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Foreword

Fueled by the continuous downscaling of transistors in the CMOS VLSI
technology, integrated electronic circuits are the cornerstone of most appli-
cations and devices we use in our daily lives today. From the radio and TV
to our smartphone, from our car to the dishwasher, from our laptop to the
heart rate monitor we use while jogging, just to name a few. Electronics add
intelligence and controllability to objects, and wireless connectivity adds on
top mobility and universal connectedness across the globe. But while digital
integrated systems are mostly designed in a highly automated manner at higher
abstraction levels starting from some form of language-based description,
analog and mixed-signal electronic circuits are still today mostly designed at
block and circuit level and with little or no automation, be it of course not
without individual CAD tools.

Such electronic circuit design is by far not an easy task, not easy to carry
out and not easy to learn. The main reasons are the many complex and often
conflicting relationships between design variables and circuit performances,
the underdetermined nature of the design problem at hand, and the impact of
internal and external variations. The many degrees of freedom in the design
and the sheer high-dimensional complexity challenge our human brain. As
a result, designing a circuit that is optimal in some desired sense and that
is guaranteed to meet the targeted requirements and specifications under all
fabrication and operational circumstances is not at all trivial. But although
it may look as an art to some, it’s a skill that actually can be mastered by
many by combining experience with analytic insight and systematic design
methodology.

While various widely used analog “circuit design” textbooks essentially
restrain themselves to presenting and analyzing circuit schematics, this book
goes way beyond that and actually presents design from a pragmatic design
viewpoint: it describes a systematic variation-aware approach to interactively
design fully functional circuits with the help of advanced CAD tools. While
EDA tool research is progressing continuously in academia and industry,
also for analog and mixed-signal circuits, fully automatic synthesis of analog
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XIV  Foreword

circuits in general is probably not to be expected soon as commercial offering.
Yet, powerful CAD tools for simulation/analysis as well as for optimization
have been developed over the last decades. In combination with a systematic
design strategy and the power of today’s computers, these can be used to
successfully crack the nut of designing a functional electronic circuit.

This book will show you how, and does that in a practical way with several
design examples. Large focus is on dealing with the impact of variations due
to the fabrication process as well as through the environment. Using advanced
statistics and going beyond classical corner and Gaussian analysis, the impact
of these variations is analyzed and circuits are optimized for robustness
and maximum yield. Though the CAD techniques used are state-of-the-art
commercial offerings, the authors are no blind tool believers, and clearly
pinpoint the limitations of the tools used. As always, the computer only gives
you what you ask for.

Considering its unique focus on a systematic variation-aware and tool-
supported approach for designing electronic circuits, this book is recom-
mended reading for practicing design engineers, electronic design engineering
students as well as EDA developers. As such, the book illustrates in a pragmatic
way that circuit design in today’s world is so much more than magic, it is magic
that everyone can master!

Prof. Georges G. E. Gielen
University of Leuven, Belgium



Preface

Writing a book, you probably start with an outline, with collecting ideas,
with interesting chapters, etc. and if you write an introduction, you often end
up too many things, in something too long. So here is the two page, shortest
possible, introduction and preface. In the subsiding (long) chapter just read
further about “why” and “how”, about motivation, background information,
challenges, trends, etc. Then we really move over to real design, design
techniques, to their problems and to new techniques!

People are fascinated by beauty, which has often aspects of maximum
simplicity, and endless complexity: nature, arts, sports, technics, philosophy,
electronic circuits, and math! The authors really like circuits, but this book
is not so much about circuits itself; we focus on techniques, on connecting
these parts well: circuits and design techniques and math; and we will find
beautiful and ugly things. To some degree designers also love ugly things and
need to find workarounds, and sometimes, but not always, you again end up
in something elegant, something yours.

What is the status? Electronic devices are very complex and tricky, but
very cheap. This is because essentially they are just printed, like this book!
The manufacturing of chips is complex, but amazingly efficient and cheap, per
device or function even extremely cheap. The biggest invention in design itself
is the use of computers and software for simulations. So in modern designs
people work — usually together in a team — on virtual prototypes. And at some
point they need to become confident, that the product would also work in
reality. This is a challenging task, and many variables have an impact whether
a design (component, chip, board, system) fails or succeeds.

Circuit simulation is mathematically something quite special, solving a set
of nonlinear equations, like f (xX) = 0. The real simulation breakthrough was
in the 1980s, so what is beyond pure simulation?

Dealing with variables and function helps to translate a problem into math
and algorithms, but unfortunately we have to deal with many variables, and
with functions we simply do not know so well. Usually special combinations
of variables are critical (like low supply voltage, high temperature, heavy

XV



XVI Preface

load capacitance, etc.); and having many variables, means having even more
combinations of them, so that at some point also simulation time matters or the
full simulation is becoming even unaffordable (like taking years). Imagine you
have a budget to run realistically n = 100,000 simulations, “which” simulations
you should execute to achieve a certain goal, like “Find the most critical
parameter combinations regarding all performances”.

On top of such verification tasks, designers want to find the “best” circuit
topology and the according component values to make sure that the design
works even under these difficult conditions. This is minimization of errors or
optimization; and mathematically it is basically the minimization of functions.

Dealing with all such problems is possible with modern design software,
and this has not only a combinatorial aspect, but also a statistical one. The latter
is just because many variable variations are not completely known, having a
statistical nature (e.g., production tolerances). Often design techniques are
directly related to statistics, like “\Verify that simulated production yield is
above 99% for all valid environmental parameter combinations” or “Make
sure that the standard deviation of the offset voltage is below 10 mV”.

Having software for difficult statistical and optimization problems is
quite a second “revolution” which has taken place now in the industry.
Mathematically the step from simulation f (x) = 0 to function minimization
(e.g., viaf'(x) = 0) is not so large, indeed there are many similarities, and also
statistical methods often pick up optimization algorithms. These beautiful
things in math help a bit to find consistency regarding the topics and new
methods we address in the book.

Not at all, this means that experienced designers have to through away old
“manual” techniques. Actually the opposite is true. Many times we will see
that basic math results fit very well to the designer’s intuition and how they act,
how we anticipate problems. However, often indeed we can further improve
amazingly. Two nice basic examples are corner analysis and Monte-Carlo.
To some degree these are “optimum” techniques already, but still modern
math offers further enhancements like adaptive worst-case corner finders and
low-discrepancy sampling. A third example is design tweaking: Often it is
done manually by parameter sweeps, but clearly more efficient optimization
techniques exist. Not only in math libs, but applicable to complex state-of-
the-art chip designs.

That is about 2016, so why many people have not heard about this
“revolution”, and what we can expect further? Important for researchers, for
young students, for investors! Often “time is ready” for certain innovations,
so actually many people presented the “first” telephone or “first” electric
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light bumb. Gary Nagel’s SPICE (Simulation program with integrated circuit
emphasis) was extremely successful; and his software picked up many ideas
which are available right now at this time, for the math part it was e.g., having
sparse matric solvers. SPICE was also easy to use, and the available models
were good enough, so everybody learned it, and the success was so large, that
even some bugs become a feature (even a reference). The “second revolution”
has not yet lead to a kind of “standard” program which designers have to
learn, so there is more to read than a manual. At the moment, there is even a
“war” on “high-sigma methods”; read why we think it is more a little banter,
because also the person in front of the computer screen makes a big impact.
However, what is needed for design, the “second revolution” little pieces, and
the bigger ones, they are all present already and will remain! This books is
for experienced circuit designers who want to dive deeper, but also for young
designers and student in circuits and software. Some will become the next
famous personalities in the big industry around electronics.

We have met people who are already working on the next “big thing” in
engineering, and what could be this, technically? Designers follow a strategy,
e.g., you need to solve the most critical problems first. However, sometimes
it happens that something unexpected occurs, and e.g., other effects become
important. So you need to change your strategy. You can also do so in math
and computer programs. “Learning” or “decision making” is maybe a bit too
much, but creating adaptive, more flexible algorithms is clearly a hot topic
since years in research, and it will find a way into real design software too,
enabling a true third revolution.

However, now, in this book, there is enough to say for transferring the
“second revolution’s” techniques to designers, giving a survey, a field guide
with many circuit-related examples. Keep yourself up-to-date! We go beyond
simulation, go for optimization and statistics; use them in circuit design! This
often means getting answers to urgent but difficult design questions, e.g.,
regarding sensitivities, nonlinearities, design risks quantification, etc. And
because already pure optimization, pure advanced statistics are sometimes a
bit difficult, we focus on the real interesting, the real circuit-related stuff. This
is unique and why we hope to find many readers.

Generic versus commercial. We present many examples and results,
and we also add few screenshots from commercial environments to be
authentic. This does not imply any judgments, e.g. on tool quality or
preferences; and in some cases we unfortunately haven’t received the
permission to publish our results.
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Sometimes the use of screenshots limits unfortunately the printing or
display quality a bit (e.g. compared to vector graphics), even if the shot
from the tools itself is perfect, but we still feel showing that a direct tool
output isavailable is sometimes important.

Of course, some presented algorithms are almost brand new and will
find application in hopefully near-future EDA tools. Often such new
methods itself are not that much “present” in the user interfaces; they
“are” just a click to enable a certain setting.

The real great advantage of modern design environments e.g. against
automation by batch files, is that many integrated debugging features
are available. If e.g. something gets wrong, you can often see it marked
red in a table, often with hyperlink to the source of problem, or with a
context-sensitive menu providing further options, like cross-probing to
schematic, getting a plot, creating a simulation subset related only to the
critical parameter combination, etc.

No Fear about Math

For the first time, we deliver circuit design methodology, math, and® tools
in a well-aligned package. We try to do this according to the golden rule
that no scientific method can replace common sense. Actually, anyone has
a certain gut feeling e.g., on probabilities—like that p is equal to 1/6 for a
rolling dice. We want to extend this to treat more difficult problems, like
for yield cases with more extreme numbers, or problems with many more
variables, including non-uniform or non-normal random variables. We will
clarify about judgments on rare events and present techniques to treat them
correctly.

Besides the book and e-book, there are also two real-time applications,
which give you many more insights and a true “feeling” for both optimization
and statistics. Complex circuit design environments are simply not designed
to give the user a direct quick feedback on anything! Circuit simulations are
time-consuming, so learning on circuit examples purely based on SPICE in
an electronic design environment takes simply too long, and in addition, the
graphical tools are often too limited, just because they are optimized for design
purposes; and not for algorithm comparisons.

LIn scientific papers, it is not common to highlight or underline important parts. We will not
follow this ill convention, because it makes the understanding harder.
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Of course, also the electronic design automation (EDA) R&D departments
do not only use the EDA products; of course they use dedicated math and
statistical software (such as Matlab® or R©). On the other hand, as much as
possible, we will stick to real design-related examples, because they are sim-
ply more convincing compared to simplified, non-circuit simulation-related
spreadsheet examples.

Note: Searching for EDA and related keywords gives you often already
quite many hits, but CSE (computational science and engineering) is a more
general term.

A few words upfront to the math in our book: We try to keep it as simple
as possible, but not simpler, because as an engineer you should not rely too
much on hope; often you need hard numbers! Most designers are fully aware
of the fact that Monte-Carlo results have some randomness, often even some
systematic inaccuracies, but how large these errors are and which techniques
are best suited to minimize them is a key question. We focus on concepts,
prerequisites, intuition, pictures, examples, and rules of thumb truly linked to
circuit design, not on proving mathematical theorems. Logic merely sanctions
the conquests of the intuition (J. Hadamard)! So skilled intuition is our main
target.

On the other hand, it is important to know what is really proven and what
only a meaningful assumption is! Marketing material is usually not good in
this aspect, and even some mathematical techniques have fancy, a bit too
fancy, names: like maximum likelihood—can there be something better? or
confidence intervals—you do not trust them?

In quite many cases, we have to look to the real details; too many scientific
articles are not suited as true field guide: They may mention also difficult cases,
but why problems occur is too often unclear. Usually, this is exactly the most
interesting part: If a circuit does not work, you may choose another, but a better
idea is to repair, modify, and extend it! As designer in hardware or software,
you simply have to do so and to learn.

Engineers are luckily often pragmatic, and you need to be, because you
need to apply methods for solving non-trivial problems. People usually transfer
things they learned on simple cases to more difficult problems, but sometimes
really something essential changes if you move from a one-dimensional
problem to two dimensions or even to n dimensions. Examples are helpful,
but sometimes also misleading. Even experts can fall into this trap, and
simplifying concepts that work well in some cases (like assuming normally
distributed data or replacing true parameters by sample estimates, or using
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standard confidence interval formulas) can fail completely in other cases,
other theoretical cases, but also in real circuit design! This is because analog
circuit design can be very complex and highly nonlinear! Concepts working
well in one field may fail completely in others, and this triggers the creation
of more advanced theories; even when having such an advanced theory or
method—Ilike maximum-likelihood estimation (MLE) or bootstrap—people
may be overenthusiastic, and limitations may be discovered later—we will
give examples for this. Just one is Latin hypercube sampling (LHS), which
has been implemented in many simulators for ten years or more. The idea is
good, and initial benchmarks had shown a significant speed-up. However, for
complex circuit designs, the advantage disappears too often—and there are
better methods. This book is not at all on benchmarking different algorithms or
tools from different vendors, but of course we do core algorithm comparisons;
usually on difficult but still easy-to-understand cases—often these are also
representative. Unfortunately, there is no single example test case on which
you can show everything—analog examples are often not as easy to scale as
digital ones. So, sometimes we also use mathematical examples on which you
can indeed prove certain algorithm characteristics, like quadratic convergence
of an optimizer.

In fact, this is not at all a mathematical book covering statistics and
optimization in general. Also we assume that the reader knows about key
circuits like amplifiers or filters, but the circuit topology is usually not the
primary interest. We need to focus on techniques that work for circuit design,
so you will not find detailed discussions on ANOVA, hypotheses, Runge-Kutta
integration or linear simplex optimization, yet references will be provided for
the readers who need to revisit those concepts in more detail. We show also
methods dealing with non-statistical variables, because they are of course
important for circuit design and we will see many similarities, e.g., when
talking about coverage, sensitivity and correlations.

The authors have both a strong circuit and a mathematical background;
remember from school and university that statistics and matrices can be a very
boring topic. Inthis book and by the inclusion of auxiliary software, we want to
demonstrate the opposite. Also we always want to relate good manual design
techniques to the math background. Learning something challenging is often
difficult, but not if you really have to solve your own (hopefully) fascinating
highly motivating problems! For instance, what is a designer doing if he/she
follows a certain design strategy and how can a design software act in a
similar way? Tools can remove boring work from the designer, so that he/she
can focus on more fruitful topics, like on exploring different circuit or system
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topologies and for preparing your design for a perfect design review. The great
thing with computers is that you can often verify amazing things with little
setup effort, and you can also use software not only to your direct advantage
of solving a specific problem but also for becoming a better, more experienced
engineer! For this reason, we do not split the book content in a theory part
and examples; instead, we always want to apply algorithms immediately on
interesting realistic—often only slightly simplified—design tasks. You should
start with such basic understanding to build up more understanding and to be
able to explain what the general phenomena are. Actually, the source of all
great math is the special case, the concrete example; it is even frequent that
every instance of a concept of seemingly generality is in essence the same as
a small and concrete special case.

Educated application is one key for success, because there is no “best”
algorithm in general for complex tasks like circuit yield optimization. The
better the selected method fits to your problem structure, and the better you
set convergence parameters and starting points, the shorter the way to success.
Custom IC design, statistical analysis, and optimization are difficult topics,
so several highly automated and efficient methods have been already used
very successfully for more special topics like digital circuits (here you can
focus on timing and leakage) or memory circuits (here the focus is on read and
write capabilities), and here, we may use at least partially analytic expressions
instead of running full circuit simulations [Jiajing Wang]. Also in “SPICE
model fitting”, you can find very efficient algorithms, because you optimize
all the time very specific models with fixed parameter sets to fit for measured
data (having also a fixed structure, like 1V and CV data) and using usually
the least-square criteria. Use such methods if possible, but here in the book
on analog variation-aware design, we typically need more flexibility and will
describe more generally applicable methods and tools.

In our examples, we need to make a balance: Real ASIC designs are often
very complex, and a big mix of techniques is required to solve all problems,
so we usually have to apply some simplifications to be able to directly apply
and demonstrate new techniques. For instance, the way an optimizer takes
in the parameter space is hard to visualize for more than two variables, but
luckily almost 99% of the optimization problems can be fully explained with
2-variable examples! Actually, the real advantages of an advanced optimizer
become often much more prominent if you apply it to more complex problems,
like with more than ten variables. In addition, we wish that the reader is
really able to follow and apply the key ideas—the limited book size and often
intellectual property (IP) issues unfortunately prevent us to showcase very
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complex examples. However, when e.g., looking at an optimizer log file, the
user can see that state-of-the art tools really use the described algorithms, and
he/she can observe in them the same problems as we demonstrate in our shorter
examples. The main difference is only that in big problems, you typically have
to fight against multiple problems and the runtimes are much longer!

Hi! This is us, the authors! This is a book, and learning from books
is often a bit more difficult, because in long sentences it might be not
clear where the key point is. In teaching, you can stress words, but in
scientific articles, it is not usual to use underlines. So we do not follow
this tradition! If we write, e.g., ...almost accurate .. ., it could be quite
a difference if the focus is on accurate or on almost or even on both,
and if both in which sense? The context for us is usually circuit design,
but sometimes it is indeed up to you to decide whether 99% accuracy (or
yield) is good or not. Also in medicine, you do not need always a high
confidence level, and in urgent cases, better give a heart massage! Modern
statistical algorithm come of course with internal accuracy checks, butalso
in a circuit simulator, the checks may be not done in the way you need.
In a transient simulation, you may want 0.1 dB accuracy for your FFT,
but that is seldom in sync with simulator settings like reltol. That is the
reason, why engineers do the work, and actually change the world with
chips, smartphones, and software—not that many designers, maybe many
in electrical engineering, quite many in IC design, some in EDA, and quite
a few in statistics and optimization. Luckily, these techniques are a hot
field also in other areas.

Front-End Design Flow

To follow this premise of circuit-oriented concept, let us start with a little sketch
on an analog design. “Analog design” can have different meanings—our focus
is analog design in its widest sense, including RF design and mixed-signal and
custom digital designs. In a single book, you cannot describe each aspect in
full detail from a bare semiconductor wafer to the final tested product. So we
focus on what is often called design “front-end” flow, the part that includes
defining the circuit in a schematic entry, setting up a simulation testbench,
verifying the circuit behavior and checking specifications, plus tweaking the
circuit component values; so in our methodological context, “front-end” has
not the same meaning as in RF (radio frequency) or sensor design. A very
typical approach in analog design is shown in Figure 1.
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Figurel General IC design steps.

Imagine an RF receiver has to be designed, and it might be part of a bigger
transceiver chip or even of a full system-on-chip (SoC) containing also bigger
digital parts, a PLL synthesizer, ADCs, DACs, etc.

e A system designer (team) has decided on the concept; for example,
based on experience and system specs (like IEEE802.11 for WLAN),
it has made a certain system partitioning into sub-blocks such as low-
noise amplifier (LNA), mixer, variable-gain amplifiers, several filters, an
demodulator.
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o Next, the system gets refined further, e.qg., by creating a detailed frequency
plan; with system simulators, MATLAB® and spreadsheets, the system
designer will also create a level plan giving an overview of the ranges
for wanted signals, interferers, noise, etc. Step by step, the designer
can hopefully obtain a consistent and realistic set of sub-block specs
(such as gain, area, and power consumption) derived from the top-level
system specs. We need to make sure that the system works even in the
presence of many known imperfections, such as noise, filter tolerances,
group delay ripple, jitter, mismatch, and different kinds of nonlinearities
(compression, intermodulation, etc.).

e At some point, a circuit designer has to work on “his” block and related
sub-blocks, e.g., an operational amplifier (op-amp) being part of a bigger
filter. The block designer either will take an existing circuit or may
compose a new op-amp, €.9., based on the input and output voltage range,
the supply voltage, gain, speed and noise requirements, etc. For the latter,
he would execute several hand calculations for the different component
values in the circuit (e.g., based on power budget, g,,,, on-resistance, and
slew rate). In both cases, he/she needs to verify the circuit behavior in a
set of testbenches under all the different environmental conditions. For
instance, he/she would do sweeps on temperature, supply voltages, load
resistance, load capacitance, etc.

e Usually, some design weaknesses will become visible, like we consume
more power than allowed, so the circuit has to be modified, e.g., till the
variations are acceptable (like in sync with hand calculations) and till the
design is fulfilling all specifications (being “in-spec”).

e Of course, we should also perform simulations together with neighboring
blocks, like the usual bias generators—if available. At the very end we
could end up in a top-level simulation, which is often a mixed-signal
simulation (mix of transistor-level blocks and behavioral descriptions).

e Besides simple one-parameter sweeps, we may also do 2D sweeps to
account for correlations or pick certain critical corners (combinations
of parameters) directly for debugging and design tweaks. In those 2D
sweeps or critical corners, the design is often more stressed than in simple
sweeps, so tweaking becomes harder and maybe we need to extend the
circuit a bit or even need another circuit topology.

e To account for offset voltage, we may do a Monte Carlo (MC) analysis
and get a certain standard deviation for it. With corners and MC, we could
check the design quite well, and we can calculate the overall most extreme
behavior; for example, we can add the offset errors from systematical and
statistical imperfections (e.g., PSRR and random offset).
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e All in all, at some point we might be completely in spec with enough
margin and create a layout (“Back-end” part in Figure 1). From the
layout, we can calculate wiring parasitics and we can include them in
our simulations. If our initial design margins were large enough, also the
postlayout verification would indicate that our design is really “ready
for production” (tape-out). Hopefully, we included all important aspects
to our verification, so that indeed also the production samples work as
expected.

This “simple” flow shows that analog design can be quite efficient. We have
many well-established standard techniques, but also some key questions arise
immediately; we will address them in our book:

e Imagine your circuit simulations show good results in a corner run and

also in a short MC run: How much does this mean with respect to yield?
Isit really ready for tape-out?
This has many aspects, and we will guide you (e.g., on MC count) and
show you common pitfalls (like assuming normality). We will explain
how to get most out of your simulation results, more than just sigma and
a histogram!

e Imagine your specifications are very difficult and hard to achieve. What

should be the next steps? Which strategy should you follow?
We will create a systematic flow from design start to sign-off verification.
We give you an overview on the methods and explain which ones are
suited and how to set them up. This also includes optimization techniques
(Chapter 8); we tell you when they are useful.

e This leads to the often asked question: What is the best way to make a

design?
“Define best!” is probably a good answer. “Best” in the sense that it would
always work would lead to a big and very complex flow! “Best” in the
sense of efficiency would lead to a flow based on a lot of experience.
So “overall best” is for sure a mix of techniques, which makes it
sometimes difficult to see a systematic behind the flow. On the other
hand, we will show that even when you use methods with strange names
(like “high-yield estimation™), you are often still using something close to
the techniques you have applied manually from time to time! Generally,
there is no need for big changes in your habits.

Actually, one of the nicest questions I ever heard as consultant was this: How
much do | need to overdesign in Cadence to make it working in reality?
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Cadence® is indeed a synonym for custom IC design tools, so technically it
would be better to ask for “overdesign in simulation”! As analog designer,
you know the answer of most questions is “it depends.” If you know your
laboratory measurement equipment has an uncertainty of 0.5 dB, then you can
use this as safety margin and specify it in a datasheet. However, it is quite some
work to find out the margins for all the other effects like temperature drift,
aging, circuit tolerances, modeling, Monte Carlo variances, and simulator
inaccuracies! Ultimately, the whole concept of margins is very efficient but
leads to severe errors if applied in a too simplistic way. We will tell about the
risks and extend the concept!

I's overdesign a problem? Regarding verification, it is no problem, but
for being competitive it could be—especially when talking about bigger
key blocks and/or critical subsystems. Actually, it is quite hard to find out
whether you are overdesigning or not. You have to run the circuit under
extreme but still realistic conditions! Finding those is one key task in
variation-aware design, and optimizing the circuit to meet the specs and/or
improve on yield is a second key technique. Both are closely related, e.g.,
in both sensitivities, and search algorithms are important; the more you
read and learn about it, the more links you will find, and the more intuition
you will get, the better you can design by problem anticipation.

Actually, our op-amp and filter example is just one simple example, and
often each described step (or at least one) is far more difficult, especially
when designing critical blocks or using the newest silicon technologies. So
Figure 2 shows some major trends, and many of them can make circuit design
unfortunately more difficult.

One trend among many others [Graeb ITS] in modern IC design is that
already the blocks become more and more complex, e.g., to enable multimode
operation. In our amplifier/filter example, one may decide to put several
stages together—into a kind of subsystem, often including bias circuits and
calibration blocks. So the meaning of “block™ design can be a bit fuzzy.

Design and Verification

In IC design, many individuals and teams are involved, and they often have
different opinions on what should be improved. For example, behavioral
modeling is a high-priority problem too, as variability. For both, the benefit
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Figure2 Trends in IC design.

is larger, the earlier you use them. In software the creation of a “design” is
quite easy (e.g., due to availability of powerful libraries), but testing can be
difficult and very complex; and in digital design the situation is often similar,
because reliable standard cells and synthesis tools are already available. So in
these communities many people say only verification is a problem, we have a
“verification gap”. This is not completely true for analog and custom designs!
Verification is a difficult topic too, as almost all kinds of designs become more
and more complex and harder to test. So nowadays, there is pretty much talk
about the “verification gap” or “productivity gap.” Best don’t let you bother
and just take the best ideas coming up.

When digital designers talk about verification problems, they typically
have complexity in mind, like how to find input test vectors leading to a bug.
However, it does typically not mean that they cannot run the testbench with
that test vector anymore. However, in analog, mixed-signal and RF, indeed,
e.g., a single postlayout simulation pushes even a 1 TByte RAM multicore
compute server to the limits! However, there is seldom a verification problem
in the sense that you do not know what to simulate! On the other hand, for sure
also digital designers push their tools to the limits (especially when thinking of
HW-SW co-design). Also “new” digital techniques like randomized tests and
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coverage-drive verification can make highly sense in context of mixed-signal
or even full analog designs.

In analog, there is also a true “automation gap” in topology selection and
initial circuit design. Here, a mix of techniques is required. No single com-
mercial tool offers here “push button” solutions—aquite opposite to simulation
and verification. However, some of these things are also the fun part of analog
design in general, so why automate? Atool needs to be really good to convince
in that domain! On the other hand, luckily, there are advanced design tools
plus powerful compute servers that still allow efficient design plus giving
the engineer a great cockpit for steering the design, implementation, and the
verification tasks. Further improvements like tool support for parasitic and
layout awareness are in trend, giving not only speed but more insights, thus
also making the designer better.

We are also not sure whether there is really something like a “productivity
gap” or if people need a new smartphone every six month. Software is a
big lever to improve your individual productivity, like just designing more
transistors (or lines of code) per day, but design difficultiesare hard to quantify.
Terms like “transistors per hour” or “mm? chip area per week” are only very
rough measures in both front-end design and layout. You can spend weeks on
an LNA or months on an RF PA having few transistors only and you might be
highly productive, because the person at the competition fails on this problem.
Especially in the field of statistical methods and optimization techniques, a
breakthrough is observable; so any engineer working in that area should have
an interest to become familiar with them. They help you to identify the critical
parameters in your design and quantify and minimize their impacts, till you
are confident enough to tape-out.

The biggest step forward in analog design in the last 30 years was clearly
the introduction of standard circuit simulators, allowing an almost virtual
verification, instead of pure breadbording and pure hand calculations. Also
some discussions in engineering are also quite old: If there would be “only”
a sign-off verification problem, people may say, why not going for a fast
production lot, wait four weeks and measure everything—only the silicon tells
the (full) truth!? The big problem with such approach is that the debugging
will not be much easier that way, and actually, it is far better to use advanced
verification tools, modeling techniques, etc., already from the beginning, for
the design phase, not only for sign-off verifications. This way you can improve
on product quality, design understanding, reuse IP, and reduce need for costly
iterations (especially long, time-consuming iteration loops). In addition, even
the silicon is not the truth, e.g., in RF or high-performance ADC design
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packaging, external matching networks, supply bypassing, etc., can have a
big impact! In addition, the more complex a design is, the more virtual the
design and the verification of it will be, naturally, just to reduce risks and costs.

Verification can be indeed treated quite well with systematic mathematical
methods, but we feel that this is a too narrow approach, because whether a
design is good or not can be often decided much earlier, so it is better to avoid
problems early, instead of finding them in a final verification phase. Plan for
this as early as possible. Explain how difficult things should be verified in
a verification plan, best in conjunction with the target datasheet. Iteration
is always required, but keep at least iteration loops short and improve your
understanding, and the understanding in the whole team.

Therefore, looking at the whole front-end flow as a pure verification
problem is a trap! Solving the “verification gap” is often much easier if you do
not split the flow into parts, better take a more unified approach and include
manual best practices for circuit design. A good way for solving complex
problems is to anticipate the “disturbing” influences on the design, to analyze
them; often the results from techniques already lead to solutions—step by
step, starting with the most urgent problems.

Let us pick up an op-amp example again: At the beginning, the design
is almost for sure not working as desired, at least not in the whole operating
range. You have to pamper up your baby design and make it work under DC
nominal conditions, making it work under wider conditions (over temperature
by deciding on a certain bias concept, or for constant performance over a
wider supply range by adding cascodes, etc.) and also for your typical input
signals, till you end up in a good and robust circuit that works also under
the most difficult allowed conditions. In such a flow, the design and your
knowledge about it grow in parallel with the verification! This way verification
or complexity becomes much less of a problem, and more design insight is a
further valuable output.

In digital or software design, there is a trend to split the parts of design
and verification, i.e., different people do it. This solves the problem that a
designer may “love” his “baby” too much. Actually, the idea that a verification
engineer should “hate” the design is good and can lead to better verification,
but for analog designs, it should be only a complementary concept. In critical
cases better create several “baby designs” and let the best “survive”; once
you have made them detailed enough for a fair comparison. Design is often
a fight of ideas! Often also a split between front-end design and layout—
usually seen in bigger companies—is critical, e.g., misunderstandings on
priorities or constraints can lead to unnecessary extra work or just bad layouts.
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Layout aspects (or more general the “physical implementation”) are important,
and the reader is highly encouraged to also read books on technology, layout,
and device modeling! Many of these topics will be referenced in our design
flow: Modeling is a limiting effect on verification accuracy, and the layout
part (unavoidable wiring parasitics and “bad” layouts, respectively) is often a
reason for design iterations—unfortunately.

Note: In this book, we concentrate mostly on front-end design not on physical
implementation aspects like layout and packaging (or ESD and latch-up), but
for sure you also need to include these extra-effects (plus sometimes others
like aging), and often, they are as essential as supply voltage or temperature
effects. So you should also include them, as soon as possible—not only in
final verifications. For some more details, read Chapter 10.

For sure, also simple bad design practices can let design projects fail or at
least delay, e.g., last-minute changes without careful re-verification, creating
different block versions but not making clear which one to use, hoping that
someone else has already verified something, not applying manual checks
(often automated run decks for DRC, ESD, latch-up, etc., are incomplete),
using models in extreme regions (breakdown, ultralow currents, etc.), or
typical interface problems, e.g., between blocks from different departments.
Actually, communication is a key part for success. Partly, it can be also
supported by EDA tools, e.g., via constraints. Table 1 presents some reasons
for re-designs which have been appeared over the years to the authors. Note,
that the table focused on first, almost immediate redesigns; in later stages,
after a more detailed analysis, problems introduced by variability are much
more typical.

At some point, it might be impossible to simulate the design, like a
postlayout simulation (maybe still excluding substrate, self-heating effects,
aging, ESD, latch-up, etc.) will take a month. In such cases, it would be better
to go for production, but being sure to apply at least careful manual checks and
calculations. On this, do not underestimate the human factor: We have seen
design fails and need for a redesign, just because designers claim “I checked
this in Monte Carlo,” but due to a small bug in the design Kit, it was simply
completely impossible to run MC. So the designer was lying so and so.

You may think why everything is so difficult? It should be not a matter of
complexity, and it is more on following an important rule that says:

“ Know what you want, and use what you have. Make no bullshit, do
not rely on hope or magic. Double-check your assumptions. There
are no stupid guestions. Be an engineer!”
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Tablel Few reasons for chip redesigns

Block Chip Class Comments
Logic part RF receiver Last minute No full re-verification applied after
change change.

Solution: FIB applied, logic
changed in redesign
Bandgap RF power Modeling Substrate transferred the RF output
amplifier signal to sensitive bandgap net
Solution: Non-Miller-cap frequency
compensation of the bandgap, better
shielding of pads, FIB and metal

redesign
Substrate RF PA control Layout Contacts connected to gnd instead
contacts IC with of Vgg.
negative supply Solution: Layout modified in metal
redesign
OmC filter IR remote Variability Only corner simulation done, no
control analysis for mismatch
Solution: Larger transistors in bias
part
Buck Hearing aid LVS Incorrect LVS setup for self-created
converter chip metal capacitors. So a short circuit

was not detected.
Solution: LVS run deck improved,
via causing the short removed

RF power RF power amp Modeling Amplifier had strong oscillation

amp tendency, modeling for package,
substrate, etc. too simplistic.
Solution: Modeling improvements
and concept change to a
narrow-band amplifier

Memory SoC Variability Circuit function correct, but yield
too low.
Solution: Yield improvement
redesign on critical parts.

This book wants to show and explain further advanced methods—
beyond simulation and verification—that work for creating analog designs.
When we talk about “analog”, we include also mixed-signal, high-speed, or
custom digital and RF designs—so all kinds of designs where typically a
highly flexible design strategy that is required. Not always mathematical and
automated techniques can be directly applied, especially for the art part of cir-
cuit design, but for sure the described technigues can help good designers and
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students to solve more difficult problems and to speed-up the design process in
several ways.

We feel also non-math experts, but engineers should know what they are
doing when using certain electronic design automation (EDA) software. Users
need be able to select and set up a suitable method, because (like circuit
simulators) also the new tools come with many options. This book will give
you guidance and an overview and should enable the reader to get in touch
also with more advanced original papers and more specialized mathematical
literatures. Those are clearly recommended if the reader wants to get highly
detailed information or creates his own algorithms. This marks also the point
where we need to stop in this book and we want to focus on the really important
concepts, algorithms, and tools.

The book is written for engineering students and engineers who have
already some background in standard techniques like just creating a little
design and simulating it, and knowing about technology variations. So we
address simulation technigues themselves only in aspects relevant to varia-
tions, statistical methods and optimization. We hope we can motivate you, as
the reader, to think more about the topics we cover, and you should be able to
understand, able to work, and probably also able to tell, to talk, and (at some
point) able to teach.

Actually, too often designers end up in SPICE monkeying, hoping the
simulator makes the design job. Sure, many things base heavily on models and
simulation, but at least you should do it in an efficient way, doing the really
required simulations, with some realistic margin and just some acceptable
overhead for confidence and understanding.

Often EDAvendors are asked: How much does this tool help to increase the
productivity? In some cases, you can indeed quantify this, but we feel—even in
the book—we partially focus too much on such a simplified view on engineer-
ing. For example, reducing the number of simulations can lead to a measurable
speed-up and reduced costs, but actually other aspects are of equal importance,
like being able to manage complexity of new system architectures or advanced
process nodes, and getting confidence and understanding of your design.

Organization of this Book

The topics we treat are both relevant to scientific researchers, EDA software
engineers, electrical engineering students, and circuit designers. You do not
need to be an expert in everything; we point you in each chapter also to the
literature available for further reading—to more basic and sometimes also to
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more advanced references. In the appendix, you can find an ordered list of all
references, and we think it is a good mix for getting a deeper introduction and
also for digging into the details.

Of course, unfortunately, we have to deal with many abbreviations and
special terms, and we collect them in a big list—many are very common, and
you should know them.

There is no eat-all-or-nothing, the book has a modular structure (Figure 3):
The advanced designer may skip the introduction and the chapter on manual
design methods and could jump to the advanced statistical techniques; or the

Figure3 Design techniques and book chapters.
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statistics expert could directly go to the optimization chapter, but we think if
you read the book page by page, you will not miss clear guidance. Topics that
are interesting but not key for further reading are delivered in separate boxes.

We always start with the problem descriptions and discuss different meth-
ods to solve them, starting from one of the most straightforward approaches
and then moving to more advanced techniques that typically are more accurate
or more efficient in difficult cases. The examples we start with are typically
quite short because with too complex ones, we would lose the focus too
much. Therefore, we shifted several more complex examples into separate
subchapters. Of course, also our initial examples are often not so simple in
some aspects, e.g., for circuit design, it makes little sense to talk about “linear”
optimization, so starting with a quadratic function is quite native, and even
such an example can be simple like x2 + y2 (because here you can optimize
both parameters independently and even the simplest optimizer will work very
fine) or more difficult like x2 — x - y + 100 y? (here, we have correlations and
highly different sensitivities).

The book starts with two chapters on circuit design and design flow, not so
much on circuits. We explain the most important design targets and measures,
like yield, corners, and worst-case and Monte Carlo analyses.

In Chapters 3—-7 we discuss statistical methods in detail, starting with
Monte Carlo and basic result analysis for yield, sample variance, confidence
intervals, etc. Next, we extend the method in Chapter 4 to non-normal data
analysis, which includes a generalized process capability index Capk. All
these analyses are possible for data obtained both from tests in the foundry or
laboratory or from MC simulations, but the simulator has really access to all
statistical variables in your design, so you can also do multivariate analysis
to obtain correlations or to fit complex models to MC data. This is the next
step, before we also address MC speed-up techniques and non-MC statistical
techniques like the worst-case distance method, which is often much more
efficient for high-yield verification. Chapter 7 is a long chapter, just because
there is no one-size-fits-all method, almost each method you can break, at least
in special difficult test case—and you should understand why.

Chapter 8 is explaining optimization methods. One key part in setting up an
optimization is the goal and constraint definition, because often optimizing the
circuitunder typical conditions is not enough, and at best this could be used asa
starting point. Instead, you should really inspect the most critical conditions,
and for this, you have to treat both statistical variables and the ranges for
your operating conditions like supply and temperature, and then you have to
optimize on this. The difficulties and the benefits of such overall optimization
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approach are discussed in Chapter 9, together with further advanced front-
end design topics. To some degree, we leave here the area where most
design environments have fully built-in solutions; so some scripting or manual
interaction is required to perform very advanced tasks. Actually, assembling
worst-case analysis and optimization is a key part for obtaining a complete
and automated or at least a highly assisted variation-aware design flow.

The overall flow aspects, including layout, design-supporting tools, and IP
management, are described in Chapter 10. Variation-aware design is not at all
only about process variations, mismatch, temperature, and supply effects, and
the physical implementation can change the circuit performances sometimes
much more! This means layout effects, such as wiring parasitics, may be
substrate couplings and nowadays even the neighborhood of each critical
transistor matters, so you should include them as soon as possible. Our
summary (Chapter 11) includes also an outlook for upcoming further advanced
design methods and environments.

Real-Time Apps and Auxiliary Material

Please regard the software as an integral part of the book! This does not mean
that anything is really missing without these pieces of software, but to really
understand what the circuit design is, you have to do circuit design; to learn
what statistics can do and what not, you should look at statistical data, at best
from circuits!

In some way, EDA design environments are already quite good for
learning! The only pity is that circuit simulations can be very time-consuming,
so it is almost impossible to get a “feeling”, e.g., for how large the variations
from one MC run to another could be, just because already one “meaningful”
MC run can take a day!

How can you learn driving a curve with a speed of 1 mph? You cannot,
you need real-time speed to really get the feeling; and for statistics it is very
similar. The human eye and the brain has different mechanism to interpret
what we see; there is a static and a dynamic part. It is best to use both.

Both apps (see Figure 4) run under Microsoft Windows®, and a detailed
documentation is delivered as separate pdf files. With both programs, you
can make your own experiments on optimization and statistics, to learn
interactively and from many examples just much faster than is possible within
a design environment, and to some degree, also more details can be provided.

In the book, usually at the end of each chapter, we provide a collection of
questions and answers, and the two apps can support you to answer them.
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Figure4 Screenshot of the two learning and design programs Real Time MC and Match.

When you could use one of the apps for solving problems,
we often add a little green hand in the book. The newest app
versions are available under http://www.riverpublishers.com

It could also make sense for more complex experiments to use
your IC design environment, and we mark this and connections
to further small design tools with a blue hand. At the River Web
page you can download supporting material.
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In addition, we prepared some statistical experiments with
Excel®. These you can also download at River Publisher.

In the last chapter, we talk about layout effects and intellectual property (IP),
and the creation of it. For that further design programs are available and
provided by the River Web page!

These books we highly recommend as a refresher on circuits, math, and
statistics:

e Willy. M. C. Sansen, Analog Design Essentials, Springer US, 2007.

e Tony C. Carusone, DavidA. Johns, Kenneth W. Martin, Analog Integrated
Circuit Design, John Wiley, 2012.

e R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability & Satistics
for Engineers & Scientists, 9th Edition, Prentice Hall, 2012.

In the different chapters, we point you of course to further, more specific
references. Note that especially for mathematical topics, there is a big amount
of free and great material available in the Internet, and in the appendix we
also give links to such highly valuable material. There you can also find links
to the homepages of several EDA vendors. Many of them offer a forum and
advanced material as download.

Softwaretools, Math, Statisticsand Numerics? Doing math by dealing
with data and programming are the best approach to become an expert. In
our book we present many spreadsheet examples, not because such tools
are best, but because such tools can display data quite well, and the user
can see each step applied to the data. Of course, at some point you can
push a spreadsheet to the limits, like analyzing 10 million data points; here
true programming languages are best, like C, FreePascal or Java. Also in
these many libraries for charts and math are available, it is just some work
to put all together. The most elegant way for doing math is using math
environments like Matlab® or R©. Matlab has the advantage that even
a graphical simulation environment is available. R is perfect for all who
need access to the true state-of-the-art in math and statistics. Both software
packages are quite easy to learn, some things are even easier than in
Excel®!
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Introduction: What Makes an Engineer
a Good Designer?

We present key measures, elements and problems in design. We discuss the
efforts for design and verification tasks; and the inputs and outputs.

Inthis Chapter 1 we describe the problems of being a design engineer from
a still quite general perspective, so many things appear in similar ways also in
other fields (like car design). Of course, we have circuit design in our mind,
and we describe the typical manual I1C-specific design style in Chapter 2.

Design and circuit design is a fascinating topic, and it is a science and also
a kind of art—for many amateurs and professionals. There are systematic
approaches and there are physical foundations, but usually there is also
something “special”, especially when designing integrated circuits for high-
performance areas like high-speed, high-power, or radio frequencies, but also
smaller PCB (printed circuit board) designs, e.g., you often have to minimize
the number of components with some “tricks.” This is because—almost by
definition and in opposite to digital design—there are many more things that
matter (not only speed, area, and power consumption) and analog circuits are
inherently much less error-tolerant.
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Analog design is quite an art, because you need creativity to find the right
compromises to fulfill many specifications, written and non-written ones.
Due to more and more stringent requirements on minimizing size, power
consumption, and costs (of course), designs moved in 50 years from the
classical simple twenty-transistor op-amp to highly complex, multimode,
mixed-signal circuits with billions of transistors (actually memory design
is also very close to analog design). On the other hand, the basics have
not changed much! By far, not all problems are related to complexity, and
small circuits can be most tricky—a small amateur PCB design can fail for
similar reasons than a high-end smartphone. It is very tough to be prepared for
everything that could go wrong or just varies by nature, like transistor length
and width, threshold voltages, load impedances, and gate oxide thickness. Of
course, such complex designs are done by very experienced design teams, but
if something gets wrong, it is indeed very often due to such variations and/or
complexity (e.g., in interfaces and states).

We hope to show that also almost all numerical algorithms are based
on “common sense” (“gesunder Menschenverstand”)—and also dealing with
them, improving them, and even applying them is something creative and
fascinating! Common sense fails seldom, just some training is required, and
some clarifications.

Styling versus Design. In German these are foreign words, so often both
terms are misused. Adding a fancy chrome spoiler to a car, which is no
race car, is styling. So something between taste, bad taste and art. Doing
it because you need it for a perfect driving behavior is design. Design is
closer to science, real construction, problem solving, but of course there
is often still pretty much freedom. Also designers have personality, and
style; and the solutions from different designers may reflect this. However,
to a high degree it is indeed usually possible to clearly state, what is really
required or an even optimum solution, and which parts are nice to have.
Usually circuits contain not much styling elements, but incorporate quite
some art.

What are the key techniques every student, engineer, and designer should
know and apply? Of course, learning about circuit design is good, and doing
it is even better, but can we be more specific? Two sentences | remember from
my professors as a student were as follows:
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The most important skill to learn at a university is to learn how to
learn

In IC design you can create almost everything, the problem is always
making a reliable design that also works under varying parameters.

The first statement was to some degree a clear disappointment when | heard
it because | want to learn much more, but in our ever-changing environ-
ment, this is clearly an important point. It just takes some time to pick
that up.

The second quote was quite a surprise, because the technology in 1988
was by far not as advanced as it is today (e.g., most ICs use single metal layer
routing, and the bipolar processes had lateral pnp with very low speed and
gain)—and I did not have that much experience in how much tolerances can
really make your life difficult! As an amateur designer, soldering for an audio
amplifier or AM transmitter, you are typically done when the circuit is just
running, but that is not the case when giving the circuit to someone else! Often
optimism lacks in information.

Both sentences are very important, because as an engineer you make
important and costly decisions for your company, and overlooking something
can happen easily. Here, professionals are even under more pressure, because
you rely much more on virtual techniques; any simulation usually can only
answer the questions you prepare for—like “Is the amplifier stable?” In a
laboratory the amplifier circuit might just oscillate when you turn on the
supply—and you can immediately see it with an oscilloscope. However,
in IC design a dedicated testbench is needed, and often different options
are available, so a simple question like proving stability, can become quite
difficult, especially if you want to go to the limits (like achieving also a large
gain and high efficiency).

Just entering a design in a schematic editor and simulating it for a
kind of virtual verification is possible since 1970s for professionals (when
the circuit simulator SPICE becomes popular) and for amateurs since
1980s (PSpice® came up, running on PCs). In digital design, the flow
progress in the following years was amazing: Essentially, nowadays you
can create circuits and even whole digital systems with millions of tran-
sistors from software because clever programs can synthesize the whole
hardware in a given technology, based on few core libraries featuring the basic
logic cells.
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AVery Short History of Digital Synthesis. Inthe 1970s, digital designers
made designs in quite similar way as analog designers. So they drew
schematics with little standard cell sub-blocks (like NAND gates, flip-
flops, ALUs, and counters). In the 1980s, for simulation purposes and more
compact design description, co-called behavioral languages like VHDL
and Verilog have been created. This allowed more complex designs and
better documentation. In 1994, Synopsis® created a synthesizing program
that has been very quickly adopted by the industry. Recent developments
are e.g., regarding verification with new languages like “e” and System
Verilog.

Unfortunately, analog synthesis is much harder, because the way
from a unit element like a transistor or resistor to a whole block like
a programmable amplifier or even to its layout is much longer. Also
languages like Verilog-A are not very powerful, and better ones have
found no wide application and have no industry standard.

However, in analog, RF and mixed-signal automatic synthesis failed mostly—
at least commercially, although for some special areas like DAC or filter
design, some kind of synthesis makes indeed sense. On the other hand, further
techniques have arrived in real commercial tools and enabled engineers to do
things that analog designers dreamed for years. One is statistical design, and
the other is optimization—and doing it not only on small academic examples,
but also on real professional often highly nonlinear circuit designs!

People working in one area like EDA tools or circuit design can often
learn a lot from other fields, even from topics faraway like biology, stock
pricing, weather forecast, disaster prediction, or insurances. For instance, lot
of attention in many of these fields is on advanced Monte Carlo techniques,
whereas for most electrical engineers MC or corner analysis has not changed
much over the last 30 years!

Not all techniques presented in this book are brand new. For instance,
historically optimization is not a new topic, and some of the most important
algorithms have been developed in the late 1960s and have been applied to
electronic design in the 1970s, e.qg., for passive RF filter design. However, the
option to use such advanced techniques was only present for few academic
institutes, and no user-friendly software was really available. One of the
earliest commercial successful optimization tools came up in the 1980s and
was Super-Compact™ able to simulate and optimize linear RF circuits.
We used it intensively for transistor modeling and for wide-band amplifier
design. Generally optimization has found widest use in modeling, e.g., for



1.1 Key Problems in Circuit Design 7

semiconductor devices—but until now not really much for true complex
analog circuits, so we will discuss when optimization makes sense, and how
users can make circuits easier to optimize.

A situation perfect for learning is if something gets wrong! Of course
you can learn from “best practice” examples, but often the real difference
between two algorithms becomes visible if something becomes more difficult,
so that one fails, whereas the other methods may still work! That is a good
starting point for more thinking and for innovations—of course not only
for circuit designers, but also for CAD researchers, and for CAD managers.
Unfortunately, in EDA environments and in real design situations you have
seldom much time to inspect all difficulties regarding algorithms in detail. So
in case of problems clear guidance is needed.

Alast motivation for reading this book should be this: We all carry around in
our head rules and guidelines that give us a sense of intention. The topological
map of a big foreign metro will seem “obscure” to a casual visitor, but a
resident must understand its structure and some details to enable daily travel
by memory. Similar to this, engineers have to deal with numerous equations,
tools, models, etc., and they must be sorted in one’s mind for everyday work.
For instance, you do not need to have knowledge about Bessel’s function
directly in your mind, but should have a feeling for Vg and its behavior
versus temperature, versus current, etc., or you should know the meaningful
range for current densities in your used technology. Such issues must be at
your fingertips, and beyond that, they must be integrated into the instinctive
fabric—that is your core being. You will not get very far on the metro if you
need to consult the map each day as you travel to work! Engineers frequently
have to make journeys to places far from familiar landmarks. Returning from
such, we can return to the challenges of daily work with a new perspective, a
little better equipped to examine problems under a brighter light. Do not wait
to be told what to do: Do it anyway. Do it soon. Indeed, statistics can be as
interesting as circuit design! Optimization has an even closer relationship to
design and can be very helpful too. As often in engineering, there are many
better ways than “try the same but harder”!

1.1 Key Problems in Circuit Design

In a design project, engineers have to deal with many variables and we have
to treat them in a systematic way. Intuitively, you do it mostly, but sometimes
confusions can arise. So let us introduce some common simple notations and
conventions. In our book, we mark vectors in bold face, and we use bold
uppercase characters for matrices (like H for the Hessian matrix). For random
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variables, we follow the convention of using uppercase characters (like X). As
performance functions, we use f (or f for multiple performances). For names
like resistor instance Ro, we use the normal font, but for variables (usually
real or complex numbers), we use italics like A = g, Ry,. (the m stands for
mutual and the L for load—both are names, so no variables).

Note: Sometimes it is hard to say whether a threshold voltage or the supply
is fixed or a variable, so we follow our convention when it really matters for
understanding—Ilike in flowcharts or equations—but not as slaves. On top of
the mentioned conventions, often just all symbols are written in italic style.
However, in the context of circuit design these are not always a good ideas.

Example: For an optimization, we usually need to vary multiple parameters
x;, and we can handle this easier by putting them into a vector X, e.g.,
X = (Ry, C1, Ro)™ (T stands for transpose, turning the “horizontal” vector
into a vertical one. This is sometimes needed for matrix calculations).

Adesigner has to manage many kinds of parameters x which impact circuit
performances y = f (x):

o Design parameters Xp: They are controllable to the designer, so can be
set dedicatedly. We assume they will not change during production, only
in the design phase. Examples are the value of resistor R, the number
of resistor segments in parallel in Ry, the capacitance of a capacitor
C1, and the width or the number of fingers of transistor V5, and on top
of these nominal design values, there can be of course variations from
process or mismatch!

e Statistical parameters xg: The resistor R; may have a nominal value
of 1 k2 set by Rgneet, length, and width, but in production you
may observe statistical variations. Usually, mathematical models are
available defining, e.g., the standard deviation of Rg},..¢. Elements can
vary, e.g., due to global statistical variations (like from wafer to wafer),
but also even two resistors constructed in the same way and on the same
wafer may have different values—within-die variation (WI1D)—due to
the so-called mismatch, so xs = (Xp, Xn). Often the designer can
hardly influence global variations, but mismatch can usually be reduced
by increasing the device area. Even for a perfect layout, you have to
accept a certain mismatch, unfortunately.
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e Conditions, constraints, environmental or operational parameters, range
parameters xg: like temperature supply voltage, load resistance, etc. —
usually defined as parameter ranges. Also operating modes like temper-
ature, over-current or over-voltage shutdown, power-down, low-gain
mode, etc. might be part of xy.

Parameters, Variables, Constants. Often there is quite some confusion
about what is what! It actually depends on the context and the analysis you
apply. Surely, gq of vacuum is a physical constant, but for other materials
ey it might be a function of temperature or a statistical variable even!
Another example is this: We can treat statistics this way, that we assume
there is an ideal model from which we get random samples, e.g., in the
background there is a normal Gaussian distribution having a fix well-
defined mean p and standard deviation o. If we take a sample (via
measurements or simulations), we can calculate the mean of the sample
data, and it might be different from the ideal mean value, just due to
chance. So is p a variable? Having a fix model in mind, it would be
no real variable. And what about the mean from the sample? A specific
sample is just a sample, it is as it is: once it is, it might be also regarded
as a (specific) constant set! Looks strange, but actually this is the way
we follow if we do a parameter estimation e.g., via maximum likelihood
method (ML). Here we take the data is given, so fix. And we search for
the model parameters (like v and o) which fit best to the data, so we treat
the parameters as variables. Although later we interpret them as fix, e.g.,
when using the model in a Monte-Carlo analyses.

In many cases it makes also sense to differentiate between (global)
variables (like sheet resistance) and e.g., instance-specific parameters
(like length of transistor #3 or its threshold variation against the ideal
value), but also this is a convention which is usually not followed strictly.

In IC design, there is quite a clear trend that the number of all kind of
parameters increases, i.e., design becomes more complex and also the models
(Figure 1.1).

In addition, also the impact of variations tends to increase, e.g., an IR
drop of 100 mV matters much more in modern low-voltage designs than in
older technologies. Also the changes of threshold voltages (e.g., from statistics
and temperature) in relation to supply or the absolute thresholds become
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Figure 1.1 MOS model complexity increase [Haase].

more critical (Figure 1.2)—besides several other problems like increased local
variations and layout-dependent effects (LDE).

Note: Unfortunately Figure 1.2 shows no units on the y-axis (we just found
nonel!), but the intention is to show that the speed improves by using modern
process nodes. This together with smaller area, lower costs and lower power
consumption is the major benefit of new technologies. However, unfortunately
also the relative performance spread becomes larger, so harder to manage. Of
course, the exact values depend also on technology features, devices sizes,
supply voltage tolerances, temperature, etc. What is also not easy to show in

Figure 1.2 Increasing process corner spread on CMOS speed.



1.1 Key Problems in Circuit Design 11

a picture, is that e.g., due to clever self-adaptive circuits the spread becomes
manageable. And there are tools which can address the problems of variations
accurately and efficiently.

Insome design environments, and especially in older process development
kits (PDK) and model cards, global statistical variations are usually treated
not as statistical parameters, but only with fix sets of process corners,
like FastMOS (=best-case speed), SlowMQOS (worst-case speed), MaxR,
MinC, and SlowNMOSFastPMOS (lowest threshold) or just nominal. This
is a simplification, because “slow” can only be the worst-case in dedicated
terms, like with respect to propagation delay time for a certain class of
circuits like CMOS logic but not for other circuits or other measures (like
bandwidth and phase margin). The major advantage of process corners
is that the designer can directly pick them, simulate, and get at least an
approximated worst or best case. In many design environments, you also
have different setups available, so you can decide whether you want to
treat process variations as corners or via MC. Best use both methods for
understanding and efficiency. Actually, also classical logic design was already
done in a variation-aware sense, but it excluded statistical variations almost
completely.

More Statistical Methods? In principle, we can treat statistical variables
Xg With combinatorial methods—which makes sense with discrete random
variables, like coins—or we may use Monte Carlo. Actually, there are good
attempts to use statistical techniques also for range parameters (corners)
Xgr or for design variables xp. The idea of randomized verification for
corners is quite clever in cases where the number of directed tests would
be huge, like in big digital or software systems! Random methods for
design variables can make sense for difficult optimization problems to
achieve global convergence. In the near future, more and more statistical
methods will come up—also in analog design.

1.1.1 Brute-Force Design—No Way!

If you want to address the general problem of “design” mathematically and
want to describe it in high detail, we would have to deal with all performances
f collected in vector f as a function of all variables x = xp, Xs, Xg) ™.

Note: This “art of design” is actually only a subtasks, although a very
important and time-consuming one. Usually, there is a kind of exploration
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phase upfront, which consists also of testing different circuits and composing/
extending circuits. And afterward, there is also a longer sign-off phase, and
there the focus is on verification (xp almost fix). However, often there is
no clear separation, neither in project time, nor in the tools; there are many
overlaps and iterations. This is almost a characteristic for analog design
(Figure 1.3).

Unfortunately, the performance function f (x) can be extremely complex.
In a clever testbench, we might be able to get all f with a single circuit
simulation like a transient analysis driving the circuit to all modes, but even
then we can typically only cover one single point f (x) (also called sample) of
that function; already this can take a minute or an hour. As circuit simulation
is often the most time-consuming (automated) part of the design, overall
efficiency can be often measured in many simulations needed to achieve the
targets. In fact, simulators are quite complex and have dozens of analyses and
hundreds of options, whereas the classical methods on top—Iike parameter
sweeps or Monte Carlo—have little internal runtime and a simpler setup.

Figure 1.3 Degree of freedom in digital and analog flows [Scheible2015].
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The major difference is probably that designers are very familiar with sim-
ulator options, because settings like gmin, reltol, or maxstep can be directly
linked to electrical measures, so the other tools on top often come sometimes
with something you are less familiar with.

To get a feeling for the circuit, designers usually apply many hand
calculations and do many sweeps. To cover nonlinearities accurately enough,
the sweeps should be dense enough. Especially temperature behavior is often
nonlinear, so you would set up a sweep with 10-100 points. Also for the
supply voltage, it is often good to hit the transition, when problem starts to
appear, accurately enough. Such sweeps are perfect for understanding, but
pure sweeps of one parameter at a time do not often show well the complete
behavior, because of correlations, or mathematical due to mixed terms like
x1 - z9 (here the impact of 1 on f depends on x-).

Example #1: CMOS logic delay usually increases with temperature due to
lower mobility w. However, at low supplies Vpp, this effect can change
because the negative TC of the threshold V¢ starts to become more important,
and at very low supplies (like for hearing aid applications), also the overall
TC might be negative, instead of positive! So the usually helpful picture of
increasing delay versus temperature gets wrong, just because delay, tempera-
ture, and supply are highly correlated and nonlinear. A one-parameter sweep
can be captured in a vector for input and output values, but two-parameter
correlations need to be captured in a matrix. If we look to 5 discrete values
for both parameters, we end up in 5 - 5 = 52 combinations.

Unfortunately, even if you would run all 25 two-parameter combinations,
you might still miss some critical cases, because more than two parameters
also can form such correlation group! And we do not know exactly which
parameter correlations to treat.

Example #2: If we would like to inspect all combinations in our design (like
an op-amp), we would have to treat 20 design parameters, 100 statistical
parameters, and 5 operational range parameters. For each parameter, we may
want to run 5 values, so to get a full picture, we end up in all-in-all 520 . 5100. 59
combinations to simulate. Even if one simulation takes only a second to get
all f in f, we would end up in a simulation time of more than 7E79 years.
Doing this and looking at all results, we would have the guarantee to find the
best design values for the given circuit topology, and its behavior under all
conditions. For pure verification (i.e., for fix xp), we would only have to cover
the two last parts, so we need 5'%°-55 simulations or 7E65 years and even brute-
force verification (without exploiting any assumptions on the design) is almost
impossible.
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The biggest part in our example is the statistical part taking 5'°° points,
so using a dedicated statistical technique like Monte-Carlo can already give
some speed-up! We will do so and will also discuss the risks. However,
even if we have a clever statistical method, we would have to run it for
all the range parameter combinations and for design also at each design
point. What about numbers? For verification using the sample yield being
in the order of 3o or approximately 99.8%, we need rougly 3,000 MC
points for 95% confidence; so we still end up in 3,000 - 5° simulations
or 3.5 months for pure verification. Only such exhaustive or brute-force
methods would really give a kind of guarantee for any arbitrary complex
and nonlinear design. As this is hopelessly inefficient, we need better methods
which really exploit the structure of f by finding in which variables we have
high sensitivities, strong nonlinearities, and correlations. This way we can
avoid “uninteresting” simulations providing us almost redundant results. We
need to compose a clever search strategy that leads us quickly to the design
limits. Luckily, this is possible because many circuit design problems are
similar.

Of course any such efficient design strategy has both parts which can
be applied in general (like doing sweeps) but also adaptive parts (like we
need to find out which variables are important and form a group with strong
impact on a certain output f ). Usually, the variables with the highest nonlin-
earity cause most pain, e.g., temperature characteristics are often difficult,
but even more extreme cases can occur. For instance, you may want no
monotony errors in a DAC, but to check this, you may really need to
simulate each bit, because such errors may take place anywhere. In such
cases, best create a dedicated testbench, maybe one with autostop if we have
found a monotony error or using an algorithm which starts at a place with
the highest fail probability (e.g., around half-input, when the MSB would

toggle).

A Very Short History of Statistics and Numerics. Using statistical
methods to invest on card games and coin flipping is very old, but in
opposite to other mathematical areas like geometry, statistics as science
is quite young! For instance, a clear judgment why least-square tech-
niques should be used for fits, and when not, was just given in 1921 by
R. A. Fisher. The way statistics are often taught based on the axioms of
Kolmogorov dates to 1933! The correct confidence interval method for
the mean of a normal distribution was given in 1908 by W. S. Gosset,
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under pseudonym “Student”! Of course bigger breakthroughs are done
by C. F. Gauss in the nineteenth century, e.g., he solved many difficult
physical problems by applying least squares, problems on which, e.g.,
Leonhard Euler still failed. The central limit theorem has a longer history
starting in the eighteenth century, but proof has taken time as well. Monte
Carlo techniques came up in 1940s when numerical computers came up
more and more. First quasi-Newton optimization algorithms have been
invented in the late 1950s. Bootstrap techniques have been created in
the late 1970s. The popular latin hypercube sampling method has been
described in 1979 by McKay. Advanced worst-case distance methods
are even newer. Matrices are an elegant method to collect numbers and
equations, and the term came up in 1850 by J. J. Sylvester.

1.2 Engineering Techniques

Engineers are discoverers, hunters and gatherers, seldom dancers, or actors.
A first key techniqgue—and maybe even the most important one—is knowing
what you want to do and being able to apply your knowledge.

1.2.1 Ground Work and Anticipation

The circuit behavior is usually defined by physical relations like the Ohm’s law
or the transfer characteristic of a MOSFET or an amplifier. For a block, this
usually ends up in a set of equations like the total gain is Aio; = [[Astage With
Agtage = gm Rr. In nonlinear cases, such equations might be hard to solve for
obtaining the element values, so often simplifications are needed, e.g., based
on Taylor series. In an ideal op-amp-based amplifier (having an infinite open-
loop gain), the (closed-loop) voltage gain is defined by the feedback resistor
ratio, like Agtage = —R2/ Ry (Figure 1.4).

Obviously, a design is more robust if it relies on ratios instead of absolute
values, but sometimes it is not so clear, e.g., because the loop gain might be not
as high as desired, so that on top of the (resistor) ratio mismatch error, other
effects could be present, and even dominating—"bad luck.” Also “good luck”
is possible, e.g., you may find a clever bias concept to make g, proportional
to 1/Ry, to cancel out the absolute variations even in a simple transistor
amplifier stage. Via hand calculations, you can typically obtain only some
start values for the circuit elements, e.g., for those inside the amplifier or for
the RC values of a filter, and finding the really best-suited values requires
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Figure 1.4 Typical transistor amplifier stage and op-amp as inverting voltage amplifier.

some tweaking and resimulations or even multiple prototypes and redesigns,
respectively.

1.2.2 Iterative Refinement

Our example clearly shows that iterative refinement is a key technique
too: System design may start with simple budget sheets, often entered in
spreadsheet programs. At some point, you want to include more effects and
running quick simple simulations, e.g., in Mathworks® MATLAB®. Later, in
areal circuit design environment, you can switch part by part to more complex
models—based on Verilog-A—or to transistor-level circuits which also take
loading effects into account. Last you create full layouts, extract parasitic
elements, and run really time-consuming sign-off performance verifications,
whereas the functional verification and the testbench creation are usually done
at a much higher abstraction level. At the end, you can decide whether the
design is good enough to make tape-out, i.e., creating an expensive mask set
and fabricating the design.

Of course modeling is a key part of the design process and is partly
done by modeling experts. Modeling is very helpful in testbench creation,
in debugging, and also in the specification phase because having a testbench
with models is a kind of “executable specification.” It is very helpful for circuit
implementation to see how each block should act in the system context, like
what are the input signals and the desired outputs. Such “executable specs”
help a lot regarding team communication and give also a good status overview.
Ultimately, this gives high confidence already in early design stages, because it
allows to have always something that works and can be demonstrated. All these
points are often even more important than the simple simulation speed-up you
may get with simpler models compared to transistor-level simulations. For this
reason, start the modeling early in a project. Read a bit more about modeling in
Section 1.3.2.
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1.2.3 Composition in Design

Besides refinement, also composition is important: building of complex
systems or blocks by simpler elements. Analog circuit design is a bit like
Lego®, and digital is even almost 100% Lego! For instance, you may start
directly with a known op-amp circuit topology and optimize just the parameter
values, or you may construct a new op-amp:

e Decide on the input stage type according to the input common-mode
voltage range (for ground-sensing op-amps, you could use a PMOS input,
but no NMQOS, and for rail-to-rail signals, you typically need both types
or a level shifter) and bandwidth requirements.

¢ Decide on the number of stages to fulfill the overall gain requirements.

e Choose an output stage based on drive requirements, technology limita-
tions, output voltage range, etc.

e Further decisions could be related to use either a simple class A con-
cept or more power-efficient class AB stages (or even switched-mode
amplifiers).

Construction often comes with decisions, and these might be tough to make,
because you have to work out each solution to some degree till you are
able to make decisions. Decisions are much harder to automate than pure
parameter refinements! And analog designers use a lot of different Lego
keystones—some are small like a differential pair, and others are complex
like a PLL or ADC.

Of course, design tweaking and composition methods are usually in
competition, but can also complement well. For instance, if you design a
second-order LC lowpass, you know you can get 40 dB/dec, so a certain
attenuation for the fifth harmonic. However, in reality, the elements have
self-resonances, and with good luck, you can exploit the series inductance of
your SMD capacitor and get a much better damping for HDs! In this case,
an optimizer might have found a similar solution, but designer’s knowledge
could outperform any optimizer in such simple case—but often not in more
complex case.

1.2.3.1 Construction vs. optimization

Exploiting the problem structure is usually the key for design efficiency.
Optimizers can partly act in this way, because they follow a certain strategy
which can be mathematically even quite optimal (see Chapter 8). In this
book, we address parameter optimization based on a fix circuit topology,
because we want to talk about methods that work in commercial EDA tools.



18 Introduction: What Makes an Engineer a Good Designer?

In several academic papers, true synthesis techniques for analog have also
been reported. Usually, these are based on a circuit library and optimization
and construction techniques. Construction techniques, which are often rule or
knowledge-based, are important too and can be more efficient regarding the
number of simulations than pure optimization.

Note that there is, in principle, no clear difference between optimiza-
tion for component parameters only and optimization which would include
topology optimization. You could just give all of your circuits an integer
number, and let the optimizer optimize on both this integer and the usual
component parameters! However, this is (by far) not the best way, because
it just does not exploits the problem structure and nonlinear mixed real
integer optimization but is very difficult, thus creating a big burden for the
optimizer!

As mentioned, construction is often regarded as an alternative to optimiza-
tion, e.g., you could try to code [Berkely] your design strategy from spec to
circuit for each circuit type—Ilike two-stage op-amp with Miller compensation,
NMOS input, folded cascade stage, and PMOS class Aoutput—inascript (e.g.,
in a programming language like Perl or SKILL®), maybe even including the
layout. Unfortunately, such scripts are obviously much harder to create and
usually quite limited (at least without optimization), e.g., regarding the specs,
you can address as input, and maintenance is a problem too. In addition, it is
not easy to make such scripts technology-independent—although interesting
approaches at least exist, e.g., by doing the sizing according to g¢,/Ip
technique and by the inclusion of optimization or lookup tables [Iskander2013]
(Table 1.1).

It is an interesting question if such fully automated methods will be
available in “analog”, would they be really well adopted by designers? And
what about competing methods which may focus on more design insight?
One current prominent example is the mismatch contribution analysis (see
Chapter 5)! Essentially, the whole idea of “awareness” is based not only on
“automation” but mainly on avoiding long iteration loops and for getting more
insights: for variations, for parasitics, for layout-dependent effects, electromi-
gration, etc.! Also tools like IP management systems have strong user-specific
aspect: Any IP system is only as good as the users and administrators are
in structuring and maintaining it. Analog designs will probably never be as
“simple” as logic design.

Already in existing environments, many companies have made clever
extensions to let the designers work in a convenient way, like offering property
editors not only for editing but also with immediate feedback for design
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Table 1.1 Construction versus optimization-supported flow

Construction-Based Design Optimization-Supported Design
Topology definition Typically in a script By designer in schematic
Parameters to design  Defined in script Defined by designer, e.g.,
supported via contribution
analysis
Rules for sizing Defined in script, e.g., To fulfill block performance,
according to gm /Ip method support by sizing rules and
and circuit-specific many other ones (see Chapter 2)
calculations
Flexibility Limited, need script changes High
Speed High, because circuit-specific Low

calculations can highly avoid
SPICE simulations

Suitability for Limited, especially if you Yes
high-performance want to avoid SPICE
designs simulations

parameters, like for transistors you get immediately after entering width W
and length L also a value for the threshold voltage standard deviation based
on the process matching constants or for capacitors by setting W and L
you will get not only the capacitance but e.g., also the parasitic substrate
capacitance and the parasitic series resistor. Implementing more (like giving
a layout preview, or displaying key performances like fr, fies, Q factor,
S11, MAG, noise density, and maximum allowed current—whatever makes
sense) is often no big thing. Information at your fingertips is often just
work—or a talk with your CAD team! In modern design environments,
most customers use only roughly 65% of all tool features they buy for
and individuals often even less, so training and continuous improvement is
essential.

1.2.4 Team Work and Divide-and-Conquer

In bigger projects, many engineers work together. Usually, some experienced
system designers decide on system specs and system partitioning. Once the
system topology is defined, we can derive block specifications; however, there
is some flexibility in doing that like you can obtain an overall amplification
of 1,000 by using either 1 or 2 or 3 amplifiers in a chain. This limits
the application of the classical “divide-and-conguer” approach—as maybe
number one general design technique. Besides its limitations, in general, this
approach is extremely successful in chip design because it enables working on
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many blocks in parallel. Each of the blocks will then be designed in quite a
similar way, using similar tools. Also in block design, we often apply divide-
and-conquer, e.g., when we split the verification into corner runs, and for
treating mismatch we use MC.

1.2.5 Automation and Tools

Automation is an important method as well. Designers love their circuit
“babies”, and they love and hate tools. Designers hate repeating uninteresting
tasks, and usually, it pays out to automate things. | remember the old days
where you can just run a single simulation, look to the waveforms, take some
notes, and tweak the design. After some time, you inspected the more critical
corners on temperature T and supply voltage and made a little table on a sheet
of paper. Of course, a circuit is work in progress, so you changed it a bit
later, and so the table went out of date and becomes quickly inconsistent!
Already using a simulator was some kind of automation, and also setting up
a clever testbench is a key part of your everyday work. Nowadays, you can
also easily automate your result evaluation interactively with a “few” mouse
clicks, with built-in calculator and assistances—sent by heaven. This makes
also the application of more advanced techniques much easier, like Monte
Carlo analysis.

Automation is not only to support lazy people or just to enable design.
Being efficient, creating affordable products, and fighting not only for the
best but also for economic products are must for engineers. So automation
is a strong driver to reduce costs and becoming more and more important,
because the risk for failure is always present—redesigns are becoming even
more expensive in modern technologies (e.g., due to increasing mask costs),
and unexpected redesigns are one major reason for missing the design-in time
window.

You may anticipate many problems—maybe a dozen—Ilike a chess player,
but surely at some point in design (still many), things may get wrong. Then,
you become a hunter for bugs and you have to debug and improve. In this case,
you typically do not know completely what is happening, but you should have a
working hypothesis and create tests to check it. In theory, there is no difference
between theory and practice, and in practice, there is. This is usually because
in “real” problems, we often just have a mix of problems.

In a design project, progress means removing the unknowns step-by-
step or at least quantifying their range and minimizing their impacts till



1.2 Engineering Techniques 21

you are confident enough that you can tape-out. This comes not only from
simulation and verification plans! You should understand what is causing the
limited PSSR of your circuit, and with analytical methods like small-signal
equivalent circuits, you can calculate your expectations and verify them using
power supply sweeps. The same you can often do for other parameters like
temperature as well as for other design metrics like offset voltage. Later you
will check for critical corner combinations like low-V pp and slow technology
corner, best with a sweep on temperature on top. Or you will set up an MC
analysis to check for the production yield. And if your yield target is high, you
may switch to special high-yield estimation techniques; and over-all analog
design bases also heavily on experience. For luck all many tools do not only
provide automation, but many can bring also much insight to the designer. So
it is not only “tool speed-up versus costs” that matters.

Last but not least: | remember, in a big tool demo provided by our leading
experts at the end, this question came up:

OK, we saw that great demo, but what else do you still need to do?
Can we use it already?

The answer was nice too:
Next step is to enable designers that they can do what | have shown!

Indeed, in making real EDA tools, this aspect is important as well, because
if something is difficult to use or confusing, analog designers will not use it.
This also points out well that education and training are indeed key points
in becoming and staying a good engineer! In fact, some techniques like
Monte Carlo are quite old, but still there is a lot of confusion in MC result
interpretation! So from time to time, engineers should stop in following the
usual habits and focus on things which may look boring or confusing at first
glance.

1.2.6 Re-Use in Designs

A last “last but not least” might be “do not reinvent the wheel.” If you
already know a good solution from experience, then it is often best to reuse
it and to focus on other problems. Why applying optimization on a low-
performance circuit with known design strategy and well-defined construction
steps? Luckily, a big part of design work can be already simplified by pure
reuse, e.g., using existing Verilog-A models or testbenches for standard circuits
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like bandgap, op-amp, ADCs, or voltage regulators. Also analog designs
can reuse some circuit blocks like digital gates and flip-flops, or you may
use layout macros for differential pairs or current mirrors, etc. Further
examples of reuse are the use of macro compilers (for scalable memory
blocks, etc.), sharing verification templates in the team which collect known
critical corner conditions. In Chapter 10 we will further describe IP and re-use
techniques.

1.2.7 Summary

The sweetspot of EDA tools is usually accuracy (like being able to treat very
detailed and complex models), and capacity (doing calculations fast). How-
ever, tools are not very good in following most of these manual approaches
(Figure 1.5). For instance, only slowly advanced partitioning techniques are
available in EDA tools, usually for becoming even faster and to enable
application to extremely complex systems. Simple examples are Fast-SPICE
simulators and parameter screening techniques in an optimizer for calculating
worst-case distances.

Figure 1.5 Engineering core competences.
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Figure 1.6 Simulation plots quickly created from a special calculator (EZWave™, Courtesy
Mentor Graphics).

Usually the decision about te next design step and which circuit should
be used is up to the designer, not to the tool. At best, an optimizer can
optimize multiple predefined circuits in parallel, and then it can hand out
the best solution found. Only in academic research, true circuit topology
optimization indeed exists already. Debugging of circuits and construction are
still almost beyond the scope of EDA tools, but of course all the software is
also designed to highly support these tasks. For instance, special calculators
are available to derive standard circuit performance measures (like 3dB-
bandwidth or 10%-90% risetime, and much more) quickly from simulation
data (Figure 1.6, not shown is the comfortable graphical stimuli editor). So,
since roughly 1985 IC design is a clever mix of manual and semi-automated
techniques.

All over the world, engineers have made tools to support you in solving
problems and these use the same engineering techniques as described. Often
you just have to read the software manuals or ask the EDA vendor for a product
update presentation.

1.3 Key Elements and Aspects in Circuit Design

Let us now take a look to further elements in design, specific to circuitand IC
design. A native starting point is of course a datasheet.
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1.3.1 Datasheets, Conditions, and Trade-Offs

The datasheet is the key document for any electrical device, as target datasheet
is often the base for future products and discussions. Here, you promise certain
functionality and characteristics. The circuit simulations during the design
phase help to find the best-suited circuit and also allow a virtual verification
based on simulation models, but for this we need clear guidance for efficient
work. Usually, the datasheet reports both the typical performance and the
guaranteed minimum performance; and it defines a bunch of testbenches.
Often a performance can be defined in different ways, e.g., in terms of power
in Watt or in dBm. Usually, the designer set up tests up in a convenient way,
e.g., fitting to measurement equipment and to get numbers easy to handle.
The latter is also important for numerical algorithms, e.g., the period of an
oscillator could be infinite, just in case that the oscillator does not work.
To avoid infinite numbers, better use the oscillator frequency f = 1/T.
Of course, terms of “pass” versus “fail” and for the yield, the unit does
not matter at all, but for other kind of data analysis or for optimization,
it does!

Of course, a circuit should not only work at nominal conditions but
also provide correct operation in a certain range of important environmental
parameters such as temperature, supply voltage, and load capacitance. In older
environments often designers spend many hours to collect simulation data and
to create spec compliance tables for reviews and for documentation, but since
several years this is a feature provided automatically (in the user interface
and e.g., as HTML as CSV file) in most EDA environments (Figure 1.7).
With context-sensitive menus or additional buttons also many more options
are available, such as backannotations to schematic, plotting window access,
sorting and filtering features, log file access, selection of a subset of corners
for debugging, automatic datasheet generation, etc.

Often there is confusion about which performances are required under
which conditions; a small change can have a big impact on whether the design
is easy to create or almost impossible! For instance, a small change in the input
voltage range of a DC-DC converter could impact the whole topology (buck
vs boost vs buck-boost) and pin-out. Clarify these points early and explicitly
in a verification plan, e.g., as appendix to the target datasheet.

When designing a product, you have to make many trade-offs, e.g.,
you can make a product cheaper using a simple process technology (like
pure digital CMOS process), but this can make the design (much) more
difficult, because older processes offer usually only moderate bandwidths.
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Foragiven technology, you can often select a high-speed parallel architecture,
but that usually consumes more power and occupies a larger chip area. In many
cases, some overdesign with respect to performance is possible, so that you
will be on the safer side (e.g., on noise, offset, and distortion), but for critical
blocks, this is harder and leads usually to the use of more power consumption
and chip area, so your design will not be competitive! Underdesign is risky,
maybe you can still keep the specs, but the yield may drop significantly or
you will be out-of-spec and need a redesign.

1.3.1.1 Trade-off examples

In analog, mixed-signal, or RF, there are generally many compromises, requir-
ing much experience and careful well-organized work is required. Figure 1.8
shows the major trade-offs, but there can be even more (like costs and stability)
or some need to be split up (like distortion into odd and even order, or speed
into rise time, fall time, delay, bandwidth, and settling time).

Note: The green connections in Figure 1.8b show which performances have
positive correlation (like unity-gain frequency and power), and the red ones
show negative correlations (like phase margin versus gain). But look up, also
the positive correlations often compete, because it also matters whether we
have upper or lower spec limits.

Trade-off examples:

e Low noise is often a key requirement and is often directly related to bias
currents (so power) and device area (especially for flicker noise).

e Also linearity and output range are related to bias currents and of course
also to supply voltages.

e Low offset voltages (and good DC accuracy in general) require large
area devices to minimize mismatch, but this increases the chip area, and
it also leads to speed restrictions (or increasing power).

e Often high DC accuracy and low distortion come in sync, but at higher
frequencies, they can also compete due to reduced loop gains.

¢ If you want a certain output impedance (often required for RF circuits),
it may give severe restrictions on the supply voltage or your impedance
transformation networks, which unfortunately need some area, limit the
bandwidth, and reduce efficiency.

In Chapter 2, we pick up the trade-off topic when discussing the typical manual
design flow and transistor sizing.



1.3 Key Elements and Aspects in Circuit Design 27

Figure 1.8 Typical design trade-offs (red=digital) and circuit-specific tool output (Courtesy
of MunEDA, red=fighting specs).
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Testing versus “Guaranteed by Design’ Chips would be very expensive
if really everything would be tested in hardware under all environmental
conditions. Therefore, production tests are usually done only at room
temperature and some critical conditions. For this reason, most datasheets
are split, e.g., in a part describing the performance at 25°C with usually
quite tight tolerances and parts for the characteristics over a wider range
of T, Vbp, Ry, etc. Detailed tests under these wider conditions are usually
done only from time to time, in laboratory, not during production. This way
many specs are not really guaranteed by 100% testing, but “by design.”
Only for very expensive components, it is affordable to really perform a
near-100% production test, like for military or spacecraft applications.

1.3.1.2 Datasheet contents

Datasheet for commercial products could also serve well as a reference for
blocks on an integrated circuit. Let us do so by inspecting the datasheet
of a commercial high-performance operational amplifier (excerpt, Courtesy
of Texas Instruments, for the complete information go to http://www.ti.com/
lit/ds/symlink/opal612.pdf).

In the same way we can also create a design documentation e.g., of an
op-amp block in an ASIC. For instance, we can look to several commercial
examples, or we may use a datasheet template generator (see Figure 1.9).

An official target datasheet is usually quite complete from the pure
customer viewpoint (at least you have to convince the customer), but some
key characteristics for yourself are usually missing like yield and worst-case
corners. Also it is usually not defining chip area, block shapes, bonding
diagrams, and second-order effects like substrate noise. A real complete
datasheet in the “IC-design sense” is good for documentation purposes, but
also to support other designers in your team, to make a designer review or
just to learn. This way also the reuse of the block can be made much easier.
Some specs are typically not interesting for customers, but very important to
know internally. Actually, for the customers, maybe the guaranteed minimum
performance matters, just to fulfill system specs, but in other applications,
it may matter if your performance variations, e.g., in an ADC, are due to
temperature or supply voltage or due to mismatch, and for pure ADC design,
maybe just the total variation matters. However, if you want later to reuse the
design for amultichannel or 1IQ ADC application, the mismatch is usually more
critical, compared to temperature effects. For such reason, documentation can
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be hardly too good! Also it is convenient to see where improvements make
sense, e.g., where you have already followed best practices and reached the
state-of-the-art.

Often not all specs are fully confirmed by the customer, or you may want
to add internal specifications, for documentation purposes or to avoid design
iterations. For instance, in a system, only the overall offset or noise figure may
matter, but to understand the design, it could be also interesting to know about
the offset voltage generated in each amplifier stage. In addition, you may want
to limit layout-depending effects on offsets. Or you have a spec on bandwidth,
and by anticipating critical nets, you may want to limit the parasitics at several
internal nets.

1.3.2 Modeling Is Key

This is not a book about modeling or about simulation, but very often a
project failure is due to bad or even “lack” of modeling. Actually, if you
do “nothing”, assume “no model”, then you typically implicitly assume a
too ideal model, just a bad model. Even if you have no good model(s) e.g.,
for device mismatch or package inductance, it is a stupid idea to assume no
mismatch or no inductance! It is indeed a good method to start with something
almost ideal, but then also check the design with the use of realistic models;
do it soon, and step by step.

Already when started using simulation techniques in the 1960s, many
things rely on modeling (Table 1.2), and of course also for hand calcu-
lations you would use models. Actually, mathematically any function can
be interpreted as a model, there might be a strong physical background, like
for structural models, or even no direct meaning at all, just a fit. In this chapter,
we focus more on the first type of models, but for some design methods
like corner or sensitivity investigations also pure mathematical models, pure
response models have their benefits.

Luckily, the device models have been improved a lot over the years, and
partially, you can trust them more than measurements. On the other hand,
more and more things rely on modeling, not only the simulator results, but
also the way the outputs vary, e.g., in a Monte Carlo analysis. So not only
accurate IV 4+ CV and noise modeling is essential, but also accurate statistical
modeling! Luckily, also the MC models have been improved a lot over the
years. In fact, the more physically based the model is, the easier the statistical
modeling will be, e.g., in the simple old bipolar Gummel-Poon model,
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Table 1.2 Different model type for circuit design

Type Tool Comment
Device models Circuit simulator e.g., classical SPICE models, built-in to the
simulator

Statistical models Circuit simulator Describing the parameter variations of the
e.g., for device models
Monte-Carlo
simulation,
dedicated
statistical tool

Behavioral models Circuit e.g., Verilog-A models for blocks to get a
simulator speed-up over transistor-level simulations or

to test ideas or system performance quickly
and without having a full implementation
Auxiliary models e.g., for substrate,  e.g., SPICE subcircuits
package, parasitics,
aging, etc.

the parameter “IS” is quite difficult to model because it is not related to a
single physical property! The opposite is true e.g., for the oxide thickness of a
MOSFET—nhere, we can expect much less impacts and correlations with other
parameters like doping concentration, bandgap voltage, or sheet resistances.
For this reason, the accuracy of most models found in modern PDKs is quite
good, although for sure some deviations to reality exist. For instance, often
a uniform, normal, or lognormal distribution is assumed. Often this fits to
a simplified physical theory, but frequently it is only a meaningful or just
acceptable fit to measurement data.

The foundries monitor the process continuously by making process control
measurements (PCM). The results will be double-checked in simulation
(Figure 1.10 from [Pieper2008]) by just using the same testbenches as in
the fab, e.g., on sheet resistance, capacitances, saturation currents, and small
circuits like ring oscillators. Based on PCM results the foundry can make sure
that only good wafers will be delivered to the customer. Often it is good to
be in tight contact with the technologists. | remember in a new process the
fab had problems with the current gain g of the new vertical pnp device, but
luckily our new circuit was robust enough to work accurate even with a very
low B. So instead of throwing away the wafers, we were able to deliver our
customer.

Variations may come for different physical reasons, so process variationsin
general can be classified as random and non-random (e.g., temperature or age),
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and statistical effects are usually split into intra-die and inter-die variations.
For circuit designers, this level of classification is usually enough and models
for this are usually available from the foundry in the process development kit
PDK. Actually, for quality investigations, also a deeper split into lot-to-lot,
wafer-to-wafer, and die-to-die variations makes sense. Statistical variations
might be independent or correlated (Figure 1.11).

Usually, an additive law is assumed for parameters:

p=po—+ Pprocess + Pmismatch (11)

where pg is the nominal value of the parameter (but it might be a function
of temperature), pprocess Models the global variations and is shared among all
instances on your chip, and puismatcnh 1S intra-die variation specific to instance.
Physically, the mismatch depends on the distance between the instances and
also on layout details, but as in front-end design, the layout is often not yet
defined and these details are typically ignored. They are also not that large if
you follow good layout practices, like having the same orientation for devices
which should match well.

Typically, process variations on threshold voltage Vro are not much
depending on device sizes and are often larger than mismatch variations,
but the latter become larger for smaller devices. Knowing this, designers
can create quite accurate circuits if they can manage that global process
variations cancel out! This is done in structures like differential pairs or
current mirrors, so that in these now the mismatch dominates. Another key
technique to reduce variations is calibration, e.g., one time (in production test),
dynamically (e.g., switching to a calibration mode), or sometimes even in the
background.

Figure 1.11 Typical classification for circuit design.
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Note: For some parameters like leakage currents, often a multiplicative law is
used and lognormal statistical parameters. This makes an analysis typically not
more difficult; it actually even helps because the voltage across a PN junction
follows typically a logarithmic law so that it would show a normal Gaussian
distribution because the exponential function in the lognormal distribution
and the logarithmic junction behavior would cancel each other! For external
components, it is usually more realistic to assume a uniform distribution,
not a Gaussian, although sometimes discrete elements have also very strange
distributions, e.g., if you buy +5% SMD components, it is not unlikely that
the +1% samples are sorted out and sold for a higher price!

Designers should check all models carefully, because sometimes one kind
of resistor or transistor is only “better” (e.g., on mismatch or temperature
coefficient) due to bad and too simple modeling! Usually, “special” things
like noise, mismatch, or breakdown are not treated well in seldom used or
special components (like native or low-V ¢ transistors or coils). A further
problem is often that more extreme devices like very small or very big
ones are modeled not as good as typical devices. One example for this
could be mismatch modeling, and often the simple \/A-law is assumed and
implemented in the model files (Figure 1.12), more complex, more accurate
models are usually only available in advanced technologies like 28 nm CMOS
or lower (although of course highly advanced models could be also created
for older technologies).

Discrete versus Chip Design. In principle there is no big difference
between a discrete design, e.g., using SMD components, and IC design,
but if you really exploit the advantages of each you can end up in many
differences. If you need high accuracy elements, you can choose e.g.,
discrete components with tighter tolerances, spending a bit more money
for critical parts. In IC design you have to live with quite large process
variations and some area and component-type dependent mismatch. So
for discrete designs Equation (1.1) becomes easier: We have no real
process tracking for element tolerances, but of course we have absolute
tolerances causing also mismatch, e.g., between two SMD resistors. In
discrete designs, the manufacturer usually guarantees a certain maximum
tolerance (like £5%), whereas e.g., in typical IC technologies we have
e.g., =£15% from technology and +1% from mismatch (being usually
differential normal distributed). IC designers can often build very good
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pair stages, whereas in discrete designs two packaged transistors (or
resistors, capacitors, etc.) never match very well. Of course discrete
designers have much more freedom regarding element choice, e.g., we
can choose a dual-transistor or a transistor array, or even a full op-amp in
an 8-pin package. In some aspects IC designers are much more limited,
e.g., on-chip inductors cannot really compete with SMD coils on Q-factor
or current handling capability. It is also hard to create IC technologies
which have both very small transistors (for optimum logic and memory
implementation with lowest costs) and e.g., power elements (e.g., able to
handle 40 Volts or more). At some point a very universal IC technology
would become too expensive, so that e.g., amulti-chip system make much
more sense, often also regarding design time, flexibility, time-to-market,
etc. Another aspect is design methodology: of course discrete designs are
quite easy to breadboard, but in IC design intensive simulations are almost
a MUST for verifications.

Figure1.12 Transistor model card (typical older process, part for mismatch modeling marked
bold).
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Many outcomes rely on modeling, so often some small extra-margin might
be included for this (like make wires wider than needed according to EM and
IR drop requirements or let circuit work to 20% higher clock frequency)—this
helps a bit to be prepared for the unknown.

As mentioned, also circuits can be modeled, for example, we may create
simplified equation-based models and use these for early simulations and
planning on system behavior. In this book, we do not focus on modeling,
but using a modeling language clearly helps a designer to solve his problems
efficiently. Luckily, model reuse is often easier than circuit design reuse! For
instance, the same model might be used for an LNA, PA, or just any amplifier.
And even if you need a very complex and accurate model, you may still end up
in a single LNA model, and it can represent transistor-level models of many
kinds and many technologies. One advantage is that optimization with such
models is much faster, because less parameters are involved; you can directly
optimize on key parameters like gain, NF, and IP3, which is much easier then
tweaking the element values to achieve the desired performance. Figure 1.13
show a Verilog-A model of a voltage reference, also here we can define e.g.,
the noise level directly as parameter, without changing other parameters.

1.3.3 Design, Debugging, and Tools

A designer should have clear opinions on what he wants to achieve and how.
Coming to that point requires of course some discussions and experience, but
then there are still quite many things that could go wrong. One interesting
aspect in tools is that often they are useful for much more than only one
specific task—if you know them well.

Designers do experiments, collect data, and decide for further experiments
based on the results of the previous experiments. In circuit design, statistics
play a role, and also in math, such approach is known, the so-called design
of experiments (DOE). DOE covers techniques like parameter sweeps, corner
analysis, and Monte Carlo, but of course a big part of design is also intuition
and problem anticipation.

Good debugging capabilities (in laboratory and on computer) are very
essential, and using iterative refinement and divide and conquer helps a lot
because often the error is easiest to identify if you are at the transition from
something that works to something that does not work. Actually the word
“engineer” comes from the Latin word ingeniator, meaning a keen-witted
artificer. In the circuit tweaking phase, the designer learns a lot about the cir-
cuits, the system, the testbenches, and the technology by doing many parameter
sweeps. If you make the sweeps extreme enough, you always have to debug



42 Introduction: What Makes an Engineer a Good Designer?



1.3 Key Elements and Aspects in Circuit Design 43

Figure 1.13 Verilog-A model for a bandgap reference cell.

something! Of course, sometimes, you also have to debug not only circuits,
e.g., you may need to check whether this is a model problem or a simulator
accuracy problem. For this, inspect log files and tighten the simulator accuracy.

Modeling is also perfect for debugging, e.g., the “assumption” that the
gain is lower due to package inductance by 1 dB is often meaningful, but of
course it is much better to include the package to your testbench. This way
your setup reflects the idea directly (even if you forget the assumption) and
even much more accurately!

Mistakes can be costly, so to be able to make decisions for difficult
problems, you need high trust. Agood technique is “always double-check.” Do
not rely too much on thinking or “obvious” things: Imagine there is a design
problem, and you measure ten samples in laboratory. Maybe the variations are
not large, but to conclude that the samples behave like in a nominal simulation
is risky. If your samples are from one production lot only, you may have
significant process deviations on top of the usual mismatch. So it still can
make sense to run, e.g., a short Monte Carlo process and mismatch analysis
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to clarify the performance problem; first get an overview before making
conclusions!

Also tools like simulators double-check things internally, e.g., by applying
multiple convergence criteria, and often you can double-check further by
making a “golden run” using very tight accuracy settings (like reltol =
1 e-9). Sometimes this is difficult (e.g., due to convergence problems, maybe
caused by floating nets, and high-Q elements) or time-consuming, so your
deep expertise is required, like treating not only reltol, but also tweak more
advanced options (like maxstep, minstep, the integration method or whatever).

In the advanced techniques described in the book, it is absolutely the
same, e.g., just run MC twice with different settings or inspect the reported
confidence intervals and inspect the log files in detail.

In statistics and optimization, there are luckily only a few icy places
where you need to look up carefully, probably confidence intervals are one
(Chapter 3.5) and we will tell you! A good method is usually doing an analysis
ina different way, e.g., checking transient results against what you expect from
AC behavior or double-check yield calculated from sample yield and process
capability index C'pk (Section 3.6.2).

Often you have to decide which to trust more—and that depends on many
things—e.g., phase margin PM gives you a number to quantify stability,
but a single number cannot fully represent all kind of instabilities in a
nonlinear system, so double-check with transient analysis, S-parameters,
manual calculations, waveform inspections, etc.—exploit what you have; and
try to get what is missing.

The good thing is that tool problems are often related to circuit problems!
So most designers apply such techniques anyway to some degree and extend it
hopefully. You should never really stop: Some outputs of analysis are for sure
almost trivial and check for what you directly want to verify, like that a unity-
gain buffer really reproduces the input signal—easy to check in a transient
analysis. The more experience you have, the more you can do: Check also
overshoot and distortions, and look maybe to the differential input voltage to
check whether the loop gain is high enough forcing a low difference. Check
the recovery behavior: Is your circuit coming back quickly to correct operation
in case of overdrive? It is hard to be aware upfront of everything, e.g., the filter
cutoff frequency sensitivity to RC elements should be one to one (like 10%
in R gives a shift of 10% in frequency), but in high-Q filters, this will change
even depending on topology. Also the sensitivity to other parameters is not
always easy to predict, e.g., because op-amp loop gain might not be really
large anymore at the frequency of interest.
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Maybe some problems remain, and you have to discuss them with an
expert and have to train yourself further. Do not only learn from your own
mistakes.

Almost all kinds of tools have a direct obvious output, like a histogram
from a Monte Carlo analysis or the performance variations in a corner analysis
or parameter sweep. However, there is often much more, unfortunately
sometimes “hidden” in log files or menus. If a design is bad, you may want
an optimization, but often other methods are more efficient: Many advanced
simulators feature an analysis to check the impact of mismatch (or transistor
parameters) to DC operating point. The result of such analysis could be a
ranking list of the instances causing the biggest performance changes and
the total variation, e.g., in the output voltage of a reference generator. A
designer can do a lot with that information: If, for example, the top 4 transistors
dominate the mismatch and we make their area 4 x bigger and we can expect
an improvement of the overall mismatch by almost 2x! So we can improve
directly without using an optimizer!

Also automated optimizers and high-yield estimation (HYE) methods
provide much more benefits than just improving the circuit or verifying
the yield—in addition, you get valuable design information for your under-
standing and for more efficient work. We will tell you because this way
advanced designers have often even much more benefits from advanced
tools than less experienced ones. For instance, sensitivity analysis results
are available as a “by-product” of more advanced analysis like worst-case
corner search or just a Monte Carlo analysis. In opposite to simulator built-
in analysis, those have often the advantage of higher flexibility, like being
not limited to DC or AC behavior, but valid for any kind of output (like
noise figure (NF), total harmonic distortion (THD), or third-order intercept
point (IP3)).

To some degree, statistical analyses are often not done because statistics
is so interesting, but also because it is one important piece for enabling
sensitivity-driven design. But watch out, and this is not for free, e.g., it is quite
easy to calculate the sensitivity of a certain performance metric with respect
to a certain transistor width (like W), but this does not mean that you as a
designer can do really much with it, because in a low-offset differential pair,
nobody would usually change the width W of only one of the two transistors
forming the pair! What you really need is the sensitivity to W, being in synch
with Ws and that is no netlist information available to the simulator. Also many
simulators can provide sensitivities to many transistor parameters, but you asa
designer cannot really change the technology or just one individual transistor
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parameter like mobility or current gain f without compromising others (there
is, e.g., atrade-off between  and early voltage V4 ). Asa designer, you have to
formulate your questions in testbenches—and this is always some significant
work. In addition, there is also much design work beyond pure sensitivity in
general, because the sensitivity cannot catch circuit modifications like adding
a buffer chain or a cascade or a capacitor for more frequency compensation
flexibility.

In conclusion? In this book, we give you guidance on many methods, and
sometimes the very basic methods—Ilike simply simulating really all variable
combinations or doing a huge Monte Carlo analysis—are extremely ineffi-
cient, so maybe we condemn them too often and we stress the disadvantages
too much in the readers mind? We are fully aware that sometimes only almost-
brute-force methods are completely foolproof, and indeed, you can always
construct test cases, where “too” clever methods would fail! Running all
combinations allows to find the worst-case safely, but an automated search
can be much faster. On the other hand, having really the results from all
combinations would also offer to find the best one, which is not of much help
for verification, but is indeed helpful for starting laboratory investigations or
for keeping your design alive and improving it further.

Murphy’s Law versus RTFM? Besides doing the setup and decision
making, designers are also challenged by tool bugs and limitations,
sometimes. For a transistor-level simulator, hundreds of options may
solve problems, or cause them. Luckily, most statistical or optimization
techniques feature much less options, e.g., for Monte-Carlo, you may need
to decide what do you want to save, which random seed you want, and how
many run points, but not much more! Also more advanced methods do not
need a big setup luckily, and mostly, this is because—even and especially
the most advanced—algorithms came with a lot of internal automatically
adjusted options. With the options available directly in the user interface,
you typically set a certain compromise between speed and accuracy, e.g.,
by setting stopping criteria.

However, of course something could go wrong like an optimization
gives no progress or a high-yield estimation algorithm is not able to
provide an accurate solution. In these cases, read the log files carefully, try
to follow the hints, and read the fantastic manual. Actually, 20 years ago,
software documentation was sometimes horrible, but nowadays the prod-
ucts are quite mature and well-documented, featuring many examples,
screenshots,
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and even demo databases or videos. Ask the service team, and often you
are not the first one having this problem. If something gets really wrong,
double-check not only for the direct tool output message window, but
look also to the general log window, to messages in the Unix shell, etc.
Best go back to an easier testbench till you get something that works.
From that, you can extend the setup again, step by step, till you narrow
down the problem and locate it—like problem happens with a certain
version or is only present in a certain device or type of distribution, etc.
Of course, there is a general problem in documentation: A manual is
typically focused on explaining all the different features, so it is often not
really solution-oriented! However, often there is further material like app
notes, videos and white papers giving more background explanations and
examples.

Also the simple methods may come with further options, e.g., the overhead
in running all combinations can be used to derive internal error limits, which
might be not available to that level in highly advanced methods which would
really only do the absolute minimum number of necessary simulations.

There is no free lunch! “Greedy” methods can fail, often in a quite
spectacular way! We will get some examples later. On the other hand, the
design challenges are often so large that indeed, brute-force methods would
be far too inefficient (like we would need more than one million simulations
to run) and too simple basic techniques (like doing only one-dimensional
sweeps and ignoring all correlations) would become highly inaccurate. Then,
mixed approaches and iterative techniques become attractive, but still it is
good to know what their benefits are and how they mitigate the remaining
risks.

Trust and Error Limit. Tools often report error limits, this gives trust.
And actually a pure point estimate is not enough, you should really have
also an error estimate. “Error Estimate”, seldom you can get more; and
such error estimates can have different quality! You would be in a perfect
situation, if someone gives you atrue guarantee, like 9002 < R < 1k€.
If you buy an SMD component, you get almost such hard limits. Unfortu-
nately, in statistics you typically have only statistical “limits”, like “The
chance that R is larger than 1kS2 is below 0.1%”. These kind of limits are
better than nothing, but not as good as hard limits. In addition, in many
cases estimations depend on model assumptions, but it is hard to say if a
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amodel is really valid or not. There is a gray area! So not only the estimate
(e.g., on yield) but also the method to estimate its tolerance might be
not 100% correct. Try to understand how the error estimation works in
the specific algorithm. Using Taylor series is one general method, but
often you can hardly know how many terms you need to include for error
calculations; and usually error estimation works only with low risk for
interpolations, not for extrapolations.

Check if model assumptions are meaningful, do not misuse special
methods, e.g., check by eye inspection if the data is Gaussian if you use
confidence intervals on the mean based on the Student-t distribution. Of
course, multiple errors can be present, and they may add up significantly.
Here double-checking is best. If someone is promising that a certain
method is “trustable” and “verifiable”, he often promises too much (at
least in a mathematical or legal sense), or he forgets to mention the
prerequisites.

1.3.4 Simulation Aspects

Of course you need to be able to simulate your circuits, usually on transistor
level to design your circuits with computer support. This is standard since
1980s. For complex analysis, the runtime could unfortunately cause problems;
usually more in design automation and for advanced analysis, then e.g., for
pure interactive manual design and debugging plus waveform inspection.
Therefore, e.g., advanced statistical methods need to be efficient regarding the
number of simulations to get a certain output, like sensitivity or the standard
deviation of your circuit performances.

These aspects are quite obvious, like a 10-corner simulation may take 10 x
more times than a 100-corner simulation. The good thing is that also most
advanced methods have still quite a moderate internal runtime, but one aspect
is often overlooked—accuracy! For instance, it can be already challenging to
get accurate enough transient results, e.g., for a DFT output with low-noise
floor or to get the overshoot really accurately. For instance, reading out the
maximum output voltage max (V) can be impact by tiny spikes or small shifts
in the simulation steps the simulator takes. Usually, designers can manage such
problems for their verifications, with careful testbench setup, but for some
advanced analysis, you need indeed truly a higher accuracy. This is mainly
the case for comparisons, like for gradient calculations by finite differences
for an optimization. Having a too large numerical noise could prevent to find
the best circuit solution, could prevent getting accurate sensitivity results.
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Later we will see that optimization is also one step for finding worst-case
distances (WCD), so also some advanced and very useful statistical techniques
need really a good testbench setup.

Not only transient analyses are critical regarding accuracy, but also an AC
analysis can create numerical noise (even if the related DC solution is already
very accurate), e.g., by using too few frequency points and when looking
to characteristics like bandwidth, peak frequency, deepness of a notch, or
filter passhand ripple! Therefore, always inspect your results manually with a
waveform viewer and read out the performances manually; also double-check
the accuracy setting (like tighten the error limits and double the number of
points and check how much the results change).

All in all, quite a big part of engineers’ work is spent on making good
testbenches, universal testbenches, and tests for debugging, up to a full
optimization setup which really captures all performances correctly and
reliably.

1.3.5 Total Yield and Partial Yield

The sample yield is easy to calculate as the number of good samples Np,ss
divided by the total sample count n. You can calculate it not only for each
specification, but also for all specifications together. In both cases, yield is
only well defined if you have enough pass and fail samples to guarantee a
“stable” statistic!

Of course, changing one design parameter like resistor Ry may improve
the regarding performance A but may make performance B worse; not only
performance matters, and with respect to costs, the production yield has similar
importance as performance itself.

Note: The real production yield is also impacted by layout defects like
broken vias. Here, in the book we focus on what the front-end designer
can do to improve the yield. The term *“design for yield” or “design for
manufacturing” (DFM) can be used in different ways. In layout, yield
improvements are possible too, e.g., by avoiding single vias, following more
rigid design rules, etc. Also note that in statistics and in production, the term
“sample” often has slightly different meanings: In production, a sample is
usually a single piece, but in statistics, also a certain set of samples (or
several MC points) are regarded as sample. Note, because also such sets
of random samples are random samples, not fully representing the whole
statistic.
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To simulate the production yield of our design (defined by xp) in a
computer, we can mimic the fabrication and its production tolerances (defined
by Xg) with a Monte Carlo simulation. For instance, we can generate a set of
n = 1,000 designs, each having different statistical parameters. To be in spec,
we need to run many simulations on each design to cover all combinations of
operating (range) parameters Xy like temperature, load resistance, and supply.
If we want to verify at least three values for each of the r range parameters,
we need to do three-corner simulations. For realistic designs, this may lead
quickly to >250-corner simulations, to be executed on each MC sample
(coming from our virtual production), so overall to >250,000 simulations.
This is a simple but very time-consuming way to check the design. If you
want to improve your design on yield with given performance specs you
even need to tweak your design and the step with >250,000 simulations is
required for each individual design, which ends-up in a very slow over-all
progress!

On the other hand, truly only this extremely exhaustive flow has no
systematic errors. In general, the Monte-Carlo simulation effort for design
is given by:

#simulation = #design combinations to inspect - #tests/simulations

per test - #corners®Weep-points for each corner £\ (v 1 ingg (1.2)

Note: If you as a designer make a very clever testbench setup, you might be
able to treat multiple corners already in one simulation. This is often done
for important parameters, like doing a DC sweep on temperature or supply
voltage! However, “too clever” testbenches are often harder to manage, to
extend or less handy for debugging.

Mathematically (see Chapter 3), the overall yield is defined as volume
integral over the product of the indicator function and the joint pdf. The
indicator function gives a 1 in the pass (or acceptability) region (the region
where all performances are in-spec) and 0 in the fail regions.

Even if we exclude the condition parameters, it is typically a very difficult
and highly nonlinear function of a huge number of statistical variables; the
more performances we have to check, the more difficult the spec-to-failure
boarder (and the yield integral) will look like. Later we will give you some
pictures and equations.
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Do you hate buzz words? Like “new,” “breakthrough,,” “brute-force
MC”? You are right, e.g., why taking a stupid brute-force method as
“reference”? In this case, however, there are indeed good reasons to do so.
One is that using fancy adaptive or empirical methods as reference would
lead to very fuzzy comparisons. Also there is often no better standard way,
and new adaptive methods are often simply not available to all authors!
In addition, e.g., a full-factorial analysis is a brute-force “stupid” method,
but it leads to very well-defined measures: If the number of variables is
given and the individual values, you can directly calculate the total number
of all combinations and your simulation effort. Also for MC, something
like this is possible. On top, you can also often quantify the remaining
inaccuracies of such methods. Often the user has to decide for the setup
of two different more advanced statistical methods, which might be hard
to understand and unfortunately not really well documented. In this case,
go one step back and inspect MC as reference; then relate both advanced
algorithm against MC for the manifold aspects. Whenever possible, we
try to give also references to manual best practices for design, but there is
unfortunately no “gold standard” for more advanced methods including
those based on design experience, intuition, and common sense!

When checking production samples against the spec limits, we can cal-
culate the yield; each performance leads to a certain partial yield. Only if a
sample is in-spec for all performances, we can ship that sample to the customer
as a good sample. The total or overall yield is lower or equal to the lowest
partial yield. It is well known that the partial yield for specl and spec2 can
be 50%, but the overall yield might be 0 to 50%—depending on correlations.
Typically, we have both “fighting” specs (often bandwidth or rise time versus
phase margin—see Figure 1.14), where we have almost to add the yield losses
and almost redundant specs (like bandwidth and rise time), where we can
almost just use the minimum partial yield. So the “compromise” of assuming
no correlation, giving 25% is often not so unrealistic, luckily.

Of course, for too difficult and too many competing specs, the design
becomes completely infeasible! Luckily, for high yields (and you typically
aim for this), the total yield uncertainty from correlation relaxes a lot: e.g.,
Y =Y, = 99.8% can lead to Yot = 99.6%...99.8% which is often
an acceptable accuracy. In such cases, the non-correlated case (99.6004%)
is anyway very close to the worst-case. In Chapter 5, we will address the
difficulty of performance correlations in more detail.
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PM to

Figure 1.14 Yield for two fighting performances (phase margin and rise time).

Big chips should be still fabricated with a high yield like 90%, but to
guarantee this, each block needs to have a much higher yield like 99.9%. If
we have replicated blocks in our design, like digital standard cells, memory
cells, or subcells of a high-resolution DAC or ADC, we need even much
higher block yields, which often cannot be verified efficiently with standard
MC methods (Figure 1.14).

As you can see, dealing with yield numbers can be a bit difficult, especially
if we want to address yield yields, like 99.999%. For this reason, it is very
common to express the yield in terms of sigma for a yield-equivalent normal
Gaussian distribution.

One problem is unfortunately that sometimes we have single-sided spec
and sometimes double-sided ones, and for a single spec placed at 3sigma,
the equivalent yield would be app. 99.85%, but for a double-sided spec +3
sigma, we would have two times the loss, so Y = 99.7%. The latter number
is used a bit more frequently, but most real specs are single-sided, e.g., for
the yield or for PSRR, you are only interested in avoiding production samples
with a too low yield or PSRR! Instead of using “sigma”, you can also use the
Cpk, and we will discuss it in detail in Chapter 3. The Cpx is only valid for
normal Gaussian data, and in Chapter 4, we extend the idea and explain the
generalized Cpk.

Figure 1.15 shows the pdf of a normal distribution with readouts for yield.
If the sigma of a design is fix, then one good way to improve on yield is to
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Figure 1.15 Yield parts for a normal Gaussian distribution.

Table 1.3 Yield in terms of sigma and Cpk

Spec Setting*

or Yield in Single-Sided Double-Sided
Sigma Crk Rule of Thumb Yield Loss Yield Loss

0 sigma 0 50% fails 50% 100%

1 sigma 0.33 about 1 failurein6  15.9% 31.8%

2 sigma 0.67 about 1 failurein50 2.3% 4.6%

3 sigma 1 about 1in 700 0.14% 0.27%

4 sigma 1.33 1 in 30 thousand 0.003% 0.006%

5 sigma 1.67 1/3 in a million 290 ppb 590 ppb

6 sigma 2 1in a billion 1 ppb 2 ppb

*Distance of spec to mean for using a normal Gaussian distribution.

“center” the design. This way you can minimize the total loss according to
upper and lower spec limits; better have a balance than too much loss on one
of both spec limits. Another way is of course to try to make the design more
robust and to reduce the sigma, so yield optimization is more than only design
centering (Table 1.3).

How many sigmas do you need? Please start to like “sigma”, it allows
dealing with less extreme numbers, and it provides you a better feeling for
statistics. If your plan a high-volume production, a good chip-level yield
makes life (e.g., testing) much easier (and cheaper). So maybe Y = 95%
is a realistic target, maybe even 99%. However, if your design contains
1,000,000 memory cells or more, then we need for each cell a real high
yield, easily six sigma. For blocks which are placed only once on the
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chip the situation is more relaxed, but still a chip can contain easily a
hundred blocks, and already one block fail can lead to a bad chip sample;
so each block should still have a yield in the order of 4 to 5 sigma.
So to some degree we have applications where high-yield verification
is a must, and also cases where low-yield methods like Monte-Carlo fit
well. However, as shown, also the intermediate region is important, and
already for 4 sigma Monte-Carlo might be impractical (read the chapter on
confidence intervals and yield verification), at least if your circuit requires
time-consuming simulations.

A further important question is also how accurate your MC estimates
(for yield, mean, standard deviation, etc.) should be. Usually it does not
matter so much if the standard deviation of your offset voltage is 5 mV or
6 mV, so sometimes 20% error in terms of sigma might be still acceptable.
However, foran ADC or DAC too large mismatch can quickly cause severe
errors like missing codes or non-monotonic behavior. In pure Monte-
Carlo analysis all estimates have a certain tolerance; and tighter tolerances
require more simulation effort. Find more details in Chapter 3.

1.3.6 Robust Designs

You are typically happy if your design is in specification over the full operating
region. But how to achieve it? By far the best way is to make the design
robust by construction and not to rely on pure simulation and verification
techniques!

In analog circuit, we represent signals directly by physical natures (1, V, C,
etc.), so they are much more sensitive to manufacturing process and envi-
ronmental parameter than digital circuits. Design robustness requires the
systematic elimination (or at least minimization) of sensitivities to all those
parameters. This is only possible by careful choice of the circuit and system
architecture, circuit topology, and very careful implementation. This is time-
consuming and requires accurate device modeling, and good understanding
for the circuit operation and the technology behind. Many problems need
to be anticipated, so that a timely project execution and verification are
feasible.

A big trend in making analog circuits robust is using clever mixed-signal
techniques, e.g., YA ADC and PLLs. Those were only a first step and a lot
of innovations can be further expected, because pure analog techniques tend
to become more difficult or just too expensive compared to clever mixed
techniques.



1.3 Key Elements and Aspects in Circuit Design 55

In analog circuits, some old tricks may not work so well anymore,
e.g., due to reduced supply voltages, or you may need to use a technology
optimized for digital, giving less flexibility as an analog-oriented BiCMOS
process. Often innovations are coming from both: new restrictions and new
opportunities. In Chapter 2, we will give several examples. More complex
examples and an excellent overview on ADC design (but not only this) can be
found in [Murmann]. Performance gains in circuits are not only coming from
CMOS scaling (triggered by the down-sizing of transistor dimensions in new
technologies), butalso coming from great innovations and surprising concepts.
Sometimes the improvement is not in making a better op-amp but just using no
op-amp anymore (like replacing them by oscillators or comparators or charge
multipliers).

Some of the general techniques for yield improvement are visualized in
Figure 1.16; (a) shows a non-optimized design which is “in spec” at nominal
conditions, but it fails on performance f, at the worst-case corner. In (b), we
accepted the variations, but we improved overall performance, and this might
be difficult but often possible by spending more area or current (assuming a big
spec margin here). In (c), we reduced the variations in performance fs, but it

Figure 1.16 Different yield improvement strategies for two performances f; and fs.
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often comes with sacrificing other performances or the performances spread in
other performances! What is also often possible is to ask for a spec relaxation
(Figure 1.16(d)). The ideal case of reducing the variations in general (so that
it is not needed to make the nominal performance extremely good) is usually
also quite difficult to realize; e.g., you may need more chip area to reduce
mismatch variations. Sometimes there is no other solution then just spending
more area or current, often this is the case for critical parts, and e.g., we may
need to compensate the area increase by using smaller transistors in less critical
parts. Later we will give further examples, and one solution is of course just
to try another circuit variant.

Note: Worst-case (WC) refers not only to environmental conditions, also to
statistical variations. A nice circuit example is a Butterworth filter, having a
maximum flat passband gain. If we design a Butterworth g,,,C filter at nominal
conditions and process corner (NN) it can happen, that e.g., far too many
Monte-Carlo samples have a large undesired filter ripple. So if we really
need a flat response for almost all samples and conditions, we actually should
design our filter this way that also these extreme MC samples—also being
a kind of worst-case corner — are in spec. And this is usually only possible
by limiting the mismatch impacts and by reducing the filter Q factors. So at
the WC we would get a Butterworth behavior (quite high Q factors) and
at nominal we get a filter closer to a Bessel filter (quite low Q factors).
Having an eye on nominal performance for understanding and on WC for
being in spec is the perfect method for achieving robust designs efficiently.
Doing this we could see early enough that our filter is almost impossible to
design, and we may need indeed another circuit, e.g., and to increase the filter
order.

1.4 Design Flow Inputs and Outputs

Some elements in the custom IC design flow we already mentioned, beside
schematic, specifications, testbenches, layouts, etc., there are also many other
documents important for you and your customers, like a guarantee for a certain
life time or a limited number of bad devices in the delivery.

Especially for reuse purposes, a (much) more detailed design-oriented
datasheet—more a real design documentation—is usually desirable. In addi-
tion, make a presentation to your colleagues, and describe well the circuit and
its tricks (Table 1.4).
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What Requirements Created by Comment
Datasheet Product idea, electrical Designer,
and mechanical marketing,
specifications customer
Design Datasheet plus additional Designer
documentation  information (e.g., on tricky
parts, on sensitivities)
Process Featuring component Foundry Is technology-
developments libraries, simulation models, specific, and number
kit PDK layout cells, run decks of rules and
to check design rules, etc. complexity increases
more and more
System Datasheet System e.g., checked with
topology designer Excel® and
MATLAB®
Floorplan Datasheet, chip size estimate, Lead designer,
pin positions, block size lead layouter
estimations
Schematics Inputs and outputs, circuit Designers, For circuits and
function using a testbenches
schematic entry
Netlists Schematic Automatic, Usually in SPICE
triggered by format or a similar
designer one
Postlayout Layout, LVS results Automatic, Tools offer also table
netlists triggered by outputs,
layouter backannotation of
parasitics into
schematic, etc.
Layouts Schematic, layout hints, e.g.,  Layouter or Hints can be provided
in OA format designers, using verbally, as comments
a layout editor  or as constraints
Bond plan Package and die drawing Lead designer ~ To be send to fab
LVS report Schematic and layout, LVS Layouter To make sure that
run decks to extract devices what you layouted is
fit to schematic
DRC report DRC run deck, layouts Layouter To check that design
can be manufactured
GDS Layout Layouter Defining the

coordinates for all
elements to be
created at each layer

(Continued))
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Table 1.4 (Continued)

What Requirements Created by Comment
Evaluation Laboratory test hardware Designers and
board (and software) application
engineer
Test Production test hardware Designersand  Test is usually related
circuit/program  and software test engineers  to production tests,

but verification is
usually referred as
part of design
Quality Checklists, etc. Designersand  This is clearly a team
plan/report quality effort. Often it is
engineers, etc.  required to follow
certain norms like
1SO 9000 on quality

management
Third-party IP  Usually, you get only a IP vendor, Often used for digital
minimum on documentation  foundry, etc. standard cells,
on files, like GDS, SPICE memories, 10 cells,
netlist, and datasheet etc., but can be also a
major part like ADC,
PLL, DDR3

interface, etc.

Figure 1.17 is giving a picture for different design and analysis methods
according to the different variable types. For circuit simulations, all three types
matter, whereas some other techniques like DRC and LVS run are usually
only done for a fix design defined by xp. Note, that the complete space x =
(XR, Xs, Xp)* can be huge and the performance functions f depend on all
three types, so doing a special analysis, like a corner run is capturing only a
little subspace, which might be not fully representative. So mathematically,
doing only these basic analysis is working without really having the eyes fully
open. Actually doing only isolated analyses in one kind of variable, would be
mathematically only acceptable if the circuit would be have according to
Equation (1.3).

f(x) =fgr(xgr) +fg(xs) +fp(Xp) (1.3)

In this case e.g., the sensitivities 6f //xp would not depend on xg and Xg, but
this is clearly unrealistic.

Let us see in Chapter 2 how open the eyes are in a typical manual 1C
design flow.
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Figure 1.17 Flow input and outputs.

What is in a PDK? To make real designs to be manufactured, you need
library elements, These represent the chosen technology, and coming
usually from your foundry. So in modern complex technologies, a process
development kit contains quite a bunch of material. From the technology
library, like cmos90rf, you can pick cells (actually the symbol e.qg., for
a certain NMOS transistor, a certain resistor type, etc.) and create your
circuit blocks in a schematic entry. To run simulations, the process devel-
opment kit also includes simulator models, like Gummel-Poon models for
bipolar transistors.

Also layout views are part of the PDK, and such layout cells are
usually parametrizable, because in opposite to a SMD transistor, chip
designers can e.g., choose the width and length of their elements in a quite
large range to optimize circuit characteristics. Such layout cells are called
programmable cells (pcells), and each contains the geometric construction
statements for the different chip layers to form a specific component (like
a high-voltage transistor).

Also available are e.g., rule decks. Using them we can make sure
that the design becomes really manufacturable, e.g., all designed element
need to be separated by at least a certain minimum distance, to avoid e.g.,
problems with short circuits, leakage, etc.

The tools picking up the PDK content are typically coming from an
EDA vendor. Some required tools are even available for free, like the orig-
inal old SPICE simulator. However, usually commercial implementation
offer more features (like special analysis types) or higher performance
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(like faster matrix solution, parallel processing, etc.), plus service (not only
around the tools itself, but e.g., also regarding design IP, methodology,
hosting, etc.).

1.5 Questions and Answers

1. How complete should a datasheet be?

In the style of official datasheets, there are huge variations, some
provide only the absolute minimum, and some are readable like a
book on learning circuit design! For good examples, look to the
old datasheets of OP-07, the famous PMI low-noise high-precision
operational amplifier or to newer products of leading manufacturers.
Often the devil is in the details, e.g., some performance specs require
an accurate testbench description. For instance, the distortion might
be small as inverting amplifier, but much larger in unity-gain configu-
ration due to common-mode distortion. In addition, load and frequency
will have a significant impact.

2. Assume the error in your yield calculation is 0.30, and
what is the error in yield loss?
The relationship is highly nonlinear, e.g., 2.3 x loss
error at 30, 6 x at 6o.

3. Could it happen that in a full MC analysis the sigma of a reference
voltage is 2x smaller than from a production?
This can happen as it also can happen that two results of an MC
analysis are not identical! For instance check whether at least the
MC simulation confidence interval hit what you get in production. In
addition, the production in one fab and few lots (see Figure 1.18)
might not show all the allowed tolerances, which you may see over
the whole product lifetime or at other fabs using the same process
technology! Usually, the limits a fab has to guarantee also come with
some margin, and bad wafers will be thrown away, so often process
parameter distributions look Gaussian, but with cuts or like multiple
narrow Gaussian distributions shifted against each other. Of course,
you should design for high long-term yield!

4. Look at the Texas Instruments op-amp datasheet, and how many specs
are included? Is this typical? Compare to Figure 1.6!
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There are more than twenty specs, which are quite a lot for a simple
block with seven pins. Few important characteristics like saturation
voltages, and recovery times are not included.

5. Discuss when a design is “good”!

This is an important question, because only when we can formulate
this, we could think of a true design automation.

Figure 1.18 Typical short-term and long-term distributions in a fab [Pieper2008].
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Manual Analog-Centric Design Style(s)

We collect now the most important best practices for efficient design and
verification, the typical analog flow. We introduce briefly the concepts of
specification margins, corner simulations, worst-case and Monte-Carlo.
Corner and MC simulations are two standard approaches to discover the design
behaviors, and both are simple in essence, because you just run a certain fix
scenario, a fix “design” of experiments (DOE). Both methods act like a simple
signal chain, without feedback; you as user have to inspect the results, and you
have to decide on further simulations, if needed. To succeed in analog design
a lot of experience and anticipation is required, but also the more systematical
you work, the higher the chance for being in time and making a successful
tape-out.

Inthis chapter, we also introduce the concept of worst-case corners (WCC),
and discuss how to find them. Basically this is a simple task: Just run the
simulations and look which ones are most critical. However, actually here we
could apply also a more “mathematical” approach, like trying to find how the
corner variables influence the corner results. This is (multivariate) modeling
in terms of (performance) functions. Note, as in this chapter the focus is more

63
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on manual best-practices, we discuss here on the basic math, and later when
multivariate techniques are required for more difficult statistical techniques
we pick up the topic in more details (Chapter 5).

We end with a little “benchmark” on “men versus machine”! Sometimes
menwins, sometimes it is really good to have clever adaptive methods, because
worst-case search is a highly nonlinear problem; and with brute-force methods
this task would be often very time-consuming.

So this chapter is also important as a starting point, and because we
discover some ideas to improve the flow and to compose a more assisted
overall flow. An important outcome for a making a design is learning about
design, e.g., you should understand why a design fails; in fact, even the yield is
not the only thing you need to care about, e.g., you may sell non-perfect devices
for reduced temperature range or reduced clock frequency. To showcase the
impact of variability we present at the end of the chapter a small CMOS
RF PA circuit, this also opens a series which we have named “Design with
Pictures”—math, pictorial design techniques, and circuits, going slightly
beyond purely introductionary examples.

One can learn a lot from looking to other fields of engineering, math, or
science in general. The problem is usually that project time is limited, and
designers have to focus too much on everyday problems and cannot care so
much about flow problems, unfortunately. Actually, in the old days, designers
typically focussed and spent probably more time on circuit functionality, for
analysis and deep understanding, besides pure verification. During the design
phase, designers collect a lot of know-how and invent new circuits and system
solutions. The collection is step by step, design, testbenches, and verification
coverage grow in parallel, and trust in your design comes also step by step,
not in a final sign-off verification (this is maybe true only for LVS).

Let us pick up again the op-amp design example and similar ones:

Afirststep isusually picking a meaningful circuit topology (often with partially
ideal sources and elements—resistor, capacitors, etc.) and making an initial
testbench (e.g., for DC behavior). The circuit selection is an essential step,
but it usually does not stop early (only in case of hard IP reuse). Often many
refinements are needed, like outputs have to be extended, cascodes have to
be added for high PSRR, and maybe you need protection circuits. Sometimes
also little concept changes are needed because the full requirements have been
available too late, and one concept might be if you need only one block (like
a bias block), but if you need multiple ones, another implementation might be
preferable. Often we can decide early how trustable and robust a design is, like
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a CMOS Schmitt trigger is usually much more technology dependent (e.g.,
thresholds differ significantly for SF vs. FS corner, the 1st letter stand for the
NMOS corner, the 2nd one for the PMOS, so SF means the combination of slow
NMOS and fast PMOS) than one based on a differential pair (voltage accuracy
depends almost only on mismatch and of course reference voltage accuracy).
However, exactly how many differences exist depends on many things like
spec ranges, technology, temperature, and supply range—and on additional
circuit tricks like calibration or replica parts. In this circuit “finding” phase, a
lot of interactive work and many simulations are required, so tool speed and
usability often matter much more than automation. If done effectively, this
“SPICE monkeying” phase is not so bad and you can learn a lot. Typically, if
something goes wrong, you even learn more, e.g., you may be able to exclude
bad solutions or improve existing ones for your specific application and for
effects that might be not important in an older application of the predecessor
block.

For Further Reading:

There are many good books available on analog design. As mentioned, we
focus an analog in a wide sense, so we do not cover in much detail digital or
mixed signal aspects, layout topics or modeling aspects, but in the following
list some top references also on these topics are included. Have fun reading
them!

e Willy, M. C. Sansen, Analog Design Essentials, Springer US, 2007.

e R. A. Pease, Troubleshooting Analog Circuits, Butterworth-Heinemann,
1991. R. A. Hastings, The Art of Analog Layout, Pearson Prentice Hall,
2006.

e J. Chen, M. Henrie, M. F. Mar, M. Nizic, Mixed-Signal Methodology
Guide, Cadence Design Systems, 2012.

e W. H. Press, Numerical Recipes in C: The Art of Scientific Computing,
Cambridge University Press, 1992.

e H.E. Graeb, Analog Design Centering and Sizing, Springer Netherlands,
2007.

e H.Graeb, ITRS 2011 Analog EDA Challenges and Approaches, in Design,
Automation Test in Europe Conference Exhibition (DATE’2012),
Dresden, Mar 2012, pp. 1150-1155.

e W. K. Chen, Computer Aided Design and Design Automation, CRC Press,
2009.

e R. Spence, R. S. Soin, Tolerance Design of Electronic Circuits, Imperial
College Press, 1997.
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2.1 Biasing and Transistor Sizing

Unfortunately, not all variations can be minimized easily, e.g., a single transis-
tor amplifier stage will have a certain specific temperature variation for gain,
output power, noise, and distortion. For obtaining a constant transconductance
Om and gain, usually proportional-to-absolute-temperature (PTAT) biasing is
well suited (Figure 2.1), but (for sure) this lowers the intermodulation point
IP3 and the slew rate at low temperatures. The latter can be stabilized with
a constant bias current instead of PTAT, but this can e.g., lead to severe
phase margin problems at low temperatures in feedback circuits—although
feedback has certainly many benefits. For instance, negative feedback can
make performances generally more stable (usually at the cost of larger noise
and lower gain). Another method is using class-AB circuits (which are
unfortunately more complex and often have limited common-mode voltage
ranges); these can offer more constant g,, over the input voltage, and more
current drive capabilities.

Besides the bias concept, also the transistor intrinsic behavior is a key fac-
tor, and not only one measure like transconductance g,,, matters. The first deci-
sion is usually almost trivial and is on the operating region like off-state, ohmic
region, or saturation region. In the later, for a given transistor current I (or

Figure 2.1 Typical MOS g, and Ip behavior for PTAT, constant current, and constant—
voltage biasing.
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I c)—e.g., set according to experience, total current budget, noise level, slew
rate, and output power—we can influence many kinds of measures in different
ways, just by sizing the transistor width W and length L differently [Binkley]:

1.

10.

Om-based sizing makes sense for the MOS saturation region and requires
mainly a certain W/L ratio. Maximum g,,, requires minimum length L, but
that could be non-optimum regarding matching, flicker noise, or output
conductance gps.

. To make a circuit functional, maybe the Vpg, is most important. Again,

the W/L ratio matters mainly.

. White-noise-based sizing requires a large transconductance and thus a

certain minimum current and large W/L for voltage-amplifying stages,
whereas for current sources you should not use too short transistors due
to their bad matching and larger current noise.

. Flicker-noise-based sizing requires usually larger gate areas than pure

white-noise-based sizing. Also it could be that PMOS transistors are
significantly better than NMOS in some technologies.

. Ciy-based sizing matters if you use MOS transistors as capacitors, but

also in charge amplifiers, the optimum noise performance is reached if the
transistor input capacitance is roughly equal to the generator capacitance.

. Matching-driven sizing might be needed for low-offset amplifiers and

requires a certain minimum areaA = W-L.

. I psag-based sizing makes sense in logic circuits and also in bandgap

start-up transistors. W/L matters most. When looking to the maximum
transistor current not only the silicon part transistor performance matters,
for high-current applications also reliability, metallization and vias needs
to be checked carefully.

. Ron-based sizing is useful for switches and depends also on W/L. For

lowest R,,, we need minimum L. Larger L makes sense if a certain
matching accuracy is needed and is mainly useful for non-switching
applications (like variable-gain amplifiers).

. T p-based sizing makes sense for many high-speed circuits. Typically, this

requires a certain minimum current density, low gate capacitance, and
short transistors. Unfortunately, it comes with bad DC characteristics like
low voltage gain per stage and large mismatch. Of course in an op-amp,
the stages should have a f1 beyond the GBWP—though you typically
do not exactly know how much, because this depends also on layout
parasitics.

TC-based sizing is often used in discrete designs or when temperature
stability is of high priority. The idea is that in a MOSFET, there is a
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certain Vg in which the TC of Iy is zero, because the effects of Vo and
mobility cancel. Also a stable on-resistance can be obtained. The only
pity is that this point is corner dependent and it does not lead to constant
Om; in addition, the area might be quite large, which matters most in
power circuits.

11. Inrare cases, you might be able to even tweak on technology parameters
(like epitaxi thickness or substrate doping), but there will be still many
compromises. For instance, high speed comes for sure with lower break-
down voltage for given semiconductor material (like silicon or GaAs).
Also a BJT with high current gain g will have low early voltage Vg, .

Overall (and this list is not complete), no single method alone fits! For
uncritical transistors, you may only need few seconds to select I, W, and
L, but for critical ones, you need a mix of methods and many hours plus a full
inspection of the full block performance (often even including Monte Carlo
and corners). So overall, you have to check almost all the listed characteristics.
For true RF circuits, also other electrical parameters (such as f,,. and k-
factor) and the layout matters, like number of fingers and metallization. Only
really unimportant “near-digital” transistors can be regarded as uncritical;
and we can use any small L > L,,;, and any meaningful width. For something
in between RF and simple digital, designers often follow a little flowchart that
takes step by step at least the major measures like I p, 9, and f ¢ into account
(see, e.g., [Sansen2]).

Besides the pure sizing, also a careful type selection is needed for all
components like resistors (like poly versus well) and capacitors (like MIM
caps versus MOS caps, with big differences according to substrate parasitics,
quality factor Q, linearity, and breakdown voltage) and of course transistors
(low V(o versus high-Vro, deep N-well, thick gate versus thin gate according
to maximum terminal voltages, etc.). Even if we would follow all the men-
tioned rules, it may still happen that also other rules like on electromigration
dictate us a change, e.g., increasing the transistor width to a certain minimum
width like 100 um, although for electrical performance maybe 50 um would
be better.

Note: For many circuits, figure of merits (FOM) are available, which describe
the power-performance trade-off, like for ADCs, PAs, or VCOs. Check how
close your circuit is to the best-designed circuits in similar technology to get a
feeling how difficult your design and transistor sizing will be. Of course often
such FOMs are only related to the core circuit and exclude bias generators,
voltage reference generation, additional buffers, etc. In addition, you need
some margins for production tolerances, temperature variations, etc.
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Knowing about the circuit details and dependencies is of course still the
key competence, and luckily with the support of computers, it is bit easier
to obtain all the performances than with breadboarding. So when a designer
wants to understand e.g., the region of stability for an op-amp or how the
operating point for a transistor is defined by the bias circuit, he/she can still
make it based on equations and datasheet plots, etc. And of course also doing
parameter sweeps and minimizing TC, improving PSRR, etc. are important
steps to make a design robust. Many problems have to be solved, and often
graphical methods are very helpful (e.g., the load-line method or the Smith
chart). They can help a lot to understand circuits, but later we will also see that
the same is true for many advanced numerical methods. In this context and
in our book, “manual” design should not mean “without computer” but using
techniques already available in older EDA environments, i.e., design by the
use of a schematic entry and a simulator, being able to do a corner analysis
and Monte Carlo—»but not “more.”

There is no single most efficient best flow applicable to all kind of blocks.
And one consequence of applying amix of techniques and dealing with difficult
problems is that almost always some iteration is required.

Good judgement is the result of experience. Experience is the result of bad
judgement! By experience and working in a systematic way you can usually
avoid too much stupid brute-force verification and too much trial-and-error.
There are several examples which show that manual design can outperform
computer simulations—and a clever mix is often the best. For instance,
computer programs usually work completely numerical, whereas designers
can apply analytical hand calculations to find at least an approximate solution
(which is often good enough). This typically leads also to deeper design
understanding, e.g., regarding sensitivities. For a computer, sometimes even
the simplest things may become time-consuming: A designer often knows
from symmetry reasons that the sensitivity to two parameters is the same, or
he/she knows that the sensitivity on differential gain to many bias components
is very low because they only have an influence on common-mode signals or
that certain sensitivities are even zero because related transistors are not active
in the current operation mode.

Such insights also lead to efficient design strategies. One example is that
you typically first need to make sure that your analog circuit is having the
correct DC operating point and e.g., achieving a certain gain, before thinking
about other characteristics such as noise performance, speed, and distortion.
So circuit design is often “pampering up” a circuit step by step, whereas a
pure verification engineer could be already happy with finding one condition
in which the design breaks.
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In design, this translates usually to solving the most urgent problems
first, before solving second-order problems. Of course, what is major and
what is second order is not always so easy to know upfront and requires
some experiments and experience. For instance, if reverse isolation is critical
for your amplifier, you should consider using a cascode stage, but that
might be harder to implement at low supply voltages. So you often need
to inspect both variants: normal common-source stage versus cascode stage.
Once you “pampered up” your design, the next step should be testing it
under more difficult situations, like check whether it still works at extreme
temperatures, or at minimum or maximum load and supply voltage. In this
phase, designers do a lot of parameter sweeps and typically tweak their design
further.

2.2 Specification Margin Approach: Fast but Risky

As explained, the brute-force simulation effort to maximize the overall yield
is usually far too huge. One way to divide and conquer and for better design
understanding is to focus on partial yields, because often the designer has
an idea what to change if the power consumption is too large, what else
is to do for better bandwidth, etc. Looking only to the overall yield would
mean ignoring important information! In fact, also just looking to the partial
yields is still a method with big waste of information, because looking only
for yield means that we would act as a 1-bit ADC, just because when we
calculate the sample yield we only check for pass or fail, but ignore e.g., the
information on how much we fail! Let us go back to our op-amp example
in more detail and analyze what could go wrong if we follow a very fast
approach.

An approach with really huge speed-up would be doing just a nominal
analysis and tightening the specs (see Figure 2.2). If you know from previous
designs, circuit topology, reading the technology documentation, or swept
simulations that sheet resistance is your major impact on supply current, and
you know it is varying by +15%, you should tighten the current consumption
spec by 15%! To get some safety margin, you may use 20% (so 80% of the
original spec) to also include second-order effects like TC of the resistance
and reference voltage variations. This safety margin can be called specifica-
tion margin or performance margin, because it is related to the worst-case
performance and the spec limit. For comparisons, it is often good to define it
not as absolute measures, but in percent.
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Inour op-amp example, mentioned a similar margin approach when simply
adding the worst-cases from the MC analysis and the corner analysis. In MC,
the performance delta from average performance to the WC corner can be
often expressed in terms of standard deviation sigma o, and later we pick up
the margin method when discussing the process capability index Cpk.

Also the structure of many datasheets supports a margin approach, like
defining a tight spec at 27°C and a relaxed spec for full temperature range.
Also for PCB designs the developer starts typically with spec margin methods,
just because the tolerances are often well-documented, and executing sweeps
on temperature, supply, etc. is quite time-consuming. However, there are also
problems with specification margin approaches:

e You need to determine the design sensitivities quite carefully, either by
hand calculations or by simulations.

e The approach usually only works fine with almost linear relationships
and if no strong correlations (so-called mixed terms) are present.

e If many effects are important, they can add up too much, like close to
+100%. In such cases, the margin approach is too conservative, but in
other cases, it is often too optimistic!

e You cannot directly debug the design at the point of spec violation!

e The margin approach might be suitable to center a design on specs, but
making the design really better and reducing the performance spreads is
difficult. Here, and for asymmetric tolerances a corner approach can be
much better.

In conclusion, the margin approach works fine only for few performances
like current consumption or maybe bandwidth or noise figure, but seldom
for difficult specs like phase margin, settling time, or IP3. So you should use
it mainly in the planning phase or in the starting phase of circuit design,
but not for careful verifications. For instance, an RF designer may know
from experience that gain is typically 1 dB worse than simulated without
layout parasitics. Here, a good way to go is to improve the modeling,
e.g., to include at least expected or hand-calculated wiring, package, and
substrate parasitics! Maybe this degrades the gain by 0.7 dB—so that you
can safely reduce the “fear” design margin to 0.3 dB to be protected against
the “unknown.”

One big advantage of modeling enhancement is better debugging, and
another is that you can also improve on other unwanted effects, e.g., the
parasitics may also cause stability problems or can cause cross talk.



2.2 Specification Margin Approach: Fast but Risky 73

How to treat tolerances? This is a big problem in the spec margin
approach, and doing it wrong, it could fail. However, unfortunately doing
it right often ends up in over-pessimism! If we simply do sweeps and add
the magnitudes of the ranges, like > | Ay;|, it only looks as if we would do
a worst-case analysis! This is because we typically do the sweeps of one
parameter with the other parameters kept fix, like at nominal. However,
it could easily happen that putting such a fix parameter to another value
ends up in a bigger Ay;! In conclusion, this is actually no WC method. If
a sensitivity analysis is simple or if the sensitivity S is just known quite
well, e.g., current is PTAT or TC of a BJT Vg is app. —1.8 mV/K, then
we could also estimate Ay as SAx. However, again we would need to find
the maximum sensitivity! Actually, doing it this way, the whole approach
tends to become both more complex and also often far too pessimistic,
unfortunately. So better use the spec margin approach if you are allowed to
overdesign (like spending quite a lot of area and current) and if your design
is not too nonlinear. Unfortunately, we have seen that even for a classical
linear circuit like an op-amp, OFAT can fail for WC finding for that
reasons.

For statistical variables, the classical approach is to add quadratic,
so add the variances V = o2 and then take the square root. This leads
to quite a realistic error propagation. It should be mentioned that the
approach is correct if there are no correlations and if you really only
aim for standard deviations. For real worst-cases, it is only suited if you
have pure Gaussian distributions. Statements like “beyond . + 6c there
are only 1ppb samples” are critical, because if you do not have found a 6o
sample by simulation, you actually make a risky extrapolations [Schmid].
Beside all these problems, it is also extremely important to clearly state,
what is meant when e.g., writing 10%. Clearify if it is a hard limit or only
+1sigmal

Besides all the criticism in the concept of design margin, it is a good starting
point. For instance, one outcome from a swept analysis is the sensitivity,
but another one could be the point in which the design starts to “break.”
Understanding the design behavior in this “breaking” point (e.g., caused by
saturation or breakdown) helps usually a lot in finding where and how to
improve the circuit! Figure 2.3 gives a design example; for the sketched
transistor stack, we need Vpp > Vgs + 2Vpsat, but you need to do a similar
analysis also for many other stacks, like to obtain the range for the input
common-mode voltage and for the output voltage.
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Figure 2.3 Typical transistor stack in an analog circuit to show the worst-case on saturation.

In conclusion, this method of doing parameter sweeps till the design
really breaks should apply intensively in early in design stages, but not
only. Of course, as extension, you can also apply combined sweeps or
execute the sweeps around an expected worst-case like temperature sweep
at Low Vpp+SS corner for saturation-critical specs.

Note: Shifting the break points more and more to the true wanted spec ranges
(and beyond) is also a method to make difficult optimizations feasible! It acts
like gmin Or source ramping in the DC analysis by a circuit simulator! In
difficult circuits and DC simulations, it may happen that the circuit equations
are too hard to solve for supply Vpp = 3V, so the idea is to start with a simpler
problem, like finding the circuit solution for a smaller value (like 1 V or even
0 V; in these the nonlinearities are often lower) and then increasing Vpp till
we reach the full value. Also in the laboratory do not directly apply the full
supply voltage immediately after building the prototype.

If the simple but also very efficient spec margin strategy can be successful
depends on the design itself, e.g., phase margin PM is usually uncritical for
one-stage op-amps, but might be difficult topic for multistage amps. Such
performances can never be treated by spec margins, here we really need to
simulate additional critical corner cases!

Also a mixed approach can be created for reducing the set of worst-case
corners, the “stretched parameter” method: Often different parameters can
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change the circuit operation in a very similar way like a decrease of 100 mV in
Vpp or AT =-100°C, or switching from FF process corner to SS, could have a
similar impact on saturation effects and minimum possible supply voltage! So
instead of combining all sweeps (giving unfortunately many combinations!),
we can also pick one variable only and make its range more extreme! In
automotive designs, often the temperature effect is the strongest one, so we
can make it e.g., 25 K wider and cover this way also smaller effects like
threshold voltages & Vpp tolerance! Often you know that Vo changes over
process by 100 mV and the TC is —1.5 mV/K, so (for a given circuit) you
can directly “translate” it to a change in temperature. This way the designer
has still a good overview and can focus on the most important problems, e.g.,
debugging the circuit at the breakpoint (now in a simple temperature sweep).
Problems can appear if there are multiple failure mechanisms, so again this
method is typically used in earlier design stages.

In conclusion, if we would know about the set of “worst-case conditions,”
i.e., the combination giving the worst performance within allowed (valid)
parameter ranges, we could easily check against the specification directly
(without margin) and we could also speed-up design, verification, and maybe
also the production test dramatically, with much less risk than in using the
specification margin approach! We have to pay a very little price: It cannot be
as fast as an approach purely based on design margins, but it can treat quite
strong nonlinearities and correlations.

A general compromise for design is also to do design tweaks not at typical
conditions but already at an expected worst-case corner, like minVpp, WC load
for stability and total harmonic distortion THD, and highest clock frequency.
This way the performance margins and the errors in estimating them becomes
smaller. Of course, at some point like when moving to layout using the real
worst-case corners is much better.

2.3 The Worst-Case Approach

Checking the design at the most extreme parameter combinations is intuitively
a good verification method as it is (much) less risky than spec margin
approaches. Finding the worst-cases is also a method to speed-up the whole
design flow against the exhaustive method with running full corners and
full MC. Figure 2.4 shows such flow in alignment with sensitivity-driven
design.

The testbench setup can be done in the same way as in any flow, like the
brute-force flow. Such testbenches run in a circuit simulator, and typically, an
automated calculator tool can extract key performances (like bandwidth, rise
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Figure 2.4 Flowchart for efficient circuit design.

time, and phase margin) from the simulation raw data (like voltage signals
versus frequency or time usually saved in a binary format).

Finding the critical conditions (represented by xg - xg) is helpful for
both spec checking and debugging. To improve the design, we usually have
to identify which parameters x, are influencing and critical and tune them.
Typically, the designer knows quite well about the major sensitivities, but
often only qualitatively, and also surprises are possible, caused by unwanted
resonances, “dirty” circuit tricks, etc. Once the designer is happy, he can
proceed with more detailed sign-off simulations, layout, etc.

Looking only to the set of deterministic parameters xg: The worst-case
is given by the worst performance f defined by a certain value combination
of environmental parameters xg, each being in its valid parameter range,
whereas the design parameters xp are fix. Note that we do not need exact
specifications, and the decision whether an upper or a lower spec limit would
be set is enough.

This way finding the worst-case (WC) is possible with a simple grid-
based approach and is similar to parameter search or an optimization. Often the
worst-case occurs at the most extreme parameter settings, but not always (e.g.,
for a bandgap output voltage, having a quadratic behavior). We can expect at
least one WC combination for each performance, and of course sometimes
WC for different specs appears at the same condition (at least approximately).
Due to correlations, also the overall worst-case is often not simply the
combination of the individual worst-cases obtained from individual parameter
sweeps!

If we want to include statistical parameters Xg, the definition of worst-
case becomes more difficult; because parameters following a normal Gaussian
distribution do not have a finite “allowed” range, they may vary (theoretically)
from —oo to oo! What we can do is to assign a certain minimum yield
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(like 99.85%) to our “worst-case.” And this way we can calculate also the
worst-case statistical parameter sets.

The major problem is that many older design environments have no support
for this, and unlike normal environmental range parameters xgr, designers have
no way to even set the statistical parameters dir