assumption be dropped?  
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This is a fundamental objection and it makes the whole argument of sec.3.2 collapse 
immediately. To repeat: Given the value assumption, in the trace formula p (ak) = p ([A] = ak) 
where ‘[A] = ak’ means that S has value ak of A. Now, choose W (t) such that p (ak) > 0 and, 
by COMP, [A] = ak at t. Setting p (ak) = p (ak (t)) we get an implausibility and, assuming 
the probability principle, a contradiction. It all depends on the first step: the value 
assumption. To drop it means to assume that QM probabilities do not concern events that 
can be identified with S having a value (of an observable) at a specific time. Instead they 
concern events of another type – but events that can be assumed to occur at time t, where t is 
the parameter from W (t).  
We can very broadly delimit what these events are. The purpose of giving up the value 
assumption is to find a replacement for ‘[A] = ak at t’ in p ([A] = ak at t) such that the latter 
does not (via the probability principle) get into conflict with [A] = ak at t, from COMP 
(given a pure non-eigenstate of A). A positive suggestion for the events is that they are 
situations which are as if [A] = ak at t. Let’s write p (“[A] = ak at t”) – using double quotes – 
for the probability that the situation at t is as if S had ak at t. In fact, this is the broadest 
construal of an alternative to p ([A] = ak at t) – no double quotes – that I can think of. Its 
appeal, I believe, comes from the following intuition. A physical situation can have features 
that are as if some fact F were the case while in fact it must, for whatever reason, remain open 
whether really F is the case.22 Think, e.g., of a concrete reading of a value of pointer 
observable M from which we draw conclusions to S values (perhaps at the same or perhaps 
at an earlier time). Isn’t the whole situation at the end of a measurement as if S had ak  
(at some time, leave that open for the moment)? And isn’t it plausible that one can remain 
agnostic whether S really had ak (at that time)? 
This interpretation of the ‘as if’-proposal may be appealing but here it is not available. Recall 
once more the structure of the argument in sec.3.2 and plug in the ‘as if’-proposal. Choose 
W (t) such that p (“[A] = ak at t”) > 0 and, by COMP, [A] = ak at t. Since the probability is 
positive the probability principle applies, i.e. the proposition “within” the probability must 
be consistent with [A] = ak at t. For a check, resolve the double quotes of that proposition 
in the manner suggested: ‘It is as if [A] = ak at t but in fact it remains open whether [A] = ak at t’. 
Clearly this sentence does not safely avoid a contradiction with ‘[A] = ak at t’. So the 
appealing version of the ‘as if’-interpretation is not the one that can salvage the consistency 
of complete QM. Instead what we need is that propositions of type “[A] = ak at t” (with 
double quotes) are interpreted as follows: ‘It is as if [A] = ak at t but in fact  
it is not the case that [A] = ak at t’. This statement is the only explication safely consistent with 
‘[A] = ak at t’ and hence is the only available reading of the ‘as if’-interpretation. But now 
recall that the proposal must be taken as an alternative reading of all probabilities within the 
trace formula. So, if we adopt the ‘as if’-proposal we automatically propose what QM 
probabilities are, in general. Such probabilities now concern the mere display of values. (For 
contrast, recall the display of number 6 in the die in sec.4.2). Writing the display of a value 
                                                                 
22 This also is a plausible interpretation of von Neumann’s idea that in a QM context experience only 
consists in statements of ‘(subjective) observation’, not statements ascertaining what is the case (see note 
17). I have argued above that in the context of his ‘taking on’-idea probabilities must concern what is the 
case, hence the value assumption must be respected. Here, I explore the idea that probabilities do 
concern only what we experience, not what is the case, i.e. that the value assumption is rejected. I do not 
think that von Neumann can coherently maintain both his ideas but I will not try to show this as it 
would embroil me in questions of text exegesis.  
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in French quotes, we have that “ai”  « ai » & ai. We have that an ‘as if’-probability  
p (“ai”) equals p (« ai » & ai) (for all i).  
As an interpretation of a fundamental physical theory this sounds wildly implausible and it 
can indeed be shown to be so. Consider what can be the only motivation for the proposal: to 
harmonize QM and completeness in the form of either EE or COMP. So the proposal had 
better be compatible with these two assumptions. But it cannot be so if it also respects 
Generality, i.e. is a state-independent version of the trace formula. Assume that the formula 
is now to be read as: 

 p (“[A] = ak at t”) = Tr (W (t) Pak) (5.1) 

for arbitrary W (t) and A. Now, suppose that W (t) = Pak. Then, from (5.1)  
p (“ak (t)”) = 1. But this equals the following probability: p (« ak (t) » & ak(t)). Since the 
probability of this conjunction equals 1 we may assume that both conjuncts are true. In 
particular it is true that  [A] = ak at t. We have deduced: If S is in W (t) = Pak then [A] = ak 
at t. This contradicts EE, so a defender of full EE cannot maintain (5.1) for all states. 
Given COMP, there is no contradiction but still we have deduced that if S is in W (t) = Pak 
then [A] = ak at t. Since A is arbitrary and k is an arbitrary one of the indices i, we have 
derived that if S is in an arbitrary A-eigenstate then it does not have a value of A. But 
recalling COMP, when S is in an A-eigenstate then it does not have a value of B, for any B 
with [A, B]  0. So when S is in an arbitrary pure state, it does not have a value of any 
observable. This is an implausible result. We should recall why COMP was endorsed in the 
first place, namely to accommodate the classical no hidden variables proofs (of KS-type). 
These proofs show that (given two assumptions) observables on S forming a KS set cannot 
all be assumed to simultaneously have values. Now, we learn that given S’s state is pure, 
none of the observables in an arbitrary set has a value anyway (at a given time). So, given a 
pure state the claims of all KS-type proofs are vacuously true. Now, if S’s state is an 
ignorance mixture then S really is in one of the pure states we happen to be ignorant about, 
so assuming S’s state to be such a mixture will not make a difference. So the defender of (5.1) 
and COMP must claim that only if S is in a mixture not interpretable as an expression of our 
ignorance, i.e. a reduction mixture, it can be assumed to have a value of some observable and 
the KS arguments are non-vacuously true. However, it is perfectly admissible to assume S – 
say, Kochen and Specker’s original spin-1 system – to be the only QM system in the 
universe. In this case, there is no larger system such that S’s reduced state could be 
interpreted as a non-trivial reduction mixture – which again means that the KS arguments 
are only vacuously true. Hence, this line of reasoning is implausible. Accordingly, the ‘as if’-
interpretation cannot deliver a version of the trace formula that is plausible and respects 
Generality.  
As in the case of proposal (4.3), one may seriously consider giving up Generality. Again, this 
means to give up something that is a property of ordinary QM. Abandoning it may be a 
possible reaction to the argument (which concerns ordinary QM) but certainly is no valid 
objection. And again the price of abandoning Generality is high. It is a formal property of 
QM, hence without it we must revise the formalism. Neither has such a revision been tried 
anywhere nor is it obvious how a reasonable new QM could arise. Suppose that we bite the 
bullet and dismiss the project of one general trace formula. We would have two trace 
formulas instead:  
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 p (“[A] = ak at t”) = Tr (W (t) Pak),    if   W (t)  Pai, for any i; W (t) pure (5.2a) 

 p ([A] = ak at t) = Tr (W (t) Pak)    if    W (t) = Pai, for any i (5.2b) 

According to (5.2b), for the eigenstates of A we have p (ak (t)) = ik for W (t) = Pai. And by 
(5.2a), p (“ak (t)”) is the appropriate probability for a pure non-eigenstate of A. How to treat 
mixed states? Assume first that they are lumped together with the Pai in (5.2b), i.e. the trace 
formula produces probabilities for the truly possessed values for these mixtures (rather then 
the ‘as if’-probabilities of (5.2a)). It seems plausible that for an observable A  B on a 
compound system the ‘as if’-interpretation (5.2a) is true with respect to A  B if and only if 
it is true for A and B Now, let S + M be in state PB = | B > < B | with  
| B > = ½ (3) | a1 >| m1 > + ½ | a2 >| m2 >, where the | ai > and | mi > (for i = 1, 2) are 
eigenstates of A and M, respectively. Then the reduced states PB # of S and # PB of M are 
mixtures of the respective eigenstates and the probabilities are calculated via (5.2b), 
according to our assumption. But S + M is in a pure non-eigenstate of A + M, hence the ‘as 
if’-version (5.2a) applies. Since e.g. Tr (Pm1 (# PB)) = Tr ((Pa1  Pm1) PB) (where Pa1 and Pm1 
project onto rays containing | a1 > and | m1 >, respectively, in the respective subspaces) we 
have that p (m1) = p (“a1” & “m1”) and since PB is a perfectly correlated state also p (m1) = 
p (“m1”). Now, events « mi » & mi are also perfectly correlated (for otherwise we blur the 
distinction between (5.2a and 5.2b)). Hence, p (m1) = p (“m1”) = p (« m1 » & m1) = p (m1). 
This means that p (m1) = p (m1) = ¾. Hence, we cannot plausibly treat mixtures via (5.2a). 
Suppose alternatively that we treat mixtures like pure non-eigenstates of A, i.e. apply an ‘as 
if’-interpretation as in (5.2a). Assume that the system in question is the measurement 
apparatus M, that there is an observable M on M and that the state of S + M is a 
superposition such that M’s reduced state # P (t1) = i ai Pmi, where the Pmi project onto the 
pointer eigenstates. Then for this state (of M!) the conditions for (5.2a) are in place. Hence, 
we have probabilities p (“mi”) = p (« mi » & mi) (for all i), i.e. each probability concerns the 
event that the M-measurement apparatus M is in a situation that is as if M had mi at t1 and 
M does not have mi at t1 (for all i). But M is an observable accessible to the naked eye. So QM 
plus (5.2a, b) proposes that direct observation of a macroscopic object is regularly mistaken 
and universally so, if we have reason to believe the observed object M is in a non-eigenstate 
of the pointer observable.  
We need to hear nothing further, I believe. An empirical theory that must assume systematic 
error in the direct observations eventually testing it is absurd. So the ‘as if’-proposal fails not 
only as a general proposal for the trace formula, but also in terms of its content.23 Hence, the 
only tangible proposal not obeying the value assumption fails. The argument of sec.3 
remains intact. 
                                                                 
23 Note also that the measurement problem, in the second version above, is trivially dissolved. Nothing 
prohibits that we calculate probabilities for the values of pointer observables (of a macroscopic 
apparatus) from the trace formula. But these must now, of course, also be probabilities for ‘as if’-events. 
Consider the probability p(“[M] = m1 at t3”) deduced from a state W (t3) of S + M and t3 is the end of the 
S-M interaction. We have a probability for a situation that is as if M showed m1 at t3 while M does not in 
fact show m1 at t3. If we take to heart this interpretation then there can of course be no measurement 
problem. This problem was that we see, e.g., [M] = m1 at t3 while the superposition affecting M prohibits 
(via EE) that [M] = m1 at t3. But given the ‘as if’-interpretation our vision is deceptive anyway. It is not 
the case that [M] = m1 at t3. If our observations are by assumption fallacious they can be in conflict with 
ascribed QM states but the conflict is harmless just because they are fallacious. Cancelling one of two 
contradictory statements always removes a contradiction. 
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6. Consequences 
The argument here developed shows that EE, the standard interpretation of QM 
completeness originating with Dirac and von Neumann, is implausible. Given State 
Uniqueness, EE entails COMP, which cannot be true under plausible assumptions. This may 
seem but a minor result. While many theoreticians not concerned with the foundations of 
QM still reproduce EE many others concerned with these foundations reject it right away. 
But the above result is of considerable strength. First of all, adopting or rejecting EE in the 
past often was a matter of general interpretive preferences, so any argument relating it to 
the structure of QM itself must be welcome. Moreover, in the presence of State Uniqueness, 
which is a property of QM anyway, COMP is weaker than EE, hence the result is stronger. 
Finally, the assumptions made are mostly very general and so the argument should guide 
our future thought about time-references in the formalism of QM. 
Of course, if the result is any good then its trivial consequence is that, given the 
assumptions, the negation of COMP is true. But the discussion hopefully has highlighted 
what exactly this negation is: If S is in some state W (t) such that for an arbitrary observable 
Pak the trace formula yields: 1 > p (ak) = Tr (W (t) Pak) > 0 (i.e. W (t) is a non-eigenstate of A), 
then this must be explicated by the internal interpretation, hence must explicitly run:  
p (ak (t)) > 0 and it must be legitimate to assume that S has value ak of A at time t – even when 
W (t) is a pure non-eigenstate of A. It should be obvious that this conclusion, if inescapable, has 
radical implications. Let me nevertheless illustrate them by means of a well-known and 
elegant KS variant due to Mermin (1990). Let S be a two-particle spin ½ system (hence we 
must have a space H with dim H = 4) and consider (for an orthogonal triple x, y, z of vectors 
in R³) these nine spin observables: σ1x, σ2x, σ1y, σ2y, σ1x σ2x, σ1y σ2y, σ1x σ2y, σ1y σ2x, σ1z σ2z. 
Writing again [A] for the value of an observable A, one can derive: 

[σ1x] [σ2x] [σ1x σ2x]   =  1 
[σ1x] [σ2y] [σ1x σ2y]   =  1 
[σ1y] [σ2x] [σ1y σ2x]   =  1 
[σ1y] [σ2y] [σ1y σ2y]   =  1 
[σ1x σ2y] [σ1y σ2x] [σ1z σ2z]  =  1 
[σ1x σ2x] [σ1y σ2y] [σ1z σ2z]  =            –1 

The derivation uses the constraints mentioned in sec.2.2: Functional Composition (here the 
Product Rule: [AB] = [A] [B]) and Noncontextuality (every operator represents a unique 
observable such that two occurrences of some [A] have the same value). The result is so 
elegant because the impossibility is so easy to see. Since every value appears twice the 
product of all the left sides must be positive, while the one of all the right sides is negative. 
Now let S be in the singlet state. Then it is straightforward to show that all nine observables 
get strictly positive probabilities. Hence, given  COMP, it must be possible to assume that 
all nine observables have values at time t. Since this is impossible given the two constraints 
at least one of them must be false. 
The problem outlined should direct further research in the foundations of QM. As indicated 
the measurement problem over which so much ink has been spilled is a consequence of 
yoking COMP and QM together despite the hidden inconsistency I have tried to uncover 
here. The only conclusion I can see is that attempts to resolve the measurement problem are 
misguided and that we must again investigate hidden-variables interpretations more 
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seriously. It should give us pause to see that elementary textbooks of QM directed at 
undergraduates and ignorant of interpretational subtleties rectify, without further ado, 
equivalents of p (ak) = Tr (W (t) Pak) into p (ak (t)) = Tr (W (t) Pak), that theoretical physicists 
defining transition probabilities and propagators do so as well as those trying to wed 
quantum theories and general relativity while orthodox interpretations either ignore the 
problem or, via the measurement-outcome idea, smuggle in references to times other than t 
that simply are not provided by W (t). To my mind, all this recommends a sincere look at 
how far away we are from understanding QM. 
The next logical step is to try and answer which of the two conditions – Functional 
Composition and Noncontextuality – QM systems violate. If we look at the two possibilities 
of contextuality discussed in the (not so recent) literature then measurement-induced 
Contextuality is not an option because, as we saw, QM systems possess the properties for 
which we make QM predictions at measurement onset. The alternative, called Ontological 
Contextuality (see Redhead 1987, 137), is little more than a label and so far it is nothing that 
can guide an understanding of the non-Boolean lattice structure of QM observables. But 
here, to my mind, should be the starting point for future research. Finally, it should be 
pointed out that the argument relates predictions of properties of QM systems to the times 
of measurement onset in measurements of these systems. This does entail that the properties 
measured in a QM system exist in it at measurement onset, but it does not entail that 
measurement is faithful in the sense of revealing pre-existing properties. QM properties 
might very well be relational in the sense of being relations between system and apparatus 
or between system and observer. It is just that these properties, if they are relations, come 
into existence, at the latest, at the time system and apparatus meet. To make sense of QM 
under these conditions is certainly a fundamental task for present philosophy of physics.  
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1. Introduction

Quantum Mechanics (QM) represents one of the pillars of modern physics: so far a
huge amount of theoretical predictions deriving from this theory have been confirmed
by very accurate experimental data. No doubts can be raised on the validity of this
theory. Nevertheless, even after one century since its birth, many problems related to the
interpretation of this theory persist: non-local effects of entangled states, wave function
reduction and the concept of measurement in QM, the transition from a microscopic
probabilistic world to a macroscopic deterministic word perfectly described by classical
mechanics and so on. A possible way out from these problems would be if QM represents a
statistical approximation of an unknown deterministic theory, where all observables have well
defined values fixed by unknown variables, the so called Hidden Variable Theories (HVT).
Therefore, the debate whether QM is a complete theory and probabilities have a non-epistemic
character (i.e. nature is intrinsically probabilistic) or whether it is a statistical approximation
of a deterministic theory and probabilities are due to our ignorance of some parameters (i.e.
they are epistemic) dates to the beginning of the theory itself.
The fundamental paper where this problem clearly emerged appeared in 1935 when Einstein,
Podolsky and Rosen asked this question by considering an explicit example (Einstein et al.,
1935). For this purpose, they introduced the concept of element of reality according to
the following definition: if, without disturbing a system in any way , one can predict
with certainty the value of a physical quantity, then there is an element of physical reality
corresponding to this quantity. They formulated also the reasonable hypothesis ( consistent
with special relativity) that every non-local action was forbidden. A theory is complete when
it describes every element of reality. They concluded that either one or more of their premises
was wrong or Quantum Mechanics was not a complete theory, in the sense that not every
element of physical reality had a counterpart in the theory.
This problem led to the search of a “complete theory" by adding hidden variables to the wave
function in order to implement realism. For a long time, there was a general belief among
quantum physicists that quantum mechanics can not be replaced by some complete theory
(HVT) due to Von Neumann’s impossibility proof ( who imposed an unwarranted constraint
on HVT). But in sixties we got two theorems due to J. S. Bell (Bell, 1964) (Bell, 1966) and Kochen
and Specker (Kochen & Specker, 1967). These theorems showed that quantum mechanics can

  

Quantum Correlations in Successive 
Spin Measurements 

Ali Ahanj 
Department of Physics, Khayyam Higher Education Institute (KHEI), Mashhad, and 

School of Physics, Institute for Research in Fundamental Science(IPM), 
Tehran, 

Iran 

8



 
Measurements in Quantum Mechanics 196 

Held, C. (in preparation). Incompatibility of standard quantum completeness and quantum 
mechanics. 

Hughes, R.I.G. (1989). The structure and interpretation of quantum mechanics. Cambridge, 
Mass.: Harvard University Press. 

Kochen, S. & Specker, E. (1967). The problem of hidden variables in quantum mechanics. 
Journal of Mathematics and Mechanics, 17, 59-87. 

Landsman, K. (2009). The Born rule and its interpretation. In Greenberger et al. (2009), 64-70. 
Mermin, N. D. (1990). Simple unified form of the major no-hidden variables theorems. 

Physical Review Letters, 65, 3373-3376. 
Nielsen, M.A. & Chuang, I.L. (2000). Quantum computation and quantum information. 

Cambridge: Cambridge University Press. 
Redhead, M. (1987). Incompleteness, nonlocality, and realism:  a prolegomenon to the philosophy of 

quantum mechanics. Oxford: Clarendon Press 
Van Fraassen, B. C. (1981). A modal interpretation of quantum mechanics. In E. Beltrametti 

and B. C. van Fraassen (eds.) Current issues in quantum logic (Singapore: World 
Scientific): 229-58. Reprinted in L. Sklar (ed.). The philosophy of physics (New York: 
Garland, 2000): 279-308.  

Van Fraassen, B.C. (1991). Quantum mechanics: an empiricist view. Oxford: Clarendon Press. 
van Fraassen, B.C. and Hooker, C.A. (1976). A semantic analysis of Niels Bohr’s philosophy 

of quantum theory. In W.L. Harper and C.A. Hooker (eds.): Foundations of 
Probability Theory, Statistical Inference, and Statistical Theories of Science, vol. III: 
Foundations and Philosophy of Statistical Theories in the Physical Sciences, (Dordrecht, 
Reidel) 221-241. 

Von Neumann, J. (1932/1955). Mathematische Grundlagen der Quantenmechanik. Berlin: 
Springer, 1932; english translation: Mathematical foundations of quantum mechanics. 
Princeton: Princeton University Press, 1955. 

1. Introduction

Quantum Mechanics (QM) represents one of the pillars of modern physics: so far a
huge amount of theoretical predictions deriving from this theory have been confirmed
by very accurate experimental data. No doubts can be raised on the validity of this
theory. Nevertheless, even after one century since its birth, many problems related to the
interpretation of this theory persist: non-local effects of entangled states, wave function
reduction and the concept of measurement in QM, the transition from a microscopic
probabilistic world to a macroscopic deterministic word perfectly described by classical
mechanics and so on. A possible way out from these problems would be if QM represents a
statistical approximation of an unknown deterministic theory, where all observables have well
defined values fixed by unknown variables, the so called Hidden Variable Theories (HVT).
Therefore, the debate whether QM is a complete theory and probabilities have a non-epistemic
character (i.e. nature is intrinsically probabilistic) or whether it is a statistical approximation
of a deterministic theory and probabilities are due to our ignorance of some parameters (i.e.
they are epistemic) dates to the beginning of the theory itself.
The fundamental paper where this problem clearly emerged appeared in 1935 when Einstein,
Podolsky and Rosen asked this question by considering an explicit example (Einstein et al.,
1935). For this purpose, they introduced the concept of element of reality according to
the following definition: if, without disturbing a system in any way , one can predict
with certainty the value of a physical quantity, then there is an element of physical reality
corresponding to this quantity. They formulated also the reasonable hypothesis ( consistent
with special relativity) that every non-local action was forbidden. A theory is complete when
it describes every element of reality. They concluded that either one or more of their premises
was wrong or Quantum Mechanics was not a complete theory, in the sense that not every
element of physical reality had a counterpart in the theory.
This problem led to the search of a “complete theory" by adding hidden variables to the wave
function in order to implement realism. For a long time, there was a general belief among
quantum physicists that quantum mechanics can not be replaced by some complete theory
(HVT) due to Von Neumann’s impossibility proof ( who imposed an unwarranted constraint
on HVT). But in sixties we got two theorems due to J. S. Bell (Bell, 1964) (Bell, 1966) and Kochen
and Specker (Kochen & Specker, 1967). These theorems showed that quantum mechanics can

  

Quantum Correlations in Successive 
Spin Measurements 

Ali Ahanj 
Department of Physics, Khayyam Higher Education Institute (KHEI), Mashhad, and 

School of Physics, Institute for Research in Fundamental Science(IPM), 
Tehran, 

Iran 

8



2 Will-be-set-by-IN-TECH

not be replaced by some classes of HVT, namely local and non-contextual HVT. The most
celebrated of this kind of HVT was presented by Bohm in 1952 (Bohm, 1952). Bohm, just prior
to developing his HV interpretation, introduced a simplified scenario involving two spin-half
particles with correlated spins, rather than two particles with correlated positions and
momenta as used by EPR. The EPR-Bohm scenario has the advantage of being experimentally
accessible.
In 1964 John Bell (Bell, 1964) derived an inequality ( which is a statistical result, and is called
Bell’s inequality BI) using locality and reality assumptions of EPR-Bohm, and showed that
the singlet state of two spin-1/2 particles violates this inequality, and hence the contradiction
with quantum mechanics.
Contemporary versions of the argument are based on the Clauser, Horne, Shimony and Holt
(CHSH) inequality(Clauser et al., 1969), rather than the original inequality used by Bell. There
is a very good reason for that. While Bell’s argument applied only to the singlet state,
the CHSH inequality is violated by all pure entangled states (Gisin & Peres, 1992). Early
versions of CHSH inequalities involved only two observers, each one having a choice of two
(mutually incompatible) experiments. The various outcomes of each experiment were lumped
into two sets, arbitrarily called +1 and −1. Possible generalizations involve more than two
observers, or more than two alternative experiments for each observer, or more than two
distinct outcomes for each experiment. We may consider n-partite systems, each subject to
a choice of m v-valued measurements. This gives a total of (mv)n experimentally accessible
probabilities. The set of Bell inequalities is then the set of inequalities that bounds this region
of probabilities to those accessible with a local hidden variable model. Thus for each value
of n, m and v the set of local realistic theories is a polytopes bounded by a finite set of linear
Bell inequalities. The CHSH inequalities apply to a situation (n, m, v) = (2, 2, 2). Gisin et al
(Gisin & Bechmann-Pasquinucci, 1998) have found a family of Bell inequalities for the case
with the number of measurements is arbitrary, i.e. (n, m, v) = (2, m, 2). Collins et al (Collins,
Gisin, Linden, Massar & Popescu., 2002) and Kaszlikowski et al (Kaszlikowski et al., n.d.)
have produced inequalities for arbitrarily high dimensional systems, i.e. (n, m, v) = (2, 2, v).
The most complete study of Bell inequalities is for the case (n, m, v) = (n, 2, 2). n-particle
generalizations of the CHSH inequality were first proposed by Mermin (Mermin, 1990), and
Belinskii and Klyshko (Belinskii & Klyshko, 1993), and have been extended by Werner and
Wolf (Werner & Wolf, 2000), and Zukowski and Brukner (Zuckowski & Brukner, 2002) to give
the complete set for two dichotomic observables per site.
On the theoretical side, “ violation of Bell’s inequalities" had become synonymous with
“non-classical correlation", i.e., entanglement. One of the first papers in which finer
distinctions were made was the construction of states with the property that they satisfy
all the usual assumptions leading to the Bell inequalities, but can still not be generated by
a purely classical mechanism ( are not “separable" in modern terminology) (Werner, 1989).
This example pointed out a gap between the obviously entangled states ( violating a Bell
inequality) and the obviously non-entangled ones, which are merely classical correlated (
separable). In 1995 Popescu (Popescu, 1995) ( and later (Bennett et al., 1996)) narrowed this
gap considerably by showing that after local operations and classical communication one
could “distill" entanglement, leading once again to violations, even from states not violating
any Bell inequality initially. To summarize this phase: it became clear that violations of Bell
inequalities, while still a good indicator for the presence of non-classical correlations by no
means capture all kinds of “entanglement".
Bell inequalities are statistical predictions about measurements made on two particles,
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typically photons or particles with spin 1
2 . So some people were trying to show a direct

contradiction (which is not a statistical one) of quantum mechanics with local realism.
Greenberger, Horne and Zeilinger (GHZ)(Greenberger et al., 1990) found a way to show more
immediately, without inequalities, that results of quantum mechanics are inconsistent with the
assumptions of EPR. It focuses on just one event, not the statistics of many events. Their proof
relies on eight dimensional Hilbert space, unlike the case of Bell’s theorem, which is valid in
four dimensions. Heywood and Redhead (Heywood & Redhead, 1983) have provided a direct
contradiction (without inequalities) of quantum mechanics with local realism for a particular
state of two spin-1 particles. Finally, Hardy (Hardy, 1992) gave a proof of non locality
for two particles with spin 1

2 that only requires a total of four dimensions in Hilbert space
like Bell’s proof but does not require inequalities. This was accomplished by considering a
particular experimental setup consisting of two over-lapping Mach-Zehnder interferometers,
one for positrons one for electrons, arranged so that if the electron and positron each take
a particular path then they will meet and annihilate one another with probability equal to
1. This arrangement is required to produce assymetric entangled state which only exhibits
non locality without any use of inequality. The argument has been generalized to two spin s
particles by Clifton and Niemann (Clifton & Niemann, 1992) and to N spin half particles by
Pagonis and Clinton (Pagonis & Clifton, 1992).
Later, Hardy showed that this kind of non locality argument can be made for almost all
entangled states of two spin- 1

2 particles except for maximally entangled one (Hardy, 1993).
This proof was again simplified by Goldstein (Goldstein, 1994) and extended it to the case of
bipartite systems whose constituents belong to Hilbert spaces of arbitrary dimensions.
Conceptually, as well as mathematically, space and time are differently described in quantum
mechanics. While time enters as an external parameter in the dynamical evolution of a system,
spatial coordinates are regarded as quantum mechanical observables. Moreover, spatially
separated quantum systems are associated with the tensor product structure of the Hilbert
state-space of the composite system. This allows a composite quantum system to be in a state
that is not separable regardless of the spatial separation of its components. We speak about
entanglement in space. On the other hand, time in quantum mechanics is normally regarded as
lacking such a structure. Because of different roles time and space play in quantum theory one
could be tempted to assume that the notion of “entanglement in time" cannot be introduced in
quantum physics.
In this chapter we propose and analyze a particular scenario to account for the deviations of
QM from ‘realism’ ( defined below), which involves correlations in the outputs of successive
measurements of noncommuting operators on a spin-s state. The correlations for successive
measurements have been used previously by Popescu (Popescu, 1995) in the context of
nonlocal quantum correlations, in order to analyze a class of Werner states which are
entangled but do not break (bipartite) Bell-type inequality. Although local HVT can simulate
the quantum correlations between the outputs of single ideal measurement on each part of
the system, it fails to simulate the correlations of the second measurements on each part.
Leggett and Garg have used consecutive measurements to challenge the applicability of QM
to macroscopic phenomena (Leggett & Garg, 1985). While the temporal Bell inequalities,
considered in refs. (Leggett & Garg, 1985) (see also (Paz & Mahler, 1993)), are for histories,
we deal here with Bell-type inequalities with predetermined measurement values at different
times. The temporal Bell inequalities deal with measurement of the same observable at
different times, whereas we deal here with different measurements at different times. Finally
there is a large literature on the problem of information of a quantum state that can be
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obtained by measuring the same operator successively on a single system. The research in
this area is elegantly summarized in (Alter & Yamamoto, n.d.). Bell-type inequality with
successive measurements was first considered by (Brukner et al., 2004). They have derived
CHSH-type inequality (Clauser et al., 1969) for two successive measurements on an arbitrary
state of a single qubit and have shown that every such state would violate that inequality for
proper choice of the measurement settings. They have shown that the quantum mechanical
correlation for three successive measurements, for any single qubit input state is the product of
two consecutive correlations each of which is the correlation of two consecutive measurements
– a scenario quite uncommon for spatial correlations. As an application of their approach, they
have used the correlations in two successive measurements to overcome the limitations in
RAM of a computer to calculate a Boolean function whose input bits are supplied sequentially
in time.
We consider and analyze the correlations between the outputs of successive measurements for
a general spin S state as against the general qubit state. We show that, for S > 1

2 , the quantum
mechanical correlation for three successive measurements is not a product of two successive
correlations, that is, the correlations in two successive measurements. We show that for S = 1

2 ,
the correlation between the outputs of measurements from n− k to n (last k out of n successive
measurements) k = 0, 1, . . . , n − 1, depend on the measurement prior to n − k, when k is even,
while for odd k, these correlations are independent of the outputs of measurements prior to
n− k. Further, we show that all qubit states break the Bell type inequalities corresponding to n
successive measurements, where n is any finite number. Finally, we study Hardy’s nonlocality
arguments for the correlations between the outputs of n successive measurements for all s-spin
measurements. We show that the maximum probability of success of Hardy’s argument in the
successive measurement is much higher than the spatial ones in a certain sense.
The chapter is organized as follows. In Section 2 we describe the basic scenario in detail.
Section 3 formulates the implications of hidden variable theory (HVT) for this scenario in
terms of Bell-type inequalities. Section 4 evaluates these inequalities for mixed input states of
single spin-s system for two and three successive measurements (considering various values
of s). Section 5 deals with n successive measurements on spin-1/2 system. Section 6 explains
the logical structure of Hardy’s argument on time locality and, we show that no time-local
stochastic HVT (SHVT) can simultaneously satisfy Hardy’s argument. Finally we conclude
with summary and comments in Section 7. Mathematical details are relegated to Appendices
A and B.

2. Basic scenario

Consider the following sequence of measurements. A quantum particle with spin s, prepared
in the initial state ρ0, is sent through a cascade of Stern-Gerlach (SG) measurements for the spin
components along the directions given by the unit vectors â1, â2, â3, . . . , ân (i.e., measurement
of observables of the form �S.â, where �S = (Sx, Sy, Sz) is the vector of spin angular momentum
operators Sx, Sy, Sz and â is a unit vector from R3). Each measurement has 2s + 1 possible
outcomes. For the i-th measurement, we denote these outcomes (eigenvalues) by αi ∈ {s, s −
1, . . . ,−s}. We denote by �αi� the quantum mechanical (ensemble) average ��S · âi�, by �αiαj�
the average �(�S · âi)(�S · âj)� etc.
Each of the (2s + 1)n possible outcomes, which one gets after performing n consecutive
measurements, corresponds to a particular combination of the results of the measurements
at previous n − 1 steps and the result of the measurement at the n-th step. The probability
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of each of these (2s + 1)n outcomes is the joint probability for such combinations. Note
that even though the spin observables �S · â1, �S · â2, . . ., �S · ân, whose measurements are
being performed at times t1, t2, . . ., tn respectively (with t1 < t2 < . . . < tn) do not
commute, above-mentioned joint probabilities for the outcomes are well defined because
each of these spin observables act on different states (Fine, 1982) (Anderson et al., 2005)
(Ballentine, 1990). We emphasize that this is the joint probability for the results of n actual
measurements and not a joint probability distribution for hypothetical simultaneous values of
n noncommuting observables. Moreover, various sub-beams (i.e., wave functions) emerging
from every Stern-Gerlach apparatus (corresponding to (2s + 1) outcomes) in every stage of
measurement are separated without any overlap or recombination between them. In other
words, the eigen wave packet ψs−j,ti ,âi (x), corresponding to the eigen value s − j of the
observable �S · âi, measured at time ti, will not have any part in the regions where the SG setups,
for measurement of the observables �S · âi+1,s, �S · âi+1,s−1, . . ., �S · âi+1,s−j+1, �S · âi+1,s−j−1, . . .,
�S · âi+1,−s, are situated. We further assume that, between two successive measurements, the
spin state does not change with time i.e. �S commutes with the interaction Hamiltonian, if any.
Also, throughout the string of measurements, no component (i.e., sub-beam) is blocked. It is
to be mentioned here that the time of each of the measurements are measured by a common
clock.

3. Implications of HVT

HVT assumes that in every possible state of the system, all observables have well defined
(sharp) values (Redhead, 1987). On the measurement of an observable in a given state,
the value possessed by the observable in that state ( and no other value) results. To gain
compatibility with QM and the experiments, a set of ‘hidden’ variables is introduced which is
denoted collectively by λ. For given λ, the values of all observables are specified as the values
of appropriate real valued functions defined over the domain Λ of possible values of hidden
variables. For the spin observable �S · â, we denote the value of �S · â in the QM (spin) state |ψ�
by α. Considered as a function, α : Λ → IR , we represent the value of �S · â when the hidden
variables have the value λ by α(λ). More generally, we may require that a value of λ gives the
probability density p(α|λ) over the values of α rather than specifying the value of α (stochastic
HVT). We denote the probability density function for the hidden variables in the state |ψ� by
ρψ (ρψ(λ)dλ measures the probability that the collective hidden variable lies in the range λ to
λ + dλ). Then the average value of �S · â in the state |ψ� is

�α� =
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Λ
α(λ)ρψ(λ)dλ, (1)

where the integration is over Λ defined above. In the general case (SHVT)

�α� =
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αp(α|λ)ρψ(λ)dλ. (2)

We now analyze the consequences of SHVT for our scenario. In general, the outputs of kth
and lth experiments may be correlated so that,
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of observables of the form �S.â, where �S = (Sx, Sy, Sz) is the vector of spin angular momentum
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However, in SHVT we suppose that these correlations have a common cause represented by
a stochastic hidden variable λ so that

p(αi, âk&αj, â�|λ) = p(αi, âk|λ)p(αj, âl |λ). (4)

As a consequence of equation (4), the probability p(αi, âk|λ) obtained in a measurement (�S · âk
say) performed at time tk is independent of any other measurement (�S · âl say) made at some
earlier or later time tl . This is called locality in time (Leggett & Garg, 1985) (Brukner et al.,
2004).
One should note that for a two dimensional quantum mechanical system, one can always
assign values ( deterministically or probabilistically ) to the observables with the help of a
HVT. Once the measurement is done, the system will be prepared in an output state ( namely,
an eigenstate of the observable), and the earlier HVT may or may not work to reproduce
the values of the observables to be measured on that output state ( prepared after the first
measurement). We have considered possibility of existence of a HVT for every input qubit
state which can reproduce the measurement outcomes of n successive measurements.
Equation (4) is the crucial equation expressing the fundamental implication of SHVT to the
successive measurement scenario. We now obtain the Bell type inequalities from equation (4)
which can be compared with QM. Here we assume that in HVT all probabilities corresponding
to outputs of measurements account for the possible changes in the values of the observable
being measured, ( due to the interaction of the measuring device and the system), occurring
in the previous measurements.
Now �αiαj� is the expectation value of obtaining the outcome αi in the measurement of the
observable �S.âi at time ti as well as the outcome αj in the measurement of the observable �S.âj
at later time tj. Due to the HVT, we must have ( dropping âk, â�)

�αiαj� =
∫

ρ(λ)E(αi, αj, λ)dλ, (5)

where

E(αi, αj, λ) = ∑
αi ,αj

αiαj p(αi, αj|λ) = ∑
αi

αi p(αi|λ)∑
αj

αj p(αj|λ)

= E(αi, λ)E(αj, λ) (6)

by equation (4). Now let us consider the case of two successive measurements, with options
â1, â�1 and â2, â�2 respectively for measuring spin components. In each run of the experiment,
a random choice between {â1, â�1} and {â2, â�2} is made. Define θi (i = 1, 1�) to be the angle
between âi and the positive z-axis, θij (i = 1, 1� and j = 2, 2�) is the angle between âj and âi.
Using condition (6) and the result (Shimony, n.d.) (Jarrett, 1984)

−2s2 ≤ xy + xy� + x�y − x�y� ≤ 2s2, x, y, x�, y� ∈ {−s,−s + 1, . . . , s − 1, s},

we obtain

− 2s2 ≤ E(α1, α2, λ) + E(α1, α�2, λ) + E(α�1, α2, λ)− E(α�1, α�2, λ) ≤ 2s2. (7)

Multiplying by ρ(λ)dλ and integrating over Λ, we get the CHSH-type inequality (Clauser
et al., 1969) (involving the hidden variable λ) corresponding to performing two successive
measurements of spin-s observables on a spin-s initial state:

|�BI�| = 1
2
|�α1α2�+ �α1α�2�+ �α�1α2� − �α�1α�2�| ≤ s2. (8)
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Similarly, using the algebraic fact

−2s3 ≤ xyz� + xy�z + x�yz − x�y�z� ≤ 2s3,

where
x, y, z, x�, y�, z� ∈ {−s,−s + 1, . . . , s − 1, s}

and1

E(αi, αj, αk, λ) = E(αi, λ)E(αj, λ)E(αk, λ),

we can prove Mermin-Klyshko Inequality (MKI) (Mermin, 1990), (Belinskii & Klyshko, 1993)
for three successive measurements,

|�MKI�| = 1
2
|�α1α2α�3�+ �α1α�2α3�+ �α�1α2α3� − �α�1α�2α�3�| ≤ s3. (9)

Let |�MKI��| ≤ s3, where |�MKI��| is obtained from equation (9) by interchanging primes
with non-primes in MKI. It is easily shown that

|�SI�| = |�MKI�+ �MKI��| ≤ |�MKI�|+ |�MKI��| ≤ 2s3. (10)

This is the Svetlichny inequality (SI) (Svetlichny, 1987),(Seevinck & Svetlichny, 2002),(Collins,
Gisin, Popescu, Roberts & Scarani, 2002).
For n successive measurements on spin s system, we define the MK polynomials recursively
as follows:

M1 = α1, M�
1 = α�1, (11)

Mn =
1
2

Mn−1(αn + α�n) +
1
2

M�
n−1(αn − α�n), (12)

where M�
n are obtained from Mn by interchanging all primed and non-primed α’s. The

recursive relation (12) gives, for all 1 ≤ k ≤ n − 1 (Collins, Gisin, Popescu, Roberts & Scarani,
2002) ,(Cabello, 2002a):

Mn =
1
2

Mn−k(Mk + M�
k) +

1
2

M�
n−k(Mk − M�

k). (13)

In particular, we have

M2 = BI =
1
2
(α1α2 + α�1α2 + α1α�2 − α�1α�2), (14)

M3 = MKI =
1
2
(α1α2α�3 + α1α�2α3 + α�1α2α3 − α�1α�2α�3). (15)

We now show that in HVT,

|�Mn�| ≤ sn. (16)

1 This is obtained by using equation (4) and the similar argument as has been used in deriving equation
(6).
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First note that (16) is true for n = 2, 3 (equations (8), (9)). Suppose it is true for n = k i.e.
Max|�Mk�| = sk. Now

|�Mk+1�| = 1
2
|�Mkαk+1�+ �Mkα�k+1�+ �M�

kαk+1� − �M�
kα�k+1�|.

Since HVT applies here we can use (4) to get

|�Mk+1�| = 1
2
|�Mk�(�αk+1�+ �α�k+1�) + �M�

k�(�αk+1� − �α�k+1�)|.

This implies, by induction hypothesis (and using the fact that max|�M2�| = s2), that

max |�Mk+1�| = s max |�Mk�| = sk+1.

This result is derived for n spin-s particles by Cabello (Cabello, 2002a).
We now define a quantity, denoted by ηn, which will be required later on. ηn, is
the ratio between maximum |�Mn�| given by quantum correlation between n successive
measurement’s outputs and the maximal classical one,

ηn =
max|�Mn�QM|

sn . (17)

4. Mixed input state for arbitrary spin

4.1 Two successive measurements (BI)
We first deal with the case when input state is a mixed state whose eigenstates coincide
with those of �S · â0 for some â0 whose eigenvalues we denote by α0 ∈ {−s, · · · s}. For
spin 1/2 this is the most general mixed state because given any density operator ρ0 for spin
1/2 (corresponding to some point within the Bloch sphere), we can find an â0 such that the
eigenstates of �S·, â0 and ρ0 coincide. However, for s > 1/2, our choice forms a restricted class
of mixed states. We note that these are the only states accessible via SG experiments. Thus we
have

ρ0 = ∑
α0

pα0 |�S · â0, α0���S · â0, α0|;
(

∑
α0

pα0 = 1

)
(18)

After the first measurement along â1, the resulting state of the system is

ρ1 = ∑
α1

M†
α1

ρ0 Mα1 , (19)

where
M†

α1
= Mα1 = |�S · â1, α1���S · â1, α1|.

Now �α1α2�QM is the expectation value (according to QM) that given the initial state ρ0 (given
in equation (18)), the 1st measurement along â1 will give rise to any value α1 ∈ {−s,−s +
1, . . . , s − 1, s}, and then, on the after-measurement state ρ1 (given in equation (19)), if one
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performs measurement along â2, one of the values α2 ∈ {−s,−s + 1, . . . , s − 1, s} will arise.
So

�α1α2�QM = Tr(ρ1�S · â1�S · â2) =

∑
α0α1α2

pα0 α1α2|��S · â0, α0|�S · â1, α1�|2|��S · â1, α1|�S · â2, α2�|2.

(20)

Note that, since �S · âi are complete observables, all of whose eigenvalues are non degenerate,
the probabilities factorize like those of a Markov chain (Beck & Graudenz, 1992). Every factor
in (20) corresponds to the transition amplitude between two successive measurements. By
equation (A.12), we get

�α1α2� = 1
2

cos θ12[A cos2 θ1 + B], (21)

where

A = 3χ − s(s + 1), B = s(s + 1)− χ, χ =
+s

∑
α0=−s

α2
0 pα0 .

It is to be noted that although A can have positive and negative values, B will always be
positive. Moreover, for all θ ∈ [0, 2π], if A ≥ 0, Acos2θ1 + B is always positive and if A < 0,
Acos2θ1 + B ≥ B + A = 2χ ≥ 0. We now have the following expression for the quantity BI,
appeared in equation (8):

BI =
1
4
{(A cos2 θ1 + B)(cos θ12 + cos θ�12) + (A cos2 θ�1 + B)(cos θ��12 − cos θ���12)}

=
3χ − s(s + 1)

4

{
cos2θ1

(
cosθ12 + cosθ�12

)
+ cos2θ�1

(
cosθ��12 − cosθ���12

)}

+
s(s + 1)− χ

4
{(

cosθ12 + cosθ�12
)
+

(
cosθ��12 − cosθ���12

)}
, (22)

where (according to Appendix A) θ1 is the angle between â0 and â1, θ�1 is the angle between
â0 and â�1, θ12 is the angle between â1 and â2, θ�12 is the angle between â1 and â�2, θ��12 is the
angle between â�1 and â2, θ���12 is the angle between â�1 and â��2 . We have used, in Eq (22), the
expressions for A and B in terms of χ and s. Note that the second term in equation (22) (i.e., the
term with the factor s(s+1)−χ

4 ) is similar to the expression for �α1α2�+ �α1α�2�+ �α�1α2�− �α�1α�2�
corresponding to the CHSH inequality (Clauser et al., 1969). And hence, its maximum value
will occur when we choose all the four vectors â1, â�1, â2, â�2 on the same plane. But we also
have to take care about maximization of the first term in equation (22) and that might require
these four vectors to be on different planes. In order to resolve this issue, we now consider
the spherical-polar co-ordinates (θ1, φ1), (θ�1, φ�

1), (θ2, φ2), (θ�2, φ�
2) of the vectors â1, â�1, â2, â�2

respectively, where θ1, θ�1, θ2, θ�2 ∈ [0, π] and φ1, φ�
1, φ2, φ�

2 ∈ [0, 2π]. Then BI has the form

BI =
1
4
(Acos2θ1 + B)[cos θ1(cos θ2 + cos θ�2) + sin θ1 sin θ2 cos(φ1 − φ2)

+ sin θ1 sin θ�2 cos(φ1 − φ�
2)] +

1
4
(A cos2 θ�1 + B)[cos θ�1(cos θ2 − cos θ�2)

+ sin θ�1 sin θ2 cos(φ�
1 − φ2)− sin θ�1 sin θ�2 cos(φ�

1 − φ�
2)]. (23)
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4.1 Two successive measurements (BI)
We first deal with the case when input state is a mixed state whose eigenstates coincide
with those of �S · â0 for some â0 whose eigenvalues we denote by α0 ∈ {−s, · · · s}. For
spin 1/2 this is the most general mixed state because given any density operator ρ0 for spin
1/2 (corresponding to some point within the Bloch sphere), we can find an â0 such that the
eigenstates of �S·, â0 and ρ0 coincide. However, for s > 1/2, our choice forms a restricted class
of mixed states. We note that these are the only states accessible via SG experiments. Thus we
have

ρ0 = ∑
α0

pα0 |�S · â0, α0���S · â0, α0|;
(

∑
α0

pα0 = 1

)
(18)

After the first measurement along â1, the resulting state of the system is

ρ1 = ∑
α1

M†
α1

ρ0 Mα1 , (19)

where
M†

α1
= Mα1 = |�S · â1, α1���S · â1, α1|.

Now �α1α2�QM is the expectation value (according to QM) that given the initial state ρ0 (given
in equation (18)), the 1st measurement along â1 will give rise to any value α1 ∈ {−s,−s +
1, . . . , s − 1, s}, and then, on the after-measurement state ρ1 (given in equation (19)), if one
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performs measurement along â2, one of the values α2 ∈ {−s,−s + 1, . . . , s − 1, s} will arise.
So

�α1α2�QM = Tr(ρ1�S · â1�S · â2) =

∑
α0α1α2

pα0 α1α2|��S · â0, α0|�S · â1, α1�|2|��S · â1, α1|�S · â2, α2�|2.

(20)

Note that, since �S · âi are complete observables, all of whose eigenvalues are non degenerate,
the probabilities factorize like those of a Markov chain (Beck & Graudenz, 1992). Every factor
in (20) corresponds to the transition amplitude between two successive measurements. By
equation (A.12), we get

�α1α2� = 1
2

cos θ12[A cos2 θ1 + B], (21)

where

A = 3χ − s(s + 1), B = s(s + 1)− χ, χ =
+s

∑
α0=−s

α2
0 pα0 .

It is to be noted that although A can have positive and negative values, B will always be
positive. Moreover, for all θ ∈ [0, 2π], if A ≥ 0, Acos2θ1 + B is always positive and if A < 0,
Acos2θ1 + B ≥ B + A = 2χ ≥ 0. We now have the following expression for the quantity BI,
appeared in equation (8):

BI =
1
4
{(A cos2 θ1 + B)(cos θ12 + cos θ�12) + (A cos2 θ�1 + B)(cos θ��12 − cos θ���12)}

=
3χ − s(s + 1)

4

{
cos2θ1

(
cosθ12 + cosθ�12

)
+ cos2θ�1

(
cosθ��12 − cosθ���12

)}

+
s(s + 1)− χ

4
{(

cosθ12 + cosθ�12
)
+

(
cosθ��12 − cosθ���12

)}
, (22)

where (according to Appendix A) θ1 is the angle between â0 and â1, θ�1 is the angle between
â0 and â�1, θ12 is the angle between â1 and â2, θ�12 is the angle between â1 and â�2, θ��12 is the
angle between â�1 and â2, θ���12 is the angle between â�1 and â��2 . We have used, in Eq (22), the
expressions for A and B in terms of χ and s. Note that the second term in equation (22) (i.e., the
term with the factor s(s+1)−χ

4 ) is similar to the expression for �α1α2�+ �α1α�2�+ �α�1α2�− �α�1α�2�
corresponding to the CHSH inequality (Clauser et al., 1969). And hence, its maximum value
will occur when we choose all the four vectors â1, â�1, â2, â�2 on the same plane. But we also
have to take care about maximization of the first term in equation (22) and that might require
these four vectors to be on different planes. In order to resolve this issue, we now consider
the spherical-polar co-ordinates (θ1, φ1), (θ�1, φ�

1), (θ2, φ2), (θ�2, φ�
2) of the vectors â1, â�1, â2, â�2

respectively, where θ1, θ�1, θ2, θ�2 ∈ [0, π] and φ1, φ�
1, φ2, φ�

2 ∈ [0, 2π]. Then BI has the form

BI =
1
4
(Acos2θ1 + B)[cos θ1(cos θ2 + cos θ�2) + sin θ1 sin θ2 cos(φ1 − φ2)

+ sin θ1 sin θ�2 cos(φ1 − φ�
2)] +

1
4
(A cos2 θ�1 + B)[cos θ�1(cos θ2 − cos θ�2)

+ sin θ�1 sin θ2 cos(φ�
1 − φ2)− sin θ�1 sin θ�2 cos(φ�

1 − φ�
2)]. (23)
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Here also the maximum value of |BI| will occur when all the vectors â1, â�1, â2, â�2 lie on the
same plane. This is obtained by:

∂BI
∂φ1

=
∂BI
∂φ2

=
∂BI
∂φ�

1
=

∂BI
∂φ�

2
= 0 ⇒ φ1 = φ�

1 = φ2 = φ�
2.

In that case, the maximum value of |BI| will occur when θ�1 = π − θ1, θ2 = π/2, θ�2 = 0 and
(correspondingly) the quantity

η2 =
|BI|
s2 =

(
1

2s2

)
|(sin θ1 + cos θ1)|(A cos2 θ1 + B) (24)

is maximized over all possible values of θ1 (A cos2 θ1 + B ≥ 0). If η2 > 1, the correlations for
two successive measurements violate the CHSH-type inequality (8), and hence a contradiction

with the above-mentioned HVT. In fact
∂η2
∂θ1

= 0 implies that

B tan3 θ1 + (2A − B) tan2 θ1 + (3A + B) tan θ1 − (A + B) = 0. (25)

Real roots (for tanθ1) of this equation give values of θ1 for which η2 is maximum. The
maximum value of η2 is evaluated at these θ1’s.
We find that for s = 1

2 , χ = 1/4 for all ρ0, and so A = 0, B = 1/4. So, from equation (24), we
have η2 = sinθ1 + cosθ1. Therefore equation (25) becomes tan3θ1 − tan2θ1 + tanθ1 − 1 = 0,
whose only one real solution is tanθ1 = 1. So θ1 = π/4 or 5π/4. θ1 = π/4 gives the maximum
possible value η2 =

√
2 > 1. Thus all possible spin-1/2 states break BI for (proper choices

of) two successive measurements. This can be compared with the measurement correlations
corresponding to measurement of spin observables on space-like separated two particles
scenario where only the entangled pure states break BI while not all entangled mixed states
break it (Werner, 1989).
From now on, we will use the range of values of the quantity ξ ≡ χ/s2 to identify the
parametric region of the initial density matrix ρ0 where the inequality (8) will be violated.
Thus we see that for all spin-1/2 input states ρ0, ξ = 1.
For a spin-1 system, we first consider all input states ρ0 none of which have a contribution of
Sz = 0 eigenstate. In this case χ = 1, A = B = 1. So η2 = (1/2)(sinθ1 + cosθ1)(cos2θ1 + 1)
and equation (25) takes the form tan3θ1 + tan2θ1 + 4tan3θ1 − 2 = 0. The only real root of
this equation is tanθ1 ≈ 0.433. Thus the maximum possible value of η2 is (using equation
(24)) 1.2112 ( approximately). Thus we see that all input spin-1 states ρ0, none of which has a
component along |Sz = 0�, break BI (equation (8)) for proper choice of the observables.
Next, for s = 1, we consider the state ρ0, for which pα0=0 = 1, i.e., ρ0 = |�S · â0, 0���S · â0, 0|.
In this case, χ = 0, and so, A = −2, B = 2, ξ = 0. Then equation (25) takes the form
2tan3θ1 − 6tan2θ1 − 4tanθ1 = 0. It has three real solutions, which corresponds to θ1 = 0
(or π), 74.3165o (approx.), 150.6836o (approx.). The maximum possible value of η2 occurs at
θ1 = 74.3165o, and the corresponding value is given by η2 ≈ 1.1428. Thus the state ρ0 =

|�S · â0, 0���S · â0, 0| breaks the BI (equation (8)).
For s = 1, when 0 < pα0=0 ≡ p0 (say) < 1, we have χ = 1 − p0 = ξ, A = 1 − 3p0 = 3ξ − 2
and B = 1+ p0 = 2− ξ. We then have η2 = (1/2)|sinθ1 + cosθ1|{(3ξ − 2)cos2θ1 +(2− ξ)} (by
equation (24)), and equation (25) becomes (2 − ξ)tan3θ1 + (7ξ − 6)tan2θ1 + 4(2ξ − 1)tanθ1 −
2ξ = 0. In this case, one can show numerically that the BI will break (i.e., η2 > 1) if and only
if either 0 < ξ < 0.33 or 0.77 < ξ < 1 ( equivalently, either 0.67 < p0 < 1 or 0 < p0 < 0.23).
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Thus we see that, when s = 1, only those input states ρ0 ( given in equation (18)) will break
BI for each of which pα0=0 ∈ [0, 0.23) ∪ (0.67, 1]. Next we consider the situations where s > 1.
Note that, by definition (true for all s),

ξ = (ps + p−s) + (ps−1 + p−s+1)

(
1 − 1

s

)2
+ (ps−2 + p−s+2)

(
1 − 2

s

)2
+ . . . ,

where 0 ≤ ps, p−s, ps−1, p−s+1, ps−2, p−s+2, . . . ≤ 1 and ∑s
α0=−s pα0 = 1. Therefore, we must

have 0 ≤ ξ ≤ 1. In this case, equations (24) and (25) respectively take the forms

η2 =
1

2s2 |sinθ1 + cosθ1|
[
{3ξs2 − s(s + 1)}cos2θ1 + {s(s + 1)− ξs2}

]
, (26)

{s(s + 1)− ξs2}tan3θ1 + {7ξs2 − 3s(s + 1)}tan2θ1+

{8ξs2 − 2s(s + 1)}tanθ1 − 2ξs2 = 0. (27)

Let us first consider the input states of the form

ρ0 = ps|�S · â0, s���S · â0, s|+ p−s|�S · â0,−s���S · â0,−s|, (28)

with ps + p−s = 1 and ps−1, p−s+1, ps−2, p−s+2, . . . = 0. Thus we see here that ξ = 1. Also
equations (26) and (27) have respectively been turned into the forms

η2 = (1/2s)|sinθ1 + cosθ1|{(2s − 1)cos2θ1 + 1}, (29)

tan3θ1 + (4s − 3)tan2θ1 + (6s − 2)tanθ1 − 2s = 0. (30)

As here s > 1, therefore the last equation will have only one positive root and the other two
roots will be complex. The positive root will correspond to an angle θmax

1 (s) ∈ (0, π/4) for
which it can be shown that ηmax

2 (s) ≡ η2(θ
max
1 (s)) > 1 for all s > 1. Hence, in this case, BI

is violated. If ρ0 has contribution from neither of the states corresponding to α0 = ±s (i.e.,
ps = p−s = 0), we have

ξ = (ps−1 + p−s+1)

(
1 − 1

s

)2
+ (ps−2 + p−s+2)

(
1 − 2

s

)2
+ . . . ≤

(
1 − 1

s

)2
.

From equation (24) it follows that

η2 =
1√
2s

|sin (θ1 + π/4)|
[
(s + 1 − sξ) + (3sξ − s − 1)cos2θ1

]

<
1√
2s

× 1 × [(s + 1 − sξ) + (3sξ − s − 1)× 1] =
√

2ξ ≤
√

2
(

1 − 1
s

)2
.

But the quantity
√

2(1 − 1/s)2 is less than 1 for all s = 1/2, 1, 3/2, . . . , 6. Therefore, for s > 1,
if the initial state ρ0 has contribution from neither of the states corresponding to α0 = ±s, BI
will be satisfied for all s ≤ 6. Thus we see that whenever s ∈ {3/2, 2, 5/2, . . . , 6}, in order that
ρ0 violates BI, the associated quantity ξ must have values near 1. In table 1, we have given the
ranges of values of ξ (obtained numerically) for which BI is violated, starting from s = 1/2.
The case when s → ∞ has also been considered in table 1.
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corresponding to measurement of spin observables on space-like separated two particles
scenario where only the entangled pure states break BI while not all entangled mixed states
break it (Werner, 1989).
From now on, we will use the range of values of the quantity ξ ≡ χ/s2 to identify the
parametric region of the initial density matrix ρ0 where the inequality (8) will be violated.
Thus we see that for all spin-1/2 input states ρ0, ξ = 1.
For a spin-1 system, we first consider all input states ρ0 none of which have a contribution of
Sz = 0 eigenstate. In this case χ = 1, A = B = 1. So η2 = (1/2)(sinθ1 + cosθ1)(cos2θ1 + 1)
and equation (25) takes the form tan3θ1 + tan2θ1 + 4tan3θ1 − 2 = 0. The only real root of
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(24)) 1.2112 ( approximately). Thus we see that all input spin-1 states ρ0, none of which has a
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In this case, χ = 0, and so, A = −2, B = 2, ξ = 0. Then equation (25) takes the form
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Thus we see that, when s = 1, only those input states ρ0 ( given in equation (18)) will break
BI for each of which pα0=0 ∈ [0, 0.23) ∪ (0.67, 1]. Next we consider the situations where s > 1.
Note that, by definition (true for all s),

ξ = (ps + p−s) + (ps−1 + p−s+1)

(
1 − 1

s

)2
+ (ps−2 + p−s+2)

(
1 − 2

s

)2
+ . . . ,

where 0 ≤ ps, p−s, ps−1, p−s+1, ps−2, p−s+2, . . . ≤ 1 and ∑s
α0=−s pα0 = 1. Therefore, we must

have 0 ≤ ξ ≤ 1. In this case, equations (24) and (25) respectively take the forms

η2 =
1

2s2 |sinθ1 + cosθ1|
[
{3ξs2 − s(s + 1)}cos2θ1 + {s(s + 1)− ξs2}

]
, (26)

{s(s + 1)− ξs2}tan3θ1 + {7ξs2 − 3s(s + 1)}tan2θ1+

{8ξs2 − 2s(s + 1)}tanθ1 − 2ξs2 = 0. (27)

Let us first consider the input states of the form

ρ0 = ps|�S · â0, s���S · â0, s|+ p−s|�S · â0,−s���S · â0,−s|, (28)

with ps + p−s = 1 and ps−1, p−s+1, ps−2, p−s+2, . . . = 0. Thus we see here that ξ = 1. Also
equations (26) and (27) have respectively been turned into the forms

η2 = (1/2s)|sinθ1 + cosθ1|{(2s − 1)cos2θ1 + 1}, (29)

tan3θ1 + (4s − 3)tan2θ1 + (6s − 2)tanθ1 − 2s = 0. (30)

As here s > 1, therefore the last equation will have only one positive root and the other two
roots will be complex. The positive root will correspond to an angle θmax

1 (s) ∈ (0, π/4) for
which it can be shown that ηmax

2 (s) ≡ η2(θ
max
1 (s)) > 1 for all s > 1. Hence, in this case, BI

is violated. If ρ0 has contribution from neither of the states corresponding to α0 = ±s (i.e.,
ps = p−s = 0), we have

ξ = (ps−1 + p−s+1)

(
1 − 1
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)2
+ (ps−2 + p−s+2)

(
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)2
+ . . . ≤
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.

From equation (24) it follows that

η2 =
1√
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|sin (θ1 + π/4)|
[
(s + 1 − sξ) + (3sξ − s − 1)cos2θ1

]

<
1√
2s

× 1 × [(s + 1 − sξ) + (3sξ − s − 1)× 1] =
√

2ξ ≤
√

2
(

1 − 1
s

)2
.

But the quantity
√

2(1 − 1/s)2 is less than 1 for all s = 1/2, 1, 3/2, . . . , 6. Therefore, for s > 1,
if the initial state ρ0 has contribution from neither of the states corresponding to α0 = ±s, BI
will be satisfied for all s ≤ 6. Thus we see that whenever s ∈ {3/2, 2, 5/2, . . . , 6}, in order that
ρ0 violates BI, the associated quantity ξ must have values near 1. In table 1, we have given the
ranges of values of ξ (obtained numerically) for which BI is violated, starting from s = 1/2.
The case when s → ∞ has also been considered in table 1.
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s ξ s ξ s ξ
1
2 ξ = 1 5

2 0.847 ≤ ξ ≤ 1 9
2 0.858 ≤ ξ ≤ 1

1 0 ≤ ξ ≤ 0.33 and 0.77 ≤ ξ ≤ 1 3 0.851 ≤ ξ ≤ 1 5 0.859 ≤ ξ ≤ 1
3
2 0.824 ≤ ξ ≤ 1 7

2 0.854 ≤ ξ ≤ 1 11
2 0.860 ≤ ξ ≤ 1

2 0.84 ≤ ξ ≤ 1 4 0.856 ≤ ξ ≤ 1 6 0.862 ≤ ξ ≤ 1
∞ 0.87 ≤ ξ ≤ 1

Table 1. The ranges of ξ, for which BI is violated.

s η2 s η2 s η2
1
2

√
2 5

2 1.1638 9
2 1.1538

1 1.2112 3 1.1599 5 1.1526
3
2 1.1817 7

2 1.1572 11
2 1.1517

2 1.17 4 1.1553 6 1.1509
∞ 1.143

Table 2. The maximum violation of BI for different spin values for two successive
measurements.

The maximum violation of Bell inequality, characterized by η2, decreases monotonically with
s. Table 2 summarizes ( obtained numerically) the maximum allowed value of η2 for each s.
We see from this table that for all spin values s, BI is broken. Note that there is a sharp decrease
in η2 from s = 1

2 to s = 1, while η2 decreases slowly as s increases from 1. A possible reason is
that, for s = 1/2, all states break BI while for s ≥ 1, only a fraction of spin states break it.
We now consider a case where the initial state ρmax

0 (given in equation (28)) is contaminated
by the maximally noisy state, resulting in the state

ρ( f ) = (1 − f ) ρmax
0 +

f
2s + 1

I, (31)

where the positive parameter f (≤ 1) is the probability of the noise contamination of the state
ρmax

0 . Proceeding as before ( see equation (21)), we get

�α1α2� = 1
2

cos θ12[A� cos2 θ1 + B�] (32)

where
A� = (1 − f )(2s − 1)s; B� = (1 − f )s +

2
3

f (s + 1)s,

which leads to

ηnoise =

(
1

2s2

)
(sin θ1 + cos θ1)(A� cos2 θ1 + B�). (33)

Using the maximization procedure (i.e., taking ∂ηnoise
∂θ1

= 0), tanθ1 for maximum ηnoise is given
by a real root of

B� tan3 θ1 + (2A� − B�) tan2 θ1 + (3A� + B�) tan θ1 − (A� + B�) = 0. (34)

The range of f for which ηnoise > 1 is tabulated in table 3. Note that for s = 1
2 the state

corresponding to f = 1 ( the random mixture) also breaks BI! Of course we have already
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s f s f s f
1
2 0 ≤ f ≤ 1 5

2 f < 0.287 9
2 f < 0.239

1 f < 0.696 3 f < 0.267 5 f < 0.234
3
2 f < 0.395 7

2 f < 0.254 11
2 f < 0.230

2 f < 0.321 4 f < 0.245 6 f < 0.227
∞ f < 0.195

Table 3. The range of the noise f over which BI is violated.

shown that for s = 1
2 , BI is broken for all states. This indicates that the notion of “classicality”,

compatible with the usual local HVT, is different in nature from the notion of classicality that
would arise from the non-violation of BI here.
Table 3 answers the question, “what is the maximum fraction of noise that can be added to
ρmax

0 , which maximally breaks BI, so that the state has stronger than “classical correlations2?”
We see that the corresponding fraction of noise (i.e., for which BI is violated) decreases
monotonically with s, or with the dimension of the Hilbert space. This may be compared
with the results of Collins and Popescu (Collins & Popescu, 2001) who found that the nonlocal
character of the correlations between the outcomes of measurements performed on entangled
systems separated in space is robust in the presence of noise. They showed that, for any
fraction of noise, by taking the Hilbert space of large enough dimension, one can find bipartite
entangled states giving nonlocal correlations. These results have been obtained by considering
two successive measurements on each part of the system. On the other hand, in the present
case of successive measurements on the single spin state, we see that the fraction of noise
that can be added so that the quantum correlations continue to break Bell inequality, falls off
monotonically with s, or the dimension of the Hilbert space. For s = 1

2 all fractions f ≤ 1 are
allowed, while for large s, f < 0.195.

4.2 Three successive measurements (MKI)
We again assume the input state to be given by equation (18). Using equation (A.19) :

�α1α2α3� = 1
16

cos θ23{cos θ1[M cos2 θ12 + N] + R[3 cos2 θ12 − 1]} (35)

where

M =
+s

∑
α0=−s

pα0 α0[9α2
0 + s(s + 1)− 3],

N =
+s

∑
α0=−s

pα0 α0[5s(s + 1)− 3α2
0 + 1],

R =
+s

∑
α0=−s

pα0 α0[5α2
0 − 3s(s + 1) + 1],

θ1 is the angle between â0 and â1 (measured with respect to the right-handed system
(â0, â1, (â0 × â1)/|â0 × â1|)), θ12 is the angle between â1 , â2 (measured with respect to the
right-handed system (â1, â2, (â1 × â2)/|â1 × â2|)), etc.

2 i.e., correlations obeying “realism” and “locality in time”, as described in section 3.
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s ξ s ξ s ξ
1
2 ξ = 1 5

2 0.847 ≤ ξ ≤ 1 9
2 0.858 ≤ ξ ≤ 1

1 0 ≤ ξ ≤ 0.33 and 0.77 ≤ ξ ≤ 1 3 0.851 ≤ ξ ≤ 1 5 0.859 ≤ ξ ≤ 1
3
2 0.824 ≤ ξ ≤ 1 7

2 0.854 ≤ ξ ≤ 1 11
2 0.860 ≤ ξ ≤ 1

2 0.84 ≤ ξ ≤ 1 4 0.856 ≤ ξ ≤ 1 6 0.862 ≤ ξ ≤ 1
∞ 0.87 ≤ ξ ≤ 1

Table 1. The ranges of ξ, for which BI is violated.

s η2 s η2 s η2
1
2

√
2 5

2 1.1638 9
2 1.1538

1 1.2112 3 1.1599 5 1.1526
3
2 1.1817 7

2 1.1572 11
2 1.1517

2 1.17 4 1.1553 6 1.1509
∞ 1.143

Table 2. The maximum violation of BI for different spin values for two successive
measurements.

The maximum violation of Bell inequality, characterized by η2, decreases monotonically with
s. Table 2 summarizes ( obtained numerically) the maximum allowed value of η2 for each s.
We see from this table that for all spin values s, BI is broken. Note that there is a sharp decrease
in η2 from s = 1

2 to s = 1, while η2 decreases slowly as s increases from 1. A possible reason is
that, for s = 1/2, all states break BI while for s ≥ 1, only a fraction of spin states break it.
We now consider a case where the initial state ρmax

0 (given in equation (28)) is contaminated
by the maximally noisy state, resulting in the state

ρ( f ) = (1 − f ) ρmax
0 +

f
2s + 1

I, (31)

where the positive parameter f (≤ 1) is the probability of the noise contamination of the state
ρmax

0 . Proceeding as before ( see equation (21)), we get

�α1α2� = 1
2

cos θ12[A� cos2 θ1 + B�] (32)

where
A� = (1 − f )(2s − 1)s; B� = (1 − f )s +

2
3

f (s + 1)s,

which leads to

ηnoise =

(
1

2s2

)
(sin θ1 + cos θ1)(A� cos2 θ1 + B�). (33)

Using the maximization procedure (i.e., taking ∂ηnoise
∂θ1

= 0), tanθ1 for maximum ηnoise is given
by a real root of

B� tan3 θ1 + (2A� − B�) tan2 θ1 + (3A� + B�) tan θ1 − (A� + B�) = 0. (34)

The range of f for which ηnoise > 1 is tabulated in table 3. Note that for s = 1
2 the state

corresponding to f = 1 ( the random mixture) also breaks BI! Of course we have already
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s f s f s f
1
2 0 ≤ f ≤ 1 5

2 f < 0.287 9
2 f < 0.239

1 f < 0.696 3 f < 0.267 5 f < 0.234
3
2 f < 0.395 7

2 f < 0.254 11
2 f < 0.230

2 f < 0.321 4 f < 0.245 6 f < 0.227
∞ f < 0.195

Table 3. The range of the noise f over which BI is violated.

shown that for s = 1
2 , BI is broken for all states. This indicates that the notion of “classicality”,

compatible with the usual local HVT, is different in nature from the notion of classicality that
would arise from the non-violation of BI here.
Table 3 answers the question, “what is the maximum fraction of noise that can be added to
ρmax

0 , which maximally breaks BI, so that the state has stronger than “classical correlations2?”
We see that the corresponding fraction of noise (i.e., for which BI is violated) decreases
monotonically with s, or with the dimension of the Hilbert space. This may be compared
with the results of Collins and Popescu (Collins & Popescu, 2001) who found that the nonlocal
character of the correlations between the outcomes of measurements performed on entangled
systems separated in space is robust in the presence of noise. They showed that, for any
fraction of noise, by taking the Hilbert space of large enough dimension, one can find bipartite
entangled states giving nonlocal correlations. These results have been obtained by considering
two successive measurements on each part of the system. On the other hand, in the present
case of successive measurements on the single spin state, we see that the fraction of noise
that can be added so that the quantum correlations continue to break Bell inequality, falls off
monotonically with s, or the dimension of the Hilbert space. For s = 1

2 all fractions f ≤ 1 are
allowed, while for large s, f < 0.195.

4.2 Three successive measurements (MKI)
We again assume the input state to be given by equation (18). Using equation (A.19) :

�α1α2α3� = 1
16

cos θ23{cos θ1[M cos2 θ12 + N] + R[3 cos2 θ12 − 1]} (35)

where

M =
+s

∑
α0=−s

pα0 α0[9α2
0 + s(s + 1)− 3],

N =
+s

∑
α0=−s

pα0 α0[5s(s + 1)− 3α2
0 + 1],

R =
+s

∑
α0=−s

pα0 α0[5α2
0 − 3s(s + 1) + 1],

θ1 is the angle between â0 and â1 (measured with respect to the right-handed system
(â0, â1, (â0 × â1)/|â0 × â1|)), θ12 is the angle between â1 , â2 (measured with respect to the
right-handed system (â1, â2, (â1 × â2)/|â1 × â2|)), etc.

2 i.e., correlations obeying “realism” and “locality in time”, as described in section 3.
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s η3 s η3 s η3
1
2

√
2 5

2 1.1736 9
2 1.1634

1 1.2178 3 1.1698 5 1.1621
3
2 1.1907 7

2 1.1670 11
2 1.1610

2 1.1793 4 1.1650 6 1.1601
∞ 1.1527

Table 4. The maximum violation of MKI for different spin values for three successive
measurements.

We now consider the pure state |�S · â0, s���S · â0, s| instead of considering the most general state
ρ0, given in equation (18). So here M = s(2s − 1)(5s + 3), N = s(2s2 + 5s + 1), and R = s(2s −
1)(s − 1). Substituting the correlations like that in equation (35) in the MKI (given in equation
(9)), using the above-mentioned values of M, N, R, and then finding out the conditions (
numerically) for which η3 ≡ |MKI|/s3 is maximized, we get the maximum possible η3-values
for different spins as summarized in table 4.
We see that η3 > 1 for all spins and η3 > η2 except s = 1

2 , while η3 = η2 =
√

2 for s = 1/2.
Also η3, like η2, decreases monotonically with s. It is interesting, in the case of two and three
successive measurements of spin s prepared in a pure state, the maximum violation of BI and
MKI tends to a constant for arbitrary large s .

η3(s → ∞) = 1.153 (approx.),

η2(s → ∞) = 1.143 (approx.).

It is thus seen that large quantum numbers do not guarantee “classical” ( as defined in this
chapter) behavior.
It is straightforward to check that, three successive measurements satisfy Svetlichny
Inequality (SI) (equation (10)). The reason is that, for all s, the settings of the measurement
directions which maximize MKI�are obtained from those which maximize MKI by
interchanging primes on the corresponding unit vectors. Thus these two settings are
incompatible so that we cannot get a single set of measurement directions, which maximize
both MKI and MKI�. In fact, for all s, the measurement directions which maximize MKI
(MKI�) correspond to MKI� = 0 (MKI = 0).
We now consider the situation of three consecutive observations but two-fold correlations for
two measurements �S.â1 and �S.â3 performed, say, at time t1 and t3, but where an additional
measurement (�S.â2) is performed at time t2 lying between t1 and t3 (t1 < t2 < t3).
By substituting Eq (A.20) in Bell type inequality Eq(8) and simplifying, we obtain:

|BI| = 1
2
|[cos θ32 + cos θ3�2]�α1α2�+ [cos θ32 − cos θ3�2]�α�1α2�|

≤ 1
2
|[cos θ32 + cos θ3�2]||�α1α2�|+ |[cos θ32 − cos θ3�2]||�α�1α2�|

≤ cos θ32s2 ≤ s2. (36)

We have used max|�α1α2�| = max|�α�1α2�| = s2.
So, the correlation function (36) for a given measurement performed at t2 cannot violate the
Bell type inequality for measurements at t1 and t3. Therefore, any measurement performed at
time t2 “disentangles" events at time t1 and t3 if t1 < t2 < t3 (Brukner et al., 2004).

210 Measurements in Quantum Mechanics Quantum Correlations in Successive
Spin Measurements 15

5. n successive measurements for Spin- 1
2

5.1 Violation Mermin-Klyshko Inequality (MKI)
We consider now n successive measurements in direction �S · âi, (i = 1, 2, 3, . . . , n) on a spin
s = 1

2 particle in a mixed state. For simplicity we take the eigenvalues to be αk = ±1, i.e., the
eigenvalues of σz are taken here as ±1 instead of ±(1/2). We also write |αk� for |�S · âk, αk�.
The initial state is taken as

ρ0 = p+1|α0 = +1��α0 = +1|+ p−1|α0 = −1��α0 = −1|. (37)

For a spin- 1
2 system, we have

|�αk−1|αk�|2 =
1
2
(1 + αk−1αk cos θk−1,k) (38)

where cos θk−1,k = âk−1 · âk for k = 1, 2, . . . , n. So, given the input state |α0�, the (joint)
probability that the measurement outcomes will be α1 ∈ {+1,−1} in the first measurement,
α2 ∈ {+1,−1} in the second measurement, . . ., αn ∈ {+1,−1} in the n-th measurement, will
be given by

p(α1, α2, · · · , αn) =
1

2n

n

∏
i=1

(1 + αi−1αi cos θi−1,i). (39)

Thus we see that given the input state ρ0 = ∑α0=±1 pα0 |α0��α0|, the average output state after
n successive measurements will be given by

ρn = ∑
α0,α1,...,αn=±1

pα0 p (α1, α2, . . . , αn) |αn��αn| .

Then, for n successive measurements on spin-1/2 system,

�αn−1αn�QM = ∑
αn−1,αn=±1

αn−1{coeff. of |αn−1��αn−1| in ρn−1}αn |�αn−1|αn�|2

= ∑
α0=±1

pα0 ∑
α1,α2,...,αn=±1

αn−1αn p(α1, α2, · · · , αn)

= ∑
α0=±1

pα0 2−n ∑
α1,α2,...,αn=±1

n

∏
i=1

αn−1αn(1 + αi−1αi cos θi−1,i)

= cos θn−1,n (40)

by equation (39). Further

�αn�QM = ∑
αn=±1

αn {coeff. of |αn��αn| in ρn}

= ∑
α0=±1

pα0 ∑
α1,α2,...,αn=±1

αn p (α1, α2, . . . , αn)

= ∑
α0=±1

pα0 2−n ∑
α1,α2,...,αn=±1

n

∏
i=1

αn(1 + αi−1αi cos θi−1,i)

= (p+1 − p−1) cos θ1 cos θ12 · · · cos θn−1,n (41)
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s η3 s η3 s η3
1
2

√
2 5

2 1.1736 9
2 1.1634

1 1.2178 3 1.1698 5 1.1621
3
2 1.1907 7

2 1.1670 11
2 1.1610

2 1.1793 4 1.1650 6 1.1601
∞ 1.1527

Table 4. The maximum violation of MKI for different spin values for three successive
measurements.

We now consider the pure state |�S · â0, s���S · â0, s| instead of considering the most general state
ρ0, given in equation (18). So here M = s(2s − 1)(5s + 3), N = s(2s2 + 5s + 1), and R = s(2s −
1)(s − 1). Substituting the correlations like that in equation (35) in the MKI (given in equation
(9)), using the above-mentioned values of M, N, R, and then finding out the conditions (
numerically) for which η3 ≡ |MKI|/s3 is maximized, we get the maximum possible η3-values
for different spins as summarized in table 4.
We see that η3 > 1 for all spins and η3 > η2 except s = 1

2 , while η3 = η2 =
√

2 for s = 1/2.
Also η3, like η2, decreases monotonically with s. It is interesting, in the case of two and three
successive measurements of spin s prepared in a pure state, the maximum violation of BI and
MKI tends to a constant for arbitrary large s .

η3(s → ∞) = 1.153 (approx.),

η2(s → ∞) = 1.143 (approx.).

It is thus seen that large quantum numbers do not guarantee “classical” ( as defined in this
chapter) behavior.
It is straightforward to check that, three successive measurements satisfy Svetlichny
Inequality (SI) (equation (10)). The reason is that, for all s, the settings of the measurement
directions which maximize MKI�are obtained from those which maximize MKI by
interchanging primes on the corresponding unit vectors. Thus these two settings are
incompatible so that we cannot get a single set of measurement directions, which maximize
both MKI and MKI�. In fact, for all s, the measurement directions which maximize MKI
(MKI�) correspond to MKI� = 0 (MKI = 0).
We now consider the situation of three consecutive observations but two-fold correlations for
two measurements �S.â1 and �S.â3 performed, say, at time t1 and t3, but where an additional
measurement (�S.â2) is performed at time t2 lying between t1 and t3 (t1 < t2 < t3).
By substituting Eq (A.20) in Bell type inequality Eq(8) and simplifying, we obtain:

|BI| = 1
2
|[cos θ32 + cos θ3�2]�α1α2�+ [cos θ32 − cos θ3�2]�α�1α2�|

≤ 1
2
|[cos θ32 + cos θ3�2]||�α1α2�|+ |[cos θ32 − cos θ3�2]||�α�1α2�|

≤ cos θ32s2 ≤ s2. (36)

We have used max|�α1α2�| = max|�α�1α2�| = s2.
So, the correlation function (36) for a given measurement performed at t2 cannot violate the
Bell type inequality for measurements at t1 and t3. Therefore, any measurement performed at
time t2 “disentangles" events at time t1 and t3 if t1 < t2 < t3 (Brukner et al., 2004).
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5. n successive measurements for Spin- 1
2

5.1 Violation Mermin-Klyshko Inequality (MKI)
We consider now n successive measurements in direction �S · âi, (i = 1, 2, 3, . . . , n) on a spin
s = 1

2 particle in a mixed state. For simplicity we take the eigenvalues to be αk = ±1, i.e., the
eigenvalues of σz are taken here as ±1 instead of ±(1/2). We also write |αk� for |�S · âk, αk�.
The initial state is taken as

ρ0 = p+1|α0 = +1��α0 = +1|+ p−1|α0 = −1��α0 = −1|. (37)

For a spin- 1
2 system, we have

|�αk−1|αk�|2 =
1
2
(1 + αk−1αk cos θk−1,k) (38)

where cos θk−1,k = âk−1 · âk for k = 1, 2, . . . , n. So, given the input state |α0�, the (joint)
probability that the measurement outcomes will be α1 ∈ {+1,−1} in the first measurement,
α2 ∈ {+1,−1} in the second measurement, . . ., αn ∈ {+1,−1} in the n-th measurement, will
be given by

p(α1, α2, · · · , αn) =
1

2n

n

∏
i=1

(1 + αi−1αi cos θi−1,i). (39)

Thus we see that given the input state ρ0 = ∑α0=±1 pα0 |α0��α0|, the average output state after
n successive measurements will be given by

ρn = ∑
α0,α1,...,αn=±1

pα0 p (α1, α2, . . . , αn) |αn��αn| .

Then, for n successive measurements on spin-1/2 system,

�αn−1αn�QM = ∑
αn−1,αn=±1

αn−1{coeff. of |αn−1��αn−1| in ρn−1}αn |�αn−1|αn�|2

= ∑
α0=±1

pα0 ∑
α1,α2,...,αn=±1

αn−1αn p(α1, α2, · · · , αn)

= ∑
α0=±1

pα0 2−n ∑
α1,α2,...,αn=±1

n

∏
i=1

αn−1αn(1 + αi−1αi cos θi−1,i)

= cos θn−1,n (40)

by equation (39). Further

�αn�QM = ∑
αn=±1

αn {coeff. of |αn��αn| in ρn}

= ∑
α0=±1

pα0 ∑
α1,α2,...,αn=±1

αn p (α1, α2, . . . , αn)

= ∑
α0=±1

pα0 2−n ∑
α1,α2,...,αn=±1

n

∏
i=1

αn(1 + αi−1αi cos θi−1,i)

= (p+1 − p−1) cos θ1 cos θ12 · · · cos θn−1,n (41)
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where θ1 ≡ θ0,1, θ12 ≡ θ1,2, etc. Now equations (40) and (41) give,

�αn�QM = �α1�QM�α2α3�QM · · · �αn−1αn�QM. (42)

Further,

�αn−k · · · αn�QM =

∑
α0

pα0 2−n ∑
α1,α2,...,αn=±1

∏n
i=1(αn−k · · · αn)(1 + αi−1αi cos θi−1,i) =

⎧
⎨
⎩

�α1�QM�α2α3�QM · · · �αn−1αn�QM k even

�αn−kαn−k+1�QM�αn−k+2αn−k+3�QM · · · �αn−1αn�QM k odd

(43)

All of the above results are inherently quantum and are not compatible with HVT ( see the
discussion in the next paragraph). The first two results ((41) and (42)) are the special cases
of the last result (43) for k = 1 and k = 0 (with α0 = 1). If the number of variables (
which are averaged) is odd (i.e. k is even) the average depends on the measurements prior
to (n − k), while in the other case the average does not depend on the measurements prior
to (n − k). For example, for two successive measurements ( taking n = 2 and k = 1),
gives �α1α2� = cos θ12, which is independent of the initial state. On the other hand, for
three successive measurements ( taking n = 3 and k = 2), we have �α1α2α3� = �α1��α2α3�
– showing its dependence on the initial state (as �α1� = (p+1 − p−1)cosθ1 depends upon
the initial state ρ0 = ∑α0=±1 pα0 |α0��α0|). Moreover, the correlation �α1α2α3α4�QM for four
successive measurements ( for example ) turns out to be dependent only on the two ‘disjoint’
correlations �α1α2�QM and �α3α4�QM . In general, we have:

�
α1α2, . . . , α2p

�
= �α1α2��α3α4� . . . �α2p−1α2p� (44)

and
�
α1α2, . . . , α2p+1

�
= �α1��α2α3� . . . �α2pα2p+1�. (45)

Interestingly if â0 ⊥ â1 so that cosθ1 = 0 ( and so, �α1�QM = 0) or, if the initial state is the
random mixture (1/2)∑α0=±1 |α0��α0| ( and so �α1� = 0), then for all even k,

�αn−k · · · αn�QM = 0

and so
�α1α2 · · · αn=2p+1�QM = 0.

We shall now show that for n successive experiments ( with n > 1), QM violates the inequality
|�MKI�| ≤ s3 ( see equation (9)) up to

√
2 for s = 1/2 systems. We take the eigenvalues

to be αk = ±1 so |�Mk�|HVT ≤ 1). We have already shown that for n = 2 and n = 3,
the corresponding MKI’s are violated (section 4). Now, we know that temporal two-fold
correlations �αk−1α�k� , �α�k−1αk�, �αk−1αk� and �α�k−1α�k� are independent on the previous
measurements. So by using equations (43) and (13) we find that

|�Mk�| = 1
2
|�Mk−2�[�αk−1α�k�+ �α�k−1αk�] + �M�

k−2�[�αk−1αk� − �α�k−1α�k�]|.
(46)
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We now consider the spherical-polar co-ordinates (θk−1, φk−1), (θ�k−1, φ�
k−1), (θk, φk), (θ�k, φ�

k)

of the vectors âk−1, â�k−1, âk, â�k respectively, where all θ ∈ [0, π] and all φ ∈ [0, 2π]. Then
|�Mk�| has the form

|�Mk�| = 1
2
|�Mk−2�[cos θk−1 cos θ�k + sin θk−1 sin θ�k cos(φk−1 − φ�

k)

+ cos θ�k−1 cos θk + sin θ�k−1 sin θk cos(φ�
k−1 − φk)]

+ �M�
k−2�[cos θk−1 cos θk + sin θk−1 sin θk cos(φk−1 − φk)

− cos θ�k−1 cos θ�k − sin θ�k−1 sin θ�k cos(φ�
k−1 − φ�

k)]|. (47)

We know from

∂|�Mk�|
∂φk−1

=
∂|�Mk�|

∂φk
=

∂|�Mk�|
∂φ�

k−1
=

∂|�Mk�|
∂φ�

k
= 0 ⇒ φk−1 = φ�

k−1 = φk = φ�
k.

The maximum value of |�Mk�| will occur when all the vectors âk−1, â�k−1, âk, â�k lie on the same
plane. We obtain:

|�Mk�| ≤ 1
2
|�Mk−2�[cos(θk−1 − θ�k) + cos(θ�k−1 − θk)]

+ �M�
k−2�[cos(θk−1 − θk)− (cos θ�k−1 − θ�k)]|

≤ 1
2
|�Mk−2�|[cos(θk−1 − θ�k) + cos(θ�k−1 − θk)]

+
1
2
|�M�

k−2�|[cos(θk−1 − θk)− (cos θ�k−1 − θ�k)]|. (48)

By substituting x = θk−1 − θ�k, y = θ�k−1 − θk, z = θk−1 − θk and θ�k−1 − θ�k = x + y − z in
above-equation and by using

∂|�Mk�|
∂x

=
∂|�Mk�|

∂y
=

∂|�Mk�|
∂z

= 0,

we get x = y = −z = π/4. Finally, by using the fact |�Mk�|+ |�M�
k�| ≤ 2, we obtain:

|�Mk�| ≤
√

2
2

{|�Mk−2�+ �M�
k−2�|} ≤

√
2. (49)

One can get this result by induction hypothesis. Thus, we conclude that QM violates the MKI
(|�Mn�| ≤ 1) for n successive measurements upto

√
2, i.e.,

ηn =
√

2. (50)

5.2 Violation Scarani-Gisin inequality (SCI)
Although in contrast to correlations in space there are no genuine multi-mode correlations
in time, we will see that temporal correlations can be stronger than spatial ones in a certain
sense. We denote by max[Bspace

QM (i, j)] the maximal value of the Bell expression for qubits i and
j (Bell inequality is obtained by Eq(8)). Scarani and Gisin (Scarani & Gisin, 2001) found an
interesting bound that holds for arbitrary state of three qubits:

max[Bspace
QM (1, 2)] + max[Bspace

QM (2, 3)] ≤ 2. (51)
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where θ1 ≡ θ0,1, θ12 ≡ θ1,2, etc. Now equations (40) and (41) give,

�αn�QM = �α1�QM�α2α3�QM · · · �αn−1αn�QM. (42)

Further,

�αn−k · · · αn�QM =

∑
α0

pα0 2−n ∑
α1,α2,...,αn=±1

∏n
i=1(αn−k · · · αn)(1 + αi−1αi cos θi−1,i) =

⎧
⎨
⎩

�α1�QM�α2α3�QM · · · �αn−1αn�QM k even

�αn−kαn−k+1�QM�αn−k+2αn−k+3�QM · · · �αn−1αn�QM k odd

(43)

All of the above results are inherently quantum and are not compatible with HVT ( see the
discussion in the next paragraph). The first two results ((41) and (42)) are the special cases
of the last result (43) for k = 1 and k = 0 (with α0 = 1). If the number of variables (
which are averaged) is odd (i.e. k is even) the average depends on the measurements prior
to (n − k), while in the other case the average does not depend on the measurements prior
to (n − k). For example, for two successive measurements ( taking n = 2 and k = 1),
gives �α1α2� = cos θ12, which is independent of the initial state. On the other hand, for
three successive measurements ( taking n = 3 and k = 2), we have �α1α2α3� = �α1��α2α3�
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�
α1α2, . . . , α2p

�
= �α1α2��α3α4� . . . �α2p−1α2p� (44)

and
�
α1α2, . . . , α2p+1

�
= �α1��α2α3� . . . �α2pα2p+1�. (45)

Interestingly if â0 ⊥ â1 so that cosθ1 = 0 ( and so, �α1�QM = 0) or, if the initial state is the
random mixture (1/2)∑α0=±1 |α0��α0| ( and so �α1� = 0), then for all even k,

�αn−k · · · αn�QM = 0

and so
�α1α2 · · · αn=2p+1�QM = 0.

We shall now show that for n successive experiments ( with n > 1), QM violates the inequality
|�MKI�| ≤ s3 ( see equation (9)) up to

√
2 for s = 1/2 systems. We take the eigenvalues

to be αk = ±1 so |�Mk�|HVT ≤ 1). We have already shown that for n = 2 and n = 3,
the corresponding MKI’s are violated (section 4). Now, we know that temporal two-fold
correlations �αk−1α�k� , �α�k−1αk�, �αk−1αk� and �α�k−1α�k� are independent on the previous
measurements. So by using equations (43) and (13) we find that

|�Mk�| = 1
2
|�Mk−2�[�αk−1α�k�+ �α�k−1αk�] + �M�

k−2�[�αk−1αk� − �α�k−1α�k�]|.
(46)
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We now consider the spherical-polar co-ordinates (θk−1, φk−1), (θ�k−1, φ�
k−1), (θk, φk), (θ�k, φ�

k)

of the vectors âk−1, â�k−1, âk, â�k respectively, where all θ ∈ [0, π] and all φ ∈ [0, 2π]. Then
|�Mk�| has the form

|�Mk�| = 1
2
|�Mk−2�[cos θk−1 cos θ�k + sin θk−1 sin θ�k cos(φk−1 − φ�

k)

+ cos θ�k−1 cos θk + sin θ�k−1 sin θk cos(φ�
k−1 − φk)]

+ �M�
k−2�[cos θk−1 cos θk + sin θk−1 sin θk cos(φk−1 − φk)

− cos θ�k−1 cos θ�k − sin θ�k−1 sin θ�k cos(φ�
k−1 − φ�

k)]|. (47)

We know from

∂|�Mk�|
∂φk−1

=
∂|�Mk�|

∂φk
=

∂|�Mk�|
∂φ�

k−1
=

∂|�Mk�|
∂φ�

k
= 0 ⇒ φk−1 = φ�

k−1 = φk = φ�
k.

The maximum value of |�Mk�| will occur when all the vectors âk−1, â�k−1, âk, â�k lie on the same
plane. We obtain:

|�Mk�| ≤ 1
2
|�Mk−2�[cos(θk−1 − θ�k) + cos(θ�k−1 − θk)]

+ �M�
k−2�[cos(θk−1 − θk)− (cos θ�k−1 − θ�k)]|

≤ 1
2
|�Mk−2�|[cos(θk−1 − θ�k) + cos(θ�k−1 − θk)]

+
1
2
|�M�

k−2�|[cos(θk−1 − θk)− (cos θ�k−1 − θ�k)]|. (48)

By substituting x = θk−1 − θ�k, y = θ�k−1 − θk, z = θk−1 − θk and θ�k−1 − θ�k = x + y − z in
above-equation and by using

∂|�Mk�|
∂x

=
∂|�Mk�|

∂y
=

∂|�Mk�|
∂z

= 0,

we get x = y = −z = π/4. Finally, by using the fact |�Mk�|+ |�M�
k�| ≤ 2, we obtain:

|�Mk�| ≤
√

2
2

{|�Mk−2�+ �M�
k−2�|} ≤

√
2. (49)

One can get this result by induction hypothesis. Thus, we conclude that QM violates the MKI
(|�Mn�| ≤ 1) for n successive measurements upto

√
2, i.e.,

ηn =
√

2. (50)

5.2 Violation Scarani-Gisin inequality (SCI)
Although in contrast to correlations in space there are no genuine multi-mode correlations
in time, we will see that temporal correlations can be stronger than spatial ones in a certain
sense. We denote by max[Bspace

QM (i, j)] the maximal value of the Bell expression for qubits i and
j (Bell inequality is obtained by Eq(8)). Scarani and Gisin (Scarani & Gisin, 2001) found an
interesting bound that holds for arbitrary state of three qubits:

max[Bspace
QM (1, 2)] + max[Bspace

QM (2, 3)] ≤ 2. (51)
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Physically, this means that no two pairs of qubits of a three-qubit system can violate the CHSH
inequalities simultaneously. This is because if two systems are highly entangled, they can not
be entangled highly to another systems. Let us denote by max[Btime

QM (i, j)] the maximal value
of the Bell expression for two consecutive observations of a single qubit at times i and j. Since
quantum correlations between two successive measurements do not depend on the initial
state ( see Eq (40)), one can obtain:

[
Btime

QM (k − 1, k)] + [Btime
QM (k, k + 1)

]
=

1
2
[
cos θk−1,k + cos θk−1,k� + cos θk−1� ,k − cos θk−1� ,k�

]
+

1
2
[
cos θk,k+1 + cos θk,k+1� + cos θk� ,k+1 − cos θk� ,k+1�

]
. (52)

By selecting,

θk−1,k = θk−1,k� = θk−1� ,k = θk,k+1 = θk,k+1� = θk� ,k+1 =
π

4
and

θk−1� ,k� = θk� ,k+1� =
3π

4
,

we obtain:

max
[
Btime

QM (k − 1, k)] + max[Btime
QM (k, k + 1)

]
=

√
2 +

√
2 = 2

√
2 > 2. (53)

Thus, although there are no genuine three-fold temporal correlations, a specific combination
of two-fold correlations can have values that are not achievable with correlations in space for
any three-qubit system. In fact, one would need two pairs of maximally entangled two-qubit
states to achieve the bound in (53). Also note that the local realistic bound is 2, which is
equal to the bound in (51). Similar conclusion can be obtained for the sum of n successive
measurements.

max
[
Btime

QM (1, 2)
]
+ max

[
Btime

QM (2, 3)
]
+ . . . + max

[
Btime

QM (n − 1, n)
]
= n

√
2 > n. (54)

5.3 Violation chained Bell inequalities (CHI)
Generalized CHSH inequalities may be obtained by providing more than two alternative
experiments to each process. We consider two successive measurements on a spin- 1

2 particle
in a mixed state, such that the first experiment can measure spin component along one
of the directions â1, â3, . . . , â2n−1 and the second experiment along one of the directions
b̂2, b̂4, . . . , b̂2n. The results of these measurements are called αr (r = 1, 3, . . . , 2n − 1) and βs
(s = 2, 4, . . . , 2n), respectively, and their values are ±1 (in unit if h̄/2). We have a generalized
CHSH inequality (Braunstein & Caves, 1990),(Peres, 1993):

CBI =
1
2
|�α1β2�+ �β2α3�+ �α3β4�+ . . . + �α2n−1β2n� − �β2nα1�| ≤ n − 1

(55)

This upper bound is violated by quantum correlations in two successive measurements,
increasingly with larger n. In order to obtain the maximum value above-inequality,
we consider the spherical-polar co-ordinates (θk, φk),(k = 1, 3, . . . , 2n − 1) of the vectors
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â1, â3, . . . , â2n−1 and (k = 2, 4, . . . , 2n) for vectors b̂2, b̂4, . . . , b̂2n. The maximum value |CBI|
will occur when all the vectors lie on the same plane. this is because of:

∂(CBI)
∂φk

= 0 ⇒ φ1 = φ2 = . . . = φn.

After partial differential over all θk, we get:

∂(CBI)
∂θk

= 0 ⇒ θ12 = θ23 = . . . = θ2n−1,2n = θ.

Therefore, we obtain:
CBI = (2n − 1) cos θ − cos(2n − 1)θ. (56)

So,
∂(CBI)

∂θ
= 0 ⇒ θ = π/2n. (57)

By substituting , we obtain:

CBI = (2n − 1) cos
ß

2n
− cos

(2n − 1)ß
2n

= 2n cos
ß

2n
(58)

We know cos( π
2n ) tends to (1 − π2

8n2 ) for n −→ ∞. Therefore the maximum CBI can be made
arbitrarily close to 2n.

5.4 Violation Bell inequalities involving Tri and Bi-measurements correlations
It would be interesting to consider Bell inequalities involving both two and three successive
measurement correlations. The simplest way of obtaining such an inequality would be by
adding genuinely bipartite correlations to the tripartite correlations considered in Mermin’s
inequality. For instance,a straightforward calculation would allow us to prove that any local
realistic theory must satisfy the following inequality (Cabello, 2002b):

−5 ≤ �α1α2α�3� − �α1α�2α�3� − �α�1α2α�3� − �α�1α�2α3�−
�α1α�2� − �α1α�3� − �α2α3� ≤ 3 (59)

A numerical calculation shows that both the GHZ and W states give a same maximal violation
of the inequality (59). However, if we assign a higher weight to the bipartite correlations
appearing in the inequality, then we can reach a Bell inequality such as

−8 ≤ �α1α2α�3� − �α1α�2α�3� − �α�1α2α�3� − �α�1α�2α3�−
2�α1α�2� − 2�α1α�3� − 2�α2α3� ≤ 4, (60)

which is violated by the W state but not by GHZ state (Cabello, 2002b). It is not difficult
to show that three successive measurements correlations for spin 1/2 break the hybrid Bell
inequalities.

−5.34 ≤ �α1α2α�3� − �α1α�2α�3� − �α�1α2α�3� − �α�1α�2α3�−
�α1α�2� − �α1α�3� − �α2α3� ≤ 3.8 (61)

and

−8.2 ≤ �α1α2α�3� − �α1α�2α�3� − �α�1α2α�3� − �α�1α�2α3�−
2�α1α�2� − 2�α1α�3� − 2�α2α3� ≤ 4.8. (62)

So two successive measurements correlations are relevant to those of three successive
measurements. This behavior is analogous to three particle W state (Cabello, 2002b).
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â1, â3, . . . , â2n−1 and (k = 2, 4, . . . , 2n) for vectors b̂2, b̂4, . . . , b̂2n. The maximum value |CBI|
will occur when all the vectors lie on the same plane. this is because of:

∂(CBI)
∂φk

= 0 ⇒ φ1 = φ2 = . . . = φn.

After partial differential over all θk, we get:

∂(CBI)
∂θk

= 0 ⇒ θ12 = θ23 = . . . = θ2n−1,2n = θ.

Therefore, we obtain:
CBI = (2n − 1) cos θ − cos(2n − 1)θ. (56)

So,
∂(CBI)

∂θ
= 0 ⇒ θ = π/2n. (57)

By substituting , we obtain:

CBI = (2n − 1) cos
ß

2n
− cos

(2n − 1)ß
2n

= 2n cos
ß

2n
(58)

We know cos( π
2n ) tends to (1 − π2

8n2 ) for n −→ ∞. Therefore the maximum CBI can be made
arbitrarily close to 2n.

5.4 Violation Bell inequalities involving Tri and Bi-measurements correlations
It would be interesting to consider Bell inequalities involving both two and three successive
measurement correlations. The simplest way of obtaining such an inequality would be by
adding genuinely bipartite correlations to the tripartite correlations considered in Mermin’s
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appearing in the inequality, then we can reach a Bell inequality such as
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which is violated by the W state but not by GHZ state (Cabello, 2002b). It is not difficult
to show that three successive measurements correlations for spin 1/2 break the hybrid Bell
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So two successive measurements correlations are relevant to those of three successive
measurements. This behavior is analogous to three particle W state (Cabello, 2002b).
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6. Hardy’s argument for n successive measurements for all spin-s measurements

Hardy’s nonlocality argument is considered weaker than Bell inequalities in the bipartite case,
as every maximally entangled state of two spin- 1

2 particles violates Bell’s inequality maximally
but none of them satisfies Hardy-type nonlocality conditions. The scenario in successive
spin measurements is quite different, however. We showed in previous sections that all n
successive spin-s measurements break Bell-type inequalities, in contrast to the bipartite case,
where only the entangled states break it. In this section, we prove that all n successive spin-s
measurements satisfy Hardy-type argument conditions. Consider four yes/no-type events
A, A

�
, B and B

�
, where A and A

�
may happen at time t1, and B and B

�
may happen at another

time, t2 (t2 > t1). The joint probability that, at the first time (t1), A and, at the second time (t2),
B are “ yes" is 0. The joint probability that, at the first time (t1), A is “no" and, at the second
time (t2), B

�
is “yes" is 0. The joint probability that, at the first time (t1), A

�
is “yes" and, at the

second time (t2), B is “no", is 0. The joint probability that both A
�

and B
�

are “yes" is nonzero.
We can write this as follows:

p(A = +1, B = +1) = 0,

p(A = −1, B
�
= +1) = 0,

p(A
�
= +1, B = −1) = 0,

p(A
�
= +1, B́ = +1) = p �= 0. (63)

We show that these four statements are not compatible with time-local realism. The nonzero
probability appearing in the argument is the measure of violation of time-local realism. It is
interesting that two successive s-spin measurements violate time-local realism. We deal with
the case where the input state is a pure state whose eigenstates coincide with those of s.â0 for
some â0 whose eigenvalues we denote α0 = j. Hardy’s argument for a system of n successive
spin-s measurements, in it’s minimal form (Parasuram & Ghosh, n.d.), is given by following
conditions:

p(s.â1 = j, s.â2 = j, . . . , s.ân = j) = 0, (64)

p(s.â1 = j − 1, s.â
�
2 = j, . . . , s.â

�
n = j) = 0,

p(s.â1 = j − 2, s.â
�
2 = j, . . . , s.â

�
n = j) = 0,

.

.

p(s.â1 = −j, s.â
�
2 = j, . . . , s.â

�
n = j) = 0,

.

.

. (65)

p(s.â
�
1 = j, . . . s.âl = j − 1, . . . , s.â

�
n = j) = 0,

p(s.â
�
1 = j, . . . , s.âl = j − 2, . . . , s.â

�
n = j) = 0,

(66)
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.

.

p (s.â
�
1 = j, . . . s.âl = −j, . . . , s.â

�
n = j) = 0, (67)

.

.

.

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.ân = j − 1) = 0,

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.ân = j − 2) = 0,

.

.

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.ân = −j) = 0,

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.â

�
n = j) = p. (68)

First, we prove here that all time-local SHVTs predict p = 0. Suppose that a time-local SHVT
reproducing, in accordance with Eq.(4), the quantum predictions exist. Accordingly, if we
consider, for example, Eq.(64), we must have

p(s.â�
1 = j, . . . , s.âl = j − 1, . . . , s.â�

n = j)

=
∫

Λ
dλρ(λ)pλ(s.â�

1 = j, . . . s.âl = j − 1, . . . , s.â�
n = j)

=
∫

Λ
dλρ(λ)pλ(s.â�

1 = j) . . . pλ(s.âl = j − 1) . . . pλ(s.â�
n = j)

= 0, (69)

where the second equality is implied by the time-locality condition of Eq.(4). The last equality
in Eq.(69) can be fulfilled if and only if the product pλ(s.â�

1 = j) . . . pλ(s.â�
n = j) vavishes

every time within Λ. An equivalent result holds for Eqs.(64-69), leading to:

pλ (s.â1 = j)pλ(s.â2 = j) . . . pλ(s.ân = j) = 0, (70)

pλ (s.â1 = j − 1)pλ(s.â�
2 = j) . . . pλ(s.â�

n = j) = 0,

pλ (s.â1 = j − 2)pλ(s.â�
2 = j) . . . pλ(s.â�

n = j) = 0,

.

.

pλ (s.â1 = −j)pλ(s.â�
2 = j) . . . pλ(s.â�

n = j) = 0, (71)

.

.

.

pλ (s.â�
1 = j) . . . pλ(s.âl = j − 1) . . . pλ(s.â�

n = j) = 0,

pλ (s.â�
1 = j) . . . pλ(s.âl = j − 2) . . . pλ(s.â�

n = j) = 0,

.

.

pλ (s.â�
1 = j) . . . pλ(s.âl = −j) . . . pλ(s.â�

n = j) = 0, (72)
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p(s.â1 = j − 2, s.â
�
2 = j, . . . , s.â

�
n = j) = 0,

.

.

p(s.â1 = −j, s.â
�
2 = j, . . . , s.â

�
n = j) = 0,

.

.

. (65)

p(s.â
�
1 = j, . . . s.âl = j − 1, . . . , s.â

�
n = j) = 0,

p(s.â
�
1 = j, . . . , s.âl = j − 2, . . . , s.â

�
n = j) = 0,

(66)
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.

.

p (s.â
�
1 = j, . . . s.âl = −j, . . . , s.â

�
n = j) = 0, (67)

.

.

.

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.ân = j − 1) = 0,

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.ân = j − 2) = 0,

.

.

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.ân = −j) = 0,

p (s.â
�
1 = j, s.â

�
2 = j, . . . , s.â

�
n = j) = p. (68)

First, we prove here that all time-local SHVTs predict p = 0. Suppose that a time-local SHVT
reproducing, in accordance with Eq.(4), the quantum predictions exist. Accordingly, if we
consider, for example, Eq.(64), we must have

p(s.â�
1 = j, . . . , s.âl = j − 1, . . . , s.â�

n = j)

=
∫

Λ
dλρ(λ)pλ(s.â�

1 = j, . . . s.âl = j − 1, . . . , s.â�
n = j)

=
∫

Λ
dλρ(λ)pλ(s.â�

1 = j) . . . pλ(s.âl = j − 1) . . . pλ(s.â�
n = j)

= 0, (69)

where the second equality is implied by the time-locality condition of Eq.(4). The last equality
in Eq.(69) can be fulfilled if and only if the product pλ(s.â�

1 = j) . . . pλ(s.â�
n = j) vavishes

every time within Λ. An equivalent result holds for Eqs.(64-69), leading to:
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pλ (s.â1 = j − 1)pλ(s.â�
2 = j) . . . pλ(s.â�

n = j) = 0,

pλ (s.â1 = j − 2)pλ(s.â�
2 = j) . . . pλ(s.â�

n = j) = 0,

.

.

pλ (s.â1 = −j)pλ(s.â�
2 = j) . . . pλ(s.â�

n = j) = 0, (71)

.

.

.

pλ (s.â�
1 = j) . . . pλ(s.âl = j − 1) . . . pλ(s.â�

n = j) = 0,

pλ (s.â�
1 = j) . . . pλ(s.âl = j − 2) . . . pλ(s.â�

n = j) = 0,

.

.

pλ (s.â�
1 = j) . . . pλ(s.âl = −j) . . . pλ(s.â�

n = j) = 0, (72)
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.

pλ (s.â
�
1 = j)pλ(s.â

�
2 = j) . . . pλ(s.ân = j − 1) = 0,

pλ (s.â
�
1 = j)pλ(s.â

�
2 = j) . . . pλ(s.ân = j − 2) = 0,

.

.

pλ (s.â
�
1 = j)pλ(s.â

�
2 = j) . . . pλ(s.ân = −j) = 0, (73)

pλ (s.â
�
1 = j)pλ(s.â

�
2 = j) . . . pλ(s.â

�
n = j) = p �= 0, (74)

where the first 2jn + 1 equations are supposed to hold almost every time within Λ, while the
last equation has to be satisfied in a subset of Λ whose measure according to the distribution
ρ(λ) is nonzero. To prove the more general result that no conceivable time-local SHVT can
simultaneously satisfy Eqs.(70)-(74), a manipulation of those equations is required. To this
end, let us sum all equations in each set. We obtain

(1 − pλ(s.â1 = j))
[

pλ(s.â�
2 = j) . . . pλ(s.â

�
n = j)

]
= 0,

.

.

(1 − pλ(s.âl = j))
[

pλ(s.â
�
1 = j) . . . pλ(s.â

�
n = j)

]
= 0,

.

.

(1 − pλ(s.ân = j))
[

pλ(s.â
�
1 = j) . . . pλ(s.â

�
n−1 = j)

]
= 0. (75)

Now let us partition the set of hidden variables Λ and define the following subsets
A1, A2, . . . An, and B as:

A1 = {λ ∈ Λ|pλ(s.â1 = j) = 0},

.

.

Al = {λ ∈ Λ|pλ(s.âl = j) = 0}, (76)

.

.

An = {λ ∈ Λ|pλ(s.ân = j) = 0},

B = Λ − {A1 ∪ A2 ∪ . . . ∪ An}. (77)

We have that, for all λ belonging to B, pλ(s.â1 = j)pλ(s.â2 = j) . . . pλ(s.ân = j) �= 0.If set
B had a nonzero measure according to the distribution ρ, that is, if

∫
B dλρ(λ) �= 0, there

would be violation of Eq.(70) and, consequently, of Eq.(64). Therefore, to fuifill Eq.(70),
the set A1 ∪ A2 ∪ . . . ∪ An must coincide with Λ apart from a set of zero measure, and
we are left only with hidden variables belonging to either A1 or A2 or . . . or An. If λ
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belongs to Al , then, by definition, pλ(s.âl = j) = 0, so that Eq.(75) can be satisfied only if
pλ(s.â�

1 = j) . . . pλ(s.â�
n = j) = 0. Hence, for any λ ∈ {A1 ∪ A2 ∪ . . . ∪ An}, we obtain

a result leading to a contradiction of Eq.(74), which requires that there is a set of nonzero ρ
measure within Λ where both probabilities do not vanish. To summarize, we have shown
that it is not possible to exhibit any time-local hidden-variable model, satisfying Hardy’s logic
for n successive measurements.
Now, we show that in quantum theory for the n successive spin measurement, sometimes
p > 0. So, we consider n successive measurements in directions s.âi (i = 1, 2, . . . , n) on spin-s
particles. For a spin-s system, we have ( see Appendix-B):

|�αk−1|αk�| = |�s.âk−1|s.âk�| = d(s)αk−1,αk (βk − βk−1), (78)

where βk is the angle between the âk and the +z axes. So, given the input state |α0�, the
( joint) probability that the measurement outcomes will be |α1� ∈ {+j, . . . ,−j} in the first
measurement, |α2� ∈ {+j, . . . ,−j} in the second measurement,..., |αn� ∈ {+j, . . . ,−j} in the
n-th measurement, is given by

p(α1, α2, . . . , αn) =Πn
k=1|�αk−1|αk�|

=Πn
k=1d2

αk−1,αk
(βk − βk−1). (79)

We deal with the case where the input state is a pure state whose eigenstates coincide with
those of �S.â0 for some â0 whose eigenvalues we denote α0 = j. Now, by substituting Eq.(79)
in the minimal form of Hardy’s argument [ Eqs.(64)-(68)], we have

d 2
jj(β1)d2

jj(β2 − β1) . . . d2
jj(βn − βn−1) = 0, (80)

d 2
j,j−1(β1)d2

j,j−1(β
�
2 − β1) . . . d2

jj(β
�
n − β

�
n−1) = 0,

d 2
j,j−2(β1)d2

j,j−2(β
�
2 − β1) . . . d2

jj(β
�
n − β

�
n−1) = 0,

.

.

d 2
j,−j(β1)d2

j,−j(β
�
2 − β1) . . . d2

jj(β
�
n − β

�
n−1) = 0,

.

.

d 2
jj(β

�
1) . . . d2

j,j−1(βl − β
�
l−1)d

2
j,j−1(β

�
l+1 − βl) . . .

d 2
jj(β

�
n − β

�
n−1) = 0,

d 2
jj(β

�
1) . . . d2

j,j−2(βl − β
�
l−1)d

2
j,j−2(β

�
l+1 − βl) . . .

d 2
jj(β

�
n − β

�
n−1) = 0,

.

.

d 2
jj(β

�
1) . . . d2

j,−j(βl − β
�
l−1)d

2
j,−j(β

�
l+1 − βl) . . .

d 2
jj(β

�
n − β

�
n−1) = 0, (81)
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�
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jj(β
�
n − β

�
n−1) = 0,

d 2
j,j−2(β1)d2

j,j−2(β
�
2 − β1) . . . d2

jj(β
�
n − β

�
n−1) = 0,
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.
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j,−j(β1)d2

j,−j(β
�
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jj(β
�
n − β

�
n−1) = 0,

.
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d 2
jj(β

�
1) . . . d2

j,j−1(βl − β
�
l−1)d

2
j,j−1(β

�
l+1 − βl) . . .

d 2
jj(β

�
n − β

�
n−1) = 0,

d 2
jj(β

�
1) . . . d2

j,j−2(βl − β
�
l−1)d

2
j,j−2(β

�
l+1 − βl) . . .
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jj(β

�
n − β

�
n−1) = 0,

.
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d 2
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�
1) . . . d2
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�
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2
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�
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.

.

d 2
jj(β

�
1)d

2
jj(β

�
2 − β

�
1) . . . d2

j,j−1(βn − β
�
n−1) = 0,

d 2
jj(β

�
1)d

2
jj(β

�
2 − β

�
1) . . . d2

j,j−2(βn − β
�
n−1) = 0,

.

.

d 2
jj(β

�
1)d

2
jj(β

�
2 − β

�
1) . . . d2

j,−j(βn − β
�
n−1) = 0, (82)

d 2
jj(β

�
1)d

2
jj(β

�
2 − β

�
1) . . . d2

j,j(β
�
n − β

�
n−1) = p. (83)

From Eq (80), at least one of the factors must be 0. So

d2
jj(β1) = 0 =⇒ β1 = π

or

d2
jj(β2 − β1) =⇒ |β2 − β1| = π

or

.

.

.

d2
jj(βn − βn−1) =⇒ |βn − βn−1| = π

To satisfy all equations (81)-(82), we have the following conditions:

(β1 = 0) or (β
�
2 = β1)

and

(β2 = β
�
1) or (β2 = β

�
3)

.

.

.

(βl = β
�
l−1) or (βl = β

�
l+1) (84)

.

.

.

and

(βn = β
�
n−1).

Now, we can calculate the maximum value p by using these conditions. For example, if we
select β1 = π, so we must have β

�
2 = β1 = π. In this case,

p = d2
jj(β

�
1)d

2
jj(π − β

�
1)d

2
jj(β

�
3 − π) . . . d2

j,j(β
�
n − β

�
n−1). (85)
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By substituting dj
jj(β) = cos2j(β/2), we have

p = cos4j(
β
�
1

2
) cos4j(

π − β
�
1

2
) cos4j(

β
�
3 − π

2
) . . .

cos4j(
β
�
n − β

�
n−1

2
). (86)

By selecting β
�
n = β

�
n−1 = . . . = β

�
3 = π and β

�
1 = π,

p ≤ (
1
2
)4j. (87)

We can obtain this result in the general case. We choose |βl − βl−1| = π, where 2 ≤ l ≤ n.
Without loss of generality, we select βl = π and βl−1 = 0. From the results obtained with
Eq.(84), β

�
l+1 = βl = π or β

�
l−1 = βl = π. Exactly for (l-1)th in Eq.(84), we have β

�
l = βl−1 = 0

or β
�
l−2 = βl−1 = 0. So we have four cases: (i) β

�
l−1 = π and β

�
l−2 = 0 (ii)β

�
l−1 = π and β

�
l = 0

(iii)β
�
l+1 = π and β

�
l = 0 and (iv)β

�
l+1 = π and β

�
l−2 = 0. It is easy see that for the first three

cases , the maximum value of p is 0, but in the forth case, by selecting β
�
1 = β

�
2 = . . . = β

�
l−1 =

0 and β
�
l+2 = β

�
l+3 = . . . = β

�
n = π, we get

p = cos4j(
β
�
l

2
) sin4j(

β
�
l

2
) ≤ (

1
2
)4j. (88)

We see that p > 0 for all spins, and also, the maximum probability of success of Hardy’s
non-time locality is independent of the number of successive measurements and decreases
with s.

7. Summary and comments

Entanglement in space displays one of the most interesting features of quantum mechanics,
often called quantum non locality. Locality in space and realism impose constraints -Bell’s
inequalities- on certain combinations of correlations for measurements of spatially separated
systems, which are violated by quantum mechanics. Non locality is one of the strangest
properties of quantum mechanics, and understanding this notion remains an important
problem.
Entanglement in time is not introduced in quantum mechanics because of different roles time
and space play in quantum theory. The meaning of locality in time is that the results of
measurement at time t2 are independent of any measurement performed at some earlier
time t1 or later time t3. The temporal Bell’s inequalities are derived from the realistic hidden
variable theory.
In this chapter we have considered a hidden variable theory of successive measurements on
a single spin-s system. In all the previous scenarios comparing HVT and QM the principal
hypothesis being tested was that, in a given state ( having spatial correlation), HVT implies
the existence of a joint probability distribution for all observables even if some of them
are not compatible. QM is shown to contradict the consequence of this requirement as it
does not assign joint probabilities to the values of incompatible observables. The particular
implication that is tested is whether the marginal of the observable A in the joint distribution
of the compatible observables A and B is the same as the marginal for A in joint distribution
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a single spin-s system. In all the previous scenarios comparing HVT and QM the principal
hypothesis being tested was that, in a given state ( having spatial correlation), HVT implies
the existence of a joint probability distribution for all observables even if some of them
are not compatible. QM is shown to contradict the consequence of this requirement as it
does not assign joint probabilities to the values of incompatible observables. The particular
implication that is tested is whether the marginal of the observable A in the joint distribution
of the compatible observables A and B is the same as the marginal for A in joint distribution
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for the observables A and C even if B and C are not compatible. In other words, HVT
implies noncontextuality for which QM can be tested. The celebrated theorem of Bell and
Kochen-Specker showed that QM is contextual (Bell, 1966),(Kochen & Specker, 1967). In our
scenario, the set of measured observables have a well defined joint probability distribution as
each of them acts on a different state. Note that the Bell-type inequalities we have derived
follow from equation (4) which says that, for a given value of stochastic hidden variable
λ, the joint probability for the outcomes of successive measurements must be statistically
independent. In other words the hidden variable λ completely decides the probabilities of
individual measurement outcomes independent of other measurements. We show that QM
is not consistent with this requirement of HVT. A Bell-type inequality (for single particle),
testing contextuality of QM was proposed by Basu et al. (Basu et al., 2001) and was shown that
it could be empirically tested. However, the approach given in the present chapter furnishes
a test for realistic nature of QM independent of contextuality. We have compared QM with
HVT for different values of spin and for different number of successive measurements. The
dependence of the deviation of QM from HVT on the spin value and on the number of
successive measurements opens up new possibilities for comparison of these models, and
may lead to a sharper understanding of QM.
In the following, I bring some of the key surprising results obtained in this chapter.
1- We obtained temporal Mermin-Klyshko inequality (MKI) and svetlinchi inequality (SI) for
n successive measurements by using realism and non locality in time. We showed quantum
correlations violate temporal MKI and satisfy temporal SI.
2- It was interesting that, for a spin-s particle, maximum deviation of quantum mechanics from
realism was obtained for all convex combinations of α0 = ±1 states (the case when input state
is a mixed state whose eigenstates coincide with those of �S · â0 for some â0 whose eigenvalues
we denote by α0 ∈ {−s, . . . , s}). This is surprising as one would expect pure states to be more
‘quantum’ than the mixed ones thus breaking Bell inequalities by larger amount.
3- All spin 1/2 states maximally break Mermin-Klyshko inequalities for n successive
measurements (ηn =

√
2) as against only the entangled states break it in multipartite case.

Interestingly that for s = 1
2 the random mixture ( maximum noisy state) also breaks BI. This

indicates that the notion of “classicality", compatible with the usual local HVT, is different in
nature from the notion of classicality that would arise from the non-violation of BI here.
4- We saw that for all spins, BI and MKI is violated in two and three successive measurements
(η2 > 1,η3 > 1) and the value of violation MKI in three successive measurements is a little
more than the value of violation BI in two successive measurements η3 > η2 except s = 1

2 ,
while η3 = η2 =

√
2 for spin s = 1

2 . Also η3 and η2 decrease monotonically with increase in
the value of s. It is interesting, in the case of two and three successive measurements of spin
s prepared in a pure state, that the maximum violation of BI and MKI falls off as the spin of
the particle increases, but tends to a constant for arbitrary large s, η2(s −→ ∞) = 1.143 and
η3(s −→ ∞) = 1.153. It is thus seen that large quantum numbers do not guarantee classical
behavior.
5- We showed that for s = 1

2 , the correlation between the outputs of measurements from last k
out of n successive measurements (k < n) depend on the measurement prior to (n − k), when
k is even, while for odd k, these correlations are independent of the outputs of measurements
prior to n − k.
6- Interestingly if the initial state is the random mixture or first Stern-Gerloch measurements
for the qubit component along the directions a1 perpendicular to initial state â0 ⊥ â1 so that,
�α1�QM = 0, then always quantum averages for all odd number of successive measurements
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are zero.
7- We proved that the correlation function between first and third measurement (t1 and t3)
on spin-s particle for a given measurement performed at t2 can not violate the temporal Bell
inequality. Therefore, any measurement performed at time t2 disentangles events at time t1
and t3 if t1 < t2 < t3.
8- Three successive measurements on spin-s particles do not break Svetlinchi Inequality. But
it is proved that three successive measurements on qubit violate Scarani-Gisin inequality.
Thus, although there are no genuine three-fold temporal correlations, a specific combination
of two-fold correlations can have values that are not achievable with correlations in space for
any three-qubit system.
9- Also we showed that three successive measurements violate two types of Bell inequalities
involving two and three successive measurements. So two successive measurement
correlations are relevant to those of three successive measurements. This behavior is
analogous to three particle W-state.
10- Quantum correlations between two successive measurements on a qubit violates chained
Bell inequality which is obtained by providing more than two alternative experiments in every
step.
11- Also, we have studied Hardy’s argument for the correlations between the outputs
of n successive measurements for all s-spin measurements. We have shown that the
maximum probability of success of Hardy’s argument for n successive measurements is
( 1

2 )
4s, which is independent of the number of successive measurements of spin (n) and

decreases with increase of s. This can be compared with the correlations corresponding
to measurement of spin observables in a spacelike separated two-particles scenario where
only the non-maximally entangled states of any spin-s bipartite system respond to Hardy’s
nonlocality test.

8. Appendix A

We evaluate �α1�, �α1α2� and �α1α2α3� in the state ρ0 given in(4.1).
(|�S · â0, α0� ≡ |â0, α0�)

�α1� =
s

∑
α1=−s

α1 p(α1) = �â0, α0|�S · â1|â0, α0� = �â1, α0|ei�S·n̂θ1 (�S · â1)e−i�S·n̂θ1 |â1, α0� (A.1)

where θ1 is the angle between â0 and â1 and n̂ is the unit vector along the direction defined by
n̂ = â0 × â1. By using Baker- Hausdorff Lemma

eiGλ Ae−iGλ = A + iλ[G, A] +

(
i2λ2

2!

)
[G, [G, A]] + · · · (A.2)

we get,

�α1� = �â1, α0|�S · â1|â1, α0�+ iθ1
1!

�â1, α0|[�S · n̂,�S · â1]|â1, α0�

+
i2θ2

1
2!

�â1, α0|[�S · n̂, [�S · n̂,�S · â1]]|â1α0�+ · · · (A.3)

By using:
�â1, α0|�S · â1|â1, α0� = α0, (A.4)
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are zero.
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any three-qubit system.
9- Also we showed that three successive measurements violate two types of Bell inequalities
involving two and three successive measurements. So two successive measurement
correlations are relevant to those of three successive measurements. This behavior is
analogous to three particle W-state.
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Bell inequality which is obtained by providing more than two alternative experiments in every
step.
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decreases with increase of s. This can be compared with the correlations corresponding
to measurement of spin observables in a spacelike separated two-particles scenario where
only the non-maximally entangled states of any spin-s bipartite system respond to Hardy’s
nonlocality test.

8. Appendix A

We evaluate �α1�, �α1α2� and �α1α2α3� in the state ρ0 given in(4.1).
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s
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where θ1 is the angle between â0 and â1 and n̂ is the unit vector along the direction defined by
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eiGλ Ae−iGλ = A + iλ[G, A] +

(
i2λ2

2!

)
[G, [G, A]] + · · · (A.2)

we get,

�α1� = �â1, α0|�S · â1|â1, α0�+ iθ1
1!

�â1, α0|[�S · n̂,�S · â1]|â1, α0�

+
i2θ2

1
2!

�â1, α0|[�S · n̂, [�S · n̂,�S · â1]]|â1α0�+ · · · (A.3)
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�â1, α0|[�S · n̂,�S · â1]|â1, α0� = �â1, α0|(i�S · (n̂ × â1))|â1, α0� = 0, (A.5)

and
�â1, α0|[�S · n̂, [�S · n̂,�S · â1]]|â1, α0� = �â1, α0|�S · â1|â1, α0� = α0. (A.6)

Terms with odd powers of θ1 vanish

�α1� = α0 −
θ2

1
2!

α0 +
θ4

1
4!

α0 − · · · = α0 cos θ1. (A.7)

If the initial state is mixed state(4.1):

�α1� =
+s

∑
α0=−s

pα0 α0 cos θ1. (A.8)

Further we compute

�α1α2� = ∑
α1

α1|�â0, α0|â1, α1�|2 ∑
α2

α2|�â1, α1|â2, α2�|2.

By using (A.7)

�α1α2� = cos θ12 ∑
α1

α2
1|�â0, α0|â1, α1�|2 = cos θ12�â0, α0|(�S · â1)

2|â0, α0�

= cos θ12�â1, α0|ei�S·n̂θ1 (�S · â1)
2e−i�S·n̂θ1 |â1, α0� (A.9)

Using the Baker-Hausdorff Lemma, and using

�â1, α0|[�S · n̂, [�S · n̂, [�S · n̂, · · · [�S · n̂, (�S · â1)
2]] · · · ]]|â1, α0� (A.10)

=

⎧⎨
⎩

0 if �S · n̂ occurs odd number of times

3α2
0 − s2 − s if �S · n̂ occurs 2p times

we get,

�α1α2� = 1
2

cos θ12[(s2 + s − α2
0) + (3α2

0 − s2 − s) cos2 θ1]. (A.11)

If the initial state is mixed state (4.1),

�α1α2� = 1
2

cos θ12

+s

∑
α0=−s

pα0 [(s
2 + s − α2

0) + (3α2
0 − s2 − s) cos2 θ1]. (A.12)

Next we calculate,

�α1α2α3� = ∑
α1

α1|�â0, α0|â1, α1�|2 ∑
α2

α2|�â1, α1|â2, α2|2 ∑
α3

α3|�â2, α2|â3, α3�|2. (A.13)

By using (A.7) and (A.11) we get,

�α1α2α3� = 1
2

α0 cos θ1 cos θ23 sin2 θ12s(s + 1) +
1
2

cos θ23(3 cos2 θ12 − 1)A, (A.14)
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where,
A = ∑

α1

α3
1|�â0, α0|â1, α1�|2 = �â1, α0|ei�S·n̂θ1 (�S · â1)

3e−i�S·n̂θ1 |â1, α0�. (A.15)

Using Baker-Hausdorff lemma and

�â1, α0|[�S · n̂, [�S · n̂, [�S · n̂, · · · [�S · n̂, (�S · â1)
3]] · · · ]]|â1, α0�

=

⎧
⎨
⎩

0 if �S · n̂ occurs odd number of times

Y(X − a3
0) + X if �S · n̂ occurs 2p times

(A.16)

where,

X = 6α3
0 + α0(1 − 3s(s + 1))

Y = 32p−2 + 32p−4 + · · ·+ 32 = (
9
8
)[92p−2 − 1] (A.17)

we get,

A =
1
8

∞

∑
j=0

(−1)j[(9j − 1)X − (9j − 9)α3
0] (

θ
2j
01

2j!
).

This gives,

A =
1
8

α0{[3α2
0 + 3s(s + 1)− 1] cos θ01 + [5α2

0 − 3s(s + 1) + 1] cos 3θ01} (A.18)

After substituting (A.18) in (A.14) and simplifying,

�α1α2α3� = 1
16

cos θ23{cos θ1[M cos2 θ12 + N] + R[3 cos2 θ12 − 1]} (A.19)

where,

M = α0[9α2
0 + s(s + 1)− 3]

N = α0[5s(s + 1)− 3α2
0 + 1]

R = α0[5α2
0 − 3s(s + 1) + 1].

If the initial state is a mixed state (4.1),

M =
+s

∑
α0=−s

pα0 α0[9α2
0 + s(s + 1)− 3]

N =
+s

∑
α0=−s

pα0 α0[5s(s + 1)− 3α2
0 + 1]

R =
+s

∑
α0=−s

pα0 α0[5α2
0 − 3s(s + 1) + 1].
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Also, by using equations (A.12) and (A.13), one obtains:

�α1α3� = ∑
α1

α1|�â0, α0|â1, α1�|2 ∑
α2

|�â1, α1|â2, α2|2 ∑
α3

α3|�â2, α2|â3, α3�|2

= cos θ32�α1α2�
=

1
2

cos θ32 cos θ21[(s2 + s − α2
0) + (3α2

0 − s2 − s) cos2 θ1], (A.20)

and we can obtain:

�α2α3� = ∑
α1

|�â0, α0|â1, α1�|2 ∑
α2

α2|�â1, α1|â2, α2|2 ∑
α3

α3|�â2, α2|â3, α3�|2

= cos θ32�α2
2�

=
1
2

s cos θ32{(s + 1) sin2 θ12 +
1
2
(3 cos2 θ12 − 1)[1 + (2s − 1) cos2 θ1]}. (A.21)

9. Appendix B

Let us consider a situation where an ensemble of systems prepared in state ρ = |s.â0 = α0 ><
s.â0 = α0| at time t = 0, is subjected to a measurement of the observable A(t1) = s.â1 at
time t1 followed by a measurement of the observable B(t2) = s.â2 at time t2 (t2 > t1 > 0),
where we have adopted the Heisenberg picture of time evolution. Further, let us assume
that both A(t1) and B(t2) have purely discrete spectra. Let {α1} = {−s,−s + 1, . . . , s} and
{α2} = {−s,−s+ 1, . . . , s} denote the eigenvalues and PA(t1)(α1) = |s.â1 = α1 >< s.â1 = α2|,
PB(t2)(α2) = |s.â2 = α2 >< s.â2 = α2| the corresponding eigenprojectors of A(t1) and B(t2)
respectively. Then the joint probability that a measurement of A(t1) yields the outcome α1
and a measurement of B(t2) yields the outcome α2 is given by

Prρ

A(t1),B(t2)
(α1, α2)

= Tr
[

PB(t2)(α2)PA(t1)(α1)ρPA(t1)(α1)PB(t2)(α2)
]

= |�s.â0|s.â1�|2 |�s.â1|s.â2�|2 . (B.1)

We know that |s.a = α >= ∑+s
m=−s d(s)α,m(β)|m > where d(s)αm(β) ≡

〈
s, α|exp(−iSy(β)

h̄ )|s, m
〉

and
it obtains Wigner’s formula (Sakurai, n.d.) and αi ∈ −s, . . . , s and βi is the angle between the
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Also, by using equations (A.12) and (A.13), one obtains:

�α1α3� = ∑
α1
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|�â0, α0|â1, α1�|2 ∑
α2
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= cos θ32�α2
2�

=
1
2

s cos θ32{(s + 1) sin2 θ12 +
1
2
(3 cos2 θ12 − 1)[1 + (2s − 1) cos2 θ1]}. (A.21)

9. Appendix B

Let us consider a situation where an ensemble of systems prepared in state ρ = |s.â0 = α0 ><
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âi and the z axes. In contrast,
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1. Introduction 
Quantum Chromodynamics (QCD), the heart of the so-called Standard Model, was 
developed along the lines of the most successful theoretical structure in all of physics, 
namely, Quantum Electrodynamics (QED), which represents the interactions between the 
electron and the electromagnetic field, photons serving as the mediator between the two 
entities. QCD, therefore, contains many objects which are analogous to those within QED. 
There are the quarks, for example, which come in six “flavors” (up, down, strange, charm, 
bottom, top), serving as the analogous construct to the electron and its cousins, the muon 
and the tauon. Plexiformation, of course, always accompanies the proceeding by analogy to 
any theory, and so we find that quarks must come not only in flavors, but also in “colors” 
(three total), and they must be fractionally charged (one or two thirds of the electron charge 
in absolute value). What mediates the quark and the strong field, analogous to the photon in 
QED, is the gluon. In QED all quantum events are described by a coupling between the 
electron and the photon, called the fine structure constant of magnitude approximately 
0.007. Regarding the coupling between quarks and the strong field responsible for 
hadronization … the production of hadron pairs in a colliding beams experiment, for 
example … the situation in QCD is quite different. Work continues at present in the field of 
high-energy physics to determine the precise nature of the quark-gluon coupling, but one 
overarching behavior pattern of such coupling, called the strong coupling, is that it is not a 
constant. Rather, it varies generally as the reciprocal of the natural logarithm of the energy 
wrapped up in the colliding beams.  
In the work which follows we will have occasion to investigate the phenomenon of vector 
meson formation and decay in accord with a QCD model, called the Gluon Emission Model 
(GEM), first developed by F. E. Close in the 1970s. The GEM follows rigorously the precepts 
of QED proper, the only QCD quantity entering into the calculations being the strong 
coupling parameter, which replaces the fine structure constant in the relevant places. The 
GEM thus provides for a self-contained formalism that follows the constructs of QED 
essentially as closely as is possible at the present time. As we will see, even the precise form 
for the strong coupling parameter may be determined within the GEM, the valid range 
                                                 
* Much work presented in this Chapter is taken from D. White, “GEM and the Y(1S)”, The Journal of 
Informatics and Mathematical Sciences, Vol. 2, Nos. 2 & 3 (2010), pp. 71 – 93. 
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being the range of energy encompassed by the known vector mesons themselves. Let us 
begin by reviewing a central feature of QED: 
In all quantum systems in which natural decay occurs between an excited level and the 
ground state, the absorption cross-section goes as1 

 (ω) = KV2 (1/m)2(1/ω)L(ω) (1) 

where K is a constant, ω represents photon frequency, V2 represents the square of the 
matrix element descriptive of the photon emission process, the system has mass m, L(ω) is a 
Lorentz Amplitude with a peak at ω = ω0 and with a width Γ, and  = (1/137.036) represents 
the fine structure constant. Assuming “asymptotic freedom”, i.e., that we may ignore the 
masses of the decay products (light hadron pairs) in relation to the total energy involved in 
the system under investigation, we may employ Eq. 1 to predict the width of vector mesons 
by making the following substitutions to take us from a general quantum electrodynamics 
(QED) to a specific quantum chromodynamics (QCD) process: 
We substitute for the photon frequency  the gluon energy Q0. We evaluate the right hand 
side of Eq. 1 at a specific vector meson mass, mv, i.e., Q0 = m = mv. (Hence, the associated 
Lorentz Amplitude equals unity.) We require V2 to be proportional to i(qi)4, where  
qi = quark charge (in units of electron charge magnitude) associated with the quarks 
comprising the relevant vector meson. The above criterion is consistent with a spin-spin 
interaction2 proportional to qi2, where i denotes quark flavor, giving rise to spin-flip 
transitions, and the sum is required only in the case of the , as it comprises both the up 
quark (u) of charge qu = 2/3 and the down quark (d) of charge  qd = -1/3. We postulate V2 
to be proportional to only i(qi)4, i.e., the precise form of the interaction is universal to all 
vector mesons in their ground states, except for quark charge differences. 
We replace  by s, the strong coupling parameter, which has the well-known form from 
QCD gauge invariance theories of3: 

 s = B[ln(Q0/)]-1 (2) 

where B is a constant and  is a parameter, called the QCD scale factor, to be determined. 
Again, we emphasize that commensurate with the above replacements is that we must 
assume that the initial energy involved in the formation of a given vector meson is 
extremely high, i.e., in the “asymptotically free” region of energy space, where the masses of 
emerging hadron pairs as decay products can be neglected. Accordingly, then, we find in 
terms of the above ansatz (normalizing to the ) 

 v =  A(m/mv)3(i(qi)4)[ln(mv/)]-1 (3) 

where v represents the width of a given vector meson, v, A is a constant to be determined, 
and , the QCD scale factor, is to be determined, as well.  
The constants, A and Λ, may be determined (see Section 2 below for the determination of 
the values of A and Λ) by simultaneously fitting the width of the ρ and the width of the 
kaon branch of the  to the form of Eq. 3 above, and B may be determined by evaluating s 
at the Y(1S) energy through the utilization of the experimentally determined partial width 
associated with the Y(1S) → e+e- decay in conjunction with the GEM-theoretical hadronic 
width of the Y(1S) (see Section 2 below). In conventional terms we will find that the 
hadronic width of any vector meson may be expressed as the following: 
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 Γv ≈ (s /2π)(10,042)(2me)(mρ/mv)3(Σi(qi)4) (4) 

where me represents the electron mass of 0.511 Mev, so that 2me = 1.022 Mev., s represents 
the strong coupling parameter, given by s = 1.2[ln(mv/50 Mev)]-1, mρ represents the mass 
of the ρ-meson, mv represents the mass of the vector meson with designate “v”, and qi 
represents the charge of the relevant quark type(s) “i” to undergo the spin-flip to form the 
vector meson under consideration. As mentioned above, the qi involved in ρ formation, are 
qu = 2/3 and qd  =  -1/3, where “u” designates an “up quark” and “d” designates a “down 
quark”. Only qs = -1/3, where “s” designates a “strange quark”, is involved in the formation 
of the kaon branch of the , whereas qu, qd, and qs are all involved in the formation of the 
K*(892). In addition, as we will see below, the qi mainly associated with the J(3097) is 
actually qs, and that associated with the Y(1S) is actually qc =  2/3, where “c” is the designate 
for the “charm quark”. 

2. The constants, A and Λ, and the specific form of s 
Focusing now upon Eq. 3 above, A and Λ can be determined simultaneously by utilizing the 
appropriate qi and mv associated with the ρ and  mesons in conjunction with their 
published widths (see, for example, pdg.lbl.gov; “Meson Table” (2004)). The result4 is that A 
≈ 1960 Mev and Λ ≈ 50 Mev. What is most interesting about the above result is the extremely 
small value for Λ as per the GEM applied to the ρ and the , as the accepted value5 for Λ as 
of 1996 is around 290 Mev. Nevertheless, in QCD, Λ is considered to be an arbitrary 
parameter, so no “rules” laid forth within QCD itself are violated by such result. Hence, the 
GEM formulation of Γv becomes: 

 Γv ≈ (1960 Mev) (mρ/mv)3(Σi(qi)4) [ln(mv/50 Mev)]-1 (5) 

Now, in the asymptotically free regions of energy space we expect the ratio of a vector 
meson’s electron/positron partial width (Γee) to its hadronic width to be approximately 
(/s), where  is the fine structure constant = (1/137.036), due to electromagnetic, rather 
than strong coupling at the pair vertex. At the Υ(1S) energy (mΥ = 9460 Mev according to the 
2004 “Meson Table”) from the 2004 “Meson Table” on p. 86, Γee = 1.31 Kev, while the 
theoretical hadronic width, as per the GEM, of the Υ(1S) is, as we will see below, assuming 
single gluon emission, 41 Kev. (As we will in addition see below, the GEM requires that the 
resonant state at the Υ(1S) energy be characterized by an essentially instantaneous transition 
from its root bb* state (b represents the bottom quark, while b* represents the bottom anti-
quark) to an excited cc* state (c represents the charm quark, while c* represents the charm 
anti-quark) before its decay.) 
Thus, 

 s|Υ energy ≈  (41/1.31) = 0.2284 (6) 

Setting (from the general form for s described above) 0.2284 = B[ln(9460/50)]-1, we obtain B 
≈ 1.2; hence, the GEM determines that 

 s ≈ 1.2[ln(Q/50 Mev)]-1 (7) 

With the strong coupling parameter defined as above, it presumably valid over the entire 
range of energy from the ρ energy to that of the Υ(1S), the GEM width formula for vector 
mesons takes the form, then, of 
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comprising the relevant vector meson. The above criterion is consistent with a spin-spin 
interaction2 proportional to qi2, where i denotes quark flavor, giving rise to spin-flip 
transitions, and the sum is required only in the case of the , as it comprises both the up 
quark (u) of charge qu = 2/3 and the down quark (d) of charge  qd = -1/3. We postulate V2 
to be proportional to only i(qi)4, i.e., the precise form of the interaction is universal to all 
vector mesons in their ground states, except for quark charge differences. 
We replace  by s, the strong coupling parameter, which has the well-known form from 
QCD gauge invariance theories of3: 

 s = B[ln(Q0/)]-1 (2) 

where B is a constant and  is a parameter, called the QCD scale factor, to be determined. 
Again, we emphasize that commensurate with the above replacements is that we must 
assume that the initial energy involved in the formation of a given vector meson is 
extremely high, i.e., in the “asymptotically free” region of energy space, where the masses of 
emerging hadron pairs as decay products can be neglected. Accordingly, then, we find in 
terms of the above ansatz (normalizing to the ) 

 v =  A(m/mv)3(i(qi)4)[ln(mv/)]-1 (3) 

where v represents the width of a given vector meson, v, A is a constant to be determined, 
and , the QCD scale factor, is to be determined, as well.  
The constants, A and Λ, may be determined (see Section 2 below for the determination of 
the values of A and Λ) by simultaneously fitting the width of the ρ and the width of the 
kaon branch of the  to the form of Eq. 3 above, and B may be determined by evaluating s 
at the Y(1S) energy through the utilization of the experimentally determined partial width 
associated with the Y(1S) → e+e- decay in conjunction with the GEM-theoretical hadronic 
width of the Y(1S) (see Section 2 below). In conventional terms we will find that the 
hadronic width of any vector meson may be expressed as the following: 
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 Γv ≈ (s /2π)(10,042)(2me)(mρ/mv)3(Σi(qi)4) (4) 

where me represents the electron mass of 0.511 Mev, so that 2me = 1.022 Mev., s represents 
the strong coupling parameter, given by s = 1.2[ln(mv/50 Mev)]-1, mρ represents the mass 
of the ρ-meson, mv represents the mass of the vector meson with designate “v”, and qi 
represents the charge of the relevant quark type(s) “i” to undergo the spin-flip to form the 
vector meson under consideration. As mentioned above, the qi involved in ρ formation, are 
qu = 2/3 and qd  =  -1/3, where “u” designates an “up quark” and “d” designates a “down 
quark”. Only qs = -1/3, where “s” designates a “strange quark”, is involved in the formation 
of the kaon branch of the , whereas qu, qd, and qs are all involved in the formation of the 
K*(892). In addition, as we will see below, the qi mainly associated with the J(3097) is 
actually qs, and that associated with the Y(1S) is actually qc =  2/3, where “c” is the designate 
for the “charm quark”. 

2. The constants, A and Λ, and the specific form of s 
Focusing now upon Eq. 3 above, A and Λ can be determined simultaneously by utilizing the 
appropriate qi and mv associated with the ρ and  mesons in conjunction with their 
published widths (see, for example, pdg.lbl.gov; “Meson Table” (2004)). The result4 is that A 
≈ 1960 Mev and Λ ≈ 50 Mev. What is most interesting about the above result is the extremely 
small value for Λ as per the GEM applied to the ρ and the , as the accepted value5 for Λ as 
of 1996 is around 290 Mev. Nevertheless, in QCD, Λ is considered to be an arbitrary 
parameter, so no “rules” laid forth within QCD itself are violated by such result. Hence, the 
GEM formulation of Γv becomes: 

 Γv ≈ (1960 Mev) (mρ/mv)3(Σi(qi)4) [ln(mv/50 Mev)]-1 (5) 

Now, in the asymptotically free regions of energy space we expect the ratio of a vector 
meson’s electron/positron partial width (Γee) to its hadronic width to be approximately 
(/s), where  is the fine structure constant = (1/137.036), due to electromagnetic, rather 
than strong coupling at the pair vertex. At the Υ(1S) energy (mΥ = 9460 Mev according to the 
2004 “Meson Table”) from the 2004 “Meson Table” on p. 86, Γee = 1.31 Kev, while the 
theoretical hadronic width, as per the GEM, of the Υ(1S) is, as we will see below, assuming 
single gluon emission, 41 Kev. (As we will in addition see below, the GEM requires that the 
resonant state at the Υ(1S) energy be characterized by an essentially instantaneous transition 
from its root bb* state (b represents the bottom quark, while b* represents the bottom anti-
quark) to an excited cc* state (c represents the charm quark, while c* represents the charm 
anti-quark) before its decay.) 
Thus, 

 s|Υ energy ≈  (41/1.31) = 0.2284 (6) 

Setting (from the general form for s described above) 0.2284 = B[ln(9460/50)]-1, we obtain B 
≈ 1.2; hence, the GEM determines that 

 s ≈ 1.2[ln(Q/50 Mev)]-1 (7) 

With the strong coupling parameter defined as above, it presumably valid over the entire 
range of energy from the ρ energy to that of the Υ(1S), the GEM width formula for vector 
mesons takes the form, then, of 
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 Γv ≈ (1633 Mev) (mρ/mv)3(Σi(qi)4) s (8) 

Expressing Eq. 8 in more conventional form, we have:  

 Γv ≈ (s /2π)(10,263 Mev)(mρ/mv)3(Σi(qi)4) (9) 

Yet more formally, we finally obtain: 

 Γv ≈ (s /2π)(10,042)(2me)(mρ/mv)3(Σi(qi)4) (10) 

3. The Feynman Diagrams of the GEM 
As per F. Close, the GEM treats the virtual photon and the gluon as, essentially, two aspects 
of the same entity, which we will call “the four-momentum propagator” designated as “ζ”. 
Thus, as stated in Section 2 above, the ratio of the partial width associated with a given 
decaying pair of quarks comprising a given vector meson associated with electron-positron 
decay to the hadronic width of same is simply (/s), where, again, “” represents the fine 
structure constant = (1/137.036). Hence, the general form for the partial width of a vector 
meson undergoing e+e- decay would be given by 

 Γv-ee ≈ (/2π)(10,042)(2me)(mρ/mv)3(Σi(qi)4) (11) 

A relevant Feynman Diagram will make the various aspects of the GEM easier to picture, so 
let us look now to Fig. 1 below, which represents the Feynman Diagram (FD) associated  the 
formation and decay of vector meson “X” in its simplest possible form. 
 

 
Fig. 1. Basic Feynman Diagram for Conventional Vector Meson Formation/Decay via the 
GEM 

In Figure 1 ζ1 represents, in part, a virtual photon created at the e+e- annihilation vertex, 
coupling at said vertex represented as ; then, in Close’s terms, the virtual photon couples to 
a gluon with coupling strength “1”, which then couples to the xx* … a given quark – anti-
quark pair, also with coupling strength “1”. In our notation ζ1 simply represents a four-
momentum propagator, created at the e+e- vertex and absorbed (as a gluon) at the xx* node. 
The details of the absorption of ζ1 are contained in the integrated absorption cross-section as 
exhibited in the Introduction, and lVl2, proportional to qx4, describes the formation of the 
spin one resonance. From there ζ2 (a gluon) is emitted, resulting in coupling to hadrons (h; 
h*), the coupling at the latter vertex of magnitude s . The calculation of the width of the xx* 
state then, given the stated mechanism of a spin-flip of one of the “x quarks” due to a spin – 
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spin interaction proportional to qx2, proceeds straight along the dictates of standard QED, 
except for the replacement of  by s at the hh* vertex. 
For comparison, immediately below we present the FD associated with the same X meson, 
assumed to exist in the realm of asymptotic freedom, decaying into an electron-positron 
pair. 
 

 
Fig. 2. Basic Feynman Diagram for Conventional Vector Meson Formation & Decay into an 
Electron/Positron Pair via the GEM  

The only fundamental difference between Figure 1 and Figure 2 is that in Figure 2 ζ2 starts 
out as a gluon and ends up as a virtual photon at the right hand vertex, at which point the 
coupling, of course, is now . Hence, all in the width calculation associated with Figure 1 is 
the same in Figure 2, except that s in Eq. 10 is replaced by . Of note, too, and we shall 
return to the point made here, Figure 2 represents rigorously a straight-forward calculation 
in QED, again, given the stated mechanism for the formation of the resonance state. 
However, it is also important to note that Figure 2 applies only to vector mesons existing in 
the realm of “asymptotic freedom”, i.e., to the J(3097), the Y(1S), and “Toponium”, or the 
“T” meson. 
Immediately below we will view the detailed FDs required by the GEM to describe the 
widths of the ρ, the , the K*(892) … a very interesting case, as the K*(892) is not 
conventionally thought of as a vector meson per se, though it is of the spin one variety … 
the J(3097), the Y(1S), and the “T”.  
The ρ-meson  

Although the width of the ρ (and the ) as determined by the GEM is guaranteed to be a 
match to experiment by construction, the ρ is a good place to start with the elucidation of 
the application of the GEM to the various spin one mesons because of the simplicity 
involved. Let us begin by viewing Figure 3 below … the FD associated with the formation 
and decay of the ρ meson. 
In Figure 3 ζ1 represents a virtual photon created at the e+e- vertex which transmutes to a 
gluon, which, in turn, is absorbed by the [ququ* + qdqd*] combination; ζ2 represents the 
emitted gluon, which converts to pion pairs. The application of Eq. 10 results in the 
following for the hadronic width of the ρ: 

 Γρ ≈ (s /2π)(10,042)(2me)(Σi(qi)4) ≈ (s /2π)(10,042)(2me)(17/81) (12a) 
where 

 s = 1.2[ln(776/50)]-1  = 0.4376 (12b) 
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spin interaction proportional to qx2, proceeds straight along the dictates of standard QED, 
except for the replacement of  by s at the hh* vertex. 
For comparison, immediately below we present the FD associated with the same X meson, 
assumed to exist in the realm of asymptotic freedom, decaying into an electron-positron 
pair. 
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The only fundamental difference between Figure 1 and Figure 2 is that in Figure 2 ζ2 starts 
out as a gluon and ends up as a virtual photon at the right hand vertex, at which point the 
coupling, of course, is now . Hence, all in the width calculation associated with Figure 1 is 
the same in Figure 2, except that s in Eq. 10 is replaced by . Of note, too, and we shall 
return to the point made here, Figure 2 represents rigorously a straight-forward calculation 
in QED, again, given the stated mechanism for the formation of the resonance state. 
However, it is also important to note that Figure 2 applies only to vector mesons existing in 
the realm of “asymptotic freedom”, i.e., to the J(3097), the Y(1S), and “Toponium”, or the 
“T” meson. 
Immediately below we will view the detailed FDs required by the GEM to describe the 
widths of the ρ, the , the K*(892) … a very interesting case, as the K*(892) is not 
conventionally thought of as a vector meson per se, though it is of the spin one variety … 
the J(3097), the Y(1S), and the “T”.  
The ρ-meson  

Although the width of the ρ (and the ) as determined by the GEM is guaranteed to be a 
match to experiment by construction, the ρ is a good place to start with the elucidation of 
the application of the GEM to the various spin one mesons because of the simplicity 
involved. Let us begin by viewing Figure 3 below … the FD associated with the formation 
and decay of the ρ meson. 
In Figure 3 ζ1 represents a virtual photon created at the e+e- vertex which transmutes to a 
gluon, which, in turn, is absorbed by the [ququ* + qdqd*] combination; ζ2 represents the 
emitted gluon, which converts to pion pairs. The application of Eq. 10 results in the 
following for the hadronic width of the ρ: 

 Γρ ≈ (s /2π)(10,042)(2me)(Σi(qi)4) ≈ (s /2π)(10,042)(2me)(17/81) (12a) 
where 

 s = 1.2[ln(776/50)]-1  = 0.4376 (12b) 
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Fig. 3. Basic Feynman Diagram for Formation and Decay of the ρ meson via the GEM 

Hence, 

 Γρ ≈ 150 Mev (12c) 

Though adaptation of Figure 2 and Eq. 11 do not formally apply, as asymptotic freedom 
does not  apply to the ρ, we note that in the event that it were to apply, we would obtain for 
the electron/positron partial width, Γρ-ee , the following: 

 Γρ-ee ≈ ( /2π)(10,042)(2me)(17/81)  ≈ 2.50 Mev  

a figure7 about 355 times too high, indicating that the transmutation coupling of the ζ2 gluon 
to its virtual photon identity is only 0.0028, as opposed to 1 in the asymptotically free energy 
regime. 

The -meson  
Application of the GEM to the kaon branch of the  meson (K) follows similar lines as to the 
ρ. The FD associated with the formation and decay of the kaon branch of the  follows: 
 

 
Fig. 4. Basic Feynman Diagram for Formation and Decay of the Kaon Branch of the  Meson 
via the GEM 

For the hadronic width of the kaon branch of the  we obtain: 

Γ-K ≈ (s /2π)(10,042)(2me)(mρ/mv)3(Σi(qi)4) ≈ (s /2π)(10,042)(2me)(776/1019)3(1/81) (13a) 

where 

 s = 1.2[ln(1019/50)]-1 = 0.3981 (13b) 

Hence, 
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 Γ-K ≈ 3.55 Mev (13c) 

Again applying Eq. 11 to the kaon branch of the , we obtain for its e+e- partial width the 
following: 

 Γ-K-ee ≈ ( /2π)(10,042)(2me)(776/1019)3(1/81 ) ≈ 0.0650 Mev  

a figure7 still way too high as compared to experiment, but here about 52 times so, 
indicating that the ζ2 gluon to virtual photon transmutation coupling has risen to 0.0194. 
The K*(892)  
The situation regarding the K*(892) is highly interesting. Close had developed the GEM in 
the 1970s to describe two distinct processes: (1) the production of pion pairs associated with 
the ρ resonance and (2) the production of kaon pairs associated with the  resonance. In a 
sense, then, the GEM was first envisioned to be “route specific”, i.e., the spin-flip process 
involving up and down quarks, which resonates at the ρ mass, was thought of as “the pion 
route” in thinking of the decay of quark – anti-quark structures, while the spin-flip process 
involving the strange quark, which resonates at the  mass, was thought of as the 
corresponding “kaon route”. At that time no one had thought of applying the GEM to the 
K*(892), because, although energetically possible, the K*(892) did not exhibit “a pion route” 
in its decay; rather, the K*(892) decays almost exclusively into various {π, K} combinations, 
with equal probability of occurrence among the various allowed decay products. Such 
circumstance led to the invention of the “isospin” quantum number, a half integer value for 
which signifying a forbidden decay route that is energetically possible. However, since the 
spin associated with the K*(892) is one, it is quite feasible that the GEM, appropriately 
mitigated to fit the situation pertaining to the K*(892)’s isospin, may be applied to the 
K*(892) resonance. In fact, the GEM has been applied to the K*(892) quite successfully4, 8. 
The reasoning leading to the proper mitigation is as follows: 
Since pions and kaons are the decay products of the K*(892), with the various types of pions 
combining with correspondingly allowed various types of kaons and all types showing up 
with equal probability, it is reasonable to assume that the K*(892) … for purposes of 
discussion here considered as a composite entity of mass, 894 Mev, i.e., no distinction as to 
charged mode versus neutral mode being made … comprises a linear combination of {uu*, 
dd*, and ss*} in equal measure. Symbolically, we may represent the K*(892), therefore, as 

 K*(892) = (1/√3)[uu* + dd* + ss*] (14) 

Now, the associated value of (Σi(qi)4) would be (18/81), but the “pion route” does not occur, 
though it is energetically possible. So, segmenting the decay in terms of “routes”, the {π, K} 
route, whose (Σi(qi)4) = (18/81) does occur, whereas the “pion route”, whose (Σi(qi)4) = 
(17/81) does not occur. The allowed route is thus favored over the forbidden route by the 
factor (18/17), therefore. Hence, we postulate that the isospin quantum number = (1/2) 
assigned to the K*(892) signifies that of the energetically possible routes available to the 
K*(892) resonance, (18/35) of them manifests in the decay process (the {π, K} route), whereas 
(17/35) of them fails to materialize (the pion route). We thus multiply the right hand side of 
Eq. 10 by (18/35) to obtain the width of the K*(892). First, let us view the associated FD: 
The GEM yields for the width of the K*(892) the following: 

 ΓK* ≈ (18/35)(s /2π)(10,042)(2me)(mρ/mv)3(Σi(qi)4)  
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Fig. 3. Basic Feynman Diagram for Formation and Decay of the ρ meson via the GEM 
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Fig. 4. Basic Feynman Diagram for Formation and Decay of the Kaon Branch of the  Meson 
via the GEM 
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Fig. 5. Basic Feynman Diagram for Formation and Decay of the K*(892) via the GEM 

 ≈ (18/35)(s /2π)(10,042)(2me)(776/894)3(18/81) (15a) 
where 

 s = 1.2[ln(894/50)]-1 = 0.4161 (15b) 

Hence, 

 ΓK* ≈ 50.80 Mev (15c) 

The average of the widths associated with the charged and neutral modes of the K*(892)  is 
stated9 as ΓK*(PDG) = 50.75 Mev. Hence, the GEM as applied to the K*(892) provides for 
fabulous agreement with experiment. Moreover, the GEM demonstrates quite clearly that 
the K*(892) is not a “strange meson” in the usual sense, i.e., it is seen not as a us*, su*, ds*, or 
sd* structure at all; rather it is seen, similar to the theoretical structures of the ρ and the , as 
comprising a linear combination of more than one type of quark – anti-quark pair, its 
specific nature expressed via Eq. 14. 
The J(3097)  
Application of the GEM in accord with Figure 1, with x = c, seems reasonably straight-
forward, but it turns out to be problematic. However, when one sees that the hadronic 
width of the J(3097), designated as simply the “J” henceforth, given by the application of Eq. 
10 in accord with Figure 1 with x = c, is roughly sixteen times too large, as compared to 
experimental results, coupled with the fact that the hadronic width of the Y(1S) given by the 
application of Eq. 10 in accord with Figure 1 with x = b is roughly sixteen times too small, as 
compared with experimental results, it becomes obvious as to what physically must 
transpire as regards both the J and the Y(1S). Restricting the discussion to the J for the time 
being, in what we call “the zeroth order approximation”, the basic cc* structure of the J must 
make a point-like transition to an ss* structure of equal mass, whereupon one of the s quarks 
undergoes a spin flip to form the associated resonance10, the point-like transition from cc* to 
ss* instantaneous, thus having no influence on the J’s width. Indeed, the resonance does not 
even form until an s (or s*) quark undergoes a spin-flip. That the cc* to ss* transition is 
necessary is quite understandable: The J is not massive enough for it to be able to decay into 
hadrons via emission of two c quarks; hence, it must transition to a quark pair of lesser bare 
mass each. The simplest possible assumption is that the cc* transitions to the quark pair type 
characterized by the next smallest mass, viz., the s type. Nothing prevents the cc* structure 
from decaying into leptons (e+e- and  μ+μ-), however. It is found10 in fact, that in order for 
both the hadronic width of the J and the leptonic width of the J as determined via the GEM 
to match the results of experiment, (8/9)ths of the cc* structure must undergo a slightly “un-
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point-like” transition to ss*, described by a form factor, f < 1, which, in turn, decays into 
both hadrons and leptons as per Eq. 10 and Eq. 11, respectively, while (1/9)th of the original 
cc* structure remains to decay into leptons exclusively. We may picture the complete details 
of the J formation and decay via the following two arrays of FDs, the first such array 
descriptive of what we may now call “the first order approximation” to the width of the J, 
the second such array descriptive of what we call “the second order approximation”.  
 

 
Fig. 6a. Feynman Diagram Array Characterizing the Formation and Decay of the J(3097) in 
First Order Approximation via the GEM 

In Figure 6a above “l” represents a leptonic decay product, ζ2a represents the gluon involved 
in a point-like transition from cc* to ss*, and all other “ζ” designates should be understood 
from previous discussion. Transforming the schematic representation of Figure 6a into the 
calculation of the full (hadronic plus leptonic) width of the J in first order approximation, 
denoted as ΓJ-full-1, proceeds as follows (the factors of “2” in Eq. 16a, immediately in front of 
the factors “( /2π)” take into account muon pair production in accord with “e-μ 
universality”): 

ΓJ-full-1 ≈ (8/9){(s /2π)(10,042)(2me)(mρ/mJ)3(qs)4 + 2( /2π)(10,042)(2me)(mρ/mJ)3(qs)4}  
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Fig. 5. Basic Feynman Diagram for Formation and Decay of the K*(892) via the GEM 
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 +  (1/9){2( /2π)(10,042)(2me)(mρ/mJ)3(qc)4} (16a) 
Thus, 

 ΓJ-full-1 ≈ (8/9){(s /2π)(10,042)(2me)(776/3097)3(1/81) +  
 2( /2π)(10,042)(2me)(776/3097)3(1/81)} +   

 (1/9){2(/2π)(10,042)(2me)(776/3097)3(16/81)}  

The value of the strong coupling parameter at the J mass is given by 

 s = 1.2[ln(3097/50)]-1 = 0.2908 (16b)  

Therefore, 

 ΓJ-full-1 ≈ (8/9){92.2491 Kev + 4.6298 Kev} + (1/9){74.0769 Kev} ≈ 94.35 Kev (16c) 

The value for ΓJ-full-1 obtained via the first approximation of the GEM is a match to 
experiment, as according to PDG (2009), the full width of the J via experiment is (93.2 ± 2.1) 
Kev . As well, the hadronic width alone via the first approximation of the GEM is a match to 
experiment (82.00 Kev via the GEM vs. (81.7 ± 0.5) Kev via experiment (PDG (2009)); the 
leptonic width via the first approximation of the GEM is 12.35 Kev, which is about 11% 
more than that reported by the PDG currently (11.10 ± 0.16) Kev (PDG (2009)).  
The first approximation assumes that (8/9)ths of the original cc* state undergo a point-like 
transition to an excited ss* state, leaving (1/9)th of the original cc* state to decay into leptons. 
A point-like transition is instantaneous, so it has no effect on the width of the original 
construction (i.e., the J). In terms of a form factor, f, a point-like transition is consistent with       
f = 1. As it is difficult to see how any fraction of the original cc* state could “know” to make 
an instantaneous transition, leaving a remnant to do other things, we believe a second order 
approximation is in order. Our reasoning is simply that, logically, we feel that there simply 
must be some type of communication between the cc* and ss* states before the cc* to ss* 
transition takes place in order for the proper remnant to consistently remain to decay into 
leptons. Hence, we reason that f < 1 describes the cc* to ss* transition. Statistically, f = (1 – 
qs2) = (8/9) is necessary to describe the hadronic width of the J. Since f is not appreciably 
different than 1, the leptonic width of the J, relative to the first order approximation, will be 
mitigated slightly. The second order FD for the J follows: 
In Figure 6b f = (8/9) multiplies the entire array. Denoting the full width of the J in second 
order approximation by ΓJ-full-2, we find in accord with Figure 6b: 

 ΓJ-full-2 ≈ (8/9)[(s /2π)(10,042)(2me)(mρ/mJ)3(qs)4 + 2( 
/2π)(10,042)(2me)(mρ/mJ)3(qs)4  

 +  (1/9){2( /2π)(10,042)(2me)(mρ/mJ)3(qc)4}] (16d) 

Thus, 

 ΓJ-full-2 ≈ (8/9)[(s /2π)(10,042)(2me)(776/3097)3(1/81) +  
 2( /2π)(10,042)(2me)(776/3097)3(1/81) +   

 (1/9){2(/2π)(10,042)(2me)(776/3097)3(16/81)}]  

Again, the value of the strong coupling parameter at the J mass is given by Eq. 16b, viz., 

 s = 1.2[ln(3097/50)]-1 = 0.2908  
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Fig. 6b. Feynman Diagram Array Characterizing the Formation and Decay of the J(3097) in 
Second Order Approximation via the GEM 

Therefore, 

 ΓJ-full-2 ≈ (8/9)[92.2491 Kev + 4.6298 Kev + (1/9){74.0769 Kev}] ≈ 93.43 Kev (16e) 

The full width of the J under second order approximation is thus nearly an exact match to 
experiment (93.4 Kev via the GEM vs. 93.2 Kev from PDG (2009)). The hadronic width of the 
J is unchanged from first to second approximation; so, it remains a match with experiment 
(82.0 Kev via the GEM vs. 81.7 Kev from PDG (2009)). As well, the leptonic width of the J via 
the GEM (11.4 Kev) is now only 2.7% higher than that reported by the PDG ((11.1 ± 0.2) 
Kev). 
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The Y(1S) 
Analogous to the J, the Y(1S), originally a bb* construction, must transition to a cc* excited 
state of the same mass as that of the bb* state in order to decay into hadrons. Unlike the J, 
however, there is no reason to suspect that leptons emerge from the bb* state. Hence, we 
assume that all types of Y(1S) decays ensue from the cc* excited state. Corroborative 
evidence abounds in support of such assumption, as we shall see, so let us proceed with the 
viewing of the two FDs which depict the hadronic decay of the Y(1S) and the leptonic decay 
of the Y(1S), respectively: 
 

 
Fig. 7a. Basic Feynman Diagram for Y(1S) Formation and Decay into Hadrons via the GEM 

 

 
Fig. 7b. Basic Feynman Diagram for Y(1S) Formation and Decay into Leptons via the GEM 

From Eq. 10 the hadronic width of the Y(1S), denoted by ΓY-H, via the GEM theoretical 
structure is given by: 

ΓY-H ≈ (s /2π)(10,042)(2me)(mρ/mY)3(qc)4 ≈ (s /2π)(10,042)(2me)(776/9460)3(16/81) (17a) 

where 

 s = 1.2[ln(9460/50)]-1 = 0.2289 (17b) 

Hence, 

 ΓY-H  ≈  40.76 Kev (17c) 

The PDG in the 2008 Meson Table (PDG (2008), p.119) reports the corresponding figure as 

 ΓY-H(PDG) = 49.99 Kev (17d) 

a figure 23% higher than the GEM-theoretical result. 
However, if we look at the leptonic width of the Y(1S), denoted by ΓY-L , as derived via the 
GEM, we find from Eq. 11 (the right hand side of same multiplied by “3” to take into 
account muon and tauon pairs in accord with “e-μ-τ universality”) that 

ΓY-L ≈ 3(/2π)(10,042)(2me)(mρ/mY)3(qc)4  ≈ 3(/2π)(10,042)(2me)(776/9460)3(16/81) (18a) 

Hence, 
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 ΓY-L ≈ 3.90 Kev (18b) 

which represents a match to the PDG’s report from the same 2008 Meson Table of 

 ΓY-L(PDG) = (4.03 ± 0.14) Kev (18c) 

Specific to the e+e- partial width (ΓY-ee), the GEM obviously determines ΓY-ee ≈ 1.30 Kev, 
while the PDG in the above-mentioned source (p. 119) states ΓY-ee(PDG1)  ≈ 1.34 Kev directly, 
but indirectly, in terms of its stated fractional branching ratio on p.119, a different value is 
inferred, viz., ΓY-ee(PDG2) ≈ 1.29 Kev. From the latter we infer that according to the PDG 
(2008), the experimentally determined value for the e+e- partial width of the Y(1S) is given 
by 

 ΓY-ee(PDG) = (1.31 ± 0.03) Kev (18d)  

a match to that of the GEM, i.e., 

 ΓY-ee ≈ 1.30 Kev (18e) 

Herein (i.e., the match between Eq. 18d and Eq. 18e) lies the source of a paradox that the 
hadronic width as given by the GEM (i.e., ~ 41 Kev) should be correct, though it is so 
seriously discrepant with that reported by the PDG (i.e., 50 Kev). The paradox unfolds as 
follows: In order to obtain the constant “B” in the general expression for s, once Λ was 
determined, the assumption was made that, since the Y(1S) exists well into the realm of 
asymptotic freedom, 

 /s = (e+e- partial width)/(hadronic partial width)  

as associated with the Y(1S). 
In Section 2 we inserted ΓY-ee(PDG) = 1.31 Kev for the e+e- partial width, and for the hadronic 
partial width, we inserted the GEM-theoretical width, i.e., ΓY-H  ≈  41 Kev. We then obtained 
the general relation, 

 s =  B[ln(9460/50]-1 = (41/1.31)  

from which we solved for “B” to obtain, B = 1.2  
In turn, as “B” is a multiplier on the right hand sides of all width calculations via the GEM 
theory, and as all width calculations, as seen above, represent nearly exact matches with 
experiment in all cases except as to the hadronic width of the Y(1S), it is difficult to fathom 
the source of the disparity between ΓY-H = 41 Kev and ΓY-H(PDG) = 50 Kev. 
After a good number of years of pondering, it turns out that there is, actually, a very simple, 
and at the same time a very plausible solution to the paradox mentioned above, viz., we 
postulate an additional route for Y(1S) decay into hadrons, a route assumed not to have a 
high probability of occurrence for the J or the other vector mesons of mass less than that of 
the J. As the basis for the existence of the additional route available to the Y(1S), we point to 
the fact that there is roughly three times the energy spectrum available to the Y(1S) in its 
decay (9460 Mev worth) as compared to the next lightest vector meson, i.e., the J (3097 Mev 
worth). With three times the energy spectrum (as compared to the J) available to the Y(1S), 
we think it plausible that decays resulting in hadrons as products may be allowed to take 
place through the bifurcation of the gluon emitted from the resonance state (or more simply 
stated: via emission of two gluons), rather than what has heretofore been assumed in accord 
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with Figure 7 a, in which a single  gluon, ζ3a , converts to hadrons to mark the final stage of 
the decay process. Specifically, we propose that, in addition to the route as described 
immediately above, a route exists in which ζ3a bifurcates into two gluons, each of which then 
converts to hadrons. The FD associated with the proposed additional route is seen 
immediately below. 
 

 
Fig. 8. Basic Feynman Diagram for Postulated Additional Route for Y(1S) Formation and 
Decay into Hadrons (h, h’, h’’, and h’’’) via the GEM 

The additional route, which we denote as the “bifurcated gluon route for hadron decay” 
(BGRHD), effectively adds s times ΓY-H, or (0.2289)(40.76 Kev) = 9.33 Kev to the GEM-
theoretical width of the Y(1S). The reformulated situation regarding the Y(1S) may be 
summarized, therefore, as follows: 
Denoting the partial width due to the BGRHD as ΓY-BGH, we have 

 ΓY-BGH  =  9.33 Kev (19) 

From above we have 

 ΓY-H  = 40.76 Kev  

Also from above we have 

 ΓY-L  =  3.90 Kev  

The net hadronic width of the Y(1S) as per the GEM would now be given by 

 ΓY-(H+BGH)(GEM 2010) = 50.09 Kev (20)  

which now represents a nearly perfect match to 

 ΓY-H(PDG) = 49.99 Kev  

In addition the full width of the Y(1S) as per the GEM would now be given by 

 ΓY-full(GEM 2010) = 53.99 Kev (21) 

which also represents a nearly perfect match to ΓY-full (PDG) = (54.02 ± 1.25) Kev 
With the addition of the BGRHD the calculation of “B” in the expression for s is 
uncompromised, while at the same time the major discrepancy between the hadronic width 
of the Y(1S) as determined via the GEM versus via the methods engaged by the PDG is 
completely removed. For that reason we believe the postulate as to the addition of the 
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BGRHD is a viable one. In fact, if we postulate that in addition to the BGRHD there is a 
companion route for leptons, i.e., a bifurcated gluon route for lepton decay (BGRLD), whose 
FD is identical to that of Figure 9, except that on the far right hand side of the diagram, each 
“s” is replaced by “” and “h, h’, h’’, and h’’’ “ are replaced by “li+, li-, lj+, and lj- “, 
respectively, where “i” and “j” denote lepton types and i = j is allowed,  (3.90 Kev / 137.036) 
= 0.03 Kev would be added to 

 ΓY-full(GEM 2010) 
above, thus bringing 

 ΓY-full(GEM 2010) → 54.02 Kev (22) 

i.e., the realization of an exact match to experiment. 

4. Speculations based upon the GEM 
The T-Meson  
To address the T-meson, thought to be a tt* (where “t” represents the top quark) state of 
mass approximately 340000 Mev, but never “discovered” to date, is quite speculative on our 
part, but we think it important to do so because the GEM provides a perfectly logical reason 
as to why the T has yet to be “found”, i.e., unequivocally shown to exist by experiment. Said 
reason is just the opposite of the prevailing view as to the “invisibility” of the T, which is: 
“the T doesn’t last long enough for it to be found.” In a sense such is true; after all, the bb* of 
the Y(1S) transitions instantaneously to a cc* state according to the GEM, but the mass of the 
original bb* state is preserved in the resulting cc* state, thus allowing for the “finding” of a 
resonance at the Y(1S) mass. Assuming the T to act in like manner to the Y(1S), the following 
FD would apply as regards hadron production: 
 

 
Fig. 9. Basic Feynman Diagram for T Formation and Decay into Hadrons via the GEM 

The hadronic width of the T, from Eq. 4 would be: 

 ΓT ≈ (s /2π)(10,042)(2me)(mρ/mT)3(qb)4  
                 ≈ (s /2π)(10,042)(2me)(776/340000)3(1/81) (23a) 

where 

 s = 0.90[ln(340000/50)]-1 = 0.1020 (23b) 

(In Eq. 23b the constant “1.2” in the expression for s becomes11 “0.90” beyond 100000 Mev, 
and in Eq. 23a qb = -1/3.) 
Hence, 

 ΓT ≈ 0.024 ev (23c) 
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BGRHD is a viable one. In fact, if we postulate that in addition to the BGRHD there is a 
companion route for leptons, i.e., a bifurcated gluon route for lepton decay (BGRLD), whose 
FD is identical to that of Figure 9, except that on the far right hand side of the diagram, each 
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Thus, we see that, contrary to the “convenient explanation” as to why the T has not so far 
been observed, the T lives for a very long time (about 6 ps)! It’s just that its width to mass 
ratio makes it impossible right now for the experimental apparatus to pick up such a narrow 
signal amongst the “noise” inherent in the energy background needed to produce the T. 
Color-by-Color Disengagement from Lepton Production  
We must go a bit beyond the scope of the material thus far presented in order to discuss the 
phenomenon of color-by-color disengagement from lepton production, as we must now 
make reference to the excited states of the Ψ-series and Y-series mesons, designated 
respectively as Ψ(NS) and Y(NS), where N > 1 designates an excited state. It turns out that 
as regards lepton decay, partial widths of the above objects, when N = 2, the associated form 
factors (fi) which provide for excellent agreement with experiment are as follows12: 
For the Ψ(2S) f1 = 1 – qs2 = 8/9 (as was found above for the J = Ψ(1S)), and  for the Y(2S) f2 = 
1 – qc2 = 5/9 (analogous to the Ψ(2S)). We will designate the form factor for the Y(1S) (as per 
above) as f3 = 1. What is highly interesting, as it turns out, is that in terms of the above form 
factors, the leptonic partial widths of many of the Ψ(NS) and Y(NS) states are excellently 
described by the GEM if the latitude exists to multiply the resulting GEM-width formulas 
involving the appropriate form factors by “(n/6)”, where “n” is an integer, the 
interpretation being that as N increases, the number of quark colors participating in lepton 
decay decreases … effectively by “half colors” at a time. We illustrate the quark color 
disengagement phenomenon by reproducing the results from the reference12 associated with 
footnote # 12 below: 
 

Meson Mass (Mev) Γee(GEM) Γee(PDG) # of Colors 
Operative 

Ψ(1S) 3097 5.72 5.55 ± 0.16 3 
Ψ(2S) 3686 2.26 2.36 ± 0.04 2 
Ψ(3S) 4039 0.86 0.86 ± 0.07 1 
Ψ(4S) 4153 0.79 0.83 ± 0.07 1 
Ψ(5S) 4421 0.65 0.58 ± 0.07 1 

Chart 1. Color Participation in Lepton Production in the Ψ-Series 

In Chart 1 all electron/positron partial widths are expressed in Kev. Note that a near-match 
with experiment occurs for the J(3097), as per Section C above, assuming three colors are 
operative in electron/positron decay (n = 6). A near-match with experiment results for the 
Ψ(2S) assuming two colors are operative in said decay (n = 4), and statistical matches with 
experiment are evident if we assume only one color participates in electron/positron decay 
(n = 2) as associated with the Ψ(3S), Ψ(4S), and Ψ(5S). As to the Ψ(NS) objects, then, the 
GEM provides an excellent match to experiment (from the PDG’s 2009 “Meson Table”) if we 
assume that sequentially progressive disengagement … color-by-color … of quark colors 
manifests in lepton decay. 
The situation is similar to, but slightly different than the above, as regards the Y(NS) series, 
as seen in Chart 2 below. 
Again, all partial widths are expressed in Kev, and, again, we see excellent agreement with 
experiment if we assume n = 6 associated with the Y(2S) (three colors operative), n = 5 
associated with the Y(3S) (either “2½ colors” operative or an even mix of three colors and 
two colors taking part in the decay), n = 3 associated with the Y(4S) (either “1½ colors”  
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Meson Mass (Mev) Γee(GEM) Γee(PDG) # of Colors 
Operative 

Y(2S) 10023 0.624 0.612 ± 0.11 3 
Y(3S) 10355 0.471 0.443 ± 0.008 2½ 
Y(4S) 10579 0.266 0.272 ± 0.029 1½ 
Y(5S) 10860 0.33 0.31 ± 0.07 2 
Y(6S) 11019 0.157 0.13 ± 0.03 1 

Chart 2. Color Participation in Lepton Production in the Y-Series  

operative or an even mix of two colors and one color taking part in the decay), n = 4 
associated with the Y(5S) (two colors operative), and n = 2 associated with the Y(6S) (one 
color operative). At the present juncture, perhaps the best guess as how to handle the results 
associated with the Y(3S) and Y(4S) would be to speculate that the GEM description should 
be due to a nearly even mix of two and three contributing colors in one case, and a nearly 
even mix of one and two contributing colors in the other case, rather than making the claim 
that the GEM has shown that the quark colors become fragmented beyond 10 000 Mev, 
especially when one notes that all results associated with integer color contributions in 
Chart 2 represent statistical matches with experiment. Note, as well, that the progressive 
color disengagement behavior with increasing mass is preserved if only integer color 
contributions are considered.   
Vector Mesons as Vacuum Excitations  
One basic reality demonstrated by the GEM is the prime role that the electromagnetic 
interaction plays in vector meson formation and decay. The spin-flip responsible for all spin 
one mesons takes place via the electromagnetic interaction. The transitioning of the four-
momentum from cc* states to ss* in the ψ(NS) decays, as evidenced via the mathematical 
form of the form factor, f1, is seen to take place via the electromagnetic interaction, as is the 
case regarding the analogous transition from bb* to cc* in the Y(NS) decays. A second reality 
demonstrated by the GEM represents a radical departure from current assumptions about 
the structures of vector mesons in general … but especially about the structure of the K* … 
viz., that all vector mesons are represented by 

 χv  = (1/√n)[Σi=1n (QiQi*)] (24) 

where Qi represents a quark of flavor, “i”, Qi* represents the associated anti-quark, and “n” 
represents the number of flavors operative at the energy scale of the relevant meson’s rest 
energy. Thus, for example, the neutral K* does not comprise a ds* or an sd*, and the charged 
K* does not comprise a us* or an su*. Rather, there is a general “K* construction” given by 
Eq. 14, the decay of which features a “favored energy” of 892 Mev resulting in a net charge 
of ± 1 amongst its decay products … and another “favored energy” at 896 Mev resulting in 
no net charge amongst its decay products. In the literature similar considerations apply to 
the various D* and B* states13. In other words the GEM illustrates that vector mesons are not 
actually “unstable particles” which form at collision sites, but rather are manifestations of a 
“quark sea” as part of the construction of what we call “the vacuum” … much analogous to 
Dirac’s idea of the “electron sea” of old. Just as the electrons in the Dirac Sea were thought 
to be excited via the electromagnetic interaction, we see from the above that one may surely 
think of the formation of vector mesons as an electromagnetic excitation of relevant quarks 
in a “quark sea” … where a given quark is promoted to a positive energy state by a virtual 
gluon, which, unlike in electron/positron production, where the electron flies away from its 
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Thus, we see that, contrary to the “convenient explanation” as to why the T has not so far 
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signal amongst the “noise” inherent in the energy background needed to produce the T. 
Color-by-Color Disengagement from Lepton Production  
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phenomenon of color-by-color disengagement from lepton production, as we must now 
make reference to the excited states of the Ψ-series and Y-series mesons, designated 
respectively as Ψ(NS) and Y(NS), where N > 1 designates an excited state. It turns out that 
as regards lepton decay, partial widths of the above objects, when N = 2, the associated form 
factors (fi) which provide for excellent agreement with experiment are as follows12: 
For the Ψ(2S) f1 = 1 – qs2 = 8/9 (as was found above for the J = Ψ(1S)), and  for the Y(2S) f2 = 
1 – qc2 = 5/9 (analogous to the Ψ(2S)). We will designate the form factor for the Y(1S) (as per 
above) as f3 = 1. What is highly interesting, as it turns out, is that in terms of the above form 
factors, the leptonic partial widths of many of the Ψ(NS) and Y(NS) states are excellently 
described by the GEM if the latitude exists to multiply the resulting GEM-width formulas 
involving the appropriate form factors by “(n/6)”, where “n” is an integer, the 
interpretation being that as N increases, the number of quark colors participating in lepton 
decay decreases … effectively by “half colors” at a time. We illustrate the quark color 
disengagement phenomenon by reproducing the results from the reference12 associated with 
footnote # 12 below: 
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Operative 
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Chart 1. Color Participation in Lepton Production in the Ψ-Series 

In Chart 1 all electron/positron partial widths are expressed in Kev. Note that a near-match 
with experiment occurs for the J(3097), as per Section C above, assuming three colors are 
operative in electron/positron decay (n = 6). A near-match with experiment results for the 
Ψ(2S) assuming two colors are operative in said decay (n = 4), and statistical matches with 
experiment are evident if we assume only one color participates in electron/positron decay 
(n = 2) as associated with the Ψ(3S), Ψ(4S), and Ψ(5S). As to the Ψ(NS) objects, then, the 
GEM provides an excellent match to experiment (from the PDG’s 2009 “Meson Table”) if we 
assume that sequentially progressive disengagement … color-by-color … of quark colors 
manifests in lepton decay. 
The situation is similar to, but slightly different than the above, as regards the Y(NS) series, 
as seen in Chart 2 below. 
Again, all partial widths are expressed in Kev, and, again, we see excellent agreement with 
experiment if we assume n = 6 associated with the Y(2S) (three colors operative), n = 5 
associated with the Y(3S) (either “2½ colors” operative or an even mix of three colors and 
two colors taking part in the decay), n = 3 associated with the Y(4S) (either “1½ colors”  
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operative or an even mix of two colors and one color taking part in the decay), n = 4 
associated with the Y(5S) (two colors operative), and n = 2 associated with the Y(6S) (one 
color operative). At the present juncture, perhaps the best guess as how to handle the results 
associated with the Y(3S) and Y(4S) would be to speculate that the GEM description should 
be due to a nearly even mix of two and three contributing colors in one case, and a nearly 
even mix of one and two contributing colors in the other case, rather than making the claim 
that the GEM has shown that the quark colors become fragmented beyond 10 000 Mev, 
especially when one notes that all results associated with integer color contributions in 
Chart 2 represent statistical matches with experiment. Note, as well, that the progressive 
color disengagement behavior with increasing mass is preserved if only integer color 
contributions are considered.   
Vector Mesons as Vacuum Excitations  
One basic reality demonstrated by the GEM is the prime role that the electromagnetic 
interaction plays in vector meson formation and decay. The spin-flip responsible for all spin 
one mesons takes place via the electromagnetic interaction. The transitioning of the four-
momentum from cc* states to ss* in the ψ(NS) decays, as evidenced via the mathematical 
form of the form factor, f1, is seen to take place via the electromagnetic interaction, as is the 
case regarding the analogous transition from bb* to cc* in the Y(NS) decays. A second reality 
demonstrated by the GEM represents a radical departure from current assumptions about 
the structures of vector mesons in general … but especially about the structure of the K* … 
viz., that all vector mesons are represented by 
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where Qi represents a quark of flavor, “i”, Qi* represents the associated anti-quark, and “n” 
represents the number of flavors operative at the energy scale of the relevant meson’s rest 
energy. Thus, for example, the neutral K* does not comprise a ds* or an sd*, and the charged 
K* does not comprise a us* or an su*. Rather, there is a general “K* construction” given by 
Eq. 14, the decay of which features a “favored energy” of 892 Mev resulting in a net charge 
of ± 1 amongst its decay products … and another “favored energy” at 896 Mev resulting in 
no net charge amongst its decay products. In the literature similar considerations apply to 
the various D* and B* states13. In other words the GEM illustrates that vector mesons are not 
actually “unstable particles” which form at collision sites, but rather are manifestations of a 
“quark sea” as part of the construction of what we call “the vacuum” … much analogous to 
Dirac’s idea of the “electron sea” of old. Just as the electrons in the Dirac Sea were thought 
to be excited via the electromagnetic interaction, we see from the above that one may surely 
think of the formation of vector mesons as an electromagnetic excitation of relevant quarks 
in a “quark sea” … where a given quark is promoted to a positive energy state by a virtual 
gluon, which, unlike in electron/positron production, where the electron flies away from its 
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“vacuum hole”, produces the circumstance that a tightly bound quark/anti-quark pair 
becomes virtually extant, in which vicinity the spin-flip of one of the quarks occurs, thus 
producing what we call “a vector meson”. Whether one thinks of the vacuum in accord with 
Brian Greene as “the fabric of the cosmos”, or, more conventionally, in accord with the 
pioneers of Quantum Electrodynamics (QED), as “a sea of leptons” (i.e., electrons, muons, 
tauons, and six flavors of quarks), the vacuum is certainly a “something” as opposed to 
“nothing at all”. If one treats vector mesons as vacuum excitations, i.e., “an excitation of the 
sea of leptons” and follows the rules laid down by the pioneers of QED (i.e., the calculation 
of the relevant Feynman Diagrams) with the one exception of replacing  by s (it derived 
solely via the GEM) in the hadronic partial width calculations, one acquires fine agreement 
with experiment. Hence, we believe, vector mesons thought of as vacuum excitations makes 
perfect sense.  

5. Summary 
The Gluon Emission Model has been shown to serve very nicely as a basis for calculations of 
not only the widths of the ρ meson, the  meson, the K*(892), the J meson, and the Y meson, 
but also for the determination of the strong coupling parameter, s , over the entire range of 
energy over which the above objects exist. We have seen that the GEM has built into its 
framework two precepts of prime importance for the carrying out of the above types of 
calculations: (1) the specification of a quark spin-flip matrix element as the central 
determinant of a vector meson resonance and (2) the virtual photon and the gluon as two 
aspects of the same entity, viz., the four-momentum propagator. The prime significance of 
(1) is that the square of the quark spin-flip matrix elements in vector meson width 
calculations are proportional to qi4, where qi represents the magnitude of the charge of 
quark type “i”. The significance of (2) is that the virtual photon and the gluon essentially 
obtain their identities from what the vertices of origin and termination are in the relevant 
Feynman Diagram. The ramifications of (1) are that, as (2/3)4 is 16 times (1/3)4, it is quite 
easy to determine that the cc* (charm – anti-charm) structure of the J(3097) must transmute 
to an ss* (strange – anti-strange) in nearly a point-like manner, such that it is the ss* 
structure that undergoes the spin-flip at the J(3097) resonance. Similarly, the Y(1S) must 
transmute in point-like manner from its original bb* (bottom – anti-bottom) structure to a 
cc* structure before decaying. The ramification of (2) is that the leptonic width to hadronic 
width ratio associated with the same basic decaying structure must be in the ratio of  to s.  
We saw that the GEM predicts the hadronic width of the Y(1S) to be ~ 41 Kev, assuming that 
the Y(1S), as lower energy mesons do, decays solely via the emission of a single gluon, 
whereas the figure for same as stated in the 2008 Meson Table from the Particle Data Group 
(PDG) is ~ 50 Kev. The discrepancy noted above (23%) is seen to be extremely important, 
because, if we were to assume that the GEM was in error by such amount, it turns out that 
all other GEM calculations, currently essentially exactly on the mark as to the ρ, the , the 
K*(892), the J, and s , would have to be rendered as 23% too large by bringing the GEM’s 
determination of the Y(1S) in line with the PDG’s determination of same through 
adjustment of the GEM’s determination of s . Hence, in order to make the GEM as currently 
constructed fit the PDG as to the hadronic width of the Y(1S), all other GEM calculations 
would be discrepant by the same amount, i.e., 23%, at each diverse point of the energy 
spectrum where the GEM has been successfully applied. Clearly, then, what needed to be 
addressed are the details in the GEM’s determination of the width of the Y(1S), with an eye 
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towards any reasonable modifications that might remove the above-mentioned disparity, 
with the satisfactory result being the assumption of an additional decay route for the Y(1S), 
i.e., the bifurcated gluon route. 
Unlike the theoretical structures prevalent in the literature that one encounters as to 
determining the width of the vector mesons, the GEM theory is about as simple as it gets: 
One fundamental process is posited for the formation and decay of any spin one meson, i.e., 
a quark spin-flip; the gluon absorption cross-section for said process is then integrated over 
energy, and from there, the Feynman Diagram resulting in hadron or lepton pairs is then 
calculated.  
Form factors associated with the ψ(1S) and Y(2S), calculated directly from relevant 
experimental data, are given by f1 = (1-qs2) = (8/9) in the case of the ψ-series mesons and  
f2 = (1-qc2) = (5/9) in the case of the Y-series mesons, where qs = -1/3 represents the charge 
of the strange quark and qc = 2/3 represents the charge of the charm quark. The form factors  
represent the fraction of the originally produced quark/anti-quark (QQ*) state which makes 
a transition to a QQ* state of the next lowest mass … ss* in the case of the ψ-series mesons 
and cc* in the case of the Y-series mesons … and thus figure prominently into the calculation 
of the hadronic and leptonic widths of a given meson via the constructs of the Gluon 
Emission Model. We have seen that f1 = (8/9) is representative of all ψ-states, if, and only if, 
it is assumed that one quark color (in the case of the ψ(2S)) or two quark colors (in all other 
cases) become disengaged from lepton production. A similar set of circumstances is 
observed as to the Y-series mesons, such illustrating that all three quark colors are 
functional in lepton production in Y(2S) decay, fewer than three functional in Y(3S) and 
Y(4S) decay, with likely only one color functioning in Y(5S) and Y(6S) decay. For each meson 
series, then, lepton decay is characterized by the phenomenon of sequential disengagement 
of quark color from lepton production as a function of increasing mass.  
Finally, we have seen that the GEM suggests, contrary to a rigid interpretation of the 
Standard Model, in which vector mesons are treated as unstable particles, that vector 
mesons are quite realizable as electromagnetic vacuum excitations of a constituent “quark 
sea”, analogous to the “Dirac Sea” of electrons of old. Specifically, the GEM construct yields 
agreement with experiment only if it is assumed that vector mesons are represented as 
linear combinations of quark spin-flip excitation possibilities. The K*(892) is a case in point, 
but, further, there appears to be no hope for reliable width calculations of any ψ-series 
mesons if such elements of said series are represented solely as cc* objects. A like statement, 
of course, holds for the elements of the Y-series as immutably bb* “particles”.  
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1. Introduction 
The use of crossed molecule beam (CMB) and polarized laser techniques has allowed the 
precisely measurements of the vector correlations in atom and diatomic molecule collision 
reactions. There are a variety of experimental studies aiming at exploring the vector 
correlations underlying a collision reaction.[1-15] To name a few are those of Zare and co-
workers, [1-3] those of Herschbach and co-workers [4-5], those of Fano and co-workers [6], 
as well as those of Han and co-workers [7-9]. These experimental investigations impelled the 
development of theoretical methods to simulate the measured profiles and to explore the 
unmeasured ones. Generally, theoretical explorations on vector correlations of collision 
reactions fall into two categories: one is the reagent k-j, j-k-k’ vector correlations, and the 
other is the product k-j’, k-k’-j’ vector correlations. Where k/k’ and j/j’ denotes the relative 
velocity of reagent/product and reagent/product rotational angular momentum in the 
centre of mass (CM) frame. As reported in many previous papers, both of the quantum 
scattering and the quasi-classical trajectory (QCT) calculations can be used to investigate the 
vector correlations. In this chapter, we report the product k-j’, k-k’-j’ vector correlations of 
the N(2D) + H2(v, j) → NH(v’, j’) + H collision reactions with the QCT method.  
The N(2D) + H2 → NH + H collision reaction plays an important role in the chemistry of 
nitrogen containing fuels and of nitrogen in the atmosphere [16]. It has attracted many 
investigations from not only experimental viewpoints [17-25], but also theoretical 
viewpoints [26-37]. Experimentally, Suzuki et al. [17] measured the rate constants for this 
reaction by employing a pulse radiolysis-resonance absorption technique at temperatures 
between 213 and 300 K. They found that the temperature dependence of the rate constants 
exhibits an Arrhenius behavior. Umemoto and coworkers [18-20] measured the vibrational 
and rotational state distributions of the nascent NH and ND molecules formed in the N(2D) 
+ H2 and N(2D) + D2 reactions. In their experiments, the N(2D) atoms were generated by 
two-photon dissociation of NO, while the nascent NH and ND molecules were detected by 
laser-induced uorescence (LIF) technique. They found that the nascent vibrational 
distributions have NH(v=1)/NH(v=0) = 0.8±0.1 and ND(v=1)/ND(v=0) = 1.0±0.1, and 
that the rotational populations of these vibrational states are broad and hot. More recently, 
Casavecchia et al. [21-25] carried out a series of experimental and theoretical studies on the 
N(2D) + H2 and N(2D) + D2 reactions. They have measured the angular and velocity 
distributions of the nascent NH and ND products in the title reactions under CMB 
experiments with mass spectrometric detection technique. 
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N(2D) + H2 and N(2D) + D2 reactions. They have measured the angular and velocity 
distributions of the nascent NH and ND products in the title reactions under CMB 
experiments with mass spectrometric detection technique. 
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Theoretically, Honvault and Launay [26] carried out the first accurate quantum mechanics 
(QM) calculations of the N(2D) + H2 reaction on the Pederson et al. PES [27] with the 
hyperspherical method. They calculated the vibrationally and rotationally state resolved 
integral cross sections at collision energies of 1.6, 2.5, and 3.8 kcal/mol. A forward-backward 
symmetry was also found in their differential cross sections (DCS) calculations, which 
indicates that a complex of NH2 is formed in the reaction. In a recent work, Ho et al. [28] 
improved and refined the Pederson et al. PES [27], and developed a more accurate adiabatic 
ground 12A PES. The new PES is fitted by a set of 2715 ab initio points resulting from the 
multireference configuration interaction (MRCI) calculations and a better algorithm. 
Moreover, the new PES is free of spurious small scale features and is in much better 
agreement with the ab initio calculations, especially in key stationary point regions 
including the C2v minimum, the C2v transition state, and the N-H-H linear barrier. 
Employing this new PES, both QM [29-32] and QCT [28, 31-33] calculations have been 
performed for the title reactions.  
Most of previous studies focused on the calculations of the reaction probabilities, integral 
cross sections and thermal rate constants. Very few investigations paid attention to the 
vector properties calculations for the N(2D) + H2 reactions. In this chapter, we present a 
much detailed calculations on the vector correlations of this collision reaction. 

2. Methodology and theory 
2.1 Quasi-classical trajectory calculations 
The QCT calculation method is the same as that in Refs. [38-42]. Six-order symplectic 
integration was used in the QCT calculations, in which the classical Hamilton’s equations 
are integrated numerically for motion in three dimensions. In a given Hamiltonian system 
whose Hamiltonian can be partitioned, i.e., written as H = T(p) + U(q), we define the 
derivative terms in the Hamiltonian movement equations as /hq H pi i   for the 

generalized momentum, and /hp H qi i   for the generalized coordinates; let dt be the full 
time step. The algorithm can be expressed as [42] 

do i = 0, 1, 2, . . . , n - 2, n - 1 

p = p + dta(2i)hp 

q = q + dta(2i + 1)hq 

enddo 

 p = p + dta(2n)hp. (1) 

The last step can be concatenated with the first step in a continuing calculation. Then there 
are 2n substeps in every step, where n is 8 for six-order symplectic integrator. Thus, the 
number of the calling to the potential derivatives is also n. The coefficients are defined by 2n 
+ 1 values of a(i), which is taken directly from Ref. [43-44] without revision.  
The accurate 12A state PES constructed recently by Ho et al. [28] is employed for the N(2D) 
+ H2 → NH + H calculations. The full potential is written in terms of a many body 
expansion: 
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(2) (2)(1)V( , , ) = V + V ( ) + V ( )NH NH HH NH NHNH NHa ab b
(2) (3)+V ( ) + V ( , , ),HH NH NH HHHH a b

R R R R R

R R R R  (2) 

Where the one-body term V(1) defines the zero of energy as the three-atom limit and the two-

body terms (2)VNH  and (2)VHH  represent the energy of H + NH and N + H2, respectively. The 

two-body functions are interpolated from separate calculations of the two-body potentials 

using the reciprocal power radial kernel. The three-body function (3)V ( , , )NH NH HHa b
R R R  

in the coordinate system is interpolated from the differences between the ab initio data and 
the corresponding one- and two-body sums. During reactive encounter, the total angular 
momentum is conserved 

 L + j = L’ + j’, (3) 

where L and L’ are the reagent and product orbital momenta, respectively. In the mass 
weighted coordinates, the rotational angular momentum (AM) of reagent molecule H2 is  

 HH HH HH ( 1)j j    j R R , (4) 

and reagent orbital AM is 

 N-HH N-HH ( 1)l lr    l R R . (5) 

Accordingly, the product rotational AM is 

 NH NH NH ( 1)j j    ' 'j' R R , (6) 

and the product orbital AM is 

 NH-H NH-H ( 1)l lp    ' 'l' R R . (7) 

Where r  and p  are reagent and product reduced masses, respectively. The Hamilton’s 
motion equation is solved by the symplectic integration method. The accuracy of the 
numerical integration is veried by checking the conservations of the total energy and the 
total angular momentum for every trajectory. In the calculation, batches of 1×105 trajectories 
are run for each reaction and the integration step size is chosen to be 0.1 femtosecond (fs). 
The trajectories start at an initial distance of 15 Å between the N atom and the center of the 
mass of the H2 molecules. The impact parameter b is optimized through the repeated 
computation with 1×105 trajectories for all of the present studies. The maximum impact 
parameter bmax was obtained when there is no reactive trajectory any more, if a tiny larger 
value of b is done. All the optimized maximum impact parameters used for the present 
study are displayed in Table 1. 

2.2 Polarization-dependent differential cross-sections (PDDCSs) 
The CM frame was used as the reference frame in the present work, which is depicted in 
Figure 1. The reagent relative velocity vector k is parallel to the z-axis. The x-z plane is the 
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total angular momentum for every trajectory. In the calculation, batches of 1×105 trajectories 
are run for each reaction and the integration step size is chosen to be 0.1 femtosecond (fs). 
The trajectories start at an initial distance of 15 Å between the N atom and the center of the 
mass of the H2 molecules. The impact parameter b is optimized through the repeated 
computation with 1×105 trajectories for all of the present studies. The maximum impact 
parameter bmax was obtained when there is no reactive trajectory any more, if a tiny larger 
value of b is done. All the optimized maximum impact parameters used for the present 
study are displayed in Table 1. 

2.2 Polarization-dependent differential cross-sections (PDDCSs) 
The CM frame was used as the reference frame in the present work, which is depicted in 
Figure 1. The reagent relative velocity vector k is parallel to the z-axis. The x-z plane is the 
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scattering plane which contains the initial and the final relative velocity vectors, k and k'. θt  
is the angle between the reagent relative velocity and product relative velocity (so-called 
scattering angle). θr  and r are the polar and azimuthal angles of the final rotational 
angular momentum j. 
The distribution function ( )P r  describing the k-j correlation can be expanded in a series of 
Legendre polynomials as [38-41] 

 1( ) [ ] (cos )r 02
kP k a P rkk

   , (8) 

where [ ] 2 1k k  . The 0
ka  coefficients are given by 

 (cos )0
ka P rk    . (9) 

 

 
Fig. 1. Center-of-mass coordinate system used to describe the k, k' and j' correlations. 

The expanding coefficients 0
ka  are called orientation (k is odd) and alignment (k is even) 

parameters. 
The dihedral angle distribution function ( )P r  describing k-k-j correlation can be 
expanded in Fourier series as [38-41] 

 1( ) (1 cos sin )
2 , 2 , 1

P a n b nr n r n reven n odd n
  


   

 
, (10) 

where 

 2 cosa nn r   , (11) 

 2 sinb nn r   . (12) 

In this calculation, ( )P r  is expanded up to n = 24, which shows good convergence. The 
joint probability density function of angles r  and r , which determine the direction of j, 
can be written as 
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1 *( , ) [ ] ( , )
4

kP k a Cr r q r rkqkq
   


   

 1 [ cos sin ] ( ,0)
4 0

k ka q a i q Cr q r rq kqqk
  


   

 . (13) 

this calculation, the polarization parameter is evaluated as 

 2 ( ,0)coska C qr rq k q     , k is even, (14) 

 2 ( ,0)sinka i C qr rq k q     , k is odd. (15) 

In the calculation, ( , )P r r   is expanded up to k = 7, which is sufficient for good 
convergence. 
The full three-dimensional angular distribution associated with k-k-j correlation can be 
represented by a set of generalized polarization-dependent differential cross-sections 
(PDDCSs) in the CM frame. The fully correlated CM angular distribution is written as [38-41] 

 [ ] 1 *( , ) ( , )
4

d kqkP Cr r rt kqdkq t


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  
  , (16) 

Where the angles ,t t t    and ,r r r   .  is the integral cross section. ( , )C r rkq   are 

modified spherical harmonics. 1 d kq
d t



 
is a generalized PDDCS. ( , )C r rkq   are modified 

spherical harmonics. 1 d kq
d t



 
is a generalized PDDCS, and 1 d kq

d t


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 yields 

 1 0 0
d k
d t


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  (k is odd), (17) 

 1 1 1 0
d d dkq kq k q

d d dt t t
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The PDDCS is written in the following form: 
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where the 1k
Skq  is evaluated by using the expected value expression to be 

 1 ( ,0) ( ,0)[( 1) ]
1

k q iq iqr rS C C e ertk q kqkq
        ,  (21) 

where the angular brackets represent an average over all angles. The differential cross-
section is given by 

 1 100 1( ) [ ] ( ,0) (cos )1 104 11

d k
P k h k Pt tkd kt


 

  
   . (22) 

The bipolar moments 1 ( ,0)10
k

h k  are evaluated by using the expectation values of the 

Legendre moments of the differential cross-section and expressed as 

 1 ( ,0) (cos )1 10
k

h k P tk    . (23) 

The PDDCS with q = 0 is presented by 

 1 10 1[ ] (cos )1 04 11

d kk k S P tkkd kt


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  
  , (24) 

where 1
0

k
Sk is evaluated by the expected value expression and given as 

 1 (cos ) (cos )0 1

k
S P P rtk kk     . (25) 

Many photon-initiated bimolecular reaction experiments are sensitive to only those 
polarization moments with k = 0 and k = 2. In order to compare calculations with 

experiments, PDDCS00 (
2 00d

d t
 
 

), PDDCS20 
2 20d

d t
 
 

, PDDCS22+ 
2 22d

d t
 
 

 , and PDDCS21- 

2 21d
d t

 
 

  are calculated. In the above calculations, PDDCSs are expanded up to k1 = 7, 

which is sufficient for good convergence. 

3. Results and discussion 
3.1 The k−j' vector correlation 
The product ( )P r  distribution describes the k−j' vector correlation with k·j'=cos(θr). Figure 2 
displays the calculated ( )P r  distributions of NH products from the N(2D) + H2 → NH + H 
reaction at collision energies Ec = 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol. It is clear that the 

( )P r  distribution peaks at r  = 90°, and exhibits a very good symmetry with respect to 
90°. This indicates that the product rotational angular momentum vector (j') is aligned along 
the direction at right angle to the relative velocity direction (k). With the collision energy 
increasing, the peak at r  = 90° becomes small, which means that high  
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Fig. 2. ( )P r distributions for the NH products in the N(2D) + H2(v=0, j=0) → NH + H 
reaction at Ec = 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol collision energies. 

collision energy weakens the product rotational alignment. However, there is a very tiny 
exception that the ( )P r  peak at r  = 90° at 11.0 kcal/mol is a little bit smaller than that at 
9.0 kcal/mol. The location and height of the barrier of the PES is related with the entrance 
and exit channels, which may be the reason of this tiny disagreement. Figure 3 shows the  
 

 
Fig. 3. ( )P r distributions for the NH products in the N(2D) + H2(v=0, j=0, 1, 2, 3, 4, 5) → NH 
+ H reaction at Ec = 5.1 kcal/mol collision energy. 
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effect of the reagent rotational excitation on the product ( )P r distributions at collision 
energy of 5.1 kcal/mol. As clearly shown in Fig. 3, the higher the rotational excitation is, the 
smaller the ( )P r peak at r  = 90°. This indicates that the reagent rotational excitation 
depresses the product rotational alignment. 

3.2 The k−k' −j' vector correlation 
Under the r definition of the dihedral angle between the planes consisting of k−k' and 
k−j', the ( )P r distribution describes the k−k'−j' vector correlation and can provide both 
product alignment and product orientation information. Figure 4 presents the product 

( )P r  distributions for the N(2D) + H2(v=0, j=0) → NH + H reaction at collision energies 
of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol. As can be seen, in contrast to the symmetric 
feature of the ( )P r distribution with respect to r  = 90°, the ( )P r  distribution is 
asymmetric with respect to the scattering plane where r = 180°, but symmetric with 
respect to that where r = 270°. The product ( )P r distribution behaves a large peak at 

r = 270° and a small peak at r = 90° for the N(2D) + H2(v=0, j=0) → NH + H reaction 
under each collision energy. Another two peaks emerge at about r = 0° and r =180° 
when collision energy is 2.0 kcal/mol, which disappear in higher collision energies. The 
peaks at r = 270° for the higher collision energies are larger than that for the collision 
energy Ec = 2.0 kcal/mol, with the largest peak situated at the collision energy Ec = 5.1 
kcal/mol. However, the peaks at r = 90° have no large change with the collision energy 
increasing. Therefore, we can conclude that the most NH product rotational angular 
momentum tend to align along the direction of y axis which is perpendicular to the 
scattering k−k' plane, and orientate along the negative directions of y axis. That is to say, 
the product molecules prefer a counterclockwise rotation (see from the negative direction 
of y axis) in the plane parallel to the scattering plane.  
 

 
Fig. 4. ( )P r  distributions as a function of the dihedral angle r at collision energies of 2.0, 
3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol (from inner to ourter) for the N(2D) + H2(v=0, j=0) → NH 
+ H reaction. 
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Fig. 5. ( )P r  distributions as a function of the dihedral angle r for the N(2D) + H2(v=0, j=0, 
1, 2, 3, 4, 5) → NH + H reactions (from inner to ourter) at the collision energy of 5.1 
kcal/mol. 

Figure 5 reveals the rotational excitation effect on the product ( )P r  distributions for the 
N(2D) + H2(v=0, j=0, 1, 2, 3, 4, 5) → NH + H reactions at 5.1 kcal/mol collision energy. 
Obviously, all of the ( )P r  distributions appear a large peak at about r = 270° and a small 
or no peak at about r = 90°, which means that the orientation of the product rotational 
angular momentum tends to point to the negative direction of y axis. The peaks at about 

r = 270° for the N(2D) + H2(v=0, j=1-5) → NH + H reactions are smaller than that for the 
ground rotational state reaction, while there is very tiny change for the peaks at about r = 
90°. This indicates that the product rotational orientation becomes weaker when the reagent 
is excited to a higher rotational state. 
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Fig. 6. ( , )P r r   distributions as a function of both the polar r  and dihedral angle r for 
the (a) N(2D) + H2(v=0, j=0) → NH + H reaction at collision energies of 2.0, 3.8, 5.1, 7.0, 9.0, 
and 11.0 kcal/mol, (b) N(2D) + H2(v=0, j=0, 1, 2, 3, 4, 5) → NH + H reactions at the 5.1 
kcal/mol collision energy. 

Further supporting information comes from the joint ( , )P r r   distributions. Figure 6 
presents the product ( , )P r r   distributions for the N(2D) + H2 → NH + H reaction under 
different collision energies (Fig. 6a) and different reagent rotational excitations (Fig. 6b). The 
tomographical features are in good consistence with the separate ( )P r  and ( )P r  
distributions. For example, the ( , )P r r   distribution in the N(2D) + H2(v=0, j=0) → NH +  
H reaction at 2.0 kcal/mol collision energy has one largest peak at about ( , )r r  = (90°, 
270°), one small peak at about ( , )r r  = (90°, 90°), and two medium peaks at about ( , )r r  = 
(90°, 0°) and ( , )r r  = (90°, 180°), respectively. These features reflect the characteristics of 
the ( )P r  (Fig. 2) and ( )P r  (Fig. 4) distributions for this concrete reaction. Similar things 
can be found for other specific reactions. 
The atom (A) and diatomic molecule (BC) collision interaction can be described qualitatively 
by “Impulse model”, [45] which applies the Newtonian mechanics and consider energy (e.g. 
endothermic translational, internal (rotational and vibrational), repulsive, and attractive 
energies) and momentum conservation. The QCT method simulates such interaction or 
reaction in the time domain step by step (time step, e.g. 0.1 fs) along each trajectory, where 
the energy and momentum conservations must be controlled from one step to the next step. 
Based on this impulsive model proposed for an A + BC → AB + C collision system in 
previous works, in the present system, the product angular momentum vector j’ can be 

written as = + + m mB AB
2 2sin β cos βj L j J1 . Here L is the reagent orbital angular 

momentum and j is the reagent rotational angular momentum. ( )ErBC AB CB r rJ1   , 

with ABr  and CBr being the unit vectors and B pointing to  
A and C, respectively, μBC  is the reduced mass of the BC molecule and Er is the repulsive 

energy between B and C atoms. 2cos β  is the mass factor. With respect to the scattering 
plane, the first and second terms are symmetric terms, and thus the preferred direction of 
the product angular momentum is determined only by the third term of m /mB ABJ1 , 
which is eventually traced back to the impulsive energy Er of the collision system. As a 
consequence, we can say that the impulsive energy Er leads to the preferred direction of the 
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product angular momentum vector. At a low collision energy of 2.0 kcal/mol, it seems that 
this effect of impulsive energy is not so evident, but it becomes more effective as collision 
energy increases, thus leading to the more preference for the counterclockwise rotation in 
the planes parallel to the scattering plane (Fig. 4). In the case of reactions for the reagent 
rotational excitation at collision energy of 5.1 kcal/mol, the alignment and orientation 
becomes weaker with the higher reagent rotational excitation. It is possibly because the 
rotational excitation weakens the impulsive energy Er. However, the effect of collision 
energy and rotational excitation on the product rotational alignment and orientation is not 
always monotonic. As discussed in previous vector correlation studies, the product 
rotational alignment and orientation is also largely affected by the PES. [46-47] Therefore, 
the non-monotonic variety of the product alignment and orientation may be resulted by the 
PES. 

3.3 The PDDCSs distributions 
The generalized PDDCSs describe the k-k'-j' correlation and the scattering direction of the 
product molecule. Figure 7 shows the calculated results of the PDDCSs for the N(2D) + 
H2(v=0, j=0) → NH + H reaction under collision energies of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 
kcal/mol. The PDDCS00 is simply proportional to the differential cross-section (DCS), and 
only describes the k-k' correlation or the product angular distributions. Figure 7a plots the 
PDDCS00 as a function of scattering angle tθ  for the above reaction. Apparently, the 
PDDCS00 shows a large peak at about tθ = 180° and a tiny peak at about tθ = 0° for the 
collision energy Ec = 2.0 kcal/mol, which means that the NH product angular distribution is 
almost the backward scattering. With the collision energy increasing, it shows a decreasing 
behavior for the peak at about tθ = 180°, but a monotonously increasing behavior for the 
peak at tθ = 0°. This indicates that the product angular distribution changes from the 
backward scattering to the both backward and forward scattering. Up to the collision energy 
Ec = 11.0 kcal/mol, both of the peaks at about tθ = 180° and 0° are nearly the same 
magnitude, which means that the NH product angular distribution is equally backward and 
forward scattering in the reaction. These results are in good agreement with recent exact QM 
results by Lin et al. [30]. The asymmetry in DCS was ascribed to the contributions of the fast 
insertion component of the reaction and the abstraction channel. The PDDCS20 is the 
expectation value of the second Legendre moment (cos )2P r   and contains the alignment 
information of j' with respect to k. As shown in Fig. 7b, the behaviour of the PDDCS20 
distribution demonstrates an opposite trend to that of PDDCS00 and obviously depends on 
the scattering angle θt . It can be clearly seen from Fig. 7b that the PDDCS20 values are 
negative for both backward and forward scatterings, but they are close to zero for sideways 
scattering. These results suggest that the j' polarizes preferentially along the direction 
perpendicular to k when the products are scattered forward and backward. This is 
consistent with the product alignment prediction from the P( )θr  distribution shown in Fig. 
2. Figure 7c and d illustrate the PDDCSs distributions with q ≠ 0. All of the PDDCSs with q ≠ 
0 are equal to zero at the extremities of forward and backward scattering. The PDDCS22+ 
value is positive or negative, depending on the preference of j' alignment along the x axis or 
y axis. It can be seen from Fig. 7c that the PDDCS22+ values of the N(2D) + H2(v=0, j=0) → 
NH + H reaction at collision energies of larger than 2.0 kcal/mol are negative for all 
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scattering angles, which indicates that the alignments of the NH products prefer to be along 
the y axis. However, for the N(2D) + H2(v=0, j=0) → NH + H reaction at 2.0 kcal/mol, the 
PDDCS22+ values are positive in the ranges of θt =30°~73°, 83°~98°, and 140°~180°, with two 
largest positive peaks at θt = 55° and 155°, respectively. These two positive peaks are 
corresponding with the ( )P r  distributions (Fig. 4) in which there have two medium peaks 
at about ( , )r r  = (90°, 0°) and ( , )r r  = (90°, 180°) for the 2.0 kcal/mol collision energy. 
This demonstrates that the product j' alignment is not only along the y axis, but also along 
the x-axis. The PDDCS21- is related to sin 2 cosr r   , and its distribution is depicted in Fig. 
7d. As shown in Fig. 7d, the PDDCS21- distribution shows a strongest polarization at about 

t  = 159° for the N(2D) + H2(v=0, j=0) → NH + H reaction at 2.0 kcal/mol collision energy. 
Correspondingly, the PDDCS21- distributions show a medium polarization for collision 
energies of 3.8 and 5.1 kcal/mol at respect t  = 144° and 140°, and a weak polarization for 
collision energies of 7.0, 9.0, and 11.0 kcal/mol corresponding with t  = 83°, 26°, and 18°. 
These results indicate that the product angular distributions are anisotropic for the N(2D) + 
H2(v=0, j=0) → NH + H reaction under each collision energy. The polarization degree 
becomes weaker with the increasing collision energy. 
 

 
Fig. 7. (a) PDDCS00, (b) PDDCS20, (c) PDDCS22+ and (d) PDDCS21- distributions as a function 
of scattering angle tθ  for the N(2D) + H2(v=0, j=0) → NH + H reaction at collision energies 
of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol. 
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product angular momentum vector. At a low collision energy of 2.0 kcal/mol, it seems that 
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the non-monotonic variety of the product alignment and orientation may be resulted by the 
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kcal/mol. The PDDCS00 is simply proportional to the differential cross-section (DCS), and 
only describes the k-k' correlation or the product angular distributions. Figure 7a plots the 
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PDDCS00 shows a large peak at about tθ = 180° and a tiny peak at about tθ = 0° for the 
collision energy Ec = 2.0 kcal/mol, which means that the NH product angular distribution is 
almost the backward scattering. With the collision energy increasing, it shows a decreasing 
behavior for the peak at about tθ = 180°, but a monotonously increasing behavior for the 
peak at tθ = 0°. This indicates that the product angular distribution changes from the 
backward scattering to the both backward and forward scattering. Up to the collision energy 
Ec = 11.0 kcal/mol, both of the peaks at about tθ = 180° and 0° are nearly the same 
magnitude, which means that the NH product angular distribution is equally backward and 
forward scattering in the reaction. These results are in good agreement with recent exact QM 
results by Lin et al. [30]. The asymmetry in DCS was ascribed to the contributions of the fast 
insertion component of the reaction and the abstraction channel. The PDDCS20 is the 
expectation value of the second Legendre moment (cos )2P r   and contains the alignment 
information of j' with respect to k. As shown in Fig. 7b, the behaviour of the PDDCS20 
distribution demonstrates an opposite trend to that of PDDCS00 and obviously depends on 
the scattering angle θt . It can be clearly seen from Fig. 7b that the PDDCS20 values are 
negative for both backward and forward scatterings, but they are close to zero for sideways 
scattering. These results suggest that the j' polarizes preferentially along the direction 
perpendicular to k when the products are scattered forward and backward. This is 
consistent with the product alignment prediction from the P( )θr  distribution shown in Fig. 
2. Figure 7c and d illustrate the PDDCSs distributions with q ≠ 0. All of the PDDCSs with q ≠ 
0 are equal to zero at the extremities of forward and backward scattering. The PDDCS22+ 
value is positive or negative, depending on the preference of j' alignment along the x axis or 
y axis. It can be seen from Fig. 7c that the PDDCS22+ values of the N(2D) + H2(v=0, j=0) → 
NH + H reaction at collision energies of larger than 2.0 kcal/mol are negative for all 
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scattering angles, which indicates that the alignments of the NH products prefer to be along 
the y axis. However, for the N(2D) + H2(v=0, j=0) → NH + H reaction at 2.0 kcal/mol, the 
PDDCS22+ values are positive in the ranges of θt =30°~73°, 83°~98°, and 140°~180°, with two 
largest positive peaks at θt = 55° and 155°, respectively. These two positive peaks are 
corresponding with the ( )P r  distributions (Fig. 4) in which there have two medium peaks 
at about ( , )r r  = (90°, 0°) and ( , )r r  = (90°, 180°) for the 2.0 kcal/mol collision energy. 
This demonstrates that the product j' alignment is not only along the y axis, but also along 
the x-axis. The PDDCS21- is related to sin 2 cosr r   , and its distribution is depicted in Fig. 
7d. As shown in Fig. 7d, the PDDCS21- distribution shows a strongest polarization at about 
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Correspondingly, the PDDCS21- distributions show a medium polarization for collision 
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These results indicate that the product angular distributions are anisotropic for the N(2D) + 
H2(v=0, j=0) → NH + H reaction under each collision energy. The polarization degree 
becomes weaker with the increasing collision energy. 
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Figure 8 shows the rotational excitation effect on the PDDCSs distributions for the N(2D) 
+ H2(v=0, j=0-5) → NH + H reactions at the 5.1 kcal/mol collision energy. As depicted in 
Fig. 8a, with the increasing rotational excitation, the peak at about t = 180° for the 
PDDCS00 distribution becomes weaker, but stronger for the peak at about t = 0°. These 
results means that the rotational excitation leads to the product angular distribution 
changing from the backward scattering to the both backward and forward scattering. The 
PDDCS20 distributions in Fig. 8b show negative values in both of the backward and 
forward scatterings, but they are close to zero for the sideway scatterings. These results 
suggest that the j' polarizes preferentially along the direction perpendicular to k, which is 
consistent with the product P( )θr  distributions in Fig. 3. The PDDCS22+ values are 
negative for all scattering angles, meaning the alignments of the NH products prefer to be 
along the y axis. As can be seen from Fig. 8c, the rotational excitation diminishes the 
PDDCS22+ peak, implying that the rotational excitation weakened the product alignment. 
The PDDCS21- distribution has two largest peaks for the N(2D) + H2(v=0, j=0) → NH + H 
reaction at t  = 15° and 140°. However, no distinct large peaks were found in the 
PDDCS21- distribution for other rotational excited reactions. These characteristics 
illuminate that the rotational excitation reduce the anisotropy of the product angular 
distribution. 
 
 

 
Fig. 8. (a) PDDCS00, (b) PDDCS20, (c) PDDCS22+ and (d) PDDCS21- distributions as a function 
of scattering angle tθ  for the N(2D) + H2(v=0, j=0, 1, 2, 3, 4, 5) → NH + H reaction at the 
collision energy of 5.1 kcal/mol. 
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3.4 Rotational alignment parameter (2)A0  
A simple way to express the degree of product rotational polarization of j' can be through 

the CM frame alignment parameter A ) 22 ( 3cos 12P r        j K(2)
0 , which is also a usual 

and common parameter measured in vector correlation experiments. [1] In this expression, 
the brackets denote an average over the distributions of j' with respect to K. The product 

rotational alignment parameter (2)A0  has also been calculated at the present work, which is 

shown in Table 1. It can be seen from the (2)A0  expression that, for j' parallel or antiparallel 

to K, )(2P   j K =1 and then the alignment parameter takes the value (2)A0  = 2, while for j' 

perpendicular to K, (2)A0  = -1. The values of the alignment parameter discussed above are 
limiting cases that represent the maximum possible alignment. In general, these parameters 
take values of small magnitude, which indicates a distribution that tends toward one of the 
above limits. If all alignment parameters are zero, the j' distribution is isotropic about K. All 

of the (2)A0  values displayed in Table 1 are negative, which means that most of the product 
rotational angular momentum j' tend to be perpendicular to K. For the N(2D) + H2(v=0, j=0) 

→ NH + H reactions at collision energies of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol, the (2)A0  
value becomes larger with the collision energy increasing. For the N(2D) + H2(v=0, j=0-5) → 

NH + H reactions at the collision energy of 5.1 kcal/mol, the (2)A0  value also becomes larger 
with the rotational excitation increasing. These trends imply that both of the increasing 
collision energy and reagent rotational excitation depress the product rotational alignment. 
This is in good consistent with the the ( )P r  distributions (Fig. 2 and 3).  
 

Ec (kcal/mol) J bmax (Å) (2)A0  

2.0

0 

1.087 -0.39117 
3.8 1.673 -0.22509 
5.1 1.804 -0.21372 
7.0 1.885 -0.21098 
9.0 1.924 -0.21018 
11.0 1.947 -0.21786 

5.1 

1 1.811 -0.22699 
2 1.811 -0.17626 
3 1.810 -0.14679 
4 1.817 -0.13044 
5 1.831 -0.13044 

Table 1. Values of the impact parameters bmax and product rotational alignment parameters 
(2)A0  calculated with 100, 000 trajectories for the N(2D) + H2(v=0, j=0-5) → NH + H reactions 

under collision energies of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol. 



 
Measurements in Quantum Mechanics 

 

262 

Figure 8 shows the rotational excitation effect on the PDDCSs distributions for the N(2D) 
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4. Conclusion 
In this chapter, we presented a detailed vector correlation study on the N(2D) + H2(v=0, j=0-5) 
→ NH + H reaction at collision energies of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol. Three 
angular distributions ( )P r , ( )P r , ( , )P rr  , and four PDDCSs were computed by the QCT 
method with a six-order symplectic integration. Under an accurate 12A state PES, batches of 
100, 000 trajectories were running for the investigated reactions. It was found that the ( )P r  
distribution has a large peak at about r = 90°, meaning that the product angular 
momentum j’ is aligned perpendicular to k. With the collision energy increasing, for the 
N(2D) + H2(v=0, j=0) → NH + H reactions, the product rotational alignment becomes weaker 
due to the reduction of the ( )P r  peak at about r = 90°. Similarly, the rotational excitation 
also demonstrated a reducing behaviour for the product rotational alignment in the 
reactions of N(2D) + H2(v=0, j=0-5) → NH + H at 5.1 kcal/mol. However, the increasing 
collision energy enhanced the peak at about r = 270°, demonstrating that the product 
rotational orientation was enhanced by the increasing collision energy. For the N(2D) + 
H2(v=0, j=0-5) → NH + H reactions at 5.1 kcal/mol, the rotational excitation reduced the 

( )P r  peak at about r = 270°, and therefore depressed the product rotational orientation. 
The ( , )P rr   distributions was in consistent with the ( )P r  and ( )P r  distributions. These 

( )P r , ( )P r  and ( , )P rr   distributions had been interpreted by an “Impulsive model”. At 
the low collision energy of 2.0 kcal/mol, the PDDCS00 shows a large peak at about θt = 180° 
and a very tiny peak at about θt = 0° for the N(2D) + H2(v=0, j=0) → NH + H reaction, which 
indicates that the product angular distribution is the backward scattering. As the collision 
energy increasing, the product angular distribution changes from the backward scattering to 
the both backward and forward scatterings. Similar behavior was found for the rotational 
excitation which also leads to the product angular distribution changing from the backward 
scattering to the both backward and forward scatterings. The PDDCS20 shows an opposite 
distribution to the PDDCS00. The PDDCS22+ values in the investigated reactions are negative 
except for the N(2D) + H2(v=0, j=0) → NH + H reaction at 2.0 kcal/mol, meaning that most 
of the product angular momentum j’ prefer to align along the y axis. This alignment was 
reduced by both of the increasing collision energy and rotational excitation. For the 
PDDCS21- distribution, the collision energy increasing and reagent rotational excitation 
decreased the largest peaks, which indicate that the product rotational polarization is 
anisotropic. This anisotropic distribution was weakened by the rotational excitation and 
increasing collision energy. The calculated (2)A0  values reflect that the product rotational 
alignment is perpendicular to k, which is consistent with the aforementioned ( )P r  
distributions. 
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4. Conclusion 
In this chapter, we presented a detailed vector correlation study on the N(2D) + H2(v=0, j=0-5) 
→ NH + H reaction at collision energies of 2.0, 3.8, 5.1, 7.0, 9.0, and 11.0 kcal/mol. Three 
angular distributions ( )P r , ( )P r , ( , )P rr  , and four PDDCSs were computed by the QCT 
method with a six-order symplectic integration. Under an accurate 12A state PES, batches of 
100, 000 trajectories were running for the investigated reactions. It was found that the ( )P r  
distribution has a large peak at about r = 90°, meaning that the product angular 
momentum j’ is aligned perpendicular to k. With the collision energy increasing, for the 
N(2D) + H2(v=0, j=0) → NH + H reactions, the product rotational alignment becomes weaker 
due to the reduction of the ( )P r  peak at about r = 90°. Similarly, the rotational excitation 
also demonstrated a reducing behaviour for the product rotational alignment in the 
reactions of N(2D) + H2(v=0, j=0-5) → NH + H at 5.1 kcal/mol. However, the increasing 
collision energy enhanced the peak at about r = 270°, demonstrating that the product 
rotational orientation was enhanced by the increasing collision energy. For the N(2D) + 
H2(v=0, j=0-5) → NH + H reactions at 5.1 kcal/mol, the rotational excitation reduced the 

( )P r  peak at about r = 270°, and therefore depressed the product rotational orientation. 
The ( , )P rr   distributions was in consistent with the ( )P r  and ( )P r  distributions. These 

( )P r , ( )P r  and ( , )P rr   distributions had been interpreted by an “Impulsive model”. At 
the low collision energy of 2.0 kcal/mol, the PDDCS00 shows a large peak at about θt = 180° 
and a very tiny peak at about θt = 0° for the N(2D) + H2(v=0, j=0) → NH + H reaction, which 
indicates that the product angular distribution is the backward scattering. As the collision 
energy increasing, the product angular distribution changes from the backward scattering to 
the both backward and forward scatterings. Similar behavior was found for the rotational 
excitation which also leads to the product angular distribution changing from the backward 
scattering to the both backward and forward scatterings. The PDDCS20 shows an opposite 
distribution to the PDDCS00. The PDDCS22+ values in the investigated reactions are negative 
except for the N(2D) + H2(v=0, j=0) → NH + H reaction at 2.0 kcal/mol, meaning that most 
of the product angular momentum j’ prefer to align along the y axis. This alignment was 
reduced by both of the increasing collision energy and rotational excitation. For the 
PDDCS21- distribution, the collision energy increasing and reagent rotational excitation 
decreased the largest peaks, which indicate that the product rotational polarization is 
anisotropic. This anisotropic distribution was weakened by the rotational excitation and 
increasing collision energy. The calculated (2)A0  values reflect that the product rotational 
alignment is perpendicular to k, which is consistent with the aforementioned ( )P r  
distributions. 
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1. Introduction 
Image segmentation is the process of separating or grouping an image into different parts . 
These parts normally correspond to something that human beings can easily separate and 
view as individual objects. Computers have no means of intelligently for recognizing 
objects, and a large number of different methods have been developed in order to segment 
images, ranging from the simple thresholding method to advanced graph-cut methods. The 
segmentation process is based on various features found in the image. Those features might 
be histograms information, information about the pixels that indicate edges or boundaries or 
texture information and so on. 
Approaches of Image processing and analysis based on partial differential equation, such 
as deformable models or snakes (Terzopoulos et al., 1987; Kass, et al., 1987), balloon 
models (Cohen, L. D., 1991; Cohen, L. D. & Cohen, I., 1993), geometric models (Caselles et 
al., 1993), discrete dynamic contour models (Lobergt & Viegever, 1995), geodetic active 
contours (Caselles et al., 1995) and topology adaptive deformable model (McInerney & 
Terzopoulos, 1999), whose physical background is principle of minimum action or force 
equilibrium in classical mechanics, are being extensively applied to image segmentation, 
image smooth, image inpainting, extraction of boundary and so on. Xu and Prince 
analyzed the reason why snake methods have poor convergence to boundaries with large 
curvatures and replaced the gradient field with the gradient vector field (GVF), which has 
a larger capture region and slowly changes away from the boundaries (Xu & Prince, 1998). 
Consequently, the dependence on initial positions is decreased but the field can attract the 
moving contour to the right position. Parametric deformable models have high 
computational efficiency and can easily incorporate a priori knowledge. However, these 
models cannot naturally handle topological changes and are sensitive to initial conditions. 
Geometric deformable models are based on the level set method (Osher & Sethian, 1988), 
which was initially proposed to handle topological changes during the curve evolution. 
Geometric deformable models have the advantage of naturally handling the topological 
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changes and are widely studied for medical segmentation (Malladi & Sethian, 1996). 
Another popular geometric model is proposed by Chan and Vese (Chan & Vese, 1999; 
2002). Chan–Vese’s model is a simplified version of the Mumford–Shah energy model. 
The algorithm extracts the desired object through simultaneously minimizing the 
intensity variations inside and outside the contour. In 1997, Cohen and Kimmel described 
a method for integrating object boundaries by searching the path of a minimal active 
deformable model’s energy between two points (Cohen, L. D. & Kimmel, 1997). But they 
are easy to fall into the local minimum, sensitive to noise, do not have topology adaptive, 
poor convergence to concave boundaries. Lou and Ding used point tracking by estimating 
the maximum probability of a particle in quantum mechanics moving from one point to 
another, and did not impose any smoothness constraints to ensure the extraction of the 
details of a concave contour (Lou & Ding, 2007a). To overcome the main drawbacks of 
global minimal for active contour models that the contour was only extracted partially for 
low SNR images, maximal probability method of boundary extraction based on particle 
motion was proposed (Lou et al, 2007b). Schrödinger transform of image was first given 
by Lou, Zhan, Fu and Ding, and the probability P(b,a) that a particle moved from a point a 
to another point was computed according to I-Type Schrödinger transform of image (Lou 
et al, 2008). In the chapter, a new tool for image, Schrödinger Transform of image, is 
investigated.  
The reminder of the chapter was organized as follows. First, we gave physical explanation 
of boundary extraction from the point view of classical mechanics and quantum mechanics 
in Section 2. Next, we defined Schrödinger transform of image, discussed its properties and 
computation in Section 3. Then we investigated scale parameter and potential function of 
Schrödinger transform in Section 4. And then, we constructed high and low pass filter and 
carried through automatic contour extraction for multiple objects using I-type Schrödinger 
transform of image, segmented image using deformation of II-type Schrödinger transform 
of image in Section 5. Finally, we gave our conclusion in Section 6. 

2. Physical explanation of boundary extraction 
Boundary extraction is belong to field of image progressing while classical mechanics and 
quntumn mechanics are pure physical concept. However, we can find their common ground 
from the point of view of particle motion. Boundary of object can be thought of as trajectory 
of moving particle while the law of motion of particle were investigated in classical 
mechanics and quntumn mechanics using two determinancy and nondeterminancy method. 

2.1 Physical explanation of boundary extraction from the point of view of classical 
mechanics 
Deformable models are the elastic curves defined within an image domain that can move 
under the influence of internal forces arising from curve smoothness and external forces 
computed from the image data. The internal and external forces are so defined that the 
deformable contour has a minimum energy at the true object boundary. The following 
mapping can represent the deformable contour model: 

 
2( ) : [0, 1]

        ( ( ), ( ))
s R

s x s y s
x


, (1) 

 
Schrödinger Transform of Image: A New Tool for Image Analysis 

 

271 

where [0, 1]s  is the parameterization variable of the object boundary and 0 and 1 
correspond to the start and end points of the boundary. The deformable contour is a curve 

( ) ( ( ), ( ))s x s y sx  that moves in the spatial domain of the image to minimize the energy:  

 
1 2 2

1 20

1 ( | ( )| | ( )| ) ( ( ))
2 extE w s w s E s ds    x x x  (2) 

where 1 2,w w are the weighting parameters controlling the contour’s tension and rigidity 
respectively. ( )sx  and ( )sx  are the first and second order derivatives of ( )sx  with respect 
to s . The external energy extE  is a function of the image data depending on the goal of 
application. For object boundary extraction, it is defined as the image gradient. Suppose 

( )sx  has a local minimum of E  at s , the following Euler-Lagrange Equation has to be 
satisfied: 

 1 2( ) ( ) 0extw s w s E   x x  (3) 

To solve Eq. (3), the boundary conditions of ( )sx  should be given. If the boundary is closed, 
a periodic boundary condition (0) (1)x x  can be attached. Each term in Eq. (3) is considered 
as a force applied on the curve. The internal force 1 2( ) ( )w s w s x x  resists stretching and 
bending while the external potential force extE  pulls the contour towards the boundary. 
Thus, the object boundary is obtained either when the force equilibrium of Eq. (3) or a 
minimum of the energy in Eq. (2) is reached.  

2.2 Physical explanation of boundary extraction from the point of view of quantum 
mechanics 
The deformable contour ( ) ( ( ), ( ))s x s y sx  can further be considered as the path of a moving 
particle in the image if the parameterization variable s  is replaced by the time variable t . By 
referring the work of Feynman and Hibbs (Feynman & Hibbs, 1965), we explain boundary 
extraction from the point of view of quantum mechanics as follows: 
Suppose a particle moves from the position a  at the time at  to the position b  at the time bt , 
e.g., ( ), ( )a ba t b t x x . According to the theory of quantum mechanics, the 
amplitude, ( , )K b a , called kernel or propagator, contains the total contribution of all paths 
between a  and b , which is different from Eq. (2) where only a specific path from a  to 
b with the minimum energy is concerned. In order to distinguish these two types of 
contours, we refer to the contour determined by ( , )K b a  as the quantum contour, denoted as 

( )Q t , while the traditional deformable contour determined by minimizing the energy 
between a  and b  as the classical contour, denoted by ( )X t . Obviously, the classical contour 

( )X t  is considered as a specific case of the quantum contour ( )Q t  when a single path is 
concerned. In physics, the energy functional of a path, E , is defined by: 

 ( ( ), ( ), )b

a

t

t
E L t t t dt  x x  (4) 

where L  is the Lagrangian function of system. For a moving particle with the mass m , and 
potential ( , )V tx , the Lagrangian function is determined by: 
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Comparing Eq. (4) to Eq. (2), we find that the Lagrangian functional of a path in Eq. (4) is 
similar to the energy functional of a contour curve in Eq. (2). Thus, we refer to deformable 
model as the motion of a particle described by classical mechanics. 
In quantum mechanics, the total contribution of all paths between a  to b  is calculated by 

 
( , )

( , ) ( ( ))
R a b

K b a t  x  (6) 

where ( , )R a b  is the set of all paths between a  and b . ( ( )) x t  is the contribution of a path 
( )tx  with a phase proportional to its energy ( ( ))E tx , i.e., 

 (2 / ) ( ( ))( ( )) j h E tt C e    xx  (7) 

where h  is the Planck's Constant and C  is a constant.  
According to the theory of quantum mechanics, the probability1 of a particle moving from 
the position a  at time at  to the position b  at bt , denoted by ( , )P b a , is equal to the square 
amplitude of ( , )K b a , i.e., 

 2( , ) | ( , )|P b a K b a  (8) 

For a system with a simple Lagrangian function, ( , )K b a  can be calculated directly from the 
path integral ((Feynman & Hibbs, 1965)) while for a system with a complex Lagrangian 
function, it is difficult and time-consuming to estimate the value of ( , )P b a from ( , )K b a . In 
order to avoid such difficulty, we estimate the probability of a particle moving from point a 
to point b directly from specific particle models, e.g., a free particle or a particle moving 
through a Gaussian slit, where their motions can be used to describe the boundary of an 
object of interest with a known probability density of appearing at a point.  
There is a stronger motivation of adapting the quantum mechanics than the similarity 
between equations (2) and (4). Snakes, Deformable models, level set methods, etc, are all 
based on classical mechanics in a form of partial differential equation. Although classical 
physics is adequate to explain virtually all phenomena one will ever directly experience in 
one's life, certain phenomena cannot be explained by classical physics. In many respects, 
quantum mechanics presents the physics that underlies physical reality at its most basic 
level. Quantum theory can be thought of as the generalization of classical mechanics and 
many non-classical phenomena that do not have a classical analog are known in the 
quantum physics world. The relationship between classical and quantum mechanics is of 
central importance to the philosophy of physics. Classical mechanics extends the elementary 
Newtonian concepts to the Lagrangian and Hamiltonian formulations, to the least action 
principle, to the angle-action variables, etc, in ways that are the essential framework of 
quantum mechanics. However, there are significant distinctions between the two theories 
that arise not because of quantization, but rather from the nonessential tendency to describe 
macroscopic systems by instantaneous values for position, speed and acceleration, and 
microscopic systems by time-averaged position probability densities. Probability is a bridge 
between classical mechanics and quantum mechanics. The detail discussion of this 
relationship is out of this chapter’s scope, which can be founded by hundreds of literatures 
in quantum mechanics field. 
                                                 
1 Here the probability refers to a relative probability. 
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3. Schrödinger transform of image 
For a complex system, however, it is difficult to calculate the value of ( , )P b a . In 1995, 
Williams and Jacobs derived the probability that a particle with a random walk passes 
through a given position and orientation on a path joining two boundary fragments, which 
is obtained by the product of two vector-field convolutions (Williams & Jacobs, 1995).  
Although some specific particle motions have been considered, a general analytic expression 
of the probability for complex system is still open. In order to calculate the value of ( , )P b a , a 
numerical approximation of ( , )P b a  is needed. In this section, we will try to compute the 
probability ( , )P b a  by using Schrödinger transform of image.  

3.1 Definition of Schrödinger transform of image 
The active contour model or Snake model had their profound physical background. If the 
parameter s  in the deformable contour curve ( ) ( ( ), ( ))s x s y sx could be understood as time 
t , object contour curve ( )tx could be considered as the path of the particle in plane motion. 
Suppose a particle moves from the position a at the time at  to the position at the time 

bt ,e.g., ( )aa x t , ( )bb x t . According to the theory of quantum mechanics, the probability 
of a particle moving from the position a to b at bt , denoted by ( , )P b a , is dependent on the 
kernel ( , )K b a , which is the sum of all paths contribution between ax  and bx , i.e., 
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energy functional of path. The probability from point ax  at time at to point bx  at time bt is 
the square of absolute value of kernel ( , )K b a  from ax  to bx , that is, 

2( , ) | ( , )|p a b K b a . 

We must solve the problem of computing the kernel ( , )K b a  to introduce law of particle 
motion in quantum mechanics into image processing and analysis. For a system with a 
simple Lagrangian function, ( , )K b a  can be calculated directly from the path integral (see 0) 
while for a system with a complex Lagrangian function, it is difficult and time-consuming to 
estimate the value of ( , )P b a from ( , )K b a . Replacing the kernel ( , )K b a  with the wave 
function ( , )u tx in the position x  at the time t , then ( , )u tx satisfied the following 
Schrödinger equation: 
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kernel ( , )K b a , which is the sum of all paths contribution between ax  and bx , i.e., 
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( , ) ( ( ))
R a b

K b a x t  , (9) 

where ( , )R a b  is the set of all paths between ax  and bx . ( ( ))t x  is the contribution of a 
path ( )tx  with a phase proportional to its energy ( ( ))E tx , i.e., 
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energy functional of path. The probability from point ax  at time at to point bx  at time bt is 
the square of absolute value of kernel ( , )K b a  from ax  to bx , that is, 

2( , ) | ( , )|p a b K b a . 

We must solve the problem of computing the kernel ( , )K b a  to introduce law of particle 
motion in quantum mechanics into image processing and analysis. For a system with a 
simple Lagrangian function, ( , )K b a  can be calculated directly from the path integral (see 0) 
while for a system with a complex Lagrangian function, it is difficult and time-consuming to 
estimate the value of ( , )P b a from ( , )K b a . Replacing the kernel ( , )K b a  with the wave 
function ( , )u tx in the position x  at the time t , then ( , )u tx satisfied the following 
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where 27/2 1.054 10h h crg s     , i is imaginary unit. So, the relation between the 
probability ( , )P b a and image gradient ( )G x  can be given in Fig. 1. 
 

 

( )G x  ( , )K b a( )V x ( , )P b aSchrödinger Equation | • |2h(•)  

 
Fig. 1. the relation between the probability ( , )P b a and image gradient ( )G x  

We could rewrite Eq.(11) as the initial-value problem: 
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Continuous Schrödinger transform of image ( ) x  based on ( )v x   is defined as the solution 
of Eq.(12). And the transform is called I-type Schrödinger  transform when ( ) 0v x , 
otherwise the transform is called II-type Schrödinger transform.  
By applying Fourier transform to equation (12) and making use of the properties of Fourier 
transform, we have 
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where the mark '  ’ denotes convolution of two functions, ‘ ^ ’ denotes Fourier transform of 
function. When ( ) 0v x , both ( , )u tx and ˆ( , )u ty  have the following analytic solutions  
(see 0):  

 
2

ˆ ˆ( )aitu e  y y  (14) 

 
2

241 ˆ( , ) ( ) ,   , 0
4

i
atu t e d R t

ait





  

x y
x y y x , (15) 

When ( ) 0v x ， ( , )u tx and ˆ( , )u ty also have analytic solutions (L. C. Evans, 1998), but they 
are too complex to be used to compute their numerical solutions. We give the following 
definition of discrete Schrödinger transform of image because of Eq.(12) and Eq.(13): 
Supposed both ( ) x  and ( )v x  are m n  images, then two-dimensional discrete Schrödinger 
transform of image ( ) x  based on ( )v x is expressed with the following differential equation 
which its Fourier transform satisfies: 

 
2

0

ˆ ˆ( )
ˆ ˆ

t

t

i u V a u

u 

   




y
 

  , (16) 

 
Schrödinger Transform of Image: A New Tool for Image Analysis 

 

275 

where ˆtu


 is mn -dimensional column vector formed by concatenating all the rows of 
m n matrix ˆtu . mn mn  matrix y  was diagonal matrix whose diagonal elements express 
distance. mn mn  matrix V  is a block cyclic matrix, i.e., 
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where iV  is a cyclic matrix, 
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Discrete Schrödinger transform of image ( ) x  based on ( )v x  is denoted by ( )v  while I-
type discrete Schrödinger  transform of image ( ) x is denoted by  ( ) . 
Obviously, the solution of Eq.(16) is  

 
2( )ˆ ˆ( ) ( ) ( )it V a

V u e    yy y . (19) 

If the matrix 2| |V a y can be diagonalized, that is, 2 1V a P DP y , then 

 1 21ˆ ˆ( ) ( , , , ) ( )mnitditd itdu P Diag e e e P y y , (20) 

where 1 2( , , , )mnD Diag d d d   was diagonal matrix. Eq.(19) degenerates into Eq.(14) when 
( ) 0v x . 

3.2 Computation of Schrödinger transform 

The transfer function of Schrödinger transform of image is 
2( )it V ae  y . For a given 

m n image and constant at , I-type Schrödinger transform of image ( , )x y   can be 
computed as the following steps: 
1. Suppose the low frequency component be in the center of image, we construct a  

m n distance matrix ( )uvD d ，where 

2 2( / 2) ( / 2)std u m v n     

2. Compute the transfer function of I-type Schrödinger transform, ( )uvH h  

uvatid
uvh e  

3. Compute the Fourier transform of ( , )x y , ˆ( , )u v  
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are too complex to be used to compute their numerical solutions. We give the following 
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Supposed both ( ) x  and ( )v x  are m n  images, then two-dimensional discrete Schrödinger 
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where ˆtu
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 is mn -dimensional column vector formed by concatenating all the rows of 
m n matrix ˆtu . mn mn  matrix y  was diagonal matrix whose diagonal elements express 
distance. mn mn  matrix V  is a block cyclic matrix, i.e., 
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Discrete Schrödinger transform of image ( ) x  based on ( )v x  is denoted by ( )v  while I-
type discrete Schrödinger  transform of image ( ) x is denoted by  ( ) . 
Obviously, the solution of Eq.(16) is  
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where 1 2( , , , )mnD Diag d d d   was diagonal matrix. Eq.(19) degenerates into Eq.(14) when 
( ) 0v x . 

3.2 Computation of Schrödinger transform 

The transfer function of Schrödinger transform of image is 
2( )it V ae  y . For a given 

m n image and constant at , I-type Schrödinger transform of image ( , )x y   can be 
computed as the following steps: 
1. Suppose the low frequency component be in the center of image, we construct a  

m n distance matrix ( )uvD d ，where 
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4. Compute the Fourier transform of ( ) , ˆ ( ) , according to the following formula:  

ˆ ˆ( ) ( , )uvaitde u v   

5. The I-type Schrödinger transform of image ( , )x y  is the modulus of the inverse Fourier 

transform of ˆ ( ) . 
It is difficult to directly compute  II-type Schrödinger transform of image using Eq.(19). We 
can compute II-type Schrödinger transform using a two step method since the matrix V is 
Block Circulant Matrix and the matrix 2| |y  is diagonal matrix in Eq.(19).  
The block circulant matrix V  is similar to a diagonal matrix, that is, 

 1
VV WD W   (21) 

Here, m nW W W  , mW  is a m m matrix with 2 /( , ) ijk m
mW j k e  , 1 1 1

m nW W W    , 

2 /1 1( , ) ijk m
mW j k e

m
  , and VD  is a mn mn  diagonal matrix.  

We know that the exponential function satisfies x y yxe e e   for any real numbers (scalars) 
x and y . The same goes for commuting matrices: if the matrices X and Y commute 

(meaning that XY YX ), then X Y X Ye e e  . It is usually necessary for A  and B  to 
commute for the law to still hold. However, in mathematics, the Lie product formula, 
named for Sophus Lie, holds for all matrices A  and B , even ones which do not commute. 
That is, for arbitrary real or complex matrices A  and B , 

  / /lim
NA B A N B N

N
e e e


  (22) 

The formula has applications, for example, in the path integral formulation of quantum 
mechanics. It allows one to separate the Schrödinger evolution operator into alternating 
increments of kinetic and potential operators. Hence, we rewrite (19) as 
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For a given N , denote,  
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So, 
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 yy y  (25) 

Where 0ˆ ˆ( ) ( ) y y .  
Replacing V by Eq.(21) in Eq.(25), we get that 
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That is, 

 /1 1
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Note that, 1
ˆ( )k   are Fourier transforms of I-type of image 1( )k  x  and 1W   is inverse 

Fourier transform. Hence,  

 /
1( ) ( )( )VitD N
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x x  (28) 

Here, 1,2, ,k N  , VD  is the inverse Fourier transform of V  while V  is the Fourier 
transform of ( )v x , that is, VD  is a mn mn  diagonal matrix with the diagonal elements 

( )v x . So, we obtain the following  two step method  of computing II-type Schrödinger 
transform:  

Step 1: Using the formual 
2 //

1 1
ˆ ˆ( ) ( )iat NitV N

k ke e 
  y y , compute I-type Schrödinger 

transform of image ( , )x y  in the frequency domain of image (see step (1) to step (4) of 
computing I-type Schrödinger transform of image );  
Step 2: Compute II-type Schrödinger transform of image ( , )x y  in the spatial domain 
of image according to Eq.(28), that is,  
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v N Ne  
 x x x   (29) 

Eq.(29) means that discrete Schrödinger transform of image ( ) x  based on ( )v x  is the 
approximative superposition of  the following two equations  
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Obviously, for continous Schrödinger transform of image ( ) x  based on ( )v x , the 
conclusion mentioned above is not true proposition, that is, eq.(12) can not decompose the 
following two initial-value problem: 
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Hence, there are essential differences betwwen continous Schrödinger transform continous 
and discrete Schrödinger transform.  
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Hence, there are essential differences betwwen continous Schrödinger transform continous 
and discrete Schrödinger transform.  
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3.3 Properties and meaning of Schrödinger transform 
There are a variety of properties associated with the Schrödinger transform of image. The 
following are some of the most relevant for I-type Schrödinger transform of image. Energy 
conservation property also exists for the Schrödinger transform of image like the Fourier 
transform. 
Proposition 1. (Energy Conservation Theorem)Let ( , )u tx  be Schrödinger transform of image 

( ) x ，then 

2 2( , ) ( )u t dx dx
 

 
 x x  

The proposition can be proved according to equation (14) and energy conservation 
properties of 2D Fourier Transform of image. The energy conservation properties of 
Schrödinger transform show that energy will diffuse from high energy to low energy while 
total energy is invariable(Fig. 2). 
 
 

   
           (a)                     (b)             (c) 
 

   
         (d)                  (e) 
 
(a)original image, (b), (c), (d) and (e) are Schrödinger transforms with parameters 0.00001, 0.00005, 
0.0005 and 0.001, respectively. 

Fig. 2. Schrödinger transforms of a circular disc image with different parameters at  
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Proposition 3. Let filter transfer function be 
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increase function of 2y  when 
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at
M


 , that is, ( )H y  is high pass filter. 

High and low pass filter can be obtained using Schrödinger transform of image according to 
the above two propositions. And Schrödinger transform of image can be applied to image 
processing and analysis, such as, boundary extraction, edge enhancement, etc. 
The energy conservation properties of Schrödinger transform show that energy will diffuse 
from high energy to  low energy while total energy is invariable(Fig. 2).The following 
experiments (see Fig. 3 and Fig. 4) show the meaning and function of Schrödinger 
transformation of image, that is, Schrödinger transformation of image can be seen as the 
result of primitive image shrinking inside and spreading outward at the center of object, like 
as interference wave. The bigger at  is, the more obvious the interference is. On the other 
hand, contour curves of object in the transformed image are similar to contour curves of 
object in the original image, and they are too  similar to draw them manually. Hence, I-type 
Schrödinger transform of image is isotropic. 
 
 

   
 

   
            (a)                    (b)            (c) 
 

Fig. 3. I-type Schrödinger transform of image. (a) The original image, (b), (c) are Schrödinger 
transforms. The constant at is 0.0005, 0.001, respectively. 
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(a)original image, (b), (c), (d) and (e) are Schrödinger transforms with parameters 0.00001, 0.00005, 
0.0005 and 0.001, respectively. 

Fig. 4. Schrödinger transforms of a irregular closed image with different parameters at  

4. Scale parameter and potential function of Schrödinger transform 
It is important to select the parameter at  of Schrödinger transformation while the potential 
function is selecte. In the section, we’ll discuss the effects of scale parameter and potential 
function for Schrödinger Transform of image. 

4.1 Schrödinger transform of rectangle image 
Fig. 2 shows the parameter at  is scale parameter of Schrödinger transformation. To make 
clear the relation between the parameter at  and Schrödinger transformation, without loss of 
generality, take Schrödinger transform of rectangle image for example. And, the parameter 
at  is denoted by the parameter a . 
Let a rectangle image be 
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The transfer function of two-dimensional discrete Schrödinger transform is  
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Fig. 5. The function 640,120,280| ( )|g m . a = 0.00001 and 0.0001, respectively 
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Fig. 5. The function 640,120,280| ( )|g m . a = 0.00001 and 0.0001, respectively 
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4.2 Scale parameter of Schrödinger transform 
For given threshold ( 0.5)T  , denote  

     1 2 1 21 , , , , 2
1 1 min : ( ) max : ( )
2 M M M M M Md M m g m T m g m T M        (37) 

Then, the vaiable d , which depend on the constant a , represents the propagation distance 
of I-type Schrödinger transform(see Fig. 6). The following experiment shows that the bigger  
 

 
(a) 480M  , 1 120M  , 2 280M  , 0.5T   

 
(b) 480M  , 1 180M  , 2 400M  , 0.5T   

 
(c) 960M  , 1 180M  , 2 400M  , 0.5T   

Fig. 6. The relationship between  propagation distance d  and scale parameter a .  
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a  is, statistically speaking, the bigger d  is. So, the constant a (or at ) is the Scale Parameter of 
Schrödinger Transform. In the experiment, we investigate the relation between propagation 
distance and the constant a , size of image M , size of object 2 1M M . The variable M  varies 
from 480 to 900 with the increment 10, 2M  from 1 10M   to 100M   with the increment 2, 
and a  from 0.00001 to 0.0001 with the increment 0.00001 while 1 170M   and  the distance 
threshold 0.5T  . We can obtain 88580 samples using Equation (37). The Table 1 lists some 
descriptive statistics of sample datas. Pearson correlation coefficents between propagation 
distance d and a , M , 2 1M M  is 0.823, 0.494 and 0.224, respectively. The multiple 
regression procedures of SPSS estimate a linear equation of the form: 

 2 19.625 0.13 0.01( ) 90249.047d M M M a       (38) 

And standard error of the estimate, which is less than one pixel, is 0.88556. From Fig. 6 and 
Equation (38), we know the biggest affect on propagation distance d  is the scale parameter 
a , size of image M  takes  second place while  the propagation distance d  and scale 
parameter a  have a strong positive linear correlation, the propagation distance d  and size 
of image M  have a weak positive linear correlation,. 
 
variable Mean Std. Deviation 

d  4.8186 3.15129 

M  727.38 118.334 

2 1M M  233.69 146.615 

a  .00005500 .000028723 

Table 1. Descriptive Statistics  

Remark: Schrödinger Transform of image can be directly computed for a little number a by 
using Equation (14) while it needs to use Equation (14) repeatedly for a big unmber a , and 
use a little scale parameter every times, so that interference effect of  Schrödinger Transform 
can be avoided for using a big scale parameter a . 

4.3 Potential function of Schrödinger transform 
It doesn't need to use potential function  for I-type Schrödinger Transform of image, which 
is isotropic. II-type Schrödinger Transform  is anisotropic since nonzero potential function is 
applied. It is necessary that a right potential function is chosed so that we can obtain a 
perfect deformation processing according to anisotropic property of II-type Schrödinger 
Transform. However, if  the potential function VD  is real, from Equation (29), we know 

  /
1 1( )( ) ( ) ( )( ) ( )( )VitD N

V N N Ne   
   x x x x    (39) 

That is, II-type Schrödinger Transform of image ( ) x  based on ( )v x , ( )v  , is only 
equivalent to implement I-type Schrödinger Transform N  times for image  . Obviously, 
that is surely not the result we want. So, the potential function VD  of  II-type Schrödinger 

Transform must be imaginary so that / 1VitD Ne  . Meanwhile, if we hope that deformation 
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processing  of II-type Schrödinger Transform stop in some place, /VitD Ne will be small in 

the place. Hence, if we hope that deformation processing  of II-type Schrödinger Transform 
will be carried through in homogeneous region of image while it will stop in edge region of 
image, we can select the potential function of I-type Schrödinger Transform as the following 
formula: 

 ( ( ( )))VD ih G v  x  (40) 

Where ( )G   is arbitrary gradient or edge-detection operator, ()h is a monotone increasing 
function. 

5. Application of Schrödinger transform 
As a new tool for image analysis, Schrödinger Transform of image can be applied to image 
smoothing, image enchancement, contour extraction, image inpainting and so on. And 
Schrödinger Transform of image can also be applied to image segmentation for 3D image. In 
the section, we’ll give some examples. 

5.1 Constructing high and low pass filter using I-Type Schrödinger transform of image 
By the definition and formula of Schrödinger transform of image, transformed image has 
the same size as the original image. In transformed image, every pixel is related to that of all 
pixels of original image. So Schrödinger transform is global. High and low pass filter of 
image, which can detect image edge, enhance and smooth image, can be constructed 
according to Property 2 and 3 of Schrödinger transform. The filter consider both global and 
local feature of image while the traditional edge detection operators use only local template. 

Suppose Schrödinger transform of m m  image ( ) x  be ( , )u tx . Then, 1 ( ) ( , )
2

u t x x  is the 

smoothed image of image ( ) x while ( ) ( , )u t x x  is the edge image of ( ) x  if 22
at

m


 . 

However, ( , )u tx  is a complex-valued image, the result is not good using the above high and 

low pass filtering directly. Replacing ( ) ( , )u t x x with ( ) ( , )u t x x has better high pass 

filtering effect. Similarly, the smoothing effect of 1 ( ) ( , )
2

u t x x  is better than 

1 ( ) ( , )
2

u t x x . The steps of high pass filtering of image by Schrödinger transform are as 

follows(the steps of low-pass filtering is similar): 
1. Compute Fourier transform ( ) y of image ( ) x ; 

2. Compute Fourier transform ( , )u ty of ( , )u tx , according to 
2| |( , ) ( ) aitu t e  yy y ; 

3. Compute inverse Fourier transform ( , )u ty to obtain Schrödinger transform ( , )u tx of 
image ( ) x ; 

4. Compute ( ) ( , )u t x x  to obtain high pass filtered image; 

5. Enhancing edge of image ( ) x by ( ) ( ) ( , )u t  x x x . 
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We should pay attention to two issues using the above method to detect image edge, 
enhance image and smooth image: 
1. The parameter at  should be appropriate. If the parameter is too small ,the filtering 

effect would not be obvious. Contrariwise, Schrödinger transforme will cause 

interference which effects the filtering. The parameter at  should not exceed 22M
 . In 

the following experiments, Schrödinger transform of image is completed by using 
Schrödinger transform with smaller at  repeatly So that the interference can be avoided.  

2. The origin of coordinates of frequency domain is the center rather than the top left 

corner of the image when the formual 
2| |( , ) ( ) aitu t e  yy y  is used to compute Fourier 

transform ( , )u ty  of ( , )u tx . 
We give the results of image edge detection by using Schrödinger Transform in Fig. 7. The 
experements show the comparison results of a fan image by several edge detection 
operators in Fig. 8. According to the comparison results of traditional edge detection 
operators, the high-pass filter designed by Schrödinger transform can better detect image 
edge and it would not increase noise simultaneously. In fact, filter designed by 
Schrödinger transform consider both the local and global feature of image, so filtering 
effect is better. 
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processing  of II-type Schrödinger Transform stop in some place, /VitD Ne will be small in 

the place. Hence, if we hope that deformation processing  of II-type Schrödinger Transform 
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 ( ( ( )))VD ih G v  x  (40) 

Where ( )G   is arbitrary gradient or edge-detection operator, ()h is a monotone increasing 
function. 
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2

u t x x  is the 
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at

m

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2
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2
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   (a)                  (b)                    (c) 
 

   
   (d)                  (e)                    (f) 
(a) High pass filter based on Schrödinger Transform of Image, (b) Robert operator, (c) Prewitt operator, 
(d) Sobel operator, (e) Canny operator, (f) Laplace operator 

Fig. 8. Comparison of several edge detection methods 

5.2 Automatic contour extraction for multiple objects using I-Type Schrödinger 
transform of image 
5.2.1 Exterior and interior points of multiple objects 
Assume ( , )I x y  be an original image that contains multiple dark objects. We use 
Schrödinger Transforms of original image ( , )I x y  and its inverse image 255 ( , )I x y  to 
obtain exterior and interior of multiple objects. So we can separate dark objects from bright 
background. Let 1( , )u tx , 2( , )u tx  be  Schrödinger transforms of original image and its 
inverse image, respectively. To obtain enough exterior and interior points exactly, in the 
following experiments, we implement Schrödinger transforms of image many times using 
small parameter at . Denote  

1 1( , ) ( , ) ( , )I x y I x y u t  x  

2 2( , ) 255 ( , ) ( , )I x y I x y u t   x  

Then, according to the Proposition 1, these pixels with high gray values in the image 
1( , )I x y  are interior points of multiple objects while these pixels with high gray values in the 

image 2( , )I x y  are exterior points of multiple objects. To obtain interior and exterior points 
of multiple objects, we convert an intensity image to a binary image using Otsu's threshold 
method. 
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5.2.2 Contour extraction of multiple objects 
After obtaining exterior and interior points of multiple objects, we take the following steps 
to extract contours of multiple objects: 
1. Thinning of sets of exterior and interior points. 

Sets of exterior and interior points need to be thinned because there are too many points 
in the two sets. Generally speaking, the exterior points surround the interior points for 
the same object. For each point A  in the set of exterior points(or interior points), we 
could find the point B which is the point with the shortest distance between the point 
A and the set of interior points(or exterior points). The point B shall be added into the 

thinned set of  interior points(or exterior points). 
2. Find pairs of exterior and interior points with the smallest distance between them. 

The closest pair of points problem is a problem of computational geometry. Using the 
brute-force algorithm, the closest pair of points can easily be computed in 2( )O n  time. 
To do that, one could compute the distances between all pairs of points, then pick the 
pair with the smallest distance. The problem can also be solved in ( log )O n n  time using 
the recursive divide and conquer approach (Cormen et al., 2001). 

5.2.3 Algorithm 
The actual operation of the algorithm is as follow: 
1. If necessary, convert an original gray image to a binary image using Otsu's threshold 

method. 
2. Compute  Schrödinger transforms 1( , )u tx , 2( , )u tx of original image and its inverse 

image. 
3. Compute 1 1( , ) ( , ) ( , )I x y I x y u t  x , 2 2( , ) 255 ( , ) ( , )I x y I x y u t   x . 
4. Find interior and exterior points of multiple objects by converting images 1( , )I x y and 

2( , )I x y to binary images using Otsu's threshold method. 
5. Thin sets of exterior and interior points. 
6. Find pairs of exterior and interior points by using the brute-force algorithm. If the 

distance between the pair points is larger than some constant, a new object will appear. 
7. Obtain contours of multiple objects by connecting all pairs of points belong to the same 

object in turn. 

5.2.4 Experiments 
To evaluate the performance of proposed scheme by experiments, we do Schrödinger 
transform and contour extraction experiments using the simulated and real images. 
Schrödinger transform of image can separate boundaries of object from background. Contour 
extraction experiments for the simulated images consisting of three objects are shown in Fig. 9.  
With growing pollution levels and an ever growing coastal population, hydrophobicity 
(water repellence) of insulators has become an important consideration for equipment 
specifiers. An insulator with hydrophobic properties causes water to bead on its surface and 
roll off assisting pollution to freely wash away rather than forming a continuous wet sheet 
or zone and combining with pollutants to form a conductive film. The hydrophobic effect 
helps to reduce discharge activity and maintenance requirements as well as decreasing the 
probability of flashover. Hydrophobicity demonstrated by beading on the surface of a new 
polymer insulator(see Fig. 10(a)). The extracted contours of beads using Schrödinger 
transform of image are shown in Fig. 10(d). 
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The closest pair of points problem is a problem of computational geometry. Using the 
brute-force algorithm, the closest pair of points can easily be computed in 2( )O n  time. 
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6. Find pairs of exterior and interior points by using the brute-force algorithm. If the 

distance between the pair points is larger than some constant, a new object will appear. 
7. Obtain contours of multiple objects by connecting all pairs of points belong to the same 

object in turn. 

5.2.4 Experiments 
To evaluate the performance of proposed scheme by experiments, we do Schrödinger 
transform and contour extraction experiments using the simulated and real images. 
Schrödinger transform of image can separate boundaries of object from background. Contour 
extraction experiments for the simulated images consisting of three objects are shown in Fig. 9.  
With growing pollution levels and an ever growing coastal population, hydrophobicity 
(water repellence) of insulators has become an important consideration for equipment 
specifiers. An insulator with hydrophobic properties causes water to bead on its surface and 
roll off assisting pollution to freely wash away rather than forming a continuous wet sheet 
or zone and combining with pollutants to form a conductive film. The hydrophobic effect 
helps to reduce discharge activity and maintenance requirements as well as decreasing the 
probability of flashover. Hydrophobicity demonstrated by beading on the surface of a new 
polymer insulator(see Fig. 10(a)). The extracted contours of beads using Schrödinger 
transform of image are shown in Fig. 10(d). 
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             (a)                         (b) 

    
              (c)           (d) 
(a) The original simulated image, (b) The interior points of objects (white  pixels),  
(c) The exterior points of objects (white pixels), (d) the extracted contours. 

Fig. 9. The extracted contours of multiple objects using Schrödinger transform of image.  
 

    
     (a)                  (b) 

    
      (c)    (d) 
(a) beads on the surface of a polymer insulator, (b) The interior points of objects (white pixels),  
(c) The exterior points of objects (white pixels), (d) The extracted contours of beads. 

Fig. 10. The extracted contours of beads using Schrödinger transform of image.  
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5.3 Image segmentation using II-Type Schrödinger transform of image 
The following experiments show how to segment the target area by useing II-Type 
Schrödinger Transform. Fig. 11 shows segmentation results of an image with three goals, 
Fig. 12 shows object segmentation results of a fan image. The two results show that we can 
extract the contour of object using evolution of II-Type Schrödinger Transform of image. The 
segmentation results are less depending on the initial contour, as long as be the inside or 
outside the target area. 
 
 
 
 
 
 

 
         (a)                               (b) 
 
 
 
 

 
         (c)               (d) 
 
 
 
(a) original image, (b) image of potential function, 
(c) initial region of object, (d) segmented region of object 

Fig. 11. segmented result images of three objects by using II-type Schrödinger transform of 
image 
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5.3 Image segmentation using II-Type Schrödinger transform of image 
The following experiments show how to segment the target area by useing II-Type 
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(a) original image, (b) image of potential function, 
(c) initial region of object, (d) segmented region of object 

Fig. 12. segmented result of fan image by using II-type Schrödinger transform of image 

6. Conclusion 
Image segmentation has been, and currently still is, a relevant research area in Computer 
Vision, and hundreds of segmentation algorithms have been proposed in the last few 
decades. However, it is well known that elemental segmentation techniques based on edge 
or region information often fail to produce accurate segmentation results. The chapter 
attempts to provide a brief introduction of Schrödinger transform of image for the novel 
segmentation techniques and discussed its potential applications in image analysis and 
understanding. Schrödinger transform of image is extended from I-type to II-type. 
Schrödinger Transform of image is applied to image smoothing, image enchancement, 
contour extraction, and so on. The demonstrate experiment results show the robust of the 
algorithm. 
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Fig. 12. segmented result of fan image by using II-type Schrödinger transform of image 
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1. Introduction

Entanglement is one of most peculiar characteristic of Quantum Mechanics (probably
the other most mentioned is the particle tunneling through a barrier) because it entails
correlations that supersedes classical correlations. It is conceived as the genuine quantum
characteristic by many researchers and quite recently it has emerged as a physical resource
to produce non-classical task, like quantum teleportation, quantum cryptography and
quantum information. Entanglement could be distributed (efficient quantum communication
is equivalent to efficient entanglement distribution (Plenio & Virmani, 2007)), concentrated
(given an amount of entanglement, equal to the full content of entanglement in n pairs of
identical entangled pure state systems, it is possible, using local operations on each system,
to concentrate the total amount of entanglement into a smaller number m, m < n, of
maximally pure entangled state system (Bennett, et al.; 1996)) and used to perform many
quantum information tasks useful to overcome technical restrictions present on classical
communication.
In this chapter, we review the entanglement of quantum mechanical systems. First, in Section
2, we give a characterization of entanglement in terms of its special features as resource and
its mathematical structure. Then, in section 3, we review some of the Bell inequalities. In
Sections 4 and 5, we review some of the most important entanglement measures published
for two and three entangled systems. After that, in Section 6, we give a characterization of
quantum gates and operators by its entanglement power, i. e. the amount of entanglement
that they can produce when acting on an arbitrary state. Finally, in Section 7, we briefly review
the experimental detection of entanglement.

2. What is entanglement?

In this Section we define entanglement by its mathematical structure and talk about the
operational entanglement definition. We show some important issues of the mathematical
description of entanglement, in terms of density operator, that serves as a base to the
development of the following sections of the chapter. The question: What is entanglement? is
one of the most quite difficult and subtle one that we can ask, then it is a naive thought to think
that it is an easy task to answer it. Then, what we propose as an answer to that question is
just a characterization of entanglement by both its mathematical structure and its operational
features in terms of nonlocal properties.
Entanglement could be mathematically or operationally defined. Operational definition
of entanglement uses the concept of Local Operations and Classical Communication (LOCC)
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2 Will-be-set-by-IN-TECH

(Bennett, et al.; 1996). LOCC is a restriction to use only local operation and classical
communications; that is to say, it is not allowed to exchange any quantum system nor
to perform any nonlocal operation (Bennett, et al.; 1996). In this case, entanglement is
conceived as the resource that allows to overcome the restriction of LOCC. Keeping this line
of thought, classical correlations are those generated by LOCC operations and the quantum
ones are those that cannot be simulated classically, see (Plenio & Virmani, 2007) page 3. The
operational definition of entanglement is quite useful because it allows both to understand
entanglement as a physical resource and gives the background to define some measurements
of entanglement, like the entropy of entanglement.
Formally, mathematically, but roughly speaking, we can define entanglement as quantum
states that can not be writing as the product of two wave functions, that is, for two two-state
systems we have, for example:

|ψ�12 = |φ0�1 (c1|ξ0�2 + c2|ξ1�2) → un − entangled, (1)

|ϕ�12 = c (|φ0�1|ξ0�2 + |φ1�1|ξ1�2) → entangled. (2)

Where |φ0�, |ξ0�, |φ1� and |ξ1� are basis states, and c1, c2 and c are normalization constant. The
subindices refer to system 1 and system 2. We can consider, also, that system 1 and system
2 are situated far away in two different places. Usually, in quantum information theory,
this is stated as: System 1 belongs to Alice and system 2 belongs to Bob. Physically we can
say regarding Eq. (1) that each quantum system have its own state, whereas in Eq. (2) each
systems does not have its own state, but share (although they are far away) a global state.
However, it is possible to assign a density matrix with each system, this could be seen more
clearly if we look at the density operator of the state given by Eq. (2):

ρ̂12 = |ϕ�12 12�ϕ| = |c|2
{
|φ0�11�φ0| |ξ0�22�ξ0|+ |φ0�11�φ1| |ξ0�22�ξ1|+

|φ1�11�φ0| |ξ1�22�ξ0|+ |φ1�11�φ1| |ξ1�22�ξ1|
}

. (3)

Now, in order to obtain the density operator for one system, we can take the partial trace over
one system of the density operator given in Eq. (3), for instance taking the trace over system 2
we obtain the density operator for system one, as follow:

ρ̂1 = Tr2{ρ̂12} = |c|2{|φ0�11�φ0|+ |φ1�11�φ1|
}

, (4)

Eq. (4) is a mixed state. This mean that although systems 1 and 2 does not have its own wave
function, as it is stated in Eq. (2), yet it is possible to assign a density operator with each
system. In other words, and contrary to Eq. (1), an entangled state seems to each party to be a
mixed state Bennett (et al.; 1996).
In fact, any entangled two two-state systems could be writing in terms of its Schmidt form:

|ϕ� = ∑
i=1

√
λi|ei� ⊗ |hi� (5)

where, |ei� and |hi� are ortogonal vectors in the Hilbert spaces of each system, with dimensions
m and n, respectively. Hence, the density matrix for each system could be written as, for a
proof see (Hughston, et al.; 1993):

ρ̂1 =
m

∑
i=1

λi|ei��ei|, ρ̂2 =
n

∑
i=1

λi|hi��hi|. (6)
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On the other hand, if ρ̂x correspond to a product state, i.e. non-entangled, then

ρ̂2
x = ρ̂x, (7)

where x = 1, 2. That is to say, for two systems an entangled state does not fulfill Eq. (7). You
can check this using Eqs. (1) and (3), for a general proof see (Popescu & Rohrlich, 1998).
Many intriguing phenomena come from the peculiarities of Eq. (2). For example, in classical
mechanics it is not possible to influence the result of a measurement in one system by
acting in another system that no longer interacts with the former system, however entangled
states make this possible for quantum physical systems. This is the non-locality feature of
quantum mechanical systems, although entanglement is not the same that non-locality Méthot
& Scarani (2007).

3. J. S. Bell insight on the physical properties of entangled systems

The physical properties of entangled states represents a high departure from the properties of
classical systems. Besides of being the building blocks to construct many non-clasical task,
entanglement serves as theoretical tool to understand and prove many genuine quantum
properties. Then, in this section, we review some of the first noticed physical peculiarities
of entanglement based in the insight of J. S. Bell, who first notices the way to test classical
correlations against quantum correlations.
In the year 1935 Einstein, Podolsky and Rosen (Einstein, et al.; 1935), introduced an argument
that, if is taken seriously, questioned the quantum mechanical description of physical
phenomena. This argument is widely know as the EPR paradox. For almost thirty years
the EPR argument remains as a philosophical issue, until J. S. Bell deduced some predictions
that could be experimentally tested. These predictions were based on the great insight that
Bell developed about the quantum correlations that entangled states have.
Briefly, the EPR argument was based on two quite reasonable assumptions (Einstein, et al.;
1935):

1. If, without in any way disturbing a system, we can predict with certainty (i. e., with probability
equal to unity) the value of a physical quantity, then there exist an element of physical reality
corresponding to this physical quantity.

2. ... the absence of an interaction between the two systems.

The first assumption was aimed at establishing that a theory should be complete; of course
it had have strong influence on the conceptions of the physical reality; that is to say, that
physical variables have predetermined values independent of measuring them or not. The
second, intended to consider as valid only physical process in which the measurement in one
quantum system does not affect the result of measurement done on another quantum system
when they do not interact and are far away from each other. Based on these assumptions,
an in the analysis of measurement’s results made on entangled states correlated in position
and momentum, Einstein et. al. conclude (Einstein, et al.; 1935): “ While we have thus shown
that the wave function does not provide a complete description of the physical reality, we left open
the question of whether or not such description exist. We believe, however, that such a theory is
possible. ” This conclusion has been interpreted by physicists, if it is true, as implying that
quantum mechanics is not a complete theory and that it must be supplemented with some
hidden variables. In short, what Einstein, et al., were looking for was to determine whether or
not the measurement result, on two correlated systems, of one observable in system B could
be valid predicted using the measurement result of one observable on system A, when the

295Entanglement in Two and Three Quantum Mechanical Systems



2 Will-be-set-by-IN-TECH

(Bennett, et al.; 1996). LOCC is a restriction to use only local operation and classical
communications; that is to say, it is not allowed to exchange any quantum system nor
to perform any nonlocal operation (Bennett, et al.; 1996). In this case, entanglement is
conceived as the resource that allows to overcome the restriction of LOCC. Keeping this line
of thought, classical correlations are those generated by LOCC operations and the quantum
ones are those that cannot be simulated classically, see (Plenio & Virmani, 2007) page 3. The
operational definition of entanglement is quite useful because it allows both to understand
entanglement as a physical resource and gives the background to define some measurements
of entanglement, like the entropy of entanglement.
Formally, mathematically, but roughly speaking, we can define entanglement as quantum
states that can not be writing as the product of two wave functions, that is, for two two-state
systems we have, for example:

|ψ�12 = |φ0�1 (c1|ξ0�2 + c2|ξ1�2) → un − entangled, (1)

|ϕ�12 = c (|φ0�1|ξ0�2 + |φ1�1|ξ1�2) → entangled. (2)

Where |φ0�, |ξ0�, |φ1� and |ξ1� are basis states, and c1, c2 and c are normalization constant. The
subindices refer to system 1 and system 2. We can consider, also, that system 1 and system
2 are situated far away in two different places. Usually, in quantum information theory,
this is stated as: System 1 belongs to Alice and system 2 belongs to Bob. Physically we can
say regarding Eq. (1) that each quantum system have its own state, whereas in Eq. (2) each
systems does not have its own state, but share (although they are far away) a global state.
However, it is possible to assign a density matrix with each system, this could be seen more
clearly if we look at the density operator of the state given by Eq. (2):

ρ̂12 = |ϕ�12 12�ϕ| = |c|2
{
|φ0�11�φ0| |ξ0�22�ξ0|+ |φ0�11�φ1| |ξ0�22�ξ1|+

|φ1�11�φ0| |ξ1�22�ξ0|+ |φ1�11�φ1| |ξ1�22�ξ1|
}

. (3)

Now, in order to obtain the density operator for one system, we can take the partial trace over
one system of the density operator given in Eq. (3), for instance taking the trace over system 2
we obtain the density operator for system one, as follow:

ρ̂1 = Tr2{ρ̂12} = |c|2{|φ0�11�φ0|+ |φ1�11�φ1|
}

, (4)

Eq. (4) is a mixed state. This mean that although systems 1 and 2 does not have its own wave
function, as it is stated in Eq. (2), yet it is possible to assign a density operator with each
system. In other words, and contrary to Eq. (1), an entangled state seems to each party to be a
mixed state Bennett (et al.; 1996).
In fact, any entangled two two-state systems could be writing in terms of its Schmidt form:

|ϕ� = ∑
i=1

√
λi|ei� ⊗ |hi� (5)

where, |ei� and |hi� are ortogonal vectors in the Hilbert spaces of each system, with dimensions
m and n, respectively. Hence, the density matrix for each system could be written as, for a
proof see (Hughston, et al.; 1993):

ρ̂1 =
m

∑
i=1

λi|ei��ei|, ρ̂2 =
n

∑
i=1

λi|hi��hi|. (6)

294 Measurements in Quantum Mechanics Entanglement in Two and Three Quantum Mechanical Systems 3

On the other hand, if ρ̂x correspond to a product state, i.e. non-entangled, then

ρ̂2
x = ρ̂x, (7)

where x = 1, 2. That is to say, for two systems an entangled state does not fulfill Eq. (7). You
can check this using Eqs. (1) and (3), for a general proof see (Popescu & Rohrlich, 1998).
Many intriguing phenomena come from the peculiarities of Eq. (2). For example, in classical
mechanics it is not possible to influence the result of a measurement in one system by
acting in another system that no longer interacts with the former system, however entangled
states make this possible for quantum physical systems. This is the non-locality feature of
quantum mechanical systems, although entanglement is not the same that non-locality Méthot
& Scarani (2007).

3. J. S. Bell insight on the physical properties of entangled systems

The physical properties of entangled states represents a high departure from the properties of
classical systems. Besides of being the building blocks to construct many non-clasical task,
entanglement serves as theoretical tool to understand and prove many genuine quantum
properties. Then, in this section, we review some of the first noticed physical peculiarities
of entanglement based in the insight of J. S. Bell, who first notices the way to test classical
correlations against quantum correlations.
In the year 1935 Einstein, Podolsky and Rosen (Einstein, et al.; 1935), introduced an argument
that, if is taken seriously, questioned the quantum mechanical description of physical
phenomena. This argument is widely know as the EPR paradox. For almost thirty years
the EPR argument remains as a philosophical issue, until J. S. Bell deduced some predictions
that could be experimentally tested. These predictions were based on the great insight that
Bell developed about the quantum correlations that entangled states have.
Briefly, the EPR argument was based on two quite reasonable assumptions (Einstein, et al.;
1935):

1. If, without in any way disturbing a system, we can predict with certainty (i. e., with probability
equal to unity) the value of a physical quantity, then there exist an element of physical reality
corresponding to this physical quantity.

2. ... the absence of an interaction between the two systems.

The first assumption was aimed at establishing that a theory should be complete; of course
it had have strong influence on the conceptions of the physical reality; that is to say, that
physical variables have predetermined values independent of measuring them or not. The
second, intended to consider as valid only physical process in which the measurement in one
quantum system does not affect the result of measurement done on another quantum system
when they do not interact and are far away from each other. Based on these assumptions,
an in the analysis of measurement’s results made on entangled states correlated in position
and momentum, Einstein et. al. conclude (Einstein, et al.; 1935): “ While we have thus shown
that the wave function does not provide a complete description of the physical reality, we left open
the question of whether or not such description exist. We believe, however, that such a theory is
possible. ” This conclusion has been interpreted by physicists, if it is true, as implying that
quantum mechanics is not a complete theory and that it must be supplemented with some
hidden variables. In short, what Einstein, et al., were looking for was to determine whether or
not the measurement result, on two correlated systems, of one observable in system B could
be valid predicted using the measurement result of one observable on system A, when the

295Entanglement in Two and Three Quantum Mechanical Systems



4 Will-be-set-by-IN-TECH

observables, i. e. the operators representing them, does not commute and when there is not
any interaction between the systems A and B.
In his work, Bell first show that previously published arguments concerning the impossibility
of hidden variables theories were not well supported (Bell, 1966). Then, he assume some
desirable requirements, as the condition of locality, that such theory should have (Bell, 1964)
-although he show that such theory should be non-local to reproduce the quantum mechanical
statistic results-. These requirements produces some predictions, regarding the statistical
correlations of observables, that could be experimentally tested (Bell, 1964). These predictions
are established as inequalities equations. Below we write down the Clauser, et al. inequality
because it has been one of the most influencing inequalities (Clauser, et al.; 1969),

|P(a, b)− P(a, c)|+ P(b�, b) + P(b�, c) ≤ 2, (8)

in Eq. (8), the correlation P(i, j) ≡ ∫
A(i, λ)B(j, λ)ρ(λ)dλ; A(i, λ) and B(j, λ) are the

result of the measurement (with values ±1). The average is taken over many experiment
measurements, i. e. inside the total λ space. Locality requires that A(i, λ) must be independent
of j and B(j, λ) independent of i. Inequality given by Eq. (8) could be deduced by appealing
to local hidden variables (Clauser, et al.; 1969) or, as was done by Eberhard (Eberhard, 1977),
using just local causes. What Bell shown was that quantum mechanics statistical correlations
violate an inequality equation similar to that given by Eq. (8).
As it was stated above, Eq. (8) has been deduced under the assumption of local hidden
variable theories. A recent study (Gröblacher, et al.; 2007) obtains a similar inequality for
a class of non-local hidden variable theories (which is a generalization of one proposed by
Leggett (Leggett, 2003)). This group experimentally test the violation of this inequalities,
therefore they shown that a wide varieties of non-local hidden variables theories are in
contradiction with quantum mechanics predictions.

4. Physical properties and entanglement measures of two quantum mechanical
system

In the current years, there is an agreement between many researcher about the distinguishing
features of the physical properties and entanglement measures for just two quantum
mechanical system. We can say that this agreement is a universal one. Then, in this Section
we review some of the most important entanglement measures for two states systems.
After passing the years of philosophical debates, the most studied entangled state correspond
to two-entangled systems. This entangled states were experimentally produced and used to
test Bell’s inequalities. Some quantum states were named after Bell, nowadays widely know
as Bell states:

|Ψ+� = 1
2
(|0�1|1�2 + |1�1|0�2) ,

|Ψ−� = 1
2
(|0�1|1�2 − |1�1|0�2) ,

|Φ+� = 1
2
(|0�1|0�2 + |1�1|1�2) ,

|Φ−� = 1
2
(|0�1|0�2 − |1�1|1�2) . (9)

We can say that this are probably the most studied and understood states between the
entangled states. They are though as the maximally two-entangled states and they could be
used as a basis.

4. Physical properties and entanglement measures of two quantum 
mechanical system 
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The physical properties of this states are remarkable, it allows teleportation of quantum states
between separate locations (Bennett, et al.; 1993), were the background to test Bells inequalities
(Popescu & Rohrlich, 1998) and they serve as a reference tool to understand many facets of
quantum information theory.

4.1 Two state entanglement measures
Nowadays, there is a general consensus about Entanglement measures for two systems,
specially for two two-states systems. In fact, there are some proposed desired requirements
for these measurements (Horodecki, et al.; 2000; Vedral, et al.; 1997; Vedral & Plenio, 1998). In
this subsection we only refer to three entanglement measures: the entropy of entanglement,
the concurrence and the geometric measurement of entanglement. For more complete review,
see (Horodecki, et al.; 2009; Plenio & Virmani, 2007).

4.1.1 Entropy of entanglement
One of the first proposed entanglement measures was the entropy of entanglement, which for
two entangled quantum mechanical system is defined as the von Neumann entropy of either
system, i. e. ρ̂1 or ρ̂2, (Bennett, et al.; 1996):

E = −Trρ̂1 log2 ρ̂1. (10)

E gives the amount of entanglement for a given pure quantum entangled state, it is one for
maximum entangled states and zero for separable states. For a mixed state, it is possible
to use E as a departure to measure its amount of entanglement. In this case the measure
of entanglement is called entanglement of formation, Ef (ρ̂), and it is given by (Bennett, et al.;
1996b):

Ef (ρ̂) = min ∑
j

pjE(Φj), (11)

where the minimum must be taken over all pure state decomposition of ρ̂. The operational
meaning of the entanglement of formation is that the Ef (ρ̂) given by Eq. (11) gives the number
of singlet states required to create ρ̂ (Plenio & Virmani, 2007; Wootters, 2001). Also, it is worth
to mention that neither E given by Eq. (10) nor Ef (ρ̂) given by Eq. (11) do not increase under
local operations and classical communications (Bennett, et al.; 1996b).

4.1.2 The concurrence
Perhaps, one of the most widely recognized entanglement measure is the concurrence
(Wootters, 2001) and (Wootters, 1998). The concurrence C(Φ) is defined as (Wootters, 2001):

C(Φ) = |�Φ|Φ̃�|, (12)

where |Φ̃� is the spin-flip operation |Φ̃� = (
σy ⊗ σy

) |Φ∗�, and |Φ∗� is the complex conjugate
of |Φ�. An easy way to calculate the concurrence is by using the magic states, which are
defined in terms of the bell states given in Eq. (9) (Hill, 1997):

|e3� = i|Ψ+� = i
2
(|0�1|1�2 + |1�1|0�2) ,

|e4� = −|Ψ−� = −1
2
(|0�1|1�2 − |1�1|0�2) ,

|e1� = |Φ+� = 1
2
(|0�1|0�2 + |1�1|1�2) ,

|e2� = −i|Φ−� = i
2
(−|0�1|0�2 + |1�1|1�2) . (13)
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4.1.1 Entropy of entanglement
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system, i. e. ρ̂1 or ρ̂2, (Bennett, et al.; 1996):
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Ef (ρ̂) = min ∑
j

pjE(Φj), (11)
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) |Φ∗�, and |Φ∗� is the complex conjugate
of |Φ�. An easy way to calculate the concurrence is by using the magic states, which are
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|e3� = i|Ψ+� = i
2
(|0�1|1�2 + |1�1|0�2) ,

|e4� = −|Ψ−� = −1
2
(|0�1|1�2 − |1�1|0�2) ,

|e1� = |Φ+� = 1
2
(|0�1|0�2 + |1�1|1�2) ,
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2
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in terms of the states defined in Eq. (13), the concurrence is defined as (Hill, 1997):

C(Φ) =

∣∣∣∣∣∑i
α2

i

∣∣∣∣∣ (14)

where αi are the expansion coefficients of |Ψ� = ∑i αi|ei�. Notice that what is squared is the αi
itself, not their absolute value.

4.1.3 The Geometric Measurement of Entanglement (GME)
The Geometric Measurement of Entanglement (GME) was defined by Shimony (Shimony,
1993). The GME uses ideas of Hilbert space geometry (Shimony, 1993; Wei & Goldbart, 2003)
and it is related with the relative entropy of entanglement (Wei, et al; 2004). Given an arbitrary
bipartite state |ψ�, the GME is defined as (Shimony, 1993):

E(ψ) =
1
2

min || |ψ� − |φ� ||2 , (15)

where |φ� is a normalized product state and the minimum is taken over the set of normalized
product state (Shimony, 1993). The Eq. (15) determines the entanglement content of |ψ� by
calculating the minimum distance between |ψ� and the nearest separable state |φ�. Eq. (15)
could be interpreted as: the more amount of entanglement in a given state, then further away
it will be from its nearest un-entangled approximant (Wei & Goldbart, 2003). The GME reaches
its greatest value 1

2 for a maximal entangled state and zero for un-entangled states.

5. Physical properties and entanglement measures of three quantum mechanical
systems

In this Section we review some of the important features of three quantum mechanical
entangled systems. First we talk about the Bell’s theorem for the three party case, then we
review the generalizations of Gisin’s theorems for three entangled states. After that, we briefly
review some of the most important entanglement measures for three quantum mechanical
systems. It is not possible to give a complete review of all the entanglement measures, so we
left out some others important entanglement measures like the negativity.
The multi-particle entanglement is more complex than two party entanglement, even for
the case of three party quantum mechanical systems. For example, just for the three party
entangled state case, there are quantum correlations that could not be explained even in the
case of perfect correlations (Greenberger, et al.; 1990); in other words, the three entangled
states present features not usually encounter in two entangled states which make them the
simplest nontrivial entangled states showing fundamental and strong differences compared
to that of two entangled systems. Additionally, whereas for two entangled states it is
possible to define entanglement measures by mean of a single number1 giving the amount of
entanglement present in the state, such a single number does not exist for three entanglement
measures. In fact, to quantify the amount of entanglement present in a given three quantum
mechanical system is yet an open problem.

1 When the state of two quantum mechanical systems is expressed using the Schmidt decomposition, if
it is entangled, then, it contains only two different Schmidt number, i. e.

√
λ1 and

√
λ2 that are related

by λ2 = 1 − λ1 .

5. Physical properties and entanglement measures of three quantum 
mechanical systems 
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5.1 Bell’s theorems for three quantum mechanical systems
It was shown by Greenberger, et. al. (Greenberger, et al.; 1990) that three quantum entangled
mechanical systems reveal inconsistencies between the EPR premises. In particular the
expectation value E(φ1, φ2, φ3) of the outcomes of a measurement of three observables made
in the following state:

|ψ� = 1√
2
(|a�|b�|c�+ |a∗�|b∗�|c∗�) , (16)

is given by (Greenberger, et al.; 1990):

E(φ1, φ2, φ3) = sin (φ1 + φ2 + φ3) , (17)

this expectation values predicts the following perfect correlations:

E(φ1, φ2, φ3) = 1 f or φ1 + φ2 + φ3 =
π

2
,

E(φ1, φ2, φ3) = −1 f or φ1 + φ2 + φ3 =
3π

2
, (18)

these correlations are inconsistent with the premises of EPR (Greenberger, et al.; 1990). To
show this, set φ1 = π

2 and φ2 = φ3 = 0; then there could exist variables A(λ), B(λ), C(λ) in a
classical theory such that for a suitable election of apparatus (Żukowski, et al.; 1998):

A(π/2)B(0)C(0) = 1,
A(0)B(0)C(π/2) = 1,
A(0)B(π/2)C(0) = 1,

A(π/2)B(π/2)C(π/2) = −1. (19)

the allowed values of the observables A, B; C are ±1, therefore multiplying the left hand side
of Eqs. (19) we obtain 1, however the right hand side multiplication gives −1 (Żukowski, et
al.; 1998). Therefore (Greenberger, et al.; 1990; Żukowski, et al.; 1998), the EPR assumption are
inconsistent with quantum mechanics even for the special case of perfect correlations given in
Eq. (18).

5.1.1 Gisin’s theorem for three qubits
In 1991, N. Gisin (Gisin, 1991) proves that any non-product state, i.e. any entangled state, of
two particle systems violate Bell’s inequality. Essentially what he proves was that the Clauser,
et al. (Clauser, et al.; 1969) inequality is violated for any entangled two-state system. That is
to say, using the Schmidt decomposition given in Eq. (5) and the fact that for an entangled
state there is at least two different

√
λi, i. e.

√
λ1 and

√
λ2, then:

|P(a, b)− P(a, b∗)|+ P(a∗, b) + P(a∗, b∗) = 2
(

1 + 4|
√

λ1
√

λ2|
)−1/2

, (20)

Eq. (20) is strictly greater that 2 for entangled states. This is Gisin’s theorem.
The next question is whether a similar proof can be given for more than two entangled state
systems. Gisin himself argue that such a result does not holds. However, as far as we know,
there are at least two restrict generalizations of Gisin’s theorem for three quantum entangled
systems. The first one was given by Chen, et al. (Chen, et al.; 2004); first they study cases
for the generalized GHZ states, i.e. |ψ�GHZ = cos(ξ)|000� + sin(ξ)|111� and work out an
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inequality of the following type:

B(Bell) ≥ 1
2
+

1
3

√
1 + sin2(2ξ). (21)

There is an essential difference between Eq. (20) and Eq. (21), it is that in the case of
Gisin’s theorem P(a, b) refers to expectation value whereas in the case of Eq. (21) B(Bell)
is a probability. Hence, what Chen, et. al. prove is the theorem: All generalized GHZ states of
three-qubit system violates a probability Bell’s inequality.
There are other proof of Bell’s inequalities for three entanglement quantum mechanical
systems. In fact, the search for Bell’s type inequalities is an active research field . For example,
Wu et. al. (Wu, et al.; 2008) presented a new Bell’s inequality in terms of correlation functions
and according to the authors this inequality is violated by any pure entangled state of three
qubits. Also, Li and Fei (Li & Fei, 2010) present Bell type inequalities for multipartite states of
arbitrary dimensions. Additionally, see the paper by Żukowski, et al. (Żukowski, et al.; 2002).
.
Finally, Ghose, et. al., (Ghose, et. al.; 2009) have shown that the generalized GHZ state does
not violate the Svetlichnys inequality for τ ≤ 1/2, where τ is the 3-tangle defined below.
Then, showing a way to test for genuine tripartite nonlocal correlations.

5.2 Three entanglement measures
Three entangled quantum mechanical systems differ from two entangled systems in many
features. One of them is that whereas for two entangled systems it is possible to find local
operations (LOCC) that interconverts one entangled state to another such process is not
possible for three entangled systems. When it is possible to obtain an entangled state |ψ�12
from other entangled state |φ�12 using only LOCC, then it is agree that these two entangled
states are equivalent because it is possible to carry out the same task with them. In fact, for two
two-state entangled quantum mechanical systems it is possible to find such interconversion.
However, this is not true for three entangled quantum mechanical systems. In this case it is
well know that there are at least two inequivalent kinds of tripartite entanglement (Dür, et al.;
2000). The first one correspond to the GHZ state:

|GHZ� = 1√
2
(|000�+ |111�) , (22)

the second one correspond to the W state:

|W� = 1√
3
(|001�+ |010�+ |100�) . (23)

There is no way to convert |GHZ� in |W� using LOCC and viceversa (Dür, et al.; 2000). This
fact is related to the problem of the generalization from two quantum states measurement of
entanglement to three entanglement measurement. What it is found in the literature is that
there is not a single universal measurement of entanglement for the case of three entangled
quantum mechanical systems.

5.2.1 Residual entanglement
When generalizing the concurrence C(Φ) to three quantum mechanical systems Coffman et.
al. (Coffman, et al.; 2000) define the residual entanglement, called the 3-tangle, as:

τABC = C2
B(AC) − C2

BC − C2
BA, (24)
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in Eq. (24), C2
BC is the concurrence between the systems B and C, C2

BA is the concurrence
between the systems B and A and C2

B(AC) is the concurrence between the system B and the
system formed by systems A and C, the last taken as if were a single system AC. Far from be
an universal measurement of entanglement, the residual entanglement gives 1 for the GHZ
states and 0 for the W state (Coffman, et al.; 2000).

5.2.2 Geometric Measurement of Entanglement (GME)
The Geometric Measurement of Entanglement (GME) can be extended to define an
entanglement measure for three quantum mechanical systems (Wei & Goldbart, 2003). For
example, consider a three pure entangled state given by :

|ψ�123 = ∑
j1,j2,j3

|e1
j1 e2

j2 e3
j3 �. (25)

Then, the GME is obtained by the following procedure (Wei & Goldbart, 2003), first minimize
E(ψ)

E(ψ) = min | |ψ�123 − |φ� |2, (26)

where |φ� = ⊗3
i=1|φi� and |φi� = ∑ji ci

ji
|ei

ji
� (Wei & Goldbart, 2003). Then, find the

entanglement eigenvalue Λmax. Finally, the GME for three entangled system is given by:

Esin2 = 1 − Λ2
max. (27)

In some cases it is possible to use the symmetry of the entangled state to alleviate the difficulty
of calculations Wei & Goldbart (2003). For the GHZ state the Esin2 = 1/2 and for the W state
it is Esin2 = 5/9 Wei & Goldbart (2003).

5.2.3 Schmidt measurement
The Schmidt measurement of entanglement was defined by Eisert and Briegel (Eisert &
Briegel, 2001), it is based in the Schmidt representation of quantum states. That is, consider a
three state quantum system with parties A1, A2 and A3, then its state is given by:

|ψ� =
R

∑
i

αi|ψ(i)
A1
� ⊗ |ψ(i)

A2
� ⊗ |ψ(i)

A3
�, (28)

where |ψ(i)
Aj
� ∈ Cdj , j = 1, 2, 3; αi ∈ C; i =, 1, ..., R. Let r be the minimal number of product

terms R in the decomposition of |ψ�, then the Schmidt measure is defined as (Eisert & Briegel,
2001):

P(|ψ�) = log2 r. (29)

This entanglement measure is a generalization of the concept of Schmidt rank of density
matrix for more than two quantum mechanical systems (Sanpera, et al.; 2001). It satisfy
almost all the desired properties of a entanglement measure (Eisert & Briegel, 2001). Inclusive,
contrary to the 3-tangle, it discriminates between the GHZ and W states, for the former
P(|ψ�) = 1 and for the latter P(|ψ�) = log2 3 (Eisert & Briegel, 2001). See also, (Sperling
& Vogel, 2011).
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6. Entanglement power of operators and quantum gates

In this section we show that an operator or quantum gate could be characterized by calculating
the entanglement produced by the operator or gate when acting in a product state. In
Kraus and Cirac (Kraus& Cirac, 2001), it was stated that it is possible to give a two-qubit
gate characterization in terms of the entanglement that it can produce when acting on a
separable state. The Kraus & Cirac goal were the determination of the best separable input
state that gives as much entanglement as possible when acting on them by a given operator
represented by an unitary operator. One of the operator that they study was Ud = e−iαSx =
cos(α)− i sin(α)σx ⊗ σx. they found that the best input state to produce the maximal entangled
state, as measured by the concurrence, is:

|φ�AA∗ = ca|0�A|0�A∗ + sa|1�A|1�A∗ ,
|ψ�BB∗ = sb|0�B|0�B∗ + cb|1�B|1�B∗ . (30)

Another possibility to characterize a quantum gate is by calculating the entanglement
produced by that gate on an arbitrary separable state. This was done by García Quijas, et.
al. (García, et al.; 2011). Additionally, García Quijas and Arévalo Aguilar (García, et al.; 2010)
characterize, both the control Z phase gate and the relative phase gate for two qubits. Here is
shown the amount of entanglement produced by the relative phase gate for three qubits, in
order to characterize this gate. Supose that the relative phase gate acts on an arbitrary three
qubit given by (α|0�1 + β|1�1)× (δ|0�2 + γ|1�2)× (μ|0�2 + ν|1�2). The relative phase gate for
three qubits produces the following change:

Uθ
r |0�1|0�2|0�3 → |0�1|0�2|0�3,

Uθ
r |0�1|0�2|1�3 → eiθ |0�1|0�2|1�3,

Uθ
r |0�1|1�2|0�3 → eiθ |0�1|1�2|0�3,

Uθ
r |0�1|1�2|1�3 → |0�1|1�2|1�3,

Uθ
r |1�1|0�2|0�3 → eiθ |1�1|0�2|0�3,

Uθ
r |1�1|0�2|1�3 → |1�1|0�2|1�3,

Uθ
r |1�1|1�2|0�3 → |1�1|1�2|0�3,

Uθ
r |1�1|1�2|1�3 → eiθ |1�1|1�2|1�3. (31)

Then, when acting in the arbitrary three qubit state, it gives the following entangled state:

Uθ
r (α|0�1 + β|1�1)× (δ|0�2 + γ|1�2)× (μ|0�2 + ν|1�2) →

{αδμ|0�1|0�2|0�3 + αδνeiθ |0�1|0�2|1�3 + αγμeiθ |0�1|1�2|0�3

αγν|0�1|1�2|1�3 + βδμeiθ |1�1|0�2|0�3 + βδνeiθ |1�1|0�2|1�3

+βγμ|1�1|1�2|0�3 + βγνeiθ |1�1|1�2|1�3}, (32)

for θ = π, Eq. (32) produces the following relative phase state:

Uπ
r (α|0�1 + β|1�1)× (δ|0�2 + γ|1�2)× (μ|0�2 + ν|1�2) →

(α|0�1 − β|1�1)× (δ|0�2 − γ|1�2)× (μ|0�2 − ν|1�2) . (33)
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To calculate the amount of entanglement in the state given by Eq. (32), we calculate the
3-tangle defined above. This measure is given by:

τ123 = 4 | d1 − 2d2 + 4d3 |, (34)

where:
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Fig. 1. Plot of formula (36), which gives the 3-tangle measure of entanglemet.

d1 = a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
100a2

011;
d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+a011a100a101a010 + a011a100a110a001 + a101a010a110a001;
d3 = a000a110a101a011 + a111a001a010a100, (35)

and the coefficients aijk are the expansion of the three party entangled states in the standard
basis. Comparing with Eq. (32) the coefficients are given by a000 = αδμ, a111 = βγνeiθand so
on. If we take α = β = δ = γ = μ = ν = 1/

√
2, then, using Eq. 32, Eq. 34 and Eq. 35, the

residual entanglement for this case is:

τ123 =
1
16

√
96 − 128 cos 2θ + 32 cos 4θ (36)

A plot of Eq. (36) is given in Fig. 1. We see that the residual entanglement of the relative
entangled state for three qubits, given by Eq. (36), reachs its maximum value twice in the
interval (0, 2π). This correspond to θ = π/2 and θ = 3π/2, this agree with the maximum
value for the relative entangled state for two qubits (?).
Therefore, the characterization of a quantum gate (or and arbitrary operator) could be done
by calculating the amount of entanglement produced by it when acting on an arbitrary state.

7. Experimental determination of entanglement

The experimental detection of entanglement requires the measurement of many physical
properties, making this process quite difficult. Then, it is necessary to reduce the quantity
of measurements to increase the efficiency of such process. In this section we briefly review
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the effort made for many research groups to reduce the quantity of measurements to detect
entanglement, both by deducing new definitions for some entanglement measures given in
previous section (like concurrence) and by the new approach of proposing entanglement
measures in terms of uncertainties of operators.
Nowadays, entanglement is considered a physical resource. Therefore, to use this resource
in its potential applicabilities in quantum information theory, it is necessary to realize the
following three tasks: i) to produce it, ii) to manipulate it, and iii) to detect it. Then, it is
necessary to develop efficient methods to carry these tasks. Recently, there has been a huge
effort in the task of detecting entanglement (Audenaert & Plenio, 2006; Gühne, et al.; 2009).
Usually, the principal procedures to experimentally detect entanglement is through Bell’s
inequalities. Therefore, to experimentally determine entanglement, it is necessary to make
measurement in many variables, especially when the amount of entanglement is measured
using one of the entanglement measures stated in section 5. An additional problem is the
fact that some entanglement measures involves non-physical process, such is the case of the
concurrence C|Φ� defined by (Hill, 1997) where it is defined using the complex conjugate
�Ψ∗| which is an unphysical operation according with Walborn, et. al. (Walborn, et al.; 2006).
For this reason, it was necessary to deduce new definitions of entanglement measures or to
generalize the previous one taking into account the experimental settings.
To experimentally measure entanglement Walborn, et. al., uses an alternative definition of
concurrence given by Mintert, et. al., (Mintert, et. al.; 2005), they use two copies of the qubit
and found that the expectation value of an operator Â, with respect to these two copies, can
capture entanglement properties. Then, the concurrence is defined as (Mintert, et. al.; 2005):

c(Ψ) =
√
�Ψ| ⊗ �Ψ|Â|Ψ� ⊗ |Ψ�. (37)

In their setting, Walborn, et. al., store a copy of the state |Ψ� in the polarization and
momentum degrees of freedom of a single photon. Entangled polarization states were created
by pumping two perpendicular nonlinear crystals. The concurrence of |Ψ� is determined by
the probability of observing the first photon in the state:

|ψ−� = 1
2
(|H�|b� − |V�|a�) . (38)

The probability PA is then given by the count rate for the observation of |ψ−� normalized by
the sum of the count rates of the others Bell states.
Another approach to the experimental quantification of entanglement is based on uncertainty
relations, this approach is motivated by the goal of detecting entanglement with just few
measurements (Hofmann & Takeuchi, 2003). Then, making the detection process more
efficient. This approach was highly influenced by the work of Hofmann and Takeuchi
(Hofmann & Takeuchi, 2003), who showed that there are uncertainty limits that are violated
by entangled states. In particular, the uncertainty of an observable Âi is given by the statistical
variance as follow: (

δÂi
)2

= �Â2
i � − �Âi�2. (39)

The uncertainty given by Eq. (39) is zero if the wave function is an eigenfunction of Âi.
Then, for a set of commuting observables {Âi} there are common eigenfunctions such that
δÂi = 0. This follows when the expectation values are taken with respect to this common
eigenfunction, therefore ∑i

(
δÂi

)2
= 0. On the other hand, if the set {Âi} is a set of non

commuting observables, then there must be a lower limit U > 0 such that (Hofmann &
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Takeuchi, 2003) ∑i
(
δÂi

)2 ≥ U. The generalization of this equation for two systems is given
by:

∑
i

(
δ(Âi + B̂i)

)2 ≥ UA + UB. (40)

A quantitative amount of entanglement can be defined as (Hofmann & Takeuchi, 2003):

CLUR = 1 − ∑i
(
δ(Âi + B̂i)

)2

2(UA + UB)
. (41)

CLUR measures the amount of entanglement verified by the violation of local uncertainty
(Hofmann & Takeuchi, 2003).
Some criteria must be satisfied by any entanglement measure (Horodecki, et al.; 2000), in
particular it must be invariant under local unitary transformation. To apply this criteria to
uncertainty relations Samuelsson and Björk (Samuelsson & Björk, 2006) and Kothe and Björk
(Kothe & Björk, 2006) defined a new measure of entanglement based on the covariance, i. e.
C(Âi, B̂i) = �Âi B̂i� − �Âi��B̂i�. This entanglement measure is given by (Kothe & Björk, 2006):

G =
3

∑
i,j=1

C2(σ̂A
i , σ̂B

j ), (42)

where σ̂A
i is the i − th Pauli operator for system A and σ̂B

j for system B. The covariance given
by Eq. (42) was used by Wang, et. al. Wang (et al.; 2007), to experimentally quantify the
entanglement of photons produced by BBO crystals.
A quite related approach was followed by Klyachko 2006, et. al., (Klyachko, et al.; 2006) and
Klyachko, et. al., (Klyachko, et al.; 2007) to propose an experimental entanglement measure. In
particular they shown that the concurrence is related to the variance by the following relation
(Klyachko, et al.; 2007) and (Klyachko, et al.; 2006):

C2(Ψ) =

√
V(Ψ)− Vmin
Vmax − Vmin

, (43)

where, V(Ψ) = CH − �ψ|Xψ|ψ�, Xψ = ∑α�ψ|Xα|ψ�Xα (Klyachko, et al.; 2007) and CH =

∑α X2
α.

On the other hand, this approach has been extended to cover the entropic uncertainty
relations, see Li, et. al. (Li, et al.; 2010), and Ghune and Lewenstein(Gühne, et al.; 2004).
Finally, Fei, et. al., (Fei, et. al.; 2009) has proposed that the experimental measurement of
concurrence can be done by a single measurement of the expectation value of tensor products
of local observables. In particular, they have shown that the square of the concurrence for
two qubit states could be measured just by measuring certain expectation value of the Pauli
matrixes.

8. Conclusion

In this chapter we have reviewed the concept of entanglement and some issues regarding it.
Specially, we have focused in some of the more common entanglement’s measures, like the
concurrence. Also, we reviewed some interesting issues of the Bell inequalities. Additionally,
we showed a way to characterize quantum gates and operators. Finally, we briefly reviewed
the experimental procedure to measure the entanglement content of an entangled state.
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δÂi

)2 ≥ U. The generalization of this equation for two systems is given
by:

∑
i

(
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1. Introduction 
A data-driven quantum chemical re-investigation and characterisation of the nature of the 
singlet-coupled e-pair interaction in weak interactions in physics and chemistry is discussed, 
in order to bring out its surprisingly broad implications for our understanding of some of 
the most fundamental aspects of nature. 

1.1 Outline 
The central conceptual difficulty in standard non-relativistic quantum chemistry, as for 
relativistic quantum mechanics, remains that in the absence of a satisfactory, physically 
intelligible representation of the phenomenon of spin, spin is represented in our models as a 
topological constraint on many-particle interactions. All of chemistry is dominated by the 
phenomenon of spin-pairing, derived from the Aufbau principle of filling electron shells in 
atoms. However determinantal expression of antisymmetry requirements effectively 
maintains separation of same spin electrons (exchange effects) while degrading the details of 
coupling between opposing spin electrons to electrostatics. This chapter investigates 
quantum mechanically the implications of a semiclassical model of spin proposed and 
formally defended some time ago (Burton 1988; including a formal modification of coupled 
pair theory), extending my previous published conjectures (Burton 2009). Its simple new 
idea touches a vast area of contemporary physics and chemistry. 

1.2 Basic motivation 
The stimulus for this research was a program focused on weak molecular interactions  
involving small neutral molecules whose interactions are well known to be very sensitive to 
electron correlation effects (Burton 1977, 1979, 1980; Burton, Gray & Senff 1982; Senff & 
Burton 1985, 1986, 1989). The particular focus of our investigations was interactions 
involving He and H2 molecules involving well-localised e-pairs. Aside from their 
fundamental relevance to our prehistory in cool interstellar, molecular clouds, from a 
technical viewpoint these molecules were ideal to minimise the impact of artefacts arising 
from the various approximations involved in implementing the conventional correlation 
algorithms we employed at the time.  
Interactions involving such well-separated e-pairs should represent ideal candidates for 
investigation with pair correlation algorithms (Sinanoglu 1961, Hurley 1976) designed to 
isolate intra-pair and interpair contributions to electron correlation corrections to many-
electron wavefunctions, and their simple electronic structures were amenable to relatively 
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complete Hartree-Fock Self-Consistent-Field modelling. Being confident of control over 
artefacts from these sources, we carefully investigated basis set completion effects in the 
pair-correlation ansatz. The weak van der Waals interaction potentials in He...He, He...H2 
and H2... H2 were available experimentally by several routes, including direct scattering in 
crossed molecular beam experiments, and with these as reference we embarked on a 
program to test regions of the more polarisable inter-atomic interaction zones for basis set 
incompleteness.  
What we found told us that even very large conventional, nuclear-centred, gaussian basis 
sets were subject to improved electron correlation energies when augmented by additional 
s,p probe sets aligned between nuclear centres. Our approach to their disposition was to 
locate these basis set additions off nuclear centres along the line of interaction, but to keep 
these located a fixed distance from the nearby atomic centre while intermolecular distance 
coordinates were varied to sample van der Waals interaction, to minimise basis set 
extension error  (Boys & Bernardi, 1970), an artefact well-known in HF-SCF calculations but 
possible also in the computation of pair-correlation energies. 
The results, admittedly involving small effects, but systematically accumulated over more 
than a decade, eventually led me to question why the low density region at the polarisable 
edge of interacting atoms & molecules should be so sensitive to details of basis set 
disposition. Surely, I had thought, electron correlation is dominated by the dynamics of 
inter-electron interactions in regions of higher rather than lower electron density1. The 
details of our calculations however were asking me to revisit this assumption: maybe 
electron correlation is better understood as an edge effect of e-pairs? 

1.3 Reviewing the basic conventions of quantum chemistry 
Multi-electron wavefunctions in quantum chemistry are conventionally characterised by 
aggregating individual electron spin-orbitals into an antisymmetrised, determinantal 
notation devised in 1929 by J.C. Slater. The spatial and spin parts of multi-electronic 
wavefunctions fail to factorise except in the special case of a single e-pair, so the burden of 
the determinantal expansion of electronic spin-orbitals having ms= +½ and -½ spins is 
accepted to ensure that the exclusion principle devised by Wolfgang Pauli in 1925 (Pauli 
1945) is satisfied for the electronic structure, even though most molecular electronic 
structures in chemistry are strongly paired. At least the antisymmetry required of sets of 
fermions, the wavefunction changing sign with respect to pairwise particle interchange, was 
guaranteed by the determinantal formalism.  
Much of the chemistry of molecules formed of light atoms reflects their electronic structure 
being comprised of relatively localised e-pairs with close-coupled singlet pairing of spins, 
reminiscent of the simplified (and pre-quantum mechanical) models of locally-paired 
electron dot diagrams introduced by Gilbert N Lewis (1916) to explain the covalent bond. 
This has led to extensive theoretical investigation of pair correlation methods both formally 
(Sinanoglu 1961, Hurley 1976) and subsequently by a wide range of computational methods 
in quantum chemistry, including those used in our program of investigating weak van der 
Waals interactions.  
The determinantal notation, which succeeds by construction to keep electrons of the same 
spin widely separated in the quantum chemistry models, ensures conformance to 
                                                 
1 The weak assumption embedded in density functional approaches to correlation effects, rather than 
correlation being localised in polarisable regions . 
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antisymmetry and the exclusion principle but its cost is that it de-emphasises the natural 
tendency to e-pair formation in chemistry. If the close coupling between electrons of 
opposite spin is more relevant to the physics of the system under investigation, as theorists 
Sinanoglu and Hurley have chosen to emphasise by treating these structures as clusters of  
e-pairs, the pair-correlation formalism (rather than the more conventional configuration 
interaction  or CI approach) may be advantageous. By emphasising correlations between  
e-pairs of opposing spin, and of pair-pair interactions between them, such an approach 
seemed ideal for investigating weak intermolecular forces, as was the case in our 
interactions involving He and H2. 
When one focuses upon weakly interacting systems with one or two closely localised electron 
pairs (e-pairs), and these are light neutral molecules such as He or H2, the interaction energy 
between the localised pairs is purely repulsive when modelled at the uncorrelated level of the 
Hartree-Fock-Self-Consistent-Field model. HF-SCF approximates each electron (spin-)orbital 
self-consistently in the time-averaged, 'electrostatic' field of the other electrons. Correcting the 
approximate HF-SCF wavefunction requires adding electron correlation corrections to the 
zero-order 'independent electron' wavefunction, by introducing either explicit inter-electron 
distance parameters (e.g. Hylleraas 1930; Boys and Handy 1969, Gill et al. 2006) or by 
constructing configuration interaction (e.g. Shavitt 1977, 1981) expansions to implicitly 
(statistically) model more flexibly the details of electron-pair interaction. Either strategy, at the 
considerable expense of very extended and diffuse representation of the resulting correlation, 
and being hard to interpret, can realise excellent agreement between computed and empirical 
total electronic energy for molecules in their ground states. In particular for our neutral, light 
molecule systems, total energies can be expected which quite closely mimic the rather weak 
van der Waals attraction between these close-shell molecules as they approach one another. 
This is a critical achievement, required because otherwise it would be impossible to liquefy 
He(g) or H2(g) albeit at temperatures close to zero Kelvin: He boiling point is -268.6 °C (4.55 K); 
H2 boiling point (1.013 bar) is -252.8 °C (20.8K). Statistical mechanical models of these phase 
changes, and molecular beam scattering experiments, are completely consistent with attractive 
van der Waals interaction potentials for the respective molecular interactions. So one can 
conclude that it is impossible to model the (g) to (l) phase change in these liquids without 
taking electron correlation effects into account. 

1.4 Challenging the conventional approach to representing spin 
Our van der Waals interaction calculations, using well-matched electron correlation 
algorithms and more and more complete basis sets to avoid obvious basis set superposition 
artefacts, showed some small but unexpected effects which led us to reconsider the 
conventional wisdom of electron correlation theory. The topological separation of same-spin 
electrons enforced by the determinantal wavefunction formulation leads to very long multi-
configuration expansions for the correlated wavefunction expressions which approach exact 
ground-state energies of these molecules2. The physical interpretation of these correlation 
effects are best shown from e-pair cluster expansions, which show the correlation corrections 
are dominated by the principal correlating natural orbitals3 for each localised e-pair, which 
                                                 
2 This is already true for single two-electron ground-state pairs, such as He (Hylleraas 1930; Pekeris 
1958) or H2 (Kolos et al. 1986), when e-pair correlation is explicitly modelled by r12 expansion. 
3 The significance of natural orbitals lies in the fact that CI expansions based on these orbitals have 
generally the fastest convergence. 
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complete Hartree-Fock Self-Consistent-Field modelling. Being confident of control over 
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This has led to extensive theoretical investigation of pair correlation methods both formally 
(Sinanoglu 1961, Hurley 1976) and subsequently by a wide range of computational methods 
in quantum chemistry, including those used in our program of investigating weak van der 
Waals interactions.  
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1 The weak assumption embedded in density functional approaches to correlation effects, rather than 
correlation being localised in polarisable regions . 
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introduce nodal surfaces to intersect the occupied orbitals of the e-pair either angularly or 
radially. This tends to create an impression that electron correlation effects are derived from 
regions of higher rather than lower electron density within the e-pair. This long held 
assumption was now the focus of my concern, because, as with direct conventional 
Configuration Interaction (CI) expansions, even the PNO-CI expansions of cluster pair theory 
tend to aggregate many small contributions whose physical nature is difficult to discern. 
What our strange off-nuclear-centred basis set augmentations were telling us (in our 
investigation of the interaction of light non-polar molecules) was that significant regionally 
specific correlation contributions were arising from low-density, highly polarisable, outer 
reaches of atoms, well away from the respective nuclear centres which tightly constrain 
electrons by nuclear attraction. 
I began in 1988 to investigate a semi-classical model of correlation in a two-electron, axially 
symmetric bound-state (Burton 1988), starting from first principles and the helicity 
equations, and to review Hurley's formal specification of e-pair correlation. In determinantal 
formulations customary in quantum chemistry, the spin wavefunctions have a purely 
topological significance consistent with the exclusion principle but what I was coming to 
realise instead was that spin should be explicitly and physically instantiated directly as 
peripheral wavelet disturbances in the superficial parts of electron orbitals themselves. 
The idea of physically embodied but peripheral wave-matter spin, considered 
semiclassically as a fractional electron disturbance, could be a significant effect but remain 
rather well hidden by the general acceptance of spin being modelled as a determinantal 
topology. It had just the features to physically explain the Stern-Gerlach 1925 effect in a 
superior way to that proposed by Uhlenbeck & Goudsmit in 1925 & 1926, which supposed 
the ultimately untenable notion that the whole electron was subject to spin. In semiclassical 
terms, replacing the electronic charge to mass ratio e/m in expressions for the electron 
magnetic moment due to spin by the expressione/m proposed in Burton 1988, a ratio of 
identical magnitude for identical fractions of mass and charge, was entirely consistent with 
fundamental treatments of spin effects (Merzbacher 1970; Landau & Lifshitz 1977). This 
heretical idea, one certainly not excluded by the history of the concept (Tomonaga 
1974/1997), warranted further investigation. 
Much later in 2003-5 (Burton 2009), I realised that the dominant or principal correlating orbital 
for He could in fact  be identified with the antisymmetrised singlet-coupled spin wavefunction 
of the spin-orbital coupling itself. Furthermore, in this special case, a single variational 
parameter corresponding to its radial mixing with the HF-SCF reference (introduced as a 
conjecture in Burton 1988) was all that remained to exactly determine the He (1s)2 ground state 
singlet energy, once the angular interaction effects were completely specified by the symmetry of 
the antisymmetrised singlet coupling formula (Section 2.7; see Figure 1). 

2. Electron correlation problem in quantum chemistry 
During the decade around my hosting an International Workshop in Atomic and Molecular 
Physics and Quantum Chemistry at the University of Wollongong in June 1980 and whose 
proceedings I edited (Burton 1980), my small research group's activities centred on two 
ways of testing the validity of then current models of electron correlation in quantum 
chemistry. We were focused upon investigating models of the electron correlation energy 
contribution itself at various degrees of approximation for weak van der Waals molecular 
interactions (Senff & Burton 1985, 1986, 1989), in particular by appraising the impact of  
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Fig. 1. Angular representation of m = +/- ½ spin wavefunctions for He (1s)2 configuration, in 
antisymmetrised singlet form, with relative phase optimized to illustrate axially 
circumferential quadrupolar beats in the periphery of the pair function. The circumferential 
angular form for a given distance  off-axis is illustrated beginning with explicit sinusoidal 
(s) or cosine (c) forms for ms = +/- ½ as shown in the legend. 

innovative ways of assessing the basis set limitations implicit in those models by the choice 
of strategy to build more completeness (accessing yet more subtle correlation effects) into 
those, still approximate, models of the correlation contribution (Burton 1977, 1979, 1980; 
Burton, Gray & Senff 1982).  

2.1 Issues in conventional computational approaches 
Before Isaiah Shavitt's (1981) 'Graphical Unitary Group Approach' led to making Full CI 
calculations practical to exhaust the correlation energy contributions of a given molecular 
basis set, methods tracing their heritage back to Oktay Sinanoglu (1961) and focused on pair 
correlation energies were formally analysed for completeness by Andrew Hurley (1976, 
Electron Correlation in Small Molecules) and made practical in for computational quantum 
chemistry in basis set representation by several groups led by Werner Kutzelnigg, Wilfried 
Meyer and Reinhart Ahlrichs et al. (1975a, 1975b) in Germany.  
At that time, through focusing upon relatively localised intra-pair-correlation energies which 
were known to dominate the correlation energy contributions (corrections) to much simpler 
molecular Hartree-Fock, Self-Consistent Field estimates of molecular electronic energies, it was 
left to the relatively weak coupling between the correlation energy effects of different pairs to 
represent the uncertainty of various “coupled pair” methods of assessing total correlation 
energies within the constraints of a given basis set (Ahlrichs et al. 1975A, 1975b). 

2.2 Interactions involving localised electron pairs 
While the transformation to a localised formulation of occupied molecular orbitals in, say, 
the methane molecule, CH4, generates four equivalent bonding orbitals, the canonical 
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of strategy to build more completeness (accessing yet more subtle correlation effects) into 
those, still approximate, models of the correlation contribution (Burton 1977, 1979, 1980; 
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2.1 Issues in conventional computational approaches 
Before Isaiah Shavitt's (1981) 'Graphical Unitary Group Approach' led to making Full CI 
calculations practical to exhaust the correlation energy contributions of a given molecular 
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molecular Hartree-Fock, Self-Consistent Field estimates of molecular electronic energies, it was 
left to the relatively weak coupling between the correlation energy effects of different pairs to 
represent the uncertainty of various “coupled pair” methods of assessing total correlation 
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orbitals in the SCF-MO representation begin symmetry adapted. We preferred to work in a 
localised orbital representation to assess pair correlation energies to concentrate the nominal 
impact of intra-pair correlation in a less diffuse, localised orbital representation, consistent 
with the supposed strength of the formal methods for treating electron correlation we chose 
to pursue. 
In time we narrowed our focus to the simplest of molecules: He, Li+, H2, H3+ having a single 
(localised) electron pair, and concentrated on assessing the nature of the weak inter-pair 
correlation energy effects corresponding to the van der Waals interaction between these 
species, including weakest of interactions of  neutral molecules He...He, He...H2 in various 
angular alignments and H2...H2 in its various representative configurations. 
Molecular beam scattering analyses of these neutral molecule interactions provided the 
external reference for our internal analysis of systematic errors from the approximations we 
were forced to make in our calculations because of our access to relatively modest 
computational resources.  
The basis set superposition error (BSSE; Boys & Bernardi 1970) was of particular significance 
to our approach, since poor representation by way of local basis set limitation led to the 
correlation ansatz “borrowing” flexibility from nearby centres as they were brought nearer, 
generating artificially higher (less limited) correlation contributions for more compact 
molecular forms (close collision) than those more distantly interacting (van der Waals  
asymptote) molecular forms: this artefact acted apparently to deepen the attractive van der 
Waals well.  
In order to independently appraise the quality of the representations of each counterpart 
molecule in these molecular interaction calculations, we adopted the pragmatic device, in 
addition to using large, well-tempered s,p,d,f basis sets on each nuclear centre, of scanning 
the sensitivity of calculated correlation energies with a free-floating s,p set to probe where in 
the molecule additional basis set flexibility might still be required.  
We reported this approach at the AMPQC workshop in Burton, Gray & Senff (1980), and 
two of us (myself and Ulrich Senff) subsequently found in a careful series of calculations 
that in the close interface between weakly interacting neutral systems (in the region where 
the SCF-MO energies are in fact repulsive, and only correlation effects generate an attractive 
intermolecular potential energy to qualitatively match experiment) involving He...He, 
He...H2 and H2...H2 that even quite large nuclear-centred basis sets appeared systematically 
inadequate to fully represent the intermolecular correlation energy of these weakly 
interacting systems.  
Our focus on weak interactions between light, non-polar molecules such as He or H2 
allowed us to effectively eliminate the BSSE correction at the HF-SCF level, so the impact of 
free-floating s,p function specifically in the correlation energy correction could be assessed. 
What we found consistently (despite correcting for the BSSE itself) was for each atom centre, 
additional correlation energy arose with s,p sets being located at the 'edge' (say fixed at 50-
100pm off-nucleus) of each atom, on the line of centres of their interaction. This remained 
true as we increased the well-tempered s,p,d,f bases on each centre. 
This was a small but persistent effect, and it raised an important question in my mind: 
Why was the atomic or molecular edge of these interacting systems, each just a localised 
correlated pair of electrons, seemingly so vulnerable to additional degrees of local basis 
set freedom? 
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2.3 Back to first principles of spin and correlation 
By 1988, my reflecting on this question turned active again, but from an entirely different 
angle. I went back to first principles in the structure of the helicity equations in Landau & 
Lifshitz (1977) for a free electron and contemplated what they would reduce to for the case 
of an electron constrained axially by being bound on the attractive nucleus of an atom.  
I discovered (Burton 1988) that a semiclassical, fractional electron effect – like ion cyclotron 
resonance but considered as a fractional electron wavelet circulating circumferentially 
around a Schrödinger-like delocalised electronic matterwave – could support all the formal 
equations representing electron spin effects without change if instead of the electronic 
charge e and the electronic mass m occurring everywhere as the electronic charge to mass 
ratio (e/m) I notionally attributed spin effects in these equations to there being a localised 
disturbance involving a small fraction of the electronic matter wave (δe/δm) localised in the 
axially distant and relatively polarisable periphery (well away and self-shielded from the 
attraction of the nuclear centre) of each electron distribution. 
I also discovered that Andrew Hurley's (1976) careful formal analysis of electron pair coupling 
had a single minor defect: he had assumed that (single-valued) L2 orbital representations of 
basis sets for correlation calculations in molecules could in principle exhaust electron 
correlation effects in a full-CI formulation. This led him to wrongly conclude that conventional 
correlation corrections in quantum chemistry should be attributed solely to reduced electron 
repulsion. As I confirmed directly with my earlier mentor, this conflicted with the need in 
correcting the energy of an HF-SCF model of an e-pair (e.g. He, or H2) to satisfy the Virial 
Theorem both at the level of the HF-SCF model representation (already Virial Theorem 
compliant at limit basis set), and at the level of the additionally correlated representation of the 
electronic ground-state of that same molecule. If the HF-SCF representation of He satisfies the 
Virial Theorem, and the true (correlated) ground state of He does also, then changes in both the 
one-electron terms <T> (to elevate one electron kinetic energy terms) and the two-electron 
terms <V> (to diminish electron interaction energies) of the correlation-corrected total energy 
expressions relative to the HF-SCF model must be required from the correlation corrections. 
Assigning the correlation correction solely to a reduction of electron repulsion without a 
corresponding change to increase one-electron kinetic energy (increased wave-function 
curvature), as Hurley had concluded, must be wrong.  
The implication of this was that no single-centred L2 basis of reasonable size could expect to 
rapidly converge correlation energies, even in Full-CI models of that correlation, and that 
the weakly interacting systems we had been studying, embellished with off-nucleus 'probe' 
s, p sets, were reflecting additional physical requirements for basis set freedom in each atom's 
periphery. 

2.4 Identifying the singlet-coupled spin wavefunction with the principal pair 
correlating natural orbital of each localised e-pair 
There is a special case, that of singlet-coupled  ms= +½ and -½ spins in a two-electron atomic 
wavefunction, where one can explicitly write the angular behaviour of the spin coupling. 
Taking the specific case of ground state singlet of atomic He, the e-pair wavefunction can be 
written:  

 He (1s)2  = 1s(1).1s(2) {a(1).b(2)-b(1).a(2)}/Sqrt2 (1) 

where a(1) and b(1) represent spin wavefunctions, each a two-valued angular function 
periodic in 4 corresponding to ms= +½ and -½ spins, respectively.  
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molecule in these molecular interaction calculations, we adopted the pragmatic device, in 
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the sensitivity of calculated correlation energies with a free-floating s,p set to probe where in 
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Burton (2009) shows a diagram of each angular contribution of the singlet-coupled two 
electron wavefunction, and interprets these contributions and their resulting interaction as 
peripheral surface disturbances oriented about the Z=0 axis of the helicity equation, through 
the He nuclear position, in this case (Figure 1). Counter-propagating fractional electronic 
surface disturbances corresponding to ms= +½ and -½ spin periodicity (over 4) were shown 
there to interact in the physical space domain of their relative angle (over 2, i.e. single-
valued in physical space) to yield a resultant quadrupolar form of oscillating angular 
coupling, transverse to the helicity axis, centred on Z=0. 
Conventionally, the separation of spatial and spin variables in forming Slater determinantal 
representations of anti-symmetrised many-electron wave-functions leads spin to be 
represented and considered as a topological variable not directly interactive with the 
underlying spatial orbital of each spin-orbital, exactly as is being portrayed in Eq. 1. What 
Burton (1988, 2009) discovered instead is that a stable (circumferential) quadrupolar miss-
match between the two otherwise spherical orbital forms for each electron arises in singlet 
coupling: the singlet coupling leads to a physical resonance in the counter-propagating angular 
forms of the two independent electrons in close-matched singlet coupling, where the 
respective interacting disturbances are built-in to the spin-orbital representation in a 
multiplicative manner. This resonance corresponds simultaneously to an increase in curvature 
of the underlying one-electron wavefunctions due to the circumferential disturbance, and a 
systematic circumferential mismatch between the two independent electrons. The former has 
the effect of increasing <T> for the two electron wave-function (relative to HF-SCF with no 
spin representation) while the latter has the effect of decreasing the electron interaction energy 
<V> due to the systematic persistence of the resonantly stable circumferential mismatch in the 
angular behaviour of the two electrons. Hurley's analysis determined the form of the 
correlation change in its impact on (changes in) <V> but missed the necessary complement to 
it on (changes in) <T> because he restricted his consideration (in complete consistency with 
universal practice at the time) to L2 orbital excitations as the correlating orbitals.  
Burton's semiclassical interpretation of electron correlation suggests that one should deny 
any formal physical separability of spin effects from the underlying spatial wavefunction of 
each spin-orbital, rather to include them directly as surface modifications to those spatial 
forms. 

2.5 Quantum spin coherence using an integrated spin-orbital representation for e-pair 
In the models of physical interaction involving two well-separated electron pairs that Ulrich 
Senff and I considered, very large L2 orbital basis sets (including off-centred functions) were 
required to begin to converge the correlation energies of systems even as simple as He...H2 

or H2 ...H2 , despite the fact that the HF-SCF wave-functions could be well-represented by 
modest DZ+P nuclear centred basis sets. The startling conclusion we are forced to reach, 
against eighty years of history in LCAO-MO models of quantum chemistry, is that it is a 
mistake to topologically separate spin from its physical impact on underlying spin-orbital 
representations of interacting electrons when these are closely singlet coupled. The 
implication of this in singlet coupling is that the multiplicative spin-coupled wavefunction 
form of each pair is precisely the form of the principal correlating natural orbital of the HF-
SCF version of that pair.  
Going back to the helicity equations for this model of He, we find that just a single (ρ/aH) 
parameter (see below) scales the off-axis form of the multiplicative disturbance due to spin 
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(Burton 1988, pp. 12-14), and as this varies, the relative angular curvature of each 
independent electron's wavefunction varies but so also does the phasic amplitude mismatch 
with the co-bound second electron. The optimum value of this parameter serves to restore 
the required Virial Theorem balance between <V>Exact and <T>Exact for the correlated ground 
state as correlation increases to alter these, in a balanced way but in the opposite sense, from 
reference HF-SCF values of <V> SCF and <T> SCF. 
Of course, such a simplified one-parameter optimisation per pair of electron correlation in 
molecules comprised of relatively localised singlet coupled e-pairs (most of chemistry in 
fact, and virtually all of protein-dominated biology) would lend itself to very efficiently 
computed semi-empirical models of explicitly correlated many-electron wave-functions, 
with the major benefit of needing only HF-SCF level basis set representations, and all other 
virtual excitations in the CI being dispensed with in favour of a single correlating natural 
orbital representation for each localised orbital pair. 

2.6 Coherent e-pair correlation function 
Burton (1988) recounts the outcome of the Bernardi & Boys (1973) analysis of the pair 
correlation function employed in Boys & Handy (1969a, 1969b) exemplars of accurate direct 
correlation in Ne and LiH using their trans-correlated wavefunction formalism. Roby (1971, 
1972) had already shown that the transcorrelated wavefunction and the cluster expansion 
wavefunctions for the Independent Pair Approximation (IPA) and the Coupled Pair 
Approximation (CPA) are related for spatially well separated pairs4 by equivalence between 
the strong orthogonality constraint of pair theories and the canonical contraction conditions 
of the trans-correlated approach to the correlated wavefunction, when (see Note): 

 μij (1,2) = [f(1,2)-1] |Ψi(1).Ψj(2)| (2) 

Hurley commented on this supposed universal form to pair correlation f(1,2):  
'One would expect that an accurate description would require quite unrelated functions 
f(1,2) for the various pairs and that any restriction of the pair functions would seriously 
affect the correlation energy' (Hurley 1976; p.254)5.  

It is precisely this surprising result from the detailed analysis of an effective direct 
correlated method, coupled with its generalisation from Burton (1988; see Equations 12 
through to 23) to include non-single-valued Pair Natural Orbitals for the principal 
correlation effect circumferential to the axial that we conjoin to propose modelling e-pair 
correlation universally, at least for the case of axially symmetric pairs in |L,S> 
representation. The general expression (Burton 1988, Eq.31) for the correlation function is 
given by Eq. 3: 

 f(1,2) =  Rf(ρ1,φ1,τ1) Rf(ρ2,φ2,τ2) S(ρ1,φ1,τ1; ρ2,φ2,τ2) (3) 

Burton (2009) advanced this semiclassical analysis suggested by Burton (1988) to identify the 
angular analysis required of the optimised semiclassical correlation interaction S in [3] with 
                                                 
4 Consistent with the van der Waals interactions involving He and H2 that we were pursuing. 
5 This proposal has seemingly not been directly pursued, although numerical approaches along this line 
have been cast in terms of an ‘inter-particle’ distance operator (Boys & Handy 1969; Bernardi & Boys 
1973), or seek to model particle position and momentum in joint distributions (see Gill, Crittenden et al. 
2006).  
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through to 23) to include non-single-valued Pair Natural Orbitals for the principal 
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the fully quantum mechanical, antisymmetrised singlet-coupling of the two-electron singlet 
spin function from Eq.1.  
The crucial point of the argument at this stage is that the function S in Eq.3, which is designed 
to establish and maintain coherence in the opposing sense of Ripple propagation for each 
electron of the pair, can, at least for stationary state wavefunctions, be presumed to have 
achieved this goal (Burton 1988, p.22). In our chosen context of the He (1s)2 ground state, to 
respect the known topology of spin in  antisymmetrised e-pairs, means that the angular 
degrees of freedom for the ms = +/- ½ spin components in the e-pair interaction must be 
constrained. The angular form of the peripheral correlation interaction of the pair is fully 
determined by the assumption of singlet coupling. The resulting angular behaviour around the 
orienting axis of the 1s(1).1s(2) orbital product for ground state He is given in Figure 1. 

2.7 Angular characterisation of a singlet-coupled antisymmetrised e-pair 
Burton (2009) devised an angular characterisation of the ms = +/- ½ spin e-pair interaction. 
Figure 1 shows the build-up of the resulting angular probability distribution for the 
circumferential singlet-coupled spin wavefunction (1,2) and the corresponding angular 
density function (1,2).*(1,2) (shown in orange, showing peripheral quadrupolar form 
over 2), where  

 (1,2) ={ a’H a’H  - a’H a’H  } / sqrt 2 (4) 

and 

 *(1,2)={ a’Ha’Ha’Ha’H} / sqrt 2 (5) 

The incorporation of the singlet-coupled spin wavefunction's angular dependence from 
Fig.1 leaves (for the ground-state e-pairs of He or H2 we are considering) just a single axial 
function Rf dependent upon ρ1=ρ2 being left to optimise. The radial mixing parameter 
determines the effective fraction of the e-pair in the periphery being subject to the physically 
(electromagnetically) coupled disturbance between the fractional matter-wave counter-
propagations. Therefore, to variationally maximise the pair correlation energy for the pair 
corresponds to a variational optimisation of the mixing parameter depending upon ρ. As 
this function increases off-axis starting from ρ=0 the radial behaviour of Rf for each electron 
begins with unit value (Burton 1988, see Equations 8, 9 and 10), and follows a scale 
parameter 2/aH2 which increasingly intersects the polarisable periphery of the e-pair off-
axis as the mutually induced and self-consistent effective magnetic field H linking the 
circulation of the counter-propagating spins increases. Burton 1988 notes that the aH 
parameter has the dimensions of distance and for a laboratory scale field of H = 1 Tesla has 
the value of 36.2617 nm. The variation of this single parameter to reach the exact correlation 
of the pair is therefore a simple variational optimisation. 
Three decades after Hurley’s mooted universal form of pair-correlation function (Eq. 2), in 
our realization of a direct matter-wave representation of the pair function (called the 
Quantum Spin Coherence model), we have an interesting new context in which to re-
examine the systematics of electron correlation, including the amazing consistency of (1s)2 
pair correlation energies as diverse in size as in H- and U90+ (around 1.1ev1: see Gill, 
Crittenden et al. 2006), a long recognised fact of quantum chemistry, that on its own is 
suggestive of more regularity in the dynamics of electron pair correlation than had yet been 
appreciated. 
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Note from Burton 1988 

2.8 Peripheral field dynamics of surface beats arising from coherent e-pair 
correlation: Quantum spin coherence 
The multiplicative semi-classical pair-correlation function f(1,2) from Eq. 3 is to be identified 
in its angular behaviour S about an axis defining of spin orientation with the multiplicative 
fully quantum mechanical, constrained antisymmetric topology of singlet coupling given by 
(1,2) from Eq. 4. Optimisation of the multiplicative interaction of the radial profile of pair 
correlation function’s angular behaviour with the underlying orbital radial profiles is then a 
single parameter optimisation. This parameter is derived by Burton (1988; Equations 8-10) as 
2/aH2 where the off-axis distance scale parameter aH reflects the both effective semiclassical 
magnetic moment of the partial electron disturbances linked in coherent counter-
propagation in the singlet coupling and the counter-propagation frequencies of that 
coupling. Since the coupling is magnetic in character, higher effective self-consistent fields in 
the coupling draw the effective radius of the circumferential counter-propagation inwards 
to intersect a larger fraction of the electrons of the pair being subject to correlation 
mismatch. 
This entirely explicit and variationally-determined form of peripheral correlation interaction 
within an e-pair is what we denote Quantum Spin Coherence. 
Its primary signature in the introduction of circumferential beats transverse to the spin axis, 
in the form of a dynamic quadrupolar interaction arising from the spatio-temporal 
mismatch between the coherently correlated electrons of the pair. This beat phenomenon 
corresponds in turn to a conservative standing wave whose impact is to effect an oscillating, 
transverse, quadrupolar magnetic field oriented along the spin axis of the pair (see Figure 1). 
Arising from singlet coupling for which no magnetic field residue would be expected in first 
order, this higher order side effect of pair correlation is an unprecedented form of 
diamagnetic field. Derived from very small fractions of electronic charge subject to 
interactive coupling in the correlation, the corresponding diamagnetic field is expected to 
represent one of the weaker fields of atomic physics. 
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Note from Burton 1988 
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The QSC model has one more surprise: the ground state of the pair correlation is what is 
being determined by the above identification with the conventional singlet coupling 
topology. Higher harmonics of this correlation stabilisation of the e-pair are possible. 

2.9 The possibility of a spectral manifold of higher order harmonics of the singlet-
coupled spin wavefunction for each e-pair 
Burton (2009) saw several implications of the basic QSC model. In particular, as a physically 
large bound electron pair, He looks capable of subtending an extensive spectrum of singlet-
coupled higher spin harmonics, for which evidence may in due course be found.  
In the helicity equation model, a uniform magnetic field is assumed to apply to the 
electronic wavefunction. We can however imagine the two electron version of He 
represented in this manner beginning with zero spin coupling, in identical spherical orbital 
forms for each electron 1s(1) and 1s(2). A minor fluctuation on the surface of one electronic 
wave-function will have an immediate polarising impact on the independent second 
electron, to generate a counteracting fluctuation (Maxwell's equations) in the space-time 
form of the second electron's wave-function. Two counter-propagating disturbances will 
resolve into a set of interaction harmonics in the circumferentially bounded system, of 
which the fundamental has the form already given by Eq. 16.  
The higher harmonics of this ground state singlet spin interaction have to my knowledge 
never before been contemplated. These will correspond semiclassically to smaller fractional-
electron and more angularly intersected two-electron mismatch resonances, converging to 
the HF-SCF (zero spin) limit, as the effective fractional electron subject to mismatch 
diminishes asymptotically through the higher manifold states of this harmonic spectrum. 
The spectral manifold of standing wave or harmonic representations of pair correlation, is 
bounded by the exact ground state (conventional or fundamental mode of singlet coupling) 
of the pair and the completely uncorrelated (HF-SCF) representation, where the effective 
correlation stabilisation from minuscular coherent correlation mismatch in the higher 
harmonics converges to zero. These figures are illustrated in Table 1A. where HF-SCF and 
exact ground state estimates for He (1s)2 are shown. 
The He ground state correlation energy of 1.1439eV or 9227cm-1 is located as the 
fundamental spin-coupling mode of the QSC stabilisation w.r.t. the uncorrelated HF-SCF 
representation of the electron pair (the latter being a purely electrostatic model of the e-
pair). On the assumption that higher harmonics intersects less of the bulk of the e-pair 
distribution, and so represent both engagement of smaller fractional electronic charge and 
greater radial distance off-axis of the effective correlation, Table 1B. indicates via a 
semiclassical, first-order series how one might anticipate the spectrum of this manifold. 

3. History of spin & spinors 
Schrödinger (1931) associated the ‘Zitterbewegung’ (or jitter, an intricate internal structure 
of the electron) of the Dirac formulation with spin. According to Barut & Zanghi (1984) more 
than fifty years later: ‘historically spin was introduced as a classically indescribable two 
valuedness,’ but ‘spin is the angular momentum of the Zitterbewegung.’ For the  
                                                 
6 The orientation of the circumferential counter-propagation and the resulting non-spherical quadrupolar 
beats (Fig. 1) about the axis of an appropriate atomic |L, S> coupling scheme, implies the need for a 
compensating sphericalisation of the two-electron wavefunction by a J = 0 rotational wavefunction. 
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A. Helium e-pair energies for (1s)2 / mEh

vdW well -0.063
C -42.04 0.150%
Eexact -2903.74 1.448% 0.0022%
EHF-SCF -2861.70

42.04 mEh 0.06 mEh

C 1.1439 eV evdW 0.0017 eV
9227 cm-1 14 cm-1

B. Helium e-pair spin-harmonics for (1s)2 / cm-1

Nominal h Level QSC harmonics e-pair h
n excitations spacing correlation excitations
1 -1.000 - N S=0 resonances
2 -0.250 -9226.7 2 -0.250 -9226.7 -9.227
3 -0.111 -4100.7 5.126 5.126 4100.7
4 -0.063 -2306.7 6.920 1.794 4 -0.063 2306.7 -2.307 6.920
5 -0.040 -1476.3 7.750 830 1476.3
6 -0.028 -1025.2 8.201 451 6 -0.028 1025.2 -1.025 8.201
7 -0.020 -753.2 8.473 272 753.2
8 -0.016 -576.7 8.650 177 8 -0.016 576.7 -577 8.650
9 -0.012 -455.6 8.771 121 455.6

10 -0.010 -369.1 8.858 87 10 -0.010 369.1 -369 8.858
11 -0.008 -305.0 8.922 64 305.0

{…} … … … … …
{SCF} 0.0 9227 0 {SCF} 0.0 {limit} {9227}  

Table 1. A. Electron correlation energy of He (1s)2 electronic singlet configuration. B. QSC 
model of spin-coupled harmonics projected to lie between the uncorrelated SCF limit and 
the fully quantum-spin-coherent correlation of He (1s)2. The lowest bound state of the spin-
harmonic manifold (see Fig. 1) can be identified with the optimally correlated pair (N=2), 
providing a pair-correlation ‘stabilisation energy’ εc of the constructive interference between 
ground state singlet coupled spin functions. The distance in energy below the uncorrelated 
HF-SCF orbital energy of other successively less correlated spin-harmonic states lie in a 
manifold which converges to the asymptotic state that lacks symmetry breaking i.e. the HF-
SCF orbital pair. In the case of circular boundary conditions, the manifold of excited states is 
determined—to first order—as EN = -εc/N2 ; N even. 

zitterbewgung itself one has, following Huang (1952): ‘the expectation value of the position 
(of a localized electron, includes) a time dependent part involving interference terms 
…between positive and negative energy states of the electron and represents the 
Zitterbewegung.’ See also Barut & Bracken (1981) and Barut (1988). 

3.1 Ongoing confusion about spin & spinors 
Going back to the foundations of relativistic quantum mechanics (RQM), Dirac’s (1928a, 
1928b) original operator formulation, following Pauli’s matrix algebra lead, produced ab 
initio both antimatter and a technical representation of spin, later named by Ehrenfest, as a 
spinor. In Tomonaga’s (1974/1977) account, p.128-130, the two component wave functions so 
produced (a large part corresponding to the hydrogen-like orbitals, and a small part, rather 
ill-defined, representing the spin) correspond to spinors whose physical interpretation still 
remains unclear even today: spinors form a “mysterious tribe.” According to M. Atiyah in 
Goddard (1998) celebrating Dirac: “unlike differential forms, which are related to areas and 
volumes, spinors have no such simple interpretation. They appear out of some slick algebra, 
but the geometrical meaning is obscure“ (p. 113-4 in Goddard 1998).  
Kutzelnigg (1984) attempted to apply orbital basis-set-expansion methods to Dirac’s 
equations of motion, only to produce non-physical, non-bounded variational states, together 
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with states low in the continuum7 which appear equally unphysical, in part due to the 
matrix representation of the Dirac equation in a finite basis not having the correct non-
relativistic limit (Schrödinger limit) for c  ∞.  
Mathematically, spinors correspond to double-valued representations of the rotation group 
representative of particles of half-integral spin (i.e. fermions), and are neither vectors nor 
tensors. This lack of clarity on the physical or geometrical structure of - not just electrons but 
all fermions - in respect of spin (see again Atiyah in Goddard (1998) and Tomonaga 
(1974/1977)) follows Schrödinger (1927) himself, reflecting upon what is “missing” in his 
original hydrogen atom model: 

“in the language of the theory of electron orbits, the angular momentum of the electron 
round its axis, which gives it a magnetic moment. …[there is] no doubt that, by the 
paradoxical yet happy conception of the spinning electron, the orbital theory will be 
able to master disquieting difficulties which latterly have begun to accumulate [in 
modeling atomic spectra, including the Paschen-Back effect of line splittings in strong 
magnetic fields]... We shall be obliged to attempt to take over the idea of Uhlenbeck and 
Goudsmit (1926) into wave mechanics. I believe that the latter is very fertile soil for this 
idea, since in it the electron is not considered as a point charge, but is continuously 
flowing through space, and so the unpleasing conception of a “rotating point charge” is 
avoided. In the present paper, however, the taking over of this idea is not yet attempted.” 
[emphasis at end added; Schrödinger 1927, p.64.] 

The continuing lack of a clear physical- or geometrical-model of spin8 has remained like a 
cloud over particle physics, and has allowed (R)QM to suffer interminable stress as to its 
interpretation, no less that that enforced by the ‘Copenhagen’ interpretation being extended 
from single particle wavefunctions to those for multiple particles. Spin is surely modern 
physics’ biggest single conceptual barrier: we know how it works; we just do not yet fully 
appreciate its physics. 

3.2 Realisation of hidden variable theory with spin as a partial matter-wave 
In the spirit of de Broglie & Einstein, Schrödinger (1926), Bohm & Bub (1966) and Bell (1987), 
our partial matter-wave formulation of spin leads directly to a one-parameter variational 
model of coherent correlation within each close-coupled e-pair. This model applies the 
mathematics of a freely propagating electron in a magnetic field to a quantum model of 
electron pairs. The QM helicity equations given by Landau & Lifschitz (1977) for a free 
electron in a homogenous field are taken as the template for the radial behaviour of the free 
electron.9 For the angular behaviour, when applied to a non-propagating electron bound to a 
fixed nucleus, the model is developed with the aid of two assumptions.  
The first, at last implementing Schrodinger’s suggestion of modeling spin via the electron 
matter-wave itself, contemplates some to-be-determined ‘volume’ fraction of the electron 
matter-wave being subject to coherent circumferential disturbance. This fraction δ should 
correspond semiclassically to comparable fractions δe/e of the electronic charge and 
                                                 
7 Where the ‘uncoupled’ or non-coherent spin representations of our Quantum Spin Coherence model 
would reside. 
8 As opposed to familiar mathematical-, topological-, Pauli matrix-, symmetry representation- or 
empirical angular momentum vector-representations of spin. 
9 This would generate an effective semi-classical orbiting frequency of 88.04GHz for a laboratory scale 
field of 1 Tesla, corresponding to a cyclotronic orbital radius of 36.26 nm. 
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fractions δm/m of the electronic mass, so that the ratio between these, δe/δm maintains the 
same whole charge to whole mass ratio e/m which (following the Uhlenbeck & Goudsmit 
hypothesis) enters the helicity equations on the presumption that the whole electron is 
spinning. This fraction δe/e = δm/m is determined variationally by the shape of the radial 
function off-axis, which is determined to deviate from the multiplicative value of unity, only 
in the peripheral and polarisable outermost regions of the nuclear-centred electron.  
The second, based upon two counter-propagating electrons, involves determining the relative 
phase of the lowest stationary state coupling between a ms = + ½ and a ms = - ½ oriented spin 
circulations, whose amplitudes are periodic over 4, but whose relative angle values 
circulate for the pair in the real physical range of 2.  
The formal equation for the intra-pair correlation interaction is provided for the QSC model 
by Eq. 31, p.22 of Burton (1988), where the dynamic correlation is taken (following Hurley’s 
prompting) to conform to a universal form, given here as Eq. 3 for ease of reference.  
Consideration of the continuity boundary conditions over 2 around the periphery, and 
variation of the relative phase of the coupling, leads by way of constructive interference 
between the spins to an l=2, quadrupolar beat phenomenon in the circumferential periphery 
of the electron pair, orthogonal to the spin axis. The result of the angular form of the pair 
correlation formula for the least energy coupling in axially symmetric situations is 
essentially available by inspection, as the Figure 1 reveals.  
In the absence of the QSC insight, a rather more elaborate computational strategy, via the 
appropriate RQM equations provided in their quaternion formulation of ‘scale relativity’ by 
Celeriere & Nottale (2003, 2005)10, might be extended to fully accommodate the spin-spin 
interaction of QSC so long deleted (in advance) as lacking physical “significance” in Dirac’s 
equation for the spin-spin-interaction of two electrons (Breit, 1932): 

‘The modification required consists in the removal of terms in e4 in the result of 
eliminating the “small” components of the wavefunction. These terms do not involve h 
so that their physical significance is doubtful even for this reason alone.”(Breit 1932, 
p.617) … “The coupling of motions of particles due to their interactions with transverse 
waves is small compared to that due to electrostatic forces.”(p.621) 

It remains true that in QSC these effects are small compared to coulomb interactions, but 
hardly insignificant: thus RQM calculations adopting the Breit Hamiltonian also ignore 
correlation effects See Whittaker (2007). 

4. Interaction fields between QSC-correlated He atoms: Gravity? 
Spectral theory suggests that the He spin-manifold is capable of propagating its field of 
influence relatively far. Burton (2009) suggested that cool astrophysically distributed He gas 
can mediate a cooperatively aligned physical interaction through the interstellar “aether” of 
He which orients the quadrupolar resonant form of individual singlet coupled He atoms, so 
forming a background electromagnetic field in which all ‘matter’ is bathed. Gravity thus could 
                                                 
10 While the Celerier & Nottale’s ‘scale relativity’ quaternion framework is not set up in a manner in 
which the current spinor model has obvious application, or vice versa, the framework admits of deriving 
the Schrödinger and Dirac equations as special cases, and also admits non-differentiable functions (such 
as our two-valued spin functions). I anticipate that the QSC model will represent a highly pre-
diagonalised form of basis representation of equations accessible via Celerier & Nottale’s equations of 
motion. 
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be a side-effect of basic chemistry in cool distributed gas clouds, and so be fundamentally 
quantum mechanical in origin: if so, it is also emergent in the history of the Universe. 

4.1 The strange weakness of the gravitational background 
It remains of outstanding current interest, many years after Einstein’s (1916) formulation of the 
space-time topology of General Relativity, how gravity can be integrated with quantum 
mechanics (QM, now eighty five years old: Landau & Lifshitz 1977; Merzbacher 1970, 1992) in 
general and with the standard model at the atomic (QED) and sub-nuclear (QCD) levels of 
particle physics (Fritzsch 1992), also both decades old. The nature of the gravitational field, of 
relative scale forty orders of magnitude weaker than the coulombic force and – apparently - 
universally attractive between macroscopic bodies, continues to challenge particle theorists, 
whose ‘strings’ and ‘branes’ with 10-dimensional support seek to capture its elusive essence, 
so far without success. The apparently universal background force field of gravity, empirically 
identified by Newton more than three centuries ago and re-described as a topology in coupled 
space-time by Einstein almost a century ago, has remained unexplained11 beyond attributing the 
action-at-a-distance force of unknown fundamental origin to the interaction of classical 
‘masses’. What is actually causing Einstein’s curvature of space-time? 
The modern focus of investigations on gravity itself include: (i) galactic modeling, which 
raises a question of deviation from perfect inverse-square behavior of the gravitational force 
field, or else the existence of some form of so-far unobserved (or identified) ‘dark matter’ 
throughout the universe12; (ii) the search for, observation of, and characterization of 
properties of massive interstellar gravitational ‘black holes’ which assume that gravity does 
not change in form at small distances; and (iii) the search for direct observational evidence 
of ‘gravitational waves’. 
So far, gravitational waves (GW) have eluded direct detection, although their existence has 
been inferred from measurement of the orbital decay of the binary neutron stars PSR 1913 + 
16 (Taylor & Weinberg 1989). Two huge experimental consortia aimed at directly observing 
astronomical gravitational waves are currently underway, both focused on observing such 
dynamic perturbations to the gravitational background: LIGO13 is just attaining its design 
sensitivity and discrimination to detect gravitational pulsation from binary pulsars such as 
PSR 1913 +16; and LISA14, which spectrally complements LIGO, being readied for 2013 
flight and aimed at detecting gravitational waves from galactic binaries and super-massive 
black hole binaries.  
                                                 
11 As David Hume in 1739 already recognized in A Treatise of Human Nature, of Newton’s Principia 
Mathematica, that he advanced a description rather than an explanation of gravity. Einstein’s topological 
reformulation of gravity into an observer independent tensor formulation of curved space-time does 
not escape the same charge. 
12 See Da Rocha & Nottale (2003) and Nottale (2004), who instead propose another explanation. 
13 Laser Interferometer Gravitational Observatory (Gustafson, Shoemaker et al.1999; Allen, Anderson et 
al. 2001); multiple earthbound laser interferometer pairs of up to 4 kilometre pathlength, positioned 
thousands of kilometers apart, with high signal-to-noise efficiency in the 10Hz-10kHz region.  
See Laser Interferometer Gravitational Wave Observatory, LIGO-T0100017-00-Z, www.ligo.caltech.edu,  
(23 Feb 2001); see http://www.ligo-wa.caltech.edu/ligo_overview/ligo_overview.html and  
http://www.ligo.caltech.edu/advLIGO/. 
14 Laser Interferometer Space Antenna (Tinto & Dhurandhar 2005); a giant triangulation of three 
identical spacecraft 5x106 km apart, to observe and detect cosmic low frequency GWs not visible from 
earth, in the spectral region 10-4Hz to 1Hz. 
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LIGO (version II) and the spaceborne LISA is designed capable of resolving changes of 1 
part in 108 of an interference fringe relative to feedback-controlled dark-fringe resonance in 
the carrier 180W Nd:YAG 1064nm laser beams, so is capable of resolving differential GW 
impact on (30kg sapphire) test-masses situated remotely in each arm of the interferometer 
down to 10-19 m, i.e. a rather small part of a single atom’s 10-15 m nuclear radius. They 
supposedly may also detect a ‘continuous wave’ background signal that comprised the 
Newtonian Background ‘gravity gradient’ of gravity. This could appear as a ‘stochastic’ 
source, a seemingly random waveform generated by a large number of weak, independent 
sources of gravitational radiation. One possible source of such a signal could be emissions 
from the early universe – the unthermalised gravitational equivalent of the cosmic 
microwave background radiation (CMBR). Searches in stochastic backgrounds are 
conducted by cross-correlating the outputs of two or more interferometers.  
The particle physics complement of gravity, Higgs bosons exchanging information between 
masses, remain as yet unidentified15, so we lack insight into the frequency domain of the 
Higgs field16, although the symmetry of the interaction, by way of an especially intriguing (to 
this work) ‘transverse quadrupolar’ field, has been determined. No physical candidate for 
such dynamics has yet emerged from string theory and other models directed at 
incorporation of gravity into a unified four-fundamental-force ‘theory-of-everything’.  
One major issue is the relative strength of gravity in relation to the electromagnetic,  
weak-nuclear and strong-nuclear forces, given by the dimensionless scaling constants:  
ag ~ 3 x 10-41; ae ~ 1/137; aw ~ 1/30, as ~ 1/3. So, while macroscopic inverse-square/curved 
space-time understanding of gravity is clear enough from its success in planetary and 
galactic modeling, in the context of fundamental QM and particle physics models, its 
attractive nature yet its extraordinary weakness remains deeply mysterious to science: one 
could say, as mysterious as consciousness itself17. 

4.2 From explicit spinor correlation in atomic He to Meso-Scale interstellar 
gravitation? 
Rewriting Basic Physics of Spin: A geometrically specific spinor model in physical, matter-
wave terms is devised. A coherent analytical model of electron-pair correlation is introduced, 
invoking the phenomenon of Quantum Spin Coherence (QSC) as a Virial-theorem-
compliant – and computationally scalable -- correlation strategy in quantum chemistry. 
Superficial e-pair spin-coupling beats are identified as a constructive interference in coherent 
counterposed spin coupling as a consequence of the model. A spin-harmonic manifold of 
possible spin-coupled stationary states for (axially) symmetric e-pair is predicted. Novel 
electromagnetic force-fields, including a ‘transverse, quadrupolar’ pulsating magnetic field 
                                                 
15 CERN’s $2.3B Large Hadron Collider (LHC) has two ‘general purpose’ detectors, Atlas and the 
Compact Muon Solenoid, both of whose teams are aiming to identify the elusive Higgs boson. The Higgs 
boson, ‘known as the “God particle” because of its importance to the Standard Model’ [BBC 
commentary], provides an account in particle physics of why all other particles have mass. 
16 The Higgs mechanism is considered to fill all of space with a relatively uniform field, whose energy is 
regarded as the best candidate for the ‘dark energy’ of the Universe. ‘Dark energy’ is thought to make 
up the greater part (~70%) of the Universe, and be the ‘cause’ of the accelerating expansion of the 
Universe, following findings in 1998 by two teams studying supernovae. 
17 Burton, P.G. (2011). Human Cognition: higher brain function and the science of human consciousness. 
ISBN 9781456307400. See www.createspace.com/3494821  



 
Measurements in Quantum Mechanics 

 

324 

be a side-effect of basic chemistry in cool distributed gas clouds, and so be fundamentally 
quantum mechanical in origin: if so, it is also emergent in the history of the Universe. 
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attending coherent e-pair correlation, are adduced, the latter being a form of diamagnetism, 
dynamic diamagnetism, which is a direct implication of  the QSC model. This is a novel, 
attractive and resonant, form of diamagnetism limited to conspecific peer e-pair 
interactions. 
The Special Role of He: Atomic helium is a major element in interstellar regions, and present 
in cool molecular clouds which are astrophysically significant in the formation of new stars. 
The  QSC phenomenon of coherent correlation is particularly significant in the isolated  
e-pair case of ground state He (1s)2 because, even though the correlation in the K-shell of all 
atoms has a similar magnitude (Section 2.8), the small positive charge on the He nucleus 
means that the electron distribution of this e-pair is especially large, and therefore able to 
subtend a more extended spectral manifold of harmonics of the fundamental singlet-
coupled ground state configuration than from any other atom. This large size and high 
peripheral polarisability in the He case in turn means that the penetration distance of field 
interaction involving resonant information exchange between distant conspecific peer atoms 
is also unusually great. 
He...He interaction: Isolated He atoms are completely isotropic (Footnote 6). However, once 
He atoms begin to weakly interact, their natural internal correlated structure, which in QSC 
is axially oriented, becomes ’exposed’ by the interaction. The propagation of the correlation 
field of each e-pair acts to co-orient and so slightly stabilise the relative interaction. 
Specifically, the anisotropic interaction of the transverse quadrupolar beat phenomenon 
tends to co-orient interacting He atoms. Nearby He...He interaction is capable of collisional 
stabilisation to create a very weakly bound state of He2 (Luo, McBane et al. 1993) which may 
amplify orientational alignment in the general He...He interaction field, but the model being 
proposed does not rely upon this potential amplification of the basic phenomenon. 
Quantum-spin-coherently sourced, dynamic diamagnetic interactions between e-pair peers 
are then active even in extremely dilute interstellar He at the direct & local (micro-), 
proximally co-operative (meso-) and regional source-aggregated (macro-) level of 
consolidation to form a cooperative and coherently implicative force field. 
What is Mass?--from Spin Coherent Cooperativity to Gravity: Macro-level dynamic diamagnetic 
cooperativity sourced chemically, between e-pairs in He atoms, acts as a symmetry-compliant 
source--in fact the fundamental explanatory source--of the dynamics of the primary 
gravitational interaction. Implications for current searches for gravitational waves are 
considerable and implications of the quantum-spin-coherence model in particle physics, 
including the removal of ‘mass’ as an intrinsic property of matter, are to be noted. 

5. Implications of the QSC model of spin & spin-pairing 
The adoption and use of coherent partial matterwave electron representation of the spin 
component of spin-orbitals in chemistry would have many implications. It provides a new 
conceptual basis to:  
1. Satisfy every equation in Landau & Lifschitz or Merzbacher texts on Quantum 

Mechanics on spin, by substituting fractional δe/δm wherever e/m appears in the 
formula for the electron-magnetic moment.  

2. Variationally optimise electron pair correlation as a coherent matter-wave phenomenon 
between opposing spins paired in each orbital (i.e. as a purely local, single parameter 
optimization), with results which, in contrast to most correlation algorithms, are 
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consistent with the requirements of the Virial theorem, yet scale reasonably with 
molecular size because of the intrinsically local nature of their impact.  

3. Understand the electron magnetic moment at the first semiclassical level as a fractional 
electron, peripheral circulation effect δe/δm = e/m, and at a deeper quantum level, 
interpret the idea of any fundamental particle having as an empirical attribute 
something called mass being derived from the strength (low mass) or weakness (high 
mass) of that particle’s interaction from the universal background field mediated 
astrophysically by distributed yet implicate He atoms.  

4. Understand gravity (described but not explained by Einstein, 1916) as an intrinsically 
coherent, quantum-mechanical indirect interaction between apparent 'masses', whose 
effect is transmitted onto the local particle from implicate aggregation of field effects due 
entirely to (intrinsically stable, coherent correlations within) the electronic part of the 
wave function of remote He-bound spin- pair couplets. In this formulation, mass becomes 
a secondary and empirical result of engagement of any (electromagnetic) particle with a 
primary dynamic diamagnetic magnetic field interaction between distant but implicate 
electron peer pairs. The empirical appearance of mass is then understood as the result of 
implicate cooperation in a background micro-field alignment at the meso-scale, where 
each micro-field is essentially derived from QSC coupling in correlated e-pairs, and where 
at large or asymptotic distances  the pulsating magnetic field lines are essentially collinear. 
In this formulation, there is little/no role/contribution of the (electronically shielded) 
nuclear ‘hadrons’ in aggregating such inertial drag on a particle, at least from nuclear-
shielded neutral atoms: the effect is essentially electronic in its nature and being derived 
from atom-based interactions, chemical in origin.  

5. Tidy up the unification of the four forces of physics, to bring gravity into a formulation 
of R(QM). This is goal Einstein couldn't see a way to reach, and which is not in principle 
possible to achieve, without his first having taken QM seriously enough in this context 
(see also item 12.) to understand that gravity could be caused by close-coupling in pair 
interactions. In this way, gravity is positioned as an outcome of quantum 
entanglement18. 

6. Convert to heresy the 'Copenhagen' dogma on non-deterministic QM interpretation, 
substituting a realized form of matter-wave spin following the heritage of Einstein, de 
Broglie, Schrödinger, Bohm & Bell, and in line with the present conjecture, describe 
exactly & precisely those few previously ‘hidden’ spin 'variables' that have been 
overlooked as a result of the repressively  'dogmatic' Copenhagen view (and along with 
it the persistent semiclassical, non- determined, determinantal interpretation) of QM.  

7. Advance an account of the physical origin of the three colour forces in QCD (Fritzsch, 
1992) as deriving from three complementary spatial orientations of spin interactions.  

8. Develop new models the nature of the meson in the strong force, the neutrino in the 
weak force, and understand that the proton must not be immune from decay. 

9. Predict the rest mass of the electron-antineutrino (0.575ev), as being displaced or 
decoupled from its coherent origin as a spin-only, low mass and low charge (virtual) 
partner in a coherently coupled fermionic  correlation of an e-pair. 

10. Understand that matter and antimatter is exactly in balance in our universe – that 
hadrons account for all the original positronic antimatter becoming captured in 
metastable QSC variant spin couplings with electron counterparts. 

                                                 
18  In QSC, entanglement as topology becomes matter-wave interaction. 
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11. Recognise dynamic diamagnetism as a new fundamental force of nature, to account for 
the origin of an apparent, empirically attractive gravitational force, by being responsible 
ultimately for both internal ‘mass’ of any particle/ body/‘matter’/planet/star/galaxy 
(i.e. drag w.r.t. the implicate background field) and, by directed difference, apparent 
gravitational forces between those bodies. 

12. Quantum spin-coherence emerges, via the representational power of the ‘ripple’ model 
of spin, as a natural, principal and determinable solution of the ‘small’ parts of the 
quaternionic form of the relativistic quantum equations of motion, as provided by 
Celerier & Nottale (2003, 2005).  

Predictions are also made concerning (a) the existence of, and (b) unique observational 
fingerprint of, hitherto unsuspected excited harmonics spin-states of electronic singlet 
coupling. These QSC spin harmonic states, occurring as previously unrecognized structure 
within the ground state electronic wave-function of an electron pair, are not yet observed. 
The special case of He (1s)2, because of its size subtending an exceptionally large manifold of 
such harmonics, as illustrated in Table 1, and because of its ubiquity, becomes of 
outstanding astrophysical interest.  

6. Directions for future research 
The Quantum Spin Coherence model of the phenomenon of electron correlation entails a 
novel conception of realised electron spin and a new physical and geometric interpretation 
of the spinors of relativistic quantum mechanics. A simple and direct physical interpretation 
of the most fundamental Stern-Gerlach experiment arises, originated by the chaotic 
Zitterbewegung of an originally non-magnetised electron interacting with the 
inhomogeneous magnetic field to generate its magnetic moment. The fundamental 
philosophy of modern quantum theory is revised by this model, which defends a realization 
of the ‘hidden-variables’ matter-wave interpretation of quantum mechanics. The model is 
also defensible by consistency with two modern ab initio formulations of the applicable 
quaternion equations of relativistic quantum mechanics.  
Three independently disprovable aspects of this reconception of spin and correlation are 
immediately apparent. Firstly, the ability to model individual filled-shell electron correlation 
by an essentially exact analytic model with a single variational dimension is available, 
whereby the universality of the pair correlation function f(1,2) suggested here can be assessed. 
The simplest test of the model itself is whether its prediction of the achievement of the exact 
energy of He (1s)2 by this strategy is met. Secondly, a previously unrecognized quantisation 
and energy-state manifold in ground-state e-pair coherent spin coupling is predicated, 
including a manifold of states as I have predicted semiclassically for He. Direct spectroscopic 
transitions will fail to reveal this previously unsuspected intra-atomic manifold because of 
forbidden singlet-singlet selection rules, however more condensed states including liquid He 
(and especially He2) may reveal previously unexpected atomic manifold structure in phonon 
bands in response to shock. Thirdly, the model predicts previously unsuspected coherent 
magnetic complement of a newly coherent QSC formulation of the weak dispersion interaction 
between e-pairs, despite their spin-singlet coupling which should (conventionally)close out the 
possibility of any residual magnetic interaction. Previously, dispersion interaction had been 
posed as being a rather chaotic interaction between instantaneous dipolar field arising in each 
structure. Along with a coherent, line-of-sight dipolar electrical interaction between remote e-
pairs (corresponding to a revised understanding of the van der Waals interaction), a new kind 
of dynamic magnetic field provides a secondary, transverse, quadrupolar form of e-pair 
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interaction. This purely quantum phenomenon is called dynamic diamagnetism, and it is 
fundamentally attractive in nature, especially between otherwise identical coupled pairs, in 
contrast to all previously known forms of diamagnetism which give rise to repulsive forces of 
interaction, including the Meissner effect in superconductivity. Finally, the model predicts that 
both complementary fields of any e-pair interaction are fundamentally orientationally 
anisotropic. [The single exception lies in a hypothetical situation of an e-pair in perfect 
isolation, where the overriding J=0 rotational homogenization applies.]  
In the QSC framework, gravity, apparently the simplest and certainly the first recognized of 
the four modern forces of nature, is derived as a force of purely quantum-mechanical origin. 
This result provides the first account of integration of all four forces in nature being 
quantum mechanical in origin. Einstein’s approach (Davies 1995; Feynman 1998; White & 
Gribbin 2005) to developing a rapprochement between gravity and quantum theory, as 
though these were fundamentally independent of one another, thus could not have 
succeeded. Although the incorporation of relativistic concepts into quantum mechanics is 
necessary to explain gravity (through the phenomenon of electron spin and the implications 
of its singlet coupling) it has, until now, not been sufficient to explain gravity. It remains to 
the future therefore to consider appropriate formulation of the ‘equations of matter-wave 
motion’ in which the QSC model provides its insights without requiring the assumption of 
the empirical phenomenon of particle mass. However, it is extremely unlikely that the LHC 
design will ever see the ultra-weak signature of bound e-pair interactions. 
In the QSC formulation of gravity, gravitational forces cannot be present at the origination 
of the Universe. Gravitational waves, as a composition of a stabilising gravitational 
background field and a multiplicity of dynamic perturbations from non-equilibrium meso-
scale gravitational activity, are the current target of gravitational wave observatories, based 
upon laser interferometry. For the LIGO experiment, observations may well detect meso-
scale perturbations relative to the background, but not the background itself, there being no 
gravitational complement of the CMBR in the QSC framework. The additional degrees of 
freedom in the forthcoming LISA experiment should be capable, subject to certain 
conditions, of observing the proposed intrinsic anisotropy of QSC gravitational forces at 
meso-scale.  
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11. Recognise dynamic diamagnetism as a new fundamental force of nature, to account for 
the origin of an apparent, empirically attractive gravitational force, by being responsible 
ultimately for both internal ‘mass’ of any particle/ body/‘matter’/planet/star/galaxy 
(i.e. drag w.r.t. the implicate background field) and, by directed difference, apparent 
gravitational forces between those bodies. 

12. Quantum spin-coherence emerges, via the representational power of the ‘ripple’ model 
of spin, as a natural, principal and determinable solution of the ‘small’ parts of the 
quaternionic form of the relativistic quantum equations of motion, as provided by 
Celerier & Nottale (2003, 2005).  

Predictions are also made concerning (a) the existence of, and (b) unique observational 
fingerprint of, hitherto unsuspected excited harmonics spin-states of electronic singlet 
coupling. These QSC spin harmonic states, occurring as previously unrecognized structure 
within the ground state electronic wave-function of an electron pair, are not yet observed. 
The special case of He (1s)2, because of its size subtending an exceptionally large manifold of 
such harmonics, as illustrated in Table 1, and because of its ubiquity, becomes of 
outstanding astrophysical interest.  

6. Directions for future research 
The Quantum Spin Coherence model of the phenomenon of electron correlation entails a 
novel conception of realised electron spin and a new physical and geometric interpretation 
of the spinors of relativistic quantum mechanics. A simple and direct physical interpretation 
of the most fundamental Stern-Gerlach experiment arises, originated by the chaotic 
Zitterbewegung of an originally non-magnetised electron interacting with the 
inhomogeneous magnetic field to generate its magnetic moment. The fundamental 
philosophy of modern quantum theory is revised by this model, which defends a realization 
of the ‘hidden-variables’ matter-wave interpretation of quantum mechanics. The model is 
also defensible by consistency with two modern ab initio formulations of the applicable 
quaternion equations of relativistic quantum mechanics.  
Three independently disprovable aspects of this reconception of spin and correlation are 
immediately apparent. Firstly, the ability to model individual filled-shell electron correlation 
by an essentially exact analytic model with a single variational dimension is available, 
whereby the universality of the pair correlation function f(1,2) suggested here can be assessed. 
The simplest test of the model itself is whether its prediction of the achievement of the exact 
energy of He (1s)2 by this strategy is met. Secondly, a previously unrecognized quantisation 
and energy-state manifold in ground-state e-pair coherent spin coupling is predicated, 
including a manifold of states as I have predicted semiclassically for He. Direct spectroscopic 
transitions will fail to reveal this previously unsuspected intra-atomic manifold because of 
forbidden singlet-singlet selection rules, however more condensed states including liquid He 
(and especially He2) may reveal previously unexpected atomic manifold structure in phonon 
bands in response to shock. Thirdly, the model predicts previously unsuspected coherent 
magnetic complement of a newly coherent QSC formulation of the weak dispersion interaction 
between e-pairs, despite their spin-singlet coupling which should (conventionally)close out the 
possibility of any residual magnetic interaction. Previously, dispersion interaction had been 
posed as being a rather chaotic interaction between instantaneous dipolar field arising in each 
structure. Along with a coherent, line-of-sight dipolar electrical interaction between remote e-
pairs (corresponding to a revised understanding of the van der Waals interaction), a new kind 
of dynamic magnetic field provides a secondary, transverse, quadrupolar form of e-pair 
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interaction. This purely quantum phenomenon is called dynamic diamagnetism, and it is 
fundamentally attractive in nature, especially between otherwise identical coupled pairs, in 
contrast to all previously known forms of diamagnetism which give rise to repulsive forces of 
interaction, including the Meissner effect in superconductivity. Finally, the model predicts that 
both complementary fields of any e-pair interaction are fundamentally orientationally 
anisotropic. [The single exception lies in a hypothetical situation of an e-pair in perfect 
isolation, where the overriding J=0 rotational homogenization applies.]  
In the QSC framework, gravity, apparently the simplest and certainly the first recognized of 
the four modern forces of nature, is derived as a force of purely quantum-mechanical origin. 
This result provides the first account of integration of all four forces in nature being 
quantum mechanical in origin. Einstein’s approach (Davies 1995; Feynman 1998; White & 
Gribbin 2005) to developing a rapprochement between gravity and quantum theory, as 
though these were fundamentally independent of one another, thus could not have 
succeeded. Although the incorporation of relativistic concepts into quantum mechanics is 
necessary to explain gravity (through the phenomenon of electron spin and the implications 
of its singlet coupling) it has, until now, not been sufficient to explain gravity. It remains to 
the future therefore to consider appropriate formulation of the ‘equations of matter-wave 
motion’ in which the QSC model provides its insights without requiring the assumption of 
the empirical phenomenon of particle mass. However, it is extremely unlikely that the LHC 
design will ever see the ultra-weak signature of bound e-pair interactions. 
In the QSC formulation of gravity, gravitational forces cannot be present at the origination 
of the Universe. Gravitational waves, as a composition of a stabilising gravitational 
background field and a multiplicity of dynamic perturbations from non-equilibrium meso-
scale gravitational activity, are the current target of gravitational wave observatories, based 
upon laser interferometry. For the LIGO experiment, observations may well detect meso-
scale perturbations relative to the background, but not the background itself, there being no 
gravitational complement of the CMBR in the QSC framework. The additional degrees of 
freedom in the forthcoming LISA experiment should be capable, subject to certain 
conditions, of observing the proposed intrinsic anisotropy of QSC gravitational forces at 
meso-scale.  
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1. Introduction

The motivations of high energy physics collider experiments include the precise measurement
of parameters in the standard model (Passarino & Veltman, 1979; van Oldenborgh &
Vermaseren, 1990) and beyond. In recent years, the precision of high energy experiments at
colliders has increased significantly as a result of developments in electronics. The detection of
any deviations of the experimental data from the theoretical predictions may lead to the study
of new phenomena. In modern physics, everything is composed of elementary particles, and
there are four basic interactions acting on particles: gravitation, and the weak, electromagnetic
and strong interactions. When we consider a scattering process of elementary particles, the
cross section reflects the dynamics which govern the motion of the particles, caused by the
interaction.
All information pertaining to a particle interaction is contained in the amplitude according to
the (Feynman) rules of Quantum Field Theory. Generally, with a given particle interaction,
a large number of configurations (represented by Feynman diagrams) are associated. Each
diagram represents one of the possible configurations of the virtual processes, and it describes
a part of the total amplitude. The square sum of the amplitudes delivers the probability or
cross section of the process (by integration). Based on the Feynman rules, it is the goal to
obtain the amplitude using the steps listed in Figure 1.
Feynman diagrams are constructed in such a way that the initial state particles are connected
to the final state particles by propagators and vertices. Particles meet at vertices according
to a coupling constant g which indicates the strength of the interaction. The amplitude is
expanded as a perturbation series in g, where the leading (lowest) order of approximation
corresponds to the tree level of the Feynman diagrams. The evaluation of tree diagrams is well
known and analytical formulations exist, which have been developed into automatizations of
Figure (1) and are heavily used in high energy physics. For the tree level, packages such as
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1. Introduction

The motivations of high energy physics collider experiments include the precise measurement
of parameters in the standard model (Passarino & Veltman, 1979; van Oldenborgh &
Vermaseren, 1990) and beyond. In recent years, the precision of high energy experiments at
colliders has increased significantly as a result of developments in electronics. The detection of
any deviations of the experimental data from the theoretical predictions may lead to the study
of new phenomena. In modern physics, everything is composed of elementary particles, and
there are four basic interactions acting on particles: gravitation, and the weak, electromagnetic
and strong interactions. When we consider a scattering process of elementary particles, the
cross section reflects the dynamics which govern the motion of the particles, caused by the
interaction.
All information pertaining to a particle interaction is contained in the amplitude according to
the (Feynman) rules of Quantum Field Theory. Generally, with a given particle interaction,
a large number of configurations (represented by Feynman diagrams) are associated. Each
diagram represents one of the possible configurations of the virtual processes, and it describes
a part of the total amplitude. The square sum of the amplitudes delivers the probability or
cross section of the process (by integration). Based on the Feynman rules, it is the goal to
obtain the amplitude using the steps listed in Figure 1.
Feynman diagrams are constructed in such a way that the initial state particles are connected
to the final state particles by propagators and vertices. Particles meet at vertices according
to a coupling constant g which indicates the strength of the interaction. The amplitude is
expanded as a perturbation series in g, where the leading (lowest) order of approximation
corresponds to the tree level of the Feynman diagrams. The evaluation of tree diagrams is well
known and analytical formulations exist, which have been developed into automatizations of
Figure (1) and are heavily used in high energy physics. For the tree level, packages such as
GRACE, COMPHEP, CALCHEP, FEYNARTS/FEYNCALC/FORMCALC, MADGRAPH, FDC,
and so on, are available.
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2 Will-be-set-by-IN-TECH

(i) Specify the physics process (external momenta and order of
perturbation);
(ii) draw all Feynman diagrams relevant to the process;
(iii) determine the contributions to the amplitude.

Fig. 1. Scheme for computation of the cross section amplitude

Without the higher perturbative orders, which require the evaluation of loop diagrams,
the theory is inept at modeling the experimental observations precisely. The
computation of loop integrals allows the inclusion of higher order terms for perturbation
calculations of the amplitude in quantum field theory. For the one-loop order
an analytic treatment is established and has been implemented in several automatic
computation systems which are in various stages of testing. Currently available
packages include FEYNARTS/FEYNCALC/LOOPTOOLS (van Oldenborgh & Vermaseren,
2000), GRACE-1LOOP (Fujimoto et al., 2006; Yasui et al., 2007), XLOOPS-GINAC (Bauer,
2002), GOLEM/SAMURAI (Binoth et al., 2009; Heinrich et al., 2010), HELAC-NLO (van
Hameren et al., 2009), and so on. However there is no analytical method for calculating
higher order corrections in a systematic way, especially for higher than two-loop electroweak
corrections including three or four legs (three-point or four-point) and general mass
configurations. Therefore semi-numerical or fully numerical approaches have been an
important topic of study for many research groups.
We have developed a novel, fully numerical method, DCM (Direct Computation Method),
to evaluate loop integrals based on a combination of numerical integration and numerical
extrapolation techniques. Developed originally for cases without infrared (IR) or ultraviolet
(UV) divergences, DCM uses nonlinear extrapolation to regulate singularities caused by
vanishing integrand denominators in the interior of the integration domain. Furthermore,
a regularization of IR divergence caused through boundary singularities has been enabled by
an extension of DCM.
In this paper we describe the DCM regularization techniques. Subsequently, Section 2
reviews formalism and notations pertaining to Feynman diagrams and loop integrals. After
introducing the basic DCM method in Section 3, we discuss IR divergence (and the DCM
regularization to handle it) in Section 4, while giving examples and numerical results.
Section 5 presents concluding remarks and avenues for future work.

2. Feynman diagrams and loop integrals

The general form of an L-loop integral with N propagators is given by

I =
∫ L

∏
j=1

dDlj

iπD/2

N

∏
r=1

1
Dr

(1)

where D is the space-time dimension, and the integration is over the loop momenta lj, j =
1, · · · , D. Here Dr is the denominator of the r-th propagator,

Dr = q2
r − m2

r + iδ, (2)

334 Measurements in Quantum Mechanics Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 3

where qr and mr, r = 1, 2, · · · , N are the momentum of the propagator and the mass of the r-th
internal particle, respectively, and iδ is an infinitesimal term (with positive δ), which prevents
the integral from diverging if D vanishes inside the integration domain. The latter happens in
the physical region, where the total squared energy s of the colliding particle system exceeds a
threshold so that the reaction can actually take place in the real world. Below this threshold,
in the unphysical region, the integral satisfies the representation (1) with δ = 0.
By the generalized Feynman identity (Nakanishi, 1971),

1
D1D2 · · · DN

= (N − 1)!
N

∏
j=1

(∫ ∞

0
dxj

)
δ(1 − ∑N

r=1 xr)

(∑N
r=1 xrDr)N

, (3)

where the {xr} are Feynman parameters. Note that, in view of the δ-function and xr ≥ 0
for each r = 1, · · · , N, we have 0 ≤ xN = 1 − x1 − · · · − xN−1, so that 0 ≤ ∑N−1

r=1 xr ≤ 1.
Thus, if xN is eliminated in terms of the other coordinates, the integration region reduces to
the N − 1-dimensional unit simplex, { x | ∑N−1

j=1 xr ≤ 1, xr ≥ 0 for 0 ≤ r < N }. However, in
the following we will leave the δ-function in the integrand, and set the upper bounds of the
integration to 1.
After the loop momentum integrations of Eq. (1), the scalar loop integral I is given in (Binoth
& Heinrich, 2004) as

I = Γ(N − DL/2)(−1)N
∫ 1

0

N

∏
r=1

dxr δ(1 −
N

∑
r=1

xr)
UN−(L+1)D/2

FN−LD/2 . (4)

Eq. (4) is called a Feynman parametric integral. The expressions of U and F can be constructed
according to the topology of the corresponding Feynman diagram. The function

U (x) = ∑
T∈ T1

∏
j∈ C(T)

xj

is a sum of monomials, each a product of variables corresponding to the loop lines (edges)
which are cut in the graph to form the tree T. The tree is called a 1-tree, T ∈ T1 (= the set of
all such 1-trees). The set of lines that was cut constitutes a chord C(T), which corresponds to
a monomial of degree L in the Feynman parameters. For example, each 1-tree of a diagram
consisting of one loop is formed by cutting one line of the loop, thus U (x) = ∑N

j=1 xj = 1 for
this diagram.
A 2-tree T̂ consists of two disconnected trees which are obtained by cutting an edge of a 1-tree,
T̂ ∈ T2 (= the set of all such 2-trees), and the corresponding chords determine monomials of
degree L + 1 in the Feynman parameters. Then, the function F0 is defined as

F0 = ∑
T̂∈ T2

( ∏
j∈ C(T̂)

xj)(−s(T̄)),

where s(T̄) = (∑j∈ C(T̂) pj)
2 is a Lorentz invariant. The denominator function F (x) is given

by

F (x) = F0(x) + U (x)
N

∑
j=1

xjm2
j .
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4 Will-be-set-by-IN-TECH

In this paper we consider three types of divergences which may occur in the evaluation of
loop integrals. The first is a divergence which occurs when the denominator vanishes in the
integration region due to the specific configuration of the masses and external momenta. The
other two are the infrared (IR) divergence, which appears when some of the internal particles
are massless, and ultraviolet (UV) divergence, which is due to the contribution incurred from
very large loop momenta.
The functions U and F in (4) are positive semi-definite functions of the Feynman parameters.
The vanishing of U is determined by the topology and is related to the UV subdivergences of
the graph. On the other hand, the vanishing of F depends not only on the topology but also
on the kinematical parameters, and may (or may not) lead to an IR divergence.

3. Direct Computation Method

The imaginary part iδ in the denominator of the propagator, Eq. (2), is introduced in the
formalism as an infinitesimal quantity, to prevent the integral from diverging. In that sense, it
plays a role as a regulator. For a numerical computation we consider I in (4) as a function of
δ, and obtain the integral in the limit as δ tends to zero.
For this limiting process, we construct a sequence of approximations, I(δl), l = 0, 1, · · · , for
a decreasing sequence of δl such as δl = δ0/Ac

l , Ac > 1, and extrapolate to the limit. For the
extrapolation or convergence acceleration of a sequence S(δ) to the limit S as δ → 0, we rely
on the existence of an asymptotic expansion

S(δ) ∼ S + a1 ϕ1(δ) + a2 ϕ2(δ) + · · · = S + ∑
j≥1

ϕj(δ), (5)

where the ϕj functions are arranged in decreasing order of δ, so that limδ→0
ϕj+1(δ)
ϕj(δ)

= 0.

A linear extrapolation method can be used if the ϕj(δ) are known functions of δ. It yields
solutions to linear systems of the form

S(δl) = a0 + a1 ϕ1(δl) + . . . aν ϕν(δl), l = 0, . . . , ν, (6)

of order (ν + 1) × (ν + 1) (in the unknowns a0, . . . aν) for increasing values of ν (Brezinski,
1980; Lyness, 1976). For example, the ϕk(δ) functions may constitute a sequence of integer
powers of δ, which play the role of the coefficients in the linear system (6). The goal is to
combine values of S(δ) for decreasing values of δ, in order to eliminate terms from the error
expansion of S(δl)− a0.
Apart from geometric and harmonic sequences of δ, we have explored the Bulirsch
sequence (Bulirsch, 1964), of the form δ = 1/b with b = 2, 3, 4, 6, 8, 12, 16, . . . (consisting of
powers of 2, alternating with 1.5× the preceding power of 2). The type of sequence selected
influences the stability of the process, as for Romberg type integration, which was found to
be more stable with the geometric sequence than with the harmonic sequence (the Bulirsch
sequence ranging in between) (Lyness, 1976). On the other hand there is a trade-off with the
computational expense of S(δ), which may become prohibitive for fast decreasing δ, especially
in multivariate applications. For the computations we can furthermore use versions of bl
starting at, e.g., b0 = 1, 3 or 1/8.
If the functions of δ in the asymptotic expansion (5) are not known, a nonlinear extrapolation
may be suitable (Ford & Sidi, 1987; Levin & Sidi, 1981; Sidi, 1979; Wynn, 1956). In that case

336 Measurements in Quantum Mechanics Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 5

we use the ε-algorithm (Shanks, 1955; Wynn, 1956), which can be applied under more general
conditions than those allowing linear extrapolation, if a geometric sequence is used for δ, for
example with ϕj of the form ϕj(δ) = δαj logkj (δ), where αj > 0 and integer kj ≥ 0. The actual
form of the underlying δ-dependency does not need to be specified for the ε-algorithm. As
a disadvantage, the latter does come with additional cost (compared to linear extrapolation)
in terms of the number of elements S(δl) needed for the elimination of parts of the error
expansion.
This prescription is implemented as DCM and a schematic view of the program flow of
DCM is shown in Fig. 2. For unphysical kinematics, it is sufficient to only carry out the
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Fig. 2. Program flow of DCM.

multi-dimensional integration with δ = 0. While no extrapolation is required in this case, the
procedure will nevertheless produce a result, although it is less efficient. If an extrapolation
is performed under valid conditions, it is the goal of the implementation in Fig. 2 to produce
sequences which converge faster than the original, until convergence is detected within the
requested accuracy and maximum number of steps. Otherwise an abnormal termination is
flagged.
For the numerical integration, we use the QUADPACK (Piessens et al., 1983) routines
DQAGE or DQAGSE. These are 1D automatic, adaptive integration algorithms, which apply
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Gauss-Kronrod quadrature rules on the subintervals resulting from the adaptive partitioning.
The one-dimensional quadrature algorithms are applied in an iterated scheme for the
multi-dimensional integration (de Doncker & Kaugars, 2010; Li et al., 2004).
It is interesting to note that the numerical integration sequence can often start with a
fairly large δ value, such as δ0 = 1.240 (for a geometric sequence with base 1/1.2), which
allows dealing with a less singular behavior of the integrand, and can greatly simplify the
integrations through the sequence. We are examining how to set the initial value of δ

heuristically, depending on the mass values occurring in the integrand denominator.
So far we have applied DCM effectively for one-loop three-, four-, five- and six-point loop
integrals with masses (de Doncker, 2003; de Doncker et al., 2010; 2011; de Doncker, Shimizu,
Fujimoto & Yuasa, 2004; de Doncker et al., 2006; de Doncker, Shimizu, Fujimoto, Yuasa, Cucos
& Van Voorst, 2004; Yuasa et al., 2007; 2008). We have also applied it successfully to two-loop
two-, three- and four-point loop integrals with masses (see, e.g., de Doncker et al. 2011; 2006;
Yuasa et al. 2011; 2008; 2010). Thus even though the integrands in these cases suffer from
detrimental singular behavior due to the configuration determined by the actual kinematical
parameters, DCM was clearly able to regulate this type of divergence by finite δ.

4. IR divergence and regularization

IR divergence corresponds to the presence of massless internal particles like photons or
gluons. We will consider two prescriptions to regularize IR divergence. The first is the
more natural procedure, classified in a broad sense as mass regularization in (Muta, 2010), by
introducing a small fictitious mass λ for the massless internal particles; and the other is the
dimensional regularization technique which was originally proposed to control UV divergence.
With respect to the mass regularization prescription, our procedure for the integration of
the IR diagram is as given by Fig. 2, applied to configurations where some masses are very
small. Since λ in the denominator is fixed, no extension of DCM is needed and the procedure
is straightforward. In dimensional regularization, the space-time dimension D in Eq.(4) is
replaced by 4 + 2� and it is assumed that � → 0. This results in a Laurent expansion of the
integral as a function of �. It should be noted that two regulators appear, (δ, λ) for mass
regularization, and (δ, �) for dimensional regularization, in order to handle integrals with
divergence due to physical kinematics as well as IR divergence.
It is well-known that IR divergence cancels out in well-defined physical quantities
(e.g., (Kinoshita, 1962; Muta, 2010; Nakanishi, 1971)), but the regularization is required
to replace each IR divergent integral in the formalization of the physical quantity by
a mathematically well-defined quantity. The regularization is removed after achieving the
cancellation of the IR divergence in the physical quantity (Muta, 2010).
Mass regularization plays a role in verifying calculations of the total cross section. As an
example, consider the e+ e− → e+ e− γ process (for only the QED interaction), resulting
in eight tree diagrams and 100 one-loop diagrams, of which 80 diagrams are IR divergent.
By the cut-off kc let us denote an energy threshold of the emitted photon as follows. If the
energy of the photon exceeds kc, it is a hard photon; with energy below kc, it is a soft photon.
The total cross section σ(λ, kc) is a sum of: (1) loop diagram, (2) soft-photon diagram, and (3)
hard-photon diagram contributions. Using (1) and (2), the independence of λ can be checked;
and independence of kc can be verified with (2) and (3).
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4.1 Regularization by fictitious mass
In the mass regularization based on the procedure of Fig. 2, the dependence on δ may
dominate the behavior of the denominator in Eq. (4) when λ is very small. In (de Doncker
et al., 2005; Yuasa et al., 2007), we investigated the behavior of the results and found that
the DCM method breaks down for extremely small values of λ (less than 10−15 GeV in
double precision arithmetic). The point of deterioration can be moved, to some extent, by
performing the calculations in quadruple precision. For example, results of up to 8-figure
accuracy are obtained using quadruple precision for the IR divergent four-point diagram (γγ

box diagram), with m = 0.510−3 GeV and λ = 10−15 GeV and with the center of mass energy
s = (p1 + p2)

2 = 5002 GeV2 (de Doncker et al., 2005), whereas the corresponding double
precision results are only accurate to about two figures.
Furthermore using the extended precision library HMLIB (Fujimoto et al., 2006), which is
based on the IEEE 754-1985 floating point standard, results are provided in (Yasui et al., 2007;
Yuasa et al., 2007) for the one-loop three-point diagram and λ as small as λ = 10−160 GeV,
and for the one-loop four-point diagram with λ ≥ 10−30 GeV. The validity range of DCM thus
supports the conventional IR regularization technique using extended precision arithmetic for
this process.

4.2 Dimensional regularization
In the scheme of dimensional regularization, a new idea is required since the second regulator
� appears in the exponent of the integrand denominator. Let us denote the value of the integral
for a fixed δl and �k by I(δl , �k). Then we apply DCM of Fig. 2 to calculate limδ→0+ I(δ, �k),
which we will denote by I(0, �k). It is our goal to use a sequence of I(0, �k), k = 0, 1, · · · to
approximate the coefficients of leading order terms in the Laurent expansion of I(0, �) with
respect to �.
This use of DCM comprises a double extrapolation technique where both δ → 0 and � → 0. A
high-level description is outlined in the algorithm of Fig. 3. Its application is demonstrated
in subsequent examples. The while loop condition in the algorithm enforces a test on
the maximum number of iterations and may implement a check on convergence of the
�-extrapolation.

Double_extrapolation_algorithm {
Set initial �
// � extrapolation loop
while (� extrapolation conditions) {

I(0, �) ← DCM(�)
Obtain leading term coefficients
Set next �
}

}

Fig. 3. Algorithm for IR divergent loop integral
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4.2.1 Example 1
First we present the scalar massless one-shell one-loop four-point diagram (L = 1, N = 4) as
a simple example. The integral is given by

I4 =
∫ 1

0
d4x

δ(1 − ∑N
j=1 xj)

(−sx1x3 − tx2x4 − iδ)2−�
,

with s = (p1 + p2)
2 and t = (p1 + p3)

2. Using ∑N
j=1 xj = 1 and x4 ≥ 0, the integral becomes

I4 =
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

1
(−sx1x3 − tx2x4 − iδ)2−�

. (7)

With the sector decomposition technique (Binoth & Heinrich, 2004; Fujimoto & Ueda, 2008),
Eq. (7) yields

I4 = 2
∫ 1

0
d3x(x−1+�

1 x−1+�
2

(1 + x1 + x2 + x1x2x3)
−2� + (1 + x1 + x2(x1 + x3))

−2�

(−s − tx3 − iδ)2−�
(8)

+ x−1+�
1

(1 + x1 + x2 + x1x3)
−2�

(−s − tx2x3 − iδ)2−�
) + (s ↔ t),

via successive sector decompositions, and elimination of the δ-function (symmetrically with
respect to the coordinate variables). The (s ↔ t) part consists of the terms listed in the
integrand with s replaced by t and vice-versa. By expanding the non-singular numerators
around x1 and/or x2 = 0, the IR singularity then manifests itself through a pole at � = 0.
The coefficients of the Laurent expansion

I4 =
C−2

�2 +
C−1

�
+ C0 +O(�) (9)

can be collected as sums of multi-dimensional integrals. However, the asymptotic behavior of
Eq. (9) as a function of � gives a basis for an approximation of the coefficients C0, C−1, C−2 by
extrapolation. For an approximation of C−2 we can use

C̃−2 = I(�) �2 ∼ C−2 + C−1� + C0 �2 + · · · (10)

as � → 0. Thus we proceed by constructing a sequence of C̃−2(�l) = I(�l) �l
2, and use

the ε-algorithm (Shanks, 1955; Wynn, 1956) for numerical extrapolation. For s, t < 0 the
denominators in Eq. (8) do not vanish and the integral exists for � > 0. Results of the
computations according to Eq. (10) for C̃−2 with s = t = −1, for �k = 2−k, k ≥ 0, together
with the extrapolated values, are shown in Table 1.
For the evaluation of C−1 we do not require another sequence of integrals to be computed
since we can use the C̃−2 sequence divided by the constant �,

C̃−1 = I(�) � =
C̃−2

�
∼ C−2

�
+ C−1 + C0 � + · · · .
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k I(�k)�
2
k = C̃−2 Extrapolated (C−2)

0 0.2467401100272340E+01
1 0.3915839671912849E+01
2 0.4356784142166274E+01 0.454976991318E+01
3 0.4322263111559589E+01 0.432476950067E+01
4 0.4203435233964723E+01 0.437091943007E+01
5 0.4113097380184850E+01 0.382664876650E+01
6 0.4059492230026028E+01 0.399594399188E+01
7 0.4030494087959442E+01 0.399987052327E+01
8 0.4015435528831175E+01 0.399999594538E+01
9 0.4007765070784543E+01 0.400000011407E+01

10 0.4003894385147564E+01 0.400000000650E+01
11 0.4001950158104918E+01 0.400000000197E+01

Exact: 4.0

Table 1. Extrapolation results, C−2 and C̃−2 of Eq. (10)

Whilst {C̃−1(�k)} is a divergent sequence, the ε-algorithm is able to extrapolate to the value
of C−1 (barring roundoff). Furthermore, we have

C̃0 = I(�) =
C̃−2

�2 ∼ C−2

�2 +
C−1

�
+ C0 +O(�).

For this simple example, the analytic formulae are known for C−2, C−1 and C0 (Fujimoto &
Ueda, 2008), e.g.,

C−2 = 4
∫ 1

0
dx

1
(−s − tx − iδ)2 + (s ↔ t).

As shown in Table 1, the result by DCM with �-extrapolation agrees with the analytic result
for s = t = −1.

4.2.2 Example 2
Here we consider the tensor integral of the massless one-loop three-point integral (L = 1 and
N = 3) of rank M ≤ 3 (Kurihara, 2005),

T(3)
μ···ν = ∑

i
Ci

μ···ν Ji
3(p2

1, p2
2, p2

3; n(i)
x n(i)

y ),

where

Ji
3(p2

1, p2
2, p2

3; n(i)
x , n(i)

y ) =
1

(4π)2
�Γ(−�)

(4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

xn(i)
x yn(i)

y

D1−�
, (11)

D = (p1x − p2y)2 − ρxy − p2
1x − p2

2y − i0,

ρ = p2
3 − (p1 + p2)

2.
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In the case p2
1 = p2

2 = 0 and p2
3 �= 0 with nx = ny = 0, this is

J3(0, 0, p2
3; 0, 0; �) =

1
(4π)2

�Γ(−�)

(4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

1
(−p2

3xy − i0)1−�
(12)

=
�Γ(−�)

(4π)2

(
− p̃2

3
(4πμ2

R)

)2
1

−p2
3

B(�, �)

2�

where p̃2
3 = p2

3 + iδ and μR is the renormalization energy scale. As � → 0, J3 of Eq. (12)
satisfies the expansion

J3(0, 0, p2
3; 0, 0; �) ∼ C−2

�2 +
C−1

�
+ C0 +O(�), (13)

where C−2, C−1 and C0 are given by

C−2 =
1

(4π)2 p2
3

,

C−1 =
1

(4π)2 p2
3

ln
(
−p2

3

)
,

C0 =
1

(4π)2 p2
3

(
−π2

12
+

1
2

ln2
(
−p2

3

))
.

This result is used subsequently, for the case p2
1 = 0, p2

2 �= 0 and p2
3 �= 0 with nx = ny = 0. The

IR divergent integral

J3(0, p2
2, p2

3; 0, 0; �) =
1

(4π)2 × I3,

I3 =
�Γ(−�)

(4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

1
(−(p2

3 − p2
2)xy − p2

2y(1 − y)− i0)1−�
(14)

is expressed as

J3(0, p2
2, p2

3; 0, 0; �) = J3(0, 0, p2
3; nxny; �)× Gnx=0(z) (15)

where z =
p2

3−p2
2

p̃2
3

and the function Gnx=0(z) is defined as

Gnx=0(z) = 2F1 (1, 1 − �; 2; z)× �. (16)

Here 2F1 is the Gauss hypergeometric function, which has the Euler integral representation,

F(α, β; γ; z) = 2F1 (α, β; γ; z) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0

t β−1(1 − t) γ−β−1

(1 − t z) α
dt,

where �γ > 0, �β > 0.
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For nx = ny = 0, Eq. (13) and Eq. (16) are used to expand Eq. (15) as

J3(0, p2
2, p2

3; 0, 0; �) ∼ C−1
�

+ C0 +O(�) (17)

with

C−1 = − 1
(4π)2 p2

3

ln(1 − z)
z

,

C0 = − 1
(4π)2 p2

3

(
ln(−p2

3)
ln(1 − z)

z
+

ln2(1 − z)
2z

)
.

Next we demonstrate the two approaches outlined above for the numerical evaluation of
J3(0, p2

2, p2
3; 0, 0; �) by a double extrapolation. The first is a direct computation based on

Eq. (14), and the second uses Eq. (15) with a hypergeometric function computation as given
by Eq. (16).
In the former approach we replace i0 by iδ in the denominator of the integrand in Eq. (14),
for an application of the DCM scheme given in Fig. 2. We perform the δ-extrapolation by
the ε-algorithm (Shanks, 1955; Wynn, 1956), with the geometric sequence of δ = δl = 2−8−l ,
l = 0, 1, · · · , which yields a value for the integral I(0, �k) for fixed �k. This delivers a sequence
of I(0, �k), k = 0, 1, · · · .

ν C−1 C0

4 -4.2192812666986e-05 -3.712127933292e-04
5 -4.1395889404493e-05 -3.975112609915e-04
6 -4.1448485840595e-05 -3.949340356225e-04
7 -4.1446205836943e-05 -3.951004758891e-04
8 -4.1446278988175e-05 -3.950927950097e-04
9 -4.1446277437321e-05 -3.950930322905e-04

10 -4.1446277461827e-05 -3.950930269725e-04
11 -4.1446277461600e-05 -3.950930270436e-04

Exact -4.1446277461604e-05 -3.950930270463e-04

Table 2. Extrapolation Eq. (14), C−1 and C0 of Eq. (17), p2
2 = 40 GeV2 and p2

3 = −100 GeV2

In order to handle the IR divergence, a linear extrapolation is applied to the I(0, �k), k =
0, 1, · · · , using the sequence �k = 1

bk
, where {bk} is the Bulirsch type sequence

{3, 4, 6, 8, 12, 16, · · · }. Numerical results of the double extrapolation for the real parts of C−1
and C0 are shown in Table 2 for p2

2 = 40 GeV2 and p2
3 = −100 GeV2. For this computation, the

integrations were performed to a requested relative accuracy of 10−15. As the compiler, the
Intel Fortran XE Composer was used with flag "-r16" for quadruple precision. The results on
row ν in Table 2 correspond to solutions of the ν-th linear system, of order (ν + 1)× (ν + 1),
which can be written in the form of Eq. (6) with

S(�k) = �k J3 (0, p2
2, p2

3; nx, ny; �k), ϕj(�k) = �
j
k, f or k = 0, . . . , ν, j ≥ 1.
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In the case p2
1 = p2

2 = 0 and p2
3 �= 0 with nx = ny = 0, this is

J3(0, 0, p2
3; 0, 0; �) =

1
(4π)2

�Γ(−�)

(4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

1
(−p2

3xy − i0)1−�
(12)

=
�Γ(−�)

(4π)2

(
− p̃2

3
(4πμ2

R)

)2
1

−p2
3

B(�, �)

2�

where p̃2
3 = p2

3 + iδ and μR is the renormalization energy scale. As � → 0, J3 of Eq. (12)
satisfies the expansion

J3(0, 0, p2
3; 0, 0; �) ∼ C−2

�2 +
C−1

�
+ C0 +O(�), (13)

where C−2, C−1 and C0 are given by

C−2 =
1

(4π)2 p2
3

,

C−1 =
1

(4π)2 p2
3

ln
(
−p2

3

)
,

C0 =
1

(4π)2 p2
3

(
−π2

12
+

1
2

ln2
(
−p2

3

))
.

This result is used subsequently, for the case p2
1 = 0, p2

2 �= 0 and p2
3 �= 0 with nx = ny = 0. The

IR divergent integral

J3(0, p2
2, p2

3; 0, 0; �) =
1

(4π)2 × I3,

I3 =
�Γ(−�)

(4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

1
(−(p2

3 − p2
2)xy − p2

2y(1 − y)− i0)1−�
(14)

is expressed as

J3(0, p2
2, p2

3; 0, 0; �) = J3(0, 0, p2
3; nxny; �)× Gnx=0(z) (15)

where z =
p2

3−p2
2

p̃2
3

and the function Gnx=0(z) is defined as

Gnx=0(z) = 2F1 (1, 1 − �; 2; z)× �. (16)

Here 2F1 is the Gauss hypergeometric function, which has the Euler integral representation,

F(α, β; γ; z) = 2F1 (α, β; γ; z) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0

t β−1(1 − t) γ−β−1

(1 − t z) α
dt,

where �γ > 0, �β > 0.
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For nx = ny = 0, Eq. (13) and Eq. (16) are used to expand Eq. (15) as

J3(0, p2
2, p2

3; 0, 0; �) ∼ C−1
�

+ C0 +O(�) (17)

with

C−1 = − 1
(4π)2 p2

3

ln(1 − z)
z

,

C0 = − 1
(4π)2 p2

3

(
ln(−p2

3)
ln(1 − z)

z
+

ln2(1 − z)
2z

)
.

Next we demonstrate the two approaches outlined above for the numerical evaluation of
J3(0, p2

2, p2
3; 0, 0; �) by a double extrapolation. The first is a direct computation based on

Eq. (14), and the second uses Eq. (15) with a hypergeometric function computation as given
by Eq. (16).
In the former approach we replace i0 by iδ in the denominator of the integrand in Eq. (14),
for an application of the DCM scheme given in Fig. 2. We perform the δ-extrapolation by
the ε-algorithm (Shanks, 1955; Wynn, 1956), with the geometric sequence of δ = δl = 2−8−l ,
l = 0, 1, · · · , which yields a value for the integral I(0, �k) for fixed �k. This delivers a sequence
of I(0, �k), k = 0, 1, · · · .

ν C−1 C0

4 -4.2192812666986e-05 -3.712127933292e-04
5 -4.1395889404493e-05 -3.975112609915e-04
6 -4.1448485840595e-05 -3.949340356225e-04
7 -4.1446205836943e-05 -3.951004758891e-04
8 -4.1446278988175e-05 -3.950927950097e-04
9 -4.1446277437321e-05 -3.950930322905e-04
10 -4.1446277461827e-05 -3.950930269725e-04
11 -4.1446277461600e-05 -3.950930270436e-04

Exact -4.1446277461604e-05 -3.950930270463e-04

Table 2. Extrapolation Eq. (14), C−1 and C0 of Eq. (17), p2
2 = 40 GeV2 and p2

3 = −100 GeV2

In order to handle the IR divergence, a linear extrapolation is applied to the I(0, �k), k =
0, 1, · · · , using the sequence �k = 1

bk
, where {bk} is the Bulirsch type sequence

{3, 4, 6, 8, 12, 16, · · · }. Numerical results of the double extrapolation for the real parts of C−1
and C0 are shown in Table 2 for p2

2 = 40 GeV2 and p2
3 = −100 GeV2. For this computation, the

integrations were performed to a requested relative accuracy of 10−15. As the compiler, the
Intel Fortran XE Composer was used with flag "-r16" for quadruple precision. The results on
row ν in Table 2 correspond to solutions of the ν-th linear system, of order (ν + 1)× (ν + 1),
which can be written in the form of Eq. (6) with

S(�k) = �k J3 (0, p2
2, p2

3; nx, ny; �k), ϕj(�k) = �
j
k, f or k = 0, . . . , ν, j ≥ 1.
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The results are listed from ν = 4 on. For example, ν = 4 in the first row gives solutions
obtained with a 5 × 5 linear system, using the values of bk = 3, 4, 6, 8, 12 for k = 0, 1, 2, 3, 4.
In the second approach we replace z by z + iδl in the hypergeometric function argument z of
Eq. (16),

2F1 (1, 1 − �k, 2 + nx; z + iδl), k, l = 1, 2, · · · .

Here δ regulates the non-integrable singularity on the real axis when it occurs inside the
integration region, and � regulates the IR divergence.
We let δl = 1

bl
, given by the Bulirsch type sequence bl = 0.5, 0.75, 1.5, 2, 3, 4, · · · . Numerical

results by the second approach are shown in Table 3. The integrals were computed in
quadruple precision, to a relative error tolerance of 10−26. In both approaches, we used
DQAGSE for an iterated multivariate integration.

ν C−1 C0

4 -4.2192812666950192419664334e-05 -3.7121279333017303070237e-04
5 -4.1395889404540049511801909e-05 -3.9751126098970774666184e-04
6 -4.1448485840565542759037853e-05 -3.9493403562445857754728e-04
7 -4.1446205836959577424975383e-05 -3.9510047588769404693383e-04
8 -4.1446278988182334267440660e-05 -3.9509279500930457847498e-04
9 -4.1446277437326639980970560e-05 -3.9509303229022580430491e-04

10 -4.1446277461859729880198253e-05 -3.9509302696654529617250e-04
11 -4.1446277461602157717453434e-05 -3.9509302704716538311163e-04
12 -4.1446277461604182432081146e-05 -3.9509302704627248396080e-04
13 -4.1446277461604171849957952e-05 -3.9509302704627918244479e-04
14 -4.1446277461604171891430927e-05 -3.9509302704627914557531e-04
15 -4.1446277461604171891322514e-05 -3.9509302704627914571332e-04
16 -4.1446277461604171891322881e-05 -3.9509302704627914571267e-04
17 -4.1446277461604171891322692e-05 -3.9509302704627914571315e-04
18 -4.1446277461604171891323096e-05 -3.9509302704627914571171e-04
19 -4.1446277461604171891322859e-05 -3.9509302704627914571292e-04

Exact -4.1446277461604171891322832e-05 -3.9509302704627914571278e-04

Table 3. Extrapolation Eq. (15), C−1 and C0 of Eq. (17), p2
2 = 40 GeV2 and p2

3 = −100 GeV2

4.2.3 Example 3
Analogous with the vertex case, the IR divergent integral J4 (p2

1, p2
2, p2

3, p2
4; nx, ny, nz) occurs in

the tensor integral of a massless one-loop box of rank M ≤ 4,

Tμ...ν = ∑
k

Ck
μ...ν Jk

4(p2
1, p2

2, p2
3; n(k)

x , n(k)
y , n(k)

z )
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ν bν TIME (s) C−2 C−1 C0

4 6 4.9 4.00152393095 3.993440295 -12.622213
5 8 6.3 3.99820547574 4.046535578 -12.937467
6 12 8.8 3.99974091849 4.009684952 -12.595063
7 16 7.9 3.99997923446 4.001105577 -12.473283
8 24 9.5 3.99999897678 4.000078977 -12.451823
9 32 9.7 3.99999996350 4.000003986 -12.449519
10 48 15.9 3.99999999912 4.000000139 -12.449350
11 64 22.6 3.99999999980 4.000000032 -12.449343
12 96 22.1 4.00000000043 3.999999893 -12.449330

Exact: 4.0 4.0 -12.449341

Table 4. Linear extrapolation for I4(−1,−1, �) of Eq. (19), coefficients of Eq. (20)

and is expressed using dimensional regularization as

Jk
4 (s, t, p2

1, p2
2, p2

3, p2
4; n(k)

x , n(k)
y , n(k)

z ) =
Γ(2 − �)

(4π)2 (4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

xn(k)
x yn(k)

y zn(k)
z

D2−�

(18)
where

D = −s x z − t y (1 − x − y − z)− p2
1 x y − p2

2 y z − p2
3 z (1 − x − y − z)− p2

4 x (1 − y − z)− i0.

With all external particles on-shell (p2
1 = p2

2 = p2
3 = p2

4 = 0) and nx = ny = nz = 0 we address
the expansion of

I4(s, t; ε) =
(4π)2 (4πμ2

R)
ε

Γ(2 − ε)
J4 (s, t; 0, 0, 0, 0; 0, 0, 0; ε)

=
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

1
(−s x z − t y (1 − x − y − z))2−ε

, (19)

∼ C−2

ε2 +
C−1

ε
+ C0 +O(ε) (20)

Apart from a scaling factor, this simplified version of Eq. (18) corresponds to the integral of
Example 1, where we used an extrapolation with the ε-algorithm. Table 4 lists the results of a
linear extrapolation, using an iterated (triple) integration with DQAGSE to the target relative
accuracy of 10−12 (for the outer integration) in double precision. Approximate timings are
listed for the computation corresponding to the value of ν in the first column, and are spent
mainly in the integration of I4, as the time for the extrapolation is negligible. The integrand is
collected after the sector decomposition of Eq. (7) and integrated over the 3D unit cube.
The sequence �k = 1

bk
corresponds to the Bulirsch type sequence 1, 2, 3, 4, 6, 8, 12, . . . , and the

steps are shown starting at ν = 4. The convergence of the coefficients stagnates at b = 96,
i.e., � = 1

96 , where the obtained accuracy is about 11 digits. This is as expected in view of
the accuracy requirement of about 12 digits on the entry sequence for the extrapolation. The
results in Table 4 agree with those of (Fujimoto & Ueda, 2008). We obtain the coefficient C−1
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The results are listed from ν = 4 on. For example, ν = 4 in the first row gives solutions
obtained with a 5 × 5 linear system, using the values of bk = 3, 4, 6, 8, 12 for k = 0, 1, 2, 3, 4.
In the second approach we replace z by z + iδl in the hypergeometric function argument z of
Eq. (16),

2F1 (1, 1 − �k, 2 + nx; z + iδl), k, l = 1, 2, · · · .

Here δ regulates the non-integrable singularity on the real axis when it occurs inside the
integration region, and � regulates the IR divergence.
We let δl = 1

bl
, given by the Bulirsch type sequence bl = 0.5, 0.75, 1.5, 2, 3, 4, · · · . Numerical

results by the second approach are shown in Table 3. The integrals were computed in
quadruple precision, to a relative error tolerance of 10−26. In both approaches, we used
DQAGSE for an iterated multivariate integration.

ν C−1 C0

4 -4.2192812666950192419664334e-05 -3.7121279333017303070237e-04
5 -4.1395889404540049511801909e-05 -3.9751126098970774666184e-04
6 -4.1448485840565542759037853e-05 -3.9493403562445857754728e-04
7 -4.1446205836959577424975383e-05 -3.9510047588769404693383e-04
8 -4.1446278988182334267440660e-05 -3.9509279500930457847498e-04
9 -4.1446277437326639980970560e-05 -3.9509303229022580430491e-04
10 -4.1446277461859729880198253e-05 -3.9509302696654529617250e-04
11 -4.1446277461602157717453434e-05 -3.9509302704716538311163e-04
12 -4.1446277461604182432081146e-05 -3.9509302704627248396080e-04
13 -4.1446277461604171849957952e-05 -3.9509302704627918244479e-04
14 -4.1446277461604171891430927e-05 -3.9509302704627914557531e-04
15 -4.1446277461604171891322514e-05 -3.9509302704627914571332e-04
16 -4.1446277461604171891322881e-05 -3.9509302704627914571267e-04
17 -4.1446277461604171891322692e-05 -3.9509302704627914571315e-04
18 -4.1446277461604171891323096e-05 -3.9509302704627914571171e-04
19 -4.1446277461604171891322859e-05 -3.9509302704627914571292e-04

Exact -4.1446277461604171891322832e-05 -3.9509302704627914571278e-04

Table 3. Extrapolation Eq. (15), C−1 and C0 of Eq. (17), p2
2 = 40 GeV2 and p2

3 = −100 GeV2

4.2.3 Example 3
Analogous with the vertex case, the IR divergent integral J4 (p2

1, p2
2, p2

3, p2
4; nx, ny, nz) occurs in

the tensor integral of a massless one-loop box of rank M ≤ 4,

Tμ...ν = ∑
k

Ck
μ...ν Jk

4(p2
1, p2

2, p2
3; n(k)

x , n(k)
y , n(k)

z )

344 Measurements in Quantum Mechanics Toward Automatic Regularization for Feynman Loop Integrals in Perturbative Quantum Field Theory 13

ν bν TIME (s) C−2 C−1 C0

4 6 4.9 4.00152393095 3.993440295 -12.622213
5 8 6.3 3.99820547574 4.046535578 -12.937467
6 12 8.8 3.99974091849 4.009684952 -12.595063
7 16 7.9 3.99997923446 4.001105577 -12.473283
8 24 9.5 3.99999897678 4.000078977 -12.451823
9 32 9.7 3.99999996350 4.000003986 -12.449519
10 48 15.9 3.99999999912 4.000000139 -12.449350
11 64 22.6 3.99999999980 4.000000032 -12.449343
12 96 22.1 4.00000000043 3.999999893 -12.449330

Exact: 4.0 4.0 -12.449341

Table 4. Linear extrapolation for I4(−1,−1, �) of Eq. (19), coefficients of Eq. (20)

and is expressed using dimensional regularization as

Jk
4 (s, t, p2

1, p2
2, p2

3, p2
4; n(k)

x , n(k)
y , n(k)

z ) =
Γ(2 − �)

(4π)2 (4πμ2
R)

�

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

xn(k)
x yn(k)

y zn(k)
z

D2−�

(18)
where

D = −s x z − t y (1 − x − y − z)− p2
1 x y − p2

2 y z − p2
3 z (1 − x − y − z)− p2

4 x (1 − y − z)− i0.

With all external particles on-shell (p2
1 = p2

2 = p2
3 = p2

4 = 0) and nx = ny = nz = 0 we address
the expansion of

I4(s, t; ε) =
(4π)2 (4πμ2

R)
ε

Γ(2 − ε)
J4 (s, t; 0, 0, 0, 0; 0, 0, 0; ε)

=
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

1
(−s x z − t y (1 − x − y − z))2−ε

, (19)

∼ C−2

ε2 +
C−1

ε
+ C0 +O(ε) (20)

Apart from a scaling factor, this simplified version of Eq. (18) corresponds to the integral of
Example 1, where we used an extrapolation with the ε-algorithm. Table 4 lists the results of a
linear extrapolation, using an iterated (triple) integration with DQAGSE to the target relative
accuracy of 10−12 (for the outer integration) in double precision. Approximate timings are
listed for the computation corresponding to the value of ν in the first column, and are spent
mainly in the integration of I4, as the time for the extrapolation is negligible. The integrand is
collected after the sector decomposition of Eq. (7) and integrated over the 3D unit cube.
The sequence �k = 1

bk
corresponds to the Bulirsch type sequence 1, 2, 3, 4, 6, 8, 12, . . . , and the

steps are shown starting at ν = 4. The convergence of the coefficients stagnates at b = 96,
i.e., � = 1

96 , where the obtained accuracy is about 11 digits. This is as expected in view of
the accuracy requirement of about 12 digits on the entry sequence for the extrapolation. The
results in Table 4 agree with those of (Fujimoto & Ueda, 2008). We obtain the coefficient C−1
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of 1
ε in Eq. (20) with the opposite sign since ε < 0 in (Fujimoto & Ueda, 2008), whereas we

have ε > 0.

5. Concluding remarks

A large part of this paper is devoted to a fully numerical approach for regulating Feynman
loop integrals, which appear in higher order corrections in perturbative quantum field theory.
The method is based on combinations of multi-dimensional integration and extrapolation
techniques. It is applicable without change to various loop integrals with masses, since DCM
is fully numerical. After the initialization of the sequences, the method can be seen as a
black-box, which does not rely on a specification of the location of the singularity by the user.
At an earlier stage, DCM handled only the divergence appearing in the integration due to the
kinematical parameters. In recent work we extended the procedure to address IR divergence
as well as the singular behavior of the integrand inside the integration region, by a novel
double extrapolation technique. This enables DCM to regularize both divergences, as shown
by numerical results for several examples. More work is needed for improvements and further
analysis of these strategies. This computation is a step toward a more automatic numerical
handling of various types of loop integrals, thereby circumventing the need for a precise
knowledge of the structure and the location of the singularities. Since the scheme of the
dimensional regularization for the UV divergent diagram is similar to that for the IR case,
we are further studying the same techniques for application to the UV cases.
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of 1
ε in Eq. (20) with the opposite sign since ε < 0 in (Fujimoto & Ueda, 2008), whereas we

have ε > 0.

5. Concluding remarks

A large part of this paper is devoted to a fully numerical approach for regulating Feynman
loop integrals, which appear in higher order corrections in perturbative quantum field theory.
The method is based on combinations of multi-dimensional integration and extrapolation
techniques. It is applicable without change to various loop integrals with masses, since DCM
is fully numerical. After the initialization of the sequences, the method can be seen as a
black-box, which does not rely on a specification of the location of the singularity by the user.
At an earlier stage, DCM handled only the divergence appearing in the integration due to the
kinematical parameters. In recent work we extended the procedure to address IR divergence
as well as the singular behavior of the integrand inside the integration region, by a novel
double extrapolation technique. This enables DCM to regularize both divergences, as shown
by numerical results for several examples. More work is needed for improvements and further
analysis of these strategies. This computation is a step toward a more automatic numerical
handling of various types of loop integrals, thereby circumventing the need for a precise
knowledge of the structure and the location of the singularities. Since the scheme of the
dimensional regularization for the UV divergent diagram is similar to that for the IR case,
we are further studying the same techniques for application to the UV cases.
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