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Foreword

Quantum Chromodynamics (QCD) was in its infancy when Gribov deliv-
ered his lectures on strong interactions. Since then QCD had been estab-
lished as the true microscopic theory of hadrons.

The main (though not the only) focus of these lectures is to present
the ‘old theory’ of hadron interactions (known as reggistics). This theory
has realized the ‘Pomeranchuk–Gribov programme’ of describing strong
interactions without appealing to the internal structure of hadrons. The
old theory was launched in 1958 by the Pomeranchuk theorem and reached
a climax in Gribov’s prediction of an asymptotic equality of hadron cross
sections 15 years later. With the advent of QCD, it was abandoned by the
great majority of theorists in the mid-1970s and has been neither taught
nor learnt since.

QCD – the ‘new theory’ – is now in its fourth decade. The QCD
Lagrangian approach did marvels in describing rare processes. This is
the realm of hard interactions that occur at small distances where quarks
and gluons interact weakly due to the asymptotic freedom. The domain
of expertise of the old theory is complementary: it is about normal size
hadron–hadron cross sections, soft interactions that at high energies are
dominated by peripheral collisions developing at large distances. QCD
only starts to timidly approach this domain, with new generations of re-
searchers borrowing (sometimes improperly) the notions and approaches
developed by the ‘old theory’.

A few non-scientific comments are due before you start reading (better
still, working through) the book.

The lectures you are about to encounter were given in early 1970s, and
so they are presented here: no attempt has been made to ‘modernize’ the
text. (Editor’s comments are few and relegated to the footnotes marked
(ed.).)

ix



x Foreword

Let me mention two problems that emerged when preparing this text:
one surmountable, another not. The first derived from the fact that the
lectures were delivered twice (in 1972–1973 and then in 1974–1975). The
only invariant in these two series was the format of lectures (four hours at
the blackboard each Thursday; never a piece of paper with pre-prepared
notes to guide the lecturer). The rest was subject to variability. So, a
compromise often had to be found between two different presentations of
the same topic.

The second problem is as follows. The equations of this book contain
3180 equality signs, while they seldom appeared on the blackboard. With
Gribov-the-lecturer, the symbol = was clearly out of favour.

I think it was being done on purpose. Gribov was a generous teacher and
always implied that his students were capable of deriving mathematically
correct formulae, given the rules. He was trying to teach students, in the
first place, how to think, how to approach a new problem, how to develop
a ‘picture’ of a phenomenon in order to guess the answer prior to deriving
it. And ignoring equality signs served as additional means for stressing
‘what was important and what was not’ in the discussion.

Unfortunately, this flavour of a live lecture is impossible to preserve in
a printed text which has its specific, and opposite, magic of certainty. I
am afraid that having debugged equations, the lectures may have lost in
pedagogical impact.

I always looked upon these lectures as a treasure chest. I sincerely
believe that when you open it, you will find it filled not with obsolete
banknotes but with precious gold coins.

Yuri Dokshitzer



1
Introduction

The theory of strong interactions,
now that is quite something.

Elementary particles we know are leptons e and μ and their correspond-
ing neutrinos, νe, νμ, a photon (γ) and a graviton, and then, hundreds of
strongly interacting particles – hadrons: proton p and neutron n, pions
π± and π0, kaons K±, K0, K̄0, etc., etc.

1.1 Interaction radius and interaction strength

Electromagnetic interaction has two characteristic features. Firstly,
it is characterized by a small coupling,

e2

4π�c
� 1

137
.

Secondly, it is a long range force,

V =
e1e2

r
,

so that there is no typical distance, no characteristic interaction radius.

Gravitation behaves (at large distances!) similarly to the electromag-
netic interaction,

V = Ggr

m1m2

r
;

thus it has no radius either. To characterize the magnitude of the inter-
action one needs to construct a dimensionless parameter. Contrary to the
case of the electromagnetic charge, mass is not quantized, so that there is

1



2 Introduction

no ‘unit mass’ to choose. Hence one usually takes the mass of the proton,
mp, to quantify the typical interaction strength:

Ggr

m2
p

�c
� 7 · 10−39.

An important difference with electromagnetism is that here all the
‘charges’ have the same sign (mass is positive). Therefore the gravita-
tion prevails over the electromagnetic interactions in the macro-world.
Moreover, the gravitational interaction grows with energy, making the
gravity essential at extremely small distances. This happens solely owing
to the existence of the Planck constant �, since by confining a system to
small distances, Δr, we supply it with a large energy ΔE ∼ �c(Δr)−1.

Leptons, photons, graviton do not participate in strong interactions.

r

Rutherford was the first to observe
(electromagnetic) scattering of strongly
interacting particles. By comparing
the scattering pattern of α-particles at
large angles with classical formulae he
concluded that the size of the gold nu-
cleus was about 10−13 cm. By the way, to
be able to describe the process as classical

particle scattering, all the way down to ρ ∼ 10−13 cm, one has to have

kr0 � 1.

However, the energies of α-particles in the Rutherford experiment,
E/mα = O(keV/GeV) = 10−6, correspond to momenta k such that

k · r0 =
√

2mα · E · 1
μ

� 1, with (r0)−1 ∼ μ = 140 MeV,

so that the scattering becomes quantum, rather than classical, already for
the impact parameters much larger than r0. It was fortunate for Ruther-
ford that the scattering cross section in the Coulomb field happened to
be identical to that in the classical theory!

The proton–proton cross section is very small, σpp ∼ 4 · 10−26 cm2. Why
then do we refer to the ‘strong interaction’ as strong? To really evaluate
the strength of interaction, one has to take into consideration the exis-
tence of the finite interaction radius since the interaction cross section
is composed of the actual interaction strength and of the probability to
hit the target, measured by the transverse area of the hadron ∼πr2

0. This
being said, if the interaction cross section turns out to be of the order of
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the geometric cross section,

σ ∼ r2
0 ,

we call the interaction strong; otherwise, if

σ � r2
0 ,

such an interaction we consider as weak .
How can one determine experimentally the interaction radius r0?
In the classical theory it is straightforward: from the angular depen-

dence of the scattering cross section dσ(q) one can reconstruct the poten-
tial, and, subsequently, extract the characteristic radius r0.

In quantum mechanics we operate with the partial wave expansion of
the scattering amplitude,

f(k, θ) =
∞∑
�=0

(2	 + 1)f�(k)P�(cos θ).

Guided by quasi-classical considerations, we can define the interaction
radius by comparing the magnitudes of the partial wave amplitudes f�
with different orbital momenta 	:

f� ∼
{

1 for 	 <∼ kr0,
0 	 � kr0.

Assume that the interaction radius is small, kr0 � 1. Then, due to the
fact that the partial waves with large orbital momenta are suppressed,
f� ∝ (kr0)2�+1 (centrifugal barrier), the S-wave dominates,

f(k, θ) � f0(k),

and the scattering pattern is spherically symmetric. Increasing the inci-
dent momentum we reach kr0 ∼ 1 where a few partial waves will start
contributing and the corresponding Legendre polynomials with 	 �= 0 will
introduce angular dependence into the scattering distribution. Thus we
can determine r0 by studying at what energies the scattering ceases
to be spherically symmetric. Alternatively, at large k, we can extract
the interaction radius by measuring the characteristic scattering angle,
θchar ∼ (kr0)−1 � 1.

Now that we know how to measure r0 and may compare σ with r2
0,

let us ask ourselves another question: whether the situation when σ � r2
0

really means that we are dealing with a weak interaction.
The answer is, yes and no!
Consider the scattering of a point-like neutrino off a proton, for exam-

ple, the process νμ + p → μ + X. By examining the momentum depen-
dence of the cross section we will extract that very same proton radius
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r0 ∼ 10−13 cm. At the same time, the inter-
action cross section is of the order of σν ∼
10−40 cm2. Then, according to our logic we must

υ

p
proclaim the neutrino a weakly interacting particle.

However, imagine that the proton has a tiny core, of the size 10−20,
which is smeared over the area of the radius r0 = 10−13. If so, the inter-
action of the neutrino with the proton actually turns out to be strong:
(10−20)2 ∼ σν . We can only state that ν interacts weakly at the distances
larger than 10−20 cm.

The most important property of the weak interaction is its univer-
sality with respect to hadrons and leptons. They get engaged in the
weak interaction in a similar manner and with the same universal Fermi
constant

GF � 10−5

m2
p

, mp
−1 ∼ 10−14 cm.

Weak interaction increases with energy. At distances 10−3/mp ∼
10−17 cm, corresponding to collision energies of the order of 103mp �
1000 GeV, the weak interactions may become strong.

The main features of strong interactions of hadrons are the following:

(1) probability to interact is O(1) at the distances r <∼ r0 = 10−13 cm;

(2) hadrons are intrinsically relativistic objects.

Indeed, to investigate the distances r0 = 1/μ, momenta k ∼ μ are neces-
sary, which correspond to the proton velocity v � μ/mp ∼ 1/6. (By the
way, it is this 1/6, treated as a small parameter, to which the nuclear
physics owes its existence.) At the same time, if we substitute for the
proton a π-meson (whose mass is mπ =μ) we get v � 1 and the very pos-
sibility of a non-relativistic approach disappears.

1.2 Symmetries of strong interactions

Imagine that we have an unstable particle whose decay time τ is much
larger than r0/c ∼ 10−23 s. Does it decay due to the strong or weak
interaction? The answer lies in the symmetry of the decay process:
the degeneracy is much larger in the strong interaction; degeneracy
means symmetry, and symmetries, as you know, give rise to conservation
laws.
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Electric charge Q. The hadrons have to know themselves about the elec-
tromagnetic interaction. Each hadron has a definite electric charge, and
the strong interactions must respect its conservation, otherwise quantum
electrodynamics would be broken.

Baryon charge B. This is another quantum number whose conservation is
verified with a fantastic accuracy (stability of the Universe). The baryon
charge equals +1 for baryons like p, n, Λ, Σ, Ξ, . . . (and −1 for their
antiparticles), and 0 for mesons (π, K, ρ, ω, ϕ, . . . ).

Isotopic spin I. Phenomenologically, hadrons split in groups of particles
with close masses, and can be classified as belonging to isotopic SU(2)
multiplets. For example, the doublet of the proton and the neutron, p, n
(I = 1

2); the triplet of pions, π± and π0 (I = 1), etc. The relative mass
difference of hadrons in one multiplet is 10−2–10−3, that is, of the order
of the electromagnetic ‘fine-structure constant’:

mn −mp

mp
∼ mπ0 −mπ+

mπ+
∼ α � 1

137
.

It looks that if we switched off the electromagnetic interaction, we would
arrive at a complete degeneracy in the mass spectrum of strongly inter-
acting particles. Independently of the hypothesis about the nature of this
tiny mass splitting, these states can be treated as degenerate in the first
approximation and therefore, there must be a symmetry and the corre-
sponding conservation law.

Are the pn and pp scattering cross sections the same, if electromagnetic
interactions are switched off? No – in the second case the particles are
identical. In order to distinguish p from n, a new quantum number is
introduced: the proton is treated as a nucleon with the isospin projection
I3 = +1

2 , and the neutron with I3 = −1
2 . Thus, the nucleon wave function

depends on coordinates, spin and isospin variables, ψ(r, σ, τ). In strong
interactions isospin is conserved.

For example, the lightest stable nuclei – the deuteron and the helium –
consist of equal number of protons and neutrons, D = (pn), He4 = (2p2n),
and both have I = 0 (isotopic singlets). Therefore, the fusion reaction

D + D �→ He4 + π0

is forbidden, since the pion has isospin I = 1.

Strangeness S. Any reaction takes place that is allowed by conserva-
tion laws. At the same time, it was observed that long-living hadrons
like K-mesons, and Λ- and Σ-baryons, cannot be produced alone in the



6 Introduction

interactions of nucleons and pions. They always go in pairs, e.g.

π− + p → Λ + K̄0 ,

while the reactions

π− + p → n + K0, or π− + p → Λ + π0

are forbidden.
By prescribing to these hadrons a new quantum number – strange-

ness S,

S(K−,K0) = S(Λ) = −1, S(K̄0,K+) = S(Λ̄) = +1,

we get the relation between the conserved quantities:

Q = I3 +
B

2
+

S

2
.

There is one more approximate symmetry which combines strange and
non-strange hadrons into of SU(3) multiplets, like octets of pseudoscalar
mesons,

S = 1 (K̄0,K+)
I=

1
2
,

S = 0 (π−, π0, π+)I=1, ηI=0,

S = −1 (K−,K0)
I=

1
2
,

and baryons,

S = 0 (n, p)
I=

1
2
,

S = −1 (Σ−,Σ0,Σ+)I=1, ΛI=0,

S = −2 (Ξ−,Ξ0)
I=

1
2
,

baryon decuplet, etc.
The isospin symmetry is broken by electromagnetic interactions. The

weak interaction breaks everything except B, Q and, maybe, the lepton
charge L. (Apparently, the electron and the muon lepton charges conserve
separately, since μ− → e− + ν̄e + νμ , but μ− �→ e− + γ.)

The lightest strange particles are stable under strong interactions. How-
ever, K-mesons decay into pions, and the Λ-baryon into π−p, due to the
weak interaction, disrespecting the strangeness conservation. The weak
forces violate spatial parity P , charge parity C, and even the time reflec-
tion symmetry T (the later equivalent to the ‘combined parity’ CP ).
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1.3 Basic properties of the strong interaction

1.3.1 Interaction radius

The question arises, what is r0: is this an interaction radius specific for
the strong interaction, or rather a real size of an object? This question
can be answered using, for example, weak interactions as a short-range
probe. It turns out that r0 is the actual size of the proton that can be
extracted, in particular, from the measurement of the spatial distribution
of the electric charge inside the proton.

The hadron radius r0 appears to be equal to the pion Compton wave-
length,

r0 � mπ
−1 ≡ μ−1 � 10−13 cm.

Is this coincidence an accident? In the past it was thought to be of fun-
damental importance; it is not so clear any more that it really is.

What is the problem with the description of the strong interactions?
As we have discussed above, a non-

relativistic description does not make
sense here. We have just one example
which may help us to construct a rel-
ativistic theory: electrodynamics. In the
quantum electrodynamics, the electron e
and the photon γ are point-like, and so
is the interaction between them.

e e

g

(1.1)

Now we want to describe hadrons: p, n, π. Are these particles point-like?
The existence of the finite radius r0 confirms, apparently, the opposite.
There is no way, however, to give a relativistic description of a particle of
finite radius. So we have to assume that the particles we consider are, in
a sense, point-like.

Yukawa suggested that the point-likeness of a hadron does not contra-
dict the existence of a finite interaction radius. Let us draw a pion–nucleon

interaction
p

N                 N
taking (1.1) for a model. The existence of

this vertex means that there are processes of virtual emission and absorp-
tion of pions by the nucleon,

pN                                     N . (1.2)

Let us imagine now that this happens quite frequently. What will we see
as a result of a scattering of an external particle off such a fluctuating
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nucleon? Estimating the energy uncertainty as

m + mm                              m ΔE � (m + μ) −m = μ, (1.3)

we conclude that the lifetime of the fluctuation is Δt ∼ (ΔE)−1 ∼ μ−1.
During this time interval, a pion (with a velocity v ∼ 1) will cover the
distance Δr ∼ μ−1. Thus, our object, which was point-like in the begin-
ning, is now spread over a distance μ−1, and, in the process of scattering,
it will interact with the projectile at impact parameters ρ ∼ μ−1. In other

N

N p

words, the scattering of an incident parti-
cle with our nucleon can be depicted as a
pion exchange between the two nucleons –
the process that has a characteristic radius
r0 ∼ μ−1 !

Without any theory, let us first calculate this amplitude in a naive way,
by analogy. What would be the difference between the above process and
the scattering of electrons that we have studied in the quantum electro-
dynamics,

e

e

g

q

=
e2

q2

(
ūγμu

)(
ūγμu

)
. (1.4)

We must replace the photon propagator 1/q2 in (1.4) by the Green func-
tion of the massive π meson:

Dπ(q) =
1

μ2 − q2
.

The corresponding scattering amplitude will have the form

A =
g2

μ2 − q2
, (1.5)

with g the pion–nucleon interaction constant, replacing the electric charge
e in the QED amplitude (1.4).

What does this amplitude correspond to in the case of the non-
relativistic scattering? The non-relativistic scattering amplitude reads

f = −2m
4π

∫
eik

′·rV (r)ψ(r) d3r. (1.6)

In the Born approximation, replacing the wave function ψ(r) by a plane
wave with momentum k, we obtain

fB = −2m
4π

∫
eiq·rV (r) d3r, (1.7)
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where q is the momentum transfer, q = k′ − k. For non-relativistic par-
ticles, the kinetic energy, E = k2/2m, is small, and the energy transfer
component can be neglected:

|q0| ∼ q2/m � |q| , so that q2 = q2
0 − q2 � −q2.

The scattering amplitude (1.5) becomes

A � g2

μ2 + q2
.

What is the potential corresponding to this amplitude? Evaluating the
inverse Fourier transform of the Born amplitude fB in (1.7) we obtain
the Yukawa potential,

V (r) = − 4π
2m

∫
e−iqr g2

μ2 + q2

d3q

(2π)3
=

g2

2m
· e−μr

r
. (1.8)

So, indeed, the effective interaction is characterized by a finite radius
r0 = 1/μ.

We conclude that the assumption of the point-like nature of the inter-
action does not exclude the finiteness of the interaction radius. Moreover,
having adopted the point of view that the hadron has no intrinsic size
(having no other option), we see that the interaction radius is not an
independent quantity but is determined by the masses of the particles.

From the point of view of a relativistic theory the π-meson has to exist
in nature, otherwise there would be no explanation for such a ‘large’ value
of the proton radius.

1.3.2 Interaction strength

The other side of the strong interactions is their strength: once the parti-
cles approach each other to the distance r0, the interaction is inevitable.
Since a nucleon is always surrounded by a pion cloud, see (1.2), this means
that the coupling constant g2 (if it exists at all) is obliged to be large,
g2 ∼ 1, contrary to the electromagnetic interaction, characterized by
the small coupling α = 1/137 � 1. Now that is bad indeed, because un-
der these circumstances anything will go. For example, a virtual state with

two pions will be there, having
a typical lifetime Δt ∼ 1

2μ and,
correspondingly, a spatial spread
of the order of ∼ 1

2r0.
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We may even have a three-nucleon
state, N → Nπ, π → NN̄ . Since the
nucleon is much heavier than the
pion, this fluctuation is short-lived:
Δt ∼ 1/(2mN ) � r0. However, we
cannot state a priori that such a
process does not contribute to the

N

N

N
radius of the nucleon since these ‘second-order’ amplitudes may be ac-
tually larger than the one-pion emission amplitude (1.2), because the
coupling constant is not small.

It is clear that it will be certainly impossible to build a theory like
quantum electrodynamics to describe strongly interacting hadrons.

We can, however, introduce initial point-like objects, and then, in fact,
observe ‘clouds’, the radii of which are determined by the masses of the
hadrons.

This is the basic idea of the theory of the strong interaction.
We need to construct a framework which would allow us to draw pic-

tures representing a formal series for the hadron interaction amplitudes.
From these pictures we will extract information without actually calcu-
lating the amplitudes, which would be, a priori, impossible. The Feynman
diagrams can be considered as a ‘laboratory of theoretical physics’.

1.4 Free particles

We start by considering free particle states and their propagation. There
is a fantastic variety of hadrons with spins reaching up to s = 19

2 .

1.4.1 Particle states

s = 0. A free spinless (scalar) particle with a four-momentum pμ is de-
scribed by the wave function

s = 0 : ψ(x) =
1√
2p0

e−ipx. (1.9)

s = 1
2 . A spin-one-half particle has two states, λ = 1, 2,

s = 1
2 : ψλ

α(x) =
u

(λ)
α√
2p0

e−ipx; (1.10)

two states with definite parity are selected out of possible four spinors uα
by the Dirac equation, (p̂−m)uλ.
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s = 1. A spin one particle is described by a wave function ψμ bearing the
Lorentz vector index:

s = 1 : ψλ
μ(x) =

e
(λ)
μ√
2p0

e−ipx. (1.11)

Here one has to single out three states, λ = 1, 2, 3, out of the four unit
vectors. In the rest frame, the vector particle has three polarizations,

eμ =

⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ ; e(1)

μ =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , e(2)

μ =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , e(3)

μ =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ,

all having zero time component, e(λ)
0 = 0. In Lorentz invariant terms, the

superfluous state is eliminated by the condition e
(λ)
μ pμ = 0.

s = 2. A tensor particle has to have 2s + 1 = 5 physical states. Its wave
function is constructed with the help of a Lorentz tensor Tμν ,

s = 2 : ψμν =
Tμν√
2p0

e−ipx.

This tensor can be simply constructed as a product of two vector states,
eλ1
μ and eλ2

ν . Since pμeλi
μ = 0, in the rest frame we have

T00 = Ti0 = T0k = 0,

tik = eλ1
i eλ2

k + eλ2
i eλ1

k , i, k = 1, 2, 3. (1.12)

The symmetric 3 × 3 tensor (1.12) has 3 · 4/2 = 6 independent compo-
nents. Combining two spin 1 particles, we obtain not only a spin 2 state
but also one with spin zero; to exclude the latter we must make the tensor
T traceless,

Tik = tik − 1
3δik

3∑
�=1

t��.

Finally, we have a symmetric Lorentz tensor, Tμν = Tνμ,

Tμν = eλ1
μ eλ2

ν + eλ2
μ eλ1

ν − 2
3

(
gμν −

pμpν
m2

)
(eλ1eλ2) ,

which on the mass shell, p2
μ = m2, is traceless, Tμν · gμν = 0, and ‘orthog-

onal’ to the four-momentum of the particle, pμTμν = 0.
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s = 3
2 . The wave function of a spin 3

2 state bears simultaneously a spinor
index α, and the vector index μ.

s = 3
2 : ψα,μ(x) =

uα,μ√
2p0

e−ipx.

Initially, uα,μ has 16 degrees of freedom (4 spinors × 4 vector components).
The first condition,

(p̂−m)uα,μ ≡
∑
β

(
p̂−m

)
α,β

uβ,μ = 0, (1.13a)

selects two spinors (16 → 8), and the second one,

γμuα,μ = 0, (1.13b)

(four equations) leaves us with 8 − 4 = 4 = 2 · 3
2 + 1 states. From the pair

of conditions (1.13) it conveniently follows that

pμuα,μ = 0.

Indeed, from (1.13b) we get

γμuα,μ = 0 =⇒ 0 = (p̂ + m)γμuα,μ = γμ (−p̂ + m)uα,μ︸ ︷︷ ︸
=0

+ 2pμuα,μ.

There exists a special technology how to move further to higher spins.

1.4.2 Particle propagators

Relativistic propagation of free particles is described by Green functions

G(x) =
∫

d4p

(2π)4i
e−ipxG(p).

In the momentum space, the Green functions of scalar, fermion and vector
particles are

s = 0 : G(p) =
1

m2 − p2
, (1.14a)

s = 1
2 : G(p) =

1
m− p̂

=
1

m2 − p2
· (m + p̂), (1.14b)

s = 1 : Gμν(p) =
1

m2 − p2
·
(pμpν

m2
− gμν

)
. (1.14c)

The factors in the numerator that accompany the pole 1/(m2 − p2) in
the propagators of particles with spin originate from a summation over
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physical polarization states:

2∑
λ=1

uλ(p) ūλ(p) = m + p̂,

3∑
λ=1

eλμ(p) e∗λν (p) =
pμpν
m2

− gμν .

Analogously, propagators of particles with higher spins will contain the
structures

s = 3
2 : Gμν(p) ∝ (pμ + mγμ)(m− p̂)(pν + mγν), (1.14d)

s = 2 : Gμν,μ′ν′ ∝
(
gμμ′ − pμpμ′

m2

) (
gνν′ − pνpν′

m2

)
+ perm. (1.14e)

The numerators (1.14) are polynomials in p, and for large p values the
Green functions are growing as p2(s−1). This growth is unavoidable and
leads to a large number of unpleasant problems.

One might imagine a scenario with mass degeneracy, such that a scalar
and a vector state together would be described by a propagator

G1+0(p) =
−gμν

m2 − p2
,

free of the increasing term pμpν present in (1.14c). This, however, is not
a solution, since such a scalar particle would be a ghost – a state with a
negative transition probability, −g00 = −1. This would violate the rule ac-
cording to which the amplitude near the pole has a definite sign, following
from the unitarity.

Do we really need to ascribe a bare field and its own interaction to each
of few hundred existing hadrons? Possibly, one can treat all these hadrons
by expressing them by means of a few fundamental objects.

1.5 Hadrons as composite objects

In the language of field theory, we introduce some fundamental fields and
describe them in terms of the wave function ψ. We construct the inter-
action Hamiltonian which may have bound states. The known example of
appearance of such a composite
particle in relativistic field theory is
positronium – a bound state of an
electron and a positron.

e+

e−
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The QED coupling being small, the binding energy of positronium is much
smaller than the electron mass, ε � m. Consequently, in the average e+

and e− are at a relatively large distance Δr � m−1 apart. However, even
here there is a possibility to produce additional pairs etc., so that the
field-theoretical nature of the state is rather rich and complex.

1.5.1 Scattering of composite states

How to describe the scattering of a bound system – positronium – in an
external field?

In quantum mechanics the scattering amplitude has a structure

f ∼
∫

e−ip′·rcψf (r12)[V (r1) + V (r2)] eip·rcψi(r12), (1.15)

where rc is the centre-of-mass coordinate, and ψ(r12) the relative motion
wave function.

In terms of diagrams we have

e+ e+
. (1.16)

The non-relativistic Green function of the e+e− system,

G(r′c, r
′
12, t

′; rc, r12, t) =
1

x2

x1

x2

x
,

rc = 1
2(x1 + x2), r′c = 1

2(x′
1 + x′

2), (1.17a)

r12 = x1 − x2, r′12 = x′
1 − x′

2, (1.17b)

can be expressed as a sum over eigenstates of the product of the final and
(conjugate) initial wave functions:

G(r′c, r
′
12, t

′; rc, r12, t) =
∑
n

ψn(r′c, r
′
12, t

′)ψ∗
n(rc, r12, t),

where t ≡ x10 = x20, t′ ≡ x′10 = x′20. Among these terms there is one
which corresponds to the bound state D:

G =
∑
pc

ψD(r′c, r
′
12, t

′)ψ∗
D(rc, r12, t) + [continuous e+e− spectrum].
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In the mixed space–energy representation, the stationary state Green
function,

G(r, r′;E) =
∑
n

ψn(r′)ψ∗
n(r)

En − E
,

contains the pole in energy, corresponding to the positronium state. Let
us single out this pole from the sum:

G(r, r′;E) =⇒ GD(r, r′;E) = D
.

Then, the interaction diagram (1.16) will reduce to

De+

e−

D
,

where we have cut off the electron ends since we are interested in a bound
state at infinity, not a fermion pair. To calculate the interaction amplitude,
we have to replace the positronium lines by the initial and final state wave
functions. This way we arrive at the expression similar to (1.15) for the
non-relativistic scattering amplitude.

In other words, the notion of the Green function of the positronium
(or of the deuteron, for that matter) is unnecessary. It can, however,
be introduced by separating from the product of the wave functions the
dependence on the total four-momentum of the bound system,

ψD(x′)ψ∗
D(x) = e−iE(t′−t)+ipc(r′

c−rc)ψ(r′)ψ∗(r). (1.18)

Attributing the exponent to the Green function of the free positronium,
the wave function of the relative motion will have the meaning of an exact
vertex γ describing the transition between the positronium and the free
e+e− pair, which will determine the interaction of the bound state as a
whole with the external field:

e+

e− gg
.

*Γ
= 

An interesting feature of γ is that this vertex does not contain any input
bare value: it derives from the structure of the bound state.

In the non-relativistic theory, describing a bound state in terms of its
proper Green function GD and its proper interaction vertex Γ is merely a
formal unification. However, the existence of two possibilities to construct
a theory of particle interactions (with different results!) is important for
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us in the context of strong interactions, where a pion, for example, can

be looked upon as consisting of a pair of nucleons,
π+

n̄

p
.

1.5.2 Quarks

Thus, we start with the hypothesis (which may turn out to be wrong)
that there exists a small number of fundamental objects. From the point
of view of hadrons, these objects can be chosen almost arbitrarily. Almost,
since one cannot build up a spin s = 1

2 particle from spinless π-mesons,
or strange hadrons like K-mesons and the Λ baryon out of non-strange
nucleons.

In the Sakata model, the three lightest baryons were chosen as building
blocks: the pair of nucleons, p, n, and the strange baryon Λ (S = −1):
This model treats mesons as bound states: π = NN̄ , K = N Λ̄, etc.,

p+
p

n̄

p+

p p

though it remains unclear what to do with a rich variety of baryons.
Gell-Mann put forward a deeper idea based on the existence of eight

very similar baryons (n, p, Λ, Σ±,0, Ξ0,−) with close mass values. The
underlying SU(3) symmetry became the origin of the idea of quarks.

Tempted to consider all the hadrons as composite objects, one intro-
duces three quarks, q1,2,3 = u, d, s, which, for some mysterious reason, are
not observable as free particles but are confined∗ inside the mesons (qq̄)
and the baryons (qqq). Fractional electric charges of the quarks may not
look too attractive. Still, it would be nice if they existed in nature, and
this possibility should not be disregarded a priori.

Thus, we assume that there are some fundamental particles that we
introduce as bare fields into the theory. These particles may or may not
show up in the physical spectrum of the theory (it would be beautiful if
not). If so, all the observable hadrons are composite objects, and all reac-
tions between them can be represented as the strong interaction between
the underlying quarks.

∗ This could be possible, for example, if the quark binding energy were so strong as to provide
masses of the bound states much smaller than the large masses of the quarks.
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1.6 Interacting particles

How to construct the interaction between our fundamental objects? Let
us see what options quantum field theory (QFT) can offer us.

1.6.1 λϕ3

Let us look at the simplest QFT that describes a scalar field ϕ with three-
particle interaction. Given the interaction constant λ, and depicting by a
straight line the free particle propagator,

G(p) =
1

m2 − p2
= ,

we can draw Feynman diagrams for the exact particle Green function and
for interaction amplitudes,

G = + . . .+ +

Γ = + . . .+

Evaluating the self-energy diagram, in the region of large virtual momenta
we will have a logarithmically divergent integral,

Σ(p) = = λ2

∫
d4k

(2π)4i
1

m2 − k2

1
m2 − (p− k)2

∼
∫
m

d4k

k4
.

This turns out to be the only divergence in the theory! The integrals with
more than two propagators in the loop, converge:

∼ λ3

∫
d4k

k6
∼ λ3

p2
,

with p2 the characteristic virtuality of the external lines. This shows that
(apart from the mass renormalization) the self-interaction effects vanish
in the large momentum region.

The absence of divergences is clear from dimensional considerations.
Let us look, e.g. at the particle number density operator, which has the
dimension [

ϕ
∂ϕ

∂t

]
=

[
δ(3)(r)

]
=

[
m3

]
.
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Therefore, the field ϕ(x) itself has the dimension of mass,
[
ϕ
]

=
[
m

]
.

Since the action is dimensionless (� = 1),

L =
∫

λ · ϕ3(x) d4x,
[
L

]
= [m0],

we get
[
λ
]

= [m]. The coupling constant having the dimension of mass,
at large momenta p (where the finite mass is unimportant) this gives
us the real dimensionless expansion parameter ∼λ2/p2, vanishing in the
ultraviolet region. Such theories are referred to as ‘superconvergent’.

From the Born diagrams for the two particle scattering amplitude,

3

1

2

1

2

3

4

3

4

1

2
+ +

4
=

λ2

m2 − s
+

λ2

m2 − t
+

λ2

m2 − u
,

we see that the interaction disappears when the energy and momentum
transfer invariants (s, t, u) become large.

The widespread opinion according to which the λϕ3 QFT is a bad one
is owing to the non-positive definiteness of the energy density, dE/dV ∝
λϕ3, because of which this theory has no vacuum state.

Unfortunately, all this has nothing to do with Nature. It is, however, a
useful QFT model for those cases when the spin is of no importance.

1.6.2 λϕ4

Let us consider the next, more complicated example: the quartic interac-
tion between spinless fields.

Pions are pseudoscalar particles, and therefore the transition π → ππ
is forbidden by parity conservation. This makes the λϕ4 QTF closer to
reality; it can be used to model interaction between pions. Now the cou-

l
pling constant λ is dimensionless, so that we
should expect logarithmic ultraviolet diver-
gences, as in the case of QED.

The simplest correction to the Green function G now diverges quadrati-
cally :

∼ (d4k)2 · 1
[k2]3

.

What concerns the effective charge, the first correction to the two-particle
scattering amplitude λ consists of three graphs,

3

4

1

2
+ +

41

32

1

2

3

4
∼ λ2

∫
d4k

k4
∼ λ2 ln Λ2

UV.
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The situation is similar to that in electrodynamics, and the renormaliza-
tion procedure is carried out in the same way. And, similarly, the ‘zero
charge problem’ appears: in both theories the renormalized coupling tends
to zero when the ultraviolet cutoff Λ is taken to infinity:

e2
c =

e2
0

1 + e20
3π ln Λ2

m2

, (1.19a)

λ2
c =

λ2
0

1 + λ2
0

4π ln Λ2

m2

. (1.19b)

In the QED context this was an ‘academic’ problem since the coupling
was small, e2

c � 1, and the real contradiction appeared at fantastically
large momenta and could be ignored. Not so when λ = O(1); the theory
becomes unreliable at low momentum scales p >∼ Λ ∼ m. Obviously, we
are unable to get any information from such a theory.

1.6.3 Four-fermion interaction

It would be nice to start constructing the theory from fermions, since
from fermions one can build bosons, but not vice versa. One can imagine
a quartic interaction between fermions, in analogy with the λϕ4 model
for scalars. The vertex may look as follows (Fermi interaction):

G1 2

34

F
= GF (ū2Ou1)(ū4Ou3),

where the operator O in each of the fermion brackets may contain Dirac
matrices, O ∝ 1, γμ, γ5γμ, σμν , etc. Here the coupling constant has a
negative mass dimension, [GF] = [m−2], so that the interaction grows with
energy, and the theory becomes non-renormalizable:

GF GF
∼ G2

F

∫
d4k

(k̂)2
∼ Λ2

UV.

1.6.4 A nucleon and a pion

Interaction between a fermion (nucleons) and a spinless field can be mod-
elled as ψ̄ψ ϕ:

k
p1 p2

= g
(
ū(p2)iγ5u(p1)

)
.
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(Here we have introduced in the vertex the factor iγ5 to match the fact
that the pion is a pseudoscalar.) In this theory nucleons interact via pion
exchange,

p
N

N

q
A = g2(ūiγ5u)

1
m2 − q2

(ūiγ5u).

The coupling g is dimensionless, and the essential divergences are just log-
arithmic. This is quite a nice theory, it differs from electrodynamics only
in that the π-meson field that carries the interaction between fermions,
unlike the photon, has a finite mass, mπ �= 0.

1.6.5 A nucleon and a vector meson

We can also make the nucleon interact with a massive vector meson field
Vμ, in a QED-like manner: ψ̄ γμ ψ Vμ.

k
p1 p2

= g
(
ū(p2)γμu(p1)

)
· eλμ(k),

with eλμ(k) the polarization vectors of the field V (λ = 1, 2, 3). However,
the situation here is potentially dangerous. Recall that the Green func-
tion of a massive vector field contains the term with momenta in the
numerator:

V

N

N

q
G(q) =

1
m2 − q2

(
−gμν +

qμqν
m2

)
.

We must ensure that the term qμqν/m
2 drops out in the physical ampli-

tudes, otherwise renormalizability of the theory would be lost. This is the
case in QED, owing to the conservation of the electromagnetic current.

Conservation of current makes electrodynamics with a massive photon
a perfectly legitimate renormalizable QFT, which construction can be
borrowed to model strong interaction of point-like protons and neutrons
with an electrically neutral vector meson. Such a theory would not be too
bad; it would cause no objection apart from the ‘zero-charge problem’
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that plagues it (together with the previously considered NNπ model).

l 2

Vm
0Vm

0

l
n              n

1

p  p . (1.20)

However, in reality neutral vector mesons occupy no special place in the
hadron world; charged mesons are plentiful and one sees no reason to
discriminate between them.

1.6.6 Charged vector mesons

Assume that we want to describe a charged meson. Let us consider three
vector mesons, V 0 and V ± (like a triplet of ρ-mesons), and discuss how
they might interact with p and n.

With the neutral meson V 0 everything is simple: it may be emitted
(absorbed) either by a proton or a neutron as shown in (1.20), with λ1

and λ2 the corresponding coupling constants.
How will a charged meson interact with nucleons? A negative parti-

cle can be absorbed by a proton, which will turn into a neutron when
absorbing a negative-charge meson V −, or emitting V +:

=
+

np

ll
np

Vm
. (1.21a)

Another possible process is absorption of V + (emission of V −) by a neu-
tron:

=

l l
pnn p

V +
m

. (1.21b)

Its amplitude is identical to that of (1.21a) if the theory is T -invariant.
(Thus we have in principle three different coupling constants: two for the
neutral meson in (1.20) and one for the charged, λ = λ′ in (1.21).)
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Now we have a look at the diagram for scattering of nucleons via V
exchange:

n

−
p

n p

n

q

m

V G(q) =
1

m2 − q2

(
− gμν +

qμqν
m2

)
.

Will the ‘bad term’ now disappear? Convolution of the nucleon vertex
with the meson momentum q = kn − kp produces

qμ ·
(
ūnγμup

)
= ūp(k̂n − k̂p)un = (Mn −Mp) ·

(
ūnup

)
�= 0,

where we have used the Dirac equation for the on-mass-shell nucleons,
(k̂ −M)u = 0. The result is not zero. And even if we set Mp = Mn in
zeroth approximation, this will not help in higher orders.

In the case of a neutral meson, electric charge of the fermion was pre-
served, and, as a result, the vector vertex of V 0 emission turned out to be
identical to the conserved electromagnetic current, ensuring qμAμ = 0. In
graphs with V ± emission this is no longer true.

Consider, for example, the elastic V −p scattering amplitude,

Mμν = n
V− V−

np p

q
m . (1.22)

We would like to have qμMμν = 0, with qμ the vector meson momentum.
In QED Compton scattering there were two graphs whose sum satisfied
this property:

+
m n

q
mn

q
.

In our new context, the second contribution is
absent: in a crossed diagram, an emission of V −

by a proton implies virtual exchange of a non-
existent doubly charged nucleon.

?++
p

V

+

We come to the conclusion that such a theory is always non-renormaliz-
able. There is, however, a beautiful way to correct the situation provided
by the Yang–Mills theories.
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V V+ −

V 0 An incorporation of a specially chosen three-
linear interaction between mesons allows one to
construct a renormalizable theory of massless
vector fields, mV = 0. By adding another scalar
field ϕ, vector mesons can be made massive,
mV �= 0, without losing the renormalizability.

This way the Glashow–Weinberg–Salam theory of weak interactions is
constructed, with scalar ‘Higgs’ providing masses to the intermediate vec-
tor bosons Z0 and W±.

We postpone the discussion of the dynamics of Yang–Mills fields to the
last lecture. Now let us turn to general features of relativistic particle
scattering.

1.7 General properties of S-matrix: unitarity and crossing

Can we learn anything about the strong interactions given that there is
no hope of employing perturbation theory?

Suppose we have some relativistic quantum field describing the objects
that interact strongly, with a large coupling constant g ∼ 1. In spite of
the inapplicability of the perturbative methods, there is nevertheless a
number of general statements that can be made.

1.7.1 S-matrix

First of all, in order to describe interaction processes we introduce the S-
matrix whose elements Sab quantify the transition from the initial state
a to some final state b,

S = I + i T ; Sab = δab + i Tab. (1.23)

Here I is a symbolic representation of the absence of interaction; δab means
that in the final state we find the incoming particles with unperturbed
momenta. T is called the reaction matrix and takes care of the interaction.
It contains the δ-function to ensure the energy–momentum conservation
and the product of the factors 1/

√
2p0 that originate from the relativistic

normalization of the wave functions of incoming (i) and outgoing parti-
cles (j):

Tab = (2π)4 δ4

⎛
⎝∑

i∈a
pi −

∑
j∈b

kj

⎞
⎠ ∏

i∈a

1√
2p0i

∏
j∈b

1√
2k0j

· Mab. (1.24)

So defined, the scattering amplitude Mab is Lorentz invariant. Typically,
the initial state consists of two particles with four-momenta p1 and p2.
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To obtain the probability of the reaction one squares (1.24). Dropping
the factor

(2π)4δ4(0) = V · T
which formally represents the full volume of the space–time, we get the
measurable probability density of the reaction. The wave function normal-
ization factors of the outgoing particles participate in forming the Lorentz
invariant phase space volume element of the final state,

dΓj =

(
1√
2k0j

)2
d3kj

(2π)3
=

d3kj

2(2π)3k0j
=

d4kj
(2π)4

· 2πδ+
(
k2
j −m2

j

)
,

(1.25)

where δ+ selects among the two solutions of the on-mass-shell condition
the positive energy (physical) one: k0j =

√
m2

j + k2
j . The initial state nor-

malization factors combine with the relative velocity of the incoming par-
ticles,

j ≡ |v1 − v2| =
∣∣∣∣ p1

p01
− p2

p02

∣∣∣∣ ,
to form the flux factor,

J = (
√

2p10)2(
√

2p20)2 · j = 4|p20p1z − p10p2z| , (1.26)

where we have chosen the direction z as the collision axis. The combina-
tion (1.26) is invariant under boosts along the z axis. Choosing the centre
of mass system of reference (cms) in which the incoming momenta are
equal and opposite, p1 = −p2 = (0, 0, pc),

pc = pc(s) =

√
s2 − 2s(m2

1 + m2
2) + (m2

1 −m2
2)2

2
√
s

=

√
(s− (m1 + m2)2)(s− (m1 −m2)2)

2
√
s

,

(1.27)

we get the Lorentz invariant flux

J = 4pc(s)
√
s. (1.28)

Finally, the differential cross section of the process p1, p2 → {kj} reads

dσ(a → b) ≡ 1
J
|Mab|2(2π)4δ4

(
p1 + p2 −

∑
j∈b

kj

)
· 1
[n!]

∏
j∈b

dΓ(kj).

(1.29)

Among n produced particles there may be identical ones. The symme-
try factor eliminates multiple counting of physically indistinguishable
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configurations produced by a permutation of identical particles. When
in the final state b there are ns particles of the type s,

1
[n!]

≡
∏
s

1
ns!

,
∑
s

ns = n.

1.7.2 Unitarity

The S-matrix (1.23) is unitary,

S S† = 1 =⇒ Tab − T †
ab = i

(
T T †

)
ab
,

or, deciphering a symbolic matrix multiplication,

1
i

(Tab − T ∗
ba) =

∑
c

Tac T
∗
cb . (1.30a)

If the interaction is invariant with respect to the time reversal, T , which
is the case for the strong interaction of hadrons, then the matrix S is
symmetric, Tab = Tba, and the unitarity relation (1.30a) takes the form

1
i
(Tab − T ∗

ab) = 2 ImTab =
∑
c

Tac T
∗
bc . (1.30b)

This expression implies an integration over momenta of all the particles in
the intermediate state c. Therefore, the symmetry factor is present on the
r.h.s. of (1.30), analogously to the differential cross section case (1.29).

In terms of the invariant amplitude M defined in (1.24),

Mab −M∗
ab

i
=

∑
n

1
[n!]

∫
Man({p}a; {k}n)M∗

bn({p}b; {k}n)

· (2π)4δ

(∑
pai −

n∑
�=1

k�

)
n∏

�=1

{
δ+

(
k2
� − m2

�

) d4k�
(2π)3

}
,

(1.31)

where {p} marks the set of momenta in the initial (a) and final states (b),
and {k}n – momenta of n intermediate state particles.

If we take a ≡ b, the ‘optical theorem’ emerges which relates the imag-
inary part of the forward scattering amplitude to the total cross section:

2 ImAaa = J · σa
tot. (1.32)
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1.7.3 Mandelstam plane for 2 → 2 scattering

Consider a two-particle interaction amplitude 1 + 2 → 3 + 4. How many

p1

p
2 p4

p3

Lorentz invariant variables characterize
the process? We have three momentum
four-vectors, that is 3 × 4 = 12 indepen-
dent components. Four on-mass-shell
conditions, p2

i = m2
i , one per each partici-

pating particle, leave us with 12 − 4 = 8.
Finally, we must subtract six parameters

(three rotations and three Lorentz boosts) which characterize the refer-
ence frame and do not affect the invariant amplitude, 8 − 6 = 2.

In a general case of the reaction n1 → n2, the counting goes as follows,

4(n1 + n2 − 1) − (n1 + n2) − 6 = 3(n1 + n2) − 10. (1.33)

For example, a 2 → 3 process depends on five independent Lorentz invari-
ant combinations of momenta.

A convenient way to characterize 2 → 2 processes is provided by the
Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2, (1.34a)

t = (p1 − p3)2 = (p2 − p4)2, (1.34b)

u = (p1 − p4)2 = (p2 − p3)2. (1.34c)

The variables (1.34) are not independent but satisfy an easy-to-verify
kinematic relation:

s + t + u =
4∑

i=1

m2
i . (1.35)

This relation makes it convenient to represent the kinematics of the pro-
cess on the Mandelstam plane, exploiting the property of an equilateral
triangle as shown in Fig. 1.1. Where is the physical region of the reaction

s

t

u

u = 0s 
= 

0

t = 0

Fig. 1.1 Mandelstam plane.
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on the Mandelstam plane? The meaning of the Mandelstam invariants
(1.34) is the most transparent in the centre-of-mass reference frame (cms)
of the reaction. Here p1 + p2 = 0, so that the variable s in (1.34a),

s = (p1μ + p2μ)2 ≡ (p10 + p20)2 − (p1 + p2)2 = (E1c + E2c)2 = E2
c ,

becomes the square of the total energy of the colliding particles.
t and u are invariant momentum transfers. In particular, t defined in

(1.34b) can be represented as

t = (p3μ − p1μ)2 ≡ (E3 − E1)2 − (p3 − p1)2

= (E3 − E1)2 − (p3 − p1)2 − 2p1p3(1 − cos Θ),

where pi = |pi| and Θ is the scattering angle:

cos Θ =
p1 · p3

p1p3
.

In the centre-of-mass frame, the moduli of three-momenta of the incoming
particles, p1 = p2 = pc, and of the produced ones, p3 = p4 = p′c, are given
by (1.27) as a function of the energy and of the masses of the particles in
the initial and final state, correspondingly.

In the case of elastic scattering when m3 = m1 and m4 = m2 (as, e.g.
in the reaction πN → πN), one has p3 − p1 = E3c − E1c = 0, and

t = −2p2
c(1 − cos Θc) . (1.36a)

If all the masses are equal, m1 = m2 = m3 = m4, then the cms expression
for the variable u (1.34c) becomes simple also:

u = −2p2
c(1 + cos Θc) . (1.36b)

In this case the physical region of the reaction 1 + 2 → 3 + 4,

s ≥ 4m2, t ≤ 0, u ≤ 0, (1.37)

is shown by the shaded area in Fig. 1.2.

1.7.4 Crossing symmetry

One and the same diagram can be viewed differently. Let us ‘rotate’ our
scattering diagram by 90o:

p4

p
2

p1

p3p1

p
2 p4

p3

t

t

s

s .
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t

s u

u = 0

s 
= 

4 m
2

t = 0

Fig. 1.2 Physical region of scattering of equal-mass particles.

The ‘new’ picture can be interpreted as an interaction between two par-
ticles with momenta p1 and −p3, producing particles p4 and −p2. To
make this interpretation valid, we must take the energy components of
the momenta p3 and p2 to be negative: p30 ≤ −m3 and p20 ≤ −m2. But as
you know, in the relativistic theory the propagation of a negative energy
particle 3 with a momentum p3 corresponds to the propagation of its an-
tiparticle (3̄) with the four-momentum p̄3 = −p3. Therefore, in this region
of momenta the very same diagram describes another physical process,
namely a collision between the particle 1 and the antiparticle 3̄ (having a
four-momentum p̄3 = −p3), which results in the production of particles 4
and 2̄ in the final state. This is called a t-channel reaction, since here the
invariant

t = (p1 − p3)2 = (p1 + p̄3)2 ≥ (m1 + m3)2 (1.38a)

has the meaning of the cms energy of colliding particles 1 and 3̄.
Analogously, in the region of momenta p40 ≤ −m4, p20 ≤ −m2 we ob-

tain the amplitude of a u-channel process, 1 + 4̄ → 3 + 2̄,

u = (p1 − p4)2 = (p1 + p̄4)2 ≥ (m1 + m4)2 . (1.38b)

Imagine that we have calculated the necessary diagrams and know the
scattering amplitude as a function of the invariants in the physical region
(1.37) of the reaction 1 + 2 → 3 + 4. If the amplitude were an analytic
function of its variables s and t, we would be able to analytically continue
the result into the physical region of either of the two crossing reactions
(1.38a) or (1.38b). As we will shortly see, this is indeed the case: the
analyticity is a direct consequence of causality.
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t = 4m2

s 
= 

4m
2

s 
= 

0 u

u = 4m
2

 = 0
t  = 0

3+41+23+2

2+41+3

1+4

Fig. 1.3 Physical regions of crossing reactions on the Mandelstam plane.

Therefore, one function describes three different scattering processes
that are related by crossing:

s-channel : 1 + 2 → 3 + 4, s = (p1 + p2)2 ≥ (m1 + m2)2;

t-channel : 1 + 3̄ → 2̄ + 4, t = (p1 + p̄3)2 ≥ (m1 + m3)2;

u-channel : 1 + 4̄ → 3 + 2̄, u = (p1 + p̄4)2 ≥ (m1 + m4)2.

Physical regions of the crossing reactions are displayed in Fig. 1.3 for the
simplest case of equal particle masses.

It is important to remember that the unitarity seriously restricts the
scattering amplitude. Moreover, these restrictions are different in each of
the three crossing channels. Thus, one function has to satisfy three specific
unitarity relations in complementary physical regions on the Mandelstam
plane.

In non-relativistic quantum mechanics an interaction is described by
means of a potential which can be chosen practically arbitrarily. Not so
in the relativistic theory. If we were to introduce here a notion of ‘rela-
tivistic potential’, the latter would be severely restricted by the unitarity
conditions in the cross-channels. This is a specifically relativistic feature
since the crossing itself is of relativistic nature.

In the next lecture we will demonstrate that the causality ensures that
the scattering amplitudes are analytic functions of momenta. An analytic
function is identified by its singularities. The structure of these singulari-
ties may be studied, as it turns out, with the help of a (formally senseless)
series of Feynman diagrams as if in the perturbation-theory framework.
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This statement holds even for strongly interacting objects, in which case
the very applicability of diagrammatic expansion is highly questionable.

Let us formulate straight away our main hypothesis:

Analytic properties of the exact amplitude coincide with those of the corre-
sponding perturbation-theory diagrams.

To check that, we shall show that all singularities of Feynman graphs
(their position, nature and strength) have a clear physical origin and
are closely related to unitarity. This statement does not depend on the
particular particle content of the theory or on specific properties of the
interaction. The only important thing is to have the input objects – bare
particles – to be point-like, that is to be included into some quantum field
theory (QFT) scheme.



2
Analyticity and unitarity

Firstly, we are going to show that the property of causality results in
analyticity of the scattering amplitude.

2.1 Causality and analyticity

Consider a four-point Green function A(x1, x2;x3, x4), where the space–
time points x1, x2 and x3, x4 lie in the remote past and future, corre-
spondingly. Let y1 (y2) mark the point where the incident particle 1 (2)
interacts for the first time, and y3 (y4) the point of the last interaction of
the particle 3 (4). Then

A(x1, x2;x3, x4) =

y y x

xyyx 4

31

2 4

31

2

x

=
∫

f(y1, y2, y3, y4)
{ 4∏

i=1

D(yi − xi) d4yi

}
.

(2.1)

Here D(y − x) describes the propagation of a free particle which we take
to be a scalar one since the spin play no rôle in the analysis that follows:

D(yμ − xμ) =
∫

d3p
(2π)3

∫
dp0

2πi
exp{−ipμ(y − x)μ}

m2 − p2 − iε
.

31
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For the time ordering y0 > x0, one closes the integration contour in energy
around the pole at p0 =

√
m2 + p2 in the lower half-plane, to obtain

D(yμ − xμ) =
∫

d3p
(2π)3

exp {−ipμ(y − x)μ}
2p0

=
∫

d3p
(2π)3

ψp(y) · ψ∗
p(x), y0 > x0.

For the final state particles we have x03 > y03, x04 > y04, and their prop-
agators take the form

D(yμ − xμ) =
∫

d3p
(2π)3

ψp(x) · ψ∗
p(y), x0 > y0.

Thus, the ‘truncated’ interaction amplitude f in (2.1) gets multiplied by
the product of the wave functions ψ of the incoming particles and of
the conjugate wave functions ψ∗ of the outgoing ones, evaluated at the
‘entry’ points y1, y2 and the ‘exit’ points y3, y4, correspondingly. The two-
particle interaction amplitude in the momentum space, M(pi), becomes
the Fourier transform:

M(pi) =
∫

f(y1, y2, y3, y4) e−i(p1y1+p2y2)+i(p3y3+p4y4)
∏

d4yi. (2.2)

An integral over the ‘centre of gravity’ of the four coordinates produces
the energy–momentum conservation condition, and we are left with three
integrations over the relative positions, yi − yk. For the sake of simplicity,
let us restrict ourselves to to the forward scattering case, p1 ≈ p3, p2 ≈ p4.
Then (2.2) reduces to

M =⇒ (2π)4δ(p1 + p2 − p3 − p4)
∫

eip1(y3−y1)f(y13; p2)d4y13, (2.3)

where we have singled out the dependence on one of the momenta, namely
p1. This is sufficient since, because of the Lorentz invariance, the ampli-
tude actually depends on the invariant energy, M(pi) = M(s),

s ≡ (p1 + p2)2 = m2
1 + m2

2 + 2m2E1,

which is proportional to the energy E1 of one of the incident particles in
the rest frame of the second one, E2 = m2.

Causality means that the function f in the integrand of (2.3) must have
the form

f(y) = ϑ(y0)ϑ(y2
μ) · f1(y) + f0(y), (2.4a)
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where f0 does not contribute to the scattering:∫
d4y f0(y) exp{ip1y} = 0. (2.4b)

Mark that the condition (2.4b) does not imply f0 ≡ 0, since it is only the
Fourier components with a physical momentum p1,

p1 =
(√

m2 + p2, p
)
,

that are required to vanish. How does such a decomposition emerge in the
field theory? The easiest way to arrive at (2.4) is to invoke the general
operator language.

The interaction amplitude in the coordinate space is related to the
time-ordered product of operators describing an absorption of a particle
in y1 and a creation of another one in the space–time point y3:

f(y3, y1) ∝
〈
T ψ(y3)ψ̄(y1)

〉
≡ ϑ(Δy0) · ψ(y3)ψ̄(y1) ± ϑ(−Δy0) · ψ̄(y1)ψ(y3)

= ϑ(Δy0)
[
ψ(y3)ψ̄(y1) ∓ ψ̄(y1)ψ(y3)

]
± ψ̄(y1)ψ(y3),

(2.5)

where Δy stands for the relative coordinate,

Δyμ = yμ3 − yμ1 .

Alternative signs ± in (2.5) and below correspond to bosonic and
fermionic operators, i.e. particles with integer and half-integer spin. For
the space-like intervals, that is when (Δy)2 < 0, by the virtue of causality
our operators (anti)commute, so that

f(y3, y1) ∝ ϑ(Δy0)ϑ((Δy)2) · f1 ± ψ̄(y1)ψ(y3) .

The latter piece (f0) is given by a simple (not T -ordered) product of
the two operators, which may be represented as a sum over all possible
intermediate states:

〈0| ψ̄(y1)ψ(y3) |0〉=
∑
n

〈0| ψ̄(y1)|n〉 · 〈n|ψ(y3)|0〉=
∑
n

|Cn|2 e−iPn(y1−y3).

Here we have explicitly extracted the coordinate dependence in terms of
the total intermediate state momenta, Pn. Substituting into the integral
for the scattering amplitude, (2.4a), we immediately get∑

n

∣∣C2
n

∣∣ ∫ d4y31 eip1y31 · eiPny31 ∝ δ(p0,1 + P0,n) = 0.

Vanishing of this contribution is due to the fact that both the incoming
particle and any physical intermediate state n have a positive energy. This
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conclusion derives from the stability of the vacuum: any excitation must
lie above the vacuum state, P0,n > 0.

Finally, we arrive at the integral representation for the amplitude,

M(E1) =
∫

d4y f1(y) · ϑ(y0)ϑ(y2
μ) eip1y =

∫
d3y
∫ ∞

√
y 2

dt eiE1(t−v1z)f1(y);

(2.6)

p1y ≡ E1t− p1 · y = E1 · (t− v1z),

where z is the coordinate projection on the direction of the momentum.
The theta-functions in (2.6) ensure that the phase of the exponent is
positively definite:

t > 0, t >
√

z2 + ρ2
⊥ ≥ |z| > |v1z| =⇒ (t− v1z) > 0 .

As a consequence, M(E1) ≡ M(s) is a regular analytic function in the
upper half-plane of complex energies E1. Indeed, if the integral (2.6) exists
(converges) for real values of the energy, it can be analytically continued
onto the upper plane, ImE1 > 0, where it converges even better due to
the additional exponentially falling factor, exp{−ImE1(t− v1z)}.

2.1.1 Causality and the polynomial boundary for M(s).

Let us reverse the logic now. The inverse Fourier transform reads

f(t) =
∫ +∞

−∞
dE e−iE tM(E).

If t < 0, by moving the contour onto the upper half-plane where (as we
have just established) M(E) is regular, we should get zero, to be in accord
with causality. This is the case provided the amplitude does not increase
exponentially along the imaginary axis:

|M(ImE → +∞)| < exp(γ ImE) for arbitrary γ > 0.

Otherwise, the exponentially decreasing factor exp(t · ImE) would not be
sufficient to guarantee the vanishing of the response at small but finite
negative times

−γ ≤ t < 0.

That is why, to be on the safe side, we will impose an additional restriction
on the scattering amplitude by bounding its possible growth with energy

|M(s)| < |s|N ,

with N some finite (though maybe large) power.
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2.2 Cross-channel singularities of Born diagrams from
s-channel point of view

We will employ for simplicity the QFT model scalar particles with a λϕ3

interaction. This is the simplest example of a renormalizable theory and,
though not without a defect (it has no ground state – a stable vacuum),
it is well suited for the qualitative analysis of singularities of scattering
amplitudes.

Let m and λ be the renormalized mass and interaction constant. We
consider a four-particle amplitude characterized by the Mandelstam vari-
ables s, t, u:

p
1

p
2

p4

p
3

s = (p1 + p2)2;

t = (p1 − p3)2; s + t + u = 4m2,

u = (p1 − p4)2.

What sort of singularities will we encounter at each order of perturbation
theory? In the Born approximation we have three poles, in each of the
Mandelstam invariants,

=
λ2

m2 − s
, =

λ2

m2 − t
, =

λ2

m2 − u
. (2.7)

Before moving further we will first discuss the meaning of these poles.

2.2.1 Pole in energy

The first one is the pole in the invariant collision energy s. Recall quantum
mechanics. Here the amplitude of elastic scattering of a particle with
initial momentum p, |p| = |p′| =

√
2mE, has the following representation

in terms of the potential V and the incoming state wave function:

f(E,q) = −2m
4π

∫
d3r′ e−ip′·r′

V (r′)ψp(r′), (2.8)

with q = p′ − p the momentum transfer.
In order to extract the energy dependence we are after, we invoke the

Green function of the stationary Schrödinger equation:

(Ĥ − E)GE(r′, r) = δ(r′ − r);

GE(r′, r) =
∑
n

ψn(r′)ψ∗
n(r)

En − E
; Ĥψn = Enψ(n),
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where En are the exact energy levels of the system. Now we express the
exact wave function ψp(r′) as

ψp(r′) = eip·r
′ −
∫

d3r GE(r′, r)V (r) eip·r,

and substitute into (2.8) to derive

f(E,q) = −2m
4π

[
V (q) −

∑
n

1
En − E

×
(∫

dr e−ip′ rV (r)ψn(r)
)(∫

dr′ eipr′
V (r′)ψ∗

n(r′)
)]

= fB +
∑
n

Cn(p)C∗
n(p′)

En − E
.

(2.9a)

Here the Born scattering amplitude fB,

fB(q) = −2m
4π

∫
d3r e−iq·rV (r), (2.9b)

depends only on the momentum transfer q, while the dependence on the
energy is contained in the sum over intermediate states n. If the system
possesses a bound state – a discrete energy
level En – its contribution to the amplitude
can be depicted as a diagram with 1/(En − E)
as the ‘propagator’ of the state n, and C as the
‘coupling constant’. Thus, in non-relativistic

CC
n

*

quantum mechanics a pole in energy corresponds to scattering via an
intermediate state related to a discrete energy level. In the relativistic
theory two particles can transfer into one, and it is this particle which
plays the rôle of such an intermediate state.

2.2.2 Pole in momentum transfer

Having understood the physical meaning of the pole in s, we could repeat
the same consideration in the crossing channels where t and u play, cor-
respondingly, the rôle of energy, and thus would make sense of the two
other poles in (2.7).

Still, what is the meaning of these poles from the s-channel point of
view? The Mandelstam variable t measures the momentum transfer (for
elastic scattering with p0 = p′0, t = −q2). Are there singularities in the
momentum transfer in quantum mechanics? Let us examine the Born
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scattering amplitude (2.9b),

fB(q) ∝
∫

d3r e−iq·rV (r).

It develops a singularity at a point where the integral diverges when we
continue q onto the complex plane. If the potential has a power tail,

V (r) ∝ r−n, r → ∞,

this happens for an arbitrary small value of Im q �= 0. This means that
the singularity emerges at t = 0. By dimensional consideration,∫

d3r

rn
∼ r−n+3 =⇒ qn−3,

for n = 1, 2 it is a pole; for an integer n ≥ 3 it is a logarithmic singularity.
It becomes clear that in order to have a singularity at some finite t = m2,
as this is the case of the amplitude (II) in (2.7), the potential has to fall
exponentially at large distances. More precisely, it is the Yukawa potential,

V (r) =
A

r
e−mr, (2.10a)

whose Fourier image as we saw in the previous lecture gives the pole
amplitude, see (1.8),

fB ∝ A

m2 + q2
≡ λ2

m2 − t
. (2.10b)

We conclude that the relativistic Born amplitude (II) in (2.7) corresponds
to a definite potential (Yukawa) with a definite strength (A = λ2) and a
definite sign (attraction).

Thus, singularities in momentum transfer are related to the interaction
radius. Let us remark that our ‘strong interaction potential’ V has a finite
radius r0 = 1/m owing to our basic supposition that all hadrons have non-
zero masses.

2.2.3 Exchange potential

Finally, what is the pole in u?
The diagrams (II) and (III) in (2.7) differ by the exchange of final

particles (momenta p3 and p4). In the non-relativistic quantum mechanics
the exchange potential is a well known object:

V (ex)(rik) = V (rik) · Pik,

with Pik the particle permutation operator. Thus, the diagram (III) deter-
mines the exchange potential which in our case coincides with the direct
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one: the sum of the diagrams (2.7) automatically takes care of the identity
of our scalar particles (Bose statistics).

2.3 Higher orders

In higher orders Feynman diagrams become more and more complex. In
the second order in λ2, we will have graphs like

  + . . . + + . . . + + . . .  (2.11)

(where the dots stand for the diagrams of the same type with the external
lines transmuted). The first diagram seems to have a double pole in t.
However, this ‘self-energy insertion’ into the propagator line modifies the
particle mass, while we wanted m2 to represent the true physical mass
of the particle in the Green function (m2 − t)−1. Therefore a subtraction
has to be made,

1
m2 − t

Σ(t)
1

m2 − t
=⇒ 1

m2 − t

[
Σ(t) − Σ(m2)

] 1
m2 − t

,

after which the double pole disappears.
Moreover, the simple pole in t is effectively absent too. Indeed, by ex-

panding the subtracted self-energy blob one step further,

Σ(t) − Σ(m2) = (t−m2) · Σ′(m2) + Σc(t),

we observe that the term proportional to Σ′(m2) must be dropped too,
as modifying the value of the on-mass-shell coupling constant λ2 in the
corresponding t-channel Born diagram of (2.7). Since Σc(t) ∝ (t−m2)2,
the remaining contribution is finite. In the same way, the t-channel prop-
agator pole cancels in the second (vertex correction) diagram of (2.11).

The remaining last (‘box’) graph in (2.11) has no poles either.
The fact that the second-order diagrams do not possess pole singulari-

ties does not mean that higher orders do not modify analytic properties
of the amplitude. Far from that. This becomes immediately clear if we
look at the unitarity condition for the elastic scattering amplitude:

2 ImMaa =
∑
c

MacM
∗
ac = . (2.12)
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Fig. 2.1 Product of the Born amplitudes in the unitarity condition.

If in the r.h.s. we substitute the Born amplitude M = O
(
λ2
)
, see Fig. 2.1,

then on the l.h.s. of the equation we will have ImM of the order of λ4. This
shows that starting from the second order in λ2, the scattering amplitude
must be complex above the two-particle threshold, s > 4m2.

Among the products of the diagrams on
the r.h.s. of the unitarity condition (2.12),
there is a square of the s-channel Born graph.

s

Let us examine the corresponding second-order diagram to see where the
complexity comes from.

2.3.1 Two-particle thresholds

Consider the second-order diagram

s
p                   pk

(2.13)

Looking for the origin of the complexity, we can drop the real pole factors
and concentrate on the loop integral:

Σ(s) =
1
2!

∫
d4k

(2π)4i
λ2

(m2 − k2 − iε)(m2 − (p− k)2 − iε)
,

(with 1/2! the symmetry factor characteristic for the loop of two identical
particles). In the complex plane of the k0 variable, singularities of the
integrand are positioned at

k0 = ±
√
m2 + k2 ∓ iε, (2.14a)

k0 = p0 ±
√
m2 + (p − k)2 ∓ iε. (2.14b)

The Feynman iε prescription displaces the poles from the real axis to tell
us on which side of the singularity the contour passes.
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(a) (b)

k0

Fig. 2.2 Transformation of the k0 integration contour; s < 0.

Consider the two cases.

s < 0. In this case we can always find a reference frame such that p0 = 0,
so that the pairs of the poles (2.14) are placed symmetrically around
the imaginary axis, as displayed in Fig. 2.2(a). In this situation we can
turn the integration path as on Fig. 2.2(b). Introducing a new integration
variable, k0 = iκ, the self-energy becomes

Σ(−p2) =
1
2!

∫
d3k

(2π)3

∫
dκ

2π
λ2

(m2 + κ2 + k2)(m2 + κ2 + (p − k)2)
,

where we have dropped the iε terms since the denominators vanish
nowhere in the integration region. The answer is obviously real valued.

s > 0. Now, contrary to the previous case, we can choose the frame p = 0:

k0 = ±
√

m2 + k2 ∓ iε,

k0 = ±
√

m2 + k2 + p0 ∓ iε.

With p0 > 0 and increasing, the second pair of poles will move to the
right, and at some point the trailing pole of the second pair will collide
with the leading pole of the first one:

−
√

m2 + k2 + p0 =
√

m2 + k2 .

Two poles pinch the contour, and the integral becomes complex.

k0

(2.15)
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Since we are integrating over k, this happens for the first time at

s = 4m2 ≤
(

2
√
m2 + k2

)2

. (2.16)

This is the value of s corresponding to the two-particle energy threshold.
It is straightforward to calculate the imaginary part of the self-energy

graph in (2.13). To this end we close the contour around the two poles on
the upper half-plane in (2.15) and look at the contribution of the pinching
one at k0 = p0 −

√
m2 + k2:

Σ(p2
0) =

1
2!

∫
d3k

(2π)3
· 1
2(p0 −

√
m2 + k2)

· λ2

m2 + k2 − (p0 −
√
m2 + k2)2 − iε

+ real,

where the first factor is the residue, 2k0, and the second – the remaining
Green function. Using

Im
1

a− iε
= πδ(a),

we obtain

2 Im Σ(p2
0) =

λ2

2!p0

∫
d3k

2(2π)2
√
m2 + k2

· δ
(
2
√

m2 + k2 − p0

)
. (2.17)

As expected, the integral has a non-vanishing support only when p0 > 2m,
cf. (2.16). The fact that the amplitude becomes complex means that in
the complex plane of the energy variable s = p2

0 it has a branch cut which
starts at s = 4m2 and runs to infinity. This is the threshold singularity
corresponding to the production of two particles with equal masses m.

The integral (2.17) is easy to calculate; the calculation produces nothing
but the phase-space volume for the production of two real particles with
an aggregate four-momentum p, see (1.25). This is straightforward to see
if we recast the answer in the Lorentz covariant form as

2 Im Σ(p2) =
λ2

2!

∫
d4k

(2π)4
2πδ+((p− k)2−m2) · 2πδ+(k2−m2). (2.18)

We conclude that in order to calculate 2 Im Σ(p2) one simply has to ‘cut
through’ the diagram (2.13) and replace in the Feynman expression for
the amplitude each cut propagator by (double) its imaginary part,

1
m2 − k2 − iε

=⇒ (2πi)δ+
(
k2 −m2

)
.
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s ≥ 4m 2 4m 2t ≥ 

Fig. 2.3 The second-order box graph having branch cuts both in s and t.

This rule is in a perfect accord with the unitarity condition formally
applied to the 1 → 1 transition via a two-particle intermediate state (take
n = 2, Mac = M∗

bc = λ in (1.31)), and can be used to calculate imaginary
parts of arbitrary diagrams.

When cutting a diagram in order to find its imaginary part, one must
make sure that the two graphs that emerge correspond to a real phys-
ical process. For example, the diagram with the self-insertion into the
t-channel particle exchange can be cut into two as

s t .

From the point of view of the s-channel, this looks like squaring an am-
plitude of the decay of the incoming particle into three, which process is
kinematically forbidden. On the other hand, in the t-channel these very
subgraphs correspond to a legitimate 2 → 2 scattering process, so that
this cut describes the t-channel two-particle threshold and makes the am-
plitude complex for t > 4m2.

Another example. Contrary to the self-energy insertion graph, the ‘box’
in Fig. 2.3 can be legitimately cut both in the s- and t-channels and
therefore possesses two branch cuts. Another second-order graph – the
‘crossed box’ – shown in Fig. 2.4 has the same t threshold but cannot be
cut in the physical region of the s-channel, since such a division would
correspond to two-body decays of incoming particles. At the same time, it
can be cut in the u-channel describing the 14̄ → 32̄ transition. If we keep
t fixed and study analytic properties of the amplitude as a function of s,
the u-channel threshold at u = 4m2 will manifest itself as another branch
cut in s = 4m2 − u− t which starts at s = −t and runs to the left.
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u ≥ 4m 2

Fig. 2.4 The crossed box graph having branch cuts in t and u. Arrows mark
the direction of the positive energy flow.

t = 0

t = 4m2

u = 4m
2

u = m
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s 
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m
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s 
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4m
2

u s

t

Fig. 2.5 Singularities of the second order amplitude on the Mandelstam plane.

2.3.2 Scattering amplitude as a function of s

Nine cut diagrams contained in Fig. 2.1 describe the imaginary part of
the full two particle scattering amplitude in the order λ4, due to the s-
channel threshold. The same diagrams with permuted external particles
give t- and u-channel complexities.

Thus, the amplitude on the Mandelstam plane is real inside the triangle
marked by the dotted lines on Fig. 2.5. By fixing the variable t at some
value in the interval 0 ≤ t ≤ 4m2, the regions where the amplitude is com-
plex are displayed by two bold lines on Fig. 2.6. The physical s-channel
scattering amplitude A(s) is defined for s ≥ 4m2 and is given by the value
of the invariant amplitude on the upper side of the right cut, Im s =→
+ i0. Since for a fixed t we have s + u = const., the physical u-channel
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s

t 3m2 − t      4m2 −

A
(s)

A
(u)

m 2

Fig. 2.6 Analytic structure of the amplitude in the complex s-plane and the
definition of physical amplitudes of the s- and u-channel reactions.

amplitude A(u) that describes the process 14̄ → 32̄ one obtains by ap-
proaching the left cut from below Im s → −i0, Reu > 4m2 (see Fig. 2.6).

As we have learnt, due to causality, A(s) is a regular function in the
upper half-plane of the invariant energy s. Analogously, the lower half
of the s-plane is free of any singularities as well, thanks to the causality
property of the u-channel reaction (which makes the amplitude A(u) regu-
lar for Imu > 0). Moreover, since the upper and the lower half-planes are
analytically connected through a finite interval on which the amplitude
is real, we conclude that the invariant amplitude is an analytic function
on the entire complex s-plane apart from two poles and two branch cuts
originating from two-particle thresholds.

In higher orders there appear higher thresholds, and related additional
branching points, due to multi-particle thresholds in the intermediate
states of the s- and u-channel reactions:

s s0 =

(
n∑

i=1

mi

)2

→ n2m2. (2.19)

2.3.3 Dispersion relation

Once the imaginary part of the analytic function is known, we can restore
its real part using the dispersion relation. We write a Cauchy integral
around a point s in the complex plane where the amplitude is regular,∫

C

dz

2πi
A(z)
z − s

= A(s) ,

and then inflate the contour to embrace the singularities of the amplitude
A(z) in the z plane, as shown in Fig. 2.7. If the function falls on the
large circle, |z| → ∞, we obtain s and u poles inherited from the Born
amplitude, and a sum of integrals of the discontinuity across the right
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C

z
s

Fig. 2.7 Integration contour in the dispersion relation for the amplitude A(s).

and left branch cuts:

ImsA ≡ 1
2i

[
A(s + i0, t) −A(s− i0, t)

]
, s > 4m2, (2.20a)

ImuA ≡ 1
2i

[
A(u + i0, t) −A(u− i0, t)

]
, u > 4m2. (2.20b)

The piece of the Born amplitude responsible for t-channel particle ex-
change, λ2/(m2 − t), does not fall with s. Therefore in order to eliminate
the contribution of the large circle, one has to use the dispersion relation
with one subtraction, that is to apply the Cauchy theorem to the function

A(s) −A(0) =
∫
C

dz

2πi

[
A(z)
z − s

− A(z)
z

]
=

s

π

∫
C

dz

2i
A(z)

z(z − s)
.

The s-independent piece then hides in the subtraction term A(0, t). By
combining this result with a complementary information coming from the
t channel, we can restore the full second-order amplitude O

(
λ4
)

from the
Born one, O

(
λ2
)
. In principle, one can move further, order by order, and

recursively build up full interaction amplitudes by exploiting unitarity in
the cross-channels and analyticity.

It is worthwhile to mention that if the Born amplitude happens to
increase too fast with energy, the subtraction trick fails to work (as it
happens, e.g. in electrodynamics with an anomalous magnetic moment
interaction vertex term Γμ ∝ σμνq

ν). The number of arbitrary subtrac-
tion constants grows with the order of the perturbative expansion, which
manifests, in the dispersive theory language, the non-renormalizability of
the underlying interaction.

The dispersive programme was found indeed to be rather effective in
quantum electrodynamics. There were times when it was being enthusi-
astically explored as a possible way of constructing the theory of hadrons
without knowing the internal structure of the interaction. An attractive
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feature of such a scheme is that it operates only with experimentally ac-
cessible physical quantities – on-mass-shell amplitudes.

2.4 Singularities of Feynman graphs: Landau rules

Now we have to address an essentially technical problem, namely how to
find singularities of arbitrary Feynman diagrams, and how to determine
their position and character.

2.4.1 Position of singularities

Consider a diagram containing n internal lines with four-momenta k1,
k2, . . . , kn which may be expressed as linear combinations of the external
momenta pj and the integration momenta qm:

ki =
�∑

m=1

bimqm +
∑
j

cijpj , (2.21)

where bim are either 1 or 0. The number of the independent integration
contours (loops) � is a function of the topology of the given diagram.

The Feynman integral corresponding to our diagram has the structure

An� =
∫

d4q1 d
4q2 · · · d4q�

[(2π)4i]�
1

(m2
1 − k2

1)(m
2
2 − k2

2) · · · (m2
n − k2

n)
. (2.22)

We need to find the conditions under which this integral becomes singular
in external variables sik = (pi + pk)2 – Lorentz invariants formed by four-
momenta of the external particles.

It is worthwhile to stress that for the case of particles with higher spins,
matrices and different powers of momenta would appear in the numer-
ator of the integrand. This, however, would not affect the singularities
of the amplitude which depend exclusively on the structure of the scalar
denominator in (2.22).

To study the appearance of singularities it is convenient to use the
trick invented by R. Feynman in order to get rid of multiple four-vector
integrations. Applying to the denominators ai = m2

i − k2
i in (2.22) the

Feynman identity

1
a1a2 · · · an

=
1
n!

∫
αi≥0

dα1 dα2 · · · dαn

(α1a1 + α2a2 + · · · + αnan)n
δ
(
1 −

n∑
i=1

αi

)
,
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which is not difficult to prove by induction, we get

An� =
∫

d4q1 · · · d4q�

[(2π)4i]�

∫ 1

0

dα1 dα2 · · · dαn
n δ

(
1 −

n∑
i=1

αi

)
, (2.23)

where

= ({α}, {p}; {q}) ≡
n∑

i=1

αi(m2
i − k2

i ). (2.24)

The integrand in (2.23) depends analytically on the integration variables;
the vanishing of the denominator inside the integration region, = 0,
is the only potential source of singularities.

Substituting the decomposition (2.21), the characteristic function
of (2.24) becomes an inhomogeneous quadratic form. This form can be
diagonalized by an orthogonal transformation:

(α, p; q) = Δ(α, p) −
�∑

m=1

δm · q̃2
m, δm = δm(α) > 0, (2.25)

with q̃ = {q̃m} the set of new integration momenta.
In (2.25) Δ = Δ(α, sik) is a function of invariant energies sik. Let us

start from the kinematical domain where all these invariants are negative,
sik < 0. (This is easy to achieve by taking all the energy components
pj = 0 in some reference frame.) Then the energy integrations can be
transformed as we did above when we studied the self-energy graph,

q̃0m = iκm,
d4q̃m
(2π)4i

=
dκm d3q̃m

(2π)4
≡ d4Qm

(2π)4
.

The expression for the denominator becomes positively definite,

=
∑
i

αi

(
m2

i +
[∑

κs
]2 + k2

i

)
= Δ(α, sik) +

�∑
m=1

δm
[
κ2
m + q̃2

m

]
,

and consequently the integral (2.23) yields a regular, real amplitude An�.
Rescaling the Q variables, the integral can be evaluated as

An� =
∫ 1

0

δ(1−Σα)
∏

i dαi

(2π)4�

∫
d4Q1 d

4Q2 · · · d4Q�

[Δ +
∑�

m=1 δmQ2
m]n

=
∫ 1

0

δ(1−Σα)
∏

i dαi∏�
m=1 δ

2
m(α)

· 1[
Δ(α, sik)

]n−2�
× [number].

(2.26)
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As a function of the integration momenta q̃, has a minimum at q̃m = 0.
At this point = Δ, which permits us to determine Δ from the equation

Δ(α, sik) = (α, p, q(0)), (2.27a)

where {q(0)} is the position of the extremum of , simultaneously in 4�
integration variables:

∂ ({q})
∂qk

∣∣∣∣∣
{q}={q(0)}

= 0, k = 1, 2, . . . , �. (2.27b)

Now we start changing sik to see when (2.26) becomes singular. We are left
with n− 1 integrations over Feynman parameters 0 ≤ αi ≤ 1 restricted
by the condition 1 −∑n−1

i=1 αi = αn ≥ 0. An equation Δ(α, sik) = 0 deter-
mines a surface in the n-dimensional space of αs. A singularity appears
when this surface touches for the first time the integration domain.

For each variable αi this can happen in two ways: either a zero of Δ
collides with the endpoint of the integration interval, αi = 0, or two zeroes
simultaneously arrive from the complex plane and assume a common real
value inside the interval, αi > 0:

αi = 0, or
dΔ
dαi

= 0, i = 1, 2, . . . , n− 1. (2.28)

By virtue of (2.27b),

dΔ(α; q(0))
dαi

=
∂

∂αi
+
∑
k

∂

∂qk

dq
(0)
k

dαi
=

∂

∂αi
. (2.29)

Moreover, since , by its definition (2.24), is a homogeneous linear func-
tion of αs,

=
n∑

i=1

αi
∂

∂αi
. (2.30)

By successively applying equations (2.27a), (2.30), (2.29) and (2.28) to
the point Δ = 0, we derive

0 = Δ = =
n∑

i=1

αi
∂

∂αi
=

n−1∑
i=1

αi
dΔ
dαi

+ αn
∂

∂αn
= αn

∂

∂αn
.
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Finally, the condition for the appearance of singularity reads

∂

∂qk
= 0, k = 1, 2, . . . , �; (2.31a)

∂

∂αi
= 0 (or αi = 0), i = 1, 2, . . . , n. (2.31b)

Equations (2.31b), combined with (2.30), guarantee that in this point
= 0, so that we need not watch the relation = Δ = 0 anymore.

The relations (2.31) together with the restriction
∑

αi = 1 impose 4� +
n + 1 conditions on 4� + n variables qk and αi. This means that a solution
may exist only for specific values of external momenta. The corresponding
equation f(sik) = 0 determines the ‘Landau surface’ for the position of a
singularity of the amplitude in the space of invariants sik. This equation
may be resolved, e.g. to determine the position of a singularity in the
invariant energy s for fixed momentum transfer variables: s = s0(t, u, . . .),
or vice versa.

Consider some closed contour inside the diagram:

7

k6
q1 +

q1 k6 k7+ +

k5

k6

k7
k8

k2
k1

k3
k4

65

8

q1

Introducing the loop momentum q1 = k1 and applying the first extremum
condition (2.31a),

∂

∂q1

(
α1q

2
1 + α2(q1 + k6)2 + α3(q1 + k6 + k7)2 + α4(q1 − k5)2

)
= 0,

we obtain a system of linear equations stating that

∑
i

αik
μ
i = 0 along each loop. (2.32a)

(It resembles Kirchhoff current law equations for electric circuits, with
momentum ki playing the rôle of the current, and αi that of resistance.)
In addition, the second condition (2.31b) tells us that each line either
has to have an on-mass-shell momentum or should be dropped from
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consideration (short-circuited):

k2
i = m2

i or αi = 0 . (2.32b)

Let us consider some examples.

2.4.2 Threshold singularities

We first take the diagram which has a two-particle threshold singularity,
in order to see how the Landau equations (2.32) reproduce the result that
we have already learnt.

p

S
k

2

k
1

k
2

k
1

The Landau condition

α1k1 + α2k2 = 0 (2.33)

shows that the energy components of the momenta k1 and k2 have opposite
signs (αi > 0), so that the singularity we are looking for corresponds
physically to the decay of the external particle p into two.

Our elementary loop is too simple to sustain reduction (putting one of
αs to zero), so the pinch singularity remains the only option:

k2
1 = m2

1 , k2
2 = m2

2 ; αi > 0.

Projecting (2.33) onto ki we obtain a system of linear equations for α1

and α2,

α1k
2
1 + α2(k1k2) = 0

α1(k1k2) + α2k
2
2 = 0,

(2.34)

whose determinant must be zero for a solution to exist. Substituting

2(k1k2) = k2
1 + k2

2 − (k1 − k2)2 = m2
1 + m2

2 − p2 ,

we obtain the solvability condition for the system (2.34) in the form

Det = m2
1m

2
2 −

1
4
(
m2

1 + m2
2 − p2

)2 = 0 ,

that is,

(p2 − (m1 + m2)2) · (p2 − (m1 −m2)2) = 0 .

Only one of the two possible solutions,

p2 = (m1 + m2)2,
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satisfies the condition αi > 0 (one has to have (k1k2) < 0 in (2.34)).
We conclude that the singularity emerges when the mass of the initial
object (invariant energy s of the system) exceeds the threshold value
m1 + m2 sufficient for a real decay into two particles m1 and m2 to take
place.

2.4.3 Anomalous singularity and deuteron form factor

Now take a diagram with three lines in the loop:

s

p2

a3 a1

a2

p1

This graph can be reduced to a simpler one by setting one of αs to zero.
For example, such a reduction

s

p2

p1

a1

a3  = 0

a2

gives us back the threshold singularity at s = (m1 + m2)2. If we choose
to nullify another Feynman parameter, e.g.

s
2a

a3
p

2

p

= 01

1

a

the emerging singularity at p2
1 = (m2 + m3)2 has nothing to do with the

energy s but corresponds to the situation when the external particle p1 is
unstable (acquires a ‘complex mass’).

Let us look for a genuine singularity of the triangle diagram that cor-
responds to three on-mass-shell lines:

α1k
2
1 + α2(k1k2) + α3(k1k3) = 0 ,

α1(k1k2) + α2k
2
2 + α3(k2k3) = 0 ,

α1(k1k3) + α2(k2k3) + α3k
2
3 = 0 .

(2.35)
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We take masses of the internal particles to be the same,

k2
1 = k2

2 = k2
3 = m2,

and, at the same time, allow the virtual momenta of external particles to
be different. For the sake of simplicity we take two of them equal,

p2
1 = p2

2 = M2 , p2
3 = Q2 ,

and look for a singularity in the virtuality Q2:

p1
p2

p3

k1
k2

k3

Q

MM

m         m

m

(2.36)

Kinematical relations between internal and external momenta result in

(k1k2) = 1
2

[
k2

1 + k2
2 − (k1 − k2)2

]
= m2 − 1

2Q
2 ,

(k1k3) = (k2k3) = m2 − 1
2M

2.
(2.37)

Bearing in mind that αi > 0, from the last line of the system (2.35),

(α1 + α2) ·
(
m2 − 1

2M
2
)

+ α3m
2 = 0 ,

we derive the necessary condition for the existence of singularity:

M2 > 2m2 . (2.38)

Substituting (2.37) into (2.35), the characteristic equation follows:

0 = Det

⎡
⎢⎣ m2 m2 − 1

2Q
2 m2 − 1

2M
2

m2 − 1
2Q

2 m2 m2 − 1
2M

2

m2 − 1
2M

2 m2 − 1
2M

2 m2

⎤
⎥⎦

= 1
2Q

2 ·
[
m2
(
2m2 − 1

2Q
2
)
− 2(m2 − 1

2M
2)2
]
.

(2.39)

We obtain the so-called ‘anomalous singularity’ positioned at

Q2
0 = 4M2

[
1 −
(
M

2m

)2
]
. (2.40)

The graph (2.36) describes the scattering of an object of mass M with
momentum transfer p2

3 = Q2. If this object is stable (M < 2m), the sin-
gularity (2.40) lies at Q2

0 > 0, that is outside the physical region of the
scattering reaction. However, if the ‘mass defect’ is small, 2m−M � M ,
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the singularity may occur very close to the physical region, t = Q2 ≤ 0,
in which case it would strongly affect the behaviour of the amplitude. A

D

pp
n

 

g

D

physical example is provided by a
deuteron D – the lightest nucleus,
a loosely bound state of a proton
and a neutron, with the graph (2.36)
describing, e.g. the electromagnetic
electron–deuteron scattering:

MD − (mp + mn) = ε � m (m = mp � mn).

In non-relativistic quantum mechanics, the electron scattering amplitude

f(q) =
e2

q2
F (q)

is proportional to the form factor F (q), given by the Fourier component
of the distribution of electric charge inside the nucleus:

F (q) =
∫

d3r ψ2(r) eiq·r, F (0) = 1. (2.41)

Here ψ is the proton wave function inside the deuteron:

ψ(r) ∝ e−r
√
εm,

with ε the binding energy. Expanding (2.41) at small momentum transfer,

F (q) = 1 − q2

∫
d3r

r2

2
ψ2(r) + O

(
q4
)
� 1 − q2

〈
r2
〉

2
,
〈
r2
〉
∼ (εm)−1,

we see that the amplitude starts falling at characteristic momentum trans-
fers of the order of the inverse deuteron radius.

On the other hand, in the relativistic-theory framework we have dis-
cussed that the interaction radius is determined by the t-channel singu-
larities. If the triangle amplitude as a function of t = Q2 had the normal
threshold at Q2 = 4m2 �

〈
r2
〉−1 as the closest singularity to the physical

region, this would contradict the non-relativistic expectation for a loosely
bound large-size system. It is the anomalous singularity (2.40),

Q2
0 � 16m · ε � m2,

that is responsible for a fast decrease of the elastic form factor with mo-
mentum transfer and reconciles the two approaches.

If, having started from the vicinity of 2m, we decrease the mass M of
the external particle down to M =

√
2m, the position of the anomalous

singularity Q2
0(M) reaches its maximum, where it hits the two-particle

threshold branch point, Q2
0 = 4m2, and disappears from the physical sheet

of the amplitude, diving under the branch cut.
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Thus, the anomalous singularity is present only inside a specific interval
of masses, 2m2 < M2 < 4m2. In particular, it is absent when masses of
all (external and internal) particles are the same (as in the λϕ3 theory).

2.4.4 When imaginary part acquires imaginary part

For the last example consider the diagram with four internal lines:

t

s

p
1

p
3

p
4

a

a

1

2

a3

4a

a 1 =  a 2 =  0 a1 =  a 3 = 0 a2 =  a 4 =  0 

1

2

3

4p
2

By setting to zero two neighbouring α parameters, we get a singularity
in the virtual mass of one of the external particles; setting α1 = α3 = 0
reproduces the s-channel two-particle threshold, and α2 = α4 = 0 – the
corresponding t-channel singularity.

The reduction of one line leads us back to the triangle graphs which,
as we already know, may possess anomalous singularities.

Let us examine a new genuine singularity of the box graph corre-
sponding to αi �= 0. Taking for simplicity all the masses to be equal,
p2
i = k2

i = m2, for the products of internal momenta we have

k4

k2
p1 p3

p4

k1 k3

p2

2k1k2 = 2k2k3 = 2k3k4 = 2k4k1 = m2 ;

2k1k3 = 2m2 − t , 2k2k4 = 2m2 − s .
(2.42)

The system of Landau equations can be simplified using the symmetry
of the solution following from the structure of the graph itself: α3 = α1,
α4 = α2. Then the 4 × 4 system reduces to

α1 · (m2 + k1k3) + α2 · 2k1k2 = 0,

α1 · 2k1k2 + α2 · (m2 + k2k4) = 0.

Evaluating the determinant,

Det = (m2 + k1k3)(m2 + k2k4) − 4(k1k2)2 = 0,

and using the kinematical relations (2.42) we obtain the equation for the
Landau surface in the form

(s− 4m2)(t− 4m2) = 4m4. (2.43)
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t = 4m2

s 
= 

4 
m

2

s channel

t channel

Fig. 2.8 Landau curve of the ‘s–t’ box graph on the Mandelstam plane.

On the Mandelstam plane, it is a hyperbola (known as a Karplus curve),
limited by the asymptotes s = 4m2 (t = ∞) and t = 4m2 (s = ∞). This
curve is lying in the unphysical domain, ‘between’ the physical regions of
s- and t-channel reactions, see Fig. 2.8. But for s > 4m2, as well as for t >
4m2, the amplitude is already complex due to the threshold singularities.
Where then does the additional singularity come from and what is its
meaning?

In the discussion of the analytic features of the second-order scattering
amplitude and their relation to the unitarity in the λϕ3 theory, we saw
that for s > 4μ2 the two ‘horizontal’ lines may both turn on-shell, and
the amplitude develops an imaginary part:

s > 4μ2 : = 2i ImsA(s, t) ≡ A(s + i0, t) −A(s− i0, t).

(2.44)

In the physical region of s-channel scattering, t < 0, the ‘vertical’ propa-
gators stay always off-shell. However, the imaginary part (discontinuity)
(2.44) is itself an analytic function of t. If we start to increase t, some-
where above t = 4μ2 the vertical lines will be able to go on-shell too.
This happens precisely on the Landau curve (2.43) where the ‘imaginary
part’ ImsA becomes complex, that is develops its own ‘imaginary part’:
Imt ImsA(s, t) �= 0.

2.4.5 Character of singularities

Let us find out the way the amplitude behaves near the singularity,
that is the character of the latter. To do that we return to the origi-
nal integral (2.23). As we know, when s approaches the Landau surface,
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s → s0(t, u, . . .), the characteristic function defined in (2.24) devel-
ops a simultaneous extremum in integration momenta, q = q(0), and in
n− 1 independent Feynman parameters, α=α(0). It may be represented
therefore as follows:

=
4�∑
ij

(qi − q
(0)
i )(qj − q

(0)
j )aij+

n−1∑
ij

(αi − α
(0)
i )(αj − α

(0)
j )bij+γ(s0 − s).

Let us rescale the integration variables as

qi − q
(0)
i =

√
s0 − s · yi , αi − α

(0)
i =

√
s0 − s · βi.

Then the s-dependence of the integral factors out,

An� ∼
(s0 − s)

4�
2 (s0 − s)

n−1
2

(s0 − s)n

∫
d4y1 · · · d4y� dβ1 · · · dβn−1

n
(y, β)

,

(y, β) =
4�∑
ij

aijyiyj +
n−1∑
ij

bijβiβj + γ,

giving

An� =
(√

s0 − s
)4�−n−1 · N . (2.45)

Due to finite limits of the integrals over αs, the factor N here may have
some residual s-dependence. With s → s0, however, the integration range
in βs expands,

|Δβi| ∝ 1/
√
s0 − s → ∞.

Hence the integrals over βi may be replaced by the s-independent integra-
tion over −∞ < βi < +∞, provided the multiple y–β integral so obtained
does not diverge. A simple power counting shows that the integral for N
converges when

(4� + n− 1) − 2n = 4�− n− 1 < 0.

Looking at (2.45) we conclude that the latter condition is equivalent to
the amplitude An� increasing towards the singularity. If this is the case,
one has two possibilities for the character of the singularity, depending on
the value of the characteristic exponent

E ≡ 4�− n− 1, (2.46)

namely:
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(1) the branching point when E is odd, E = −(2k + 1),

An� ∝ (s0 − s)−k−1
2 (k ≥ 0); (2.47a)

(2) the pole in (s0 − s) of degree k for the case of even E = −2k:

An� ∝ (s0 − s)−k (k ≥ 1). (2.47b)

What kind of singularity appears when E ≥ 0 and the integral diverges?
To answer the question we should treat not the amplitude An� itself, but
its s-derivative:

dmAn�

dsm
∼
∫

d4q1 · · · d4q� dα1 d · · · dαn−1
n+m (−γ)m

(n + m)!
n!

.

By choosing a proper value of m, we make the integral convergent and
can repeat the above analysis to obtain

dmAn�

dsm
= const. · (s0 − s)

4�−n−1
2

−m.

Now we integrate m times over s to restore the amplitude and face two
cases as before:

(1) the branching point singularity when E = 2k + 1 [m = k],

An� ∝ (s0 − s)k+
1
2 (k ≥ 0) ; (2.48a)

(2) the logarithmic singularity for E = 2k [m = k + 1],

An� ∝ (s0 − s)k ln(s0 − s) (k ≥ 0). (2.48b)

Example 1. Return to multi-particle threshold singularities (2.19). Here

s

we have n internal lines and � = n− 1 inde-
pendent momentum integrations. The ex-
ponent (2.46) equals E = 3n− 5, and when
the number of particles in the intermedi-
ate state is even, the amplitude near the
threshold singularity behaves as

A ∼ (s0 − s)
3
2
(n−2)+

1
2 (n even). (2.49a)

For n = 2 we recover the known square-root singularity characterizing the
two-particle threshold. If the number of particle is odd, for n = 1 our for-
mula gives a simple particle pole, A ∼ (m2 − s)−1; otherwise the exponent
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is a positive integer, and the threshold singularity becomes logarithmic:

A ∼ (s0 − s)
3
2
(n−1)−1 · ln(s0 − s) (n odd). (2.49b)

This result is easy to get directly from the unitarity relation:

2 ImA ∝
∫

d4k1 · · · d4kn
(2π)3n

(2π)4δ4
(
p− Σ ki

) n∏
i=1

δ(k2
i −m2

i ).

Near the threshold, three-momenta of all particles are small, and the
integration produces the non-relativistic phase space volume:

∼
n−1∏
i=1

d3ki · δ
(
√
s−√

s0 −
n∑

i=1

k2
i

2mi

)
∼ |k|3·(n−1)−2 ;

√
s0 =

n∑
i=1

mi .

Each additional particle brings in the suppression factor
|k|3 ∼ (s0 − s)3/2, and the singularity weakens.

Example 2. Anomalous ‘vertex’ singularity:

n = 3, � = 1, E = 4 · 1 − 3 − 1 = 0; A ∼ ln(s0 − s).

Example 3. Box diagram:

n = 4, � = 1, E = 4 · 1 − 4 − 1 = −1; A ∼ 1√
s0 − s

.

Example 4. A five-leg amplitude possesses a genuine pole singularity:

n = 5, � = 1, E = 4 · 1 − 5 − 1 = −1; A ∼ 1
s0 − s

.

We observe that the strength of the singularity grows when we increase
the number of lines in the loop. According to the Landau rules, multi-
leg one loop amplitudes would seem to develop stronger and stronger
singularities: A61 ∼ (s− s0)−3/2, A71 ∼ (s− s0)−2, etc.

Would they? Rather not. It is most likely that the strongest singularity
a Feynman diagram may have is a pole and the reason is the following.
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While studying the equation for the Landau surface that determines
the position of singularities,

f({sik}) = 0 , 1 ≤ i < k ≤ N − 1 (2.50)

(with N the number of external momenta), we were treating the Lorentz
invariants sik that characterize the amplitude as independent variables.
The number of linearly independent pair products of the external mo-
menta pipk (not counting the masses, i �= k) in (2.50) is

(N − 1)(N − 2)
2

− 1, (2.51a)

where the subtracted unity stands for the additional on-mass-shell rela-
tion, m2

N = sNN for the last particle with momentum pN = −∑N−1
i=1 pi.

At the same time, we have calculated in (1.33) the total number of Lorentz
invariant variables, the N -point amplitude depends on:

3N − 10. (2.51b)

The two numbers (2.51) coincide for N = 5, which is just the case of the
pole singularity in the Example 4 above.

If we take N > 5, the number of the pair products (2.51a) takes over,
which means that certain kinematical relations between sik appear, un-
dermining our analysis of the character of singularities.

What remains to be done about the character of Landau singularities
is to verify the case when some of the αs are zero.

Consider a singularity that emerges when α1 = 0. Then there is no
extremum with respect to α1, and the function has the expansion

� cα1 +
n−1∑
i,k

(αi − α
(0)
i )(αk − α

(0)
k )bik + · · · + γ(s0 − s). (2.52)

Near the singularity, the characteristic magnitude of α1 under the integral,
α1 ∼ (s0 − s), is much smaller than all other deviations, |αi − α

(0)
i | ∼√

s0 − s. Therefore α1 can be neglected in the quadratic form in (2.52),
as well as in the sum,

δ

(
1 −

n∑
i=1

αi

)
� δ

(
1 −

n∑
i=2

αi

)
.
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Hence, we obtain an expression identical to that for the amplitude without
the line k1, α1: ∫ 1

0
dα2 · · · dαn

∫
dα1 δ

(
1 −∑n

i=1 αi

)(
cα1 + α1=0

)n
=⇒

∫ 1

0

dα2 · · · dαn
n−1 δ

(
1 −

n∑
i=2

αi

)
.

Thus, not only the position of the singularity but also its character can
be derived from a reduced graph with the line α1 contracted:

a1

a2

a3

a4

a2

a3

a4

a1 = 0
 .

2.4.6 Amplitude near singularity

Now that we learnt how to determine the position and the character of the
singularities, let us address the question of the magnitude of the amplitude
near a singularity.

Let us take some complicated amplitude and set to zero all αs but
four, to form a square graph. At the corresponding Landau singularity,
all internal particles are on the mass shell, k2

i = m2
i , therefore the full sub-

amplitudes that determine their interaction vertices may each be equated
with the renormalized on-mass-shell interaction constant g:

a1

2a
a3

4a
g

.
g

g g

If we consider instead a simpler threshold branch-cut singularity, its mag-
nitude will be determined by the square of the physical scattering ampli-
tude near the threshold:

s ∝ A2 (s = s0). (2.53)

In general, if we want to calculate the magnitude of an arbitrary Feynman
diagram near the singularity, it will be always determined by the exact
on-mass-shell interaction amplitudes.
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2.5 Beyond perturbation theory: relation to unitarity

By using the language of Feynman diagrams we have arrived at the pat-
tern of singularities of the interaction amplitudes.

Namely, for each singularity:

(1) its position is determined by masses of real hadrons;

(2) its character derives from the topology of the interaction process;

(3) the coefficient in front of a singularity is expressed in terms of the
physical on-mass-shell amplitudes.

This conclusion goes beyond the perturbation theory which we have em-
ployed to derive it. The reason for that lies in the unitarity property:
the series of Feynman diagrams (though having little sense in a theory of
strongly interacting objects) formally solve the unitarity conditions.

The blocks in (2.53) are supposed to correspond to exact two-particle
scattering amplitudes which become
complex themselves when we move
above the threshold. The particles in
the intermediate state are allowed to
interact many times: as a result, the
threshold singularities overlay.

s

?

How to treat such an eventuality?
To take into account successive two-particle scatterings in the full am-

plitude, let us single out the block that has no two-particle intermediate
state and, therefore, no threshold at s = 4m2:

= ++  + . . . (2.54)

According to Landau rules, to find the s-channel threshold singularity,
we must pick one of the two-particle states and put the two lines on the
mass shell. Then the chains of two-particle irreducible blocks sum up into
the full amplitudes, on the left and on the right from the ‘cut’, resulting
in (2.53). A branch cut singularity of the function is characterized by the
discontinuity across the cut:

ΔA(z) =
1
2i
[
A(z + i0) −A(z − i0)

]
.
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z A(z + i0)

z0 A(z − i0)

This is what we use to call the ‘imagi-
nary part ’, cf. (2.20). The name is jus-
tified when the function below z=z0

is real ; hence it assumes complex con-
jugate values on the sides of the cut:
A(z − i0) = [A(z + i0)]∗.

Integrating over energy components of n− 1 loop momenta, we may
close the contours around the positive energy poles of all but one inter-
mediate state particles:

p

kn

∝ 1
m2

n − k2
0n + k2

n

. (2.55)

The last line we must also put on the mass shell by replacing the remaining
propagator (2.55) by 2πδ(m2

n − k2
n). Using the energy conservation, k0n =

p0 −
∑n−1

i=1 k0i > 0, this procedure is equivalent to evaluating discontinuity
of the amplitude with respect to the incoming energy p0:

1
2i

[
1

m2
n − (p0 + iε−∑ k0i)2 + k2

n

− 1
m2

n − (p0 − iε−∑ k0i)2 + k2
n

]
.

The amplitude (2.54) has symbolically the structure of the product:

A(s) =
∞∑
n=1

F1 · F2 · · · · · Fn .

To find the discontinuity of the iterated amplitude,

= + + + . . .Δ

we must calculate

An(s + i0) −An(s− i0) = (F+)n − (F−)n, with F± = F (s± i0).

An evaluation of the discontinuity of the product of functions is alge-
braically similar to taking a derivative:

Δ(AB) = A · (ΔB) + (ΔA) ·B∗;

iterating this rule we obtain

ΔA =
∑
i,k=1

F+
1 · · ·F+

i

[ ]
F−

1 · · ·F−
k = A(s + i0)

[ ]
A(s− i0).
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The r.h.s. of this expression is real, correcting (2.53).
Summing together the discontinuities of the amplitude across n-particle

threshold branchings, we finally derive

ΔA2→2(s) =
∑
n

τn(s)A2→n(s)A∗
2→n(s) , (2.56)

which is nothing but the unitarity relation, with τn the n-particle phase
space volume.

2.6 Checking analytic properties of physical amplitudes

We will conclude the discussion of analyticity in this lecture by considering
two practically important examples.

2.6.1 Dispersion relation for forward πN scattering

Consider pion–nucleon scattering. Due to
the isotopic symmetry of strong interac-
tions, πN interaction amplitude depends
on the total isospin of the system, rather
than on the individual isospin state (electric
charge) of each of the participating particles. p p

k kp

N
Pions π+, π0, π− form an isotopic triplet (I = 1), and nucleons p, n – the
doublet (I = 1

2). Therefore, the full amplitude contains two independent
functions describing the interaction: 1 ⊗ 1

2 = 1
2 ⊕ 3

2 , or, from the t-channel
point of view, ππ = 1 ⊗ 1 = 0 ⊕ 1 (the N̄ + N pair cannot have isospin
2).

We will study the forward pion–nucleon scattering, t = 0:

s = (p + k)2 = M2 + μ2 + 2Mν,

u = (p− k′)2 = M2 + μ2 − 2Mν = 2(M2 + μ2) − s,

with ν the energy of the pion, p0 = p′0, in the rest frame of the target
nucleon.

Let U denote the dublet of nucleons, and φα the isovector pion field,
α = 1, 2, 3. The general form of the scattering amplitude is

A = U(p′)φα(k′)
(
f+(ν)δαβ · I + f−(ν)εαβγ · τ γ

)
φβ(k)U(p), (2.57)

where εαβγ is the anti-symmetric unit tensor, and τα is the triplet of
Pauli matrices in the 2 × 2 space of nucleon isospinors. The diagonal term
proportional to the unit matrix I takes care of elastic scattering, while
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n

n0−n 0 m−m

Fig. 2.9 Complex pion energy plane for forward πN scattering amplitude.

the τ term anti-symmetric in isospin indices is responsible for reactions
with electric charge transfer, like π+n → π0n.

The variable

ν =
s− u

2M
=

s− (M2 + μ2)
M

changes sign under the permutation of the initial and final pions, s ↔ u.
Therefore, since pions are Bose particles, the amplitudes f± in (2.57) are,
correspondingly, even and odd with respect to the crossing:

f+(−ν) = f+(ν), f−(−ν) = −f−(ν).

We will study the symmetric part, f+. The amplitude has a nucleon pole,

s = M2 =⇒ ν0 = −μ2

M
,

and the branch cut that starts from the πN threshold:

s = (M + μ)2 =⇒ νthresh = μ.

The u-channel singularities mirror the s-channel ones on the complex
plane of the variable ν, see Fig. 2.9. Let us try to write down the dispersion
relation for f = f+ as a function of the complex variable ν:

f(ν) =
r

ν0 − ν
+

1
π

∫ ∞

μ

dν ′ Im f(ν ′)
ν ′ − ν

+
r

ν0 + ν
+

1
π

∫ −∞

−μ

dν ′ Im f(ν ′)
ν ′ − ν

.

(2.58a)

Combining the contributions of two poles and s- and u-channel cuts, with
account of f(−ν) = f(ν), we get a more compact expression

f(ν) =
2r ν0

ν2
0 − ν2

+
1
π

∫ ∞

μ

dν ′2 Im f(ν ′)
ν ′2 − ν2

. (2.58b)
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This relation makes sense only if the integral converges at ν ′ → ∞. The
optical theorem (1.32) tells us that

ImA(ν) = 1
2Jσtot(ν) = 2M |k| · σtot(ν), |k| =

√
ν2 − μ2,

where we have calculated the invariant flux (1.26) in the nucleon rest
frame, J = 4M |kπ|. We conclude that the amplitude actually grows as
A ∝ ν, since the total cross section is approximately constant at large
collision energies. Therefore we must modify the dispersion relation by
performing the subtraction, f → f(ν) − f(0):

f(ν) = f(0) +
2r
ν0

ν2

ν2
0 − ν2

+
ν2

π

∫ ∞

μ

dν ′2

ν ′2
Im f(ν ′)

(ν ′2 − ν2)
. (2.59)

Since the imaginary part of the amplitude is directly related to the total
cross section, Im f = 2Mk σtot, once we have measured the total cross
section, we know the integrand and may restore the amplitude which is a
measurable quantity itself.

Importantly, information about the amplitude and cross section comes
from essentially different sources. The total cross section σtot(ν) can be

accessed by observing the loss of particles by an
incident beam. On the other hand, the amplitude is
extracted from a completely different experiment.

One measures differential angular distribution of the elastic scattering
and reconstructs the amplitude from the Legendre expansion:

f(ν,Θ) =
∞∑
�=1

f�(ν)P�(cos Θ).

The integral of the cross section converges, so that the main contribution
comes from not too large energies.

Confronting the experimental information on the forward amplitude,
f(ν, 0), and σtot(ν) the relation (2.59) was found to hold. This is a verifi-
cation of the analyticity.

The dispersion relation allows one to determine experimentally the
value of the residue r. But the residue in the pole of the amplitude is
the renormalized coupling constant, in the field-theory framework.

Let us take a neutral meson π0 and try to model the pion–nucleon
interaction vertex in the QFT language:

k

p2
p1 g

= g · U(p2) iγ5U(p1) · φ(k).
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(We have included into the vertex the factor iγ5 since π is pseudoscalar.)
The pole diagram constructed on the base of this vertex reads

Apole =
pp

k
= −g2 U(p′)γ5

1

M − (p̂ + k̂)
γ5U(p)

= −g2U
γ5(M + p̂ + k̂)γ5

M2 − s
U = −g2U

M − p̂− k̂

M2 − s
U.

(2.60)

Using the Dirac equation, (M − p̂)U(p) = 0,

Apole = U(p′)
k̂

M2 − s
U(p) . (2.61)

The pole amplitude has an interesting feature: why there is only a pion
momentum in the numerator of the amplitude? The pion has a negative
internal parity; to be allowed to fuse
into a nucleon, the incident pion has
to have an odd orbital momentum,
L = 1, in order to match the spatial
parity of the πN pair, PπPN (−1)L,
to that of the nucleon, PN . The p-wave

P = −1

P = +1

P = +1L = 1

amplitude must be proportional to k, explaining the structure of the pole
amplitude (2.61).

In the forward scattering limit, p � p′, we have

U(p)γμU(p) = 2pμ,

U(p)k̂U(p) ≡ kμ U(p)γμU(p) = 2kp = s−M2 − μ2,
(2.62)

and in the numerator of the Born amplitude there appears the combina-
tion s−M2 which cancels the pole. The remaining true pole contribution
becomes

Apole =⇒ − g2 μ2

M2 − s
= −g2 μ2

M

1
ν0 − ν

, ν0 = −μ2

M
.

Comparing with the pole term in the dispersion relation (2.58a), we relate
the residue r with the coupling constant g as

r = −g2μ2/M . (2.63)

We may roughly estimate the magnitude of the residue. Since the inter-
action is strong, its cross section is determined by the interaction radius,
the latter being inverse proportional to the mass of the lightest hadron –
the π meson: σtot ∼ μ−2. Taking moderate pion energies of the order of
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its mass, ν ∼ |k| ∼ μ, the estimate follows:

f ∼ Im f = 2M |k|σtot ∼ 2Mμ · 1
μ2

=
2M
μ

.

Suppose that the contributions of the pole and of the cut to the dispersion
relation are of the same order:

r

ν0 − ν
∼ f ; − r

μ
∼ 2M

μ
=⇒ r � −2M.

From (2.63) we then have

g2 � 2M2/μ2 � 100.

Real experimental measurement of the residue r yields

g2/4π � 14.

The closeness of the two numbers shows that indeed the pole term and
the dispersion integral over the cut contribute equally.

Thus, although there is certainly no perturbation theory, we can obtain
the pole term in the dispersion relation from the first graph (2.60).

It should be stressed that the pole term differs essentially from the
Feynman diagram. Indeed, if we did not drop in the numerator of the
Born amplitude (2.62) the piece (s−M2) which cancels the pole,

s−M2 − μ2

M2 − s
= − μ2

M(ν0 − ν)
− 1,

the new estimate based on the full amplitude would have been M/μ � 7
times larger!

Is there a reason why the pure pole term gives a reasonable size contri-
bution while the estimate based on the Feynman diagram fails?

t2t1

Recall the meaning of a Feynman graph, in
the space–time language. The pion–nucleon
interaction graph actually incorporates two
space–time configurations, including the one

with the inverse time ordering, t2 < t1, which
corresponds to three coexisting nucleons. It
is clear, however, that for moderate energies,
such a state has nothing to do with the pro-
cess we are considering. The proton mass is

N

N t1

N

t2

very large (compared to that of the pion) and long before the NNN̄ state
there will be many additional pions present in the intermediate state.

When the coupling of the field theory is small, the expansion of the
amplitude is organized in powers of this coupling. In particular, in QED
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it is easy to verify that the Compton scattering amplitude γe → γe is
dominated just by the ‘time inverted’ Born diagram.

However, if the interaction is strong, so that the coupling is large and
the perturbative expansion makes no sense, it is not the first-order graph
but the nearest singularities that determine the answer.

This observation constitutes the core idea of the dispersive approach.

2.6.2 Chew–Low method

What can we measure directly? We actually have only one stable target –
the proton. Plus a relatively stable neutron. All other hadrons are unsta-
ble. Nevertheless, we are able to prepare a beam of some unstable particles
and scatter them off a proton, for example.

But how to measure an amplitude when the projectile and the target are
both unstable, for example that of ππ scattering? One has to undertake a
flanking manoeuvre in order to extract it from available data (Chew and
Low, 1959).

Suppose a pion scatters off a nucleon, producing some hadron state.
Could we single out some part of the process into which ππ interaction
amplitude, of even cross section, would enter?

Such a diagram is easy to invent:

p

N
=

p

p

N

+

p

N
. (2.64)

The first diagram on the r.h.s. of (2.64) contains
a pion exchanged in the t-channel, and the upper
block of this diagram can be looked upon as pion–
pion scattering amplitude. p

p

The problem is, how to see and extract this particular term from the
background of all other possible contributions. How to do that when the
perturbative approach is not applicable? We must look for specific features
of the pion exchange amplitude that might help us in our task.

Let us square the amplitude and look at the contributions to the cross
section:

k

p
q

p
+ 2 Re q + .
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What is there remarkable about the first graph? If we do not integrate
over the recoil nucleon momentum p′ but measure the differential cross
section in p′, then this graph will contain the square of the pion propagator
at given momentum transfer

dσ

dt
∝
(

1
μ2 − t

)2

, t = (p′ − p)2.

(The interference term contains the pion propagator in the first power,
1/(μ2 − t), and the third one has none.) We may adopt the specific sharp
t-dependence of the cross section as the means for extracting the pion
exchange.

Let us focus on the t dependence in the sense of analytic properties.

Estimate of momentum transfer. For the momentum transfer we have

−q2 = −(p− p′)2 = 2(p0p
′
0 − p · p′ −m2), (2.65)

where we made use of the on-mass-shell conditions p2 = p′2 = m2. Here m
is the proton mass, and the capital M we reserve for the invariant mass of
the produced hadron system (minus the recoil nucleon): M2 = (k + q)2.

It is clear that the physical region corresponds to negative t = q2. In-
deed, since q2 is Lorentz invariant, we can calculate it in an arbitrary
reference frame. In the ‘laboratory frame’ where the nucleon target is at
rest, p = 0, (2.65) reduces to

−q2 = 2m(p′0 −m) > 0,

which expression is obviously positive (the energy p′0 of the recoiling
nucleon cannot be smaller than its mass m).

What is a typical momentum transfer? In particular, how small the
virtuality of the exchanged pion may be? One can derive

∣∣q2
∣∣
min

from the
kinematical relations at our disposal:

s = (k + p)2 = μ2 + m2 + 2(kp);

M2 = (k + q)2 = μ2 + 2(kq) + q2,

m2 = (p− q)2 = m2 − 2(pq) + q2.

The resulting expression is rather cumbersome. It is important, however,
to remark that

∣∣q2
∣∣
min

becomes extremely small at high collision energies.
To see this we introduce the rapidity variable,

p0 = m cosh η, |p| = m sinh η; η = ln
p0 + |p|

m
,
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and represent (2.65) as∣∣q2
∣∣ = 2m2(cosh η cosh η′ − sinh η sinh η′ · cos Θ − 1)

= 4m2
[
cosh2 1

2(η − η′) + sinh η sinh η′ · sin2 1
2Θ
]
,

(2.66)

where Θ is the nucleon scattering angle in the chosen frame of reference.
In the πN centre of mass system the variation of Θ does not affect the
modulus of the nucleon’s three-momentum |p′| = p′c and, therefore, the
rapidity η′. This makes it obvious that the minimum of

∣∣q2
∣∣ in (2.66)

corresponds to Θc = 0. Now we recall the expression (1.27) for the cms
momentum as a function of masses:

pc · 2
√
s =
√

s2 − 2(m2 + μ2)s + (m2 − μ2)2 ,

p′c · 2
√
s =
√

s2 − 2(m2 + M2)s + (m2 −M2)2 .

Calculating the cms energies of the initial- and final-state nucleons,

EN · 2
√
s = s + m2 − μ2, E′

N · 2
√
s = s + m2 −M2,

we then construct the difference of rapidities,

ηc − η′c = ln
EN + pc
E′

N + p′c
= ln

(s + m2 − μ2 + · · · ) + (s−m2 − μ2 + · · · )
(s + m2 −M2 + · · · ) + (s−m2 −M2 + · · · ) .

In the large s limit (s � M2,m2) this gives

ηc − η′c
2

=
M2 − μ2

s
+ O
(
s−2
)
,

so that

∣∣q2
∣∣ ≥ ∣∣q2

∣∣
min

� 4m2

(
M2 − μ2

s

)2

. (2.67)

We see that the virtuality q2 can actually be very small. Still, it is negative
while in order to extract the ππ interaction amplitude we need to find the
residue of the second-order pole at the positive virtuality q2 = μ2. Could
this be done? It is clear that, mathematically speaking, this is not a
well defined problem. We have to find specific conditions under which the
pole diagram gives a significant contribution to the physical cross section,
because if it is small in the physical region, no extrapolation would help
us to extract it!

Pion exchange contribution. We know how to calculate the cross section.
We average over the initial (and sum over final) nucleon spin, sum over
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all final states and write

σπN =
1
J

∑
n

∫
d4p′

(2π)3
δ+(p′2 −m2)

∏
i≤n

d4ki
(2π)3

δ+(k2
i −m2

i )

× (2π)4δ

(
p + k − p′ −

∑
i

ki

)
·
(

1
μ2 − q2

)2

· g2
πN (2.68)

× 1
2

Tr
[
(m + p̂) iγ5(m + p̂′) iγ5

]
·Akq({ki})A∗

kq({ki}).

Here Akq marks the amplitude of the ππ interaction with the production
of n particles with momenta {ki}.

The nucleon trace gives
1
2 Tr
[
(m + p̂) iγ5(m + p̂′) iγ5

]
= −q2.

Collecting all the ingredients that depend on the momentum q, we observe
that by virtue of the unitarity relation they combine into the imaginary
part of the forward scattering amplitude of a real pion k and the virtual
pion q:

2 ImAππ =

p

p
=
∑
n

∫ ∏
i≤n

d4ki
(2π)3

δ+(k2
i −m2

i )

× (2π)4δ4

(
q + k −

∑
i

ki

)
·Akq({ki})A∗

kq({ki}).

(2.69)

We may write

dσπN
d4q

=
g2
πN

(2π)3J
δ(q2 − 2pq)

−q2

(μ2 − q2)2
× 2 ImAππ((k + q)2; q2), (2.70)

where (k + q)2 is the invariant energy of the ππ collision. Strictly speak-
ing, we must keep q2 as the argument of the ππ amplitude which may
depend on the pion virtuality. However, in the vicinity of the pole we
may substitute q2 = μ2 everywhere in the numerator of (2.70). Then
enters the true physical pion scattering amplitude, Aππ((k + q)2; q2) →
Aππ((k + q)2;μ2), and we have

dσpole
πN

d4q
=

g2
πN

(2π)3J
δ(q2 − 2pq)

−μ2

(μ2 − q2)2
× 2 ImAππ((k + q)2). (2.71)

The first sad fact: in the physical region we had −q2 > 0, and the cross
section (2.68) was positive, while now we have σ → −∞ in the pole! So
the residue in the form of (2.71) makes little sense.
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Actually, the contribution of the pion exchange vanishes at q2 = 0, as
the original expression (2.70) for the cross section shows. This property
is essential. If in the experiment it were observed that with the decrease
of
∣∣q2
∣∣ the cross section remained large, this would have meant that our

pole graph was insignificant!
Another important property follows from the fact that the exchanged

pion is spinless. Therefore it can transfer no information about the di-
rection of q into the upper block. This means that the distribution of
secondary particles must be isotropic in the cms of the ππ pair (the dis-
tribution in the so-called Treiman–Yang angle).

I have described two checks of whether the one-pion exchange term
σpole contributes significantly in the physical region. If both these criteria
are met, one can write

dσ

dq2 dΩ
· (μ2 − q2)2 � F (s12, q

2), q2 ≤ −
∣∣q2
∣∣
min

,

makes fit to the data for the differential distribution and then extrapolate
into the unphysical point q2 = μ2 where

F (s12, μ
2) = const. · ImAππ(s12).

Strangely enough, this way one obtains reasonably consistent results from
different experiments.

In spite of an error margin of the order of 100%, the knowledge of the
ππ interaction amplitude, so obtained, is nevertheless extremely impor-
tant. From an abstract position, the ππ interaction amplitude could differ
significantly from directly measurable nucleon interaction amplitudes be-
cause, in principle, it could be determined by physical quantities that are
totally different from those that govern the nucleon–nucleon interaction.

The Chew–Low method of studying the ππ interaction constitutes an-
other example of how the knowledge of the analytic properties (pole at
q2 = μ2; distant other singularities) allows us to extract valuable infor-
mation and to verify this way the basic concepts put in the foundation of
the theory.



3
Resonances

3.1 How to examine unphysical sheets of the amplitude

In the previous lecture we have discussed in detail that owing to unitarity,
analyticity and crossing symmetry – the general properties of the theory –
all the physics of hadron interactions is determined, in principle, by the
spectrum of real particles.

We saw that the interaction constant – the measure of the interaction
strength – entered only as a residue in the pole of the scattering amplitude.
Can it be true that the plethora of phenomena in the hadron world is
described by a single quantitative characteristic – the residue?

This situation looks strange and profoundly unsatisfactory from a theo-
retical point of view. It makes one wonder whether there is not something
hidden beyond the mass spectrum that we have introduced.

Philosophy aside, it is important to know how the amplitude behaves
in the vicinity of the cut. We cannot say a priori that it changes smoothly
there, since the question of smoothness of a multi-valued function is a
delicate one.

If we position ourselves near the cut on the physical sheet then, rather
close in the energy variable, we have an unphysical sheet about which
nothing had been said so far. If there is a singularity (for example, a pole)
on the unphysical sheet close to the physical one, the amplitude on the
physical sheet would be changing fast.

Thus, knowing the analytic structure of the physical sheet alone turns
out to be insufficient. We need information about what is happening on
the other sheets of the scattering amplitude, what sort of singularities
could be there.

73
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We have to find means to extend – to continue – our knowledge of the
amplitude ‘under the cut ’. It is clear that perturbation theory would be
of no help here. Nevertheless, there is a way to get under the cut.

Let us recall the unitarity condition:

− = i ,

A(s + iε, t) −A(s− iε, t) = i

∫
d4k

(2π)2
δ
(
m2

3 − k2
)
δ
(
m2

4 − (p1 + p2 − k)2
)

·A(p1, p2, k)A∗(p5, p6, k). (3.1)

Since each of the block amplitudes A, A∗ depends in fact on two invariants,
it is convenient to rewrite the integral in terms of the Lorentz invariant
momentum transfers,

A(s + iε, t) − A(s− iε, t)

=
∫ ∫

dt1 dt2K(s, t1, t2) ·A(s + iε, t1)A(s− iε, t2), (3.2)

where we have introduced K as the corresponding Jacobian transforma-
tion factor.

Now take A(s− iε) to the r.h.s. and try to look upon (3.2) as an integral
equation for A(s + iε, t) with the kernel

∫
dt2K(s, t1, t2)A(s− iε, t2) and

an inhomogeneity A(s− iε, t). Imagine that we learned how to calculate
the integrals and managed to solve the equation. What would have been
the gain? We would have expressed the analytic function on the upper
side of the cut, A(+), in terms of that on the lower side of the cut:

A(s + iε) = F (A(s− iε))
+

−A

A
(3.3)

Till now we kept s real and used iε to separate the points at the two
sides of the cut. Let us now give an imaginary part to s itself, a negative
one to be definite. Then the argument of A(s− iε) would simply move
onto the lower half-plane of the physical sheet, while the ‘upper’ function
A(s + iε) whose argument is tightly linked with that of A(s− iε), will
cross the cut and occur on the lower half-plane too, but on another –
unphysical – sheet!

Under such continuation the relation (3.3) has acquired a new mean-
ing: the value of the amplitude at a given point on the unphysical sheet is
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now (functionally) determined by the value of the physical amplitude.
Along this way we would have solved a remarkable problem, namely,
with the help of the unitarity condition we would have examined the
content of the unphysical sheet and, in particular, found the singular-
ities of the amplitude there (which is what concerns us in the first
place).

3.2 Partial waves and two-particle unitarity

The programme that we have described is easy to carry out for the first
unphysical sheet related to the two-particle unitarity condition (which
holds for 4μ2 < s < 9μ2).

Recall the partial wave expansion

A(s, t) =
∞∑
�=0

(2� + 1)f�(s)P�(cos Θ) . (3.4)

It is clear that in these terms the unitarity condition (3.1) will simplify
greatly. Indeed, � – the total angular momentum in the cms – is a con-
served quantity. Therefore, if we choose an initial state with a given �,
the intermediate state will be uniquely determined and the integration
on the r.h.s. of (3.1) will have to disappear. Let us see how it actually
happens.

First we attend to the momentum integration in (3.1):

d4k = |k|2 d|k| dk0 dΩ =
1
2
|k| dk2 dk0 dΩ , δ

(
m2

3 − k2
)
dk2 = 1 .

In the cms we have p1 + p2 = 0, p10 + p20 =
√
s, so that

δ
(
m2

4 − (p1 + p2 − k)2
)

= δ
(
m2

4 −m2
3 − s + 2k0

√
s
)
.

Taking off the integration over k0 we arrive at

ImA(s, t) =
1
2

∫
dΩ

(2π)2
· 1
2
|k| · 1

2
√
s
A(s, t1)A∗(s, t2)

=
|k|

8π
√
s

∫
dΩ
4π

A(s, cos Θ1)A∗(s, cos Θ2). (3.5)
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The modulus of the intermediate state momen-
tum k is fixed by the on-mass-shell conditions.
The partial wave expansion will help us to per-
form the remaining integration over its direc-
tion angles. Using (3.4) for the amplitudes on
the l.h.s. and r.h.s. of (3.5) we have

θ1 θ2

p1 p5θ

k

ImA(s, t) =
∞∑
�=0

(2� + 1) Im f�(s)P�(cos Θ) =
|k|

8π
√
s

∑
�1,�2

f�1(s)f
∗
�2(s)

×(2�1 + 1)(2�2 + 1)
∫

dΩ
4π

P�1(cos Θ1)P�2(cos Θ2) (3.6)

=
|k|

8π
√
s

∞∑
�1=0

f�1(s)f
∗
�1(s)(2�1 + 1)P�1(cos Θ),

where we used the well-known orthogonality relation for spherical func-
tions (Legendre polynomials),∫

dΩ
4π

Pn(cos Θ1)Pm(cos Θ2) =
δnm

2n + 1
Pn(cos Θ).

Comparing the two sides of the equation, we retrive the unitarity condition
for a partial wave with angular momentum �,

Im f�(s) = τf�(s)f∗
� (s), (3.7a)

τ = τ(s) ≡ kc
8π

√
s

=
1

16π
kc
ωc

, (3.7b)

with kc the modulus of the intermediate state momentum in the cms:

kc ≡ |k| =

√
s2 − 2s(m2

3 + m2
4) + (m2

3 −m2
4)2

2
√
s

, ωc =
√
s

2
. (3.8a)

For the case of equal masses, m3 = m4 = m,

kc =
√
s− 4m2

2
. (3.8b)

The solution of the elastic unitarity condition (3.7a) reads

f�(s) =
1

2iτ(s)

[
e2iδ� − 1

]
=

sin δ�
τ

eiδ� , (3.9)

with δ� = δ�(s) the scattering phase in a given angular momentum state.
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s 
= 

4m
2

s 
= 

0

u s

t

t = 0

t = 4m2

t = −(s − 4m
2

)

Fig. 3.1 Three integration intervals on the Mandelstam plane. The amplitude
is complex at s > 4m2 and s < 0 (on the thick lines).

3.3 Analytic properties of partial waves and resonances

We are now going to discuss analytic properties of f�(s). We will need the
expression for the partial wave which is complementary to (3.4):

f�(s) =
1
2

∫ 1

−1
d cos Θ P�(cos Θ)A(s, t(cos Θ)) . (3.10)

The cosine of the scattering angle,

cos Θ = 1 +
2 t

s− 4m2
,

varies between −1 and +1. On the Mandelstam plane this corresponds to
integration over t from t = −(s− 4m2) up to t = 0 (Fig. 3.1). For s > 0
the partial wave f�(s) mirrors analytic properties of the amplitude A: it is
real for s < 4m2 (since the integration interval then lies inside the triangle
where A is real) and is complex above the threshold, s > 4m2. For s < 0
f�(s) becomes complex again; this time because of the integration contour
hitting t- and u-channel thresholds.
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Since f�(s) is real on a finite interval in the s-plane, it assumes complex
conjugated values on the sides of the cut:

(f(s))∗ = f(s∗).

Therefore we can represent (3.7a) in terms of discontinuity as

1
2i

[ f�(s + iε) − f�(s− iε) ] = τ(s)f�(s + iε)f�(s− iε).

The formula

f�(s + iε) =
f�(s− iε)

1 − 2iτ(s)f�(s− iε)
(3.11)

solves the problem of analytic continuation of the amplitude (to be precise,
of each of its partial wave components) onto the first unphysical sheet
related to the two-particle threshold.

So, what are the singularities on the unphysical sheet? Obviously, f�(+)
has the same cuts as f�(−). In addition, it acquires new singularities –
poles – where the denominator in (3.11) vanishes, that is in the points
where

f�(−) =
1

2iτ(s)
. (3.12)

These poles on the unphysical sheet(s) are called resonances. The position
of such a pole depends essentially on the value of the coupling constant. If
the coupling is small, so is the physical scattering amplitude. The ampli-
tude can reach a finite value which is required by the resonance condition
(3.12) only if interaction is strong enough.

We can reverse the statement:

It is the resonance states that bear additional essential information about
interaction that we talked about in the beginning of this lecture.

What is the reason that we have not met singularities more complicated
than simple poles?

To answer the question we return to the integral equation in the general
form of (3.2). The t1, t2 integrations run over finite intervals; moreover,
the kernel of the equation,

φ(s, t, t1) =
∫

dt2K(s, t1, t2)A(s− iε, t2),

is a smooth regular function since it is determined by the amplitude on
the physical sheet where the amplitude is regular. Therefore, our equation
is a standard integral equation of the Fredholm type whose solutions may
have only poles (at the points where the Fredholm determinant vanishes).
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3.4 Three-particle unitarity condition

Producing only poles is an intrinsic property of the simplest – two-
particle – unitarity. The continuation of the three-particle unitarity re-
lation is technically much more involved. We shall outline the main plan
of the corresponding analysis. The sketch that follows will suffice for us
to grasp the qualitative features of the answer.

Below the four-particle threshold the unitarity condition has the fol-
lowing schematic structure:

1
i

− = + . (3.13)

A new object entered namely, the amplitude A2→3. For the latter we have
its proper unitarity equation,

1
i

− = + . (3.14)

The last kernel A3→3(−) contains an irreducible scattering amplitude,

but also various reducible pieces of the type b
c

a
so that

symbolically

= + . (3.15)

If the last contribution were not present, the result would have been sim-
ilar to what we had in the two-particle case. That is, an analytic con-

tinuation of beneath the cut would have produced only poles,

namely the old two-particle and new three-particle resonances. The new
piece, however, is not of the Fredholm type. The corresponding kernel is
singular as it contains δ(pc − p′c) – one of the particles did not scatter.

How would this complicate the answer? To understand the key features
let us keep only the singular term in (3.14) and iterate the equation for
A2→3(+):

∼ + i

= i + i 2 + . . .
(3.16)
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Comparing the chain of the A2→2(−) blocks in (3.16) with that of the
iterated two-particle unitarity condition,

= + i ,

= + i + i 2 + . . .

we observe that

∼ + i
a
b .
c

(3.17)

In the course of the analytic continuation, the (−) amplitudes stay on the
physical sheet while the amplitude A2→2(+) moves to the first unphysical
sheet where, as we know, it has resonance poles in the pair energy sab.

How will this affect analytic properties of the two-particle scattering
amplitude on the l.h.s. of (3.13)? Let us substitute the resonance pole
term into the r.h.s. of (3.17) and then into the unitarity condition (3.13):

∼ . . . + i2 ∼ .

This is a typical diagram for a threshold branch cut due to the exchange
of two poles, one of which is a normal particle and the other – a resonance.

Thus, on the second unphysical sheet related to the three-particle cut
9μ2 < s < 16μ2 we find, apart from poles with complex masses, also cuts –
creation thresholds of pairs of a particle with a resonance (from the first
unphysical sheet).

In perturbation theory poles have led to the appearance of threshold
cuts on the physical sheet. Analogously, on the other sheets there emerge
particle–resonance, resonance–resonance, etc. thresholds.

Now we are in a position to formulate the qualitative answer for the
analytic structure of the amplitude:

The full analyticity image is poles – particles and resonances – all other singu-
larities being the unitarity driven consequence of the existence of these poles.

3.5 Properties of resonances

Both theoretically and experimentally resonances are as important as or-
dinary particles. Therefore we need to learn how to describe them, in the
first place.
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Let us draw an analogy. A particle is characterized by its mass and
spin. A usual pole amplitude we describe in terms of a diagram

m, σ
(3.18)

Does it make sense to draw an analogous diagram for a resonance?

(3.19)

If the series (3.4) converges,

A(s, t) =
∞∑
�=0

(2� + 1) f�(s) P�(cos Θ), (3.20)

the full amplitude will but repeat all the poles of the partial waves. The
contribution to the amplitude of the resonance in the �-wave,

f�(s) =
r

m2
res − s

, (3.21)

will be

Apol = (2� + 1)
r P�(cos Θ)
m2

res − s
. (3.22)

Now we should check that (3.22) coincides indeed with the Born amplitude
of the s-channel exchange of a particle with spin σ = �.

3.5.1 Angular dependence

How would we write a Feynman diagram for a particle with a given spin
σ? In the case of a scalar, σ = 0, the amplitude

Apol = =
g2

m2 − s

does not depend on angles.
The propagator of a vector particle, σ = 1, contains vector indices and

the exchange diagram takes the form

A = g2 ΓμD
μν(k)Γν ; (3.23)

Dμν(k) =
−gμν + b · kμkν

m2 − k2
. (3.24)
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In QED we dealt with a vector particle – a photon. There we were allowed
to omit the term b · kμkν . Remember why? Because due to the conserva-
tion of the electromagnetic current the interaction was insensitive to this
piece in the photon Green function. Not so in a general case, and we ought
to determine the coefficient b in (3.24).

A vector particle has three polarization states that are ‘propagated’ by
the propagator

Dμν(k) =
3∑

λ=1

eμλ(k)eνλ(k)
m2 − k2

. (3.25)

How to choose three out of four independent vectors? To this end we have
to invoke an additional condition

kμe
μ
λ = 0 . (3.26)

In the rest frame of the particle this condition turns into me0
λ = 0,

eμλ = (0, eλ) , λ = 1, 2, 3.

These are usual space vectors describing three possible spin projections.
Taking into account the transversality condition (3.26), the Green func-
tion becomes

Dμν(k) =
kμkν

m2 − gμν

m2 − k2
. (3.27)

Now, what to write for the vertex function? Possible vector structures are

Γμ = apμ1 + bpμ2 = α(p1 + p2)μ + β(p1 − p2)μ .

It is clear that the first term will not contribute to the pole. Using (3.27)
we get

(p1 + p2)μDμν(k) ≡ kμD
μν(k) =

kν

m2
· k

2 −m2

m2 − k2
=⇒ finite.

The pole contribution to the amplitude (3.23) takes the form

Apol =
1

2

3

4

σ = 1 = g′2(p1 − p2)μDμν(k)(p3 − p4)ν . (3.28)

To understand the meaning of this expression we go again to the cms of
colliding particles (which we take for simplicity to have equal masses).
Then the vertex functions

(p1 − p2)μ = (0, 2q), (p3 − p4)ν = (0, 2q′)
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turn into three-vectors describing relative momenta of initial and final
state particles, correspondingly:

Apol = g′2
4(q · q′)
m2 − s

.

As compared with the case σ = 0, a scalar product appeared in the nu-
merator,

(q · q′) ∝ cos Θ = P1(cos Θ). (3.29)

It is straightforward to verify that for an arbitrary spin σ the Feynman
diagram describing s-channel particle exchange gives an expression pro-
portional to

Pσ(cos Θcms),

as we have checked for the simplest cases σ = 0, 1.
So, the angular dependence turned out to be the same for particle and

resonance exchanges.

3.5.2 Factorization and unitarity

Now we have to check another very important property of ‘particles’:
factorization. What does it mean? When we draw a Feynman graph, the
initial and final states enter as a product, that is, they are factorized.
If the analogy between resonances and particles is to be preserved, the
residue r in (3.21) should split into the product of two constants each
belonging to the proper vertex,

Ares = a b = ga ·
1

m2 − s
· gb . (3.30)

The fact that it is indeed so is not accidental and is tightly related to
unitarity.

Up to now we have considered elastic scattering and did not differentiate
between initial- and final-state systems (a and b in (3.30)).

It is straightforward to generalize the notion of partial amplitudes for
the case of multi-channel scattering problem by introducing the unitary
scattering matrix

SS† = I ,
∑
c

SacS
†
cb = Iab,
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where a, b, c mark different channels of the reaction. The generalized ex-
pression for the partial wave amplitude describing a → b transition reads∗

fab =
1

2i
√
τaτb

[Sab − 1 ] . (3.31)

The scattering matrix S can be diagonalized with the help of a unitary
tranformation U ,

Sab = U †
acScdUdb,

with S a diagonal unitary matrix

Scd = ScIcd , Sc = exp(2iδc).

Our resonance is a pole in one of its eigenvalues at some complex value

s = M2 = M2
1 − iM2

2 .

Let it be the first element S1; we may write in the pole approximation

S1 =
M∗2 − s

M2 − s
e2iβ =

−2i ImM2

M2 − s
e2iβ + regular.

Here 2β describes the scattering phase away from the resonance:

S1 � e2iβ for
∣∣s−M2

1

∣∣ � M2
2 .

The pole contribution to the full scattering matrix becomes

Sab � Ua1

[ −2i ImM2

M2 − s
e2iβ

]
U †

1b = Ua1
2iM2

2

M2 − s
e2iβ U∗

b1; (3.32a)

fab � Ua1√
τa

M2
2

M2 − s
e2iβ U∗

b1√
τb

=
ga g

∗
b

M2 − s
e2iβ , (3.32b)

where we have introduced the constants

ga ≡ Ua1 ·
M2√
τa

(3.32c)

that measure coupling of the resonance to different particle states a and
play the rôle of (complex) interaction constants. In fact ga can be taken
to be real. This follows from the invariance of the scattering martix with
respect to time reversal. Indeed, in this case the S-matrix is symmetric,
Sab = Sba. This gives Ua1U

∗
b1 = U∗

a1Ub1 so that Ua1 and Ub1 have equal

∗ We don’t write � implying that the total angular momentum is included in the channel
indices a, b (ed.).
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phases which cancel in (3.32a), (3.32b) and, consequently, we can redefine

ga =⇒ |Ua1| ·
M2√
τa

. (3.33)

The resonance contribution to the full amplitude takes the form very
similar to the Born diagram for spin-� particle exchange:

Ares =
ga(2� + 1)P�(z) gb

M2 − s
e2iβ . (3.34)

We see that the resonance appears in all channels, a → a, a → b, b → b
etc., and that the transition amplitudes between various channels are
factorized. This property followed directly from unitarity.

Thus we have checked that both properties of normal particles – the
angular dependence of the amplitude and factorization – hold for complex
poles as well.

3.5.3 Width of the resonance

For resonances, however, there is one more statement which makes no
sense for ordinary particles, namely, the relation between ImM2 and the
coupling constants that also follows from unitarity. Recalling that the
matrix U is unitary, ∑

a

U∗
a1Ua1 = 1 ,

and expressing Ua1 via (3.33) one relates the set of ga with the full width
of the resonance:

∑
a

τag
2
a =

∑
a

a = M2
2 ≡ M1Γ. (3.35)

The constant ga is the transition amplitude between the resonance and
ordinary particles with τa their phase space. Thus the amount by which
the pole is shifted from the real energy axis is determined by the total
probability of the resonance decay into real particles.

3.6 A resonance or a particle?

How to establish a generic link between particles and resonances? Let us
discuss a simple example of how a resonance emerges.
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Imagine that in some reaction a π0 meson appears as a pole:

π0

Now we switch on the electromagnetic interaction with a very small in-
teraction constant. Then a new transition will emerge, π0 → γγ. How will
this small correction to strong dynamics affect the propagation of π0?

Pion self-energy is determined (in the hadronic language) by a variety
of possible intermediate states such as 3π, NN̄ , etc.:

Σ h =
π0

π

π

π
+

π0

N
N + . . . (3.36)

The point in k2 where the denominator of the Green function

G(k) =
1

m2
0 − k2 − Σ(k2)

turns into zero determines the renormalized pion mass:

m2
π = m2

0 − Σ
(
m2

π

)
. (3.37)

For (3.37) to have a real solution, Σ has to be real. We know that the
graphs of (3.36) become complex at k2 > (3mπ)2 and k2 > (2MN )2, re-
spectively, which scales are significantly higher than m2

π. That was the
case before we turned QED on. Now, however, we shall also have the
graph

Σe.m. = π0 γ γ , Σ(k2) = Σh(k2) + Σe.m.(k2), (3.38)

which has a threshold (and therefore a branch cut) at k2 = (2mγ)2 = 0.
As a result, (3.37) will have no real solution and the π0 Green function
will acquire a ‘resonance’ form

G(k2) =
1

m2 − k2 − im2
2

,

m2
2 = Im Σe.m.(m2) = = g2

π0→γγ · τγγ . (3.39)

What happened? After the introduction of a small-mass intermediate
state the pion pole occurred right on the cut! This, however, would have
contradicted the unitarity condition. Therefore the pole (together with all
multi-state cuts that it generates) moves under the two-photon cut onto
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the unphysical sheet:

m2 9m2 m2 9m
.

2

This analysis tells us that the difference between particles and reso-
nances is elusive. If we believe that electromagnetic interaction has no
major effect on the basic properties of pions as strongly interacting par-
ticles, then it becomes insignificant whether a π-meson is a particle or a
resonance, whether the corresponding pole lies on the real axis or slightly
below.

Concluding, we have proved that a resonance as a contribution to the
scattering amplitude is identical to a particle with definite quantum num-
bers and possesses the usual factorization properties that are characteris-
tic for particle exchange. Therefore we can describe resonances with the
help of Feynman diagrams as we did for particles, the only difference be-
ing a complex mass whose imaginary part is related to the total decay
probability of the resonance into stable particles.

3.7 Observation of resonances

This is the last question that we need to address in this lecture. Imagine
that a beam hits a target and some particles are produced. The probability
amplitude to observe one of these particles a at a given point r at time t,

y xp

pi

a
x = (t, r),

is given by the expression

A =
∫

d4k

(2π)4 i
e−ikμ(x−y)μ

m2 − k2 − iε
f(y, p, pi, . . .), (3.40)

where we have explicitly written the propagator of our particle a.
In a real experiment the observation time t is macroscopically large,

t− y0 � m−1. Therefore the phase factor in (3.40) is oscillating fast with
k, and the integral would be exponentially small if not for the singularity
of the propagator function. Since t− y0 > 0, we can close the integration
contour in k0 around the pole at k0(k) =

√
m2 + k2, that is to put particle
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a on mass shell:

A =
∫

d3k
2k0(k)(2π)3

e−ik0(k)(t−y0)+i(k·(r−y))f. (3.41)

At t → ∞ plane waves in this sum cancel each other everywhere but on
a classical trajectory where r is linearly increasing with t:

∇k[ k0(k)(t− y0) − (k · (r − y)) ] = 0 ⇒ r = vt + r0, v ≡ dk0(k)
dk

=
k
k0

.

It is easy to verify that the probability of observing the particle at r falls
with the distance as

w ∝ |A|2 ∝ 1
r2

,

which is in accord with the increasing size of the surface of the observation
sphere.

If we were to register two particles a and b at the same point,

a
b

x
,

the probability would fall faster with |r| because two particles prefer to
separate at large distances.

Consider now the general case of the observation of two particles.

b

x
x

1

2

a
. (3.42)

Repeating literally the above analysis we will obtain that the observation
probability is concentrated along the trajectories

r1 = v1t + r10, r2 = v2t + r20.

By measuring the directions of particle momenta we can determine, within
the Heisenberg uncertainty, classical trajectories, and verify that the par-
ticles indeed originate from the interaction region.

Suppose now that a and b may combine into a resonance state:

x
x

1

2b

a
. (3.43)

How does this graph differ from the usual particle creation in (3.42)? In the
case of a complex pole with a small imaginary part ImM2 = M2

2 
 M2
1
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we have

k0 =
√

M2 + k2 �
√

M2
1 + k2 − iM2

2

2
√

M2
1 + k2

≡ E − iM2
2

2E
. (3.44)

The amplitude then falls exponentially at large times,

A ∝ e−ik0t ∝ exp
{
−1

2
M2

2

E
t

}
≡ exp

{
−Γ

2
· M1

E
t

}
, (3.45)

and the probability decreases as

|A|2 ∝ exp
{
−Γ t · M1

E

}
. (3.46)

Here the ratio M1/E is the usual Lorentz time dilatation factor. Intro-
ducing the proper life-time τ of the resonance,

τ−1 ≡ Γ =
M2

2

M1
, (3.47)

we conclude that for finite times t ∼ τ · E/M1 our resonance state may
propagate as a whole. Therefore, restoring trajectories of its decay pro-
ducts we will see that a and b originate not from the target but fly away
from a point at some finite distance from the interaction region. This
distance will vary event by event. It is clear, however, that the probability
of a large displacement is exponentially small.

3.7.1 Non-exponential decay?

Sometimes people talk about the ‘non-exponentiality’ of a decay. Cal-
culating concrete integrals I will always find contributions that fall as a
power of t (most often as t−3/2) in addition to the resonance exponent.
Does this imply that the decay law (3.46) is inaccurate?

We register a resonance by observing its decay products. Therefore
there will always be a background due to production of particles a and b
directly off the target. Let us switch on our measuring devices one hour
after irradiating the target; some extremely slow particles could have been
produced that crawl and hit the detectors after this immense time is
elapsed. This power-behaving ‘tail’ has nothing to do with the decay of
the resonance.

3.7.2 Resonance in the invariant mass distribution

Till now we were considering resonances with a small width Γ. For res-
onances that decay relatively fast (large Γ) a direct visual observation
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of the resonance path becomes impossible. In this case resonances are
extracted by examining energetic characteristics of the process.

p1
p4

p5p3
p2

= f(p1, p2, p3)
1

M2 − (p4 + p5)2
g(p4, p5). (3.48)

The resonance propagator in (3.48) introduces a peak in the distribution
over the invariant mass s45 of the pair of particles 4 and 5:

dσ

ds45
∝ |A|2 ∝ 1

(s45 −M2
1 )2 + M4

2

. (3.49)

Let us remark that instead of observing decay products it suffices to
measure the recoil momentum p3, since due to momentum conservation
s45 = (p4 + p5)2 = (p1 + p2 − p3)2.

This method works only when the value of the resonance production
amplitude f is sufficiently large. It may turn out, however, that in reac-
tions that are available to experimenters the resonance is produced with
a small probability.

3.7.3 Phase analysis

In addition to the invariant mass spectrum there is another method
(though less unambiguous) of extracting resonances right from elastic
scattering – the phase analysis. Recall the general expression for the par-
tial wave amplitude describing elastic ab scattering

f�(s) =
1

2iτ(s)

[
η(s) e2iδ�(s) − 1

]
. (3.50)

The scattering phase factor near the resonance is

e2iδ� =
M2

1 − s + iM2
2

M2
1 − s − iM2

2

e2iβ� . (3.51)

If the amplitude away from the resonance is small (as, for example, for
e+e− scattering), then η � 1, β� � 0. In such a case the resonance is im-
possible to miss since the amplitude at the peak hits the maximal value
allowed by unitarity,

f� =
i

τ
= fmax

� for s = M2
1 (η = 1, β� = 0). (3.52)

What to do if the non-resonant scattering is large and the peak does not
stick out from the background?

By measuring the shape of the angular distribution, one can extract a
few first partial waves by fitting the cross section with an approximate



3.7 Observation of resonances 91

0
Re f

Im f

0.50.5

0.5

0

Fig. 3.2 Example of an Argand plot.

expression for the amplitude

A(s, cos Θ) �
�0∑
�=0

(2� + 1)f�(s)P�(cos Θ).

The following remarkable property of f�(s) then comes onto the stage.
The resonant factor in (3.51),

M2
1 − s + iM2

2

M2
1 − s − iM2

2

� (Mres − E) + iΓ/2
(Mres − E) − iΓ/2

,

equals 1 on both sides of the resonance, |E −Mres| � Γ, but changes fast
in a relatively small energy interval |E −Mres| ∼ Γ. If we put a point on
a complex plane to mark the value of the amplitude f� at a given energy,
this point will make a full circle when the energy variable crosses the
mass of the resonance (provided η, β, τ do not change essentially inside
the interval of the order Γ), see Fig. 3.2.

Combining the three methods that we have described here, a plethora
of hadronic resonances has been established.

The studies of the spectrum of hadrons tells us that the fact of stability/
instability of a hadron under consideration, whether it is a particle or a
resonance, is not of major importance for strong interaction dynamics. It
often looks accidental, depending on an interplay of factors that we rather
consider insignificant today.



4
Electromagnetic interaction of hadrons

What do we mean when we talk about electromagnetic interactions of
hadrons? The simplest of them is the interaction of hadrons with leptons.
As you know there are particles – leptons – that do not participate in
the strong interaction. They interact electromagnetically, and this inter-
action∗ can be described in the field theoretical (QFT) framework.

We suppose, and this is our main hypothesis, that a charged lepton
interacts with hadrons only via a photon field. The second part of our
hypothesis must contain something about the interaction of a photon
with hadrons. Here we will say, once again within the QFT concept, that
it is still a pointlike interaction (as in the usual QED) which has to be
treated with account of all possible field-theoretical corrections:

q

p + + + . . .
(4.1)

Strong interaction being strong, the photon will always interact with a vir-
tual particle in the intermediate state that depicts the internal structure
of a dressed hadron.

Since QED amplitudes are small, we can restrict ourselves to the one-
photon-exchange picture.

4.1 Electron–proton interaction

Consider the electron–proton scattering amplitude in the first order in
αem. Both particles have spin-1

2 , and from general considerations we can

∗ as well as the weak one, with the advent of the Glashow–Weinberg–Salam theory. (ed.)

92
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immediately write

q
k ′

p ′

k

p
= e1e2

[
ū(k′)γμu(k)

] 1
q2

[
Ū(p′)ΓμU(p)

]
. (4.2)

What can we say about the vertex Γμ? It has got to be a vector since the
photon has spin 1. We have at our disposal the proton momenta pμ and
p′μ and the Dirac matrix γμ:

Γμ = a(q2)γμ + b(q2)σμνqν
(
σμν ≡ 1

2 [γμ, γν ]
)
. (4.3)

This is the most general structure that satisfies the on-mass-shell cur-
rent conservation condition qμ · [Ū(p′)ΓμU(p)] = 0 (higher powers of γ-
matrices reduce to (4.3) due to the Dirac equation Ū p̂′ = mŪ , p̂U = mU).

Already at this stage we have obtained a strong prediction that derives
from the fact that the unknown functions a and b in (4.3) do not contain
any s-dependence!

It is worthwhile to remark that in discussing electromagnetic interac-
tions of hadrons we face a situation which is essentially different from
that of the strong interaction. In pure hadron interactions we were basi-
cally dealing with real particles and on-mass-shell amplitudes. Now, by
virtue of the smallness of the lepton–hadron interaction, we were able to
select a single graph whose amplitude depends on the virtual momentum
q2. Formerly, hadron–hadron scattering amplitudes depended seriously
on s and t. Now we have a serious dependence only on t = q2 while the
s-dependence turns out to be trivial as it is exclusively due to free parti-
cles’ spinors.

This observation alone gives rise to the Rosenblutte formula checking
which one directly verifies that e and p indeed interact only via the electro-
magnetic force. (The Rosenblutte formula is also being intensively checked
experimentally in an attempt to find a possible difference between the lep-
tons – an electron e and a muon μ.)

4.1.1 Electric charge

The photon–proton vertex will be determined by the ensemble of all the
diagrams (4.1) which I would have to calculate, given a concrete QFT.
For example, suppose there were only nucleons and pions. Then I would
draw the bare interaction and corrections:

p

π+

+ . . .p
π

n

+
p

n
+ +
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The first thing to do is to calculate the electric charge – the value of the
amplitude at q → 0.

Bare proton. Suppose the proton possessed a bare electric charge,
e0. Then with account of higher-order radiative corrections it would get
modified,

e0 =⇒ e0 Z
−1
1 Z2

√
Z3 ≡ ep,

where Z−1
1 is the vertex correction and the factor Z2 = (

√
Z2)2 comes

from initial and final proton wave functions. After renormalization we
would have the on-mass-shell condition

Γμ(q = 0; p2 = p′2 = m2
p) = ep · γμ; a(0) ≡ 1. (4.4)

The Ward identity taught us that in the theory with a conserved current

Z1 = Z2, =⇒ ep = e0 ·
√

Z3,

that is, charge renormalization is related to the photon only. This is ex-
actly what we call charge conservation. Namely, if we plug in equal bare
electric charges for the proton and the electron, then the renormalized
physical charges will stay equal, irrespective of the nature of the charged
particle and interactions it is subject to.

In fact we have only ‘half a theory’ of this important phenomenon,
since (except for a few attempts) we have no pure theoretical reason for
ascribing to electron and proton equal (and opposite) bare charges. This
is just an experimental fact (and a very solid one in that).

Quarks. What if there is no bare proton at all? We can imagine the proton
to be a bound state of some point-like constituents, quarks for example.
Then we will have to work with photon–quark interaction amplitudes; the
proton charge will be simply given by the sum of quark charges,

ep = (e1 + e2 + e3) + · · · .
So essentially we would have an approach rather similar to the previ-
ous one but at the level of constituents. One way or another, we cannot
move away from the field-theoretical concept of point-like interaction if
we intend to keep things under control.

4.1.2 Magnetic moment

Let us consider a small momentum transfer and keep the first power of q
in the expression for the vertex (4.3):

Γμ � ep(γμ + b(0)σμν qν) . (4.5)

Here we have extracted from the vertex the renormalized charge ep and
set a(0) = 1.
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What is the physical meaning of the linear term in (4.3)? The Dirac
vertex γμ contains interaction with the charge as well as with the magnetic
moment. Using the identity

ū(k′)(k + k′)μu(k) = ū(k′)
[
2mγμ + σμνq

ν
]
u(k),

we may rewrite the amplitude of electron scattering, Aμ ū(k′) γμ u(k), as

Aμ (k + k′)μ
2m

· ū(k′)u(k) − Aμ · ū(k′)
σμνq

ν

2m
u(k).

With the electron at rest (k = 0), the first term does not contribute to
scattering in a magnetic field: A0 = 0, A · q = 0(divA(x) = 0). The sec-
ond contribution survives and describes an interaction with the magnetic
moment of a spin-1

2 charge.
The linear term from the proton (4.5) adds up with the Bohr magneton

e/2m, resulting in the magnetic moment of the proton

μp = − ep
2mp

[ 1 − 2mpb(0) ] .

In QED we have seen that the magnetic moment of the electron acquires
an ‘anomalous’ contribution αem/2π (Schwinger, 1962).
This was a consequence of the internal structure of the
electron that became apparent when radiative correc-
tions had been taken into consideration. The magnetic

moment of the proton also changes on account of the interaction, and not
only electromagnetically, but of the strong one in the first place.

While the electromagnetic charge renormalizes in a universal way, in-
dependently of the proton’s nature, the value of its magnetic moment
depends crucially on the concrete properties of the strong interaction.

4.2 Form factors

The physical meaning of the functions a(q2) and b(q2) becomes apparent
from the non-relativistic analogy.

Consider the scattering of a charge off an extended
target, e.g. an atom. In quantum mechanics, the scat-
tering amplitude is given by the Fourier integral of the
Coulomb potential V (r) which, in turn, one obtains by
integrating the charge density ρ(r′) over the volume of
the target:

q

f ∝
∫

d3r V (r) e−iq·r, V (r) =
∫

d3r′
e2

|r − r′|ρ(r
′).
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Combining the two expressions one arrives at

f ∝ e2

|q|2
· F (q2), F (q2) ≡

∫
d3r′ ρ(r′) e−iq·r′

, (4.6)

with F the electric form factor of the target atom. Analogously, our func-
tions a and b are the proton form factors characterizing, correspondingly,
the distribution of the charge and that of the electric current inside the
proton.

In the case of a spinless object there is no preferred direction, and the
magnetic moment is identically zero. Therefore, if we substitute a π-meson
for a proton we will have only one (electric) form factor. Now the only
vector at our disposal that satisfies the current conservation condition
qμΓμ = 0 (for p2 = p′2 = μ2) is the sum of the pion momenta, (p + p′)μ;
hence, the photon–pion interaction vertex contains a single structure:

Γπ
μ = e · a(q2)(p + p′)μ.

What else can be said about form factor(s)?
Let us look at the analytic properties of a form factor as a function of

momentum transfer q2. It is clear that the form factor is real for q2 < 0
since no real process may occur in the intermediate (t-channel) state. At
the same time, for positive virtuality above the
two-pion threshold, q2 > 4μ2, the form factor
becomes complex-valued due to the γ∗ → π+π−

transition.
p

q

p

The relativistic theory allows us to link the scattering form factor to
a completely different physical phenomenon, namely an annihilation of a
pair of leptons into a pair of hadrons,

e+e− → NN̄ or e+e− → π+π−.

The very same function that describes an internal electromagnetic struc-
ture of a pion in the eπ scattering process in the region q2 < 0, at
q2 > (2μ)2 determines the cross section of e+e− annihilation into two
pions!

4.2.1 Analytic properties of pion form factor

Knowing that the form factor is an analytic function of q2, I can write

a(q2) = 1 +
q2

π

∫ ∞

4μ2

dQ2 Im a(Q2)
Q2(Q2 − q2)

. (4.7)
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I chose to write down the dispersion relation with one subtraction in order
to exploit the knowledge of the normalization a(0) = 1 (which only helps
the integral to converge faster).

As we know, the imaginary part is directly related to cross sections of
real processes. The latter are subject to various restrictions which then
must affect the form factor itself. Let us examine how serious these re-
strictions actually are by taking the pion form factor a(q2) as an example:

2 Im Γμ =
∑
n

g *

n
. (4.8)

This equation tells us that the dispersion theory provides us with a sys-
tem of linear equations for ‘form factors’ γ∗ → (n ∗ π), where the rôle of
the kernel is played by the pure strong interaction amplitudes (n ∗ π) →
(m ∗ π).

Consider for simplicity the region 4μ2 < q2 < 16μ2 where the two pion
unitarity relation holds:

2 Im a(q2)(p1 − p2)μ =
qg *

p
1

p′
2

p′
1

=

p

p p
2

.

(4.9)

The kernel is the ππ → ππ scattering amplitude. Moreover, π is spinless
(s = 0), while the total angular momentum of the ππ system, J = � + s,
must be equal the photon spin, J = 1. Hence, only one partial wave � = 1
of the ππ amplitude (P -wave) will contribute here.

Let us sketch how this selection occurs. The r.h.s. of (4.9) contains
integration over the intermediate-state pion momentum:∫

d4p′1
(2π)2

δ+(p′21 −μ2)δ+(p′22 −μ2) (p′1 − p′2)μa(q
2) ·A∗(p′1, p

′
2; p1, p2).

In the ππ centre-of-mass frame it reduces to the angular integral over
the direction of the relative momentum (p′1 − p′2)μ =⇒ 2p′

c which multi-
plies the scattering amplitude A∗(pc,p′

c). Writing down the partial wave
expansion of the latter,

A∗(pc,p′
c) =

∑
�

(2� + 1)f∗
� (q2)P�(cos Θpcp′

c
),

we observe that the only term with � = 1 survives the integration:

(2� + 1)
∫

dΩ′

4π
2p′

c · P�(cos Θpcp′
c
) = 2pcδ�,1.
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This matches the structure of the l.h.s.,

(p1 − p2)μ Im a(q2) =⇒ 2pc Im a(q2),

and the unitarity relation (4.9) takes the form

Im a(q2) = τa(q2)f∗
1 (q2),

with τ the phase space volume (3.7b) of the two-pion state. Substituting
the general solution of the two-particle unitarity condition (3.9)

f� =
1

2iτ

(
e2iδ� − 1

)
,

we have

a(q2) − a∗(q2)
2i

= τ · −1
2iτ

(
e−2iδ1 − 1

)
a(q2) =⇒ a∗

a
= e−2iδ1 . (4.10)

The unitarity condition simply tells us that the phase of the pion form
factor equals that of the ππ scattering amplitude. The origin of the com-
plexity of the form factor lies in re-interaction between pions in the final
state.

Above the four-pion threshold the situations gets more complicated.
Nevertheless, for the sake of simplicity, let us suppose that the relation
(4.10) holds for all q2 values. Then I would be able to calculate the form
factor straight away! To this end consider the function F = ln a(q2) and
write the corresponding dispersion relation,

F (q2) =
1
π

∫
dQ2

Q2 − q2
δ1(Q2) + ‘regular’

with ‘regular’ marking a possible non-singular (analytic) piece. Then,

a(q2) = P (q2) × exp
{

1
π

∫
dQ2

Q2 − q2
δ1(Q2)

}
,

with P a polynomial in q2. The latter can be replaced by a constant if
I suppose a good behaviour at q2 → ∞. Then, making use of a(0) = 1,
I would finally predict the form factor from the knowledge of the ππ
scattering phase:

a(q2) = exp
{
q2

π

∫ ∞

4μ2

dQ2

Q2(Q2 − q2)
δ1(Q2)

}
. (4.11)

Unfortunately, literally this formula is incorrect since we have neglected
many-particle channels which do essentially contribute at large Q2. As a
semi-quantitative estimate, however, (4.11) works reasonably well.
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4.2.2 Pion radius and ρ meson

At large negative q2 we expect hadron form factors to be falling fast
since it is a truly point-like charge that can only give a(q2) = O(1) in this
limit. On the other hand, at large positive q2 
 μ2 it has to decrease too.
This time, because a high-virtuality photon can produce many different
multi-particle states, so that the probability of a given exclusive channel,
γ∗ → ππ, must fall. Therefore, a(q2) has to have somewhere a maximum.

How could this be? An analytic function exhibiting a maximum makes
us think of a nearby singularity. We saw that our form factor has the pion
scattering phase as its source (in other words, strong interaction of pions).
Suppose there is a resonance in the strong ππ interaction amplitude at
some q2 = M2. Then this resonance will drive
the behaviour of the form factor. Effectively,
we will be looking for the process of the γ∗ →
ππ transition via a resonance state. pM 2

pg *

Substituting a resonance for Aππ in the unitarity relation (4.9),

q

a rough guess for its contribution to the form factor would be

a(q2) =
p
p

g
∝ 1

M2 − q2
. (4.12a)

Strictly speaking, to build a realistic model I would have to analyze ver-
tices and take into consideration their q2 dependence away from the pole
position. However, it suffices to invoke, once again, the restriction a(0) = 1
in order to reasonably fix the numerator in (4.12a):

a(q2) � M2

M2 − q2
. (4.12b)

At small positive q2, the slope of the q2 dependence will tell me the
characteristic mass the annihilation process goes through,

a(q2) = 1 +
q2

M2
+ · · · . (4.12c)

On the other hand, the same expansion can be carried out in the phys-
ical region of the scattering channel, q2 < 0. Recall the non-relativistic
expression for the charge form factor. Expanding (4.6) in Q2 = −q2 > 0
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we get

a(Q2) =
∫

d3r ρ(r) e−iQ·r � a(0)−
∫

d3r
(Q · r)2

2
ρ(r)

= 1 − Q2

2 · 3
〈
r2

〉
.

(4.13a)

Here we have introduced the average squared radius of the distribution
of the charge inside the pion,〈

r2
〉
≡

∫
d3r ρ(r) · r2, (4.13b)

and used the spherical symmetry:
〈
r2
z

〉
= 1

3

〈
r2

〉
.

Comparing the two expressions,

a(q2) = 1 +
q2

M2
+ · · · ⇐⇒ a(q2) = 1 +

q2
〈
r2

〉
6

+ · · · , (4.14)

we conclude that the charge radius is directly related to the mass of the
resonance in the annihilation channel.

In reality the P -wave pion–pion scattering is indeed dominated by the
resonance – a vector meson ρ with a mass mρ � 750 MeV. Firstly, this tells
us that the annihilation process e+e− → π+π− should show a prominent
peak at q2 � m2

ρ (and it does) and, secondly, that the position of this peak
determines the electromagnetic radius of the pion:

p
r

e e

p
In the case of nucleons the situation is somewhat more complicated.

First of all, the mass of the NN̄ state (q2 ∼ 4 GeV2) is very large com-
pared to the position of the ππ threshold (q2 ∼ 0.1 GeV2). This pushes
the physical region of the e+e− → NN̄ process far away from the scat-
tering channel and from the first singularity. Besides, unlike pions which
‘resonated’ in only one meson ρ, a nucleon is also linked to another vec-
tor meson ω (with isospin 0). In reality the nucleon form factor behaves
rather like [M2/(M2 − q2)]2, which may result from some destructive in-
terference between various meson exchanges.

4.3 Isotopic structure of electromagnetic interaction

It is obvious that the electromagnetic interaction does not respect isotopic
invariance:
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q

pp

ap(0) = 1

n                    n

q
an(0) = 0.

Let us generalize the Dirac spinor U describing the proton wave function
in (4.2), to represent the isotopic doublet of nucleons,

U =
(

p
n

)
. (4.15)

Then, with the help of Pauli matrices τi (i = 1, 2, 3) and of the unit matrix
in the 2 × 2 isotopic space, we can represent the electromagnetic vertex
simultaneously for the proton and the neutron as

Γμ = Ū
(
Γ(0)
μ · I + Γ(1)

μ · τ 3

)
U. (4.16)

(We could not use τ 1 and τ 2 here since they would transfer a proton into
a neutron, p + γ → n, which we rather would not do.) Projecting onto the
proton and neutron states, we get

Γ(0)
μ + Γ(1)

μ = |p〉Γμ〈p| , Γ(0)
μ − Γ(1)

μ = |n〉Γμ〈n| .

In particular, at q2 = 0 this will give us

Γ(0)
μ (0) − Γ(1)

μ (0) = 0 .

This isotopic beautification does not seem to bring us much profit. Still,
from the point of view of the crossing channel, Γ(0) and Γ(1) may happen to
acquire more fundamental meaning than the proton and neutron vertices
themselves.

Look at the case of pions. Since pion πα is a triplet
in the T space (α, β = 1, 2, 3), we have now three
independent diagonal matrices that can be used to
construct the ππγ interaction vertex:

q

pa pb

⎛
⎝ π+

π0

π−

⎞
⎠† [

Γ(0)
μ · I + Γ(1)

μ · T3 + Γ(2)
μ · T2

3

]⎛
⎝ π+

π0

π−

⎞
⎠ . (4.17)

The term proportional to Γ(k)
μ corresponds to isospin T = k. For a ππ

system the possibilities are: a scalar (T = 0), a vector (T = 1) and a
tensor (T = 2) in the isotopic space.

It becomes clear that electromagnetic form factors of a particle be-
longing to some huge isotopic multiplet could belong to high-rank tensor
structures in the T space. In reality, however, photons seem to couple
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only with the T = 0 and T = 1 channels (though the accuracy of this
experimental finding is presently not very high). In particular, in (4.17)
for pions Γ(2)

μ � 0.
How might one understand this phenomenon? Suppose that all hadrons

were built of isotopic doublets, T = 1
2 , like quarks. Then it is quarks which

participate in the electromagnetic interaction,

u

p − p − u
_

_
d

d

and we have only an iso-scalar and an iso-vector in the photon channel:

Γem ∼ I + τ 3. (4.18)

It is important to bear in mind that, since strong interactions respect the
isospin symmetry, whichever diagrams I include to account for interactions
between quarks, coupling of the photon to π-meson will retain the scalar +
vector isotopic structure of (4.18) (in the first order in αem).

This is an example of how studying electromagnetic interactions may
produce highly non-trivial hints about the nature of hadrons.

4.4 Deep inelastic scattering

At large virtual-photon momentum transfer, −q2 
 1 GeV2, electromag-
netic proton form factors decrease fast, as a large inverse power of q2.

This may look surprising at the first sight. Indeed, from the point of
view of the dispersion relation,

F (q2) =
1
π

∫
dQ2 ImF (Q2)

Q2 − q2
,

in order to ensure a fast falloff of F at large negative q2, the imaginary
part must oscillate, and in a very specific way.

4.4.1 Parton concept

Let us look at the problem from a classical perspective instead. It is easy
to make F (q2) fast falling if we take the charge density ρ(r) in the NQM
formula (4.6) to be a smooth non-singular function.
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There exists another way to explain the smallness
of elastic scattering. Imagine the proton consisting
of some number of weakly bound point-like charges.

Then, physically, the scattering of an electron off
such a composite object will always be inelastic:
the photon will interact with one of the charges
and kick it out, ‘destroying’ the target proton.
This picture is similar to what happens to an
atom: when an electron is kicked off from a core

shell, leaving a vacancy, the excited atom ‘decays’ by emitting photons,
Auger electrons, . . .

The elastic proton scattering will only be possible in the configurations
when all the quarks happen to be very close to
each other, at small distances (Δr)2 ∼ 1/

∣∣q2
∣∣ � 〈

r2
〉
.

In this picture, the elastic channel suppression is due
to the smallness of the probability of such small-
distance configurations (equivalent to weak binding).

How to determine which answer is closer to reality? Since the q2 be-
haviour of the elastic form factor does not help to discriminate the two
pictures, let us look at more complex – and more interesting – inelastic
processes. In the first picture the total inelastic cross section will be as
small as the elastic one, since in the scenario of a smooth charge density
ρ, a small-wavelength photon would simply find no-one to interact with,
elastically or otherwise. In the second scenario, an inelastic cross section
is not small at all. On the contrary, it is determined by the probability
for the photon to interact with one of the internal point-like constituents
of the proton.

4.4.2 DIS cross section

We will study the process called deep inelastic lepton–proton scattering
(DIS); the word ‘deep’ stresses the fact that the a highly virtual photon
with Q2 = −q2 


〈
r2

〉−1 penetrates deep into the proton’s interior.
In non-relativistic quantum mechanics, electron scattering off an atom

having N electrons is given by the transition matrix element

ρ0,n
k,k′ ∝

∫
d3r eiq·r

∫ ∏
d3ri ψ∗

n(ri)
N∑
k=1

e2

|r − rk|
ψ0(ri)

∼ e2

q2

∫ ∏
d3ri ψ∗

n(ri)
N∑
k=1

eiq·rkψ0(ri).
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Here k and k′ are the initial and final electron momenta, and ψ0 and ψn

mark the wave functions of the initial ground state and of the excited
final state of the atom, respectively.

We are interested in the cross section summed over all possible final
states of the excited atom, n ≤ n0. If n0 is large, the product of the final-
state wave functions that enters the expression for the cross section can
be simplified using the (almost) completeness relation:

n0∑
n=0

∣∣ψn(r′)
〉
〈ψn(r)| �

∞∑
n=0

∣∣ψn(r′)
〉
〈ψn(r)| = δ(r − r′). (4.19)

The cross section then reduces to

dσ

dq2
∼ e4

q4

∫ ∏
d3ri ψ∗

0(ri)
N∑

j,k=1

eiq·(rj−rk)ψ0(ri). (4.20)

When the photon wavelength is much smaller that the typical distance
between the atomic electrons, q2 
 〈r2

jk〉−1, the interference terms with
j �= k in (4.20) become negligible. We are left with the sum of N diagonal
contributions:

dσ

dq2
∼ e4

q4

N∑
k=1

ψ∗
0(ri)ψ0(ri) =

e4

q4
×N,

where we have used the normalization condition for the ground state
wave function. Thus, the total inelastic eA cross section reduces to the
sum of independent interactions of quasi-free individual electrons under
two conditions, namely:

(1) the ‘resolution’ of the photon should be large enough to separate
individual electrons inside the target atom, q2 
 R−2;

(2) the energy transferred to the atom should be sufficient to have
a large enough number of excited states in order to employ the
completeness relation (4.19).

Let us turn now to the relativistic theory and learn to write the corre-
sponding cross section. The squared matrix element for the ep scattering
process with the production of n particles is shown in Fig. 4.1. To obtain
the cross section, we have to square the virtual photon–proton interaction
amplitude Aμ bearing the photon index μ and convolute it with the cor-
responding electron scattering tensor Tμν

e . We also write down the phase
space volume for n + 1 particles (the scattered electron k′ and n pro-
duced final state hadrons with momenta {pi}), and include the square of
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k                                     k

p
n

p
1

k ′       

q q

p                                           p

Fig. 4.1 Discontinuity of the forward photon–proton scattering amplitude.

the photon propagator, (1/q2)2, and the flux factor Jep � 4(pk):

dσ =
e2

Jep

∫
d4k′

(2π)3
δ+(k′2−m2

e)
∑
n

n∏
i=1

[∫
d4pi
(2π)3

δ+(p2
i −m2

i )
]

Tμν
e

1
q4

Aμ(p, q, {pi})A∗
ν(p, q, {pi}) (2π)4δ

(
p + k − k′ −

n∑
i=1

pi

)
.

(4.21)

If we average over initial electron polarizations, the electron tensor Tμν
e

is given by the expression

Tμν
e = Tr

[
(k̂ + me)

2
· γμ(k̂′ + me)γν

]
= 2(kμk′ν + k′μkν) + gμνq2. (4.22)

First comes an observation similar to the one we made when discussing the
Chew–Low method (see (2.69)): we may replace the sum over produced
hadrons by the imaginary part of the amplitude of the forward scattering:

∑
n pn

p1

= 2 Im
qq

p              p
≡ e2Wμν(pq, q2). (4.23)

The only peculiarity of this ‘optical theorem’ is that here one of the col-
liding objects is a virtual photon, so that the tensor Wμν (bearing, once
again, vector photon indices) depends on two variables rather than on the
energy of the collision only, W = W (pq, q2). Due to conservation of the
electromagnetic current, this tensor must be orthogonal to qμ (and qν)
and can be therefore represented as follows:

1
2π

Wμν =
(
−gμν +

qμqν
q2

)
W1 +

1
M2

(
pμ − pq

q2
qμ

)(
pν −

pq

q2
qν

)
W2,

(4.24)

with W1, W2 known as the structure functions. (If the spin vector s of the
initial particle is fixed, in Wμν (as well as in Tμν

e ) there appears an addi-
tional structure proportional to the anti-symmetric tensor iεμναβq

αsβ.)
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The differential cross section takes the form

dσ =
α2

4π
1
q4

Tμν
e Wμν

d3k′

(pk)E′ . (4.25)

Let us calculate the product of the tensors. The electron one, Tμν
e , also

respects the current conservation; as becomes obvious from its expression
equivalent to (4.22):

Tμν
e = (k + k′)μ(k + k′)ν − qμqν + gμνq2; (k + k′) · q = k2 − k′2 = 0.

Therefore, we can drop the terms proportional to qμ and/or qν from the
hadron tensor when calculating the convolution:

(4.24) =⇒ −gμνW1 +
pμpν
M2

W2.

The convolution yields

1
2π

Tμν
e Wμν = −4

[
(kk′) + q2

]
W1 +

[
4(pk)(pk′)

M2
+ q2

]
W2. (4.26a)

Using q2 = (k′ − k)2 = 2m2
e − 2(kk′),

1
2π

Tμν
e Wμν � 4(kk′)W1 + 2

[
2(pk)(pk′)

M2
− (kk′)

]
W2, (4.26b)

where we have dropped the electron mass me as negligibly small.
In the laboratory system where the target proton is at rest, p = (M,0),

we introduce the electron scattering angle Θ and approximate (kk′) �
EE′(1 − cos Θ) in (4.26b) to get

1
2π

Tμν
e Wμν � 4EE′

[
2W1 · sin2 Θ

2
+ W2 · cos2

Θ
2

]
. (4.27)

Substituting (4.27) into (4.25), the cross section becomes

dσ

d cos Θ dE′ =
4πα2E′2

q4M

[
W2 · cos2

Θ
2

+ 2W1 · sin2 Θ
2

]
. (4.28)

By measuring the scattered electron momentum, one extracts the depen-
dence of the structure functions W1,2(pq, q2) by measuring the direction of
the scattered electron momentum and the energy ν = E − E′ transferred
to the hadron system:

(pq) = Mν, q2 � −2EE′(1 − cos Θ).

Let us make a comparison with the elastic proton scattering. Apart from
the form factor in the photon–proton vertex,

Γμ ∼ ep γμ · Γel(q2),
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the calculation of the hadron tensor becomes identical to the lepton one:

W el
μν

2π
=

[
2(pμp′ν + p′μpν) + gμνq

2
]
Γ2

el(q
2) · δ(2pq + q2)

=
[
(p + p′)μ(p + p′)ν − qμqν + gμνq

2
]
Γ2

el(q
2) δ

(
2pq + q2

)
.

(4.29)

The final hadron state consists now of the recoiling proton only, and the
delta-function puts it on the mass shell: p′2 −M2 = (p + q)2 −M2 = 0.
It is easy to extract the functions Wi corresponding to elastic scattering.
Observing that

q = p′ − p =⇒ pμ − pq

q2
qμ = 1

2(p + p′)μ;

by comparing (4.29) with the general decomposition (4.24) we derive

W el
2 = 4M2 Γ2

el · δ
(
2pq + q2

)
, W el

1 = − q2

4M2
W el

2 . (4.30)

Rewriting the phase space element in (4.28) terms of invariants,

E′2

M
· d cos Θ dE′ =

E′2

M
· dq2

2EE′ dq0 =
pk′

pk
· dq2d(2pq)

4M2
,

the differential cross section takes the form

dσ

dq2 d(2pq)
=

4πα2

q4
· pk

′

pk
·
[

W2

4M2
cos2

Θ
2

+
W1

2M2
sin2 Θ

2

]
. (4.31)

When the energy of the incident electron is large, the scattering angle
becomes very small, Θ2 �

∣∣q2
∣∣M2/(pk)2 ∝ |t|/s2 → 1; in this limit

dσel

dq2
� 4πα2

q4

W el
2

4M2
d(2pq) =

4πα2

q4
· Γ2

el(q
2). (4.32)

Thus, W el
2 is nothing but the square of the elastic proton form factor.

An inelasticity of the interaction in a general case can be characterized
by a dimensionless variable ω which measures the invariant mass of the
final hadron system in units of the momentum transfer

∣∣q2
∣∣:

W 2 = (p + q2) −M2 = −q2(ω − 1) , ω ≡ 2(pq)
−q2

≥ 1 .

In the elastic process, the invariant photon–proton energy is determined
by the on-mass-shell condition (p + q)2 = 2pq + q2 + M2 = M2 corre-
sponding exactly to ω = 1. If we take ω not too close to unity, ω = O(1),
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and keep it fixed while increasing
∣∣q2

∣∣, the lepton–hadron interaction in
this kinematics is called deep inelastic scattering (DIS). The inelasticity
W 2 of such a process is proportional to the squared transferred momen-
tum q2 (the latter characterizing the ‘hardness’ of the process).

The inelastic cross section can be expressed then as

dσ

dq2 dω
� 4πα2

q4
· F2(q2, ω), (4.33)

where we have introduced the scaling function F2 – an analogue of the
squared form factor in (4.32):

F2(q2, ω) = − q2

4M2
W2(pq, q2); F

(el)
2 (q2, ω) = Γ2

el(q
2)δ(ω − 1).

The SLAC experiment has found that F2 (and F1 = W1) becomes inde-
pendent of q2 starting from

∣∣q2
∣∣ ∼ 2−4 GeV2. This shows that the picture

of a smooth charge distribution inside a proton cannot be correct, hence
in such a case the ‘inelastic form factor’ would be falling with

∣∣q2
∣∣ together

with the elastic one.
On the contrary, the observed Bjorken scaling regime F (q2, ω) � f(ω)

perfectly fits the second picture: (4.33) tells us that the cross section of an
inelastic ep process equals that of the Rutherford elastic scattering off a
point-like particle. It is a point-like charge inside the proton – a quasi-free
‘parton’ – that takes an impact.

The question arises, can we say anything about the parton spin? Let us
ask ourselves, why did we get two structure functions in the first place,
not ten?

The virtual photon linking the lepton with the hadron block has three
polarizations (eλq) = 0, two orthogonal to the scattering plane {p, q}, and
one lying in it:

gμν − qμqν/q
2

q2
=

3∑
λ=1

eλμ(q)eλ∗ν (q); (eλp) = 0, λ = 1, 2.

The photon does not change its polarization in the cause of scattering:

Mλλ′
= eλμW

μνeλ
′∗

ν = Mλδλλ′ .

Invoking (4.24) we see that the scattering cross section σ⊥ of a transversal
photon (λ = 1, 2) is determined by the structure containing the gμν tensor
that is, by the function W1, while the longitudinal (in-plane) one, σ‖

(λ = 3), – by a definite linear combination of W1 and W2.
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n

q
′

q

m

Imagine that some charged parton
with momentum � absorbs the virtual
photon and scatters elastically. If the
parton has spin zero, its electromagnetic
vertex is proportional to the momentum,
Γμ ∝ (� + �′)μ, and we get

Wμν

2π
∼ (� + �′)μ

Im
π

[
1

m2 − �′2 − iε

]
(� + �′)ν ∼ 4�μ�ν

q2
δ

(
2�q
q2

+ 1
)
.

In this case the longitudinal photon interacts with a normal cross section,
while the transverse polarizations would be power suppressed (provided
the parton inside the proton has a limited transverse momentum):

σ‖

σpoint

= O(1) ,
σ⊥

σpoint

∼
〈
�2
⊥
〉

|q2| � 1.

On the other hand, for a spin-1
2 parton, the structure of Wμν reproduces

that of the electron tensor (4.22):

Wμν ∝
(

2
�μ�

′
ν + �′μ�ν
q2

+ gμν

)
δ

(
2�q
q2

+ 1
)
.

Here, on the contrary, the longitudinal polarization gets suppressed,

�μ ·
(
�μ�

′
ν + �′μ�ν − gμν(��′)

)
∝ �2 = m2,

and we have a situation just opposite to the previous case

σ⊥

σpoint

= O(1) ,
σ‖

σpoint

∼
〈
�2
⊥
〉

+ m2

|q2| � 1 .

The experiment shows

σ⊥ 
 σ‖

(σ‖/σ⊥ ∼ 1/5), hinting at spin-1
2 partons (quarks?).

The overall impression is that the picture with quarks in the rôle of
partons stands up to scrutiny.

Two phenomena have to be understood:

(1) the fact that the inelastic cross section is not small, F = O(1); and

(2) the Bjorken scaling, F (q2, ω) � f(ω).

If the Bjorken scaling phenomenon is verified by future more detailed and
more accurate experiments† we will be facing a serious puzzle! Actually,

† To hope this would not is a sin, because it is beautiful, in the first place.
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the existence of this scaling challenges all we knew in ‘the past’. While the
observed scaling is apparently well explained by a naive parton model, it
cannot hold from the field-theoretical point of view.

Indeed, imagine a proton consisting of ‘points’, subject to some QFT
interaction. The Bjorken scaling emerges indeed in the toy model of scalar
fields with the λϕ3 interaction. Why? Because all the integrals in this
theory converge in the ultraviolet momentum region, and at large

∣∣q2
∣∣ all

the corrections vanish leaving us with a point-like particle without form
factor. Unfortunately, this is true not only for inelastic but for the elastic
scattering as well.

In principle, we could get a falling elastic form factor back if we sup-
pose that the fields ϕ may form bound states, in which case a falloff of
F 2

el(q
2) at large q2 would be explained by the decay of a bound state

into its point-like constituents. In spite of such an ‘improvement’, this
model still does not suit us, for two reasons. Firstly, one cannot build real
hadrons out of spinless particles, and, secondly, we would have σ‖ 
 σ⊥,
in contradiction with experiment.

As soon as we introduce fermions, the theory seizes to be super-
convergent and becomes (at best) renormalizable. Ultraviolet logarith-
mic divergences appear that have to be renormalized, etc. But this means
that interaction corrections are never small for any, whichever large, q2.

In a logarithmic quantum field theory, inside a physical particle there
are always virtual exchanges with arbitrarily large momenta, exceeding
the DIS momentum transfer:

∣∣q2
virt

∣∣ 
 ∣∣q2
∣∣. Under these circumstances,

when probing a hadron with higher and higher ‘resolution’, we encounter
more and more ‘constituents’; hence, the exact Bjorken scaling regime
simply cannot hold.



5
Strong interactions at high energies

5.1 The rôle of cross-channels

In this lecture we return to the study of the four-point amplitude A(s, t).
As we already know, it describes three different crossing reactions in
the corresponding channels on the Mandelstam plane s = (pa + pb)2,
t = (pa − pc)2, u = (pa − pd)2:

t = 0

ρ

ρ
tu

us

ρ
st

u = 0 s = 0 u = 4μ2 s = 4μ2 

t = 4μ2 

a + d → c +  b¯ ¯ a  d → c ++ b

a + c → b + d¯ ¯

111
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In Lecture 3 we examined analytic properties of the amplitude at small
energies when, in fact, a small number of partial waves contributed. We
discussed that the behaviour of A(s, t) was governed by singularities of
these partial waves. We have shown that unitarity led to the appearance
of poles on unphysical sheets of the scattering amplitude – resonances –
as well as to threshold branch cuts related to these poles. We have also
discussed the physical origin of these singularities. Moreover, that was all
we could possibly say about the strong interaction since perturbation the-
ory is not applicable in principle (in terms of hadrons, g2/4π ∼ 14) and
the Lagrangian is not known. Even if we knew the underlying Lagrangian,
that would not have helped us in calculating amplitudes we were inter-
ested in.∗

The method we have employed in Lecture 3 fails when we increase the
interaction energy because the unitarity condition becomes prohibitively
complicated due to the opening of new multi-particle production channels.
In spite of this, at very high energies s, when the number of inelastic
channels becomes large, an interesting new simplification arises in certain
regions on the Mandelstam plane.

Take finite |t| and large s � m2 and consider near-to-forward two-
particle scattering at small angles Θs ∼

√
−t/s � 1. For |t| ∼ m2 it is

the nearest singularities in the t-channel that will determine the behaviour
of the amplitude, while u-channel singularities are irrelevant as they lie
far away: |u| � s � m2. Analogously, we can expect a similar for near-to-
backward scattering: |u| ∼ m2 fixed, s → ∞, in which case a finite number
of the nearest u-channel singularities will be relevant.

It is clear that the idea of extracting the asymptotic behaviour by means
of the analytic continuation in the scattering angle variable (either t or
u) is bound to be successful. At very large s when the number of the
opened inelastic channels is immense, adding one or two would by no
means affect the elastic amplitude. Therefore it seems natural to expect
that in the s → ∞ limit the t- (or u-) channel unitarity conditions will
play a major rôle. This, together with the s-channel unitarity, will allow
us to draw a possible picture of strong interactions at high energies.

The key instrument in the realization of this programme will be the
analytic continuation of the t-channel unitarity condition valid at finite
positive t ∼ m2 to unphysical scattering angles cos Θt ∼ s/t → ∞ which
region is relatively close to that of the physical s-channel scattering,
namely, −t ∼ m2.

Recall that it is the information coming from cross-channels that
makes a major difference between the relativistic theory and the usual

∗ Now that we know the Lagrangian – that of QCD – this does not help us much in calculating
hadron interaction amplitudes either. (ed.)
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non-relativistic quantum mechanics. Still, to better understand the phys-
ical peculiarities of strong interactions it is often advisable to turn to
non-relativistic theory. Therefore, prior to addressing the specific conse-
quences of the relativistic nature of the theory we shall start our discourse
by looking, at a qualitative level, at the main characteristics of an inter-
action using familiar quantum-mechanical notions. Namely, we will look
at the possible behaviour of the interaction strength and the interaction
radius in the asymptotic high-energy regime.

5.2 Qualitative picture of elastic scattering

Consider a four-point amplitude at s → ∞. For the sake of simplicity we
will restrict ourselves to the elastic scattering of spinless particles with
equal masses μ. From general considerations it is clear that the scattering
is concentrated mainly at small angles, in the near-to-forward direction.

At high energy many inelastic channels contribute to the unitarity
condition,

ImsA(s, t) ≡ A1(s, t) =
1
2

∑
n

A(s + iε) A(s − iε)

(5.1)

so that at t = 0 (p1 = p′1, p2 = p′2) the imaginary part of the forward
amplitude is given by a sum of a large number of positive contributions.
According to the optical theorem,

ImA(s, 0) � sσtot, s � μ2. (5.2)

Therefore, if σtot is constant (or changing slowly) at high energies, which
is what experiment tells us, then the forward amplitude increases like s.
Let us see what such a behaviour corresponds to in the language of partial
waves:

ImA(s, t) =
∞∑
�=0

(2� + 1) Im f�(s)P�(z), (5.3a)

z ≡ cos Θs = 1 +
2 t

s− 4μ2
. (5.3b)

At t = 0 we have P�(1) = 1. Since from the unitarity condition (3.7) it
follows that

0 ≤ Im f�(s) ≤ 16π, (5.4)
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see (3.9), each term in (5.3a) is positive and bounded from above. This
means that the growth of the amplitude A(s, 0) ∝ s that we are looking
for may come only from the increase of the number of terms �0(s) that
contribute significantly to the series, � < �0(s).

From quantum mechanics we know that high-energy scattering off a
finite-range potential with radius ρ0 is of quasi-classical nature. Therefore
we can introduce an impact parameter ρ by identifying

� = kcρ, (5.5)

with kc the cms momentum (3.8),

kc =

√
s− 4μ2

2
� 1

2
√
s.

Now, to define an interaction radius we equate

�0(s) = kcρ0. (5.6a)

Since our interaction is strong it is natural to expect the partial waves
with � < �0 (that is ρ < ρ0) to be saturated,

Im f�(s) = O(1) for � < �0, (5.6b)

and to be negligibly small for � > �0 when, in the classical language, the
projectile misses the target, ρ > ρ0. Now we estimate the size of the imag-
inary part of the forward elastic amplitude by simply truncating the sum
at � ∼ �0 � 1:

ImA(s, 0) ∼ �20 ∼ s · ρ2
0 . (5.7)

Invoking (5.2) gives then a natural formula for the cross section,

σtot ∼ ρ2
0. (5.8)

In the first lecture we discussed the strong interaction characterized by a
finite radius which is determined by hadron masses. In a relativistic theory
(in marked contrast with non-relativistic quantum mechanics) the ‘poten-
tial’ depends in general on particle velocities. Therefore the interaction
radius may vary with energy,

ρ0 = ρ0(s). (5.9)

Strictly speaking, the notion of the interaction potential is inapplicable
in relativistic theory. Therefore (5.6) in fact serves as a definition of the
interaction radius through the number of saturated partial waves.
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5.2.1 Forward scattering

In the case of Θs �= 0 (t < 0) terms on the r.h.s. of (5.1) enter with different
phases and the resulting amplitude decreases fast with |t| increasing: the
elastic cross section has a sharp peak in the forward direction.

How could we estimate the range of angles the scattering amplitude is
concentrated in? Since essential partial waves have � ∼ �0 � 1, character-
istic scattering angles can be estimated as

Θ < Θ0 ∼ 1
�0

∼ 1
kcρ0

� 1. (5.10)

The cms momentum transfer at high energies is

|q| =
∣∣p′

1 − p1

∣∣ ∼ kcΘ0 ∼ 1
ρ0

. (5.11)

This means that in terms of Mandelstam variables the amplitude is con-
centrated in the region of finite momentum transfers, |t| ∼ 1/ρ2

0.

5.2.2 Backward peak

The qualitative expectation is that the scattering at finite angles is sup-
pressed in the s → ∞ limit holds provided the factor Im f� in the expan-
sion (5.3a) is a smooth function of �. That was the case in non-relativistic
quantum mechanics (where � enters analytically the centrifugal term of
the Hamiltonian). In the relativistic theory, on the contrary, Im f� oscil-
lates with � and this leads to a new, interesting phenomenon – the appear-
ance of the second narrow peak in the backward direction (π − Θ � 1).

To single out this oscillating behaviour of Im f� we need to employ
analytic properties of A(s, t). To this end it is convenient to express the
partial wave f�(s) defined by (3.10) in terms of the function

Q�(z) ≡ 1
2

∫ 1

−1

dz′ P�(z′)
z − z′

, (5.12)

representing the second solution of the Legendre equation, regular at
infinity:

Q�(z)
|z|→∞∼ z−�−1.

From (5.12) it immediately follows that Q�(z) has a logarithmic branch
cut between −1 to +1. Discontinuity over the cut returns the P� function:

Q�(z + ıε) −Q�(z − ıε) = −iπP�(z), −1 < z < 1. (5.13)
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′
z

z1−z2

Γ

−1 1

Γ′Γ

Fig. 5.1 Change of the integration contour Γ → Γ′ in the representation (5.14)
for the partial-wave amplitude.

Using this fact we can replace integration over real z by a contour integral∫ 1

−1
dz P�(z) · · · =

1
πi

∫
Γ
dz Q�(z) · · · ,

where Γ runs clock-wise embracing the interval [−1, 1] as displayed in
Fig. 5.1. This allows us to represent the partial-wave amplitude as

f�(s) =
∫ 1

−1
dz P�(z)A(s, z) =

1
2πi

∫
Γ
dz Q�(z)A(s, z). (5.14)

We took the liberty of replacing the second argument of the amplitude
t by the cosine of the scattering angle (5.3b); the two variables, when
s is kept fixed, are simply proportional. Now we look at the analytic
features of the amplitude. As a functions of t it has two unitarity cuts
corresponding to the opening of t- and u-channel thresholds, t ≥ tmin and
u ≥ umin, respectively. In the z plane they translate into the cuts

z1 < z < +∞; z1 = 1 +
2 · tmin

s− 4μ2
; (5.15a)

−∞ < z < −z2; z2 = 1 +
2 · umin

s− 4μ2
. (5.15b)

(In our toy model where all particles are identical, tmin = umin = (2μ)2.)
Since Q� falls on the large circle, |z| → ∞, we can deform and replace Γ
by another contour Γ′ which runs around the left and right cuts as shown
in Fig. 5.1. This gives us

f�(s) =
1
π

∫ ∞

z1

dz Q�(z)A3(s, z) +
1
π

∫ −∞

−z2

dz Q�(z)A2(s, z), (5.16)

where A3 = ImtA and A2 = ImuA denote discontinuities (‘imaginary
parts’) of the amplitude A(s, t) in the t and u channels. Using the relation
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s
u

t

u =4μ 2

t =4μ2

s 
=4

μ
2

ρsu

ρst

Fig. 5.2 Integration over double spectral functions ρst and ρsu determining the
imaginary part of the partial wave, Im f�(s), in (5.20).

(valid for integer �)

Q�(−z) = (−1)�+1Q�(z), (5.17)

we may rewrite (5.16) in the following form (zu = −z):

f�(s) =
1
π

∫ ∞

z1

dz Q�(z)A3(s, z) +
(−1)�

π

∫ ∞

z2

dzuQ�(zu)A2(s,−zu).

(5.18)

Evaluating the imaginary part of the partial wave, we obtain

Im f� = Im f right
� + (−1)� Im f left

� , (5.19)

where

Im f right
� (s) =

1
π

∫ ∞

z1

dz Q�(z)ρst(s, t(z)), (5.20a)

Im f left
� (s) =

1
π

∫
z2

dz Q�(z)ρsu(s, u(−z)). (5.20b)

It is worth noticing that the imaginary part of the partial wave is deter-
mined by discontinuities across the Landau singularities – spectral func-
tions ρst and ρsu as shown in Fig. 5.2. Contributions of the right and
left cuts in the t-plane (5.20) are smooth functions of �. The oscillating
factor (−1)� is explicitly written in (5.19) so now we are ready to return
to the partial-wave expansion (5.3a) and scan through all angles to see
what happens to the amplitude.
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θ � 0. In the forward direction we have z � 1 and P�(1) = 1.

A1(s, z=1) =
∑
�

(2� + 1) Im f right
� +

∑
�

(−1)� · (2� + 1) Im f left
� .

The contribution of the left cut is small (of the order of a single
partial wave) and the large contribution ∝ s is coming from the
right cut.

θ � π
2 . For large angles z � 0 so that P2n+1(0) � 0 and, for large n,

P2n(0) � 2(−1)n√
πn

. We obtain

A1(s, z=0) �
∑
�=2n

(−1)n · 2(4n + 1)√
πn

(
Im f right

2n + Im f left
2n

)
.

The series is oscillating, resulting in A1 = O(1) � s.

θ � π. For backward scattering, z � −1, P�(−1) = (−1)�. Here

A1(s, z=−1)=
∑
�

(−1)� · (2� + 1) Im f right
� +

∑
�

(2� + 1) Im f left
�

and, contrary to NQM, we have again a same-sign series
which originates this time from the left cut of the relativistic
amplitude.

The qualitative behaviour of the amplitude as a function of the scattering
angle is shown in Fig. 5.3.

If particles are identical then ‘forward’ and ‘backward’ directions are
indistinguishable so that the scattering amplitude becomes obviously sym-
metric, A(Θ) = A(π−Θ), both in relativistic and non-relativistic theories.
However, if participating particles are different, then from the point of
view of NQM this situation looks totally bizarre.

Why would a 180◦ scattering – the full reflection of particle momenta –
be profitable? In NQM, to encourage backward scattering one would have

1 cos q

ds
d cos q

−1

Fig. 5.3 Angular dependence of relativistic two particle scattering.
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to organize a head-on collision whose probability is falling with energy as

σ ∝ λ2 ∼ 1/s (5.21)

(with λ the cms wavelength λ ∼ 1/kc). The answer lies in the following
consideration.

In a relativistic theory the ‘potential’ may carry quantum numbers.
Therefore there is another possibility as an alternative to the large mo-
mentum transfer: rather then exchanging momenta, colliding particles
may swap their identities instead. This means that by nature the back-
ward scattering phenomenon is not different from diffractive scattering
which is characterized by finite momentum transfer, but accompanied by
an exchange of quantum numbers!

Have we ever met such a phenomenon before? In fact we have. Recall
the Compton scattering in QED. In the leading order of perturbation
theory we had two contributing Feynman diagrams,

s

t

s = +

u

.

In the s → ∞ limit the first amplitude becomes negligible. It corresponds
to interaction in a single partial wave – a head-on collision – so that the
qualitative estimate (5.21) applies. At the same time the second amplitude
describes a peripheral interaction with finite momentum transfer |u| ∼ m2

e

so that high-energy electron–photon scattering occurs mostly backwards
(s � |t| � |u|).

5.3 Analyticity of elastic amplitude and interaction radius

Let us study the �-dependence of partial waves f�(s). We know that in
the physical region of the s-channel A(s, t) has no singularities. Therefore
the partial-wave expansion series

A(s, t) =
∞∑
�=0

(2� + 1)f�(s)P�(z) (5.22)

must be absolutely converging, together with all its derivatives. To ensure
such a regularity, f� must decrease fast with � in the � → ∞ limit.
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5.3.1 f� at large �

At the first sight a power falloff would seem to be sufficient since at large �

P�(z) � J0(�Θ) �
√

2
π�

cos
(
�Θ − π

4

)
;

� � 1, Θ � 1, �Θ = O(1) .

(5.23)

We know, however, that the series must stay convergent in the unphys-
ical region of positive t as well, up to t = t0 where the first t-channel
singularity is positioned (for example, t0 = 4m2

π for ππ → ππ scattering).
According to (5.3b), t > 0 corresponds to z > 1 where the scattering angle
is imaginary,

z = cos Θ = 1 +
2 t

s− 4m2
π

= coshχ, Θ = iχ, (5.24)

and the Legendre polynomials start to grow exponentially with �:

P�(z) ∼ ei�Θ + e−i�Θ ∼ e� χ(t,s). (5.25)

Up to t ≤ t0, this increase has to be damped by the fall-off of partial
waves. Consequently,

f�(s)
��1= C(�, s) e−�χ0 , (5.26a)

where the factor C is non-exponential in � and

coshχ0 ≡ 1 +
2 · t0

s− 4m2
π

. (5.26b)

In the s → ∞ limit we have

coshχ0 � 1 +
χ2

0

2
→ 1, χ0 �

√
4t0
s

�
√
t0
kc

. (5.27)

In terms of the impact parameter (5.5), ρ = �/kc, the large-� asymptotic
regime (5.26) takes the form

f�(s) =⇒ f(ρ, s) = C(ρ, s) e−ρ/r0 , r0 ≡ 1/
√
t0. (5.28)

In particular, for ππ scattering (t0 = 4m2
π) the condition (5.27) gives

χ0 � 2mπ

kc
and r0 =

1
2mπ

.

We conclude that partial waves with large � that correspond to impact
parameters ρ exceeding the interaction radius, ρ � ρ0, fall exponentially
as exp(−ρ/r0).

It is important to stress that the nature of the two parameters ρ0 and
r0 is essentially different: the radius ρ0 we have introduced in (5.6a) as a
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|f |

exp −
kcr0

kc ρ0

Fig. 5.4 Qualitative picture of the magnitude of partial waves.

measure of the of the value of characteristic angular momentum �0 below
which partial waves are saturated, while r0 determines the rate of the
falloff of small partial waves with � � �0, see Fig. 5.4.

5.3.2 Black disc

What can be said about partial-wave amplitudes below �0? It is impossible
to answer this question without knowing the details of strong interaction
dynamics. Nevertheless, it is straightforward to give an estimate from
above for elastic, inelastic and total cross sections at high energies.

In Lecture 3 we discussed elastic unitarity for partial waves. Above the
two-particle threshold the elastic unitarity condition (3.7) generalizes as

Im f� = τ |f�|2 + Δ�, (5.29)

where Δ� ≥ 0 accounts for contribution of inelastic scattering channels:
2 → 3, 2 → 4, etc. The general solution for partial waves reads

f�(s) =
1

2iτ(s)

[
η�(s) e2iδ�(s) − 1

]
, (5.30a)

where η� is the so-called elasticity parameter,

η2
� = 1 − 4τΔ�, 0 ≤ η� ≤ 1. (5.30b)

Elastic unitarity corresponds to

η� = 1, Δ� ≡ 0. (5.31a)

On the contrary, at very high energies when inelastic channels dominate
the unitarity condition it is natural to expect

η� � 0, Δ� � Δmax � 4π. (5.31b)
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Invoking the optical theorem (5.2) we have

σtot =
1
s

∑
�

(2� + 1) Im f� (5.32)

and, using (5.30a), for the total cross section obtain

σtot �
1

2τs

�0∑
�

(2� + 1) [ 1 − η� cos(2δ�) ] . (5.33a)

Then, integrating over angles the elastic amplitude squared, it is straight-
forward to derive

σel �
1

4τs

�0∑
�

(2� + 1)
[
1 − 2η� cos(2δ�) + η2

�

]
. (5.33b)

Finally, from σtot = σel + σin we get the total inelastic cross section,

σin � 1
4τs

�0∑
�

(2� + 1)
[
1 − η2

�

]
. (5.33c)

The maximal value of Im f� in (5.32) can be estimated as

[Im f�(s)]
max =

1
2τ(s)

� 8π , (5.34)

where we dropped the exponential term in (5.30a): it is unrealistic to
expect that all scattering phases with large � are artificially adjusted
so that this oscillating contribution will matter. This gives the upper
boundary

σtot ≤ [σtot]
max � 8π

s
· �20 � 2πρ2

0 . (5.35)

If we accept the natural maximal inelasticity hypothesis (5.31b), then the
relations (5.33) give

σel = σin = 1
2σtot = πρ2

0 . (5.36)

This corresponds to the well-known quantum-mechanical picture of scat-
tering off a black disc of radius ρ0: half of σtot is inelastic and corresponds
to the geometrical cross section of a fully absorbing disc (impact param-
eters ρ ≤ ρ0) while the other half is due to the elastic diffraction of the
plane wave (at ρ > ρ0) off the sharp edge of the disc.

Let us make a few additional remarks.

(1) The exponential falloff of partial waves at � � 1 is related to the
absence of massless particles in the theory.
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(2) The concrete value of r0 is different for different reactions. For ππ
scattering we had r0 = 1/2mπ. For nucleon scattering we would
have t0 = m2

π and r0 = 1/mπ instead since there is a pion pole in
the amplitude of the t-channel reaction NN̄ → π → NN̄ .

5.3.3 Behaviour of Im f� at large �

With the help of (5.26) and the unitarity relation (3.7) we can verify
that, as we have seen in Lecture 2, the behaviour of ImA(s, t) is governed
not by physical t-channel poles and/or thresholds but by the Landau–
Mandelstam singularities.

Indeed, in the finite energy region of ππ scattering 4m2
π < s < 16m2

π

where inelastic channels are ‘closed’ (Δ� ≡ 0, η� ≡ 1),

Im f� = τ |f�|2 ∼ e−2·�χ0 , � � 1. (5.37)

As a result, the series (5.3) for ImA(s, t) will stay convergent above t0 =
4m2

π. The critical value of t at which ImA will develop a singularity will
be determined not by χ(t, s) = χ0 as for the amplitude A itself but by the
condition χ(t, s) = 2 · χ0:

coshχ = 2 cosh2 χ0 − 1; 1 +
2t

s− 4m2
π

= 2
(

1 +
2 · 4m2

π

s− 4m2
π

)2

− 1. (5.38)

From (5.38) follows the relation

(s− 4m2
π)(t− 16m2

π) = 64m2
π. (5.39)

This is nothing but the Landau–Mandelstam equation describing the po-
sition of the singularity – one of the Karplus curves shown in Fig. 5.5 that
corresponds to the double discontinuity ρst of the graph (5.40). Let me
remind you that the ‘box’ graph that we
studied in Lecture 2 (with two instead of
four lines in the intermediate t-channel
state) is absent for true pions since
a pion cannot transfer into a ππ sys-
tem due to G-parity conservation. (We

t

s (5.40)

excluded another graph similar to (5.40) but with two vertical and four
horizontal lines by having chosen s < 16m2

π.)
Thus the behaviour of the imaginary part of the scattering amplitude,

ImA, is determined by the first Landau–Mandelstam singularity ti(s)
given by (5.39) rather than by t0 as the amplitude A itself. At high energies
the difference between ti(s) and t0 is, however, washed away. Indeed,
already for s > (4mπ)2 a two-π state in the t channel becomes allowed and
the corresponding Karplus curve on Fig. 5.5 appears. Since all Karplus
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t
u
s

t =(4mπ)2

t =(2mπ)2
s 

= (
2m

π
)2

s 
=(

4m
π
)2

ρst

Fig. 5.5 Karplus curves for two- and four-pion states in s- and t-channel. The
curve marked ρst corresponds to (5.39). The Landau–Mandelstam singularity
shown by dashed line is absent for ππ scattering.

curves corresponding to two-pion exchange in the t-channel (and any num-
ber of particles in the s-channel) tend to the same value ti(s) → (2mπ)2 =
t0 in the high-energy limit, we get

Im f� ∼ f� ∼ e−�χ0 � e−2mπρ, s → ∞.

5.4 Impact parameter representation

We will find it convenient to use the impact parameter representation
in what follows. So let us look into the physical meaning of partial-wave
amplitudes f�(s) = f(ρ, s) in the ρ-space.

For fixed t = −q2 and large s-scattering occurs at small angles Θ �√
−t/s � 1. The momentum transfer q is then orthogonal to the cms

momentum of incident pions, q ⊥ kc, q � kcΘ. For small angles the fol-
lowing approximation applies:

P�(cos Θ) � J0(�Θ).

Since in the partial-wave expansion large � are essential, we can replace
the sum in (5.22) by the integral,

A(s, q2) �
∫

2�d�f�(s)P�(cos Θ) � k2
c

∫
2ρdρf(ρ, s)J0(qρ), (5.41)
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and make use of the integral representation

J0(qρ) =
∫

dφ

2π
ei(q·ρ), (q · ρ) ≡ qρ · cosφ (5.42)

to arrive at a well-known quantum-mechanical formula

A(s, q2) =
k2
c

π

∫
d2ρ ei(q·ρ)f(ρ, s). (5.43)

The amplitude (5.43) in NQM describes the following scattering process.
Consider a plane wave propagating along the z-axis and hitting the target
at z = 0. Right behind the target the wave function will be modified by
the factor λ(ρ) describing the absorption of the incident wave at a given
impact parameter,

ψout(z,ρ)|z=+0 = ψin(z,ρ) · λ(ρ), ψin(z,ρ) = eikz. (5.44)

For example, for a totally absorbing sharp-edge target (a ‘black disc’ of
radius R0)

λ(ρ) = ϑ(ρ−R0).

On the other hand, the plane wave expansion of the final field that we
observe at large distance from the target is given by

ψout = ψin ·
∫

d2q ei(q·ρ)a(q), (5.45)

where a(q) is the scattering amplitude. Comparing (5.45) at z = +0 with
(5.44) and inverting the Fourier representation (5.43) we conclude that
f(ρ, s) has the meaning of the impact parameter distribution of the field
right behind the target.

5.5 Constant interaction radius hypothesis

We found above that the partial-wave amplitude at large ρ has a structure

f(ρ, s) = C(ρ, s) e−2mπρ (5.46)

with C a non-exponential function of ρ. This factor may depend on its
two variables in a rather complicated way so that the interaction radius
may turn out to be energy-dependent, ρ0 = ρ0(s). This is what happens in
reality. However, before discussing seriously this phenomenon, it is natural
to look at the consequences of the hypothesis of a constant radius:

ρ0(s) = const.
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5.5.1 Consequences of the hypothesis ρ0(s) = const

It is easy to convince oneself that this hypothesis actually means that the
C-factor in (5.46) factorizes:

C(ρ, s) = c(ρμ) · h(s/μ2). (5.47)

Indeed, if the functional dependence on ρ and s did not separate, the
impact parameter distribution of the field would be changing with energy.

What are the main consequences of the hypothesis (5.47)? They are

Ael(s, t) = ish(s) · F (t), (5.48a)

σtot =
ImA(s, 0)

s
= h(s)F (0), (5.48b)

dσel

dt
=

1
16π

∣∣∣∣Ael(s, t)
s

∣∣∣∣2 =
σ2

tot

16π
·
∣∣∣∣F (t)
F (0)

∣∣∣∣2 . (5.48c)

From (5.48c) we conclude that the constant radius implies an energy-
independent shape of the differential elastic scattering cross section:

1
σ2

tot(s)
dσel(s, t)

dt
= const(s).

A constant radius is also consistent with the Pomeranchuk theorem
(Pomeranchuk, 1958).

5.5.2 Pomeranchuk theorem

Consider the scattering of a particle a and its antiparticle ā on the same target
b. If the total cross sections are asympotically constant,

lim
s→∞

σab
tot(s) =σa and lim

s→∞
σāb

tot(s) =σā,

then

σa = σā.

This is a non-trivial statement as it has nothing to do with charge conjuga-
tion invariance: σab

tot = σāb̄
tot. The isotopic structure of ab- and āb-scattering

amplitudes may be absolutely different as, for example, is the case of pp
and pp̄ interactions. Experimentally, cross sections of particle and antipar-
ticle interactions with a given target hadron differ remarkably at moder-
ate energies but become practically equal already at energies s above few
hundred GeV2 (see below, Fig. 14.3 on page 378).

Let us sketch the idea of the proof. Discontinuities of the amplitude
on the left and right cuts cannot be different if we want A(s, t) to be
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“regular” at infinity. Indeed, let

ImAab(s, 0) s→∞= σas,

ImAāb(u, 0) u→∞= σāu.
(5.49)

If the cross sections are different, σa �= σā, then the real parts ReA cor-
responding to discontinuities (5.49),

Aright(s) �
σas

π
ln(−s), Aleft(s) �

σāu

π
ln(−u), (5.50)

will not compensate one another:

Aab(s)
s→∞= Aright(s) + Aleft(−s) = iσas +

σa − σā
π

· s ln s,

Aāb(u) u→∞= Aright(−u) + Aleft(u) = iσāu +
σa − σā

π
· u lnu.

(5.51)

The amplitudes (5.51) contradict the initial assumption of the theorem
(namely, σtot = const.) as they produce

σel(s) ∝ (σa − σā)2 ln2 |s|
|s|→∞
� σtot = const.

Does the Pomeranchuk theorem teach us anything about f(ρ, s) and,
specifically, about the interaction radius? In other words, to what extent
does the asymptotic equality σa = σā depend on the hypothesis of the
constant radius ρ0?

Let us see how the logarithmic growth of ReA, which is necessary for
the theorem to be broken, could appear in principle:

ReA(s, 0) =
s

4π

∫
d2ρ Re f(ρ, s). (5.52)

From the unitarity condition (5.29) (τ � 1/16π for s � μ2) we have

Im f =
1

16π
|f |2 + Δ >

1
16π

|Re f |2 ,

which gives

Re f(ρ, s) <
√

16π Im f(ρ, s). (5.53)

On the other hand, to violate the Pomeranchuk theorem we have to have

Re f(ρ, s) ∼ Im f(ρ, s) · ln s (5.54)

in the essential integration region ρ <∼ ρ0(s). Combining (5.53) and (5.54)
produces

Im f <
const
ln2 s

. (5.55)
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Wishing to preserve the constancy of the total cross section,

σtot =
1
4π

∫
d2ρ Im f(ρ, s) = ρ2

0 ·
〈Im f〉

4
, (5.56)

and taking into consideration the inequality (5.55), we arrive at the ne-
cessity to abandon the constant radius, ρ0(s) >∼ c ln s. We shall learn soon
that the radius cannot grow faster than ln s. This means that only in
the extreme case of the fastest possible growth of the interaction radius,
ρ0(s) ∝ ln s, the Pomeranchuk theorem may fail.

5.6 Possibility of a growing interaction radius

We discussed the case when the interaction radius, and thus the shape of
the elastic peak, does not change with energy, the amplitude factorizes
and the Pomeranchuk theorem holds. In the next lecture we shall for-
mally demonstrate that the ρ0 = const regime is actually forbidden as it
contradicts t-channel unitarity.

Let us ask ourselves, whether we can force the radius to grow with
energy? What sort of physical processes might be responsible for that, at
a qualitative level? Strangely enough, such a possibility does exist.

Recall that in perturbative language we have obtained the constant
radius ρ0 ∼ 1/2μ by considering the nearest singularity in t of the ampli-
tude; two-meson t-channel exchange gave us

s

t

=⇒ A(s, ρ) ∝ e−2μρ. (5.57)

5.6.1 Long-living fluctuations and the growing radius

Let us study the space–time structure of the simplest perturbative dia-
gram corresponding to the processes (5.57):

1

1 y1

x2 y2

a a

bb

2

x

x0
1 < x0

2 < y0
2 < y0

1. (5.58)

The process (5.58) can be ‘spelled out’ in time as follows. First, the pro-
jectile particle a experienced a virtual decay at the point x1; one of its
offspring at x2 hit and excited the target b which, in its turn, decayed in
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y2, . . . . How far can a virtual particle migrate in the transverse plane?
From the uncertainty relation, during the lifetime of the fluctuation,

Δt ∼ ΔE−1 ∼ μ−1, (5.59a)

a virtual particle k1 may shift in the transverse plane at a distance

|x2⊥ − x1⊥| ∼ μ−1. (5.59b)

Could we allow it to move farther than that so as to make the interaction
radius growing? At the first sight this seems to be an easy thing to do:
by minimizing the energy uncertainty we may increase the lifetime t in
(5.59a) significantly. In the laboratory frame where the particle a is fast
and has a very large momentum p ≡ pz � s/2μ � μ, virtual splitting a →
1 + 2 introduces energy uncertainty

ΔE = Einterm − Einit =
√

k2
1 + μ2 +

√
k2

2 + μ2 −
√

p2 + μ2

� k2
1⊥ + μ2

2k1z
+

k2
2⊥ + μ2

2k2z
− μ2

2p
� 1

2p

[
μ2 + k2

⊥
x(1 − x)

− μ2

]
, (5.60)

where we used |k⊥| ∼ μ � p and have introduced the decay momentum
fraction x,

k1z ≡ xp, k1z = (1 − x)p (x ∼ 1 − x ∼ 1).

The energy difference

ΔE ∼ μ2
⊥

x(1 − x) p
, μ2

⊥ ≡ k2
⊥ + μ2 = O

(
μ2

)
.

is minimal for x ∼ 1
2 and can be made extremely small at high energy,

ΔE ∝ μ2/p. The corresponding fluctuation time gets Lorentz dilated:

Δt ∼ x(1 − x)p
μ2
⊥

� 1
μ
. (5.61)

Unfortunately this does not help us to achieve our goal: at high energies
the decay angle decreases in the same proportion as the lifetime increases,
so that the transversal displacement of the offspring remains finite,

|Δρ| ∼ Δt |v⊥| ∼
x(1 − x)p

μ2
·
∣∣∣∣k⊥
xp

∣∣∣∣ ∼ 1
μ
,

the same as in (5.59b).
However, our exercise was not completely useless as we learned that at

high energies long-living fluctuations may be constructed.
There is another problem with the process of (5.58). If our particle k1

is point-like and interacts with the target ‘head-on’, its cross section is
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proportional to the wavelength squared,

σ ∼ πλ2
1 ∼ 1

k2
1z

� 1
(x p)2

∝ 1
(x s)2

,

and falls very fast with s, unless we chose x ∼ μ/p � 1, which would take
us back to the small lifetime Δt ∼ 1/μ in (5.61)!

p/4

n

a

p/4

p/2

p/2

p/2

However, there is a way to reconcile a nor-
mal cross section with longevity. To this end we
have to allow the virtual particle k1 to decay
further in order to sequentially degrade its en-
ergy. Now the particle that hits the target b has
a momentum

pn ∼ p

2n
, (5.62)

with n the number of decays of the projectile particle a. Here we supposed,
for the sake of simplicity, that in each decay the longitudinal momentum
of the parent is shared equally, x ∼ 1

2 . Now, if we reach pn ∼ μ, the inter-
action with the target will have a normal cross section σ ∼ μ−2 typical for
interaction of particles with small collision energy. To get there we will
have to emit

n � ln(p/μ)
ln 2

(5.63)

particles. This would not have been easy if the interaction constant were
small. If, on the contrary, we accept that the probability of 1 → 2 splittings
is O(1) (which is not unnatural for strong dynamics), this would provide
us with a realistic model of the interaction radius growing with energy.

Indeed, in the course of n ∼ ln(s/μ2) decays a virtual particle experi-
ences n moves in the transverse plane of the typical size |Δρ| each. If
emission processes are strongly correlated as shown in Fig. 5.6(a), we can
get the growth as fast as

ρ0(s) ∼ n(s) · |Δρ| ∼ 1
μ

ln
s

μ2
. (5.64a)

(b)

(ΣΔρ)2 = n(ΣΔρ)2 = n2

(a)

Fig. 5.6 Correlated (a) and uncorrelated (b) motion in the ρ-space.
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If, on the other hand, sequential emissions are independent, as in
Fig. 5.6(b), then our particle experiences a Brownian motion in the im-
pact parameter space and, on the average, moves away from the origin
by

ρ0(s) ∼
√
n(s) · |Δρ|2 ∼ 1

μ

√
ln

s

μ2
. (5.64b)

Thus we have constructed a viable picture of how the interaction radius
may become energy-dependent from the point of view of interaction dy-
namics.

5.6.2 Growing radius and causality

How the possibility of a growing interaction radius can be envisaged from
analytic properties of the amplitude? Suppose that the factor C(ρ, s) in
the expression for the asymptotic of partial waves (5.46) grew as a power
of energy, C(ρ, s) ∝ sN , so that

f(ρ, s) � const sN · e−2μρ, ρ � μ−1. (5.65)

Recall now how the notion of the interaction radius was introduced in
(5.6). Partial waves f(ρ, s) are exponentially small at very large ρ. With
ρ decreasing, the partial wave grows and eventually hits the saturation
limit. The radius ρ0 was defined as the value of ρ where it happens:

f(ρ0, s) � 8π .

Applying this definition to (5.65), we obtain

ρ0(s) � N

2μ
ln s. (5.66)

Formally speaking, we could have forced the radius to increase with s even
faster. For example, if instead of a power we chose C(ρ, s) ∝ exp(a

√
s) this

would have led to ρ0(s) ∝
√
s.

However, such a steep growth of partial waves looks intrinsically dan-
gerous: we know that this type of growth of the full amplitude A(s, t) may
result in the violation of causality.

It is time to reverse the logic. Let us impose the usual inequality that
suffices to ensure causality,

|A(s, t)| ≤ sN(t) for s → ∞, (5.67)

and derive a possible growth of ρ0(s) that would dutifully respect it.
Here N(t) is limited in a finite interval of t (the number of necessary
subtractions in the dispersion relation in s for a given t, see Lecture 2).
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First we will take a rough model in which all partial waves with � ≤
�0(s) are saturated while those with � > �0(s) are negligible. Then for the
amplitude we have an estimate

|A(s, t)| ≤ 16π
�0(s)∑
�=0

(2� + 1)|P�(z)| . (5.68)

In the t > 0 region we have z = coshχ > 1, Legendre polynomials increase
exponentially with �, see (5.25), so that (5.68) is dominated by the last
term of the sum:

|A(s, t)| ∼ �0 e�0χ0(s), (5.69a)

where, according to (5.27),

χ0(s) = χ(t, s)
∣∣
t=4μ2 � 2μ

kc
, coshχ(t, s) = 1 +

2 t
s− 4μ2

. (5.69b)

By comparing (5.69) with (5.67) we obtain the maximal growth of the
characteristic angular momentum,

�0(s) ≤ N1

χ0(s)
ln s = kc ·

N1

2μ
ln s,

where N1 ≡ N(t)|t=4μ2 is the maximal number of subtractions that we
need for positive t up to the first t-channel singularity at t = 4μ2.

Thus from the boundary (5.67) motivated by the causality considera-
tion we derive two remarkable results:

ρ0(s) ≤ N1

2μ
ln s, (5.70a)

σtot ≤ c ln2 s, c =
(
N1

2μ

)2

· 〈Im f〉
4

, (5.70b)

where we have used the impact parameter representation (5.56) in order
to derive the upper bound for the total cross section (5.70b).

Inequalities (5.70) constitute the essence of the Froissart theorem.
Two remarks are in order concerning these results.

(1) Since Im f does not exceed the unitarity limit, the coefficient c in
(5.70b) is restricted by

c ≤
(
N1

2μ

)2

· 4π.
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(2) Moreover, we can claim that N1 < 2 since otherwise we would have
had among hadrons, as we shall see later, an elementary particle
with spin σ = 2 and mass smaller that 2mπ.

Combining these two observations we obtain

c ≤ 4π
m2

π

� 240 mb.

5.6.3 Froissart theorem

The previous consideration was not very accurate as we arrived at (5.70)
using a rough truncation of the partial-wave expansion in (5.68). Now we
are ready to give a more rigorous proof of the Froissart theorem (Froissart,
1961).

We will exploit analytic properties of the elastic amplitude A(s, z) as a
function of the cosine of the scattering angle Θ,

z ≡ cos Θ = 1 +
2 t

s− 4μ2
.

To prove the theorem not much is needed. It suffices to state that, as in
the perturbation theory:

(1) singularities of A(s, z) in z lie outside the physical region of the
s-channel, −1 ≤ z ≤ +1; and in addition that

(2) for finite |z| A(s, z) is polynomially bounded,

|A(s, z)| < csN .

Then the energy growth of the interaction radius and of the total cross
section is limited by (5.70). Move the integra-
tion contour C in the Cauchy representation,

A(s, z) =
1

2πi

∫
C

A(s, z′)
z′ − z

dz′,

away from the s-channel cut −1 ≤ z ≤ 1 into
the unphysical region. This can always be
done if there are no massless particles in the

C

z0z0 1−− 1

z

theory (in which case the t-channel singularities at z = ±z0 collide with
the tips of the physical interval, ±1). Then for the partial-wave amplitude
(3.10),

f�(s) =
1
2

∫ 1

−1
dz A(s, z)P�(z) =

1
2πi

∫
C
dz′A(s, z′)Q�(z′), (5.71)
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we have a simple estimate

|f�(s)| <
LC
2π

|A(s, z)|max · |Q�(z)|max , (5.72)

with subscripts max denoting maximal values of the functions on the
contour, and LC the length of the latter.

For |z| > 1 the exact boundary for the Legendre function on the contour
has the form

|Q�(z)| < c′� exp(−�χmin) , χmin ≡ min
z∈C

{
cosh−1 z

} s→∞�
√
t

kc
, (5.73)

where factor c′� is non-exponential in � at � → ∞. Then (5.72) gives

|f�(s)| < c� s
N exp

{
− �

kc

√
tmin

}
, (5.74)

which estimate is valid for arbitrary �. So, tmin in (5.74) is the minimal
value of t along the integration path C. But the contour can be moved!
Were it not for the cross-channel cuts [−∞,−z0], [z0,+∞], we could have
kept ‘inflating’ the contour. By so doing we would increase tmin and thus
strengthen the upper bound (5.74). Therefore the strongest boundary
for |f�| that we may get is determined by the condition (5.74) with tmin

equated with the position of the nearest singularity t0 = 4μ2:

min
C

min
z

{χ(t, s)} = cosh−1

(
1 +

2 t0
s− 4μ2

)
=⇒

√
tmin =

√
t0 = 2μ.

The rest of the proof proceeds as above. Namely, we define �0(s) from the
saturation condition |f�0 | = const in (5.74) and immediately obtain the
maximal growth of the radius,

ρ0(s) ≡
�0(s)
kc

≤ N

2μ
ln s ≡ ρF (s), (5.75)

and of the total cross section,

σtot �
1
s

�0(s)∑
�=0

(2� + 1) Im f� ∝
�20(s)
s

≤ c̃ ln2 s.

Let us note that the extreme Froissart regime ρ0 = ρF corresponds to a
clear physical picture of a disc which grows fast with energy, changing
neither its transparency nor the sharpness of the edge (the latter being
determined by the parameter r0 = 1/2μ, see Section 5.3).
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5.6.4 Pomeranchuk theorem for the case of growing radius

Now that we know that both ρ0 and σtot may grow logarithmically, we
return to the question of what can be said about the asymptotic behaviour
of particle and antiparticle total interaction cross sections with a given
target. Let

σa
tot = C1 lnγ s, σā

tot = C2 lnγ s, γ ≤ 2.

We can easily construct the corresponding amplitudes in analogy with the
case of constant cross sections considered in Section 5.5, cf. (5.51):

Aab(s, 0) s→∞= Aright(s) + Aleft(−s)

� sC1

π(γ + 1)
lnγ+1(−s) − sC2

π(γ + 1)
lnγ+1 s

= isσa
tot +

s ln s

π(γ + 1)
· Δσ, Δσ ≡ σa

tot − σā
tot.

(5.76)

Suppose that C1 �= C2 (Δσ �= 0). Then the imaginary part of the ampli-
tude is relatively small and can be neglected, and not only for t = 0 but
for finite t < 0 as well. The generalization of (5.76) will read

Aab(s, t) �
s ln s

π(γ + 1)
Δσ · F (t, s) (5.77)

with the factor F such that for forward scattering F (0, s) ≡ 1. Now we
construct the differential elastic scattering cross section,

dσel

dq2
=

1
16π

∣∣∣∣A(s, t)
s

∣∣∣∣2 � |F (t, s)|2
16π

(
Δσ ln s

π(γ + 1)

)2

. (5.78)

Integration over momentum transfer gives the total elastic cross section:

σel =
∫

dq2dσel

dq2
�

(
Δσ ln s

π(γ + 1)

)2 1
16π

∫
dq2

∣∣F (q2, s)
∣∣2 . (5.79)

The integral in (5.79) is determined by the interaction radius (see Fig. 5.4
on page 121): ∫

dq2
∣∣F (q2, s)

∣∣2 =
1

ρ2
0(s)

.

To avoid contradiction we need to impose the restriction

σel =
(

Δσ ln s

π(γ + 1)

)2 1
16πρ2

0(s)
≤ σa

tot.
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This inequality can be translated into

Δσ(s)
σ(s)

≤ const

√
ρ2
0(s)

σ(s) ln2 s
=

const√
σ(s)

· ρ0(s)
ρF (s)

, (5.80)

with ρF the radius corresponding to the Froissart regime (5.75).
There are two possibilities.

γ = 0. Constant total cross sections σab
tot, σāb

tot. From (5.80) then fol-
lows that the asymptotic inequality σab

tot �= σāb
tot is possible only when

ρ0(s) = ρF (s), that is in the case of the extreme energy growth of the
radius.

0 < γ ≤ 2. Logarithmically growing cross sections:

σ = C1 lnγ s, Δσ ≤ const [ ln s ]γ/2 · ρ0(s)
ρF (s)

. (5.81)

In this case C1 = C2, that is the particle and antiparticle cross
sections have the same asymptotic behaviour; their difference may
grow with s as well though slower, with (at least) a twice smaller
exponent.

In fact, it is unclear how the interaction radius ρ0(s) behaves with
energy. Formally we only proved that it cannot increase faster than ln s.
More physical information is needed in order to choose between different
regimes, e.g. ρ ∼

√
ln s and ρ ∼ ln s, which possibilities were offered by

the picture with the number of interactions increasing with energy that
we have discussed above, see (5.64).



6
t-channel unitarity and growing

interaction radius

Until now we have been exploiting analyticity and unitarity in the s-
channel. We saw, in particular, how the s-channel unitarity put restric-
tions on the picture of strong interactions in the impact parameter plane
and gave rise to the Pomeranchuk and Froissart theorems. As you remem-
ber, analyticity is related to causality and unitarity means that the sum
of probabilities of all possible channels of particle creation equals one.

There is, however, one more condition, the one that is not easy to formu-
late. Namely, the probability that colliding particles exchange something,

A(s, t) ∼

also cannot be bigger than one. But in what sense?
The problem one faces trying to formulate such a restriction lies in

the fact that it is real (on-mass-shell) particles that we can measure and
‘count’ while the exchange particles are virtual. Talking about virtual par-
ticles we would have to abandon our general picture in which all what mat-
ters are particle masses and on-mass-shell amplitudes (‘imaginary parts’).

We could make exchange particles real (and thus ‘countable’) if we
chose positive t above corresponding thresholds,

+ + + . . . (6.1)
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s

t

?

Fig. 6.1 Analytic continuation from t-channel to large imaginary scattering
angles, zt ∝ s → ∞ is close to the high energy s-channel scattering region.

This chain reminds unitarity relation written for t-channel scattering.
Where does the t-channel unitarity operate? It holds for t > 4μ2 and
negative s (momentum transfer) while we are interested in s positive, and
large. This region is unphysical from the point of view of the s-channel
so that (6.1) seems to be of little relevance.

On second thought, our amplitudes are analytic functions. We may
try to formulate the new restriction we are looking for, by starting from
t > 4μ2 and then continuing the t-channel unitarity condition to large
s. In so doing we will find ourselves not far from an important physical
region of the s-channel which describes high-energy processes with finite
momentum transfer |t| � s, see Fig. 6.1.

By expressing the s-channel amplitude via its imaginary parts (discon-
tinuities) in t- and u-channels,

A3(s, t) ≡ ImtA =
1
2

∑
n

t

. . . , A2(s, t) ≡ ImuA =
1
2

∑
n

u

. . . ,

we would obtain specific for the relativistic theory consequences of the fact
that the s-channel interaction is not arbitrary but occurs via exchange of
particles in cross-channels. It is interesting to understand, what sort of
new restrictions upon f(ρ, s) the t-channel unitarity will impose.

Regretfully, the programme of analytic continuation of t-channel uni-
tarity conditions was not fully completed. We only know how to carry
out such continuation in simple cases, the simplest of which is the region
4μ2 < t < 16μ2 (for pions) where the two-particle unitarity holds. This
was done for the first time by Mandelstam.
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6.1 Analytic continuation of two-particle unitarity

In Lecture 3 we have discussed the s-channel
two-particle unitarity condition (3.1). Let us
rewrite it for the t-channel scattering, that
is treating t = (p1 + [−p3])2 as energy, t >
4μ2, and s < 0 (and u < 0) as momentum
transfer(s).

The unitarity condition takes the form

p1 p3

s

p2 p4

k1 k2

t

× ×

ImtA(t, s) =
1
2i

[A(t + iε, s) −A(t− iε, s)]

≡ A3(t, z) =
1
2
· = τ

∫
dΩ
4π

A(p1,k)A∗(k,p2),
(6.2a)

where

z = cos Θ12 = 1 +
2 s

t− 4μ2
(6.2b)

and τ is now the t-channel phase-space volume factor

τ = τ(t) =
kc(t)
8π

√
t

=
1

16π

√
t− 4μ2

t
. (6.2c)

k

p1 p2

The internal amplitudes A(t, z1) and
A∗(t, z2) depend on the energy t and on the
corresponding scattering angles,

zi ≡ cos Θi = 1 +
2 si

t− 4μ2
, (i = 1, 2)

where Θ1(2) is the angle between the ini-
tial (final) cms momentum p1(2) and the
intermediate-state momentum k.

In order to continue (6.2) to large z ∝ s, we are going to analyse analytic
properties of the t-channel imaginary part A3 in z. As a first step it is
convenient to trade the angular integration for symmetric integrals over
z1 and z2. Choosing the polar axis z along p1, we write

dΩ = d(cos Θ1) · dφ = dz1 · dz2 × J−1.

The trigonometric relation

z2 = zz1 +
√

(1 − z2)(1 − z1)2 · cosφ
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gives us the dependence z2 = z2(φ) and we derive(
dz2

dφ

)2

= (1−z2)
(
1−z2

1

)
sin2 φ = (1−z2)

(
1−z2

1

)
− (z2−zz1)2.

The Jacobian is proportional to |sinφ| and equals J = 1
2

√
−K , where

K ≡ (z2 − zz1)2 − (1 − z2)(1 − z2
1) =

(
z2 + z2

1 + z2
2

)
− 1 − 2zz1z2

= (z − z1z2)2 −
(
1 − z2

1

)(
1 − z2

2

)
.

(6.3)

(The symmetry of the Jacobian z1 ↔ z2 should have been expected. The
fact that it turned out to be symmetric with respect to all three cosines is
less obvious, though true. We will exploit it in what follows.) We arrive at

A3(t, z) =
τ

2π

∫ ∫
dz1 dz2√

−K(z, z1, z2)
A(t, z1)A∗(t, z2), (6.4)

where integration limits are determined by the condition −K ≥ 0. Exam-
ining the integral in new variables we note that the dependence on z is
localized in K so that we have a kind of an integral representation with
the kernel (−K)−1/2.

6.1.1 z2 integration: pinch

What sort of integral is this? Let us move step by step and study first the
integration over z2 while keeping z1 fixed. The z2 integral runs from z−2
to z+

2 , that is, between two zeros of K (where sinφ = 0):

z±2 = zz1 ±
√

(1 − z2)(1 − z2
1). (6.5)

After that we will have to integrate over z1 in the interval [−1, 1]. Now
that the double integral has been explicitly written, we need to find out
what happens to it when we move outside the physical t-channel region
(−1 ≤ z ≤ 1) and keep increasing z.

Quite an exercise in the ‘theory of functions of complex variable’ is
awaiting us. The task of continuing our integral would have been hopeless
if we did not possess the knowledge of analytic properties of the ampli-
tude. What should we expect? We know that in unphysical regions of
the Mandelstam plane there are ‘spectral domains’ where A3 becomes
complex. Increasing s, I will inevitably hit these domains. It makes sense
therefore to prepare ourselves to this eventuality.

A clever thing to do is to replace the integral over a fixed interval by
path integration in the complex z2-plane along the contour embracing the
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cut of the function 1/
√
K:∫ z+

2

z−
2

dz2√
−K

=
i

2

∫
C

dz2√
K

.

In addition to the square-root branch cut [z−2 , z+
2 ], our integrand as a

function of z2 has physical singularities of the amplitude A(t, z2) on the
z2-plane. These are s- and u-thresholds that start at z2 = ±z20 and run
to ±∞, correspondingly:

−z20

z2

z +
2

z20
z −

2

Now we increase z and pass through z = 1. When z = 1, the endpoints of
the cut (6.5) collide at z−2 = z+

2 = z1 and for z > 1 they become complex
conjugate. At this point nothing dramatic happens to the answer since I
will keep deforming calmly the integration contour by following the meta-
morphosis of the cut. How might our integral develop a singularity? Only
if the tip of the cut would collide with one of the threshold singularities
±z20, pinching the contour.

At which value of the external variable z does the pinch occur? One
needs to solve the equation, for example, z+

2 = z20. It is easy to realize
that this equation has the same structure as (6.5) namely,

z = zpinch(z1) = z1z20 ±
√

(1 − z2
1)(1 − z2

20). (6.6)

Since z20 > 1, the position of the pinch point corresponds to a complex z.

6.1.2 z1 integration: contour trapping

The time has come to look for singularities of the integrand as a function
of z1. Introducing

f(t, z, z1) =
iτ

4π

∫
C

dz2√
K(z, z1, z2)

A∗(t, z2),

we have

A3 =
∫ 1

−1
dz1 A(t, z1)f(t, z, z1).
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• •

z1

z10−z10 −1 1

z1
− z1

+

Fig. 6.2 Integration contour [−1, 1] and singularities in the z1 plane: right (A1)
and left cuts (A2) of the amplitude A(t, z1) and pinch points z−1 (circle) and z+

1

(cross). The left pair of points solves an alternative pinch condition z+ = −z20.

First of all, there are thresholds z±1 of the amplitude A(t, z1). Secondly, the
singularities of the function f(z1) whose position z1 = z1(z) we determine
by inverting the pinch condition (6.6):

zpinch
1 (z) ≡ z±1 = zz20 ±

√
(z2 − 1)(z2

20 − 1). (6.7)

Mark that z±1 are real since z20 > 1 and z ≥ 1. The structure of the z1-
plane will look as shown in Fig. 6.2 A symmetric pair of singularities
z̃±1 on the left side of the z1-plane solves the pinch equation z+

2 = −z20

complementary to (6.6). We will follow those on the right side of the
plane, z±1 .

With z increasing, the two singular points start off from z±1 = z20 at
z = 1 and separate, z−1 moving to the left and z+

1 to the right. Can z−1
collide with the integration interval [−1, 1]? From (6.7) it is clear that
z−1 = +1 indeed takes place at z = z20. This is, however, the absolute
minimum of z−1 (z) for a real z. (It becomes obvious if we parameterize
z = cosh η, z20 = cosh η20 resulting in z−1 = cosh(η−η20) ≥ 1.) This means
that with z moving above z20, the position of singularity reflects from +1
and increases indefinitely. A peculiar situation: z−1 barely touches the
integration interval and bounces off.

So is there a singularity or not? Let us show that the point z = z02 is
in fact not singular. We face here a curious phenomenon (I wonder if you
have met anything of this sort in your maths course.) Imagine that while
changing some external parameter, a singularity of the integrand touches
the tip of the integration contour. To determine whether the answer for
the integral will be singular at this value of the parameter we have to
compare two ways of passing by this point, from above and from below:

• • ••
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In order to have everything smooth and well defined, we will have to
deform the contour correspondingly, and differently in two cases:

• • ••

The analytic continuation of the integral that was initially defined on
[−1, 1] acquired an additional piece running from +1 to the new position
of the singularity and back, the only difference between the two ways
being the direction of the loop. If the two paths led to different results
then we found a singularity of the integral. There exists, however, a trivial
case when the two expressions coincide: when the singularity is a square
root, so that the values on the sides of the cut are just opposite in sign.
This being our case, we conclude z = z20 to be a regular point.

However, something did happen.
Namely, in spite of the fact that the
function is non-singular, its explicit
representation in terms of a contour
integral has changed. The phenome-

z1

z1
−

z10−1 1
non we encountered is called ‘contour trapping’. Now that we have the
added loop that follows the movement of the point z−1 (z), a real possibil-
ity to develop a singularity finally emerges. The integral for A3 becomes
singular at the value of z when point z−1 (z) bumps on the threshold of
the amplitude A(t, z1) at z10 and pinches the contour that it trapped and
dragged along.

So, would there have been no singularity if not for z10? Sure. In this
case we would have A3(z) = const (or a polynomial in z at most). This
was in fact implicit from the beginning: if the integrand A(z1) did not
depend on the scattering angle Θ1, the l.h.s. of (6.2a) would have been
independent of the angle Θ as well; in other words, it would not have
singularities in z.

Finally, solving the ‘collision’ equation z−1 = z10 for the position of sin-
gularity, we obtain

z = z10z20 +
√

(z2
10 − 1)(z2

20 − 1). (6.8)

Substituting explicit expressions for zi0 we derive again the familiar equa-
tion describing the Karplus curve – the boundary of the double spectral
function ρst.
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6.1.3 Imaginary part of the imaginary part

Let us take z above the singularity, z−1 > z10, and calculate the imaginary
part of A3 that is the discontinuity in s (in z):

ρst = ImsA3(t, z) =
∫ z−

1

z10

dz1 ImsA(t, z1) · Δf(t, z, z1). (6.9a)

What is Δf in this expression? Recall that we had the contour pinched in
the z2-integration as well; Δf stands for the corresponding discontinuity
over the cut of the amplitude in the z2-plane:

Δf(t, z, z1) ∼
∫ z+

2

z20

dz2√
K

ImsA(t, z2). (6.9b)

We arrive at the expression of the same structure as (6.4) for the A3 itself
but integrated over a different region,

ρst ∼
∫∫

dz1 dz2√
K(z, z1, z2)

ImsA(t, z1) ImsA
∗(t, z2). (6.10a)

We don’t need to worry about the lower limits of the integrals since the
factors ImA(t, zi) themselves know about z10, z20. As for the upper limits,
they are given by the inequality

z1z2 +
√

(z2
1 − 1)(z2

2 − 1) ≤ z (6.10b)

which is equivalent to K > 0, see (6.3).
Anything else? Until now we have been studying only positive z1, z2.

Considering analogously left-side singularities on Fig. 6.2 we will restore
the u-channel contribution. Using our old notation for imaginary parts of
the amplitude in s and u channels, A1 ≡ ImsA and A2 ≡ ImuA, the final
formula reads

ρst =
τ

π

∫∫
dz1 dz2√
K(z, z1, z2)

[A1(t, z1)A∗
1(t, z2) + A2(t, z1)A∗

2(t, z2) ] ,

(6.11a)
where the integration is performed over the region (6.10b); z1 > 1, z2 > 1.

If I chose to continue analytically the t-channel unitarity condition to
s → −∞ (instead of +∞), I would obtain a similar integral expression for
another double spectral function,

ρut =
τ

π

∫∫
dz1 dz2√
K(z, z1, z2)

[A1(t, z1)A∗
2(t, z2) + A2(t, z1)A∗

1(t, z2) ] .

(6.11b)
Mandelstam equations (6.11) solve the problem of analytic continuation
of the t-channel unitarity condition. Thus we learned how to express
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‘imaginary parts of the imaginary parts’ ρij via the imaginary parts Ai

of the amplitude themselves!

6.1.4 Mandelstam representation

We have obtained the double discontinuity ρst in the following order:
we were sitting in the t channel at t > 4μ2, took A3 = ImtA, then, by
continuing A3 to |zt| > 1, moved to the s-channel and there evaluated
ImsA3. We could have done it in the opposite order, namely start from
A1 = ImsA in the s-channel, t < 0, and then increase t to access ImtA1

at t > 4μ2. It is natural to expect that this way we would have got the
same expression (6.11a) for ρst,

ρst(s, t) = ImsA3(s, t) = ImtA1(s, t).

Although a formal proof does not exist, this statement would be definitely
correct if the amplitude admitted the double integral representation

A(s, t) =
1
π2

∫ ∫
ρst(s′, t′) ds′ dt′

(s′ − s)(t′ − t)
+ [s → u] + [t → u], (6.12)

where the integration region is restricted by the Karplus curve in the s′–t′

plane. Since 1958, when Mandelstam suggested the representation (6.12)
for the invariant amplitude Mandelstam (1958), no Feynman graph has
been found which would violate it (provided all participating particles are
stable, ma < mb + mc + md).

The spectral density ρst corresponds to simultaneously evaluating dis-
continuities over s in t and bears information about unitarity in both
channels. This object is therefore well suited to support our expectation
that probabilities of particle creation and particle exchange are not in-
dependent. Such inter-dependence is a specific feature of the relativistic
theory, in marked difference to non-relativistic quantum mechanics.

6.2 ρ0 = const, σtot = const contradicts t-channel unitarity

The Froissart theorem provided us only with upper bounds for growth
rates of ρ0(s) and σtot(s). Now we will show that in a relativistic theory
the radius ρ0(s) must virtually always grow with s. (To be precise, it is
allowed not to grow only if the total cross section falls faster than 1/ ln s
at asymptotically high energies.)

As we have discussed above, the hypothesis ρ(s) → const implies that
the s- and t-dependence of the scattering amplitude factorize,

A(s, t) s→∞= s · F (t), (6.13)
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where we choose A ∝ s to ensure asymptotically constant σtot. Once the
amplitude has such a form in the physical region of the s channel, then,
by virtue of analyticity, it has to have the same structure at positive t as
well, it seems. We will suppose that (6.13) holds for finite t (of any sign),
but then it has to satisfy the equations (6.11) that we have derived for
moderate positive t (in the interval 4μ2 < t < 16μ2). Let us see if it really
does. From (6.13) we get

A1(s, t) � s ImF ≡ s · F1(t); ρst � s · ImF1(t) for t > 4μ2. (6.14a)

Analogously for the antiparticle scattering amplitude, in the crossing
channel, u → ∞,

A2(u, t) � u · F2(t); ρut � u · ImF2(t) for t > 4μ2. (6.14b)

Thus, we wrote down explicitly all the ingredients of the Mandelstam
relations (6.11) for the double spectral densities ρst and ρut. This means
that we can verify our model (6.13) provided the dominant contribution
to the integral comes from the region of large internal energies. Let us
start calculating the integral (6.11a) supposing that z1, z2 
 1 and then
verify that this is indeed true.

Approximating the Jacobian

−K =
[
z−z1z2 +

√
(z2

1−1)(z2
1−1)

] [
z−z1z2 −

√
(z2

1−1)(z2
1−1)

]
� z(z − 2z1z2),

and substituting the asymptotic approximation (6.14) for the block am-
plitudes A1 and A2 we obtain

ρst � τ

π

∫
dz1 dz2 · z1z2√
z(z − 2z1z2)

·
[
t− 4μ2

2

]2

[F1F
∗
1 + F2F

∗
2 ] .

The integrand depends only on the product z1z2 = x, therefore

ρst ∝
z/z20∫
z10

dz1

z1

z/2∫
z1z20

x dx√
z(z − 2x)

� z

z/z20∫
z10

dz1

z1

1/2∫
0

y dy√
1 − 2y

∝ z ln
z

z10z20
∝ s ln s.

(6.15)

The inconsistency of our calculation with (6.14a) is apparent:

ImF1(t) = lim
s→∞

ρ(s, t)
s

?� c

μ2
ln s +

1
μ2

· O(1) . (6.16)
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The unwanted dominant contribution O(ln s) came from the specific in-
tegration region z1z2 ∼ z, z0 � z1, z2 � z (which, by the way, confirms
our initial decision to use asymptotic formulae for the internal blocks).
To scrutinize other regions won’t help since the integrand is positively
definite so that there can be no cancellation.

6.2.1 ρ0(s) for arbitrary σtot(s)

Let us release the σtot = const condition and look whether the radius can
stay asymptotically constant in the general case. The generalization reads

A1(s, t) � s · h(s) · F1(t),

ρst � s · h(s) · ImF1(t), (ρ ≡ 0 for t < 4μ2).
(6.17)

Then (cf. (6.15))

ρ(s, t)∝
∫

dz1 dz2 z1z2 · h(z1)h(z2)√
z(z − 2z1z2)

� z

z/z20∫
z10

dz1

z1
h(z1)

1/2∫
0

y dy√
1−2y

h

(
zy

z1

)
.

Since the y-integral converges, we can substitute a constant c = 〈y〉 =
O(1) for y in the argument of the second h-function to obtain

ImF1(t) ∝
ρ(s, t)
zh(z)

∼ 1
h(z)

∫ z/z20

z10

dz1

z1
h(z1)h

(
z

z1
c

)
. (6.18)

To avoid contradiction, the r.h.s. of (6.18) has to have a finite z → ∞
limit. It is easy to see that this is possible only if

h(z) <
const
ln z

, z → ∞. (6.19)

Only in this case which corresponds to a falling total cross section,

σtot(s) <
const
ln s

, s → ∞,

the constant interaction radius would not contradict t-channel unitarity.
We wrote the unitarity condition valid for 4μ2 < t < 16μ2, made use of

the concrete form of the amplitude at s → ∞ and finite t and came to a
contradiction with the hypothesis σtot = const.

What is the reason for that?
The picture that caused us trouble is that of Fig. 6.3(a). It is related

to the production process of two showers of particles in a high energy ππ
collision with the exchange of a pion, Fig. 6.3(b).

From the very beginning we supposed that the total ππ interaction
cross section is constant at high energy. But it is this σππ that twice
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(a) (b) (c) 

s2 

s1 

π 

σππ = const.

π 

π 

π 

π

Fig. 6.3 On the ‘black disc’ ansatz (6.13) versus t-channel unitarity.

enters the graph we have selected. Now, however, we can vary the total
energy partitioning between showers, sμ2 ∼ s1s2, adding contributions
with different s1 and s2. Since for each of the two pion–pion interaction
sub-processes Fig. 6.3(c) σtot → const, we obtained an additional ln s en-
hancement due to integration over shower masses.

Does our contradiction mean that σππ cannot be constant in the high
energy limit? No. This only tells us that it is wrong to think that the
t dependence of the amplitude is determined exclusively by the nearest
singularity due to one-pion exchange: ρ0 � (2μ)−1 = const. Multi-meson
exchanges must be important, interfering with one pion; the higher the
energy s, the more the amplitude has to ‘remember’ about the faraway
singularities in t. In other words, we can no longer consider the interaction
radius to be energy independent, unless σtot falls with s.

Thus, trying to preserve asymptotic constancy of the total cross section,
we have to abandon the factorization ansatz (6.13) and look for a more
complicated structure of the amplitude; we have to have ρ0 changing with
energy.

There were times when the constancy of the interaction radius was held
in deep respect, people thought that it had a deep physical meaning. Later
it transpired that the truth is just the opposite: it is practically impossible
to have it not growing with energy.

6.2.2 Numerical estimate

How ‘serious’ is the contradiction with unitarity that we have faced? Look
more attentively at our relation:

ImF1 >∼
τ

4π
·
[
t− 4μ2

2

]
· 2 |F1|2 · ln s.

For t ∼ μ2 we can take

ImF1(t) ∼ F1(t) ∼ F1(0) = σtot ∼
1
μ2
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as a rough estimate. Stepping away from the t threshold by (t− 4μ2) ∼ μ2

then gives for the numerical coefficient c of the logarithmic term in (6.16)

c =
τ

4π
·
[
(t− 4μ2)F1(t)

]
∼ τ

4π
� 1

4π
1

16π
∼ 1

600
.

This means that though the radius has to grow, it may do so very slowly:
the formal contradiction starts to be really important only at fantastically
high energies, ln s ∼ 600.

6.2.3 Modelling a growing radius

Let us attempt to model a growing radius. We wrote A1 = sF (t) for the
black-disc picture and failed. Try

A1(s, t) = sα(t)F (t), (6.20)

such that

α(0) = 1, α(t) < 1 for t < 0.

For a finite t we then have approximately

A1(s, t) � s eα
′t ln sF (t) = s e−α′q2 ln sF (−q2). (6.21)

The essential momentum transfer q in (6.21) is

|q| � 1√
α′ ln s

,

which immediately translates into the energy-dependent radius

ρ0(s) �
√
α′ ln s. (6.22)

What will change in the t-channel unitarity condition? Examine the r.h.s.
of (6.11a):

A1(z1, t )A∗
1(z2, t) ∝ z

α(t)
1 z

α∗(t)
2 .

Above the threshold, t > 4μ2, both F (t) and α(t) in (6.20) will become
complex in general:

=⇒ zα1+iα2
1 zα1−iα2

2 = (z1z2)
α1 exp

{
iα2 ln

z1

z2

}
, α2 = Imα(t).

Recall that the logarithmic s-dependence occurred due to fact that the
integrand depended solely on the product z1z2. Now, on the contrary, we
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(c) (d) (a) (b)

Fig. 6.4 Relation of ladder-like inelastic processes to t-channel unitarity.

have an oscillating function of the ratio z1/z2 which will force the integral
to converge and produce

∫
d ln

z1

z2
exp

{
iα2 ln

z1

z2

}
∼ 1

α2

in place of ln s. Our consistency condition (6.16) will turn into

ImF1(t) �
c

μ2
· 1
α2

+
1
μ2

· O(1) . (6.23)

The formal contradiction is gone. Moreover since c is numerically small, we
may have α′t � 1 and α(t) � 1 in a broad region of momentum transfer t.

A comment is in order. In Section 5.6 we saw how to ‘construct’ a
growing radius. To do so we allowed a fast incident particle to slow down
before hitting the target, by emitting a whole ‘comb’ of virtual particles
on the way.

Imagine that inelastic processes have indeed the structure of a ‘comb’
as shown in Fig. 6.4(a).

Then, by s-channel unitarity, squaring the amplitude (a) we get the
forward scattering amplitude as a ‘ladder’ of Fig. 6.4(b). A remarkable
thing about this picture, based on repetitions in the t-channel, is that it
directly solves t-channel unitarity!

Indeed, by taking discontinuity in t somewhere along the graph,
Fig. 6.4(c), the upper and the lower parts of the ‘ladder’ will sum up
into the full interaction amplitudes as shown by blocks in Fig. 6.4(d).
Hence, the necessity (as well as opportunity) of having the radius grow
with energy is related to the possibility of repetitions in the t-channel
which are the key to the t-channel unitarity.



6.2 ρ0 = const, σtot = const contradicts t-channel unitarity 151

To move further we need to investigate which solutions are reasonable,
what are realistic strong interaction amplitudes in the deep asymptotic
regime. One could continue along the lines of this lecture and study the
restrictions imposed by cross-channel unitarity conditions.

It turns out, however, that there is a more elegant way to find asymp-
totics of relativistic amplitudes by establishing a transparent link with
the old non-relativistic theory.



7
Theory of complex angular momenta

This theory will allow us to keep track of analyticity and unitarity in the
t-channel when analysing s-channel phenomena.

The first step is to write down the amplitude expansion in terms of
t-channel partial waves f�(t) rather than f�(s) as we did before to derive
the Froissart theorem. We write

A(s, t) =
∞∑
n=0

(2n + 1)fn(t)Pn(z), (7.1a)

where now

z ≡ zt = cos Θt =
2 s

t− 4μ2
(7.1b)

stands for the cosine of the scattering angle in the t-channel process.
The unitarity condition in the t-channel limits the size of each partial

amplitude |fn(t)| = O(1). In the s-channel, we have obtained the growing
amplitude A(s, t) by summing up a large number of terms � <∼ �0(s) in the
partial-wave expansion in f�(s). Now we keep t finite and a finite number
of partial waves fn(t) with n <∼ n0(t) = O(1) will contribute.

How will the series (7.1a) behave in the s → +∞ limit? From the t-
channel point of view this region on the Mandelstam plane is absolutely
unphysical as it corresponds to large imaginary scattering angles (7.1b)
z � 1. We have mentioned before more than once that this unphysical
region bears information about high energies in the s-channel. So let us
try to imagine what sort of behaviour of the series at large z we could
expect.

152
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The partial wave expansion (7.1a) was written in the physical region
of the t-channel. Since partial-wave amplitudes are falling fast at large n,
we can split the sum into two pieces,

A(s, t) =
n0(t)∑
n=0

(2n + 1)fn(t)Pn(z) +
∞∑

n0(t)

· · · ,

and drop the infinite series term. (Formally speaking, this ‘tail’ will di-
verge for large z but there is no special reason for it to be large and,
more importantly, to change significantly when we will move from pos-
itive t = O

(
μ2

)
down to t < 0 as to reach the s-channel domain.) Then

for z → ∞ we will have a qualitative estimate

A(s, t) ∼ zn0(t) ∝ sn0(t). (7.2)

Being rather brutal, this estimate nevertheless tells us what we could
expect. Namely, that the large-s asymptote of the s-channel amplitude
is governed by the characteristic angular momentum n0(t) in the cross-
channel. What remains is to learn how to determine this characteristic
momentum.

7.1 Sommerfeld–Watson representation

This representation was applied by T. Regge to the problem of analytic
continuation of the partial-wave expansion.

The quest is, how to invent, in a more or less unique way, a function
f�(t) that would be analytic in � and would coincide with the partial waves
in (7.1a) in every integer point,

f�(t)|�=n = fn(t), n = 0, 1, 2, . . . ,∞.

If we succeeded, the problem of analytic continuation of the series (7.1a)
to large z would have been relatively easy to solve. Indeed, suppose we
knew how to construct such a function. Then I would write a simple
formula (the Sommerfeld–Watson integral)

A(s, t) =
1
2i

∫
C

d�

sinπ�
f�(t)P�(−z), (7.3)
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where the contour C encircles all integer points n ≥ 0 anti-clockwise:

=
C

The function P� is regular in �. Evaluating the residues of the singular
factor 1/ sinπ� at � = n and bearing in mind that Pn(−z) = (−1)nPn(z),
we recover the original sum (7.1a).

The idea is as follows. Imagine that we
managed to choose f� ‘good enough’ so
as the contour can be deformed as shown
here on the right. Then everywhere along
C

Re � ≤ �0 = const.

This gives us an upper bound

C
Re = 0

P�(z) ∝ z� = zRe �+i Im �, A(s, t) ∝ |P�(z)| <∼ z�0 , z → ∞.

Such an inequality does not make much sense since it depends on the
choice of the integration contour: the boundary gets stronger as we move
the contour to the left. What prevents us from strengthening the upper
bound indefinitely? The function f� has singularities somewhere in the
� plane. Shifting the contour in (7.3) is possible until we hit such a sin-
gularity at some point � = α(t). Thus it is the position of the rightmost
singularity of the partial wave f�(t) that will determine the asymptotic
behaviour of the amplitude,

A(s, t) ∼ zα(t) ∝ sα(t), s → ∞. (7.4)

Our qualitative expectation has been made precise: we gave definite mean-
ing to the ‘characteristic angular momentum’ n0 in (7.2) by having linked
it with analytic properties of the partial-wave amplitude considered as a
function of a complex variable �.

This is the key idea of the theory of complex angular momenta.
Two things were needed for this programme to succeed namely, that

(1) f� is analytic in the right half-plane, Re � > N ; and (7.5a)

(2) f� falls along each beam |�| → ∞ in this half-plane. (7.5b)
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Let us see how fast f� has to decrease with |�|. In the physical region
z = cos Θ ∈ [−1,+1] where (7.1a) was written,

P�(−z) ∼ J0(�[π − Θ]) ∼ 1√
�

[
ei�(π−Θ) + e−i�(π−Θ)

]
.

This means that the ratio

P�(−z)
sinπ�

(7.6)

in (7.3) falls exponentially for all angles but Θ = 0 where∣∣∣∣P�(−z)
sinπ�

∣∣∣∣ ∝ 1√
�
, |�| → ∞.

So it suffices to have

|f�| < �−3/2

to ensure the convergence of the integral and the possibility of the contour
deformation.

It is easy to show that the problem of extrapolating the function from
its values in integer points onto the entire complex plane has no more
than one solution under a much weaker condition, namely,

|f�| < e|�|π, |�| → ∞. (7.7)

This is known as the Carlson theorem. We will not prove it. Let us remark,
however, that the statement of the theorem is essentially trivial. Suppose
we found a solution f

(1)
� (t). To construct a different one we would have

to add a function that vanished in all integers � = n, that is something of
the form

f
(2)
� (t) = f

(1)
� (t) + δf�(t); δf�(t) = g�(t) · sinπ�.

But the factor sinπ� grows exponentially along the imaginary axis, ∝ e|�|π,
just violating the condition (7.7).

7.2 Non-relativistic theory

One may ask the same question of the behaviour of the amplitude at
cos Θ � 1 in the framework of the non-relativistic scattering theory,
though it makes not much sense here. Nevertheless, the programme that
we have outlined above can be carried out literally and rigorously.
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In the non-relativistic theory we have the Schrödinger equation at our
disposal, [

− �
2

2m
∇2 + U(r)

]
ψ(r) = Eψ(r).

The radial part, Fn(r), of the wave function ψ(r) = Fn(r)Yn,m(Θ, φ) sat-
isfies the equation[

− �
2

2m
∇2

r +
n(n + 1)

r2
+ U(r)

]
Fn = EFn(r). (7.8)

Among the two solutions of (7.8),

F (1)
n (r) ∝ rn, F (2)

n (r) ∝ r−n−1, r → 0, (7.9)

we choose the first one that is regular at r = 0. Having fixed the wave
function at the origin, at r → ∞ it behaves as

Fn(r) ∝ an(k)
e−ikr

r
+ bn(k)

eikr

r
. (7.10)

This corresponds to the S-matrix element Sn(k) = bn/an and to the scat-
tering amplitude

fn(k) =
1
2i

(
bn(k)
an(k)

− 1
)
. (7.11)

Why did we keep the angular momentum n to be an integer? In order to
have a non-singular angular dependence of the wave function. However,
as long as we are interested in the non-physical region cos Θ > 1, no-one
would forbid us to look upon n in the radial Schrödinger equation (7.8)
as an arbitrary continuous parameter.

So we substitute n → � and treat � as a complex number. Then we
will solve (7.8), choose F�(r) ∝ r� as before and find the functions a and
b from the large-r behaviour (7.10). The ratio b�/a� does not depend
on the normalization of the wave function and describes the ‘scattering
amplitude’ as a function of �.

Have we satisfied the necessary conditions (7.5) for deforming the con-
tour in the Sommerfeld–Watson integral? The condition (7.5a) is fulfilled
with N = 1

2 . Indeed, any solution of (7.8) will be an analytic function
of � since the parameter � enters the equation analytically. Where does
the restriction Re � > 1

2 come from in the first place? It emerges from the
choice of the solution proper in (7.9): for the prescription to be unique we
must impose

Re � > Re(−�− 1) =⇒ Re � > 1
2 .
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The second condition (7.5b) is satisfied as well. It is clear that the scat-
tering amplitude falls fast in the |�| → ∞ limit: due to the repulsive cen-
trifugal potential in (7.8), with � increasing, the wave function F�(r) gets
more and more suppressed at finite distances r < r0 where the scattering
potential U(r) is concentrated.

Thus a� and b� are regular analytic functions of �, together with the
wave function F�(r), in the right half-plane Re � > 1

2 . The amplitude f�
in (7.11) is then regular everywhere but the points a�(k) = 0 where it
acquires poles.

We know already that the poles of the amplitude correspond to reso-
nances. The position of such a pole, a complex energy E, is determined
by the equation

fn(E) = ∞

and depends, obviously, on n as a parameter of the Schrödinger equation,
E = E(n). The equation

f�(E) = ∞

will have solutions for non-integer values of � as well. In Lecture 3 we were
considering the position of the resonance in energy, E = E(�), keeping
� = n fixed. Now we are studying the same object but from a different
angle: we fix E and look at the position of the pole in the � plane, �̄ = �(E).

Having an analytic amplitude which falls properly with � in the right
half-plane and has no singularities but poles, we perform the Sommerfeld-
Watson trick. Closing the contour around the rightmost pole at � = α(t)
we will obtain

Apole(s, t) =
−r(t)

sinπα(t)
(2α(t) + 1)Pα(t)(−z), (7.12)

A(s, t) � Apole(s, t) ∝ zα(t), z → ∞. (7.13)

as was foreseen in (7.4).

This is a remarkable result.

We have two particles interacting via potential U . In an attractive po-
tential, U < 0, there may be bound states or resonance states in vari-
ous partial waves. Their energies depend on the angular momentum n
of the state, t = t(n). By simply inverting this dependence, � = �(t), we
get information about the large-z asymptotics: at a given energy t, the
behaviour of the amplitude in the z → ∞ limit is determined by the res-
onance that has maximal angular momentum �(t) corresponding to this
energy.
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E = E( )

= 0 = 1

 = 1

 = 2

Fig. 7.1 Energy level in a shallow potential well changes continuously with
orbital momentum �.

Take not too deep a potential well, such that there exists a level for � = 0
but not for � = 1 when the centrifugal repulsion switches on. Imagine
that we change � continuously. With � increasing, the energy level will
be pushed up until at some � = �1 < 1 it will cross E = E(�1) = 0 and
move into the continuum, E > 0. For � > �1 there is no bound state (a
discrete energy level) in our potential any more. However, the level as
a solution of the Schrödinger equation will not vanish in thin air. What
will be its fate then? It can neither belong to the continuous spectrum
(by unitarity), nor have a complex energy on the physical sheet (which is
forbidden by causality). The only option for the level is to dive onto the
unphysical sheet and acquire a complex mass there. That is, to become a
resonance as displayed in Fig. 7.1.

Redraw the picture now. Let us change the energy and see what will
happen to the angular momentum of the level.

At E = E(0) we have a pole in the partial wave � = 0. Increasing the
energy, we will find the corresponding value of �. At E = 0 we will have
� = �1. If we want to continue keeping � real, we would have to lead E
into the complex plane. If instead we continue to keep the energy real
and increasing, then the pole in the �-plane will move onto the upper
half-plane as shown in Fig. 7.2.

It suffices to draw this curve in order to determine the asymptotics of
the amplitude at large z. And this was first realized in the framework of
a non-relativistic theory. T. Regge (1959) found the way to quantify the
value of the characteristic angular momentum n0 in (7.2),

A(s, t) ∝ Pn0(t)(z).

We may say that in the quantum-mechanical context n0 measures the
strength of the potential. It tells us, what the maximal value of the angular
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Fig. 7.2 Movement of the pole in the �-plane in non-relativistic theory.

momentum is for which the attraction is still stronger than the centrifugal
repulsion and the wave function is still concentrated at small distances so
that the partial waves with n ≤ n0(t) are large and contribute significantly
to the partial-wave expansion (7.1a).

7.3 Complex � in relativistic theory

It was not at all clear whether this programme could be carried out
in a relativistic theory where the potential (if any) depends on parti-
cle velocities. Nevertheless, it turned out that the results that we have
obtained for potential scattering are almost correct in the relativistic
framework.

7.3.1 u-channel and a problem with analytic continuation

Why ‘almost’? As we have discussed above in Section 7.1, the very sup-
position that an analytic function f� existed, immediately allowed me to
analytically continue the series (7.1a), originally defined for z ∈ [−1,+1],
to arbitrary |z| > 1. We saw that for any complex value of z (but real
positive z corresponding to Θ = 0) the ratio (7.6) of P�(−z) and sinπ�
falls exponentially along the integration contour. In particular, for z < 0
(Θ = π) the Legendre function P�(−z) does not increase at all along the
imaginary �-axis. The Sommerfeld–Watson integral for A then converges
(and so do integrals for its derivatives over z). But this contradicts the
fact that A(z) must have singularities at z < −1 since we know that our
relativistic amplitude has a cut at s < 0 corresponding to the u-channel
scattering!

Nevertheless, let us try to approach the problem constructively to see
where the problem lies and how we might overcome it. So, we start again
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from two complementary formulae for integer n:

A(s, t) ≡ A(z, t) =
∑
n

(2n + 1)fn(t)Pn(z), (7.14a)

fn(t) =
1
2

∫ 1

−1
dz Pn(z)A(z, t), (7.14b)

and search for a way of continuing (7.14) to complex angular momenta �.
The task of defining f� seems easy at the first glance. A straightforward

generalization of (7.14b) by a simple substitution n → � will, however, not
satisfy us. Indeed, since the z-integral involves all points in the interval
[−1,+1], including z = −1, it is this end-point corresponding to Θ = π
that will make f�, so defined, behave as exp(iπ�). But this behaviour
violates Carlson’s theorem (uniqueness of the analytic continuation) thus
forcing us to abandon this bold attempt.

To find a smarter way let us make use of the knowledge of the analytic
structure of the amplitude:

A(z, t) =
1
π

∫ ∞

z0

dz′
A1(z′, t)
z′ − z

+
1
π

∫ ∞

z0

dzu
A2(−zu, t)
zu + z

, (7.15)

where we represented the contribution of the left cut in terms of a positive
integration variable zu = −z. I wrote the dispersion relation without sub-
tractions. They are necessary in principle to have the integrals convergent.
‘Subtraction’ in the dispersion integral means extracting a polynomial in
z of some degree N . However, I am now going to study partial waves with
sufficiently large n. If I take n > N , then, due to the orthogonality of Pns,
the subtracted polynomial will not affect my partial waves fn. So we may
substitute our ‘analytic wisdom’ (7.15) into (7.14b) to obtain

fn(t) =
1
π

∫ ∞

z0

dz A1(z, t)Qn(z) − 1
π

∫ ∞

z0

dzuA2(−zu, t)Qn(−zu), (7.16)

where

Qn(z) ≡ 1
2

∫ 1

−1
dz′

Pn(z′)
z − z′

. (7.17)

The new expression (7.16) better suits our purpose; it is tempting to try

Qn(z) =⇒ Q�(z)

with Q�(z) the second solution of the Legendre equation that is regular
at infinity:

Q�(z) ∝ z−�−1, |z| → ∞ .
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Such a behaviour is perfectly satisfactory for continuing the first term in
(7.16). In the second term, however, we get

Q�(−z) ∝ (−z)−�−1 = −e−iπ�|z|−�−1 ,

and the second part of the partial wave again acquires too fast an expo-
nential increase with Im �.

So what’s the way out? Using the relation

Qn(−z) = (−1)n+1Qn(z)

valid for integer n, we can rewrite (7.16) as

fn(t) =
1
π

∫ ∞

z0

dz A1(z, t)Qn(z) +
(−1)n

π

∫ ∞

z0

dz A2(−z, t)Qn(z). (7.18)

This way we localize the problem before attempting the analytic continua-
tion to complex n. Actually, we have already derived an analogous formula
for s-channel partial-wave amplitudes in Lecture 5 when we discussed the
relativistic phenomenon of the appearance of the backward peak in the
differential angular cross section, cf. (5.18).

7.3.2 Continuing separately even and odd angular momenta

We have to abandon the idea of constructing an analytic continuation of
fn from all integer points anyway: as we already know such an attempt is
bound to fail because of the existence of the u-channel singularities. We
are led to try to continue even and odd angular momenta separately,

f
(+)
�

∣∣∣
�=2n

= f2n, f
(−)
�

∣∣∣
�=2n+1

= f2n+1.

By so doing we get rid of the oscillating factor in (7.18) and obtain two
functions,∗ both behaving nicely at large |�|:

f
(±)
� (t) =

1
π

∫ ∞

z0

dz Q�(z)A1(z, t) ± 1
π

∫ ∞

z0

dz Q�(z)A2(−z, t). (7.19)

Now for the analytic continuation to be unique, a stronger condition than
(7.7) must be imposed: ∣∣∣f (±)

�

∣∣∣ < exp
(

1
2 |�|π

)
.

It is easy to verify that the functions defined by (7.19) do satisfy this
condition easily (along the imaginary axis they don’t increase at all).

∗ Equation (7.19) is known as the Gribov–Froissart projection (ed.).
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Thus the price we pay for solving the problem of continuation is the
introduction of two analytic functions in place of one. What is the reason
for that?

In a relativistic theory one ‘potential’ is not enough. There is always
another diagram corresponding to what is known in nuclear physics under
the name of exchange potential Vexch:

a

Vexch+V

a a

b b b

a b

The two graphs differ by the transposition a ↔ b which, for spinless par-
ticles, introduces the factor (−1)�. Therefore for even and odd orbital
momenta we have

V =⇒ V + Vexch (� = 2n) and V =⇒ V − Vexch (� = 2n+1),

correspondingly. Having two different full potentials means that there isn’t
any analytic relation between partial waves with even and odd angular
momenta.

7.3.3 Sommerfeld–Watson representation for f
(±)
�

Let us split the amplitude into symmetric and anti-symmetric parts with
respect to s ↔ u,

A(z, t) = A+(z, t) + A−(z, t), A±(z, t) ≡ A(z, t) ±A(−z, t)
2

, (7.20)

and treat these two amplitudes separately:

A±(z, t) =
∑

n=even/odd

(2n + 1)f (±)
n (t)Pn(z). (7.21)

Recall that above we wrote the dispersion relation without subtractions,
which was fine for the purpose of analysing partial waves with n > N .
The integrals (7.19) for f

(±)
� are defined also for sufficiently large angu-

lar momenta. This is necessary to ensure convergence: if the amplitude
behaves at large z as |A(z)| = O

(
zN

)
, then

f
(±)
� ∼

∫ ∞
dz Q�(z)A(z) ∼

∫ ∞
dz · z−�−1 · zN < ∞ =⇒ Re � > N.

This means that the series (7.21) for the amplitude A± can be repre-
sented by the Sommerfeld–Watson integral only partially. Namely, it is
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the infinite series of partial waves with n ≥ N in

A =
N∑

n=0

(2n + 1)fnPn +
∞∑

n=N+1

(2n + 1)fnPn

that can be combined into an analytic function of �, while a few first
partial waves remain, generally speaking, arbitrary.

Why did a few partial waves remain unaccounted for? In a non-
relativistic language, we may imagine adding to the potential a singular
term δ0V (r) = const · δ(r). It contributes to the S-wave scattering only
and as a result f0 would fall out of the family. Introducing δ1V (r) ∝ ∇δ(r)
we would analogously spoil the P -wave f1. If we continue these singular
series by summing up an infinite number of derivatives we may violate
causality (polynomial boundary |A| <∼ sN ). As we shall see soon from the
s-channel unitarity condition, the number of ‘special’ partial waves that
remain unaccounted for in fact cannot be larger than two: � = 0 and � = 1.
Now that we have removed the oscillating fac-
tor (−1)� that used to cause too fast an expo-
nential increase, we can deform the contour C in
the Sommerfeld–Watson representation embrac-
ing the points n ≥ N+1 by straightening it and
sending along the imaginary axis at Re � = �0 so
that N < �0 < N + 1:

A±(s, t) =
N∑

n=0

(2n + 1)fn(t)Pn(z) · 1
2 [1 ± (−1)n]

+
i

4

∫ �0+i∞

�0−i∞

d� (2� + 1)
sinπ�

f
(±)
� (t)[P�(−z) ± P�(z)] .

(7.22)

When the contour transformation is done, we are ready to leave the physi-
cal region of the t-channel and to study the large-s regime. Taking z → ∞
will affect only the oscillating factor exp(i Im � · ln z) but not the conver-
gence of the integral.

Let us verify that the formula (7.22) is what we have been looking for.
To this end, examine the analytic properties of A±. They obviously must
be those that we put in. Namely at positive s > 4μ2 we should encounter
a non-zero absorptive part which appears with the opening of the first
s-channel threshold:

A±
1 =

A(s + iε) −A(s− ıε)
2i

= 1
2 [A1(s) ±A2(s)], (7.23a)

as it follows directly from the definition of the amplitudes (7.20). Also,
if we decrease s, starting from u > 4μ2 we should see the cross-channel
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absorptive part

A±
2 ≡ A(u + iε) −A(u− ıε)

2i
= 1

2 [A2(u) ±A1(u)];

A±
2 (z, t) = ±A±

1 (−z, t). (7.23b)

Taking s > 0 we have z > 1, and the first Legendre function under the
integral in (7.22) becomes complex since P�(z) with non-integer � has a
logarithmic cut running from −1 to −∞. The phase of the argument in
P�(−z) starts to matter. Comparing two ways of defining (−z),

1
2i

[
P�(eiπz) − P�(e−iπz)

]
= sinπ� · P�(z),

and substituting into (7.22) we derive the absorptive part

A±
1 (s, t) =

1
4i

∫
C
d�(2� + 1)f (±)

� (t)P�(z). (7.24)

The complexity of P�(−z) has, however, nothing to do with physics.
Therefore at s > 0 the amplitude must stay real until we meet its first
physical singularity. Let us see how it happens in our formula.

In (7.24) the poles in the integer points have disappeared inviting us
to move the contour back to the right and close it at +∞. If |z| < 1 we
can always do so to obtain A±

abs ≡ 0 as expected. As for z > 1, closing
the contour will be still possible as long as the integrand falls in the right
half-plane.

We have studied the large-� asymptote of f� in Section 5.3. Applying
(5.26) to the t-channel partial waves,

f�(t) ∝ exp(−�χ0), coshχ0 ≡ z0 = 1 +
2 · 4μ2

t− 4μ2
, (7.25a)

and comparing with the asymptote of the Legendre functions (5.25),

P�(z) ∝ exp(�Θ), cosh Θ = z, (7.25b)

we immediately see that the absorptive part A1 = 0 as long as Θ < χ0,
that is up to s = 4μ2 when we hit the s-channel threshold singularity and
the partial-wave expansion (7.14a) diverges.

Considering analogously z < 0, it is easy to obtain the u-channel ab-
sorptive part independently,

A±
2 (z, t) = ± 1

4i

∫
C
d�(2� + 1)f (±)

� (t)P�(−z) = ±A±
1 (−z, t), (7.26)

in accord with the expectation (7.23b).
Thus we have derived two formulae relating partial waves with a definite

signature to the absorptive part of the amplitude with a definite s ↔ u
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symmetry:

A±
abs(s, t) =

1
4i

∫
C
d�(2� + 1)f (±)

� (t)P�(z); (7.27a)

f
(±)
� (t) =

2
π

∫ ∞

z0

dz Q�(z)A±
abs(z, t), (7.27b)

with z0 defined in (7.25a). Remember, z in these formulae is a cosine of
the t-channel scattering angle,

z ≡ zt(s, t) = 1 +
2 s

t− 4μ2
=

s− u

t− 4μ2
. (7.27c)

Let us note an attractive feature of (7.27a): the expression for Aabs is
free from an undetermined sum of few ‘non-analytic’ terms present in
the Sommerfeld–Watson representation for the amplitude A itself. More-
over, Aabs is a valuable thing: continuing to t < 0, we will get hold of the
imaginary part of the s-channel amplitude which interests us much.

On its own, the expression (7.27a) for the absorptive part is sort of triv-
ial, something resembling the Mellin transformation. It is complementary
to (7.27b) for f

(±)
� which expression is slightly less obvious as it exploits

analytic properties of the amplitude. Still, if not for the unitarity con-
dition, the translation of Aabs into f�, and back again, would have had
not much value (although performing Mellin transform may be sometimes
useful). The essence of the issue lies in that the singularities in � of f (±)

�
are determined by the physical spectrum of particles and resonances.

7.4 Analytic properties of partial waves and unitarity

In order to determine the character of the large-s asymptotics of the
scattering amplitude, we need to learn what singularities f

(±)
� (t) has in

the �-plane. Moreover, till now we were sitting at t > 4μ2 while it is the
physical region of the s-channel, t < 0, that really interests us. In non-
relativistic quantum mechanics we saw how the unitarity condition has
translated the poles of the amplitude on the unphysical sheet (resonances)
into singularities in � of the partial wave f� – the Regge trajectories �=
�(t). We are about to try the same path in the relativistic theory.

7.4.1 Redefining partial waves

So we will keep Re � > N and discuss the properties of f�(t) defined by
(7.27b). We have introduced partial waves with complex � at t > 4μ2.
There f

(±)
� are complex, because so are A1 and A2 (see the path 1 in
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Fig. 7.3). Below the t-channel threshold the absorptive parts are real and
it would have been nice if the partial waves at t < 4μ2 were real too.
However when the sign of t− 4μ2 in the expression (7.27c) changes, z
becomes negative. We have then to watch for Q�(z) = z−�−1 F (z), with F
a regular even function of z, which acquires an �-dependent phase. This
phase will provide f� with a ‘kinematical’ complexity which has nothing to
do with analyticity (since Aabs is real!). Let us have a look at the vicinity
of the threshold, 0 < t− 4μ2 � μ2. Here we have z � 2 s/(t− 4μ2) � 1,
and (7.27b) gives

f
(±)
� ∝ (t− 4μ2)� ·

∫ ∞

4μ2

ds

s�+1
[A1 ±A2 ] .

For integer n this is nothing but the usual threshold behaviour, fn ∝ k2n
c .

To get rid of the trivial phase factor it is convenient to redefine partial
waves by introducing

f
(±)
� (t) ≡ (t− 4μ2)� · φ(±)

� (t). (7.28)

The new partial wave φ� is given by the integral

φ
(±)
� (t) =

2
π

∫ ∞

4μ2

2 ds
(t− 4μ2)�+1

Q�(z)A±
abs,

where we choose to integrate over s rather than z as in the original formula
(7.19). Moving to t < 4μ2, we reflect the argument of Q�(z → −z) and
write down a more convenient expression,

φ
(±)
� (t) =

4
π

∫ ∞

4μ2

ds

(4μ2 − t)�+1
Q�

(
2s

4μ2 − t
− 1

)
A±

abs(s, t), (7.29)

which makes it clear that φ� stays real in the interval 0 < t < 4μ2. If we
decrease t further, at t < 0 the Legendre function Q�(z) becomes com-
plex (|z| < 1) when 4μ2 < s < 4μ2 − t (interval [a, b] on the path #2 in
Fig. 7.3). A physical singularity will emerge later, when the integration
line on the Mandelstam plane crosses the Karplus curve where ρsu �= 0
and the absorptive part becomes complex (interval [c, d] on the line #3 in
Fig. 7.3).

7.4.2 Two-particle unitarity condition for φ�

Recall how we have used the two-particle unitarity condition to find the
discontinuity on the right cut of the partial wave with integer n:

Im fn(t) = τfn(t)f∗
n(t), 4μ2 < t < 16μ2,
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Fig. 7.3 Integration paths in the representation (7.29) for φ�(t). For t < 0, on
the interval [a, b] the Legendre function Q�(z) is complex. When t < t1, the third
spectral function contributes to complexity of φ� along the [c, d] interval.

or, in terms of φ,

1
2i

[φn(t + iε) − φn(t− iε) ] = Cnφn(t + iε)φn(t− iε),

Cn ≡ τ · (t− 4μ2)n.

Now we can state that the same relation holds for arbitrary complex �:

1
2i

[φ�(t + iε) − φ�(t− iε) ] = C� φ�(t + iε)φ�(t− iε),

C� ≡ τ · (t− 4μ2)�.
(7.30)

Why? Thanks to the Carlson theorem. Indeed, as it is easy to see from the
properties of φ�, the difference between the l.h.s. and the r.h.s. of (7.30)
does not increase at infinity faster than exp(1

2π|�|) and equals zero in all
even (odd) points. Therefore it is zero on the entire �-plane.

The unitarity condition (7.30) applies to 4μ2 < t < 16μ2. Above the
four-pion threshold in the unitarity condition there appear integral terms
the continuation of which to complex angular momenta is not so easy.
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Now that we briefly described the singularities in t for fixed �, it is time
to turn to the question which really interests us – that of the structure of
singularities in � for fixed t.

Where may they come from? From the divergence of the integral

φ� ∼
∫ ∞

dz Q�(z)Aabs(z)

at some sufficiently small Re �. It is difficult to say anything starting from
nothing. Therefore we will begin with the classification.

(1) ‘Fixed singularity’ whose position � = �0 does not depend on t.

(2) ‘Moving singularity’, � = �0(t).

For the time being we will discuss only the rightmost singularity in the
�-plane, the one with the maximal Re �0.

7.4.3 Fixed singularities in the � plane

The first statement we can make about the fixed singularity (should it
happen to be the rightmost one) is that it may occur only on the real
axis. Indeed, whatever the nature of the singular point, its contribution
to the asymptote of Aabs(z) is proportional to z�0 . If Im �0 �= 0, this factor
oscillates fast at large z. But this would contradict the positivity of the
cross section, σtot ∝ Aabs (in the next lecture we will verify that the t-
derivative of Aabs(s, t) must also be positive in the interval 0 < t < 4μ2).

Now, since �0 �= �0(t), we can choose 4μ2 < t < 16μ2 to see what the
unitarity condition would tell us. The r.h.s. of (7.30), for real �0, reduces
to |φ�|2 and we have

Imφ� = C� · |φ�|2 =⇒ |φ�| < C−1
� . (7.31)

Therefore the singularity may be only a weak one, namely such that in the
singular point the partial-wave amplitude stays finite like, for example,
φ� ∼

√
�− �0. But this is exactly the case when, as we have discussed in

the previous lecture, the cross section must fall at large s.
Let us check that, indeed, |φ�0 | < ∞ implies a falling cross section.

Dropping irrelevant factors we write

Aabs(s) ∼
∫
C
d� φ� · s�

and shift the contour to the left in search for singularity. If φ� had a pole
we would have taken the residue and obtained a power asymptote

Apole
abs = const · s�0 .
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The pole is, however, forbidden by the t-channel unitarity restriction
(7.31). (By the way, a particular case of this veto is the familiar classical
diffraction picture, Aabs(s, t) = sF (t), which corresponds to the fixed pole
singularity at �0 =1.) Therefore φ� may only have a branch cut starting at

0

�0 and running to the left. Integrating the
discontinuity Δφ� along the cut we get

Aabs � s�0 ·
∫ ∞

0
dx Δφ(x) e−x ln s,

where we have introduced x = �0 − � > 0 as
an integration variable. When s is large,
the integral converges at 〈x〉 ∼ 1/ln s � 1 so
that only the very tip of the cut matters.

Parametrizing the discontinuity of the partial wave as Δφ(x) ∝ xγ and
evaluating the integral we obtain

Aabs ∝ s�0

(ln s)γ+1
. (7.32)

The finiteness condition (7.31) tells us that γ ≥ 0. As a result

σ ∝ s−1Aabs ∼
s�0−1

(ln s)γ+1
<

1
ln s

, (7.33)

where we have used the maximal power value �0 = 1 allowed by the Frois-
sart theorem.

Fixed singularities in NQM. Do fixed singularities exist in quantum me-
chanics? Yes, and they are related to the ‘falling on the centre’ phe-
nomenon, with the behaviour of the potential at small distances. As we
have already discussed, in non-relativistic quantum mechanics a singu-
larity appears in � when the choice between the two solutions of the
Schrödinger equation at the origin, r=0, becomes ambiguous. When dis-
cussing NQM scattering, we have tacitly implied that the interaction
potential was less singular than the centrifugal barrier, r2 · V (r) → 0 at
r → 0, in which case the singularity was at �0 = −1

2 (when r−� ∼ r�+1). In
the opposite case V (r) itself will govern the r → 0 asymptotic behaviour
of the wave function ψ�(r), and a fixed singularity may emerge at any �0.

It is important to stress that such fixed singularities correspond to
definite physics, namely a super-singular behaviour of the interaction at
small distances. It seems they are very unlikely to have any relation with
the approximate constancy of the total cross section.

Strictly speaking, the question of a possible rôle of fixed singularities
remained unsolved.
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7.4.4 Moving singularities

More difficult to analyse are moving singularities. At the same time they
are much more interesting. Given the function � = �0(t), we might invert
it and consider t = t0(�) as a singularity on the t-plane about which we
have already learned a thing or two!

Above we have described all singularities
of the partial wave amplitude on the t-plane:
there is nothing but the right cut, t > 4μ2

and the left cut, t < 0. So where are then
these new �-dependent singularities?

φ(±) (t)

0t0 4μ2

Recall that our analysis of φ(±)
� (t) was carried out for Re � > N . New

singularities show up at smaller �. How can this happen? It is clear that
a singularity cannot just ‘pop up’ suddenly with � decreasing. Our am-
plitude has cuts on the complex t-plane, and the possibility arises for
the singularity to move from beneath a cut and appear on the physical
sheet at some � < N . This means that such a moving singularity is always
present but ‘hidden’ on the unphysical sheets of the amplitude at large
Re �. Therefore, in order to learn which singularities the partial wave with
Re � < N may have on the t-plane, it suffices to find out (as we did before
when we studied resonances in Lecture 3) what the singularities are on
the unphysical sheets at Re � > N .

Left cut. The first important statement: No moving singularities emerge
from the sheets linked to the left cut.

We take t < 0, write

φ
(±)
� (t + iε) = φ

(±)
� (t− iε) + Δφ

(±)
� (t)

and move the argument t + iε down under the cut to explore the corre-
sponding sheet. The amplitude φ

(±)
� (t− iε) on the r.h.s. of the equation

stays on the physical sheet. Since it is regular there, the partial wave on
the l.h.s. diving under the cut will exhibit singularities of the discontinuity
over the left cut, Δφ

(±)
� (t). The latter, however, cannot have any (mov-

ing) singularities. This is a consequence of a simple fact that, as we have
repeatedly stressed before, it is given by integrals over finite intervals. In-
deed, one contribution to Δtφ comes from the complexity of Q� at t < 0:
ΔtQ�(−z) = −π

2P�(−z) (for −1 < z < 1); the other one appears at t < t1
due to the discontinuity of A±

abs: Imt ImsA
± ≡ ρ±su. From (7.29) we obtain

Δφ
(±)
� (t) = − 2

∫ sb

sa

ds

(4μ2 − t)�+1
P�

(
2s

4μ2 − t
−1

)
A±

abs(s, t + iε)

+
4
π

∫ sd

sc

ds

(4μ2 − t)�+1
Q�

(
2s

4μ2 − t + iε
−1

)
ρ±su(s, t).

(7.34)
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Fig. 7.4 Resonances on Regge trajectories �±(t) and the movement of a Regge
pole onto the physical sheet.

The integrals run over finite regions; they converge and cannot produce
singularities. As for an explicit �-dependence of the integrands, P� is
regular on the entire � plane; Q� is ‘almost regular’: strictly speaking, it
has poles in negative integers, � = −1,−2, . . ., but these do not concern
us here as they are not related to moving singularities.

Right cut. Exactly as it was the case of integer angular momenta that
we have explored in Lecture 3, on the unphysical sheet linked to the two-
particle cut there may be only poles:

φ
(±)
� (+) =

φ
(±)
� (−)

1 − 2iC� φ
(±)
� (−)

, φ
(±)
�0

(t) =
1

2iC�0(t)
=⇒ �0 = �±(t).

A remarkable thing! We knew that resonances with different spins n live on
the unphysical sheet. Now not only have we got the statement about the
large-s behaviour but also about the resonances themselves. In Lecture 3
we had independent equations for resonance masses,

φ(±)
n (t) = [ 2iCn(t) ]−1 =⇒ m2

n = t(n).

Now we see that all these resonances are analytically linked to each other
as shown in Fig. 7.4. This discovery laid the basis for the classification
of all hadrons according to ‘Regge trajectories’ they belong to. Real and
imaginary parts of the position of the pole on the t-plane give the squared
mass and the width of the resonance.

Moreover, two (generally speaking different) analytic curves �±(t) that
combine together resonances with even spins and those with odd spins,
are those very same curves that determine the asymptotic behaviour of
the symmetric and anti-symmetric parts of the scattering amplitude, cor-
respondingly.

What sort of information may this give us in practice? By studying
t-channel particle scattering at relatively small energies t, experimenters
find resonances, measure their masses, decay widths and determine their
spins. Imagine that we put ‘many points’ on a Regge trajectory and in
so doing approximately found Re �(t). This is a mere classification at this
point. Now, let us extrapolate the curve to t = 0, and below. This will
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tell us the characteristic angular momentum, �±(t1), corresponding to a
given value of the momentum transfer t1 < 0 and immediately give the
energy behaviour of the scattering amplitude,

A±(s, t1 ≤ 0) ∝ sRe �±(t1),

in a completely different – crossing – channel! Understanding this cross-
channel relation constitutes the main achievement of the theory of com-
plex angular momenta.



8
Reggeon exchange

We have discussed analytic properties of the partial-wave amplitude
f±
� (t). Further, having realized that moving singularities � = α(t) in the

complex angular momentum plane can be investigated also as singulari-
ties in the energy plane, t = t(�), we discussed how they appear from the
unphysical sheets, connected with the right (unitary) cuts of the ampli-
tude. We found that on the first unphysical sheet partial waves can have
only poles, i.e. the situation here turned out to be the same as for integer
angular momenta, � = n.

Recall that the picture we had for integer n was dominated by poles.
We put in particles (poles on the physical sheet), and they generated
singularities on other sheets linked to production thresholds of two or
more particles (or resonances).

It is clear that first the pole singularities must be studied. In non-
relativistic quantum mechanics, by increasing the interaction strength, I
can turn a resonance (a virtual state) into a real particle (a bound state).
In the theory of complex angular momenta the same phenomenon takes
place with the decrease of �: a resonance pole moves from the unphys-
ical sheet, through the tip of the unitary cut, onto the physical sheet,
see Fig. 7.4 above. In this sense � is akin to an interaction constant of
the non-relativistic theory. So, in this lecture we are going to discuss the
properties of Regge poles and the picture of the strong interactions in the
pole approximation.

As we shall see later, Regge poles generate branch cuts in the � plane, in
a manner similar to the generation of threshold branchings via unitarity
conditions by poles (particles) in the case of integer angular momenta.
The existence of these new branching singularities will seriously affect
some of the results of the present lecture.

173
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8.1 Properties of the Regge poles. Factorization

In the previous lecture we have introduced two analytic functions f±
� (t).

What sort of amplitude corresponds to a single pole in the partial wave
of definite signature? Substituting the pole expression

f±
� (t) =

r±(t)
�− α±(t)

into the Sommerfeld–Watson integral (7.22) results in the following con-
tribution to the scattering amplitude in the s channel:

A±(s, t) = −π

2
r
2α + 1
sinπα

[Pα(−z) ± Pα(z)] , z = 1 +
2s

t− 4μ2
, (8.1)

where we have suppressed the signature label ± for the residue, r = r±(t)
and the trajectory, α = α±(t).

Let us look at the singularities of A+(s, t). The amplitude with a posi-
tive signature has poles at those t values for which α+(t) = 2n is an even
number. Assume, e.g. that α(t) = 0 at t = m2

0. This means that if t → m2
0,

the physical partial wave f0(t) tends to infinity. Indeed, near the pole we
have

f+
� (t) � r(t)

�− α(m2
0) − α′(m2

0)(t−m2
0)
,

and, since α(m2
0) = 0,

f0(t) �
r(m2

0)
α′(m2

0) · (m2
0 − t)

.

Then the pole term of A+(s, t),

A+
0 (s, t) =

r

α′
1

m2
0 − t

=
g

g

t

s σ = 0

coincides with the exchange diagram for a spin σ=0 particle (with residue
g2 = r/α′).

The next singularity of A+ appears at some t = m2
2 where α(m2

2) = 2:

A+
2 (s, t) =

r(m2
2)

α′(m2
2)

2α(m2
2) + 1

m2
2 − t

P2(z).
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This is, however, just the contribution of the diagram for a spin σ=2
particle exchange:

g

g
s σ = 2

t

= Γμ1μ2

dμ1μ2,μ3μ4

m2
2 − t

Γμ3μ4 = g2P2(cos Θt)
m2

2 − t
.

Hence, in the physical points of its proper signature, α+ = 2n, the tra-
jectory � = α+(t) reproduces the particle (resonance) exchange with even
spin values for the amplitude (8.1). Similarly, the contribution of the
Regge pole of negative signature A−(s, t) contains the exchange of odd
spin particles.

Let us note that a trivial generalization of a Feynman diagram

σ = g2 Pσ(z)
m2

σ − t
(8.2)

to the case of non-integer spin σ, based on the assumption that the mass
is a continuous function of the spin, m2

σ → m2(�), does not give a reggeon
amplitude (8.1). Indeed, the amplitude (8.2) has a pole for any � value,
whereas in the expression (8.1) the poles emerge in integer points only.
In addition, the Regge amplitude (8.1) bears a non-trivial complexity
due to the factor [Pα(−z) ± Pα(z)], which cannot be obtained by the
generalization (8.2) either.

The expression (8.1) can be considered as the contribution to the scat-
tering amplitude coming from the exchange of a ‘particle’ of variable spin –
a reggeon – with a propagator

[Pα(t)(−z) ± Pα(t)(z)]
sinπα(t)

instead of the usual
Pσ(z)
m2

σ − t
.

The analogy between the reggeon and the particles (resonances) will be
complete, if we find that the reggeon residue is factorizable. In this case
we will be able to speak not only about ‘propagation’ of the Regge pole
but also about the vertices of its ‘emission’ and ‘absorption’.

As in the case of resonances, the factorization is, essentially, a con-
sequence of unitarity. We presented a formal proof of factorization for
resonances by diagonalizing the S-matrix in Lecture 3. Let us show in
a more transparent way how factorization appears. Consider, e.g. three
different reactions

ππ → ππ, πK → πK, KK → KK. (8.3a)
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For each amplitude (8.3a) its own partial waves can be introduced in the
t-channel:

ϕ�(ππ → ππ), g�(ππ → KK̄), h�(KK̄ → KK̄). (8.3b)

In the region 4μ2 < t < 16μ2 < 4m2
K there exists only one intermediate

state and the unitarity condition takes the simple form

Im

π

π

π

π π

ππ

= 1
2

π

t

π

π
, Imϕ�(t) = C� ϕ�(t)ϕ∗

� (t); (8.4a)

Im
π

π

K

t π

K

π π

KK

= 1
2

π
, Im g�(t) = C� ϕ�(t)g∗� (t); (8.4b)

Im

K

K K

t
= 1

2

π

π

K

K

K K

K

, Imh�(t) = C� g�(t)g∗� (t). (8.4c)

Here C� = τ(t− 4μ2)� with τ = ωc/16πkc the invariant phase-space vol-
ume (3.7) of the ππ state, and the factor (t− 4μ2)� appears owing to
the definition of the partial waves ϕ�, g�, h�, see (7.30). We have seen al-
ready that the unitarity conditions (8.4) can be continued onto arbitrary
complex � values by rewriting them in terms of discontinuities on the
cuts:

1
2i

[ϕ�(+) − ϕ�(−) ] = C�ϕ�(−)ϕ�(+), (8.5a)

1
2i

[ g�(+) − g�(−) ] = C�ϕ�(−)g�(+), (8.5b)

1
2i

[h�(+) − h�(−) ] = C�g�(−)g�(+), (8.5c)



8.1 Properties of the Regge poles. Factorization 177

where (+) = t + iε, (−) = t− iε. Equations (8.5) allow us to move to
the first unphysical sheet and check there the singularities of the partial
amplitudes (see Lecture 7):

ϕ�(+) =
ϕ�(−)

1 − 2iC� ϕ�(−)
, (8.6a)

g�(+) =
g�(−)

1 − 2iC� ϕ�(−)
, (8.6b)

h�(+) = h�(−) +
2iC� g

2
� (−)

1 − 2iC� ϕ�(−)
. (8.6c)

For a certain t = t(�) (or equivalently � = α(t)) where the ππ partial wave
ϕ(−) on the unphysical sheet equals ϕ�(−) = 1/2iC�, every partial am-
plitude (8.6) acquires the same pole:

ϕ�(t) �
rππ(t)
�− α(t)

; g�(t) �
rπK(t)
�− α(t)

; h�(t) �
rKK(t)
�− α(t)

.

It easily follows from equations (8.6) that the residues of the amplitudes
in this pole satisfy the relation

rππ · rKK = r2
πK . (8.7a)

It is just this last expression (8.7a) which verifies the factorization of the
reggeon residue:

rππ = g̃2
π, rπK = g̃π g̃K , rKK = g̃2

K , (8.7b)

with g̃π and g̃K the coupling constants of the reggeon with particles.
Hence, the contribution of the Regge pole to our amplitudes is

A±
ππ(s, t) = −π

2
(2α + 1)[g̃π(t)]2 · [Pα(−zππ) ± Pα(zππ)]

sin(πα)

A±
πK(s, t) = −π

2
(2α + 1)g̃π(t)g̃K(t) · [Pα(−zπK) ± Pα(zπK)]

sin(πα)

A±
KK(s, t) = −π

2
(2α + 1)[g̃K(t)]2 · [Pα(−zKK) ± Pα(zKK)]

sin(πα)
.

Here zππ, zπK , and zKK are cosines of the t-channel scattering angles
of the corresponding reactions. Taking into account that at large s the
cosines also factorize,

zππ � s

2|p(t)
π |2

, zπK � s

2|p(t)
π ||p(t)

K |
, zKK � s

2|p(t)
K |2

,
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where ∣∣∣p(t)
π

∣∣∣ = 1
2

√
t− 4μ2,

∣∣∣p(t)
K

∣∣∣ = 1
2

√
t− 4m2

K ,

and that

Pα(zab) ∝ zαab ∼
sα∣∣∣p(t)

a

∣∣∣α ·
∣∣∣p(t)

b

∣∣∣α ,
we come to the main conclusion: Regge pole exchange can be described
by the diagram

s

t

ga

gb

a

b

= A±
ab(s, t)

s→∞= ga(t)gb(t)D±(s, t). (8.8a)

Here

D±(s, t) = −(−s)α
±(t) ± sα

±(t)

sinπα±(t)
= sα

±(t) · ξ±α (8.8b)

is the reggeon propagator,

ξ±α = −e−iπα±(t) ± 1
sinπα±(t)

(8.8c)

is called the signature factor, and ga(t) and gb(t) are the vertices of the
reggeon ‘emission’ and ‘absorption’.

For t values close to the mass squared of a real particle, the amplitude
(8.8) transforms into the corresponding Feynman diagram. Essentially,
we learned how to write the exchange for a particle whose spin depends
continuously on its ‘virtual mass’.

A characteristic feature of the reggeon propagator is its complexity.
The vertex functions g(t) and the trajectory α(t) are real for t < 4μ2.
The signature factor ξα(t) is, however, always complex:

ξ+
α(t) = i− cot

πα(t)
2

, ξ−α(t) = i + tan
πα(t)

2
. (8.9)

Near those integer � values where ξα has poles (α+ = 2n, α− = 2n + 1) it
is almost real (as it should be for a particle exchange). For integer � values
where ξα has no poles (α+ = 2n + 1, α− = 2n), i.e. in physical points of
an ‘alien’ signature, ξα = i and the amplitude is purely imaginary (as, for
example, in classical diffraction off a black target).
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Hence, although the reggeon has properties of the usual particles, it
differs from those essentially. Drawing a reggeon exchange, we have to
understand that it corresponds to some real states in the s-channel. This
means that it is not an elementary object but a complex one (an ensemble
of diagrams).

What these diagrams look like, what is an s-channel image of a reggeon
exchange, we will investigate in Lecture 9 in detail.

8.2 Quantum numbers of reggeons. The Pomeranchuk pole

In the previous section we began to draw an analogy between a reggeon
and a particle, the spin of which depends on its mass continuously. How-
ever, usual particles possess also other characteristics namely, internal
quantum numbers such as parity P , charge conjugation C, isotopic spin
and its projection, I and I3, strangeness S, baryon number B, etc. Do
these exist for reggeons?

The answer is simple, and it is contained in the very origin of the
Regge poles. We have come to Regge poles by analytically continuing the
t-channel unitarity condition. This conditions is, however, diagonal not
only in the total angular momentum j but also with respect to arbitrary
conserved quantum numbers (that commute with j). This means that,
without noticing it, in fact we have obtained a Regge trajectory from
an amplitude with definite baryon charge, isospin, strangeness etc. in
the t-channel. Since the unitarity conditions for amplitudes with different
quantum numbers are continued independently, it is natural to expect
that the corresponding trajectories α(t) will also be different.

Consequently, definite quantum numbers can be assigned to every
Regge trajectory. That is, unless there is a special degeneracy, either ac-
cidental or following from some symmetry. (The isotopic invariance of
strong interactions may serve as an example of such a symmetry, which
leads to degenerate trajectories with different electric charges but be-
longing to one isotopic multiplet.) For t > 0 on each trajectory there are
only resonances with the same quantum numbers, differing only by their
spins.

Let us note that a particle situated on a Regge trajectory can be consid-
ered as a composite one, formed of two particles in the t-channel reaction.
One may ask whether all particles are placed on trajectories or if there are
also non-reggeized, elementary ones. We postpone the theoretical investi-
gation of this question to Lecture 11. Here we just sketch the experimental
situation.

Virtually all the well established resonances, both bosonic and fermionic
ones (fermionic Regge poles will be considered in Section 8.7), fit the
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Fig. 8.1 Chew–Frautschi plots. Dot-dashed lines sample baryon trajectories
NI=1/2 and ΛI=0, the latter demonstrating degeneracy in signature.

Regge trajectories as demonstrated by Fig. 8.1. With a good accuracy,
the trajectories turn out to be linear, having approximately equal slopes
(these are the so-called Chew–Frautschi diagrams).

Extrapolating the trajectory to t = 0 on Fig. 8.1, we obtain a prediction
for the asymptotics of the scattering amplitude in the crossing channel.
Hence, an interesting possibility appears to verify directly the theory of
complex angular momenta.

π−

p pn n

π0 π0

s

tπ− As an example, let us consider the
pion–nucleon charge exchange reac-
tion π−p → π0n. At high energies s
the forward amplitude (t = 0) shows
a power growth:

A(s, 0) ∝ sα(0) = s0.57±0.02. (8.10)

In a system of two pions with isospin I = 1 the vector and tensor reso-
nances ρσ=1(770) and ρσ=3(1690) are well established. A straight line go-
ing through these points in Fig. 8.1 crosses the t=0 axis at j=α(0) � 0.5,
in a good agreement with (8.10).
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Fig. 8.2 Examples of meson Regge trajectories.

Some meson trajectories are displayed in Fig. 8.2. Series of ρ and a
mesons show signature degeneracy. The masses of isoscalars ω, f practi-
cally coincide with the masses of their respective isovector partners, ρ and
a, and obviously lie on the same line. Strange I = 1

2 mesons K∗ with spins
from 1 to 5 seem to be approximately degenerate in signature too. The
situation with mass spectra of unnatural parity mesons, like pseudoscalars
π and η, axial vector resonances, etc. is less clear.

The theory of complex angular momenta finds a striking confirmation
in the so-called ‘exotic’ reactions, when the quantum numbers of the t-
channel reaction are such that neither of the resonances can contribute.
For example, the reaction

p

_
K0

Ξ0

K +

A ∼ s−1.5 (8.11)

requires strangeness exchange S=2. Mesons with strangeness 2 were not
observed. (Note that their existence would contradict the quark model.)
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Correspondingly, in the experiment the amplitude (8.11) falls rapidly with
energy. Even if a Regge trajectory with such quantum numbers exists, on
the Chew–Frautschi diagram Fig. 8.2 it must lie much lower than the
usual trajectories. This means that the corresponding resonances, if any,
would have much larger masses.

Thus, we came to the conclusion that a reggeon has all quantum num-
bers of usual particles (except spin), and, in addition, possesses a new
characteristic – the signature Pj = (−1)j .

8.2.1 ‘Naturality’

We will discuss in Section 8.5 how to determine reggeon quantum numbers
by considering the πN and NN scattering amplitudes. Here we will make
only the following remark. For even-spin particles (� = α+ trajectory) the
positive parity is natural: JP = 0+, 2+, 4+, i.e. scalars and tensors. The
states JP = 0−, 2−, 4−, i.e. pseudoscalars and pseudotensors, are of un-
natural parity. For odd-spin particles (� = α− trajectory) we observe the
opposite situation: the states JP = 1−, 3−, 5−, . . . (vectors, tensors) have
natural parities while JP = 1+, 3+, 5+, . . . (pseudovectors, pseudotensors)
unnatural ones.

To make the notion of ‘naturality’ independent of the signature, it is
convenient to introduce, instead of the usual spatial parity P , a new
quantum number Pr

Pr ≡ P · Pj = P (−1)j (8.12a)

which characterizes the ‘pseudity’ of particles lying on a given Regge
trajectory:

Pr = +1
‘natural parity’

{
α+ : 0+, 2+, 4+, . . .
α− : 1−, 3−, 5−, . . .

Pr = −1
‘unnatural parity’

{
α+ : 0−, 2−, 4−, . . .
α− : 1+, 3+, 5+, . . .

The same procedure is carried out for the charge (C) parity. Let me
remind you that the C-parity can be introduced only if the charge con-
jugation of the system of particles leads to the same system (we are in-
terested in t-channel states). For example, for the π+π−-pair we have
C = (−1)�, with � the orbital moment. To characterize the charge parity
independently of the signature, we introduce the quantum number Cr:

Cr ≡ C(−1)j , (8.12b)
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which in our case (j = �) gives Pr = (−1)�+j = +1. If so, on trajectories
with ‘normal’ charge and space parities, Pr = Cr = +1, lie mesons with

JPC : 0++, 1−−, 2++, 3−−, . . . .

A t-channel state with a non-zero isospin, I �= 0, does not have a definite
C-parity since the charge conjugation does not commute with isospin.
Then one introduces instead the G-parity which is determined via C-
parity of the neutral component of the multiplet,

G = C(−1)I , Gr ≡ Cr(−1)I , (8.12c)

and analogously to (8.12b) we have a signature-independent quantum
number Gr.

8.2.2 High energy symmetry

One of the most important consequences of
the reggeized exchange is the appearance of
a new symmetry (absent at low energies)
in the high energy asymptotics of a two-
particle amplitude. Let us demonstrate this
by considering pion–nucleon scattering.

t π π

NN

s 

Since Iπ =1 and IN = 1
2 , for this process two t-channel states are possi-

ble, with isospins I = 0, 1:

A(s, t) = C0A
(t)
0 + C1A

(t)
1 , (8.13a)

while in the s-channel there can be states with isospins I = 1
2 and 3

2 :

A(s, t) = C 1
2
A

(s)
1
2

+ C 3
2
A

(s)
3
2
. (8.13b)

The amplitudes A0, A1, A 1
2

and A 3
2

are not independent; A 1
2

and A 3
2

can
be expressed in terms of A0, A1 and vice versa.

Asymptotically A(s, t) can be determined by the contribution of the
leading Regge pole. Consider, e.g. the case α0(t) > α1(t). Then the
reggeon exchange with an isospin I = 0 dominates and

A(s, t)
s→∞� C0A0. (8.14)

The equality (8.14) leads to a definite relation between the s-channel
amplitudes A 1

2
and A 3

2
: both contributions are expressed in terms of A0

and have the same energy dependence. Note that there is nothing of this
kind in the low-energy region. For example, in the amplitude A 3

2
there

is a magnificent resonance Δ(1236). Having isospin I = 3
2 , it is obviously
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absent in A 1
2
; as a result, the energy profiles of A 1

2
and A 3

2
are essentially

different.
Moreover, let us examine contributions of Regge poles with opposite

signatures to, e.g. the π+N → π+N amplitude,

Aπ+N (s, t) = A+
π+N (s, t) + A−

π+N (s, t). (8.15a)

If A− is negligible in the s → ∞ limit (which is the case as we shall see
shortly), the full amplitude (8.15a) becomes s ↔ u symmetric and we
obtain

Aπ+N (s, t) � Aπ−N (s, t). (8.15b)

It is important to stress that this statement is stronger than that of the
Pomeranchuk theorem about the equality of total particle and antiparticle
cross sections, since (8.15b) holds for amplitudes, at arbitrary t.

So, the very existence of quantum numbers for Regge poles introduces
an additional symmetry that manifests itself at high energies when among
all possible t-channel quantum numbers only those survive that ensure the
maximal energy exponent – the leading Regge trajectory.

8.2.3 Vacuum pole

Continuing the discussion of reggeon quantum numbers, let us ask
whether we could say which of the poles is the rightmost? The answer is:

in the interval 0 ≤ t ≤ 4μ2 (of which t = 0 is the point of the most interest to
us) the rightmost pole in the j-plane has to have positive signature, Pj = +1,
and all the quantum numbers of the vacuum.

First we look at the signature and show that the leading pole is not allowed
to have Pj = −1. Indeed, owing to the optical theorem

σab ∝ ImAab(s, t) = gagbs
α · Im ξα > 0.

s

s channel

u channel

If the signature were negative, that
is the amplitude was odd with re-
spect to s → −s, this would result
in a negative cross section for the
crossing u-channel reaction, σāb ∝
ImAāb � ImAab(−s) < 0, violating
the s-channel unitarity.

Physically, t-channel unitarity taught us only that the trajectories α+(t)
and α−(t) were different. To acquire a more subtle information, namely
α+(t) > α−(t), we need to turn to the s-channel unitarity (which, as you
remember, is a substitute for ‘potential’ for the t-channel).
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Further, it is clear that the leading pole cannot have non-zero
strangeness, baryon charge and alike, since in such a case the partial
cross section of the corresponding non-diagonal transition would have
been asymptotically larger than the total one, σab→a′b′ > σtot

ab .
A bit more tricky is the situation with quantum numbers like isospin

when a diagonal transition ab → ab can still correspond to a I �=0 state
in the t-channel. We shall clarify the logic of the proof by an example for
which we take ππ scattering. The pion being an isovector (Iπ = 1), three
two-pion states are possible, with t-channel isospin values I = 0, 1, 2.

γ

α

δ

β These states are described, correspondingly, by
the scalar product of two isovectors (I=0), their
vector product (I=1) and the symmetric irre-
ducible (zero trace) tensor:

A
(0)
αβγδ = δαβδγδ ·A0,

A
(1)
αβγδ =

∑
σ

εαβσεγδσ ·A1,

A
(2)
αβγδ =

∑
ρ1,ρ2

Mρ1ρ2

αβ Mρ1ρ2

γδ ·A2; Mρ1ρ2

αβ = δρ1
α δρ2

β + δρ2
α δρ1

β − 2
3
δαβδ

ρ1ρ2 .

Now we have to prove that the rightmost pole must be contained by A0.
Obviously, it cannot belong to A1, since ππ is a symmetric (Bose) system
and therefore the isospin-asymmetric states, like I=1, correspond to odd
signature.

So only A2 remains under suspicion. Let us consider a diagonal tran-
sition – an elastic zero-angle scattering process: α = β, γ = δ. Fix the
charge (I3) of one of the π-mesons, say, γ = δ = 2 and examine one by
one the total cross sections of the three isotopic states of the other one:
α = β = 1, 2, 3. If the leading pole is part of A2, one of the cross sections
turns out to be negative, since, due to the irreducibility of the tensor
I = 2,

σ12→12 + σ22→22 + σ32→32 ∝ TrM =
3∑

α=1

Mρ1ρ2
αα = 0.

This example shows what happens with any symmetry. The idea is es-
sentially as follows. If there is some internal symmetry, the two-particle–
reggeon vertex has the structure of an irreducible tensor. However, elastic
amplitudes, and thus total cross sections, are given by diagonal elements
which sum up to zero due to the irreducibility condition, and, whichever
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the detailed situation, one can always find a state whose cross section will
turn out to be negative.

We conclude: if there is no degeneracy, then the rightmost pole has
quantum numbers of the vacuum and signature Pj = +1. This pole was
named by Gell-Mann the ‘Pomeranchuk pole’ (the name later drifted to
‘pomeron’), since it satisfies the Pomeranchuk theorem automatically. To
be more precise, the ‘Pomeranchuk pole’ is called the vacuum pole with
an additional condition imposed, namely, that its ‘intercept’ is

αP(0) = 1, (8.16)

the condition that, due to the optical theorem, guarantees asymptotic
constancy of the total interaction cross sections.

Strictly speaking, the hypothesis (8.16) does not follow from the theory.
You may ask, why would we need this hypothesis in the first place? What
is so attractive about asymptotically constant cross sections?

First of all, our interaction is strong and we see no reason why cross
sections should fall with the increase of energy. But if σtot does not fall,
then the constancy remains the only option, since any positive power
would violate the Froissart theorem.

A more serious argument is the experimental situation. With the in-
crease of the incident energy plab = s/2m by hundred times, from 1010 to
1012 eV where the measurements were carried out, the total proton–proton
and pion–proton cross sections change only by ten percent.∗ Consequently,
it is natural to assume that the cross sections are basically constant, while
the observed relatively small deviations are driven by correction effects
that are slower than a power of s (e.g. logarithmic).

8.3 Properties of the Pomeranchuk pole

Thus, the asymptotic behaviour of the elastic amplitude at s → ∞ can
be described by the vacuum pole (pomeron P) exchange as

Aab(s, t) = ga(t)gb(t)ξαsα(t), ξα = i− cot
πα(t)

2
, (8.17)

where for small values of t we can approximate the pomeron trajectory
as α(t) � αP(0) + α′

P · t = 1 + α′
P · t.

Let us discuss the characteristic features of the vacuum pole exchange.

∗ Thirty years and three orders of magnitude in energy later, the cross sections σpp � σpp̄

have grown by about 50%, see below Fig. 14.3, page 378. (ed.)
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8.3.1 Pomeranchuk theorem

The Pomeranchuk theorem,

σtot
ab = σtot

āb , (8.18)

is a consequence of the fact that the signature of the αP(t) trajectory
is positive. In addition, ReA(s, 0) = 0, since j = αP(0) = 1 is a point of
‘alien’ signature and the signature factor in (8.17) is purely imaginary.
This means that the pomeron exchange is analogous, in the NQM lan-
guage, to diffraction off absorbing target.

8.3.2 Factorization of total cross sections

Factorization relation for total cross sections,(
σtot
ab

)2 = σtot
aa · σtot

bb , (8.19)

follows from the factorisation of the reggeon exchange (8.8). The knowl-
edge of the πN and NN cross sections enables us to predict

σππ =
(σπN )2

σNN
� (25 mb)2

40 mb
� 16 mb.

Unfortunately, so far there is no experimental verification for the total
cross sections. For inelastic cross sections such expectations have been
verified and they agree reasonably well.

8.3.3 Factorization of differential cross sections

Consider reactions of excitation of a target hadron (b → c) by different
projectiles (a). For example, proton (nucleon) excitation, N → N∗, by
pion and kaon beams. Relations like

σ(πN → πN∗)
σ(KN → KN∗)

=
σ(πN → πN)
σ(KN → KN)

were checked many times. As it turns out, the factorization of differential
cross sections at high energies generally holds within 10–20%.

8.3.4 Falloff of charge-exchange reactions

Another consequence of the pomeron picture is the disappearance of all
sorts of ‘charge-exchange’ 2 → 2 reactions in the high-energy limit. In-
deed, any such process corresponds to a non-diagonal transition (e.g.
π−p → π0n) with non-vacuum quantum numbers in the t-channel. Being
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devoid of the vacuum-pole exchange, its amplitude must therefore be sup-
pressed as a power of s relative to the elastic amplitude.

8.3.5 Growing radius and shrinkage of diffractive cone

Substituting the elastic scattering amplitude

Aab = s · gagb e(αP(t)−1) ln s

(
i− cot

παP(t)
2

)
(8.20)

in the expression for the differential cross section, at small t � −q2
⊥ we

obtain

dσ

dq2
=

1
16π

∣∣∣∣As
∣∣∣∣2 � g2

ag
2
b

16π
e−2α′

P ln s·q2
⊥ . (8.21a)

Hence, the diffractive cone shrinks logarithmically with the increase of s:

q2
char �

1
2α′

P ln s
, (8.21b)

which corresponds to the growth of the radius of interaction

ρ0 ∼
√

α′
P ln s. (8.21c)

8.3.6 Impact parameter diffusion

What is the picture in the impact parameter plane corresponding to the
pomeron exchange? Let us invert the Fourier representation (5.43) for the
impact parameter function f(ρ, s),

f(ρ, s) =
π

k2
c

∫
d2q⊥
(2π)2

e−i(q⊥·ρ)A(s,−q2
⊥).

Substituting for A the pomeron amplitude (8.20) we obtain

f(ρ, s) � 4πiga(0)gb(0)
∫

d2q⊥
(2π)2

e−i(q⊥·ρ)−α′
Pq

2
⊥ ln s

=
igagb
α′

P ln s
exp

(
− ρ2

4α′
P ln s

)
. (8.22)

We see that the partial amplitude is not saturated ; on the contrary, its
magnitude is small at large values of ln s: the target is not at all ‘black’
but rather ‘grey’ and gets increasingly transparent with the growth of
the energy. At the same time the interaction radius also grows since the
exponential falloff of f(ρ) starts at larger and larger impact parameters
as shown in Fig. 8.3.
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Fig. 8.3 Impact parameter profile of the partial wave corresponding to pomeron
exchange.

The total cross section remains constant,∫
d2ρ Im f(ρ, s) = gagb = σtot = const,

but this is achieved in a rather peculiar way.
By the way, as we have already seen in Section 5.6, the growth of

the radius ρ0(s) ∝
√

ln s corresponds to a ‘random walk’ of a point in
which the interaction of the projectile with the target takes place in the
impact parameter plane. This fact can be also seen directly from (8.22)
for f(ρ, s) which very expression is nothing but the Green function of the
two-dimensional diffusion process,

∂

∂ξ
f(ρ, ξ) − α′∇2

ρ f(ρ, ξ) = δ(ρ)δ(ξ), (8.23)

with ξ = ln s in the rôle of the diffusion time.

8.3.7 Properties of the pomeron trajectory

Let us discuss the properties of αP(t). In the interval 0 ≤ t ≤ 4μ2 we can
make two statements, namely, that:

(1) the pomeron trajectory αP(t) is real and

(2) monotonically increasing, α′
P(t) > 0.

Indeed, the imaginary part of the amplitude

ImA(s, t) = r(t)sα(t), r(t) ≡ ga(t)gb(t), (8.24)
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remains real up to the first singularity at t = 4μ2 where the partial wave
expansion

ImA(s, t) =
∑
�

(2� + 1) Im f�(s)P�(zs), zs = 1 +
2 t

s− 4μ2
, (8.25)

diverges. Furthermore, we have Im f� ≥ 0, and P�(zs) > 0, together with
all its derivatives. Therefore, differentiating (8.25) over t we have

d

dt
ImA(s, t) > 0. (8.26)

Substituting the pomeron amplitude (8.24),

d

dt

(
r(t)sα(t)

)
= r′(t)sα(t) + rα′(t) ln s · sα(t) > 0. (8.27)

Since s → ∞, the main contribution comes from the last term in (8.27), re-
sulting in α′

P(t) > 0. (If by any chance α′
P(t) = 0, then the second deriva-

tive will be positive at this point, etc.)
Is there a complexity in α(t) for t < 0?
Let us demonstrate that in spite of the partial wave ϕ�(t) having the left

cut, the trajectory remains regular at t ≤ 0. Indeed, if α(t) were complex,
then ϕ�(t) would have acquired at t = 0 additional singularities in �:

Δϕ�(t) =
Δr(t)
�− α(t)

+
r(t)

(�− α(t))2
Δα(t).

We know, however, that moving singularities in � of ϕ�(t) can come only
from under the right cut† at t ≥ 4μ2, see Lecture 3. Thus, Δr = Δα ≡ 0.
As a consequence, αP(t) remains real also when t < 0.

For t > 4μ2 the pomeron trajectory becomes complex. By explicitly
solving the two-particle unitarity condition for the partial wave near the
threshold, t � 4μ2, it is straightforward to show that the trajectory moves
onto the upper plane, ImαP(t) > 0. Whether it stays there for arbitrary
large t remains an open question. This is true in NQM but cannot be
rigorously proved in the relativistic theory, although it appears the most
natural hypothesis. If this is the case and if we could write the dispersion
relation

αP(t) = 1 +
t

π

∫ ∞

4μ2

ImαP(t′)
t′(t′ − t)

dt′, (8.28)

† As we shall see below in Section 8.6, a branch-point singularity in the trajectory may appear
at t=0 if two trajectories collide in this point.



8.4 Structure of the reggeon residue 191

then differentiating (8.28) over t an arbitrary number of times we would
have all derivatives of αP to be positive in the interval 0 ≤ t ≤ 4μ2. Once
again, this property holds in the NQM where the monotonic increase
of α(t) can be directly linked to the natural movement of the energy
level (decrease of the binding) with the increase of the centrifugal barrier
(angular momentum �).

In the relativistic theory the representation (8.28) was not proved and so
we cannot make a strong statement of the positivity of all derivatives. Nev-
ertheless, using the t-channel unitarity condition we have demonstrated
that at least its first derivative is positive. This is a remarkable example of
how the cross-channel unitarity allows one to partially recover the NQM
results, in particular the natural behaviour of the characteristic t-channel
angular momentum.

8.3.8 Mesons on the pomeron trajectory?

Let us note, finally, that the Pomeranchuk pole with αP(0) = 1 differs
essentially from the non-vacuum ones.

All other Regge trajectories (both the trajectories with non-vacuum
quantum numbers and the subleading vacuum pole, the so-called P′ with
αP′ � 0.5) appear to have the same slope, α′ � 1 GeV−2 ∼ 1/m2

N , while
the slope of the pomeron trajectory turns out to be about four times
smaller,

α′
P � 0.27 GeV−2 ∼ 1/4m2

N . (8.29)

Moreover, so far it is not clear whether any resonances lie on the pomeron
trajectory. Given the slope (8.29), we should expect a resonance with spin
2 and m2

2 ∼ 4 GeV2 belonging to the pomeron trajectory. The experimen-
tal situation remains uncertain: there seem to be two to three candidates
for such a tensor meson.

In the linear approximation for αP(t), the trajectory would cross the
line α(t) = 0 at some negative t = m2

0 < 0 thus giving rise to a scalar
meson with an imaginary mass! M. Gell-Mann advanced arguments in
favour of vanishing of the pomeron residue at this point, gα(m2

0)
= g0 = 0.

Nowadays this problem is no longer considered acute, since as we will see
later, at negative t the dominant rôle is played by �-plane singularities
other than poles (Regge cuts).

8.4 Structure of the reggeon residue

8.4.1 Scattering of particles with spins

Up to now we have investigated the scattering of spinless particles (like
pions) or, more precisely, the processes in which spins of participating
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p1
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gbp2

p1

p2

σ

p′1

p2
p2

gr
a

gr
b

p1

Fig. 8.4 Particle-exchange diagram (a) and the Regge-pole exchange (b).

particles were inessential. Scattering of particles with spin is an interest-
ing problem on its own. We saw that in the spinless case a Regge ampli-
tude differs from the amplitude of a virtual particle exchange only by the
modification of the propagator (sinπα(t) in the denominator) and by the
redefinition of the vertex ga (Fig. 8.4). It is clear that the case of parti-
cles with spin will not differ in this respect. We could formally solve the
problem by introducing particle states with definite helicity (projection of
spin on the direction of three-momentum), play with spherical functions
and continue the corresponding amplitudes in j. The same goal can be
achieved, however, by following, essentially, the perturbation theory. We
shall choose the latter path which is more rewarding.

The main problem here is how to write the vertices. This is easy to
resolve for the case of particle exchange (Feynman graphs); a generaliza-
tion to reggeons will be carried out simply by substituting the reggeon
propagator for that of the exchanged particle.

The first question we have to ask is, where the factorization did come
from? Even in the case of spinless scattering particles, the amplitude of
an exchange of a particle with spin σ (Fig. 8.4(a)) does not factorize into
a product but is given by a sum of products,

A(s, t) = Γ{μ1,..., μσ}(p1, p
′
1)D

[σ]
{μ}{ν}(q)Γ{ν1,..., νσ}(p2, p

′
2) ·

1
m2 − q2

,

D
[σ]
{μ}{ν}(q) =

2σ+1∑
m=1

em{μ}(q)e
m
{ν}(q),

(8.30)

which sum runs over all polarization states. The answer is simple: of the
whole sum only one polarization survives at high energies, the one that
gives the contribution with the highest power s.

Each function Γ{} in (8.30) depends only on the momenta of particles
entering the corresponding vertex and knows nothing about the large s.
The momenta p1 and p2 get connected when we sum over the polarization
of the exchange particle. To see how this happens, let us consider the
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example of a vector particle exchange:

D[1]
μν(q) = −

3∑
m=1

emμ emν

(
D[1]

μμ = 3
)
, (8.31)

where {em} are three vectors determining a space, orthogonal to the mo-
mentum q:

(emq) = 0, m = 1, 2, 3. (8.32)

Since q is space-like, we can find two independent light-like vectors e±

among (8.32):

e+2 = e−2 = 0, (e+e−) = 1; (e±q) = 0.

These light-like polarization vectors can be constructed using linear com-
binations of the initial particle momenta, p1 and p2. To ensure the or-
thogonality condition (8.32), we would have to have

pμ1qμ � pμ2qμ � 0. (8.33)

Being an important characteristic feature of high-energy processes, let us
check this fact in detail.

Sudakov kinematics of high-energy 2 → 2 processes. Before going into cal-
culations, a simple observation first. When two particles scatter elasti-
cally, in their cms the energy is not transferred, q0 = 0, and −t = q2 =
2p2

c(1 − cos Θs) � p2
c · Θ2

s. So, for large collision energies, s � 4p2
c 
 |t|,

the scattering angle is small, Θs ∼
√

−t/s � 1. This makes the longitu-
dinal component of the momentum transfer, q|| ∼ 1

2pcΘ
2
s, much smaller

that the transverse one, q⊥ ∝ pcΘs; in other words, q is approximately or-
thogonal to the common direction of the colliding particles, z. In Lorentz
invariant terms, this statement is equivalent to (8.33) that we are about
to verify formally.

Let us consider the kinematics of the 2 → 2 scattering process in the
most general case, p1, p2 → p′1p

′
2, using the Sudakov decomposition.

p1 = p+ + γ1p
−, p2 = p− + γ2p

+; (8.34a)

γ1,2 =
m1,2

s
(8.34b)

(where we have approximated 2p+p− � s). In the linear approximation in
γi = O(1/s), the inverse relations read

p+ � p1 − γ1p2, p− � p2 − γ2p1;
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actually, for our purposes it often suffices to equate

p+ � p1, p− � p2,

which approximation holds, component by component, when both p+
0 and

p−0 are large (which is true for virtually all reference frames but the lab-
oratory frame where one of the incoming particles is at rest).

We write the transferred four-momentum as

qμ = αp+
μ + βqp

−
μ + q⊥μ; −(q⊥μ)2 = q2

⊥ ≥ 0, (8.35a)

q2 = αqβqs− q2
⊥, (8.35b)

where qμ⊥ lies in the (x,y) plane.
Making use of (8.34) and (8.35) we evaluate square momenta of the

outgoing particles,

(p′1)
2 = (p1 + q)2 = (1 + αq)(γ1 + βq)s− q2

⊥ = m′
1
2
,

(p′2)
2 = (p2 + q)2 = (γ2 − αq)(1 − βq)s− q2

⊥ = m′
2
2
,

to obtain

−αqs− βqm
2
2 = m′

2
2 −m2

2 − q2, (8.36a)

βqs + αqm
2
1 = m′

1
2 −m2

1 − q2. (8.36b)

In the high energy limit,
∣∣q2

∣∣ ∼ m2 � s, we have −αq ∼ βq ∼ m2/s � 1
and (8.36) simplifies

−αqs � m′
2
2 −m2

2 − q2; (8.37a)

βqs � m′
1
2 −m2

1 − q2. (8.37b)

We conclude that the ‘longitudinal’ contribution to the invariant t be-
comes negligible,

q2 = q2
|| − q2

⊥, q2
|| ≡ −αqβqs ∼

q4

s
�

∣∣q2
∣∣ ,

so that the momentum transfer becomes essentially transversal,

q2 = −q2
⊥ ·

(
1 + O

(
m2

s

))
. (8.38)

This statement can be enforced and applied to all components of the
four-vector,

qμ = αqs ·
p+
μ

s
+ βqs ·

p−μ
s

+ q⊥μ � q⊥μ,
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once again, in any but the laboratory frame of reference (where one of
the normalized momentum vectors p±/s is of the order of unity).

Polarization vectors. We return to the construction of the polarization
vectors. Now that we have verified the condition (8.33) of the approxi-
mate orthogonality of the momentum transfer q to the (p1, p2) plane, we
can treat qμ as having, say, only a y component: qμ = (q0; qx, qy, qz) �
(0; 0,

√
−q2, 0).

In the cms of the t-channel where qμ = (
√
q2;0), the polarization vec-

tors are all space-like:⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ : e1

(t) =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, e2

(t) =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, e3

(t) =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ . (8.39)

The complex Lorentz boost that takes us to the s-channel, transforms the
momentum transfer as follows

qμ(t) =

⎛
⎜⎜⎝

−i
√

−q2

0
0
0

⎞
⎟⎟⎠ =⇒ qμ =

⎛
⎜⎜⎝

0
0√
−q2

0

⎞
⎟⎟⎠ ;

it swaps the time- and y-components of a four-vector, t → iy, y → it, while
leaving the x and z components unchanged. Under this transformation,
the complex linear combinations of the first two polarizations in (8.39),
in the s-channel turn into two light-like vectors:

e+ =
e1 − ie2

√
2

=
1√
2

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠, e− = −e1 + ie2

√
2

=
1√
2

⎛
⎜⎜⎝

1
0
0

−1

⎞
⎟⎟⎠ . (8.40)

From the t-channel point of view, the combinations e1 ± ie2 correspond
to circular polarizations describing states with a spin projection ±1 onto
the x-axis, i.e. in our case, onto the normal to the scattering plane. The
light-like vectors (8.40) are nothing but the Sudakov vectors we have
introduced above to represent the (t, z) interaction plane:

e± ≡
√

2
s
p±; e+ �

√
2
s
p1, e− �

√
2
s
p2. (8.41a)
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In terms of these vectors the sum over polarizations (8.31) takes the form

−
3∑

m=1

emμ emν = e+
μ e

−
ν + e−μ e

+
ν − e⊥μ e

⊥
ν , (8.41b)

where e⊥ = e3 = e3
(t) of (8.39) is a space-like unit vector normal to the

scattering plane (x).
We have thus introduced convenient basis vectors. Let us see the con-

tributions of various polarizations to the scattering amplitude:

p1p1

p2 p2

Γa
μ

Γb
ν

q
= Γa

μ(1) ·D[1]
μν · Γb

ν(2) × 1
m2 − q2

∝ (Γae+)(e−Γb) + (Γae−)(e+Γb) − (Γae⊥)(e⊥Γb).

(8.42)

Which polarization leads to the leading contribution sσ = s in (8.42)?
The general form of the vertex for a scalar particle is

Γa
μ(1) = Γa

μ(p1, q) = a(q2)p1μ + b(q2)qμ. (8.43)

The term qμ can be dropped, see (8.32); the transverse polarization does
not contribute, e⊥p1 = e⊥p2 = 0. We have

e+
μ p

μ
1 =

m2
1√
2s

, e−μ p
μ
2 =

m2
2√
2s

;

e−μ p
μ
1 =

√
s

2
, e+

μ p
μ
2 =

√
s

2
.

Consequently, at s → ∞ of the whole sum (8.42) only one term survives,(
Γa
μ(1)e−μ

)(
Γb
μ(2)e+

μ

)
∼ (

√
s)2 = s,

in which each vertex is multiplied by the polarization vector directed
along the momentum pi of the opposite vertex. Hence, we can factorize
the asymptotic amplitude as follows:

A(s, t) =

(
Γa
μ(1)

e−μ√
s

)(
Γb
ν(2)

e+
ν√
s

)
· s ·D(q2). (8.44)



8.4 Structure of the reggeon residue 197

The analogue of the reggeon residue,(
Γa
μ(1)

e−μ√
s

)
∼

(
Γa
μ(1)

p2μ

s

)
≡ gra(1),

is an invariant; in the case of spinless particles it can depend only on q2

via a(q2), see (8.43). If the colliding particles have non-zero spins, the
vertex function Γa

μ changes: it will depend also on the polarizations of the
incoming and outgoing particles (1), (1′):

Γa
μ(1) = Γa

μ

(
p1, q; ελi , ε

ρ
f

)
.

However, the general structure of the Regge residue remains unchanged;
a large contribution will still be coming only from multiplication of the
vertex (1) by the polarization e− ∝ p2. The residue gra though will now
depend not only on q2, but also on the spin projections of the initial and
final particles in the upper vertex (1) on the momentum direction of the
particle (2). Thus for σ = 1 we have obtained

gra(1) ≡
(
Γa
μ(1)

p2μ

s

)
, grb (2) ≡

(
Γb
μ(2)

p1μ

s

)
. (8.45)

Let us see now, what the residue for a σ=2 particle exchange looks like.
A spin σ=2 wave function can be constructed as a symmetric product of
two vector states,

eλμ1μ2
= eλ1

μ1
eλ2
μ2

+ eλ1
μ2
eλ2
μ1
. (8.46)

Now each vertex bears two vector indices and the amplitude has the
structure

A(s, t) ∝ Γa
μ1μ2

(1)D[2]
μ1μ2,ν1ν2

Γb
ν1ν2

(2) × 1
m2 − q2

Dμ1μ2,ν1ν2 =
∑
λ

eλμ1μ2
eλν1ν2

. (8.47)

Strictly speaking, we have to subtract from (8.46) an admixture of a σ=0
state to make our symmetric tensor traceless. We, however, can ignore this
fact since the corresponding subtraction term contains gμ1μ2 which, acting
on one vertex, yields no large s-dependent contribution.

Expressing (8.46) in terms of the polarizations e±, the propagator
Dμ1μ2,ν1ν2 in (8.47) will contain various products

e+
μ1
e+
μ2
e−ν1

e−ν2
, e+

μ1
e−μ2

e−ν1
e+
ν2
, . . .

It is easy to see that similarly to the case of σ=1, only the term
e−μ1

e−μ2
e+
ν1
e+
ν2

produces a contribution ∼s2. (By the way, this term is, on
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its own, a symmetric irreducible tensor since (e−)2 = 0.) So, the upper
vertex produces (

Γa
μ1μ2

(1) ·
e−μ1

s

e−μ2

s

)
,

and the analogue of the Regge residue for a spin-2 particle exchange ac-
quires the form

gra(1) ≡
(
Γa
μ1μ2

(1)
p2μ1p2μ2

s2

)
, grb (2) ≡

(
Γb
ν1ν2

(2)
p1ν1p1ν2

s2

)
. (8.48)

How do (8.45) and (8.48) generalize to the case of non-integer angular
momentum exchange? For particle exchange with an integer spin σ the
residues gra(1) turned out to be polynomials of p2/s of the order σ. In the
general case (which corresponds to a sum of various t-channel exchanges)
the s-dependence of the amplitude becomes more complicated:

A(s, t) = Γa

(
p1, q; ελ1

i , ερ1

f ;
p2

s

)
Γb

(
p2, q; ελ2

i , ερ2

f ;
p1

s

)
· sα · ξα. (8.49)

However, the structure of the residues resembles that of simple particle
exchange: each vertex depends on its internal variables (momenta and
polarizations) and on the direction of the momentum in the opposite
vertex.

In other words, the Regge factorization remembers the reaction plane
(p1, p2) via the polarization vectors e± which ensure the maximal contri-
bution to the scattering amplitude.

8.4.2 Quasi-elastic processes

Up to now we have been discussing 2 → 2 scattering processes. Do Regge
poles contribute to multi-particle production? It is easy to imagine a high-
energy collision in which, say, one of the incident particles becomes excited
and subsequently decays giving rise to a three-particle final state. A ques-
tion can be raised, for example, for which lifetimes of the intermediate
state in Fig. 8.5(a) our previous analysis will remain valid. It is possi-
ble to rigorously deduce contribution of Regge poles to such processes
from the corresponding unitarity conditions for multi-particle amplitudes
of the type shown in Fig. 8.5(b). I will not do that but suggest you guess
the answer by looking at the diagrams describing the t-channel exchange
of a particle with spin instead.

Recall the result of our analysis of reggeon amplitudes for the scattering
of particles with spin: the reggeon vertex Γ acquired an additional depen-
dence on the polarizations of participating particles. Similarly, here the
vertex describing the 1 → 2 particle conversion of Fig. 8.5(b) will depend
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(a) (b)
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p

Fig. 8.5 Production of an unstable particle (a) and new reggeon vertex (b).

not only on the total momentum transfer, q = k1 + k2 − p1, but also on
the relative momentum k1 − k2; in other words, on the two final particle
momenta separately,

Γ(1) = Γ
(
p1, k1, k2;

p2

s

)
. (8.50)

It is clear that some condition must be imposed on the final state momenta
in order to preserve the dominance of one polarization as before: if ‘wrong’
polarizations multiplying momenta k1, k2 produced large contributions,
the factorization would be lost. First of all, we have to have, as always, the
momentum transfer q2 to be finite; otherwise the very reggeon approach
would fail. But this is not enough. We need not only the total momentum
k1 + k2 (which determines q2) but also each ki to be ‘almost parallel’ to
the incoming p1. The final particles must fly together, in a dense ‘bunch’.

To give a precise meaning to ‘flying together’ let us consider a more gen-
eral case of a quasi-elastic process when both incident particles produce
bunches of particles which move close to the directions of the incoming
hadrons as shown in Fig. 8.6. A process of this kind is called diffractive
dissociation. If the relative energies of the particles in such a bunch are

2
p

1p

Fig. 8.6 Quasi-elastic process of (double) diffractive dissociation.
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m+1k

nk
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p

q
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Γb

P1 =
∑m

i=1 ki, M2
1 = P 2

1 ;

P2 =
∑n

i=m+1ki, M2 = P 2
2 .

Fig. 8.7 Kinematics of high-energy diffractive dissociation.

small, it may be treated as a composite particle, and at large s the process
can be effectively described as a two-particle scattering.

Let us express all momenta in terms of the Sudakov variables:

ki = αip
+ + βip

− + ki⊥, q = αqp
+ + βqp

− + q⊥; (8.51)

p1 = p+ + γ1p
−, p2 = p− + γ2p

+.

Recall that p± are zero-norm vectors (p±2 = 0, 2p+p− = s), and γ1,2 �
m2

1,2/s. In a frame where both scattering particles are fast (e.g. the cms
of s-channel), p+ almost coincides with p1, as p− does with p2. Then,
in (8.51), −αq is the fraction of the momentum p1, transferred by the
reggeon to the lower vertex Γb, while βq is the fraction of p2 transferred
up to Γa, see Fig. 8.7. How large are the longitudinal Sudakov components
of the momentum transfer q? We have calculated them above in (8.37):

−αq =
ΔM2

2 + q2
⊥

s
, βq =

ΔM2
1 + q2

⊥
s

, (8.52)

where ΔM2
1 = (

∑m
i=1 ki)

2 −m2
1 and ΔM2

2 =
(∑n

i=m+1 ki
)2 −m2

2 are the
‘excitation energies’ of the upper and lower bunches of particles.
If we keep invariant masses of the bunches finite in the high-energy limit,

M2
1 , M

2
2 = O

(
m2

)
, s → ∞, (8.53)

our previous logic remains intact and we arrive at a reggeon exchange
amplitude describing the diagram of Fig. 8.7,

Aα(s, q2; sij , t1i, t2i) (8.54)

= Γa

(
p1, ε1; {ki, εi}m1 ;

p2

s

)
Γb

(
p2, ε2; {ki, εi}nm+1;

p1

s

)
sαξα,

where sij = (ki + kj)2, t1i = (p1 − ki)2, t2i = (p2 − ki)2. This is just the
answer that one derives as a result of a rather cumbersome procedure of
analytic continuation of partial waves for multi-particle amplitudes.
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The expression (8.54) is, essentially, the same as we have written for
non-zero spin particle scattering. It differs from (8.49) only by the struc-
ture of the vertex functions: now Γ includes also the variables {ki, εi}
(momenta and polarizations of the offspring) describing ‘internal move-
ment’ of the particles in each ‘bunch’.

Under the condition (8.53), the longitudinal momentum transfer is van-
ishingly small at large s (in any reference frame where colliding particles
are fast). For example, in the s-channel cms, p± = 1

2

√
s(1; 0, 0,±1),

q|| ≡ αqp
+ + βqp

− =
√
s

2
(αq + βq, 0, 0, αq − βq)

=
1√
s

(
ΔM2

1 − ΔM2
2

2
; 0, 0,−ΔM2

1 + ΔM2
2

2
− q2

⊥

)
. (8.55a)

As for its contribution to the squared momentum transfer, q2 = q2
|| − q2

⊥,

∣∣∣q2
||

∣∣∣ = −αqβqs �
ΔM2

1 · ΔM2
2

s
� q2

⊥ � −q2. (8.55b)

Finally, let us address the question of the applicability of the reggeon
inelastic diffraction amplitude (8.54), which we have vaguely formulated
above as ‘to fly together’ for particles in the two bunches.

Momentum conservation in the upper and lower blocks gives us

−αq = 1 −
m∑
i=1

αi, βq =
m∑
i=1

βi − γ1; (8.56a)

−αq =
n∑

i=m+1

αi − γ2, βq = 1 −
n∑

i=m+1

βi; (8.56b)

in addition to

q⊥ =
m∑
i=1

ki⊥ = −
n∑

i=m+1

ki⊥.

To reconcile (8.56) with the condition −αq ∼ βq = O
(
s−1

)
following from

(8.52) and (8.53), particles in the upper bunch must have αi = O(1) and
small βi components, and those in the lower bunch, on the contrary, βj =
O(1) and αj = O

(
s−1

)
. Making use of the on-mass-shell relations for the

produced particles,

k2
i = αiβis− k2

i⊥ = m2
i (αi > 0, βi > 0),
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the requirements on particle momenta in the two beams read

αi ∼ 1, βi =
m2

i + k2
i⊥

αis
� 1, i = 1 ÷ m; (8.57a)

βi ∼ 1, αi =
m2

i + k2
i⊥

βis
� 1, i = (m + 1) ÷ n. (8.57b)

The conditions (8.57) are just expressions of the fact that the particles
fly in ‘bunches’ in both beams. For particles belonging to one beam, e.g.
the upper one, we have

saaij = (αi + αj)(βi + βj)s− (ki⊥ + kj⊥)2

∼
(
αa
i β

a
j + βa

i α
a
j

)
s ∼

(
1 · m

2

s
+

m2

s
· 1

)
s = O

(
m2

)
, (8.58a)

while for particles from different beams,

sabij ∼
(
αa
i β

b
j + βa

i α
b
j

)
s ∼

(
1 · 1 +

m2

s
· m

2

s

)
s = O(s) . (8.58b)

In the kinematical configuration described by (8.57), the first term in
(8.58b) for the invariant energy between the two particles from opposite
beams is much larger than the second one. In fact, this is the necessary
condition for the validity of the reggeon expression (8.54) we are looking
for. It becomes clear if we rewrite the r.h.s. of (8.58b) in the following
terms,

αa
i β

b
js = 2(kai · e−)(e+ · kbj); βa

i α
b
js = 2(kai · e+)(e− · kbj).

We immediately see that the strong inequality

αa
i β

b
j 
 βa

i α
b
j =⇒

(
αi

βi

)
bunch a



(
αj

βj

)
bunch b

=⇒ (αi)a
(αj)b


 1

guarantees the dominance of that one polarization that gives rise to the
factorized reggeon amplitude.

At the same time, for two particles from the same bunch the ratio of the
Sudakov variables is not too large. Indeed, if we take two particles having
relatively small energy in their cms, p1 + p2 = 0; p10, p20 = O(m),

s12 = (p1 + p2)2 ∼ 4m2.

Then in the reference frame where both particles have large velocity along
the z-axis we have

p10 � p1z +
m2 + p2

1⊥
2p10

, p20 � p2z +
m2 + p2

2⊥
2p20

,
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and the invariant energy reads

s12 � 2(p10p20 − p1zp2z) � (m2 + p2
1⊥)

p20

p10
+ (m2 + p2

2⊥)
p10

p20

∼ m2
⊥

(
p20

p10
+

p10

p20

)
.

Comparing the two expressions for s12 we conclude that to ‘fly together’
means for fast particles that the ratio of their energies is neither too small
nor too large:

p20

p10
∼ p10

p20
∼ 1.

Meantime the difference of energies may be very large.

8.5 Elastic scatterings of π and N off the nucleon

Now we will illustrate the results of the previous section by studying the
pion–nucleon and nucleon–nucleon reactions, πN → πN and NN → NN .
To understand what Regge poles can contribute to the asymptotics of
these processes at all, we have to consider first in detail the ππ and NN
vertices in Fig. 8.8(a).

8.5.1 The pion vertex

Of all invariants that one can construct from the three four-vectors en-
tering the pion vertex, Γπ(p1, q; p2/s), only one variable, q2, survives at
s → ∞, so we have

gπ = Γπ

(
p1, q;

p2

s

)
= gπ(q2).

Let us clarify which reggeon quantum numbers can be emitted in the ππ
vertex. To do that we have to look at the system of two pions from the

(b)(a)

NN

Nπ

qq

gN

gN

gN

gπ p1

p
2

p
2

p1
p

1
p

1

p2 p
2

Fig. 8.8 Reggeon exchange amplitudes for πN (a) and NN scattering (b).
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Table 8.1 Reggeons coupled to pion → pion. All have Pr = Cr = +1.

I Gr sgn Reggeon α(0) α′ Resonance

0 + + P 1 0.25 ?
f (P′) 0.5 1 f2(1270), f4(2050), f6(2510)

1 − − ρ 0.5 1 ρ(770), ρ3(1690), ρ5(2350)
2 + + ? none

t-channel. Since the pions are spinless, the spatial parity is

P = (−1)� = (−1)j =⇒ Pr = +1.

The pions are identical Bose-particles, therefore the vertex must be sym-
metric under the transmutation of two particles, that is of their positions
and isotopic indices: +1 = (−1)�(−1)I = (−1)j(−1)I . Consequently, ππ
states with a total isospin I = 0, 2 in the t-channel are linked to reggeons
with positive signature and those with I = 1 to ones with negative signa-
ture. The ππ charge parity is also unique: C = (−1)� =⇒ Cr = +1.

Possible quantum numbers of the ππ system are listed in Table 8.1.

8.5.2 The nucleon vertex

Now we turn to the lower vertex in Fig. 8.8(a), that for the nucleon. In the
construction of the nucleon vertex, ΓN , we may employ Lorentz invariants
and Dirac matrices,

Γ̂N = a · I + b · γμ × (vectors)μ + cγ5 + d · γ5γμ × (vectors)μ,

to be sandwiched between final and initial nucleon spinors,

gN = ū(p′2)Γ̂N

(
p2, q;

p1

s

)
u(p2).

As we have already learned, Γ̂ depends on the momentum in the ‘alien’
vertex through the four-vector p̂1/s. Convoluting γμ with vectors p2 and
q produce p̂2 and p̂′2 which reduce to the scalar mN when acting on the
neighbouring spinors. So the most general expression for Γ̂ we are left
with reads

Γ̂ = a(q2) + b(q2)
p̂1

s
+ c(q2)γ5 + d(q2)γ5

p̂1

s
. (8.59)

Contrary to the ππ vertex, the nucleon one contains, generally speak-
ing, four independent scalar functions. We need to understand whether
all these structures are really independent or some of them can mix
with each other. To this end we have to look at the N̄N system in the
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t-channel to see what this system can transfer to; in other words, what
are the quantum numbers of each of the four terms in (8.59).

Given the total angular momentum j, we have four possible states:

(1, 2) : σ = 1, � = j ± 1,
(3) : σ = 1, � = j,
(4) : σ = 0, � = j.

(8.60)

Here � is the orbital momentum of the N̄N pair and σ its full spin.
Bearing in mind that the internal parity of a fermion and its antifermion

is opposite, spatial parity of the N̄N pair is

P = (−1) × (−1)� =
{

(−1)j for � = j ± 1,
(−1)j+1 for � = j.

This separates the first two and the last two states in (8.60):

Pr(1, 2) = +1, Pr(3, 4) = −1.

Consider now the charge parity C (or G-parity which generalizes it onto
full isotopic multiplets). Under charge conjugation of a neutral system,
say, pp̄, the particle becomes an antiparticle and vice versa,

p(x1, σ1) + p̄(x2, σ2) → p̄(x1, σ1) + p(x2, σ2).

To get back to the initial state one has to exchange space coordinates and
spin variables. This operation results in the phase factor

C = (−1)� × (−1)σ =
{

(−1)j =⇒ Cr = +1 for (1, 2) and (4),
(−1)j+1 =⇒ Cr = −1 for (3).

Now we know quantum numbers of the four states listed in (8.60):

(1, 2) : σ = 1, � = j ± 1, Pr = +1, Cr = +1,
(3) : σ = 1, � = j, Pr = −1, Cr = −1,
(4) : σ = 0, � = j, Pr = −1, Cr = +1.

(8.61)

We conclude that the first two states can actually mix, so that we can
expect three (rather than four) distinct sets of reggeons that couple to a
nucleon.

It is interesting to notice that the list (8.61) does not contain one com-
bination, namely (Pr, Cr) = (+,−): such a state cannot be constructed
from a fermion and an antifermion. Remarkably, particles with this spe-
cific combination of quantum numbers were not observed experimentally!
This may mean that all mesons are indeed built of a fermion–antifermion
pair (as in the quark model).

Let us learn how to establish spatial and charge parities for each term
of the reggeon vertex (8.59). To do that we have to go into the t-channel
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cms and perform the symmetry operation in one vertex (obviously, under
the reflection of both vertices the amplitude stays invariant). We start
with spatial reflection, that is, changing signs of three-momenta without
touching spins. Under this operation,

p
(t)
2 →

(
p
(t)
20 ;−p(t)

2

)
, p′2

(t) →
(
p′20

(t);−p′
2
(t))

,

the spinors transform as follows, u → γ0u, ū → ūγ0, so that the vertex
gets wrapped by γ0 matrices,

Γ̂N → γ0 Γ̂N γ0 (γ2
0 = γ0, γ0γiγ0 = −γi, γ0γ5γ0 = −γ5).

Then we have to recall that p1 � p+ represents in the t-channel a circular
polarization vector which has no energy component, p(t)

1 � (0,p(t)
1 ); as a

result, γ0p̂
(t)
1 γ0 = −p̂

(t)
1 . Finally, under the reflection, the t-channel scat-

tering angle undergoes Θ(t) → Θ(t) + π, so that the sign of s also has to
be changed since s ∝ cos Θ(t). All this said, we obtain

(a) : 1 → 1, (b) :
p̂1

s
→ −p̂1

−s
, (c) : γ5 → −γ5, (d) : γ5

p̂1

s
→ −γ5

−p̂1

−s
,

which gives us Pr parity of each of the four structures in the vertex (8.59):

g(1,2) = ū

[
a + b

p̂1

s

]
u → +g(1,2),

g(3) = ū

[
c γ5

]
u → −g(3),

g(4) = ū

[
dγ5

p̂1

s

]
u → −g(4).

Charge conjugation is a bit more complicated. The crossing amounts to

s → u � −s, (8.62a)

and transforming the nucleon wave functions as follows,

u → C−1v̄T , ū → vTC, (8.62b)

where v is a spinor describing the antiparticle (superscript T stands for
transposition), and C is the charge conjugation matrix:

C−1γμC = −γTμ , C−1γ5C = γT5 . (8.62c)

Making use of the rules (8.62) it is straightforward to derive that, differ-
ently from three other vertices, the vertex g4 has an odd charge parity.

Both spatial and charge reflections include the s → −s operation be-
cause of which the reggeon propagator sαξα produces an additional factor
(−1)α ≡ (−1)j . This factor is included in the definition of Pr and Cr.
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Table 8.2 Reggeons coupled with nucleon → nucleon.

vertex Pr Cr I Gr sgn Reggeon

+ + 0 + + P, f (P′)

a + b
p̂1

s
0 + − ω

1 − + A2

1 − − ρ

− + 0 + + η
c γ5 1 − + π

− − 0 + − f1

d γ5
p̂1

s
1 − − a1

In Table 8.2 the corresponding Regge trajectories are presented.

8.5.3 Spin phenomena in πN and NN scattering

We start from the πN → πN scattering process of Fig. 8.8(a). Examining
Tables 8.1 and 8.2 we conclude that reggeon exchanges with Pr = Cr =
+1 are possible, which include reggeons with vacuum quantum numbers,
P, f(P′), etc. as well as negative signature trajectories like ρ. All such
reggeons contribute, but at s → ∞ only the rightmost one, the pomeron
P, survives. In this limit elastic scattering dominates, and the amplitude
can be written in the following form,

Ael
πp(s, q

2) � gπ(q2)ūλ
′
(p′2)

[
a(q2) + 2mb(q2)

p̂1

s

]
uλ(p2) · sαξα, (8.63)

where the pion residue gπ and the nucleon vertex functions a, b are all
isospin-diagonal and refer to the pomeron, α = αP(q2). Indices λ and λ′

marking the Dirac four-spinors stand for polarizations of the incoming
and the outgoing protons, correspondingly. Let us see whether there is
anything new in (8.63) compared to the case of spinless particles. We
observe that the amplitude still depends on spins so that even at tremen-
dously large energies, proton polarization changes (whereas isospin does
not: charge exchange reactions, like π−p → π0n, have died out).

What may happen to spin observables in principle? There are different
possibilities: a polarized nucleon may flip its spin, or lose its polarization
altogether; an unpolarized one may acquire non-zero polarization, etc.
What happens in reality? From the reggeon expression (8.63) it follows
that only one of the whole variety of spin phenomena survives in the high
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energy limit, namely the nucleon spin turns. Moreover, this occurs in a
rather unusual form.

What would we expect in a simple diffraction picture? If a particle
in NQM scatters at small angle, we could imagine that its spin either
does not change as in Fig. 8.9(a) or turns, following the change in the
particle-momentum direction (if spin and momentum are firmly tied),
Fig. 8.9(b). In the relativistic case, in spite of a miniscule scattering an-

σ

σ

p

p
σ

σ

p

p
θs θs

Fig. 8.9

gle θs � |p′
⊥|/|p′| � 1, the spin turns to a large angle, θ = O(1), which

depends on the momentum transfer but not on the collision energy. This
shows that the reggeon interaction acts in a non-trivial way, independently
on the momentum and the spin of the participating particle.

We start with the first term in the nucleon vertex (8.63),

a(q2)ūλ
′
(p′2)u

λ(p2),

and treat it in a frame where the proton is fast, |p′
2| � |p2| 
 |q|, and

scatters at a small angle

θs � sin θs; θs =
[p2 × p′

2]
|p2| |p′

2|
� [ez × q]

|p02|
.

To evaluate the product of Dirac spinors we can express the final state
wave function u(p′2) via the initial state one, u(p′2) = R̂(θs)u(p2), using
the rotation matrix R̂ which we expand to the first order in θs:

R̂(θs) =
(

exp
(
i
2σ · θs

)
0

0 exp
(
− i

2σ · θs

) )
� I + γ0

iσ · θs

2
.

This gives

ūλ
′
(p′2)u

λ(p2) � ūλ
′
(p2)

(
1 − γ0

iσ · θs

2

)
uλ(p2)

= ϕλ′∗
(

2m− 2p20
iσ · θs

2

)
ϕλ = ϕλ′∗(2m + i[σ × q]z

)
ϕλ.
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Here we have represented the Dirac wave functions in terms of 2 × 2 Weyl
spinors ϕ,

uλ(p) =

⎛
⎝ √

p0 + mϕλ

σ · p√
p0 + m

ϕλ

⎞
⎠ ,

and used the well known relations

ūλ
′
(p)uλ(p) = 2mϕλ′∗ϕλ,

ūλ
′
(p)γμuλ(p) = 2pμϕλ′∗ϕλ.

In the second term of the nucleon vertex we can set p′2 = p2, up to negli-
gible corrections O

(
s−1

)
, and use (8.64) to get

2mb
p1μ

s
ū(p′2)γ

μu(p2) � 2mbϕ∗ϕ
[p1μ

s
· 2pμ2 + · · ·

]
� 2mb(q2)ϕ∗ϕ.

Combining the two terms, for the nucleon vertex we obtain the expression

ūλ
′
(p′2)

[
a(q2) + 2mb(q2)

p̂1

s

]
uλ(p2)

� ϕλ′∗(2m[a(q2) + b(q2)] + ia(q2)[σ × q]z
)
ϕλ.

(8.64)

The matrix structure of the nucleon Regge residue (8.64) tells us that
the spin of the proton turns around the normal to the scattering plane,
[n × n′], to a finite angle θ:

tan
θ

2
=

|q⊥|
2m

a(−q2
⊥)

a(−q2
⊥) + b(−q2

⊥)
= O(1) . (8.65)

Here a few comments are due. First of all, we see that θ is determined
by the functions a and b which describe pomeron attachment to target
nucleon and do not depend on the type of the projectile. Therefore, for
a given q, the nucleon spin will rotate by the same angle (8.65) in πN
and NN scattering. Moreover, since in the single-pole approximation all
spin amplitudes have the same phase (all complexity is embodied in the
universal signature factor ξα), polarization can neither emerge nor dis-
appear as a result of collision since these effects are proportional to an
interference between amplitudes with and without ‘spin–flip’:

P ∝ Im
(
A∗

↑↑A↑↓
)
.

For the same reason at asymptotically high energies these is no other more
subtle effects such as correlation between two spins in the NN scattering.
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8.6 Conspiracy

Concerning NN scattering, one interesting phenomenon remains to be
investigated known as ‘conspiracy’.

As we have established already, this amplitude contains three separate
contributions,

ANN→NN = A(1)

(
Pr = +1
Cr = +1

)
+ A(2)

(
Pr = −1
Cr = +1

)
+ A(3)

(
Pr = −1
Cr = −1

)
,

whose energy dependence is described by three reggeons with different,
generally speaking, Regge trajectories:

A(1) =
(
ū1

[
a(q2) + b(q2)

p̂2

s

]
u1

)(
ū2

[
a(q2) + b(q2)

p̂1

s

]
u2

)
sα1ξα1 , (8.66a)

A(2) =
(
ū1

[
c(q2)γ5

]
u1

)(
ū2

[
c(q2)γ5

]
u2

)
sα2ξα2 , (8.66b)

A(3) =
(
ū1

[
d(q2)γ5

p̂2

s

]
u1

)(
ū2

[
d(q2)γ5

p̂1

s

]
u2

)
sα3ξα3 . (8.66c)

Let us take a moderately large energy where all the poles are essential,
add their contributions and . . . we will be surprised! Look at the value of
the amplitude at q = 0, i.e. at the exactly forward scattering. Then the
first amplitude (8.66a) trivializes and becomes diagonal with respect to
the spin,

ūλ
′
(p1)

[ p̂2

s

]
uλ(p1) =

pμ2
s

· ūγμu =
pμ2
s

· 2p1μ · δλλ′ = δλλ′ .

As for the rest, A(2) vanishes and A(3) stays finite. To see this it suffices
to look at one vertex in the rest frame, say, p1 = (m,0), where the four-
spinor has only an upper component,

uλ(p1) =
(

ϕλ

0

)
,

and of three matrices,

γ5 =
(

0 1
−1 0

)
, γ5γ0 = −

(
0 1
1 0

)
, γ5γi = −

(
σi 0
0 σi

)
,

only the last one (diagonal) survives,

ū(p1)γ5γu(p1) = ϕ∗
1σϕ1 ≡ σ(1),

yielding the matrix element σ
(1)
z upon multiplication by p2μ in (8.66c).

Thus from A(1) and A(3) we have two contributions to the forward
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amplitude:

A(q = 0) = c + c′σ(1)
z σ(2)

z ; (8.67)

z is the collision axis as before.
This expression is formally legitimate (the z-direction is special, while

rotational symmetry in the transverse plane is respected). Still it looks
strange: from general considerations we could expect the presence of an-
other term in (8.67)

· · · + c′′
(
σ

(1)
⊥ · σ(2)

⊥
)

= c′′
(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

)
. (8.68)

Why have we lost this invariant? It is not a question of the asymptotic
behaviour since we have added all Regge pole contributions; so, what has
happened?

Let us see whether we could restore the term (8.68) in the forward
scattering amplitude. We have to be a bit more accurate. Taking the
q = 0 limit in (8.66a), we have dropped the second, linear in q, term in
the full expression (8.64) for the first amplitude,

∝ ia(−q2
⊥)

[
σ × q⊥

]
z

(
∝ σx for q⊥|| y

)
. (8.69)

This would have been a bad idea if the coefficient was singular at q⊥ = 0.
Imagine that we force this contribution to be finite in the q⊥ → 0 limit.
The result is bizarre: the amplitude would remember about the direction
of the vector q⊥ before it vanished! Indeed, if q is directed along the y-
axis, the rescued term contains the matrix σx, as envisaged in (8.69). So,
we have found the σx ⊗ σx term rather than the full σ⊥ ⊗ σ⊥ of (8.68).

Let us search for the missing σy ⊗ σy. The vertex in A(2) is a pseu-
doscalar and should therefore contain ϕ∗(σ · q⊥)ϕ ∝ σy (and the coeffi-
cient c(q2) in (8.66b) could also be singular). Indeed, rewriting (8.66) in
the two-component form at small momentum transfer, we obtain

A(1) =
{
f1 + f2[σ(1) × q⊥]z

} {
f1 + f2[σ(2) × q⊥]z

}
sα1ξα1 , (8.70a)

A(2) = f2
3

(
σ(1) · q⊥

) (
σ(2) · q⊥

)
sα2ξα2 , (8.70b)

A(3) = f2
4 σ(1)

z σ(2)
z sα3ξα3 , (8.70c)

where fi = fi(q2) and σ(i) ≡ ϕ∗
iσϕi.

The strategy of restoring the lost contribution (8.68) is now clear: f2

and f3 must be both singular and, moreover, have to have the same q → 0
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limit,

f2
2 (q2

⊥) � f2
3 (q2

⊥) � c′′

q2
⊥

at q⊥ → 0. (8.71a)

But the two pieces, σxσx and σyσy, belong to different trajectories! In or-
der to preserve the rotational invariance in the {x, y} plane at all energies,
the vacuum trajectory (A(1)) must cross with a trajectory with π-meson
quantum numbers (A(2)) at t = 0. This explains the name conspiracy :
two reggeons must ‘make a deal’ concerning both their trajectories and
residues,

α1(0) = α2(0), r1(0) = r2(0). (8.71b)

Is this a miracle? Not entirely. We have lost, in the first place, (8.68)
because (σ⊥ · σ⊥) does not correspond to a state with definite quantum
numbers in the t-channel: it has a mixture of two states with different
parity.

Recall what was the reason for Regge trajectories with differing quan-
tum numbers to be different? It was the unitarity that separated them.
Satisfying different unitarity conditions, two reggeons have no reason to
be related unless there is a specific symmetry in the works. Is there not
an additional symmetry at t = 0? Obviously, there is.

What is the parity of a given object? We go to its rest frame and
see which sign the wave function acquires under the spatial reflection.
However, if a particle has m = 0, one cannot stop it and the notion of
parity loses sense. But the point t = 0 corresponds exactly to a zero mass
object in the t-channel, and our states A(1) and A(2), which differed only
by their parity, Pr = ±, become physically indistinguishable. Certainly,
this argument does not prove the conspiracy phenomenon but makes its
possible existence less mysterious.

From the point of view of the interaction in the t-channel, the conspir-
acy means that the ‘potential’ possesses an additional symmetry at t = 0
which prevents the unitarity condition from separating the amplitudes
with different parities. A closer examination of various reactions shows
that the conditions (8.71) are not sufficient. Having made fi singular,
we did something serious: inserted a singularity that the total amplitude
should not have. As a remedy, another Regge trajectory must enter the
conspiracy plot, with an intercept smaller by one unity. (Actually, a whole
series of shifted trajectories – ‘daughters’ – appear.)

To conclude, if forward-scattering amplitudes contain the contribution
proportional to (σ⊥ · σ⊥) then, within the Regge-pole approach, this is
an evidence for conspiracy. Experimentally such a phenomenon is not
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Fig. 8.10 Backward πN scattering on the Mandelstam plane.

observed so far. In any case, an experimental proof is difficult because of
the influence of the reggeon branchings.

8.7 Fermion Regge poles

Up to now we have studied the behaviour of two-particle scattering ampli-
tudes in the region |t| ∼ m2, s → ∞. However, since we formally allowed
an incident particle to change identity, this means that we have already
treated the backward scattering as well! Look, for example, at the region
|u| ∼ m2, s → ∞ in the πN → πN scattering amplitude shown on the
Mandelstam plane in Fig. 8.10.

What is so remarkable about this region? In Lecture 5 we have seen
that in the relativistic theory there exists, in addition to a forward peak,
also one in the backward direction. The magnitude of the backward peak
depends on how willingly the particle is ready to change its individuality
(recall the Compton effect).

With the help of the theory of complex angular momenta we have
learned how to write the asymptotics for the scattering of spinless par-
ticles at a small angle θs =

√
−t/s and found that it was determined by

quantum numbers in the t-channel. Later, we have generalized the ob-
tained results to the case of non-zero spin particles.

Obviously, the same programme can be carried out also for backward
scattering, θu =

√
−u/s � 1. In the case of spinless particles, or parti-

cles with integer spins, the whole story will be a mere repetition, the
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Fig. 8.11 (a) Backward πN scattering; (b) u-channel fermion exchange.

only difference being that the asymptotics will now be determined by the
quantum numbers of the u-channel exchange. In a backward scattering of
a fermion, e.g. backward πN scattering shown in Fig. 8.11(a), an inter-
esting new phenomenon appears owing to the fact that the exchange is
now carried out by a reggeon with a half-integer angular momentum. Let
us investigate this case in detail.

How to write an amplitude corresponding to a fermion exchange? Let
us turn to the perturbation theory. The exchange amplitude for a particle
with σ = 1

2 shown in Fig. 8.11(b) has the form

A(s, u) = ū(p2)g(q2)
1

m− q̂
g(q2)u(p1), q = p1 − k2. (8.72)

Given the spinor normalization u(p) ∼ √
p0, at large s this amplitude

behaves as A[σ = 1
2 ] ∝ √

s = sσ, as expected.
If we have a σ = 3

2 particle exchange, the longitudinal polarization ten-
sor, e−μ e

+
ν ∝ p1μk1ν/s, convolutes with the momenta in the vertices, kμ1 p

ν
1

and produces an extra s, yielding A[σ = 3
2 ] ∼ sσ, etc.

Generalizing to the case of an arbitrary spin as before, we shall write
the reggeon exchange amplitude as (cf. (8.63))

A(s, u) = ū(p2)
[
a(q2) + b(q2)q̂

]
u(p1)sα(q2)−1

2 ξ
α(q2)−1

2
. (8.73)

Here we put α− 1
2 in the exponent since spinors provide an additional

factor
√
s, as they already did before in (8.72).

Following our logic, let us determine the quantum numbers in the u
channel. If we assume that there is no degeneracy so that unitarity does
separate trajectories with different quantum numbers, we need to learn
to write amplitudes with definite parity which correspond to two opposite
parity u-channel states with � = j ± 1

2 .
To do so, we move, as usual, to the u-channel cms and carry out spatial

reflection in one of the vertices, e.g. in the lower one in Fig. 8.11b. The
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matrix q̂, transversal in the s channel, in the u-channel centre-of-mass
frame has only a time component:

q̂(u) = γ0q0(u) = γ0

√
q2.

The spinor u(p1) under reflection produces

u(p1) =⇒ iγ0u(p1).

Then, the cosine of the u-channel scattering angle changes sign, zu =
cos θu → −zu, which corresponds to the reflection s → −s, yielding the

factor (−1)α−
1
2 . Altogether, the parity operation acts on the amplitude

as follows:

A ∝
[
a + bq0(u) · γ0

]
=⇒

[
a · γ0 + bq0(u)

]
(−1)α.

To have a definite parity Pr = P · (−1)α, one of the conditions

aγ0 + bq0(u) = ±(a + bq0(u)γ0)

has to be satisfied, that is, returning to the Lorentz invariant form,

a(q2) = ± b(q2)
√
q2.

Thus, the contribution of a fermionic Regge pole with a definite parity Pr

reads

A± = r±(q2)ū(p2)
[
q̂ ±

√
q2

]
u(p1) · sα±−1/2ξα±−1/2. (8.74)

We see right away that A±(s, u) have rather unusual features.

(1) The existence of a singularity at q2 =0 contradicts the analytic
structure of the Mandelstam plane where the first u-channel
(threshold) singularity appears at q2 = u = (m + μ)2 > 0.

(2) In the physical region of the s-channel (q2 ≤ 0) the complexity of
A± is not limited to the complexity of the signature factor.

Hence, we cannot assume that the high-energy behaviour of the backward
scattering is determined by a single pole of definite parity without con-
tradicting analyticity of the scattering amplitude in u. The only way to
avoid this contradiction is to say that the asymptotics is determined by
both poles simultaneously:

A = A+ + A− = r+ū2(q̂ +
√
q2)u1s

α+−1
2 ξ

α+−1
2

+ r−ū2(q̂ −
√
q2)u1s

α−−1
2 ξ

α−−1
2
, (8.75a)
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Pr = −1Reα
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u

Fig. 8.12 (a) Movement of fermionic reggeons from positive to negative u on
the j plane; (b) conspiracy of fermionic trajectories on the Chew–Frautschi
plot.

where the two trajectories derive from one function, as do the residues:

α+ ≡ α(
√
u), α− = α(−

√
u); (8.75b)

r+ ≡ r(
√
u), r− = r(−

√
u). (8.75c)

Let us see what are the consequences of this picture.

Conspiracy. First of all, how do the Regge trajectories α±(u) behave?

u > 0: the physical region of the u-channel. The trajectories α+ and α−
are values of the same function of different real arguments.

u < 0: the physical region of the s-channel; the arguments are imagi-
nary, complex conjugate, and we have

α+ = α(i
√
−u) = α∗(−i

√
−u) = α∗

−.

The possible behaviour of the poles in the j-plane while moving from one
region to the other is shown in Fig. 8.12(a). At u > 0 the trajectories
are real and, generally speaking, different, see Fig. 8.12(b). They cross
at u = 0 (‘conspiracy’ !); at u < 0 they become complex conjugate and
diverge in the j plane.

So our attempt to separate fermionic trajectories with different parities,
without violating the analyticity, has led us to unavoidable conspiracy. As
we have already discussed above in Section 8.6, this phenomenon is due
to the uncertainty in the parity of a massless particle.

Let us demonstrate this in perturbation theory. Suppose that an ex-
change with a Fermi-particle ν takes place described by the diagram in
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Fig. 8.11(b) (one can imagine, e.g., backward π−e− scattering via neutrino
exchange). If mν �= 0, we can write two different amplitudes:

A1 = ū2 · (iγ5)
mν + q̂

m2
ν − q2

· (iγ5)u1 = ū2
mν − q̂

m2
ν − q2

u1,

A2 = ū2 ·
mν + q̂

m2
ν − q2

· u1.

On the mass shell, q2 = m2
ν , the parity of the amplitude A1 is P1 = −i

(here we, again, have to carry out a reflection in one of the vertices in the
cms of the u-channel); the parity of the second amplitude (A2) is P2 = i.
Taking now mν = 0, the two amplitudes become indistinguishable,

A1 = ū2
q̂

q2
u1 = −A2,

and we arrive at a degeneracy in parity.

Oscillations. Since the backward scattering amplitude is described by
a pair of complex conjugate fermionic Regge poles, this should lead to
oscillations, both in s and u. Parameterizing α±(u) = α1(u) ± iα2(u), the
amplitude can be represented as follows:

A(s, u) = |r(u)|sα1−1
2 · ū(p2)

[
f1q̂⊥ + f2

√
q2
⊥

]
u(p1);

f1 = f cos[α2(u) ln s + ϕ(u)] , f2 = f sin[α2(u) ln s + ϕ(u)] .
(8.76)

To observe these oscillations turns out to be not so simple. Indeed, if we
consider the cross section

dσ

dΩ
∝ 1

s
AA†

summed (averaged) over the polarization of the final (initial) nucleon,

dσ

dΩ
∝ 1

2 Tr
(
A · (p̂1 + m) · Ā · (p̂2 + m)

)
, Ā = γ0Aγ0,

the oscillations will not manifest themselves, since here the sum |f1|2 +
|f2|2 enters, and we obtain

dσ

dΩ
∝ |r(u)|2s2(α1(u)−1) · f2(u).

The cross section will not oscillate even if we measure the polarization
of one of the nucleons; only the spin correlation between the initial and
final fermions will be an oscillating function of energy.
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Thus, the theory, in the pole approximation, predicts that:

(1) the baryon resonances lie on Regge trajectories;

(2) cross sections with baryon number exchange decrease as powers of s;

(3) trajectories with different parities conspire at u = 0; and

(4) in the asymptotics of the amplitude there are unusual oscillations.

Indeed, many fermionic resonances, up to very high spins, are observed
experimentally. Surprisingly, their trajectories look linear in the mass
squared, u = m2, similarly to the bosonic case (see Fig. 8.1 on page 180),
in spite of the fact that the fermion propagator depends on the first power
of the mass, G ∝ 1/(m− q̂), rather than on m2 as boson propagators do.
This means that in the series expansion for the analytic function α which
determines the nucleon trajectories according to (8.75b), the square-root
term is very small, if not altogether absent:

α(
√
u) � α0 + α1

√
u + α2u + · · · , α1 � 0.

But if this is the case then according to (8.75b) there must be parity
degeneracy for all values of u: α+(u) = α−(u) � α0 + α2u. Hence, there
must exist resonances with opposite parity and equal masses, lying on the
same trajectory. This is, however, not observed experimentally.

In order to reconcile the theory with the experiment, one can try to
‘conceal’ this degeneracy by putting the residue of one of the two tra-
jectories equal zero in the position of an unwanted resonance. This may
look weird (indeed, how to force a resonance not to interact with any-
thing in the theory of strong interactions?), but in some dual models (see
Lecture 16) such a possibility is considered.

So, at the moment we have the following situation. On the one hand,
we do see fermionic Regge poles. On the other hand, there must be an
additional trick in Nature that makes the apparent linearity of baryon tra-
jectories and the absence of parity degeneracy in the spectrum of baryon
resonances consistent.



9
Regge poles in perturbation theory

9.1 Reggeons, ladder graphs, and multiparticle production

We have studied two-particle reactions and introduced objects of ‘vari-
able spin’ – reggeons as a generalization of usual particles. The reggeon
amplitude,

A±
regg(s, q

2) ∝ ξαs
α, ξα =

e−iπα ± 1
−sinπα

, α = α(q2),

differs essentially from the particle-exchange amplitude,

Aσ(q2, s) ∝ sσ

μ2 − q2 − iε
,

by a non-trivial complexity, even at q2 < 0 where particle exchange is
real. As the s-channel unitarity tells us, the imaginary part of the elas-
tic amplitude is determined by real processes, mostly by many-particle
production since s is very large:

ImAel(s, q2) � sσtot = 1
2

∑
n n

.

This means that the reggeon, having a large imaginary part,

ImA±
regg ∝ Im

[
i− cosπα± 1

sinπα

]
sα = sα,

is not an elementary object but is ‘composed’ of certain inelastic s-channel
processes. We have to understand what these processes are.

As we have discussed before, from the point of view of t-channel dy-
namics, the Regge pole is a bound state of non-relativistic particles. But

219
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the interaction of slow particles can be described in terms of a potential:

+ + . . .+  . . .= + (9.1)

The potential acts without retardation, therefore the dashed lines do not
cross. If it turns out that indeed, the reggeon corresponds to potential
scattering in the t-channel, this would answer the question which inelastic
processes are important at high energies. Cutting through the diagrams
on the r.h.s. of (9.1) we obtain ladders as an image of inelastic processes
‘describing’ the reggeon.

ImAregg ∼
∑

. (9.2)

These are processes of production of a large number of particles, those
very particles that play the rôle of the binding potential in the crossing
channel.

9.2 Reggeization in gφ3 theory

In order to verify that the sum of the diagrams (9.1) gives rise to a Regge
behaviour,

A = b(t) sα(t), (9.3)

we will address the problem perturbatively and employ the simplest gφ3

theory with a small coupling. Although this quantum field theory is far
from realistic, this academic exercise will teach us important lessons about
the phenomenon of reggeization. Later we will try to generalize the results
beyond the perturbation theory.

9.2.1 Qualitative analysis of higher order diagrams

We are going to construct perturbation theory for the elastic amplitude
in the relevant region of the Mandelstam plane:

s � −u → ∞, |t| ∼ m2.
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Fig. 9.1 Born diagrams for A(1, 2 → 3, 4) in gφ3 theory.

We start from the Born approximation. Of the Born graphs Fig. 9.1, the
first one is O

(
g2/m2

)
and dominates the asymptotics, while the graphs

Fig. 9.1(b) and (c) are much smaller at high energies, O
(
g2/s

)
. Since the

coupling has a dimension of mass, in higher orders of the perturbative
expansion each extra power of g2 is accompanied by m2, or t ∼ m2, or
s � −u in the denominator. To build up the characteristic behaviour (9.3),
we need to search for large perturbative corrections of the relative size

A(n+1)/A(n) ∝ g2

m2
ln s. (9.4)

It is clear that self-energy and vertex
insertions into the Born graphs cannot
lead to the Regge structure (9.3), since
corrections of this type are functions
of only one invariant, either t, or s.

δG = δΓ =

The theory is convergent in the ultraviolet region, and no corrections
may come from the region of large virtual momenta. Therefore only spe-
cific diagrams (and for a special reason) may contain the large logarithmic
factor (9.4).

In the next order we have three topologically new diagrams of Fig. 9.2.
In the last graph, Fig. 9.2(c), all four propagators are large, |k2

i | ∼ s, mak-
ing its contributions negligibly small, O

(
g4/s2

)
. The first two diagrams

u

(b) (c)

s

2

1 3

4

t

s

2

1 3

4

t

s

2 3

41

(a)

Fig. 9.2 Second-order diagrams.
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Fig. 9.3 Long-living fluctuation in the rest frame of p2.

are much larger and can be considered as g2/m2 corrections to the Born
graphs Fig. 9.1(b) and (c). It is these two which will interest us. Let us
show that they contain the ln s enhancement indeed.

9.2.2 Dominance of ladder graphs: space–time picture

In fact we have already considered the diagram Fig. 9.2(a) when we dis-
cussed how to make the interaction radius increasing with energy. In Sec-
tion 5.6 we observed that in the rest frame of the particle p2 the pro-
jectile p1, having a very large energy p10 � s/2m, may fluctuate into a
pair of particles. We saw that if virtualities of the offspring are limited,
|k2| ∼ |(p1 − k)2| ∼ m2, the energy uncertainty turns out to be very small,
see (5.60):

ΔE ∼ m2

x(1 − x)p10
∼ m3

s
� m, x =

k0

p10
.

At high energies large longitudinal distances become important,

|x′1 − x1| <∼ Δt ∼ 1
ΔE

∼ x(1 − x)s
m3

� m−1, (9.5)

and the fluctuation may occur long before the projectile hits the target.
The origin of the logarithmic growth of our diagram is precisely the inte-
gration over large longitudinal distances:∫

eiΔE(x′
1−x1)

|x′1 − x1|
dx′1 ∼ ln

m

ΔE
∼ ln

s

m2
.

(The distance between x2 and x′2 in Fig. 9.3 stays small.) In order to have
a long-living fluctuation, see (9.5), both particles k and (p1 − k) in the
decay vertex must be relativistic: x, (1 − x) � m2/s. At the same time,
the target prefers to interact with a slower particle, since in the lower
vertex in Fig. 9.3 two point-like particles interact in the S-wave state
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with the cross section

σ ∼ πλ2
c ∼

1
s12

� 1
2mk0

=
1
xs

.

As a result of the interplay of these two tendencies, the amplitude remains
small, A ∼ s−1, but acquires a logarithmic enhancement in the next order,

A(0)[Fig. 9.1b] � g2

−s
, A(1)[Fig. 9.2a] ∼ g2

−s
× g2

m2
ln

s

m2
.

We have a rather curious situation here. We chose a superconvergent the-
ory with a small coupling constant g2/m2 � 1 and expected that we could
rely on the perturbation theory. However, with s increasing, the incident
particle gets more and more time to decay; eventually it will always do
so, even if the interaction constant is small. But this means that the per-
turbation theory must fail! And this is exactly what happens: with the
increase of s the true expansion parameter (9.4) sooner or later becomes of
the order of unity so that all orders of the perturbative expansion become
equally important.

The virtual particle k in Fig. 9.3 will decay in its turn, and the process
will continue until a relatively slow particle with a momentum kn ∼ m
appears, which interacts with the target with a ‘normal’ cross section
σ ∼ m−2.

p1

p
2

pnsn, 2 ∼ m2

In such a process with n virtual particles along the decay chain, there are
n independent integrations over the longitudinal distances. Hence, it is
natural to expect that the nth-order correction to the Born graph will be
enhanced as (ln s)n. Our hope is that summing up all ladder graphs we
will obtain just the Regge amplitude (9.3):

+ . . . s→∞� b(t)sα(t).
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9.2.3 Calculation of the box diagram

Let us demonstrate how this happens. We begin with the calculation
of the behaviour of the diagram of Fig. 9.3 in the kinematical region
s � −q2 ∼ m2. This is the shortest ladder, with two rungs only, so we
call it J2:

J2(s, q2) ≡

p
2

q2

s (1)

(3)

(2)

(4)

k k − q

p3

p4

p
1

(9.6)

We define the light-like Sudakov momenta

(p′1)
2 = (p′2)

2 = 0; p′1 � p1 − γp2, p
′
2 � p2 − γp1; γ =

m2

s
; s = 2(p′1p

′
2),

to cast the four-vector of the momentum transfer q = p1 − p3 as

q = βqp
′
1 + αqp

′
2 + q⊥; αq =

q2

s
, βq = −q2

s
. (9.7)

Recall that in our high-energy kinematics momentum transfer is ‘transver-
sal’ in the sense of

q2 � (q⊥)2 ·
(
1 + O

(
s−1

))
.

By construction, the four-vector qμ⊥ is orthogonal to pμ1 and pμ2 ; in the ref-
erence frames where p1 and p2 lie on the same line, qμ becomes the usual
three-vector perpendicular to this line (collision axis), q⊥ = (0; 0,q⊥),

q2 � −q2
⊥.

Finite-state particles have finite transverse components, p4⊥ = −p3⊥ =
q⊥, i.e. particles scatter at a small angle. Then we write

k = βp′1 + αp′2 + k⊥.
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Transverse momentum integrals in the gφ3 theory converge, |k⊥| ∼ m, so
we will have to look for the logarithmic enhancement in the α–β sector.

Our amplitude reads

J2(s, q2) = g4

∫
d4k

(2π)4i
1

(1)(2)(3)(4)
, (9.8)

where the Feynman denominators are

(1) ≡ m2 − k2 − iε, (2) ≡ m2 − (k−q)2 − iε,

(3) ≡ m2 − (k − p1)2 − iε, (4) ≡ m2 − (k + p2)2 − iε.

We obtain

(1) = −αβs + m2 + k2
⊥ − iε, (9.9a)

(2) = −(α− αq)(β − βq)s + m2 + (k−q)2⊥ − iε, (9.9b)

(3) = −(α− γ)(β − 1)s + m2 + k2
⊥ − iε, (9.9c)

(4) = −(α + 1)(β + γ)s + m2 + k2
⊥ − iε. (9.9d)

Loop integration in terms of Sudakov variables has the structure∫
d4k =

s

2

∫ ∞

−∞
dα

∫ ∞

−∞
dβ

∫
d2k⊥.

Let us start from a rough estimate of the magnitude of the answer to get
a feeling what we should expect. Dimension-wise, the answer may turn
out to be very small if all the virtualities happen to be of the order of
s, the biggest invariant: d4k/(k2)4 ∼ s−2. So we better try to keep all
the denominators as small as possible. Given k⊥ = O(m), from (9.9c, d)
follows an estimate for the virtualities of the ‘horizontal’ lines,

(3) ∼αs, (4) ∼−βs. (9.10)

β is the fraction of the incoming momentum p1 transferred to the bottom
of the diagram (9.6) and, vice versa, (−α) measures the fraction of p2

that flows into the top. It looks natural to have β, (−α) � 1; in this case
an incident particle passes its large momentum almost entirely to the
neighbouring ‘horizontal’ line, (p1 − k) � p1, (p2 + k) � p2.

Wanting to keep virtualities (3) and (4) finite, we demand

β ∼ m2

s
, −α ∼ m2

s
, (9.11a)

in which case the ‘longitudinal parts’ of the ‘vertical’ propagators (9.9a,
b) are negligibly small, αβs ∼ m2/s, and (1) and (2) become purely
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transversal. Then from the kinematical region (9.11a) we get

J2 ∼ g4

s

∫
d2k⊥
(1)(2)

∫∫
dα dβ

(3)(4)
∼ −g4

sm2

∫
d(αs)
αs

∫
d(βs)
βs

∼ −g4

sm2
. (9.11b)

This is almost the correct answer. We can get more if we release the strong
restrictions (9.11a) and allow α and β to vary broader:

m2

s
� β � 1,

m2

s
� −α � 1. (9.11c)

The virtual propagators (9.10) then become relatively large but we gain
a logarithmic enhancement by integrating over the β/α ratio along the
hyperbola αβs = const.

We are now ready to calculate the amplitude exactly. Take first, e.g.
the integral over α. Since it converges at infinity (as dα/α4), the contour
can be closed either in the upper or the lower half-plane, whichever we
find more convenient. This simplifies the calculation of the integral by
residues. The poles in α of the integrand are due to four denominators:

α(1) =
m2 + k2

⊥ − iε

β s
, α(2) = αq +

m2 + (q − k)2⊥ − iε

(β − βq) s
,

α(3) = γ − m2 + k2
⊥ − iε

(1 − β) s
, α(4) = −1 +

m2 + k2
⊥ − iε

(β + γ) s
.

(9.12)

In order to choose the best strategy, we have to look at the imaginary
parts of the poles α(i) due to Feynman’s iε. The configuration of the poles
depends on the value of β. First we observe that if β < −γ all four poles
are situated above the real axis. In this case we close the contour in the
lower half-plane to get zero. Analogously, if β > 1 we get the same result
by closing the contour upwards and leaving all the poles outside the loop,
below the real axis.

α

β < − γ
α

β > 1

Next, we have two intervals of β where we close the contour on the lower
half-plane around one pole, α = α(4), and two poles, (2) and (4), corre-
spondingly:
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α

α(4)−γ  < β < 0

α

α(4)α(2)0 < β < β
q

Since both γ = m2/s and βq = −q2/s are very small, these integration
intervals in β are tiny and do not produce the ln s enhancement we are
looking for (cf. (9.11b)). We are left with the large interval βq < β < 1:

α α(3)

βq < β < 1

(9.13)

This interval gives the main contribution due to the logarithmic inte-
gration over β under the conditions

m2

s
� β � 1. (9.14)

Given these strong inequalities, we estimate α = α(3) = O
(
m2/s

)
, the re-

maining denominators simplify,

(1) � m2 + k2
⊥, (9.15a)

(2) � m2 + (k − q)2⊥, (9.15b)

(4) � m2 + k2
⊥ − βs− iε, (9.15c)

and we obtain

J2 �
∫

d2k⊥
2(2π)3

g4

[m2 + k2
⊥][m2 + (k − q)2⊥]

∫ 1

m2/s

dβ

m2 + k2
⊥ − βs− iε

.

(9.16)
It is the last denominator,

dβ

m2 + k2
⊥ − βs− iε

� −1
s

dβ

β
,
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that gives rise to the logarithm in the integration region (9.14):

J2 � −g2

s
ln

s

m2
× β(q2

⊥). (9.17a)

Here we have introduced a convenient notation for the characteristic trans-
verse momentum integral,

β(q⊥) ≡
∫

d2k⊥
2(2π)3

g2

[m2 + k2
⊥] [m2 + (k − q)2⊥]

. (9.17b)

The horizontal lines (3), (4) with large virtual momenta dropped out in
the calculation of the asymptotic behaviour of the amplitude (9.6) and
we have obtained a reduced diagram which contains only transverse mo-
menta, and reminds of a Feynman diagram of a two-dimensional quantum
field theory:

p
2

k − qk

(3)

(4)

p
1

=⇒ −g2

s
ln

s

m2
×

g

g

k (9.18)

Here comes a final refinement before we move to higher orders. The r.h.s.
of (9.18) is real, while we know that the box diagram on the l.h.s. has
an imaginary part when (and only when) s is positive. Can we find ImJ2

without performing any calculations? It is actually very simple. Once we
know Re J2, in order to restore ImJ2 it suffices to replace in (9.18)

ln s → ln(−[s− ıε]) = ln s− iπ. (9.19)

This does not invalidate our asymptotic analysis since we have kept only
the leading contribution ∝ ln s and systematically omitted all constant
corrections, |iπ| � ln s being one of them. On the contrary, to keep this
‘special constant’ is legitimate, since it promotes our approximate expres-
sion to a true amplitude with proper analyticity.

It is time to guess the full answer. Let us try to add up the Born
amplitude Fig. 9.1(b) and the next order correction (9.17) we have just
derived:

+ + . . . = −g2

s
− g2

s
β(q⊥) · ln(−s) + · · ·

?= −g2

s
· eβ(q⊥) ln(−s) = g2(−s)−1+β(q⊥).

(9.20)
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If this guess is right, our two terms would be simply the first terms of the
perturbative series expansion in β(q⊥) = O

(
g2/m2

)
� 1 for the Regge

pole amplitude.

9.2.4 Ladders in the leading logarithmic approximation

What will happen in higher orders? Take the third perturbative order,
A ∝ g6, and imagine that we found a contribution A = O

(
g6 ln s

)
. In spite

of looking enhanced, this one is insignificant since when g2 ln s ∼ 1, it
constitutes but a small correction to the previous order,

A = ABorn

(
1 + g2 ln s + g2 · g2 ln s + · · ·

)
. (9.21)

Now we have to look for A = O
(
g6 ln2 s

)
. In each order of the pertur-

bation theory, with adding new internal momentum integration, we need
to pick up an additional ln s enhancement factor. In spite of an immense
number of Feynman graphs in high orders, each can be analysed (and if
necessary evaluated) approximately, in a search for (g2 ln s)n terms. It is
clear that not many diagrams will yield such a strong enhancement. Ex-
tracting and assembling such contributions in all orders constitutes the
so-called ‘leading logarithmic approximation’,

ALLA = ABorn

(
1 +

∞∑
n=1

fn · (g2 ln s)n
)

; g2 � 1, g2 ln s ∼ 1. (9.22)

There is something important to stress. If we want the approximate ampli-
tude ALLA to represent the high-energy behaviour of the true scattering
amplitude, the condition g2 � 1 is absolutely crucial. Only under this
condition may we ignore a plethora of subleading corrections, like the one
underlined in (9.21).

Let us draw the diagrams that do contribute in the LL approximation;
we will check later that others do not. These are the n-particle ladders.

Note that a ladder with a given number of rungs can be constructed by
adding the Born amplitude on top of the ladder of the previous order,

n n − 1= =
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Π
n−1

i=1
qi − q

kn
p

2

p1

q1

qi

qi +1

qn −1

k1

k i

k i+1

p3

p4
p2 p4

q
i+1

− q

qi − q qi

ki

kn

Fig. 9.4 Structure of the ladder diagram.

One can use this t-channel iterative nature of ladder graphs to derive the
high energy behaviour of the amplitude A2ton→2 by induction. However, to
gain a better understanding of the kinematics of ladder-type processes we
shall proceed with a direct analysis of the structure of ladder amplitudes.

Consider an n-particle ladder shown in Fig. 9.4.
We have n− 1 internal momentum integrals, and the amplitude

Jn(s, q2) can be written as

J2 = g2n
n−1∏
i=1

(∫
d4qi

(2π)4i
1

[m2 − q2
i ][m2 − (qi − q)2][m2 − (qi−1 − qi)2]

)

× 1
m2 − (p2 + qn−1)2

, (9.23)

where in all propagators the Feynman shift is implied, m2 → m2 − iε.
We have (n− 1) ‘blocks’, each containing two vertical, qi and (qi − q),
and one horizontal propagator, ki = qi−1 − qi (q0 ≡ p1). The bottom rung,
kn = p2 + qn−1, closes the chain.

For the sake of convenience we will slightly modify the definition of the
Sudakov variables as compared to (9.7) and write

q = βqp
′
1 − αqp

′
2 + q⊥, βq = αq = −q2

s
=

q2
⊥
s

(
1 + O

(
m2

s

))
;

qi = βip
′
1 − αip

′
2 + qi⊥, q2

i = −αiβis− q2
i⊥.

(9.24)

Thus αi and βi enter in a more symmetric way: both positive, they de-
scribe the fraction of p2 transferred up the ladder and the fraction of p1

descending the ladder, respectively.
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Have a look at the propagators of the horizontal lines, the ladder rungs:

k2
1 = (p1 − q1)2 = (α1 + γ)(1 − β1)s + · · · , (9.25a)

k2
2 = (q1 − q2)2 = (α2 − α1)(β1 − β2)s + · · · , (9.25b)

k2
i = (qi−1 − qi)2 = (αi − αi−1)(βi−1 − βi)s + · · · , (9.25c)

where we singled out the α dependence. Suppose now that we evaluate
the αi integrals by putting the rungs, one by one, on the mass shell as
we did before in the n = 2 case when we closed the contour around the
pole (3), see (9.13). The residue in α1 equals 1/(1 − β1)s; then α2 gives
1/(β1 − β2)s, etc. The bottom rung will produce one more factor,

m2 − k2
n = m2 − (qn−1 + p2)2 = m2 + k2

n⊥ − (1 − αn−1)(βn−1 + γ)s,
(9.25d)

in the denominator. Combining all β-dependent factors, the following
structure of the βi integrals emerges:

Jn ∼ 1
1 − β1

dβ1

β1 − β2

dβ2

β2 − β3
· · · dβn−2

βn−2 − βn−1

dβn−1

βn−1 + γ
. (9.26)

How can we get many logarithms? We need to gain one logarithm per each
integration. One can easily prove that it is necessary to arrange successive
βis as follows:

1 � β1 � β2 � · · · � βi � · · · � βn−1 � γ =
m2

s
. (9.27a)

What about the αs? They, too, turn out to be strongly ordered. Indeed,
applying (9.27a) to (9.25) leads to the following pattern:

α1∼
m2

1⊥
s

, α2∼
m2

⊥
β1s

, · · · αi∼
m2

i⊥
βi−1s

, · · · αn−1∼
m2

n−1,⊥
βn−2s

,

where m2
i⊥ ≡ m2 + k2

i⊥ = O
(
m2

)
. Combining with (9.27a), we get

m2
1⊥
s

∼ α1 � α2 � · · · � αi � · · · � αn−1 � 1; (9.27b)

αiβi−1s ∼ m2
i⊥, i = 1, . . . , n− 1 (β0 ≡ 1). (9.27c)

Inequalities (9.27) show that the flows of p1 and p2 momenta along the
ladder are opposite and strongly ordered: ascending the ladder, the frac-
tions of p2 (αi) successively decrease, in accord with the strong increase
of βi (fraction of p1).
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Given the strong ordering of βs, (9.26) reduces to

Jn ∼
∫ 1 dβ1

β1

∫ β1 dβ2

β2
· · ·

∫ βn−3 dβn−2

βn−2

∫ βn−2

γ

dβn−1

βn−1
,

giving

Jn ∼ 1
(n− 1)!

(∫ 1

γ

dβ

β

)n−1

.

Now we can complete the calculation of Jn. Due to the estimate (9.27c),
a crucial simplification emerges: the longitudinal variables drop out from
all vertical lines. Indeed,

m2 − q2
i = m2 + q2

i⊥ + αiβis = m2
i⊥ + αiβi−1s ·

βi
βi−1

� m2
i⊥,

where we have used (9.27c) and the strong β-ordering, βi/βi−1 � 1. Thus
in the logarithmic region (9.27) the dependences on qi⊥ and βi fully sepa-
rate and leave us with n− 1 identical transverse momentum loop integrals
(9.17b) resulting in

Jn = −g2

s

1
(n− 1)!

lnn−1

(−s

m2

)
·
[
β(q⊥)

]n−1
. (9.28)

We changed the sign of s under the logarithm to restore analyticity of the
amplitude properly, as we have discussed before, when we analysed J2.
Summing over n we obtain the Regge-like expression (9.20) that we have
guessed above.

Before discussing the final result, let us verify that the ladder diagrams
in the kinematical region (9.27) are indeed the only ones to contribute.

First of all, it is clear from (9.26) that a decision to swap βs in the
ordering condition (9.27a) immediately results in a loss of (at least) one
logarithmic factor. To have βs strongly ordered is also essential. If we
keep two neighbouring momenta of the same order, βk ∼ βk+1, such a
pair can be treated as a single rung with the effective ‘mean’ momentum
β̄ =

√
βkβk+1, effectively reducing the ladder Jn to Jn−1 and thus losing

one ln s,

∫ ∫
dβk dβk+1

βkβk+1
=

∫
dβ̄

β̄
·
∫

d ln
(

βk
βk+1

)
=⇒ ln s · O(1) .
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n

β̄k,k+1

n −1

βk

βk+1

The same thing happens if we allow any rungs to cross.

qi − 1

qi

qi +1

ki +1

ki

Q

The momentum Q, which used to be Q = qi − q
in the plain ladder, becomes in the crossed config-
uration

Q = [qi+1 + qi−1 − qi] − q. (9.29)

It inherits the largest α-component from qi+1, and
the β-component from qi−1, so that the new virtual
denominator becomes

m2 −Q2 � αi+1βi−1s + m2 + Q2
⊥.

Invoking (9.27c) we see that the ‘longitudinal’ part of the virtuality is no
longer negligible; on the contrary, the new denominator is very large,

m2 −Q2 ∼ m2
⊥ · βi−1

βi
� m2

Q⊥;

its presence spoils the logarithmic integration over βi,∫
dβi−1

βi−1

∫ βi−1 dβi
βi

·
(
βi−1

βi

)−1

∼
∫

dβi−1

βi−1
× 1,

and we have βi+1 ∼ βi, i.e. the situation that we have just discussed. The
appearance of a large virtuality has a transparent physical explanation.
Momenta of the ladder rungs, ki, are very different in scale. For example,
in the rest frame of p2 we have

ki � (βi−1 − βi)p1 ≈ βi−1p1, ki+1 � (βi − βi+1)p1 ≈ βip1,

so that the successive particle is much softer than its predecessor,

ki+1

ki
� βi

βi−1
� 1.

This is favourable for the production of particles ki, ki+1 (the left side of
the graph). However, on the absorption side (the right half of the graph),
the natural ordering is just opposite. In the lower vertex a hard particle
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has to be absorbed where there used to be a soft one, causing a large
recoil.

9.2.5 Reggeon as a sum of ladder graphs

Up to now we were dealing with the high-order amplitudes that one ob-
tains iterating in the t-channel the ‘s-channel’ Born graph Fig. 9.1b. Ex-
actly the same considerations can be carried out for the ‘u-channel’ am-
plitude (9.1c), which differs from the graph that we have iterated by the
crossing transformation s ↔ u.

t

2

1 3

4

=
1

2

3

4

s u

t
g2

m2 −u .

Under the crossing the second-order amplitude of Fig. 9.2 turns into the
familiar box,

4

t t

s u=

1 3

4 2

3 1

2

,

etc. Thus, in order to obtain the second series of contributions, we simply
have to substitute s → u � −s in our answer (9.28).

The final answer for the high-energy behaviour of the amplitude reads

A(s, t) �
∞∑
n=1

Jn =
g2

m2

[(−s

m2

)−1+β(t)

+
( s

m2

)−1+β(t)
]
, (9.30a)

β(t) =
∫

d2k⊥
2(2π)3

g2

[m2 + k2
⊥][m2 + (k − q)2⊥]

; t � −q2
⊥. (9.30b)

Strictly speaking, we cannot claim that (9.30) describes the true asymp-
totics s → ∞, since our leading logarithmic approximation (9.22) applies
to very large but finite energies,

s <∼ m2 exp
{
m2

g2

}
.

Nevertheless, let us compare our result (9.30a) with the Regge pole am-
plitude,

A±
pole(s, t) = − r(t)

sinπα(t)

[(−s

m2

)α(t)

±
( s

m2

)α(t)
]
.
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We conclude that we have, indeed, obtained a Regge pole with a positive
signature,

Σ
n

,

the trajectory

α(t) = −1 + β(t), (9.31a)

and the residue

r(t) = − g2

m2
sinπα(t) � g2

m2
β(t). (9.31b)

We have expanded the sinus near −1 since, perturbatively, β is small,
β(t) = O

(
g2/m2

)
� 1. The residue is therefore of the second order in the

coupling, r = O
(
(g2/m2)2

)
.

Did we get a bound state? To get a spin zero particle on the Regge
trajectory, we have to have in (9.31a) β(m2

0) = 1. We cannot go as far
as that: our perturbative β ∝ g2/m2 is small. So in the perturbation gφ3

theory the scalar particle φ remains elementary: the partial-wave ampli-
tude 
 = 0 corresponding to the t-channel scalar particle exchange does
not reggeize,

f0(t) ∼ s

t

.

What we did get moving instead is another fixed pole, that at 
 = −1,

f−1(t) ∼

t

s .
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Indeed, let us calculate the partial wave corresponding to the s-channel
exchange amplitude. Substituting

A1(s, t) = Im

g 2

= g2 · πδ(m2 − s)

in the general expression (7.27b),

f�(t) =
2
π

∫ ∞

z0

dzs A1(t, s)Q�(zs)

=
4

π(t− 4m2)

∫ ∞

s0

ds A1(t, s)Q�

(
1 +

2s
t− 4m2

)
,

we obtain

f�(t) =
4g2

t− 4m2
Q�

(
1 +

2m2

t− 4m2

)
�→−1∼ 4g2

t− 4m2
· 1

 + 1

. (9.32a)

Comparing with the partial wave of the amplitude (9.30a),

f�(t) ∼
1


 + 1 − β(t)
, (9.32b)

we conclude that since β(t) � 1, generically our reggeon is connected to
the fixed pole (9.32a) at 
 = −1.

One has to remember that the results of this section are valid only for
g2/m2 � 1. The Regge trajectory which we got under this condition,

α = −1 + β(t) ,

has no relation to the observed trajectories with hadron resonances placed
on them. Nevertheless, the example of the gϕ3 theory is rather instructive,
as it demonstrates what kind of s-channel processes may correspond to
real Regge poles. But before turning to the s-channel structure of the
reggeon exchange, let us briefly discuss what happens in other theories.

9.2.6 Reggeization in other theories

Thus, the scalar meson representing the φ field of the gφ3 quantum field
theory remained an elementary particle. At the same time, a Regge tra-
jectory appeared that corresponds in fact to a two-particle bound state
(sort of ‘positronium’).



9.2 Reggeization in gφ3 theory 237

As for other theories, there are not many since we can operate only
with renormalizable ones.

Fermion + scalar. If we take a renormalizable field theory based on
spin 1

2 fermions interacting with a scalar field, Lint ∼ ψ̄ψφ, the answer
is similar: the input objects stay elementary, while their bound states do
reggeize.

Fermion + vector. A field theory of the type of quantum electrodynamics
provides a more telling example. Once again, we take spin-1

2 ‘electrons’
and couple them to a vector field,

m

1
2σ = σ=1

= γμ
μ

.

In this theory a curious thing happens. Look at the Compton process
in the region of fixed u (backward scattering). Summing up perturbative
radiative corrections in the approximation e2 � 1, e2 ln s ∼ 1 (LLA),

= rξαS
α (9.33)

a reggeon emerges. What is even better, its trajectory satisfies the relation
α(m2

e) = 1
2 . A remarkable phenomenon: in QED with a massive photon,

the fermion reggeizes! How did it occur? In the Born approximation we
have a fixed pole in the partial wave,

fBorn
j ∝ e2

m2 − u
δj, 1

2
. (9.34)

Analogously to the scalar case, see (9.31b), the reggeon residue r in (9.33)
is of the second order in the squared coupling, r = O

(
e4

)
. How can the

first-order expression (9.34) be a part of it? What happens in higher orders
is that (9.34) becomes a limiting value of the function

fj = const
e4

j − 1
2 − β(u)

, β ∝ e2, β(m2) = 0. (9.35)

For angular momenta j 
= 1
2 , the specific contribution (9.35) to the partial

wave is O
(
e4

)
and can be neglected. At the same time, if we take the
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angular momentum (very close to) j = 1
2 ,

fj→ 1
2

= const
e4

−β(u)
=

e2

m2 − u
,

the magnitude of the partial wave becomes normal, and reproduces the
Born amplitude (9.34).

In the usual electrodynamics where the photon is massless, μ = 0, a
complication emerges due to the standard infrared divergence.

In the μ → 0 limit, the one-particle pole collides with thresholds due to
additional photons: m + n · μ → m. As a result, the electron Green func-
tion at p2 = m2 does not have a pole anymore but develops a more tricky
singularity. Nevertheless, in QED one can also claim that the electron lies
on the Regge trajectory in the following sense. Whatever the nature of
the singularity, the position of this whole thing reggeizes, that is moves
with j, m2

e → m2(j).
Formally speaking, α(t) describing the elastic eγ scattering amplitude

(9.33) diverges in the infrared region and becomes undefined. This is nat-
ural: purely elastic processes do not exist in QED; taking into account the
infrared radiative corrections, elastic amplitudes vanish. However, if one
considers observables that are insensitive to the emission of undetectable,
infinitely soft photons, the physical cross sections become finite, and the
electron trajectory can be properly defined,

dσ

dΩ
∝ s2(α(u)−1), α(m2

e) = 1
2 . (9.36)

A QED photon does not reggeize.

Yang–Mills fields. Recently∗ a new class of very interesting renormaliz-
able field theories was found, the Yang–Mills theories. The scheme in-
cludes self-interacting massless vector fields and fermions, as well as some
additional scalars (‘ghost’). In this theory both fermions and vector par-
ticles reggeize.

9.2.7 Non-pole singularities in perturbation theory

We have a couple of questions more to ask to the perturbation theory:

(1) are there singularities other than poles?

(2) any hints about the pomeron that we need for σtot → const?

∗ The lecture was in 1975 (ed.)
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The gφ3 field theory contains nothing but Regge poles. In all other
theories, however, there are non-pole singularities too. Take QED as an
example and consider once again the Compton scattering, but this time
in the forward kinematics, |t| ∼ m2 � s � −u. Interesting contributions
will be the following:

+ + + . . .

e2 e4 ln2s e6 ln4s

The analysis of the ladder diagrams of this type follows the steps
of the scalar case, and in the leading approximation one arrives at
the exponential of the reduced two-dimensional diagram describing the
trajectory,

k−q

e

e

k =
e2

4π

∫
d2k⊥
(2π)2

1[
m− k̂

][
m− (q̂ − k̂)

] . (9.37)

Contrary to the scalar loop, this integral diverges in the large momentum
region! What does this mean? Our initial diagrams were convergent in
the ultraviolet. So this must be not a real divergence but an artefact of
the approximations made.

Indeed, we carried out the analysis of the ladder kinematics, estimated
the virtualities etc. having supposed that transverse momenta are limited,
k2
⊥ � s. In the scalar theory this working hypothesis found its confirma-

tion in the end of the calculation: the integral for β(q⊥) converged at
k2
⊥ ∼ m2. In QED, in a contrast to the super-convergent gφ3 theory, the

coupling constant is dimensionless, and the k⊥ integration produces an-
other logarithm,

k−q

e

e

k ∼ e2

∫ s

m2

dk2
⊥

k2
⊥

= e2 ln
s

m2
. (9.38)
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So, in the second order, e.g. the ‘box’ diagram acquires two logs, e4 ln2 s,
instead of one, e4 ln s. Such a series corresponds in the angular momentum
plane not to a Regge pole but to a different singularity.

From the t-channel point of view this problem
resembles a non-relativistic system with a singular
potential. You may remember that we have dis-
cussed how in non-relativistic quantum mechanics
an interaction singular at small distances gave rise
to fixed poles. We considered a non-relativistic
potential V ∝ −c/r2 which corresponds to the
‘falling on the centre’ phenomenon. We noted that
if the parameter c is not too large, c < 1

4 , then

t

physically there is no catastrophic ‘falling on the centre’, but a fixed pole
in the partial wave appears near zero, j0 = ce2. This is what happens in
the forward Compton scattering problem.

Another interesting question: is there not a singularity at j=1 in
QED? Look at the Feynman graphs with many electron loops inserted in
the two photon exchange diagram.

Cutting through such diagrams one gets the total
cross section increasing with energy,

ImA ∼ e4s1+γ , γ ∼ e4; σ ∝ sγ . (9.39)

Such a behaviour corresponds to a fixed singularity at
j0 > 1. This high-energy behaviour is valid as long as
e4 ln s <∼ 1. At yet higher energies the power increase
(9.39) must stop, according to the Froissart theorem,
and the true position of the singularity should move to
the left. A theoretical analysis of how this happens is
lacking.

Theoretical studies of the high-energy behaviour of various QED
processes left a number of unanswered questions. At the same time, they
provided a certain experience which allows one to make conclusions about
what can happen beyond the perturbation theory.

9.3 Inelastic processes at high energies

We embark on a discussion of a very important issue, namely what in-
elastic processes a Regge pole corresponds to.
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We have seen that in the gϕ3 theory the Regge pole appears as a sum
of multi-particle ladders:

A(s, t) =

t

=Σ =
g2

m2

[(−s

m2

)−1+β(t)

+
( s

m2

)−1+β(t)
]
.

Evaluating the imaginary part of the forward elastic amplitude we obtain,
due to the optical theorem, the total cross section:

σtot � s−1 ImA(s, 0) � g2

s2

[
πβ(0)

( s

m2

)β(0)
]
, (9.40a)

where we invoked (9.19) to fix the phase of the complex factor (−s)β

and expanded perturbatively sinπ(1 − β) � πβ. Since β(0) > 0, the total
cross section (9.40a) decreases slower with s and is therefore much larger
at high energies than the Born elastic cross section,

σel
Born ∝

∫
dΩ
4π

∣∣∣∣A(s, t)
s

∣∣∣∣2 ∼ g4

s2
. (9.40b)

This means that inelastic channels dominate.

9.3.1 Topological cross sections 2 → 2 + n

Having our ladder pictures, it is straightforward to find not only total but
all partial inelastic cross sections as well. Indeed, since σtot is determined
by the sum

ImA(s, 0) =
∑
k=2

Im Jk(s, 0),

where Jk is one of the ladder graphs, we have

σn+2 = s−1 Im Jn+2(s, 0) = −g2

s
Im

[
β(0)(ln s− iπ)

]n+1

(n + 1)!

� πg2

s2

[β(0)]n+1

n!
lnn s ∼ σel

Born ·
[β(0) ln s]n

n!
;

(9.41)

here σn+2 (the so-called ‘topological cross sections’) is the cross section
of the process 2 → 2 + n with the production of n additional particles.
What is the characteristic number of produced particles in the sub-
processes that have made σtot increase with respect to the elastic one?
The expression (9.41) is nothing but a Poisson distribution in multiplicity
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n

n

n

σ

Fig. 9.5 Poisson multiplicity distribution of topological cross sections.

which we can represent invoking (9.40) as

σn+2

σtot

=
n̄n

n!
e−n̄, σtot =

∞∑
n=0

σn+2. (9.42a)

Here n̄(s) is the logarithmically increasing average particle multiplicity,

n̄ = n̄(s) � β(0) ln
s

m2
. (9.42b)

So it is inelastic sub-processes with the number of particles increasing
with energy, n ∼ n̄, that dominate the total cross section as shown in
Fig. 9.5.

9.3.2 Multiperipheral kinematics

Another interesting question is how the produced particles are distributed.
To answer it, we need to look into the internal structure of the ladders.
Recall how we calculated above the ladder diagram Jn.
We have introduced n− 1 momenta of the vertical
lines, qi, and took the residues in αi putting on the
mass shell all the rungs but the very bottom one.
This last particle also becomes real when we take
the imaginary part of Jn, see (9.25d),∫

dβn−1 Im
1

m2
n⊥−iε− (1−αn−1)(βn−1 + γ)s

=
π

s
,

fixing the value of βn−1.

α2

α1

α

Since we are interested in the distribution of the produced particles, it
is natural to express the ladder in terms of the final-state momenta, ki.
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k

2k
1k

p
1

n+1k

nk

p
2

k

0 Let us take Jn+2. The top and bottom particles are
‘leaders’: the top one has a large β-component,

β
(k)
0 = 1 − β1 � 1, k0 � p1 +

m2
0⊥
s

p2 + k0⊥,

and the bottom particle, correspondingly, carries away
practically all the momentum of p2,

β
(k)
n+1 �

m2
n+1,⊥
s

, kn+1 � p2 +
m2

n+1,⊥
s

p1 + kn+1,⊥.

At the same time, the longitudinal momenta of all
‘new’ particles, i = 1, 2, . . . , n, change freely, and it is

these variations that enhance the cross section. Translating qi into the
rung momenta ki = qi − qi+1, see (9.27),

β
(k)
i = βi − βi+1 � βi, (9.43a)

α
(k)
i = αi+1 − αi � αi+1; (9.43b)

for Jn+2 we have

Im Jn+2 =
πg2

s

n+1∏
i=1

{∫
d2ki⊥
2(2π)3

g2

(i⊥)2

} ∫ 1 dβ1

β1
· · ·

∫ βn−1

γ

dβn
βn

. (9.44)

Evaluating the integrals results in the multiplicity distribution (9.41). The
integrand itself gives us the momentum spectra of final-state particles in
the process 2 → 2 + n. We observe two important properties.

(1) Dependences on transverse and longitudinal variables of final-state
particles, ki⊥ and kiz ∝ βi, factorized.

(2) The distribution is uniform in

dβi

βi
= d

(
lnβi

)
. (9.45)

Such a pattern of multi-particle production (not to forget the limited
transverse momenta) is often referred to as ‘multiperipheral kinematics’.

In the laboratory frame, with the target at rest, p2 = 0, and the pro-
jectile very fast, p10 � s/2m, ki � βip1, so that one may speak of the
uniformity in ln ki0. This means that, descending the ladder, we will typ-
ically meet particles with energies

k10 ∼ λ · p10, k20 ∼ λ2 · p10, . . . , kn0 ∼ λn · p10, (9.46)
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all the way down to the target, kn+1,0 ∼ λn+1 · p10 = m. The energy frac-
tion λ is a measure of the invariant mass squared of the neighbouring
particles:

s12 = (k1 + k2)2 ∼ 2(k1k2) = (β1α2 + β2α1)s

= β1
m2

2⊥
β2

+ β2
m2

1⊥
β1

∼
(
λ−1 + λ

)
m2

⊥ � m2
⊥
λ

,
(9.47)

where we substituted α1, α2 from the on-mass-shell conditions,

αiβis = m2 + k2
i⊥ ≡ m2

i⊥. (9.48)

We have

(n + 1) · lnλ−1 � ln
P

m
� ln

s

m2
;

substituting the average multiplicity (9.42b), we get an estimate

lnλ−1 � ln
〈si,i+1〉〈
m2

i⊥
〉 � 1

β(0)
∝ 1

ḡ2

(
ḡ2 ≡ g2

m2

)
, (9.49)

with ḡ the dimensionless coupling constant. We see that the pair masses
of the neighbours are very large in the perturbation theory where the
coupling constant is small. It is worthwhile to mention here a kinematical
relation linked to this observation. Let us construct the product of all pair
invariants along the multiperipheral chain:

s01s12s23 · · · sn−1,nsn,n+1.

Using si,i+1 � βiαi+1s (cf. (9.47)),

(β0α1s)(β1α2s) · · · (βn−1αns)(βnαn+1s),

and assembling the products (9.48), we get

n∏
i=0

si,i+1 = β0 ·
n∏

i=1

(αiβis) · αn+1s = s ·
n∏

i=1

m2
i⊥, (9.50)

where we have used β0 � αn+1 � 1 for the leading particles. The substi-
tution of the average characteristics gives

〈si,i+1〉n̄ = 〈s〉β(0) ln s = sβ(0) ln〈s〉 = s, =⇒ β(0) ln〈s〉 = 1,

reproducing (9.49).
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9.3.3 Inclusive particle spectrum

What sort of observables should we measure in the case of a large mul-
tiplicity? It is interesting to study the average characteristics of particle
production, for example, to plot a histogram for the longitudinal momen-
tum distribution. Let us introduce an important observable which is well
suited for characterizing multi-particle production. Consider the density
of particles per unit cell of the momentum phase space,

d3σincl(k) = f(k)
d3k
k0

.

To measure this quantity, one has to register one particle with a given
momentum k and ignore the number, and momenta, of other particles
produced in the collision. Take for an example a pp collision and trigger
one meson.

π

k1

k

−
p

p

k 2

n
Σ dΓn−1 = dσ(k).

We square the n-particle production amplitude A, integrate indiscrimi-
nately over the momenta of all final-state particles but one π− with mo-
mentum k and sum over all ‘topologies’ n. This quantity is called the
‘inclusive spectrum’, in contrast to ‘exclusive’ processes (like elastic scat-
tering) where characteristics of all final-state particles are measured.

One should be aware of the fact that f is not a differential cross section
in a sense, because its integral does not yield σtot. Write down the general
expression for the inclusive one-particle spectrum,

d3σ =
1
j

∑
n

d3k

2(2π)3k0
· 1
(n−1)!

∫
· · ·

∫
d3k1 · · · d3kn−1

(2π)3(n−1)2k10 · · · 2kn−1,0

×
∣∣An(k; k1, . . . , kn−1)

∣∣2(2π)4δ(p1 + p2 − k −
∑

ki).

(9.51)

Essential here is the combinatorial factor 1/(n− 1)! which takes care of
multiple counting in the integration over the full phase space of n− 1 iden-
tical particles. If we wanted to calculate σtot, we would have to integrate
over all particle momenta, including k, with the factor 1/n!. Therefore,
integrating (9.51) over the momentum of the selected particle we will ob-
tain not the total cross section σtot =

∑
n σn, but

∑
n nσn ≡ n̄σtot, with

n̄ the average multiplicity.
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9.3.4 Rapidity variable

How to examine inclusive cross sections? It makes little sense to plot it
in the bins in kz since, because of the strong ordering (9.27), (9.46), the
bulk of particles is soft, |kz| � pz, and will fall into the single bin around
kz � 0, in any reference frame. For example, in the cms we will not see
anything but a huge peak in the centre of the distribution,

λ pλ2λ3zp−

dn
kzd

z

Uniformity of multiperipheral particle production in dβ/β means constant
particle density per unit of phase space,

dΓ(k) =
d3k
k0

= d2k⊥
dkz
k0

,
dkz
k0

=
dβ

β
.

To characterize this key feature of multi-particle production in a Lorentz-
covariant manner, one introduces a convenient variable called ‘rapidity’,

η =
1
2

ln
k0 + kz
k0 − kz

. (9.52a)

Using the on-mass-shell relation (kμ)2 = m2, we may rewrite (9.52a) as

η =
1
2

ln
(k0 + kz)2

k2
0 − k2

z

= ln
k0 + kz
m⊥

. (9.52b)

In the frame where k is fast, |η| � ln(2k0/m⊥) (the sign being that of kz).
This variable is special in the sense that it transforms additively under
Lorentz boosts along the collision axis z,

η → η + Δη, Δη =
1
2

ln
1 + v

1 − v
.

The relative rapidity of two particles is therefore invariant under such a
change of the reference frame. Observing that the energy and the longi-
tudinal momentum can be expressed in terms of the rapidity (9.52) as

k0 = m⊥ cosh η, kz = m⊥ sinh η,
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we have for the invariant two-particle energy s12 ≡ (k1 + k2)2

s12 −m2
1 −m2

2 = 2k1k2 = 2(k10k20 − k1zk2z) − 2(k1k2)⊥.

Transverse momenta do not change under the longitudinal Lorentz boost;
the longitudinal part of the product of four-momenta depends on the
difference of two rapidities (also an invariant)

(k10k20 − k1zk2z) = m1⊥m2⊥ cosh(η1 − η2). (9.53)

In terms of the rapidity, the particle phase space reads

d3k
k0

= d2k⊥
dkz
k0

= d2k⊥ dη. (9.54)

The property (9.45) translates then into homogeneity in rapidity. Let us
introduce rapidities of the colliding particles,

η+ = ln
p10 + p1z

m
� ln

2p10

m
,

η− = ln
p20 + p2z

m
= − ln

p20 − p2z

m
� − ln

2p20

m
.

(9.55)

Each of them depends, obviously, on the frame. For example, in the lab-
oratory frame η− = 0, η+ = ln(s/m2); in the centre-of-mass frame of the
collision η+ = −η− = 1

2 ln(s/m2), etc. preserving the invariant difference

η+ − η− � ln
4p10p20

m2
= ln

s

m2
.

The Sudakov variables are invariants too and are linked to the rapidity
as follows

k = β p′1 + αp′2 + k⊥;

β =

√
k2 + k2

⊥
s

exp
{
η − 1

2(η+ + η−)
}
,

α =

√
k2 + k2

⊥
s

exp
{
−η + 1

2(η+ + η−)
}
.

(9.56)

In terms of rapidities (9.44) simplifies. Introducing an additional k⊥ in-
tegration, we can represent the particle distribution in an exceptionally
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simple symmetric form:

σn+2 =
σ2(s)
β(0)

n+1∏
i=0

(∫
d2ki⊥
2(2π)3

∫
dηi

)
·
n+1∏
i=1

g2

[m2 + q2
i⊥]2

× 2(2π)3δ(2)

( n+1∑
i=0

ki⊥

)
δ(η0 − η+)δ(ηn+1 − η−),

(9.57a)

where the ordering of rapidities is implied,

η+ = η0 > η1 > η2 > · · · > ηn > ηn+1 = η−. (9.57b)

In (9.57a) q⊥ are transverse momenta of the vertical lines,

qi⊥ =
i−1∑
m=0

ki⊥. (9.57c)

The only dependence on rapidities is contained in the ordering condition
(9.57b); otherwise, the multi-particle distribution given by the integrand
of (9.57a) depends only on the transverse momenta.

9.3.5 Rapidity plateau in the inclusive spectrum

The homogeneity of the particle distribution in rapidity is of extreme
importance for the Regge-pole picture. How to verify this property ex-
perimentally? Let us look at the inclusive production cross section of a
particle with momentum η, k⊥. We need to integrate the cumbersome
expression (9.57a) over the variables of all particles but one,

σn+2 ≡
∫

d2k⊥ dη fn(k⊥, η), (9.58a)

and construct the sum

dσ

d2k⊥ dη
= f(k⊥, η) ≡

∑
n

fn(k⊥, η). (9.58b)

As we have just discussed above, it is normalized as follows,∑
n

∫
d2k⊥ dη fn(k⊥, η) =

∑
n

nσn+2 = n̄ · σtot, (9.59)

where n̄ is the average number of particles produced in addition to the
two leading ones. If one includes the end points η = η± in the rapidity
integration in (9.59), then n̄ will be by two units bigger and count all the
particles in the event.
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We calculate now the inclusive cross section in perturbation theory.
We take the imaginary part of the forward

scattering amplitude and choose one particle
somewhere in the middle of the ladder, not too
close in rapidity to the leaders. Above and be-
low the selected rung there will be two shorter
ladders again. Integrating over loop momenta
inside these two ladders and summing over n1

and n2 results in the appearance of the prod-
uct of the imaginary parts of two new forward
amplitudes, and we get

n1,n2

k

1

p2

s1 

s2

n1

n

ki

k 0 

kn+1

ki+1

p

22

2(2π)3f(k) =
1
j

∫
d4q

(2π)3
1

[m2 − q2]2
1

[m2 − (q − k)]2

· 2 ImA((p1 − q)2, q2) · 2 ImA((p2 + q − k)2, (q − k)2).

(9.60)

Let us evaluate the invariants entering the two blocks. Casting the mo-
menta in the Sudakov basis as

2
p

1p

qk

Im A

1

(s  )

Im A(s  )

2

q = βqp
′
1 − αqp

′
2 + q⊥,

k = β p′1 + αp′2 + k⊥, αβs = m2 + k2
⊥ ≡ m2

⊥,

we have

s1 = (p1 − q)2 = q2 + αqs + O
(
m2

)
,

s2 = (p2 + q − k)2 = (q−k)2 + (βq−β)s + O
(
m2

)
.

Let us express the longitudinal integration variables αq and βq in units of
α, β by introducing the fractions z1, z2 > 0,

αq ≡ z1 · α, (βq − β) ≡ z2 · β
(
βq = (1 + z2)β

)
;

dαq dβq
s

2
= dz1 dz2

m2
⊥

2
. (9.61)

Then the momenta squared read

−q2 ∼ αqβqs = z1(1 + z2)m2
⊥,

−(q − k)2 ∼ (αq + α)(βq − β)s = (1 + z1)z2m
2
⊥,

(9.62)

where we have combined the product αβ into the transverse mass.
The virtualities in (9.60) are limited. Therefore from (9.62) follows that

zi cannot run large. This tells us that the invariant energies of the two
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blocks are practically fixed by the parameters of the registered particle k,

s1 � αq s ≡ αs · z1, z1 ∼ 1;

s2 � (βq−β)s ≡ βs · z2, z2 ∼ 1.
(9.63)

We conclude that both blocks are in the asymptotic regime, s1, s2 � m2,
so that we can substitute the Regge pole amplitudes, see (9.40a),

p1

p2

αs

βs

k

ImApole(p1, q) = g2πβ(0)
( s1

m2

)α(0)
,

ImApole(p2, q − k) = g2πβ(0)
( s2

m2

)α(0)
.

In these blocks the s-dependence of the inclusive
cross section is hidden; neither the propagators in
(9.60) nor the phase space (9.61) contain s. The
partial energies s1 and s2 in (9.63) obviously depend
on the particle rapidity,

s1 ∼ αs = m⊥
√
s e−(η−η̄), s2 ∼ βs = m⊥

√
s eη−η̄; η̄ ≡ 1

2(η+ + η−),

but in their product this dependence disappears,

( s1

m2

s2

m2

)α(0)
=

( s

m2

)α(0)
·
(
z1z2

m2
⊥

m2

)α(0)

.

Taken together with the flux factor, j−1 � s−1, we reproduce the s-
behaviour of σtot(s) (9.40a). This being the only s-dependent ingredient
of (9.60), for the inclusive cross section we finally obtain

f(k⊥, η) = σtot(s) · φ(k2
⊥), (9.64)

where the normalized inclusive spectrum φ depends neither on s nor on
the rapidity η of the triggered particle. The spectrum density φ has the
following structure

φ(k2
⊥) ∝ (m2

⊥)α(0)+1

∫
d2q⊥

∫ ∞

0
dz1 z

α(0)
1

∫ ∞

0
dz2 z

α(0)
2

· 1
[m2+q2

⊥ + z1(1+z2)m2
⊥]2[m2+(q−k)2⊥ + (1+z1)z2m2

⊥]2
.

(9.65)

Its normalization is easy to fix using the general relation (9.59),∫ η+

η−

dη

∫
d2k⊥ f(k⊥, η) = n̄(s) · σtot = β(0) ln

s

m2
· σtot,

=⇒
∫

d2k⊥ φ(k2
⊥) = β(0).

(9.66)
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In the spirit of the Regge pole picture, the inclusive spectrum f(k⊥, η)
can be represented graphically as

f(k⊥, η) = k

2

p
1

(k )2φ

g
1
r

g
2
r

p

(9.67)

where φ plays the rôle of a new reggeon–reggeon vertex with the produc-
tion of the particle with a given k.

One can study multi-particle observables as well. Consider, for exam-
ple, the double inclusive cross section, f(k1, k2), which characterizes the
production of two particles with fixed momenta in the same event. The
consideration analogous to (9.51) which has led us to the normalization
of the one-particle inclusive cross section,

1
σtot

∫
f(k1) dΓ(k1) = n̄, (9.68a)

yields in the case of two registered particles

1
σtot

∫
dΓ(k1)dΓ(k2)f(k1, k2) = 〈n(n− 1)〉 =

〈
n2

〉
− n̄. (9.68b)

To see whether particles are correlated, one constructs the difference

C2(k1, k2) =
f(k1, k2)

σtot

− f(k1)
σtot

f(k2)
σtot

.

The phase space integral of the correlation function,∫
dΓ(k1) dΓ(k2)C2(k1, k2) =

(〈
n2

〉
− n̄2

)
− n̄,

is zero for the Poisson distribution.
We take the ladders and assemble the intermediate lines into three

Regge pole amplitudes, provided the pair energies are large. Invoking the
kinematical relation (9.50),

(s1s2s3)α(0) = sα(0)
(
m2 + k2

1⊥
)α(0)(

m2 + k2
2⊥

)α(0)
,
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we arrive at

f(k1, k2) = f(k1⊥, η1;k2⊥, η2) = sα(0)−1 gr1 φ(k2
1⊥)φ(k2

2⊥)gr2. (9.69)

In a full analogy with (9.67) the double inclusive cross section does not
depend on particle rapidities. In perturbation theory particles (with large
relative rapidity) are produced independently, C2(k2, k2) ≡ 0.

∑
n1,n2,n3

3

1

p2

s1

s2

s3

k

k

1

2

n

n1

2

n

p

=⇒
)2

g
1
r

φ(k 2k 2

φ(k 2 )1

p
1

g
2
rp2

k1

.

The fact that the inclusive cross sections do not depend on rapidity
looks very natural; in the first place, there was no ηi dependence in the
underlying multi-particle distribution (9.57) either. On the other hand, if
we have indeed a Regge pole, it could not possibly be otherwise.

We have said before that the pole is factorized. This means that after
a few steps away from the leading particle (say, descending the ladder)
the system goes over into a definite state which no longer ‘remembers’
about the initial state, about the quantum numbers of the projectile
and, in particular, about the initial momentum. But how can this be
possible?

Let us change the reference frame by moving along the collision axis
with some velocity v corresponding to Δη in rapidity. Then the distribu-
tion f(η) will shift as a whole, f → f(η + Δη). But if the particle deep
inside the ‘ladder’ has forgotten about the energies of the colliding par-
ticles p1 and p2 (factorization!), then the probability to observe the par-
ticle should not change. (We cannot say much about the edges of the
distribution, η � η±, at the moment. We will discuss this issue in what
follows.)

Thus the uniformity in rapidity – the so-called rapidity plateau – is just
the consequence of the factorization. We shall see later that homogeneity
in rapidity follows from the factorization also beyond the perturbation
theory, if the average transverse momentum of hadrons does not increase
with the energy s.
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h−h +h

Δh
dσ
dh

Fig. 9.6 Plateau in the inclusive cross section. Changing the reference frame
does not affect particle density inside the ladder.

The mean particle multiplicity increases with the width of the distri-
bution, η+ − η− = ln(s/m2), in Fig. 9.6. The height equals β(0) ∝ ḡ2; in
the perturbation theory it is small.

9.3.6 Particle distribution in the impact parameter space

The impact parameters of colliding particles do not change in the course
of the high-energy scattering. And how are the newly produced particles
distributed in the impact parameter space? Answering this question will
allow us to understand the origin of the impact parameter structure of
the pomeron amplitude (8.22):

ImApole(s,ρ12) =
1

4πα′ξ
exp

{
−(ρ1 − ρ2)2

4α′ξ

}
, ξ = ln

s

m2
. (9.70)

In Lecture 5 we speculated about the possibility of having the interaction
radius growing with energy. We saw that the random walk in the im-
pact parameter, due to long-living multi-particle fluctuations, is capable
of generating the growth of the radius characteristic for the Regge pole
exchange (9.70), namely ρ ∝ √

ξ. Now we are in a position to verify this
expectation within our perturbative model.

Take the ladder amplitude,

f(k0;k1, . . . ,kn;kn+1) = gn+2 1
m2+k2

0⊥

1
m2+(k0+k1)2⊥

· · ·

· · · 1
m2+(k1+ · · · +kn−1)2⊥

1
m2+(k1+ · · · +kn)2⊥

= gn
1

m2 + q2
1⊥

1
m2 + q2

2⊥
· · · 1

m2 + q2
n,⊥

1
m2 + q2

n+1,⊥
, (9.71)
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and Fourier-transform it to the impact parameter space,

f(ρ0,ρ1, . . . ,ρn+1) =
∫

d2k1⊥
(2π)2

· · · d
2kn⊥

(2π)2
ei

∑n+1
i=0 (ki·ρi)f(k0, . . . ,kn+1),

where the integral over the last transverse momentum, kn+1,⊥ was traded
for the momentum-conservation condition, δ2

(∑n+1
i=0 ki⊥

)
. The Fourier

exponent can be cast in terms of the transferred momenta qi,

n+1∑
i=0

ki · ρi = q1 · (ρ0−ρ1) + q2 · (ρ1−ρ2) + · · · + qn+1 · (ρn−ρn+1).

Then, given the factorized structure of (9.71) in qi, the transformed am-
plitude comes out very simple,

f(ρ0, . . .ρn+1) = gn+2ϕ(ρ0−ρ1)ϕ(ρ1−ρ2) · · ·ϕ(ρn−ρn+1), (9.72a)

ϕ(ρ) =
∫

d2q
(2π)2

eiq·ρ

m2 + q2
. (9.72b)

The probability of a given configuration will be given by |f(ρ1, . . . ,ρn)|2.
Integration of the squared amplitude over all impact parameters ρi will
obviously produce the ladder cross section σn.

Consider the probability wτ,τ ′(ρ) of finding two particles, labelled τ
and τ ′ at some distance |ρ|. This is a typical inclusive characteristic:
we don’t restrict other particles and integrate over their position in the
transverse plane. The chain structure of the amplitude (9.72a) makes it
clear that the positions of the ladder rungs with numbers i outside the
interval between the triggered particles, i /∈ [τ, τ ′], will be integrated out
freely without affecting the answer.

We can pick, for example, the last rung, τ ′ = n + 1, and since the answer
depends only on the difference of the coordinates, set ρn+1 = 0. This way
we will be studying the distance of the particle τ from the target p2.

The normalized probability takes the form

wΔ(ρ) =
1

NΔ

∫
d2ρτ+1 · · · d2ρn ϕ

2(ρ−ρτ+1)ϕ
2(ρτ+1−ρτ+2) · · ·ϕ2(ρn),

Δ = n + 1−τ ;
∫

d2ρwΔ(ρ) = 1, N ≡
∫

d2ρϕ2(ρ). (9.73)

The integrand of wΔ contains Δ factors ϕ; the number of integrations
is Δ−1. In one step from the target, τ = n, we have the probability
w1(ρ) = ϕ2(ρ) given by (9.72b). At distances larger than the characteristic
radius r0 = m−1 it falls exponentially, ϕ(ρ) ∼ exp(−|ρ|/r0). It is natural
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to expect that with the number of steps Δ increasing, the probability of
finding the particle will spread.

Indeed, (9.73) is a typical diffusion problem with ϕ2(ρ) the probability
distribution of ‘jumping’ at a distance ∼r0; the convolution (9.73) de-
scribes the result after Δ independent jumps. Whatever the form of the
initial distribution w1, after a few jumps wΔ(ρ) becomes a Gaussian. Let
us find its dispersion σΔ,

wΔ(ρ) � 1
πσ2

Δ

exp
{
− ρ2

σ2
Δ

}
, (9.74a)

which measures the average squared distance from the target,

σ2
Δ =

〈
ρ2

〉
Δ

=
∫

d2ρτ

∫
dwΔ(ρτ )

(
Δ∑

k=1

[
ρτ+k−1 − ρτ+k

])2

. (9.74b)

Since the directions of individual jump are uncorrelated, averaging the
squared sum yields simply〈

ρ2
〉
Δ

= Δ ·
〈
ρ2

〉
1
, (9.75a)〈

ρ2
〉
1

=
∫

dw1(ρ)ρ2 =
1
N

∫
d2ρϕ2(ρ) · ρ2. (9.75b)

To calculate the concrete number is of little interest. We will, instead,
relate (9.75) directly to the Regge pole trajectory.

To do that, we go back for a moment to the momentum representa-
tion. From (9.72b) it immediately follows that the Fourier image of the
probability distribution is nothing but the Regge trajectory,∫

d2ρϕ2(ρ) e−iq·ρ =
∫

d2q′

(2π)2
1

[m2 + q′2][m2 + (q′ − q)2]
= c β(q2),

so that ∫
dw1(ρ) e−iq·ρ =

β(q2)
β(0)

. (9.76a)

Now the calculation of (9.75b) is very simple:

〈
ρ2

〉
1

=
{

(i∇q)2
∫

dw1(ρ) e−iq·ρ
}

q=0

= − 4
β(0)

d

dq2
β(q2)

∣∣∣∣
q=0

= 4
α′(0)
β(0)

,

(9.76b)

where α′ = β′ denotes the derivative of the trajectory over t = −q2.
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Finally, what is the meaning of Δ in (9.75a)? The number of particles
we can evaluate as the size of the rapidity interval between the triggered
particles, the particle τ , and the target, multiplied by the average density
of the plateau:

σ2
Δ = Δ ·

〈
ρ2

〉
1

=
[
(η − η−) × β(0)

]
· 4 α′

β(0)
.

Substituting this dispersion into (9.75) and setting η = η+ we obtain ex-
actly the impact parameter profile of the vacuum pole (9.70):

wΔ(ρ12) � 1
4πα′ξ

exp
{
− ρ2

12

4α′ξ

}
= Apole(s,ρ12). (9.77)

9.3.7 Perturbative conclusions

Here we summarize the characteristic features of the inelastic processes
which determine the Regge pole in perturbation theory.

(1) Topological cross sections follow the Poisson distribution

σn(s) = σtot(s)
[n̄(s)]n

n!
e−n̄(s). (9.78a)

(2) The mean particle multiplicity grows logarithmically with energy,

n̄(s) = β(0)ξ, ξ = η+ − η− = ln
s

m2
. (9.78b)

(3) The inclusive particle spectrum is flat in rapidity (plateau) and does
not depend on the total energy,

d3n

d2k⊥dη
=

f(k2
⊥, η; s)

σtot(s)
= = φ(k2

⊥). (9.78c)

(4) The production of particles with large rapidity intervals between
them is uncorrelated,

d6n

d2k1⊥ dη1 d2k2⊥ dη2
= = φ(k2

1⊥)φ(k2
2⊥). (9.78d)
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(5) The particle density in the plateau is small,

dn

dη
=

∫
d2k⊥ φ(k2

⊥) = β(0) ∼ g2

m2
� 1. (9.78e)

(6) The energy increase of the interaction radius characteristic for the
Regge-pole exchange is due to diffusion in the impact parameter
space,

ρ0(s) ∼
√
β′(0) ξ. (9.78f)



10
Regge pole beyond perturbation theory

We address now the most interesting question, namely how much of what
we have found in the perturbation theory will survive in the real world
where the hadrons interact strongly.

The hadrons and hadron resonances lie on Regge trajectories α(t) which
relate the hadron spin σ and the mass, σ = α(m2

h). These trajectories de-
termine the asymptotic behaviour of the scattering in the crossing chan-
nel, t < 0, where the corresponding quantum numbers can be exchanged.

At the first sight, we succeeded in reggeizing the amplitude and ob-
tained the Regge pole as expected. Unfortunately, the trajectory that we
found in the perturbative gϕ3 theory,

α(q2) = −1 + ḡ2

∫
d2k⊥
2(2π)3

m2

[m2 + k2
⊥][m2 + (k − q)2⊥]

; (10.1)

t = −q2
⊥; ḡ2 =

g2

m2
,

does not possess a single particle;
as long as the coupling is small,
ḡ�1, the trajectory stays below
j = 0 at any t (at large |t| it falls
like ln t/t). In principle we could
get a bound state on the trajec-
tory, or even enforce α(0) = 1, if
we took a large coupling, ḡ2 = O(1).

4m2

j

α(t) t

−1

1

But this means moving outside the boundaries of perturbation theory
where we are helpless. The selection of diagrams based on the leading log
approximation is here not valid, since all sorts of corrections to the ladder
become essential.

258
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If we can hope at all that the realistic hadron Regge-pole picture will
be established, then only if the interaction is non-perturbative. In spite of
the impossibility to calculate the hadron trajectories, we will nevertheless
be able to describe the structure of inelastic processes that constitute the
base of the real Regge poles. And our experience with the investigation
of the reggeons in perturbation theory will help us to do that.

10.1 Basic features of multiparticle production

10.1.1 Particle density

The underlying inelastic processes in perturbation theory were domi-
nated by multiperipheral ladders. The simple reason for the ladder domi-
nance was large invariant pair energies of the neighbouring particles (see
Section 9.2):

〈si,i+1〉 = (ki + ki+1)2 � βiαi+1s ∼
βi
βi+1

m2
i+1,⊥ ∼ βi

βi+1
m � m2 . (10.2)

Particles were distributed scarcely in rapidity (see Section 9.3):

Δη = 〈ηi − ηi+1〉 � ln
〈si,i+1〉
m2

� 1
β(0)

� 1, (10.3)

and the permutation of two particles with large Δη in (9.29) produced a
significant recoil causing high virtuality of the propagator and the sup-
pression of the amplitudes with crossed lines.

With the growth of ḡ2 the decays become more frequent, the particle
density increases and the pair energies 〈si,i+1〉 decrease. The time order-
ing of successive decays starts to disappear and processes with particle
permutations cease to play the rôle of small corrections when we reach
〈si,i+1〉 ∼ m2 at ḡ2 ∼ 1.

The key question is whether the particle density will continue to grow
with the increase of the interaction strength, or will it stop and freeze at
a certain value? Will the rapidity distribution remain homogeneous and
independent of the total energy?

The problem we are dealing with reminds that of the one-dimensional
gas. We plant a few points into an interval. If there is no repulsion between
them, one can stuff in as many points as one wants. If there is, some mean
density will be established, depending on the dynamics.

Two statements can be made.
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(1) If the asymptotic behaviour is determined by the Regge pole, then
in multi-particle production processes a certain constant rapidity
density of final particles is reached.

(2) Irrespectively of the Regge pole hypothesis, a serious reason for ar-
riving at a constant density lies in the astonishing, well established
experimental fact that transverse momenta do not grow with energy
(at least for energies up to 1013 eV).

The first statement can be rigourously proven. The second one is more
intuitive but rather general too. Let us start from the latter.

10.1.2 Limited transverse momenta and rapidity plateau

In inelastic high energy hadron interactions particles are produced in two
bunches following the directions of the colliding hadrons. If you measure
the average transverse momentum of produced particles at different col-
lision energies, you will get 〈

k2
⊥
〉

= const(s). (10.4)

This is just what happens in the perturbative model that we have used
above. There the inclusive cross section decreased rapidly at large k⊥,

φ(k2
⊥) = ∼

∫
d2q⊥
(q2

⊥)4
∼ 1

k6
⊥
, k2

⊥ � m2, (10.5a)

so that the average transverse momentum was of the order of the mass,∫
d2k⊥ φ(k2

⊥) · k2
⊥∫

d2k⊥ φ(k2
⊥)

= const ·m2. (10.5b)

This is a unique feature of the gϕ3 theory which is too simplistic and
specific to have any relation to the real world.

However, as we have already stated, if e.g. fermions are included in the
scheme, the integral (10.5b) defining

〈
k2
⊥
〉

becomes logarithmically diver-
gent, and the transverse momenta increase with s. In fact, this happens
in any renormalizable quantum field theory (with the only exception of
the superconvergent gϕ3)! Thus it is the experimental situation alone that
forces us to look for a theoretical description that would respect (10.4).

Let us show now that if we want
〈
k2
⊥
〉

to be restricted, a finite particle
density must be set up in the s → ∞ limit.
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Fig. 10.1 Flow of longitudinal momenta in multiperipheral kinematics.

Recall that in perturbation theory transverse momenta were restricted
by the virtual exchange propagators qi in Fig. 10.1,

m2 − q2
i = m2 + q2

i⊥ + αqβqs = m2 + q2
i⊥ +

( ∑
j≤i

αj

)( ∑
k≥i+1

βk

)
s.

(10.6)
In the perturbative multiperipheral kinematics (9.27) all αs and βs were
strongly ordered. The longitudinal part of the virtuality,

αqβqs �
(
αi + · · ·

)(
βi+1 + · · ·

)
s � m2

i+1,⊥ · βi+1

βi
∼ m2 · βi+1

βi
, (10.7)

was then negligible, and it was for m2 to set the upper bound for the
variation of q2

i⊥ in (10.6). If we increase ḡ2, the ‘comb’ gets denser and
denser, and at ḡ2 ∼ 1 we eventually reach the situation when the neigh-
bouring βs become comparable, βi ≥ βi+1. They are still ordered, but not
strongly ordered anymore, which makes the longitudinal virtuality (10.7)
comparable with m2. This situation corresponds to 〈si,i+1〉 >∼ m2, that is
to a unit density in rapidity.

Imagine now that with the increase of s the particle density keeps grow-
ing as dn/dη = D(s). Having D(s) particles with comparable Sudakov
components inside a unit rapidity interval, (10.6) will be modified as
follows:

m2 − q2
i � q2

i⊥ + m2 +
(
D(s)α̃

)(
D(s)β̃

)
s, α̃β̃s ∼ m2. (10.8)

As a result, the transverse momentum integrals will spread much broader,
up to q2

i⊥ <∼ D2(s)m2, and produce the average k2
⊥ increasing with energy

together with the density D(s).



262 Regge pole beyond perturbation theory

(b)(a)

Fig. 10.2 Amplitude (a) and cross section (b) of the double-ladder process.

10.1.3 Large multiplicities and overlapping ladders

This does not mean, however, that in a collision of two hadrons there
will be no events with multiplicities significantly larger than the average
n̄ ∝ ln s. Even in the perturbative framework there is a simple way to
obtain a large particle density, not breaking the restrictedness of

〈
k2
⊥
〉
. Let

us draw a picture with two multiperipheral combs exchanged between the
target and projectile. Squaring the diagram of Fig. 10.2(a) we will apply
the previous analysis to the two ladders in Fig. 10.2(b) and will obtain the
final-state multiplicity ∼2n̄, and therefore the double density in rapidity,
while preserving limited transverse momenta inside each ladder.

When the interaction is strong, there is no reason for such a diagram
to be any smaller than one ladder. There is, however, something bizarre
about this picture.

Momentum distributions of particles in the two combs overlap perfectly.
Why will they not interact, especially since the interaction is, once again,
strong? On the other hand, if they do re-interact and become inseparable
from the t-channel point of view, then our previous arguments will work
linking the particle density to the average k2

⊥.

R
eg

ge
 p

ol
e

Actually, it is the t-channel we have to appeal
to for the explanation. As we know, the Regge
pole is a bound state in the t-channel.

But this implies that all the particles that
‘propagate’ in the t-channel must have bounds to
each other; there cannot be two non-interacting
groups of objects as in Fig. 10.2. In other words,
such pictures do not belong to the pole.

The diagrams like that of Fig. 10.2 have a full right to exist but, if we
believe in the pole approximation, they would better be small corrections
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describing density fluctuations on top of the underlying uniform plateau
due to the Regge pole exchange.

10.1.4 Mueller–Kancheli diagram for inclusive spectrum

Let us calculate the inclusive spectrum corresponding to the Regge pole
without appealing to the perturbation theory.

But first we make a qualitative remark to appreciate the key rôle played
by the factorization feature of the Regge pole.

No matter how complicated the underlying diagrams are, due to the
unitarity condition we have to take the imaginary part of the forward
amplitude and extract one particle with a given momentum k in the
intermediate multi-particle state,

p2

p1

=⇒ k
p2

p1

. (10.9)

What distinguishes the upper part of the
full block from the scattering amplitude of
particles p1 and k is that it is connected with
the lower part by some particle lines. If the
number of these lines increased with the total
energy s, the average transverse momentum

k

p1

p2

would also grow. Besides, if somewhere inside the process the number of
exchanges depends on the initial energy, how can there be factorization
on the l.h.s. of (10.9) which, as we have supposed, is described by the
Regge pole?

Repeating the same argument we isolate the particle k as shown in the
l.h.s. of (10.10),

u

ξ

η

0

Σ

p
1

p
2

gb

ga

gu

gd

k

a

b

cΣ
d

. (10.10)
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It is connected to the top and bottom parts of the graph in a non-trivial
manner via some particle ‘bunches’ u and d. If we additionally suppose
that the interaction between particles is local in the rapidity space, then
the central block g2

c;u,d that links the triggered particle (of type c) to the
states u and d will span a finite rapidity interval of the order of unity.

Under these circumstances the invariant energies of the top and bottom
blocks are large and we can substitute (imaginary parts of) the Regge pole
amplitudes as shown on the r.h.s. of (10.10),

∼
∑
u,d

·
[
gra eα(0)(ξ−η)gru

]
· g2

c;u,d ·
[
grd eα(0)ηgrb

]
.

Since, due to factorization, the central part of the diagram does not de-
pend on the total energy, we get the energy-independent rapidity plateau
in the inclusive spectrum,

f(k⊥, η; s) = grag
r
bs

α(0)−1 · φ(k⊥); φc(k⊥) =
∑
u,d

gru · g2
c;u,d · grd . (10.11)

The answer is represented by the Mueller–Kancheli reggeon diagram
(Gribov, 2003),

f(k⊥, η; s) =
1
s
· c

a

b

k = σab
tot · φc(k⊥) . (10.12)

To derive rigorously this important non-perturbative result, one consid-
ers the 3 → 3 scattering amplitude and continues it to complex angular
momenta. If one supposes that there are Regge poles in 2 → 2 scatter-
ing at large s, then the asymptotic behaviour of 3 → 3 amplitude in the
s1, s2 → ∞, s1s2/s = const limit is determined by the exchange of two
Regge poles i, j,

s1

s2
s

j

i

By taking the amplitude in which both i and j have vacuum quantum
numbers, one arrives at (10.12).

10.1.5 Scaling in the fragmentation regions

The independence of the inclusive particle yield of the rapidity holds, ob-
viously, if we take a particle far enough from the ends of the full rapidity
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interval, ξ±. Only then the invariant energies between the triggered par-
ticle and the incoming ones are large, and we can substitute the reggeons
for the corresponding scattering blocks.

What happens at the ends?

k

s1

Let us take a particle with large rapidity, from the
first ladder rungs on the side of the projectile. In this
case we will be able to replace only the bottom part
of the graph by a reggeon that covers a large ra-
pidity interval η − ξ− = η (in the rest frame of the
target p2):

η s2 ∼ s→∞
s1 ∼ m2

ξ− = 0

s2

s1
ξ

.

At the same time, there remains a serious dependence of the inclusive
particle yield on the ‘distance’ ξ − η,

b

c

a

0

ξ

η = eα(0)ηψ(k⊥, s1) = sα(0)grb · φac(k⊥, ξ − η). (10.13)

Only after stepping away from the incident particle by about 2 units in
rapidity, the system ‘forgets’ about the quantum numbers of the ‘initiator’
of the cascade, and the universal plateau starts developing.

Thus the inclusive spectrum consists of three regions: in addition to the
plateau, two so-called fragmentation regions appear as shown in Fig. 10.3.
They are called ‘target fragmentation’ and ‘projectile fragmentation’.

The name fragmentation carries a deep meaning. According to (10.13),
the structure of the fragmentation region of the projectile, in the interval
between ηp and ξ in Fig. 10.3, depends on the type of the projectile a and
that of the triggered particle c. Moving towards the kinematical boundary,
the inclusive particle distribution may either increase as shown by the
solid line (as in the reaction π−p → π− + X), or drop (π−p → π+ + X;
dashed). At the same time it stays independent of the total energy s and
of the type of the target b (the lower reggeon vertex grb factors out into
σab

tot). The same is true for target fragmentation, η < ηt.
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Fig. 10.3 Fragmentation regions and plateau in the inclusive spectum.

Since for fast particles

eξ−η � p1z

kz
≡ 1

x
, φac = φac(k⊥, x),

the dependence on s1 translates into the dependence on the momentum
fraction x of the incident momentum p1 that is carried by the triggered
particle k.

This feature is called the Feynman scaling or the ‘limiting fragmenta-
tion hypothesis’. In our picture it is a direct consequence of the reggeon
factorization. With the increase of s the fragmentation regions in Fig. 10.3
just separate further while preserving their specific shapes.

It is clear that the scaling must manifest itself earlier in energy than
the plateau since for the latter one needs both s1 and s2 to be sufficiently
large. Indeed, the limiting fragmentation sets in already for s of the order
of a few GeV and is well established experimentally. At the same time, a
flat plateau appears only for ξ >∼ 5 corresponding to s � 150 GeV2.

What should one expect when comparing, e.g. the inclusive reactions

p p → π+ + X and p p → π− + X ? (10.14)

When we register a particle in the fragmentation region, we take it from
the residue of the cut pomeron, and not much can be said about it.
In particular, π± production is different not only in the fragmentation
of the incident pion as we have just mentioned above, but also in the
proton fragmentation region, since the proton feels very well the difference
between π+ and π−.

However, in the plateau region quantum numbers of produced particles
must be ‘well equilibrated’. Here the particle is taken from inside the
vacuum pole itself which is ‘blind’ to I3 or to (the sign of) the strangeness
or the baryon charge. In this case the yields, e.g. of π+ and π− mesons
must be identical. The symmetry between the reactions (10.14) holds
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Fig. 10.4 Subleading corrections to the inclusive plateau density.

within a few percent. (One needs much higher energies to see protons and
antiprotons ‘equalize’.)∗

Taking into consideration subleading reggeons R that also contribute
to the forward scattering, such as ρ and P′, one can study corrections
to the asymptotics, as well as the transition between the plateau and
fragmentation regions. Summing the diagrams of Fig. 10.4 gives for the
particle density

f(k⊥, η; ξ)
σtot

= φ(k⊥) + cR1 φ
′(k⊥)e−κ(ξ−η)

+ cR2 φ
′(k⊥)e−κη + cR1 c

R
2 φ

′′(k⊥)e−κξ,

(10.15)

where κ = αP (0) − αR(0) is the shift between the pomeron intercept and
that of the subleading reggeon R, and ci are the reggeon residues nor-
malized by the pomeron one, ci = gRi /g

P
i . In reality, κ � 1

2 for the f(P′)
and ρ trajectories, see Lecture 8. This shows that the graph Fig. 10.4(c)
corresponding to the last term in (10.15) provides a ‘flat’, η-independent,
pre-asymptotic correction ∝ 1/

√
s to the plateau height, while the mag-

nitude of the corrections due to mixed graphs of Fig. 10.4(b) depends
on rapidity. It increases towards the fragmentation region, introducing a
curvature to the plateau–fragmentation transition.

Introducing an R pole into the two-particle inclusive cross section,

P

R

P

ξ

η µ e−κ η−η

η

0

, (10.16)

∗ At nucleon–nucleon energies s = 104 GeV2, the yield of antiprotons became practically equal
to that of protons, as we learnt from experiments at the heavy ion collider RHIC, Brookhaven,
NY, USA (ed.).
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results in a positive correlation (‘attraction’) between the particles since
the non-leading reggeon tends to ‘collapse’, to reduce the difference of the
rapidities.

In two different ways – by the extension of the perturbative analysis
to the region ḡ2 <∼ 1 and by the analytic continuation of the six-point
amplitude – under the assumption of the existence of the pomeron pole
P in elastic scattering we arrive at the conclusion that multi-particle
production processes at high energies have the following characteristic
features.

(1) Final state hadrons are distributed homogeneously in η, away from
the ends of the rapidity interval – the fragmentation regions,

f(k⊥, η; s) =

b

a

c = gagb φc(k⊥). (10.17a)

(2) In the fragmentation of the incident particle i, the spectrum
depends only on the relative rapidity f = f(ηi − η) – Feynman
scaling,

f(k⊥, η; s) =

b

c

a

0

ξ

η = φac(k⊥, ξ − η) gb. (10.17b)

(3) As a consequence, the average multiplicity increases logarithmically
with collision energy,

〈n〉 � β ln
s

m2
+ const . (10.17c)

Essentially, the key hypothesis that ensures the existence of the asymptot-
ically constant rapidity plateau is that the transverse momenta in hadron
interactions are limited.
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10.2 Inconsistency of the Regge pole approximation

Up to now we considered the Regge pole as the leading singularity in
the complex angular momentum plane, assuming that all the other sin-
gularities of the partial amplitude are subleading poles, sαR , that give
power-suppressed corrections and are irrelevant for the asymptotic be-
haviour.

We will show now that this assumption is contradictory.

10.2.1 Small-multiplicity events

Investigating perturbation theory, we have seen that the sum of ladder
graphs had a Regge behaviour and, consequently, could provide a basis
for the real Regge pole. Going beyond the perturbation theory, we have
found that the qualitative features of typical inelastic processes with the
production of n ∼ n̄ particles were similar to those of the multiperipheral
ladder diagrams of the perturbative theory, although at ḡ2 ∼ 1.

What about small multiplicity events? As we know, in perturbation
theory the topological cross sections σn follow the Poisson distribution

σn+2 = σtot · e−n̄ n̄
n

n!
, (10.18)

and fall fast when one takes n away from the maximum, in particular on
the left wing, n � n̄.

Elastic-scattering contribution to σtot. Let us look at the elastic scat-
tering – the first among small multiplicity processes – and calculate its
contribution to the total cross section:

σ2 =
1

16π

∫
dq2

∣∣∣∣Ael(s, q2)
s

∣∣∣∣2 =
1
2s q

p1

q
p2

p1

p2

. (10.19)

Substituting the asymptotic elastic amplitude determined by the Pomer-
anchuk pole P,

Ael(s, q2) = s

q2

= g2(t)ξα(q2)

( s

m2

)α(q2)
, α(q2) � 1 + α′q2,

we derive

σ2 �
(
g2(0)
m2

)2

· 1
32πα′ξ

, ξ = ln
s

m2
. (10.20)
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Here we have used the fact that the momentum transfer in the integral
is small since it is cut by the Regge radius, |q2| � q2

⊥ ∼ [α′ ln(s/m2)]−1,
which allowed us to expand the pomeron trajectory, α(q2) � 1 + α′q2, and
to put q2 =0 in the reggeon vertex g and in the signature factor, ξ � i.

We immediately see that the result we have just obtained is in a
marked disagreement with the expectation based on the Poisson distribu-
tion (10.18) according to which the fraction of small multiplicity events is
suppressed as a power of energy, σ2/σtot ∝ s−β0 , due to the logarithmic
increase of the average n̄ � β0 ln s. At the same time, (10.20) is suppressed
at s → ∞ only logarithmically.

10.2.2 Multiregge kinematics

This contradiction shows that the perturbative consideration fails when
the number of final-state particles is small. It is clear what happened.

When the pair energy is small, two particles interact via the Born ampli-
tude, = g2/(m2 − s12). (If we take the coupling ḡ2 ∼ 1, the exact
amplitude is more complicated but not significantly different.) With the
energy increasing, however, a new parameter appears, ln s-enhanced terms
become essential and the Born amplitude is replaced by the reggeized am-
plitude which corresponds to the ‘floating spin’ exchange in the t-channel.
The standard 1/s amplitude gets enhanced:

s−1 =⇒ s−1 · sβ(q2).

When we treated final states with a number of particles of the order of
the average multiplicity, typical pair energies,

〈ln si,i+1〉 �
ln s

n
∼ ln s

n̄
∼ (ḡ2)−1,

were such that in the interaction between neighbours we could neglect the
reggeization effects. In the elastic channel, on the contrary, we have a huge
energy s12 = s applied to two particles. In this situation we must mod-
ify the interaction amplitude by substituting the reggeon for the scalar
particle exchange,

α
1

p2

Σ
p

.
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Obviously, the same substitution must be
done also when encountering a large pair
energy inside the multiperipheral ladder.
This happens when one has a wide gap in
the rapidity distribution of the produced
particles. By making the ladder more and

α

more sparse, one can form many rapidity gaps, and ultimately arrive at
the picture with all final particles (or compact groups of particles) widely
separated in rapidity and connected by reggeons,

0

p2

p1

kn+1

kn

k1

k

si,i+1 � m2, s01s12 · · · sn,n+1 ∼ sm2n. (10.21)

Such a situation is referred to as multiregge kinematics and corresponds
to specific fluctuations in multi-particle production.

10.2.3 Multiregge amplitudes

We have to learn how various multiplicity fluctuations contribute to σtot.

Derivation of the 2 → 3 multiregge amplitude. We start with three final-
state particles. If an additional hadron is produced in the fragmentation
region of one of the colliding particles, the pomeron exchange dominates
(see Lecture 8) and we get a contribution of the order of σ2,

δσ3 ∼ σ2.

Now we take the multiregge kinematics,

s12, s23 � m2, s12 · s23 ∼ sm2.

Omitting the complex phase, we can guess the answer straight away:

p1

p2

k2

k3

α2

α1

k1
∼ g1(k1⊥)sα(t1)

12 γ(k1⊥,k3⊥)sα(t2)
23 g2(k3⊥),

t1 = (k1−p1)2, t2 = (k3−p2)2.

(10.22)



272 Regge pole beyond perturbation theory

It is not an easy task to derive rigorously the multiregge amplitudes by
analytic continuation to complex j. The amplitude has specific analyticity
in each of many sub-channels, and the signature structure of multi-point
amplitudes becomes rather involved.

k3

p1

q2

q1

k−q1
k2

p2

k1

k
k q2

For our purpose of evaluating contributions to σtot

in the s-channel, this subtlety is, however, irrelevant.
So we can rely on the perturbative analogy and derive
the 2 → 3 amplitude in the multiregge kinematics from
the ladder picture. For the final particle momenta we
write

k1 = β1p+ +
m2

1⊥
β1

p− + k1⊥,

k2 = β2p+ + α2p− + k2⊥,

k3 =
m2

3⊥
α3

p+ + α3p− + k3⊥.

For momentum transfers qi this gives

q1 � (1 − β1)p+ − k2
1⊥ + (1 − β1)m2

β1s
p− − k1⊥,

q2 � (1 − α3)p− − k2
3⊥ + (1 − α3)m2

α3s
p+ − k3⊥.

Then, due to the rapidity ordering and the momentum conservation,

β3 � β2 � β1, β3 + β2 + β1 = 1;

α1 � α2 � α3, α3 + α2 + α1 = 1,

we have (1 − β1) � β2, (1 − α3) � α2, and the longitudinal components
of the transferred momenta qi become expressed in the multiregge kine-
matics via the observed particle momentum k2:

q1 � β2p+ − k2
1⊥
s

p− − k1⊥, q2
1 � −k2

1⊥;

q2 � α2p− − k2
3⊥
s

p+ − k3⊥, q2
2 � −k2

3⊥.

We have to integrate over the loop momentum k,

k = βp+ − αp− + k⊥, d4k =
s

2
dα dβ d2k⊥,
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whose Sudakov components determine the invariant energies of the top
and bottom ‘ladders’,

s′ ≡ (p1 − k)2 = (α + γ)(1 − β)s + m2 + k2 � αs ≡ x · s12,

s′′ ≡ (p2 + k)2 = (1 − α)(β + γ)s + m2 + k2 � βs ≡ y · s23.
(10.23)

In (10.23) we have introduced momentum fractions

x = α/α2, y = β/β2, (10.24)

and used s12 = (k1 + k2)2 � α2s and s23 = (k2 + k3)2 � β2s. Finally, let
us have a look at the propagators:

m2 − (k − q1)2 = m2 + (k + k1)2⊥ + α(β − β2)s,

m2 − k2 = m2 + k2
⊥ + αβs, (10.25)

m2 − (k + q2)2 = m2 + (k − k3)2⊥ + (α− α2)βs.

The integrals over x and y converge at x ∼ y ∼ 1; therefore the invari-
ant energies (10.23) are large and we can substitute Regge poles for the
‘ladder’ amplitudes,

A(s′, q2
1; k

2, (k − q1)2) ∼ ga(q2
1) · ξα1(s

′)α1 · g̃1(q2
1; k

2, (k − q1)2),

A(s′′, q2
2; k

2, (k + q3)2) ∼ gb(q2
2) · ξα2(s

′′)α2 · g̃2(q2
2; k

2, (k + q2)2).

Here α1 = α1(q2
1) and α2 = α2(q2

2) are trajectories of the two reggeons,
ga, gb are the standard reggeon–particle vertices, and the vertices g̃ con-
tain the dependence on the virtualities of the participating particles. The
answer has the form

A2→3(s,k1⊥,k2⊥, η2) = g1(q2
1)g2(q2

2) ξα1ξα2 m
2
2⊥ · sα1

12s
α2
23 × γ,

γ = γ(k1⊥,k2⊥) =
∫

d2k⊥
2(2π)2

∫
dx dy

(2π)2i
xα1yα2

(1)(2)(3)
g̃1 g̃2;

(10.26a)

the propagators (10.25) in terms of the rescaled variables (10.24) read

(1) = m2 + (k + k1)2⊥ + x(y − 1) ·m2
2⊥ − iε,

(2) = m2 + k2
⊥ + x y ·m2

2⊥ − iε, (10.26b)

(3) = m2 + (k − k3)2⊥ + (x− 1)y ·m2
2⊥ − iε.

The concrete form of the function γ depends on details of the interaction.
Importantly, it is a function of the transverse momenta and is independent
of the energy invariants. Therefore we can look upon γ as a new reggeon–
reggeon–particle vertex.
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Multiregge amplitudes 2 → 2 + n. The generalization of (10.26) to the
case of many particles separated by large rapidity gaps is straightforward.
For the amplitude A2→2+n in the multi-regge kinematics (10.21) we can
write (modulo the complex phase factor)

k0

kn

kn

k1

b

a
q

1

q
n

q
2 ∼ ga(q2

1)s
α1
01γ12s

α2
12 · · · γn,n+1s

αn+1

n,n+1gb(q
2
n+1), (10.27)

where each subscript in the trajectory αi and the vertex γi,i+1 marks
the dependence on the corresponding transferred transverse momentum,
αi = α(−q2

i⊥), and γi,i+1 = γ(qi⊥,qi+1⊥).

Contribution to σ3 from the multiregge kinematics. Let us estimate the
2 → 3 cross section in the kinematical region (10.23). To begin with, the
three-particle phase space volume is

dΓ3 =
d4k1

(2π)4
d4k3

(2π)4

3∏
i=1

[
2πδ+(m2 − k2

i )
]

=
dβ1

β1

dα3

α3

d2k1⊥
2(2π)3

d2k3⊥
2(2π)3

2πδ+(m2 + k2
2⊥ − α2β2s)

� dη

s

d2k1⊥ d2k3⊥
4(2π)5

; dη =
dβ2

β2
.

(10.28)

Integrating the multiregge amplitude squared (10.26),

σ3 =
1
J

∫
dΓ3|A2→3|2 ,

and omitting the constant normalization factor, we have

σ3 ∼ s2(α(0)−1)

∫
dη

∫
dk2

1⊥ e−2α′(ξ−η)k2
1⊥

∫
dk2

3⊥ e−2α′η k2
3⊥

∼
∫ ξ−η0

η0

dη

η (ξ − η)
∼ ln ξ

ξ
� ln ln s

ln s
; 1 <∼ η0 � ξ.

(10.29)

Although this estimate is valid only in an academic limit ξ � 1, it demon-
strates that, at least formally, σ3 is enhanced as compared to the elastic
contribution σ2. The origin of this slight enhancement is a broad integra-
tion over rapidity of the particle k2 from the plateau region.
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10.2.4 Multiplicity fluctuations and s-channel unitarity

The study of small multiplicities, n � n̄, is a test of the Pomeranchuk
pole hypothesis. If multiplicity fluctuations are weak and the pomeron
is ‘resistant’ to the s-channel unitarity, we have a self-consistence theory
at our disposal. If, however, fluctuations are strong and contribute ‘too
much’ to σtot, then we have either to abandon altogether the initial idea
that the pole is the rightmost singularity in the j plane, or to review the
concept of P being an isolated singularity.

So, having started from the vacuum pole which from the s-channel point
of view corresponds to an uniform particle distribution in rapidity,

, (10.30a)

we are driven by the unitarity relation in the s-channel to accept the
existence of the processes that are difficult to accommodate into the pure
Regge pole model. Thus, fluctuations in multi-particle production with
large gaps in rapidity have led us to reggeize the amplitude by sending a
reggeon between the two neighbouring particles with a large pair energy,

. (10.30b)

This resulted in the cross section graphs containing the two poles which
coexist, from the t-channel viewpoint. (Thick lines mark a cut-through P.)

By broadening the gap we eventually arrive at the elastic scattering

. (10.30c)

As we have seen above, small multiplicity fluctuations contribute signif-
icantly to σtot; their contributions are suppressed only logarithmically in
s, while we would expect a power smallness if there were only poles in the
complex angular momentum plane.

The graphs with two ‘parallel’ reggeons, (10.30b) and (10.30c), make
one think of branch-cut singularities, by an analogy with threshold branch
cuts for usual particles. Another argument in favour of reggeon loops
comes from the ‘opposite side’ – high multiplicity fluctuations. Indeed, we
can imagine two multiperipheral cascades which will give rise to doubled
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plateau density,

. (10.30d)

In the cross section this corresponds again to a picture like (10.30b) but
this time with all the pomerons being cut, P → 2 ImP.

You may often hear people saying that the picture of multiple hadron
production is very similar to statistics of a fluctuating gas. Literally, this
analogy is wrong. The probability of finding in a gas just two molecules
is exponentially small; in our case it cannot be small due to the optical
theorem! It is the special rôle of elastic scattering that forces us to separate
quasi-diffractive (fragmentation) processes from multi-particle production
with n ∼ n̄. It is the latter for which the gas analogy works.

There are certain fluctuations that signal a catastrophic instability of
our system. Let us discuss one particular very important fluctuation,

. (10.30e)

10.2.5 Inelastic diffraction: triple-pomeron limit

This is the process in which one of the colliding particles scatters elasti-
cally, while the second one breaks up into a many-particle state. It may
be referred to as the high-mass inelastic diffraction.

The reason for calling this process ‘important’ is, in the first place, its
experimental accessibility.

It is not simple to investigate hadron collision events with rapidity gaps
experimentally. One has to measure many particles (or rather their ab-
sence) to make sure that the event contains indeed rapidity gap(s). The
process (10.30e) offers a much simpler option. Indeed, it is sufficient to
register the leading scattered particle with sufficiently large energy, close
to the initial one. Then the energy conservation law will ensure that there
are no other energetic particles in the event, and we will get a gap in
rapidity. Thus this process is a particular case of inclusive measurement
with triggering of the particle from the very top, close to the kinematical
boundary.
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a aq
p1 p

k
s2

s1

b

p2

Let us look into kinematics. We choose for clarity
the laboratory frame of the target, p2 = 0. Then

s = (p1 + p2)2 � 2mp10 � m2,

s1 = (q + p2)2 � 2p2q = 2mq0 � m2.
(10.31)

The invariant mass of the diffractive hadron system, M2 = s1, is deter-
mined by the energy transferred from the projectile to excite the target,

s1 =
q0
p10

s ≡ (1 − x)s, (10.32a)

where x = p′0/p10 is the energy fraction preserved by the scattered parti-
cle a. Practically the whole energy q0 transferred to the target fragmen-
tation block by the reggeon is carried by the fastest particle, the one on
the top of the ‘ladder’, k0 � q0. This allows us to evaluate the invariant
energy s2 corresponding to the size of the gap:

s2 = (p′ + k)2 � 2(p′k) � p0 ·
m2 + k2

⊥
k0

� m2
⊥
p0

q0
=

m2
⊥

1 − x
. (10.32b)

By choosing x in the interval

m2

s
� 1 − x � 1 (10.33)

we have the multiregge kinematics with s1 and s2 being both large, and

q2 = −p′2
⊥
x

− m2(1 − x)2

x
� −p′2

⊥.

We square the amplitude and, replacing the target fragmentation block
summed over all possible hadron states by 2 ImP, arrive at the graph
shown in Fig. 10.5. This is called the triple-reggeon limit, or 3P since all
three reggeons are pomerons in our case.

Substituting the pomeron trajectory, αP(q2) = 1 + α′q2, and integrat-
ing over q2 and x we get the probability of these fluctuations increasing
with the energy:

σ3P

σtot

∝ ln ln
s

m2
. (10.34)

We arrive at a contradiction: we supposed that σtot is asymptotically
constant, and found a part of it that grows infinitely.
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s1

s2
q

p

p2

p1

=⇒
s2

s1
2 Im P

ga

PP

ga

r (q2)

gb

Fig. 10.5 Triple-regge limit for high-mass inelastic diffraction.

Let us calculate the contribution of the diagram of Fig. 10.5 to the total
cross section. We have

σ3P =
1
J

∫
d3p′

2p′0(2π)3
g2
a(q

2)s2α(q2)
2 r(q2)2sα(0)

1 gb(0), J = 2s, (10.35a)

where ga, gb are couplings of P to the incoming particles ‘a’ and ‘b’, and
r is a new three-reggeon vertex function. We did not write the signature
factors |ξα|2, because at small q2 which dominate the integral, ξP = i +
cot 1

2πα(q2) � i.
Invoking (10.32) we absorb the factor m2

⊥ from (10.32b) into redefining
the vertex r to write

σ3P =
gb(0)sα(0)−1

16π2

∫
dx

x

∫
d2q⊥
π

g2
a(q

2) · r(q2) · (1 − x)α(0)−2α(q2)

� σtot

16π2 ga(0)

∫
dx

1 − x

∫
dq2

⊥(1 − x)2α
′q2

⊥g2
a(q

2) · r(q2)

=
σtot

32π2

ga(0)
α′ · r(0)

∫
dy

y
, y = ln

1
1 − x

. (10.35b)

Here we have extracted from under the integral the values of vertices ga
and r at q2 = −q2

⊥ = 0, since the essential transverse momenta are small,
due to the shrinkage of the diffractive cone,

〈
q2
⊥
〉
∼ (α′y)−1 � m2, at

large y values. The integration over x in the multi-regge region (10.33)
gives the catastrophic result announced above in (10.34):

σ3P

σtot

= r(0) · ga(0)
32π2α′ · ln ln

s

m2
, ln

s

m2
� 1. (10.36)

How can the apparent contradiction, σ3P > σtot in the s → ∞ limit
be handled? Let us examine the region of x in which the dangerous
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contribution has been accumulated. Actual integration limits are

s1 = (1 − x)s > Λm2 � m2, s2 ∼ m2

1 − x
> Λm2 � m2,

where Λ is a large number. First of all, in order to apply the reggeon
amplitudes to both the top and the bottom parts of the diagram, we need
to take at least Λ >∼ 10 which corresponds to stepping by about 2 units
in rapidity from the projectile and the target (we know that only then
the plateau starts emerging). So, we have to ‘renormalize’ the argument
of the logarithm; conservatively,

ln
s

m2
=⇒ ln

s

100m2
.

Secondly, when we evaluated the integral over q⊥ we have ignored the size
proper of the proton, embedded in ga(q2). Hence, another modification:

ln ln s =⇒ ln
(
R2

α′ + ln s

)
,

R2

α′
P

∼ 4.

Moreover, the factor before ln ln in (10.36) is numerically small. At present
energies, the inelastic diffraction constitutes less than 10% of σtot. And
ln ln is hardly a function: it is indistinguishable from a constant. A real
contradiction may appear only at fantastically high energies; in fact we
have only ln ln s = 5 when s equals the mass squared of the Universe!

However, in order to accept this as an excuse we need to have a theory
in which the mass of the Universe enters and solves this ln ln phenomenon,
which option is likely to belong to the domain of science fiction.

Therefore we must view this apparent contradiction as a serious fault
of the theory we are constructing.

Fortunately, there is a more practical way to resolve the problem. In the
three-reggeon diagram we have, in fact, introduced a new notion, that of
the reggeon interaction vertex r(q2). We have supposed that the value r(0)
is finite. Further, we shall see that the vanishing of reggeon interaction
vertices at q⊥ = 0 in one of the possible solutions of the problem of taming
multiplicity fluctuations.

In Lecture 15 we will return to the multiplicity fluctuation pattern
and will discuss physical reasons for inelastic processes to vanish in the
forward direction, q⊥ = 0.

10.2.6 Multiparticle production with large rapidity gaps

High-mass inelastic diffraction is not the only multiplicity fluctuation
going wild. Another example, due to K. Ter-Martirosyan, builds up on
the multi-regge amplitudes (10.27) that describe the production of many
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particles with large rapidity gaps between them.

k0

kn 1

kn

k1

b

a
q

1

qn 1

q2 ∝ gas
α1
01γ12s

α2
12 · · · γn,n+1s

αn+1

n,n+1gb.

The cross section σ2→2+n can be calculated in the same way as for ordi-
nary multiperipheral ladders. There is one essential difference: the Regge-
dependence of the ladder cell amplitude on the pair energy has to be taken
into account

Mi ∼ ξαi
s
α(q2

i )
i−1,i ∼ s

α(0)
i−1,i e

−α′q2
i⊥yi ; yi = ln

si−1,i

m2
, i = 1, . . . , n + 1.

(10.37)

Here yi is the relative rapidity of two particles i− 1 and i, which we will
treat as large, yi � 1. The cross section contains n + 1 integrals over
transverse momenta qi, i = 1, . . . , n + 1. These integrals are cut from
above by Regge radii at sufficiently high energies si,i+1:

q2
i⊥ <∼

1
α′ ln si,i+1

=
1
α′y

� m2, (10.38)

therefore we put qi⊥ = 0 in the vertices, g and γi,i+1, as we have done
before in a number of occasions. Squaring the matrix element (10.37) and
integrating over qi, we get the product of inverse relative rapidities. We
are left with n integrations over ordered rapidities of final state particles
ki, i = 1, . . . , n, which we represent as n + 1 independent integrals over
rapidity differences, yi, satisfying the kinematical relation (10.21):

δσn
σtot

∼ γn(0, 0)
(2α′)n+1

∫ ξ

ln Λ

dy1 dy2 · · · dyn+1

y1y2 · · · yn+1
δ

(
n+1∑
i=1

yi − ξ

)
. (10.39)

Here we have combined the product
∏

s
α(0)
i−1,i = sα(0) and the vertices

ga,b(0) into the total cross section and put ln Λ for the lower limits of
rapidity integrals to justify the usage of the multi-reggeon approximation
(see the discussion above). As far as the formal s → ∞ asymptote is con-
cerned, the leading contribution comes from the configurations when one
of variables is much larger than the rest, y(k) � ξ � yi, i �= k, and we de-
rive the answer for the fraction of the cross section due to the production
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of a sparse n-particle final state in the multi-regge kinematics:

δσn
σtot

� const · (n + 1)
(ln ξ)n

ξ
. (10.40a)

(Importantly, there is no n! in the denominator.) Our derivation implied

ln〈yi〉 � ln
ξ

n
� ln

n̄

n
� R2

α′ � 4,

so we better ‘soften’ our result (10.40a) as follows,

δσn
σtot

� const · n + 1
ξ

(
ln

ξ

n

)n

. (10.40b)

Still, the formal contradiction is there. Let us demonstrate that at s → ∞
we can always find such a ‘sparse ladder’ the cross section of which grows
arbitrarily large. Expressing n as a fraction of the mean multiplicity, n ≡
ξ/F , lnF � 1, and keeping F fixed, we obtain

δσβ〈n〉
σtot

∼ const
F

(lnF )ξ/F ∝ s(ln lnF )/F ,

that is, the fraction of events increasing as a (very small but finite) power
of energy! Again, we arrive at a contradiction with the pomeron pole
hypothesis: multiplicity fluctuations tend to ruin it (unless in (10.39) the
pomeron–pomeron interaction vertex vanishes in the origin, γ(0, 0) = 0).

10.3 Reggeon branch cuts and their rôle

What is the composition of the total cross section in our modified picture?

++ + . . .++

(10.41)
In addition to the multiperipheral ‘ladders’ with n ∼ n̄(s), we have the
contribution of the (quasi)elastic scattering, as well as a series of terms
describing multiparticle production with large rapidity gaps between
(groups of) hadrons.

We have introduced the pomeron pole as the rightmost singularity
in the vacuum channel. This implied that the total cross section was
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asymptotically given, with power accuracy, by the imaginary part of the
pomeron amplitude,

σtot → ImAP(s, 0) =
1
2

×
(

1 + O
(

1
sa

))
, s → ∞. (10.42a)

From the perturbation theory we learned that the ‘s-channel content’ of
the pomeron pole corresponds to the first term of (10.41),

. (10.42b)

Where in (10.42a) are then the logarithmically behaving ‘fluctuation’
terms that are present in (10.41)? To add an insult to injury, according
to the logic that we have advocated before, the Regge pole must accom-
modate the structures that are dynamically bound in the t-channel; but
the just-mentioned missing terms hardly satisfy this criterion, especially
the first – elastic – one. There are two possible escapes:

(1) σtot in (10.41) differs from the multiperipheral model (10.42b) by
a sum of positive terms. If we were to rescue the pure Regge pole
approximation, we could imagine that the prescription (10.42b) was
simply inaccurate, and in fact

AP
exact = AP

ladder − Δ,

with Δ a small correction compensating the unwanted contributions
in the optical theorem (10.41).

(2) An alternative possibility is that we made a mistake not in identi-
fying the pomeron pole with the characteristic rapidity plateau as
in (10.42b) but in the very assumption that the pole is the only
significant contributor to the full amplitude, even in the s → ∞
limit:

Aexact = AP − Δ;
Δ
AP

∼ 1
ln s

.

The second option – the only viable one, as it turns out – implies that the
pomeron is not the leading singularity; more accurately, is not an isolated
leading singularity. To legalize the existence of the corrections to ImP
that are suppressed only logarithmically in s in the unitarity condition,
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there must exist other singularities in the j-plane, weaker than the pole,
positioned at the same point j = 1 at t = 0.

10.3.1 Enter reggeon branchings

Two-pomeron correction to the elastic amplitude. Let us examine the first
correction to the elastic scattering amplitude due to s-channel iteration
of the pomeron exchange:

2 Im = q1+   12q

p1 p1+q

q1− 1
2q

p2

=
∫

d4q1
(2π)4

g2(t1)g2(t2)ξα(t1)s
α(t1) · ξ∗α(t2)

sα(t2)

· 2πδ((p1 − q1)2 −m2)2πδ((p2 + q1)2 −m2),

(10.43)

where

t1 � −(q1 − 1
2q)2⊥, t2 � −(q1 + 1

2q)2⊥.

A simple calculation yields

� s2α(t/4)−1g4|ξα|2
∫

d2q1⊥
2(2π)2

exp
{
−2α′q2

1⊥ · ln s
}

� g4(t/4)
∣∣ξα(t/4)

∣∣2 s2α(t/4)−1

16π α′ ln s
.

(10.44)

Here we substituted t1 = t2 = t/4 in the pre-exponential factors since the
transverse momentum integral at large ξ = ln s selects small q1⊥. Taking
the forward scattering amplitude, t � −q2

⊥= 0, we recover the correction
σ2 that we have calculated above in (10.20). The energy exponent of
(10.44) corresponds to a new singularity whose trajectory is

j2 = 2α(t/4) − 1 � 1 + 1
2α

′t. (10.45)

It has a twice-smaller slope than the pomeron; at t = 0 the position of this
new singularity coincides with that of the pomeron. The pre-exponential
factor (ln s)−1 in (10.44) shows that this is not a pole but a branch cut in
the angular momentum plane.

Multi-reggeon moving branch point singularities. In the next lecture we
will demonstrate that the necessity of branch cuts in the complex angular
momentum plane follows directly from the t-channel. They are driven by
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...α(t1) α(tn) 

Regge poles. Once a Regge pole α(t) is introduced
into the theory, it generates a series of moving
branch-point singularities with trajectories

jn(t) = nα

(
t

n2

)
− n + 1, (10.46)

the expression generalizing (10.45) to all n and orig-
inating from the exchange of n reggeons in the t-
channel.

Historical remark, and a lesson. The question of branch-point singular-
ities (branchings) has a curious history. First, people thought that such
angular momentum singularities cannot exist, which is the case in the
non-relativistic quantum mechanics. Then it was understood that they
must be present. Searching for a model for branching, a diagram of
Fig. 10.6(a) was suggested based on the perturbative picture of a pole
as a ladder.

(b)(a)

Fig. 10.6 The diagram (a) falls with s much faster than its imaginary part (b).

It was soon realized, however, that with s increasing this diagram is
falling fast, as a power of s. This looks puzzling, since we have just seen
above that its imaginary part shown in Fig. 10.6(b) is rather large and
models the two-reggeon branching very well indeed!

The point is, the diagram (a) has many cuts in s, many ‘imaginary
parts’, so to say, while we have selected in (b) one specific cut. In the full
sum of all possible discontinuities of the diagram (a) different ‘imaginary
parts’ cancel, making the picture with parallel ladders a wrong model for
the branching. We will discuss this issue in detail in Lecture 12 where we
will understand the physical reason behind this cancellation and construct
the true s-channel image of the t-channel branch-point singularity.

But already at this stage there is an important message to take on
board. When we have been discussing multiplicity fluctuations, we cut the
diagrams for σtot in (10.41) ‘in the middle’, and avoided cutting through
reggeons (where possible). At the same time, the reggeon amplitudes have



10.3 Reggeon branch cuts and their rôle 285

a non-trivial complexity themselves. In the complete theory we must take
these alternative discontinuities into full account. We had already a hint
in this direction when we saw how different cuts of the same graph with
a pomeron loop produced a rapidity-gap event, (10.30b), and a double
multiplicity fluctuation, (10.30d).

10.3.2 Branchings in non-vacuum and vacuum channels

Let us look at the behaviour of (10.46) at large n and fixed t,

jn(t) � (n− 1)(α(0) − 1) + α(0), n → ∞.

There are three qualitatively different patterns.

α(0)<1. High order branchings move to the left and become insignifi-
cant.

α(0)>1. No-go: jn → +∞ violates analyticity/causality: the corre-
sponding A(s) would grow faster than any power of energy.†

α(0)=1. In this exceptional case branch cuts accumulate at j = 1 and
are all important. (From the consideration of s-channel phe-
nomena, we already learnt that they have to be.)

The first case applies to all Regge trajectories but P.
A remarkable link between t-channel resonances and the asymptotic

energy behaviour of corresponding scattering amplitudes in the s-channel
stay intact after we take into account reggeon branchings.

For example, at large s the charge exchange reaction
π−p → π0n is dominated by the ρ Regge pole having
trajectory β(0) � 0.5. Repeating such a reggeon in the
t channel produces a 1/

√
s suppressed correction:

j2(0) − j1(0) = (2β(0)−1) − β(0) = −(1−β(0)) � 0.5.

ρ

p

π0

n

π−

Another possibility is to send a pomeron in parallel to the ρ pole. In this

Pρ

np

π− π0
case we get

j2(0) = α(0) + β(0) − 1 = β(0).

The power falloff of the amplitude remains the same.
However, the scattering angle dependence at small t < 0
will be affected by branching corrections.

† Dynamics of t-channel branch cuts almost contains the Froissart theorem!
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t

11 jj

t< 0>0

Fig. 10.7 Relative position of the pomeron pole and branchings in j-plane.

Return to the most interesting vacuum channel case, α(0) = 1. Let us
draw what happens in the j-plane (Fig. 10.7). If t > 0, branchings are on
the left from the pole and accumulate at j = 1. In the physical region of
the s-channel, t < 0, the picture looks dramatic: the pole is no longer the
rightmost singularity. This means that pomeron branchings are likely to
seriously modify the t-dependence of the scattering amplitude.

As for the total cross section, here a difficult story starts. Prior to
addressing the problem we must develop adequate means first. To connect
colliding particles by parallel reggeons as we did before is not enough. We
need to learn how reggeons interact among themselves.

This is exactly what happens, from the t-channel point of view, in
high-mass inelastic diffraction and multi-gap events, in particular, those
very fluctuations that we found most damaging for self-consistency of the
pomeron picture:

λr

One possibility is that branchings are significant to such an extent that
they turn out to play the dominant rôle, changing the energy behaviour
of the cross section, of the plateau density, etc. (the so-called ‘strong
coupling’ regime).

Another possible scenario preserves the asymptotic constancy of σtot.
One can construct a self-consistent theory if all effective reggeon inter-
action vertices (r, λ, etc.) vanish when the transverse momenta flowing
through participating reggeons tend to zero. In this (‘weak coupling’) so-
lution pomeron branchings, and multiplicity fluctuations along with them,
are kept under control as corrections. A recently found unexpected con-
sequence of this theory runs as follows: if total cross sections are asymp-
totically constant, they must tend to one and the same constant for all
scattering processes!

But first we have to return to the t-channel and to complex angular
momenta.
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We considered strong interactions in the framework of the Regge poles;
this picture applies, by the way, to weak and electromagnetic interactions
as well.

It turns out, however, that the Regge poles are not enough to describe
consistently the high-energy behaviour of scattering amplitudes. To see
why and how more complicated singularities – branch cuts – emerge in
the �-plane, let us recall, what we learned about the possible energy de-
pendence of two-particle scattering amplitudes at various t.

At t > 0 the elastic amplitude may grow as a power sα(t) with α(t) > 1.
What do we know about the vacuum trajectory α(t)? Below the t-channel
threshold, t = 4μ2, the trajectory is real and decreases with t decreasing.
Moreover, the Froissart theorem taught us that at t = 0 the ampitude
cannot grow with energy faster than

A(s, t = 0) = < s ln2 s.

What happens at negative t? In non-relativistic quantum mechanics
α(t) passes through integer points −1,−2, . . . and decreases indefinitely
with t decreasing. Thus, in quantum mechanics we see no restrictions on
the rate of the energy falloff of the amplitude: for large angles, |t| ∼ s, it
can fall arbitrarily fast with s increasing.

How about relativistic theory?
Recall that in fact we have already faced some difficulty with the Regge-

pole picture. Indeed, we expected that the corrections to the leading vac-
uum pole (pomeron, P) will be coming from other Regge poles and will be
relatively suppressed as a power of s. However, having analysed contribu-
tions to the total cross section of various particle production topologies,
we found in the r.h.s. of the equation for ImP logarithmically behaving

287
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contributions due to production processes of a few particles with large
rapidity intervals between them:

const

+ . . .++

[n ~ ln s nlnl] s/ ln s1/ ln s

One cannot state a priori that these logarithmic terms will not sum up
into a power. Still, this discrepancy is worrisome and worth bearing in
mind.

Strangely enough, the apparent logarithmic nature of the corrections
and the question of the possible falloff of the elastic amplitude turned out
to be closely related.

11.1 �=−1 and restriction on the amplitude
falloff with energy

Let us return to the partial wave amplitude with positive signature:

ϕ�(t) =
2
π

∫ ∞

z0

dz

(t− 4μ2)�
Q�(z)A1(z, t).

We found simple analytic properties in t for ϕ�(t) at t > 4μ2; when t < 0,
an additional complexity appeared:

Δϕ� = −
∫ −1

z0

dz

(t− 4μ2)�
P�(z)A1(z, t) ; t1 < t < 0.

t 

t1 t = 4μ2

ϕ (t) 

Moving further down in t we hit the
third spectral function, where the ‘imagi-
nary part’ A1 became itself complex (see
Fig. 7.3 on page 167). Then the expression
for the discontinuity changed:

Δϕ� = −
∫ −1

z0

dz

(t−4μ2)�
P�(z)A∗

1(z, t) +
2
π

∫ z2

z1

dz

(t−4μ2)�
Q�(z)ρsu.

(11.1)

11.1.1 Partial waves have poles at � = −n

At the first glance the additional term that appeared in the r.h.s. of (11.1)
looks innocent. Indeed, although Q� has poles at negative integer � = −n,
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n > 0, in the expression for the amplitude A,

A(s, t) =
i

4

∫
d�

sinπ�
ϕ�(t) · (t− 4μ2)�[P�(−z) + P�(z)], (11.2)

the Legendre function P� has zeros in the same points,

P�(z) �
Γ(� + 1

2)√
πΓ(� + 1)

(2z)�, |z| → ∞. (11.3)

In fact, if we chose the Mellin transformation instead of the Legendre
one (with z� in place of P�), the poles would not appear at all. So these
poles look to be artefacts of the passage from the amplitude A(s, t) to the
partial wave, ϕ�(t). It would have been the case if not for the t-channel
unitarity: recall that the Legendre transformation was special in the sense
that it diagonalized the two-particle unitarity condition.

11.1.2 Such poles contradict unitarity

In the interval between two- and four-pion thresholds, 4μ2 < t < 16μ2,
the partial wave is bounded from above by the unitarity condition:

Δϕ� = ρ� ϕ�ϕ
∗
� =⇒ |ϕ�| <

1
2ρ�

. (11.4)

How could its discontinuity then become infinite?
In order to appreciate that it is not easy for the amplitude to do so, let

us turn to the dispersion relation

ϕ�(t) =
1
π

∫ ∞

4μ2

dt′

t′ − t
Imϕ�(t′) +

1
π

∫ t0

−∞

dt′

t′ − t
δϕ�(t′). (11.5)

If δϕ� → ∞ at some �, the same is true for ϕ�(t) together with its dis-
continuity (unless there are special cancellations in the second integral in
(11.5)).

Note that the contribution of the right cut (the first integral) is finite.
Moreover, it could not possibly cancel the contribution of the left cut
identically in t, since their analytic properties are different.

What could be a way out?

(1) In principle, the integral of ρ(s, u) could turn to zero at � = −n.
This is, however, not the case, since the double spectral function is
positively definite, at least near the edge of the hyperbola.

(2) Taking into account multiparticle unitarity conditions would not
help us either since, once again,the contribution coming from the
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next threshold at t = 16μ2 has specific analytic features, and there-
fore it cannot cancel the pole identically, at arbitrary t, in the in-
terval 4μ2 < t < 16μ2.

Thus, the pole is there. Although the amplitude A itself is finite, the
corresponding partial wave ϕ acquires the pole which would have been
but an artefact of rewriting (P� in place of z�) if not for the unitarity
condition.

How could we resolve this real contradiction with unitarity?

11.1.3 Condensing poles (quantum-mechanical analogy)

Let us recall the meaning of the singularities of the amplitude. As we
have discussed in Lecture 7, singularities of t-channel particle exchange
amplitudes determined the s-channel ‘potential’,

t

s

Correspondingly, singularities in s (and u)

s
t

have to be understood as determining the interaction potential in the
t-channel. The existence of the third spectral function ρsu reflects the
relativistic nature of the t-channel ‘potential’. It is because of ρsu that
our ‘potential’ becomes infinitely large when � → −1.
In NQM, potential scattering in the t-channel
is described by the diagrams with successive
particle exchange. The lines do not cross since
the non-relativistic interaction is instantaneous;
there is no retardation. There is only elastic
scattering so at positive t we will have a single
cut starting from t = 4μ2. The partial wave

t

f�(t) will have a left cut too, with a rather complicated structure, reflecting
multiple singularities of the amplitude in s, mimicking the ‘potential’.
However, the term with Q� in Δϕ� will be absent since in non-relativistic
quantum mechanics ρsu ≡ 0, so that the pole in � will be absent as well.
In spite of this, we shall stick to NQM and try to imitate the catastrophic
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growth of the contribution of the left cut in the � → −1 limit simply by
increasing the magnitude of the non-relativistic potential. In so doing, the
contradiction has to disappear, since a potential in quantum mechanics
is arbitrary, and the answer must remain reasonable.

When V increases (attraction), sooner or later a level (bound state)
appears from beneath the right cut. With the increase of the potential
the number of levels and their binding energies are growing. In general,
to the expression (11.5) for ϕ� a sum over bound states has to be added:

ϕ� =
1
π

∫
Imϕ� +

1
π

∫
δϕ� +

∑ Cn

tn − t
.

It is this sum that compensates the growing contribution of the left cut
(δϕ�) while the contribution of the right cut (Imϕ�) and ϕ� itself stay
finite. In the limit V → ∞ the number of poles becomes infinite, and they
eventually fill the t-axis below the threshold (t < t0). Replacing the sum
over poles by an integral,

∑
n

Cn

tn − t

V→∞−→
∫ t0

−∞

χ(t′) dt′

t′ − t
,

we will have, in the main part, χ(t′) ≈ −δϕ(t′) as V → ∞.
This would have been the solution of the problem of infinitely large

potential (which is our model for the singularity at � → −1 of the left-cut
contribution) if there were no multiparticle thresholds and related cuts.

11.1.4 Another possibility: moving branch points

In the relativistic theory there are inelastic sheets. Their existence pro-
vides another way out of the contradiction with unitarity. Instead of accu-
mulating infinitely many poles, inelastic sheets may allow us to change the
very analytic properties of the partial wave ϕ� instead. Indeed, we have
arrived at the conclusion that the partial wave is bounded from above by
equating in (11.4) its discontinuity Δϕ� with the imaginary part, Imϕ�:

Δtϕ�(t) = ρ�|ϕ�(t)|2; (11.6)

Δtϕ�(t) = Imϕ�(t) =⇒ |Imϕ�| ≤ |ϕ�| < const.

Imagine now that from beneath
a multiparticle sheet a branch point
singularity emerged and moved to
the left along the real axis. Then in

t 16μ2 4μ2 

ϕ (t)

the two-particle threshold region 4μ2 < t < 16μ2 the discontinuity does
not coincide with the imaginary part anymore, Δϕ �= Imϕ, and no re-
striction on the magnitude of ϕ� would follow from (11.6).
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We shall explore this possibility later and will see that in the interesting
cases it is moving branchings that resolve our contradiction. For the time
being let us return to the first – pole – scenario: with � → −1 we have
more and more poles emerging on the physical sheet and passing through
a given point t,

tn(�) < t , n = 1, 2, . . . , N ; N → ∞ with � → −1.

In the �-plane this picture corresponds to the poles condensing towards
� = −1 for any fixed t:

Thus, due to the unitarity condition, the pole in the partial wave ϕ�

at � = −1 transforms into an essential singularity. I have demonstrated
this, using quantum-mechanical analogy. Instead, one could just solve the
integral equation for the unitarity condition (presuming that the inelastic
cuts are not ‘catastrophic’) to come to the same conclusion rigourously.

From the fact that the point � = −1 is an essential singularity in the
Sommerfeld–Watson integral,

A(s, t) ∝
∫

d�

sinπ�
ϕ�(t)

[
(−s)� + (s)�

]
,

it immediately follows that for any t

|A(s, t)| > s−1−ε , ε > 0. (11.7)

We conclude that the amplitude A(s, t) cannot decrease faster than 1/s.

11.1.5 The origin of the � = −1 singularity

Let us have a closer look: how did it happen that � = −1 turned out to
be a singular point and what was the rôle of the third spectral function
ρsu in this.

Consider the original amplitude A(s, t) at negative t-values. Since I am
interested in the possibility of A decreasing, I can write the dispersion
relation without subtractions:

A(s, t) =
1
π

∫ ∞

4μ2

ds′

s′ − s
A1(s′, t) +

1
π

∫ ∞

4μ2

du′

u′ − u
A2(u′, t). (11.8)
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Let us consider a ‘good’ amplitude such that

A1, A2, A3 <
1
s
.

For t > t1 the imaginary part ImA was due to (iε) in the denominators
in (11.8): ImA = A1 for s > 4μ2 (ImA = A2 for u > 4μ2).

Decreasing t, we reach t1 where A1 and A2 become complex and our
amplitude seems to acquire an additional complexity

δ ImA(s, t) =
1
π

∫
ds′

s′ − s
ρsu(s′, t) +

1
π

∫
du′

u′ − u
ρsu(u′, t). (11.9)

How could this be? Isn’t A1, by definition, the full imaginary part of the
amplitude in the physical region of the s-channel? There is no contradic-
tion, of course, since (s′ − s) + (u′ − u) = 0.

At the same time we observe that, taken separately, neither of the
contributions of the right and left cuts decreases faster than 1/s:

ImAright =
1
π

∫
ds′

s′ − s
ρsu(s′) = − 1

π

∫
ds′ρsu(s′)

s
∼ 1

s
. (11.10)

Let us recall that we were forced to treat separately the contributions
of the right and left cuts when we continued partial waves ϕ� onto the
complex �-plane. Hence, the nature of the pole in Q� is related to the 1/s
falloff of the contribution of each cut.

The most important point remains to be understood.
Namely, where did the essential singularity come from,
when the pole itself seemed to be of “kinematical” nature?
It is t-channel unitarity which is responsible.

Unitarity means that repetitions are needed. Let us take
a scattering block f = (which does not include a
two-particle intermediate state in the t channel) and see
how the amplitude will behave when we start repeating
it in the t-channel. We are going to demonstrate that the
contributions of the right and left cuts of the block f enter separately,
one by one, the asymptotics of the iterated amplitude.

Consider the high-energy limit of the amplitude

A =
s2 

k 
s1 

p1 

p2 − q 

p1 + q 

p2



294 Reggeon branchings

In terms of the Sudakov vectors,

k = αp1 + βp2 + k⊥ (p+ � p1, p− � p2),

we may write

A ∼
∫

d4k

(2π)4i
f(s1; k⊥, q⊥)f(s2; k⊥, q⊥)

[m2 − αβs + k2
⊥−iε] [m2 − αβs + (q−k)2⊥−iε]

. (11.11)

For simplicity we omitted in the second propagator, (α−αq)(β−βq), the
small longitudinal Sudakov components of the total momentum transfer,
αq, βq ∼ m2/s; as always, we consider small momentum transfer −q2 �
q2
⊥ = O

(
m2

)
. (In fact we have already analysed this integral when we

calculated the box diagram in Section 9.2.3, see page 224.) The block
energies are

s1 � 2p1k � βs, s2 � −2p2k � −αs.

Consider first the integral over α. In the α plane we have cuts of the lower
block amplitude f(s2),

α β < 0 

β > 0

Depending on the sign of β, the poles of the propagators in α are either
both below (β > 0) or above (β < 0) the real axis. If β > 0, the contour
can be closed on the left, that is around the right cut in the invariant
energy s2 = −αs of the lower block:

A =
∫

d2k⊥
(2π)2

∫ ∞

0
dβf(βs)

∫ ∞

s0

ds2

2π
Im fright(s2)

[ ] [ ]
+

∫
β<0

{
Im fleft(s2)

}
.

Each integral is complex due to a (right/left) cut of f(βs). Evaluating the
imaginary part we have

ImA =
∫

d2k⊥
2π s

∫ ∞

s0

ds1

2π

∫ ∞

s0

ds2

2π
Im f(s1) Im f(s2)

[ ] [ ]
+

{
s1 → −s1

s2 → −s2

}
.

While the integrand of A in (11.11) contains the full block amplitudes,
symbolically,

A ∼ f ⊗ f ∼ (fright + fleft) ⊗ (fright + fleft), (11.12a)
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in the imaginary part the cross-terms between right and left cuts cancel:

ImA ∼ 1
sm2

[(∫
ds′ Im fright(s′)

)2

+
(∫

ds′ Im fleft(s′)
)2

]
. (11.12b)

We see that although each block amplitude in (11.12a) may be falling
fast with energy due to cancellation between its two cuts, the imaginary
part of the iterated amplitude (and therefore A(s) itself) cannot decrease
faster than 1/s.

The expectation that an amplitude can fall arbitrarily fast owing to the
cancellation between right- and left-cut contributions (each of which falls
as 1/s) turns out to be incorrect: it does not stand confrontation with the
t-channel unitarity relation.

To understand better what is so special about the point � = −1 in
the unitarity relation, let us return to the representation (11.2) for the
amplitude and redefine, once more, the partial wave by embedding into it
the �-dependent normalization factor from the asymptotic expression for
the Legendre function (11.3):

A(s, t) � i

4

∫
d�

sinπ�
ψ�(t) ·

[
(−s)� + s�

]
, s → ∞; (11.13a)

ψ�(t) =
Γ(� + 1

2)√
πΓ(� + 1)

· ϕ�(t). (11.13b)

Now that (11.13a) is ‘clean’, the normalization will reappear in the uni-
tarity relation. Expressed in terms of new partial waves ψ� it now reads

Δψ�(t) = ρ�(t) · ψ�(t)(ψ�(t))
∗ , 4μ2 < t < 16μ2,

ρ�(t) =
√
π Γ(� + 1)
Γ(� + 1

2)
C�(t), C� =

1
8π

k2�+1
t√
t

,
(11.14)

with C� given in (7.30). The factor ρ� can be looked upon as the phase
space volume, continued to non-integer �. We see that at negative inte-
ger values of � it turns to infinity, making them singular points for the
unitarity condition.

Conclusion: if there are only poles,

(1) the amplitude cannot fall faster than s−1; and

(2) in the �-plane the poles get closer and closer to each other as they
approach � = −1.

This itself does not contradict the Regge-pole hypothesis, but in fact, as
we will see now, the solution lies elsewhere.
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11.2 Scattering of particles with non-zero spin

Up to now, we considered spinless particles; including spins does not mod-
ify essentially our previous considerations. The conclusion, however, turns
out to be far more dramatic.

11.2.1 Energy behaviour of scattering amplitudes

Consider the scattering of a vector and a scalar particles:

k1 k s = 1

s = 0

2

p1 p2

= Aμν(p1 + p2, k1, k2).

The amplitude now carries vector indices and is built of Lorentz tensors,

Aμν = A0p
μpν + A1g

μν + A2(pμkν1 − kμ2 pν) + · · · (p ≡ p1 + p2)

(we have taken into account the symmetry with respect to k1 ↔ −k2).
Now we have to write dispersion relations for each invariant amplitude
Ai (one has only to be careful not to include artificial singularities which
may emerge while rewriting momenta in terms of each other). Repeating
the above analysis, we would obtain again

Aright
0 ∼ Aleft

0 ∼ s−1.

Let us see, e.g. what gives the longitudinal polarization vector,

e(0)
μ (k) = (kz; k0,0⊥)

1√
k2

,

for the invariant matrix element

Mλ1λ2 = eλ1
μ1
eλ2
μ2
Aμ1μ2 .

For forward scattering, k1 =k2, in the laboratory frame (p1 = p2 =
(m0; 0,0⊥)) we obtain

M00 = (A0p
μpν + · · · )e0

νe
0
μ ∼ A0

(
2m0

k1z

m1

)2

� A0
s2

m2
1

. (11.15)

This means that considering, as before, contributions of each cut, M00
left

and M00
right, separately, we will come to the conclusion that the scalar–

vector scattering amplitude must grow in the large-s limit at least as
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M >∼ s! It is easy to arrive at the same conclusion
analysing an interaction of spinless particles via vector par-
ticle exchange, A = O(s). That is, introducing particles
with spin σ and following the same path, we can prove that the amplitude
cannot be smaller than

A > s−1−ε+2σ .

Already for σ=2 this contradicts the Froissart bound. (In principle, some
tricky cancellations cannot be excluded, but so far there are no indica-
tions for that.) One can interpret this conclusion as an observation of the
contradictory character of the hypothesis of the existence of Regge poles
only.

11.2.2 Azimov shift in terms of spiral amplitudes

This phenomenon known as ‘the Azimov shift’ can be explicitly seen in
the t-channel as well. To parametrize the amplitude of the transition
between two scalar and two vector particles, it is convenient to employ
the formalism of spiral amplitudes. These are amplitudes with definite
values of helicities of participating particles with σ �= 0. Helicity is the
projection of spin onto the direction of the particle momentum. In the
cms of the t-channel, momenta of two vector particles are opposite, so
that the difference of their helicities represents the projection of the total
spin. The generalization of the t-channel partial-wave expansion reads

== Aλ1λ2 =
∑
j

(2j+1)Yjλ(θ, ϕ)fjλ(t); λ = λ1−λ2. (11.16)

The total angular momentum vector, j = � + σ, is a sum of the orbital
momentum � and the total spin σ. Since � = [r × p] is orthogonal to the
direction of the cms momentum z, the helicity parameter λ in (11.16)
equals λ = σz = jz. Physically, the angular momentum projection is re-
stricted, |jz| ≤ j. Indeed, the boundary |λ| ≤ j is contained in the nor-
malization of the spherical harmonics:

Yjλ(θ, ϕ) ≡
√

Γ(j − λ + 1)
Γ(j + λ + 1)

Pjλ(z) eiλϕ, z = cos θ, (11.17a)

where Pjλ are the associated Legendre functions. At large |z| we have

Yjλ � Γ(j + 1
2)√

πΓ(j + λ + 1)Γ(j − λ + 1)
(2z)j , (11.17b)
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where we have dropped the trivial dependence on the azimuth angle by
setting ϕ = 0. We see that indeed, owing to the Γ factors, Y = 0 for
|λ| > j. Mark that for λ = 0 the normalization factor in (11.17b) coincides
with that of the spinless case, (11.13b).

The continuation of the series (11.16) to complex j with the help of the
Sommerfeld–Watson integral does not pose difficulties:

Aλ(s, t) � i

4

∫
dj

sinπj
ψjλ(t) ·

[
(−s)j + sj

]
, s → ∞; (11.18a)

ψjλ(t) =
Γ(j + 1

2)√
πΓ(j + λ + 1)Γ(j − λ + 1)

· k−2j
t · fjλ(t). (11.18b)

The changes will affect the unitarity condition.

Im                 =                    +

The first term in the r.h.s. with exchange of scalar particles will stay as
before, so we concentrate on the new contribution describing particles
with spins σ1 and σ2 in the intermediate state:

Δ fj(t) = · · · +
∑
λ

τ(t)fjλ(t + i0)fjλ(t− i0).

The sum over λ has emerged since for a given j we can still have different
helicities in the intermediate state. The sum runs up to λmax = σ1 + σ2.
Due to conservation of parity, it is sufficient to sum over λ ≥ 0, doubling
the contributions of λ ≥ 1.

Let us express the unitarity relation in terms of the partial waves ψj

and ψjλ defined by (11.13b) and (11.18b), correspondingly. Collecting the
normalization factors, we get

Δψj =
σ1+σ2∑

λ

Cj(t)
√
π Γ(j − λ + 1)Γ(j + λ + 1)

Γ(j + 1)Γ(j + 1
2)

ψjλψ
∗
jλ. (11.19)

In the spinless case, σ1 = σ2 = 0, we recover (11.14).
Decreasing j, we hit the first pole at j = σ1 + σ2 − 1,

Δψj ∝ ψjλ
1

j + 1 − σ1 − σ2
ψ∗
jλ, λ = σ1 + σ2. (11.20)

In the first unphysical point in j (when the angular momentum is taken
smaller than its projection), j = λ− 1, the phase space volume of the
intermediate state becomes infinite. As we have discussed, this results in
the lower limit of the high-energy behaviour of the scattering amplitude,
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A(s) ∝ sσ1+σ2−1. Taking vector particles in the intermediate state, σ1 =
σ2 = 1, we obtain A ∝ s, the result that we have explicitly derived before.
In general, (11.20) permits elementary particles to have spins 0, 1

2 and 1,
and no more.

What to do with particles with higher spins which exist, can be pro-
duced in a t-channel reaction and therefore participate in the unitarity re-
lation? The problem was solved by Mandelstam. It turns out that when a
reggeized particle is present in the intermediate state, a new singularity –
a moving branch cut – appears from an unphysical sheet related to a
multi-particle threshold, which exactly compensates the pole (11.20).

Imagine that we have a particle with spin σ which is a bound state of
two scalar particles (with mass μ) and lies on the Regge trajectory α(t).
Let m denote its mass, α(m2) = σ.

As we will demonstrate shortly, the position of the Mandelstam branch
cut derives from the trajectory of the pole and reads

j = j2(t) = 2α
(
t

4

)
− 1. (11.21)

The unitarity condition (11.20) holds above the two-particle threshold, t ≥
4m2. Let us show that the contribution of this branching to the unitarity
relation,

Δψj(t) = ψj,2σ
c

j + 1 − 2σ
ψ∗
j,2σ + δbranchψj(t),

fully screens the unphysical pole due to exchange of two particles.

j = 2σ −1f jλ(t)

16μ24μ2 4m2

t

The trajectory α(t) is complex above the two-particle threshold, t >
4μ2. Therefore Im j2(t) > 0 for t > 16μ2. This means that for real j larger
than j∗ ≡ 2α(4μ2) − 1, the position t2(j) of the branch singularity (11.21)
in the t-plane is complex. The branching then is on the unphysical sheet,
since complex singularities on the physical one are forbidden by causal-
ity. It emerges on the physical sheet through the tip of the four-particle
threshold, t = (4μ)2, and moves to the left with j decreasing. When we
approach the troubling point j = 2σ − 1, the branching arrives precisely
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to t = 4m2,

j = 2α
(
t

4

)
− 1 → 2σ − 1 =⇒ α

(
t

4

)
→ σ = α(m2),

covers fully the two-particle cut due to the σσ exchange and cancels the
unphysical pole at j < |jz|.

At the same time, in the physical integer values of j the branch cut
contribution vanishes, leaving the two-particle exchange unperturbed. So,
the Mandelstam branching is rather sophisticated. It is interesting that
all this occurs automatically as soon as we suppose that the particle is
reggeized.

11.2.3 A model for a moving branch-point singularity

Before we turn to the derivation of the reggeon branchings, let us try to
guess the answer. Near the pole due to the exchange of particles with
spins σ1 and σ2, the unitarity relation has the form

2 Im fj = + τ(t)
c

j + 1 − σ1 − σ2
f̃jσf̃

∗
jσ, (11.22)

where we have extracted the singularity from the partial wave amplitudes
fjσ describing the 0 + 0 → σ1 + σ2 transition, fjσ → f̃jσ. It contains the
phase space volume τ(t) which for particles with masses m1 and m2 reads

τ(t,m2
1,m

2
2) =

kc
16πωc

=

√
t2 − 2t(m2

1 + m2
2) + (m2

1 −m2
2)2

16π
√
t

. (11.23)

When the particles are reggeized, σi = σi(m2
i ), their masses become ‘vari-

able’, suggesting to include into (11.22) integrals over masses, t1 = m2
1

and t2 = m2
2: ∫

dt1 dt2 τ(t, t1, t2)
j + 1 − σ1(t1) − σ2(t2)

f̃jσf̃
∗
jσ. (11.24)

Given the additional integrations, (11.24) would no longer be a pole but
a branch cut in j. Adding the propagators of reggeized particles, either
[sin π

2σi(ti)]
−1, or [cos π

2σi(ti)]
−1, depending on the signature, we would

get a natural model of a moving branching. Included into the unitarity
relation (11.22), this expression could compensate the ‘elementary’ pole.
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11.3 Multiparticle unitarity and Mandelstam singularities

To understand how the reggeon branchings appear, we have to study for
the first time multi-particle unitarity conditions.

11.3.1 Three-particle unitarity condition for partial waves

Let us consider the simplest example of 2 → 2 scattering of scalar particles
above the three-particle threshold, 9μ2 < t < 16μ2.

2 Im fj =
σ

+ + (11.25)

We suppose that a particle with spin σ shown by the dashed line is a
bound state of two scalar ones and can be produced in the intermediate
state together with a scalar. First of all, let us write the three-particle term
in the unitarity condition. We can describe a three-particle system in two
steps. First we group two particles and treat them as a composite object
with an invariant mass t12 = (k1 + k2)2 and an internal orbital momentum
� = �12 and its projection, λ = λ12. Then we combine the pair, which looks
as a particle with an arbitrary ‘mass’ and ‘spin’, with the remaining scalar
particle k3 into the system with the total angular momentum j and energy
t. Such a representation can be rigorously derived by parameterizing by
Euler angles the internal geometry and the orientation of the plane formed
by three particles in the t-channel cms.

2 

1 

1 2 3 

t, j 

t t12 

12, λ12

3 

This makes five independent variables characterizing a five-point ampli-
tude, The structure of the three-particle term is rather similar to that of
the case of the unitarity condition with spin,

Δf
(3)
j =

∑
�,λ

∫
dt12 K(t, t12)fj�λ(t, t12)f∗

j�λ(t, t12), (11.26a)

with the only difference that now the ‘mass’ t12 of the composite particle
(12) varies in the interval

4μ2 < t12 < (
√
t− μ)2. (11.26b)
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The function K in (11.26a) is given by the product of the phase space
volume functions (11.23),

K(t, t12) = τ(t, t12, μ2)τ(t12, μ2, μ2). (11.26c)

Introducing the partial waves ψj and ψjλ in order to extract the angular
momentum singularities as before, we get

Δψ
(3)
j =

∑
�,λ

∫
dt12 K(t, t12)

c2

j + 1 − λ
ψj�λψ

∗
j�λ, (11.27)

where we have explicitly extracted the main singularity from the Γ factors,
cf. (11.19). Unlike (11.19), the sum over λ in (11.27) is not limited from
above since the ‘spin’ � of the composite object (12) can be arbitrary. We
must replace the sum by an integral; otherwise we have poles at arbitrarily
large j and the continuation to complex j is impossible. Let us write

Δψ
(3)
j =

∫
dt12

K(t, t12)
(2i)2

∫
Cλ

dλ

tanπλ

∫
C�

d�

tanπ(�−λ)
c2ψj�λψ

∗
j�λ

j + 1 − λ
. (11.28)

To correspond to the physical sum,
∑∞

λ=0

∑∞
�=λ, the contours have to be

drawn as follows,

C 

λ 

λ Cλ

We will discuss the question of convergence of this representation later.
In any case, as soon as the integration contours are deformed as in the
standard Sommerfeld–Watson case, there are no problems with the poles
at large j values anymore and the continuation can be carried out. Un-
fortunately, it is not unique. We could have added a function vanishing in
integer points (for example, we could put sin instead of tan in the denom-
inator). Let us suppose, nevertheless, that this continuation is reasonable
and see what will be the structure of singularities in j. The pole is there
in (11.28); it could not just disappear. However, some other singularities,
not so apparent at the first glance, may emerge.

Let us examine the three-particle system in the intermediate state.

2 
1 

3

Particles 1 and 2 will interact in the
final state and can give a resonance
which will manifest itself as a pole in � =
�12 of the partial wave amplitude f (2→3)

j�λ .
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How can this possibility be extracted in a model-independent way?
The 2 → 3 amplitude has to satisfy the unitarity condition not only in

t but also in t12:

Δ12f
(2→3)
j�λ ≡ 1

2i
[f (2→3)(t + iε, t12 + iε) − f (2→3)(t + iε, t12 − iε)]

= = f
(2→3)
j�λ (t+, t12)τ(t12, μ2, μ2)f (2)∗

� (t12). (11.29)

In the region 4μ2 < t12 < 9μ2 the two-particle unitarity condition in t12
is valid. This makes (11.29) a linear equation for f (2→3). Its solution is
simple:

f
(2→3)
j�λ = Gj�λ(t, t12)f

(2)
� (t12),

where G does not have a two-particle cut in t12 (two-particle irreducible
amplitude). Indeed, evaluating the discontinuity in t12 and using the two-
particle unitarity condition for the elastic amplitude f

(2)
� we have

Δf (2→3) = G · Δf
(2)
� (t12) = G · (f (2)

� τ f
(2)∗
� ) = f (2→3) · τf (2)∗

� ,

which coincides with (11.29).
We know that f

(2)
� can have a Regge pole,

f
(2)
� (t12) �

g2(t12)
�− α(t12)

;

f
(2→3)
j�λ (t, t12) �

[
Gj�λ(t, t12)g(t12)

]
· 1
�− α(t12)

· g(t12).
(11.30)

This expression has a clear diagrammatical meaning:

G g  g 

= 

elastic 

= 

amplitude

with the combination N = Gg playing the rôle of the reggeon production
amplitude, and g – the amplitude of its decay.

Before we substitute the Regge pole (11.30) into the unitarity relation
(11.28) let us make the following simplifying observation. When we single
out the final state interaction,

ψj�λ =⇒ Gj�λ · f (2)
� (t12),
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¯t12

( √t − μ)2 ( √t − μ)24

(a) (b)

μ2

Ct Ct

m 2

Fig. 11.1

the r.h.s. of (11.28) acquires the following structure,

Kψj�λψ
∗
j�λ → τ(t, t12, μ2)GG∗ ·

(
f

(2)
� τ(t12, μ2, μ2) f (2)∗

�

)
.

Here we have extracted from (11.26c) the phase space volume factor τ(t12)
to form the discontinuity of the elastic scattering amplitude,

Kψψ∗ = τ(t, t12, μ2)G ·
{

Δ12f
(2)
� (t12)

}
·G∗

= Δ12

{
τ(t, t12, μ2)Gf

(2)
� (t12)G∗

}
.

(11.31)

This allows us to replace the integral over t12 along the real interval
(11.26b) by a contour integration as shown in Fig. 11.1(a) and write

∫ (
√
t−μ)2

4μ2

dt12 Δ12

{
τGf

(2)
� (t12)G∗} =⇒

∫
Ct

dt12
2i

{
τGf

(2)
� (t12)G∗}.

Now we can substitute the Regge pole (11.30) in the elastic final state
scattering amplitude,

Δψ
(3)
j =

∫
Ct

dt12
2i

τ(t, t12, μ2)
(2i)2

∫
Cλ

dλ

tanπλ

1
j + 1 − λ

∫
C�

d�

tanπ(�−λ)
N2

�−α(t12)
.

λ

a(t12)
First we look at the integral over �.
Since t12 > 4μ2, the trajectory α(t12) has
an imaginary part. When we change λ,
the integral becomes singular when λ hits
the point α(t12) and the two poles pinch the
contour:

Δψ
(3)
j =

∫
Ct

dt12
2i

τ(t, t12, μ2)
tanπα(t12)

N(t+)N(t−)
j − α(t12) + 1

. (11.32a)
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This is just our model for a branching singularity (11.24), only for one
spinless particle, and one with spin,

.

This three-particle contribution has to be compared with the second term
in the unitarity condition (11.25), due to the exchange of two particles, one
of which, σ, we suppose to be a bound state belonging to the trajectory,

Δψ
(σ)
j = τ(t,m2, μ2)

ψ(t+)ψ(t−)
j − σ + 1

. (11.32b)

In fact, the latter is nothing but the residue of the former integral (11.32a)
at the pole tanπα = 0, α(t12) = σ. Therefore, we can take into account
both contributions (11.32) by simply modifying the integration contour
to include the particle pole, as shown in Fig. 11.1(b). By derivation, the

t12

( t− μ)2
m 2

j = α− 1
C̄t

pole at α(t12) = j + 1 lies inside the con-
tour C̄t. As a result, the point j = σ − 1
where the two poles collide, turns out
to be a regular point in the j-plane:
the three-particle singularity compen-
sates the two-particle one.

The integral (11.32a) develops a singularity in j at j = j0 such that
the pole of the integrand hits the immobile endpoint of the integration
contour:

t12 = (
√
t−μ)2, α(t12) = j + 1 =⇒ j0(t) = α((

√
t−μ)2) − 1.

(11.33)

This is the new branching singularity we are looking for. Actually, for
t above the three-particle threshold, t > (3μ)2, the argument of α in
(11.33) exceeds (2μ)2, so that the trajectory is complex, and the new
singularity is hidden on the unphysical sheet beneath the three-particle
unitary cut. For t < 9μ2 it emer-
ges on the physical sheet. Its
position in the t-plane, t0(j),
moves on the left with j decreas-
ing. If we take j = σ − 1, then
from (11.33) follows σ = α((

√
t−

μ)2), t = (m + μ)2, showing that

t0( j ) 
t 

9μ2 (m + μ)2

the branching arrives at the tip of the two-particle threshold, to rescue
the unitarity relation for the partial wave in spite of the ‘� = −1’
singularity phenomenon.
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11.3.2 Four-particle unitarity

The analysis of the four-particle unitarity condition proceeds along the
same lines. We group intermediate state particles into two pairs,

A A∗ t1  1λ1 

L 
t2  2λ2 

and get the singularity 1/((j + 1 − λ1 − λ2) at the first unphysical value
of their orbital angular momentum L = −1. Introducing Regge poles into
the elastic final state rescattering amplitudes, we arrive at the integration
over the pair masses,∫ ∫

dt1 dt2 τ(t, t1, t2)
j − α(t1) − α(t2) + 1

ψ(t1, t2)ψ∗(t1, t2)
tanπα(t1) tanπα(t2)

. (11.34)

To extract singularities from the double integral is more difficult. In fact,
there can be many singularities. Among them there is, however, one that
does not depend on specific features of the Regge pole trajectory and
does not contain masses explicitly. Let us outline the main steps of the
derivation of this singularity which is the one we are looking for.

The integral over t2 is singular in t1 when the pole collides with the
endpoint t2 ≤ (t2)max = (

√
t−√

t1)2, as before:

=⇒ j = α(t1) + α((
√
t−

√
t1)2) − 1. (11.35)

This is a non-linear equation for t1. A singularity in j will appear when
two solutions of (11.35) coincide, pinching the integration contour in the
t1-plane. The condition for having a multiple zero,

0 =
d

dt1

[
α(t1) + α((

√
t−

√
t1)2)

]
= α′(t1) − α′((

√
t−

√
t1)2) ·

√
t−√

t1√
t1

,

has an obvious solution
√
t−√

t1 =
√
t1 = 1

2

√
t. Substituting it into

(11.35) we get the branch singularity in the j-plane appearing at

j2(t) = 2α
(
t

4

)
− 1. (11.36)

Restoring the signature factors that we have ignored in the preceding
discussion, the discontinuity across the branch cut of the partial wave
amplitude can be derived,

δjf
(2)
j (t) =

π

2

∫
dt1 dt2

2i
τ(t, t1, t2)N

(2)
+ δ

(
j + 1 − α1 − α2

)
N

(2)
− ξ̄j ,

ξ̄j = ξj ξα1(t1)ξα2(t2).

(11.37)
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We supposed that there was only one reggeon in the two-particle scat-
tering amplitude. A generalization is straightforward. An inclusion of dif-
ferent Regge poles does not make the analysis much more complicated. If
we insert two Regge poles α and β in the four-particle unitarity condition
(11.34), the position of the two-reggeon branch-cut singularity,

j + 1 − α(t1) − β(t2) = 0,
√
t1 +

√
t2 =

√
t,

will be determined by the extremum of the function

α(t1) + β(t2) + κ[
√
t1 +

√
t2 ]

(with κ the Lagrange multiplier), resulting in

j2 = α

([ β′

α′ + β′

]2
t

)
+ β

([ α′

α′ + β′

]2
t

)
− 1.

Taking α to be the pomeron, α(0) = 1, in the linear approximation we
have

jR+P(t) � β(0) +
α′β′

α′ + β′ · t � β(t) − β′2

α′ + β′ · t, (11.38)

showing that the branch point lies between β(t) and β(0).
Even if the trajectory is unique, there appear many singularities in the

j-plane. Indeed, having obtained the branching singularity j2 of (11.36),
we can iterate it anew,

j2 

j2 
− N N+ =⇒ j4(t) = 2j2

(
t

4

)
− 1 = 4α

(
t

4

)
− 3.

This way an infinite series of Mandelstam branchings is generated by a
single Regge pole,

jn(t) = nα

(
t

n2

)
− n + 1. (11.39)

The corresponding discontinuity across the n-reggeon branch is given by

δjf
(n)
j (t) =

π

n!

∫
dΓτ N (n)

+ δ

(
j − 1 −

n∑
i=1

[α(ti) − 1]

)
N

(n)
− γ

(n)
j . (11.40)

As we have discussed in the previous lecture, the reggeon branchings are
essential for the high-energy asymptotics in one case only, namely, that of
the Pomeranchuk poles P with αP(0) = 1, when the branchings condense
to the point jn(t) = 1 in the n → ∞ limit. In the physical region of the
s-channel, t < 0, this puts pomeron branchings in the dominant position,
on the right of the pole αP(t), changing the asymptotic character of the
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elastic diffraction,

sα(t) → s · fα(ln s, t).

Analogously, high pomeron branching corrections to non-vacuum poles,

jR+nP(t) � β(0) +
α′β′

α′ + nβ′ · t,

accumulate towards jn(t) → β(0), and slow down the energy falloff of the
‘charge exchange’ cross sections,

sβ(t) → sβ(0) · fβ(ln s, t).

We see that in order to describe these phenomena we need to know
how to calculate and take into account multi-pomeron branchings. The
problem is complicated by the fact that, according to (11.39), all the
branch-point singularities are sitting at small t in one place, near j = 1.
In this situation we cannot approximate the reggeon production block N
by a constant since near j = 1 all the amplitudes are changing rapidly.
We must localize and iterate all singular contributions which will lead us
to the picture of interacting reggeons,

(2)N

(2)N

For ordinary hadrons all singularities were separated,

t = 4m2 t = 9m2
t = m2

This permitted us to use the unitarity as a tool for calculating the inter-
action amplitudes in the case of a small coupling constant. Even if the
coupling is large, iterating the unitarity conditions allowed us to extract
some valuable information. Now the situation looks much more difficult.
From the unitarity viewpoint, our reggeons behave rather as massless
objects (like photons).

In fact such an analogy can be drawn explicitly. The emerging reggeon
picture is similar to a non-relativistic multi-body problem of statistical
physics. Imagine a system of particles with the ‘dispersion law’ ωi = ε(ki)
describing the dependence of the particle energy on the momentum. The
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amplitude of scattering via, e.g. a two-particle intermediate state n will
have the structure

fa,b(ω,k2) ∝
∑
n

Va,nVn,b

ε1 + ε2 − ω
.

It has a cut in energy running from the point

ω2(k2) = min
k1+k2=k

{ε(k1) + ε(k2)}.

The discontinuity in energy reads

δωfa,b(ω,k2) =
∫

dΓ(k1,k2)fa,nδ
(
ε(k1) + ε(k2) − ω

)
f∗
b,n .

It resembles the two-reggeon unitarity condition (11.37) if we identify

j − 1 = ω, α(t) − 1 = ε(k).

The pomeron case corresponds to massless excitations (like phonons in
a solid state) with the dispersion law without a ‘mass-gap’: ε(0) = 0.
Such multi-phonon thresholds accumulate to ω=0 as the pomeron branch-
ings do.

There is, however, one but essential difference between the two prob-
lems, namely the signature factor ξ̄j in (11.37). To have a complete anal-
ogy with a quantum-mechanical system, we would like the amplitude to
be real below its singularities in energy. To try to get rid of ξ̄j by simply

absorbing
√

ξ̄j into the reggeon production factors N is dangerous: ξ̄j
may be negative and this would introduce an unwanted singularity into
the vertex function.

In non-relativistic quantum mechanics the discontinuity of the forward
amplitude (a = b) is given by the product f × f∗ and is positive. What
about our problem? Near the most interesting point α1 ≈ α2 ≈ j ≈ 1 we
have ξ̄j = ξj ξα1 ξα2 � (i)3, producing in the unitarity condition (11.37)

δjf
(2)
j ∝ 1

i
ξ̄j � −1.

This means that, contrary to common particles, the contribution of a
two-reggeon branching is negative. (We shall see shortly that in fact every
additional reggeon introduces (−1), and thus the signs are alternating.)

Still, except for the signs, the reggeon branching is similar to usual
branching in a system of particles, only in an unusual space, with t-channel
angular momentum j in the rôle of ‘energy’ ω.

We already remarked more than once that when t < 0 the branching of
two pomerons is positioned on the right from the pole. Now that we have
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established an analogy with the non-relativistic theory, this observation
becomes quite dramatic, since in NQM a pole cannot sit on top of a cut.

A multi-reggeon state in the t-channel, looks from s-channel as a rep-
etition of the one-reggeon exchange, and repetitions is the domain of the
unitarity. In the next lecture we start to construct the field theory of in-
teracting reggeons using unitarity in the s-channel. This will allow us, in
particular, to bypass the problem of non-uniqueness of the analytic con-
tinuation (11.28). We will also fix the signature factors γj in the reggeon
unitarity conditions (11.40) which, as we have mentioned before, must
vanish for physical integer values of j of the proper signature.



12
Branchings in the s-channel and

shadowing

We have a serious task ahead: to analyse and sum up the branchings,
taking into account how they influence each other, and to learn how to
write the amplitudes respecting unitarity.

12.1 Reggeon branchings from the s-channel point of view

12.1.1 The s-channel approach

In Lecture 2 we discussed how, given a particle spectrum, we can con-
struct interaction amplitudes with the help of unitarity conditions and
analyticity (dispersion relations). The dispersive method is well formu-
lated and straightforward but not very convenient in practice. So instead
of iterating the amplitudes through the non-linear unitarity relations we
draw series of Feynman diagrams which satisfies (at least term by term)
the unitarity condition.

Now we face an opposite situation for the first time. We discovered the
branchings and found the specific unitarity conditions they satisfy. Can
we construct an effective field theory that would generate the reggeon
unitarity conditions?

There are two ways of attacking the problem.

(1) One can explicitly construct an effective reggeon QFT directly
in the t-channel, identifying reggeons with particles of a non-
relativistic (anti-hermitian) field theory in 2 + 1 dimensions.

(2) Alternatively, we can solve the problem of constructing the reggeon
diagrams which solve the unitarity conditions, working directly in
the s-channel.

311
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The two routes yield the same results. We will follow the second one, for
a number of reasons.

First of all, the t-channel reggeon unitarity conditions we studied in
Lecture 11 were derived for positive t; in particular, the two-reggeon
unitarity condition holds above t = 16μ2. The information so obtained
has to be continued to the region t < 0 that really interests us. More-
over, the analysis of the discontinuity δfj includes drawing complicated
contours and is rather involved. In turns out that in the physical s-
channel region, t < 0, everything looks much simpler, and the contours are
trivial.

Secondly, if we work in the s-channel and exploit the s-channel unitarity,
the problem of negative signature factors essentially disappears as well.

What did the Regge poles look like in the s-channel? We have seen that
the simplest perturbative model for a pole was the ladder. From the point
of view of the t-channel the ladder solves the two-particle unitarity con-
dition. There are, of course, also corrections due to many-particle states
in the t-channel.

= + + . . .

If we bear in mind the exact pole, rather than its naive perturbative
image, it will contain everything.

Then, we considered a four-particle state and have accurately taken
into account the interaction between particles (1) and (2), and (3) and
(4), while neglecting cross-interactions between the pairs. This gave us a
two-reggeon branch-cut singularity:

. (12.1)

The question is, what does this picture correspond to in the s-channel?
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So, we have two ‘parallel ladders’. What we did
here looks rather strange. Having suppressed cross-
interactions in a four-particle state (which state in
fact contributed to the exact pole) we obtained a non-
pole singularity. To get it we had to pick some specific
and, it seems, unimportant configurations when the
usual strong interaction is not acting upon all the
particles involved.

Recall that in perturbation theory the ladder diagram has emerged as
the probability of a cascade production of many particles:

k
n 

p
1 

p 2 

k
1 k
2

p01 ∼ k01 � k02 � · · · � k0n ∼ m. (12.2)

If I draw parallel cascades, momenta of particles from
different chains will overlap, so that the two ‘combs’
may interact with each other, mixing everything in
many ways. Squaring such an amplitude will produce
a rather complicated picture.

Certainly, by mixing up everything we would get a large contribution,
even in perturbation theory. I hope, however, that this will be a contri-
bution to the pole. Meanwhile, I want to find a particular piece, maybe
not necessarily numerically large, but with specific analyticity.

Since in (12.2) particle momenta are gradually decreasing down the
ladder, it is reasonable to expect that in our two-reggeon diagram (12.1)
there are only particles with large momenta k ∼ p1 ∼ s/m in the upper

block and small momenta k ∼ p2 ∼ m in the lower one

(in the laboratory frame where the target particle p2 is at rest).

12.1.2 Coexisting ladders – s-channel image of branching

Once we decided to suppress the interaction between ‘combs’, I would
draw the probability of such a process as follows:

In the s-channel we have coexisting ladders; from the t-channel point
of view we have two separate (non-interacting) pairs of interacting
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particles as shown in Fig. 12.1(a). The graph (a) has a particular non-
planar topology. What about a simpler picture, also with two ladders,
displayed in Fig. 12.1(b)? Will it also participate in the two-reggeon
branching?

Let us ask ourselves, how does this process
proceed in time? In the laboratory frame
the slow target particle at the bottom of the
graph gets the energy of the order of m so
that the scattering process has to be over in
a finite time t = O

(
m−1

)
. But this implies

that in a unit time the first fluctuation of
the projectile has to collapse back, and the Δt ∼ 1 
other one has to develop in order to assure the second interaction of the
same fast particle with the target. Physically, it is impossible to arrange
at such short notice. It is natural to expect therefore that the space–time
configurations of the type of Fig. 12.1(b) will not contribute significantly
in the high-energy limit. In what follows we will discuss in detail whether
this is indeed the case.

We will devote the rest of this lecture to the investigation of the high-
energy asymptotics of the diagram of Fig. 12.1(a), which we consider the
main candidate for the s-channel image of the two-reggeon branching.

12.2 Calculation of the reggeon–reggeon branching

12.2.1 Kinematics and factorization

k 

k
1 

q−k 

q 
p

1
−k

1 p
1 

p
2 

k
2

(12.3)

The diagram (12.3) contains three independent momentum integra-
tions:

f2 =
1
2!

∫
d4k

(2π)4i

∫
d4k1

(2π)4i

∫
d4k2

(2π)4i
f1(k1, k2, k)f1(p1−k1, p2−k2, q−k)

× 1
m2 − k2

1

1
m2 − (p1−k1)2

1
m2 − (k1−k)2

1
m2 − (p1−k1−q+k)2

×
{

four lower-part propagators
}
. (12.4)
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(a) (b)

Fig. 12.1 Non-planar (a) and planar (b) two-ladder graphs.

We want to extract the contribution corresponding to the Regge poles
in the ladder blocks f . The poles will appear, if the energy invariants of
the ladders, (k1 + k2)2 and (p1 − k1 + p2 − k2)2, will tend to infinity in
the s → ∞ limit. In this asymptotics we hope to extract the contribution
of the branching. We shall assume that the transverse momenta (and
virtualities) of all participating particles stay finite,

k2
i⊥ ∼

∣∣k2
i

∣∣ = O
(
m2

)
. (12.5)

Introducing the usual Sudakov decomposition,

pμ1 = pμ+ + γpμ−, pμ2 = γpμ+ + pμ−; γ =
m2

s
,

we have

kμi = αip
μ
+ + βip

μ
− + kμi⊥; (kμ⊥)2 = −k2

⊥.

Let us look at the propagators:

k2
1 = α1β1s− k2

1⊥,

(p1−k1)2 = (1 − α1)(γ − β1)s− k2
1⊥.

Applying the restriction (12.5) gives for the Sudakov components of k1∣∣(p1 − k1)2
∣∣ ∼ 2p1k1 ∼ β1s ∼ m2,

so that

β1 = O
(
m2/s

)
, α1 = O(1) . (12.6a)

This means that the offspring move almost parallel to the direction of the
incident particle p1, sharing its large momentum in a finite proportion:
k1 � α1p1, (p1 − k1) � (1 − α1)p1.
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Considering analogously the bottom part of the graph,

k2
2 = α2β2s− k2

2⊥ = O
(
m2

)
,

(p2−k2)2 = (γ − α2)(1 − β2)s− k2
2⊥ = O

(
m2

)
,

we arrive at

β2 = O(1) , α2 = O
(
m2/s

)
. (12.6b)

Now we analyse the momentum transferred along the first ladder,

kμ = αkp
μ
+ + βkp

μ
− + kμ⊥.

From the finiteness of the propagators exiting the ladder we get

(k1 − k)2 ∼ (α1 − αk)(β1 − βk)s = O
(
m2

)
⇒ |βk| ∼ m2/s ,

(k2 + k)2 ∼ (α2 + αk)(β2 + βk)s = O
(
m2

)
⇒ |αk| ∼ m2/s .

(12.7)

This shows that the momentum transfer is practically transversal to the
scattering plane:

k2 = αkβks− k2
⊥ � −k2

⊥, (q − k)2 � −(q − k)2⊥,

where we have used |αq| � |βq| �
∣∣q2

∣∣/s = O
(
m2/s

)
.

Since |α| � α1, |β| � β2, we can omit in all the propagators at the
top part of the graph the α component of the momentum transfer and,
correspondingly, β in the bottom. Then we observe that, thanks to the
kinematical conditions (12.6), the integration variables have factorized:

top propagators: α1, β1, βk;

bottom propagators: α2, β2, αk.
(12.8)

12.2.2 High-energy behaviour

The ladder amplitude f depends on the invariant energy of the pair of
particles that enter the ladder, on the momentum transfer and four virtual
particle ‘masses’, e.g.

fI = f
(
(k1 + k2)2, k2; k2

1, (k1−k)2, k2
2, (k2−k)2

)
. (12.9)
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We observe that in our kinematics the invariant energies are of the order
of the total energy indeed:

sI ≡ (k1 + k2)2 = (α1 + α2)(β1 + β2)s− (k1 + k2)2⊥
� α1β2 s = O(s) , (12.10a)

sII ≡ (p1 − k1 + p2 − k2)2

� (1 − α1)(1 − β2)s = O(s) . (12.10b)

This allows us to substitute the asymptotic Regge pole expression f1 for
the ladder amplitudes (12.9),

f1,I � gI,1 · ξα(k2)s
α(k2)
I · gI,2, (12.11a)

f1,II � gII,1 · ξα((q−k)2)s
α((q−k)2)
II · gII,2, (12.11b)

where

gI,1 = g(k2
⊥; k2

1, (k1−k)2), gI,2 = g(k2
⊥; k2

2, (k2+k)2), (12.11c)

and the residues of the second pole, gII,i in (12.11b), differ from (12.11c)
by the substitution k → q − k, k1 → p1 − k1 and k2 → p2 − k2.

As far as the dependence on the longitudinal components of the
reggeon-loop momentum k is concerned, the factorization property (12.8)
holds also for the Regge residues: the top residues gI,1 and gII,1 depend
only on βk, while the bottom ones, gI,2 and gII,2, only on αk.

Given such a splitting of the dependence of the integrand on αk and
βk variables, we can represent the original integral (12.4) in the following
compact form,

f2(s, q2) =
i

2!

∫
d2k⊥
(2π)2

ξα(k2)ξα((q−k)2)s
α(k2)+α((q−k)2)−1N1N2. (12.12a)

Here

N1 = N(q2; k2, (q−k)2) =
1√
2

∫
d4k1

(2π)4i
α
α(k2)
1 (1−α1)α((q−k)2)

×
∫

s dβk
2πi

g(k1, k)g(p1−k1, q−k)
( ) ( ) ( ) ( )

,

(12.12b)

with ( ) marking the four propagators written explicitly in (12.4). We
have introduced the factor s in the βk integral since from (12.7) we know
that βk ∝ 1/s; so defined, N has a finite s → ∞ limit. The expression for
N2 is similar to (12.12b) but with the internal integral running over αk,
instead of βk. In fact, N1 = N2.
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The factor 1/
√

2 has emerged from the reggeon loop integral:

d4k =
s

2
dαk dβk d

2k⊥ = d2k⊥ ·
(
s dβk√

2

)
·
(
s dαk√

2

)
× 1

s

(the last factor 1/s went into the shift of the energy exponent in (12.12a)).

12.3 Analytic structure of the particle–reggeon vertex

What is the diagrammatic meaning of our exercise? We have replaced the
ladder amplitudes by reggeons:

The function N contains an integral over the loop momentum k1 of the
product of four particle propagators and two reggeon vertices.
I would say that N describes the conversion
of two particles into two reggeons, from the
t-channel perspective, or the particle–reggeon
scattering (in s channel). If I had to invent the
corresponding amplitude A, it would depend on
the energy of the ‘colliding objects’,

s
1

s1 = (p1 − k1)2 = (1 − αk)(γ − βk)s ≈ (γ − βk)s.

This relation tells us that βk determines the particle–reggeon pair energy
so that sdβk = −ds1. Taking this into account, we can write N as

N =
∫ ∞

−∞

ds1

2πi
A(s1, q

2; k2, (q − k)2), (12.13)

where the particle–reggeon scattering amplitude A depends on the ‘virtual
masses’ of the reggeons k2, (q − k)2, apart from the standard s and t = q2

variables.
It is easy to extract the structure of A from (12.12b). Its only unusual

feature is the presence of the powers of α1 and (1 − α1) which factors have
emerged from the reggeon energies (12.10). The origin of these factors can
be understood as follows. If in the t-channel exchange we had a particle k
with spin σ, the vertex would have had tensor structure, kμ1 . . . kμσ

. Our
expression contains, in fact, (cos)α(k2

⊥); here α(k2
⊥) plays the rôle of σ and

‘counts the number of tensor indices’.
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Let us have a deeper look at the function N . In the complex plane of the
energy variable s1, the amplitude A in (12.13) has cuts both at positive
and negative s1:

s
1

These cuts are described by two diagrams

b d a c 
a 

c 

b 

d 

q − k q − k k k

which differ by the exchange of the reggeon momenta (s ↔ u). By putting
the particles a and c in the first graph on-mass-shell we get the right cut;
cutting through b and d in the second graph corresponds to the left one.

We have here a curious expression: an integral of the amplitude over
the energy. If the behaviour at s1 → ∞ is suitable (which is so for this
concrete diagram which decreases well), the contour can be closed, say,
around the right cut and we get a finite, real answer for N :

N =
∫ ∞

s0

ds1

π
A1(s1). (12.14)

12.3.1 Amati–Fubini–Stanghellini puzzle

Let us return to the diagram of Fig. 12.1(b) which I did not like from
the point of view of the space–time consideration. Repeating the above
procedure literally, we arrive at a picture with a single particle separating
two reggeons:

k
1

s1 = k2
1. (12.15)

Amati, Fubini and Stanghellini (AFS) have considered elastic scatter-
ing and stated that there were branchings generated by the following
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two-reggeon diagram

.

Indeed, if the reggeon residue g were a constant, we would get a finite
answer N ∝ g2 coming from A1(s1) = πg2δ(s1 − μ2).

However, g(s1) �= const, since the vertex contains various singularities
reflecting the dependence on the virtuality k2

1 ≡ s1,

. (12.16)

Because of this, N will have a right cut apart from the pole at s1 = μ2:

µ2 4µ2 

s 1

The main question is, how g behaves – does it decrease with k2
1? If yes, we

can close the contour to the left and get N =0. This is so in all reasonable
theories (in λϕ3, for example; in any case, we are actually interested in
those theories in which the transverse momenta are limited).

It is interesting to see how N disappears. When we calculate the imag-
inary part of the AFS diagram,

= + + + . . . Im

each discontinuity, corresponding to a definite cut on the r.h.s., is different
from zero. The first contribution is obviously positive. The other have
alternating signs and correspond, in fact, to cutting through the vertex (or
simultaneously two vertices) as in (12.16). We see an astonishing picture:
each specific cut of the amplitude decreases slowly with s, while the whole
amplitude falls fast and does not contribute in the high-energy limit due
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to N =0. According to Mandelstam, there are branchings, indeed, but
they are different from (12.15).

To understand the mechanism of the vanishing of the AFS graph is very
important. It teaches us how analytic properties of Feynman diagrams are
related to the space–time picture of the s-channel processes.

Let us return to the general case and represent the particle–reggeon
scattering amplitude as a sum of right- and left-cut contributions:

A(s1) =
1
π

∫
right

ds′1 A1(s′1)
s′1 − s1

+
1
π

∫
left

ds′1 A2(s′1)
s′1 − s1

. (12.17)

Now substitute into the integral (12.13) for N the right- and left-cut
contribution, separately. We could, it seems, close the contour to the left
in the s1-integral of the first (right cut) term, to the right of the second
(left cut) one, and get N =0 + 0. When would such a trick not work? We
will have N �=0 in the only case when the separate contributions of two
cuts do not decrease faster than 1/s1 on the large circle, |s1| → ∞. But
these are just those diagrams (see section 1 of this lecture) which possess
a third spectral function ρsu.

Let us recall that it was actually the third spectral function which led
us to a contradiction with the Regge pole picture: a problem of the partial
wave having the pole at � = −1 emerged.

In a way, here the circle closes. Both from the t-channel and the
s-channel we came to the conclusion that the reggeon branching emerges
only in the relativistic theory, where we have ρsu �= 0 which guarantees a
non-vanishing contribution, N �=0. This corresponds to diagrams in which
the singularities in s and u cannot be separated.

12.3.2 Reggeon branching contribution to cross section

Finally, let us calculate f2 given in (12.12) to see whether it corresponds
indeed to a two-reggeon branching as we expect. For positive signature,
at small transverse momenta where α � 1 we have

ξα = −1 + e−iπα

sinπα
=

−e−iπα

2

sin πα
2

� i.

Since the integrand in (12.12a) contains an exponential factor

exp
{(

α(k2) + α((k − q)2)
)
ln s

}
,

at large ln s the answer will be dominated by the value of the transverse
momentum at which the exponent is maximal, and can be evaluated by
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the steepest-descent method. In the linear approximation,

α(k2) + α((k − q)2) − 2α(0) � −α′(k2
⊥ + (k − q)2⊥)

= −1
2α

′q2
⊥ − 2α′(k − 1

2q
)2

⊥ ,

the k⊥ integration yields∫
d2k⊥
(2π)2

e−α′(k2
⊥+(k−q)2⊥) ln s =

1
8π ln s

e−
1
2α

′q2
⊥ ln s.

Observing that

2α(0) − 1 + 1
2α

′t � 2α (t/4) − 1, t ≡ q2 = −q2
⊥,

we finally arrive at

f2(s, t) � i ξ2
α(t/4)N

2 s
2α(t/4)−1

16πα′ ln s
; N = N(q/2, q/2). (12.18)

The result of our s-channel calculation is perfectly satisfactory: the
(ln s)−1 suppression tells us that we have indeed found a branch-cut sin-
gularity. Its position in the j-plane follows the Mandelstam rule (11.36);
the sign of this expression is also correct: Im f2 ∝ ξ2

α = −1 (N is real).

12.3.3 Branching in the impact parameter space

At small t the two-reggeon contribution is suppressed as 1/ ln s as com-
pared to the pomeron pole. It is easy to understand the origin of this
suppression, if we turn to the impact parameter space. The image of the
pole amplitude is

f1(s, q2) � isg2 e−α′k2ξ ≡ isg2

∫
d2ρ eik·ρ G1(ρ, ξ); (12.19a)

G1(ρ, ξ) =
e−ρ2/4α′ξ

4πα′ξ
, ξ ≡ ln s. (12.19b)

Let us evaluate the Fourier transform of the two-pomeron branching:

s ·G2(ρ, ξ) ≡
∫

d2q
(2π)2

e−iq·ρf2(s, q2). (12.20)

Substituting (12.19) in the amplitude (12.12),∫
d2q

(2π)2
d2k

(2π)2
e−iq·ρ eik·ρ1+i(q−k)·ρ2G1(ρ1, ξ)G1(ρ2, ξ)N

2 d2ρ1 d
2ρ2,

the integrals over momenta produce ρ1 = ρ2 = ρ, and we derive

G2(ρ, ξ) = −iN2G2
1(ρ, ξ). (12.21)
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The pole amplitude (12.19b) describes two-dimensional diffusion in the
impact parameter space. It gives the probability to find a particle (placed
at ρ=0 at zero time) in a given point ρ after the time ξ (α′ determines
the diffusion rate). In this language, the expression (12.21) corresponds to
finding two particles in the same point. It is clear that such a probability
is inverse proportional to the area and decreases with time, 1/S ∝ 1/α′ξ.
This can be seen directly by integrating (12.21) over ρ:

f2(t=0) ∝
∫

d2ρG2(ρ, ξ) ∝
1
ξ
, while f1(t=0) ∝

∫
d2ρG1(ρ, ξ) = 1.

12.4 Branchings in quantum mechanics: screening

We got the reggeon branchings from the Mandelstam diagrams with
‘crosses’ in both vertices (Fig. 12.2(a)). In the previous section we have
analysed the rôle of the third spectral function and understood, why a
simpler picture, that of Fig. 12.2(b), would not produce a branch cut in
the j-plane.

What is the difference between the two pictures? In the second case,
the particle moves as an elementary object just repeating the interaction.
As we have discussed above, the probability
of such a process cannot be significant since
the multi-particle fluctuation (‘ladder’) does
not have enough time to collapse back into a
single particle before it experiences the second
scattering.

What is shown in the diagram of Fig. 12.2(a)?
Let us look at the lower part of the graph. Here the scattering occurs not

on an elementary object, as in the diagram (b), but on the decay products
of the target particle. We can model this picture in the non-relativistic

(b) (a)

Fig. 12.2 Mandelstam two-reggeon branching (a) and the AFS graph (b).



324 Branchings in the s-channel and shadowing

scattering theory language if we take a deuteron D – a pn bound state –
and study the scattering of the projectile off the proton and the neutron
inside D.

There is a subtle point: in the relativistic theory both the upper and the
lower parts of the diagram have to be complex – have to have ‘crosses’.
However, we will ignore this detail for the time being and consider the
pion–deuteron scattering in non-relativistic quantum mechanics.

12.4.1 Deuteron scattering

Graphically, there are three possibilities for the πD scattering:

n n 

p n 

p p (12.22)

Since what happens in the upper part does not concern us for the time
being, we can look upon this process as a scattering of a deuteron in the
external potential (of the target pion).

Assume that a fast deuteron hits a potential:
r1

r2 target
How would I calculate this process quantum-mechanically?

In the initial state we have the wave function

ψ(r1, r2) = eip·
1
2 (r1+r2)ψD(r12), r12 = r1 − r2, (12.23)

where p is the deuteron momentum, and ψD(r12) describes the relative
motion of the proton p and neutron n inside it.

When D flies fast, it is clear that its nucleons have no time to interact
with each other, so that the potential acts on p and n independently. Then
in the final state the wave function acquires the scattering phase given by
the sum of the p and n scattering phases:

ψ(r1, r2) → ψ′(r1, r2) = ψ(r1, r2) e2iδ(ρ1)+2iδ(ρ2).

The phase depends on the impact parameters of the nucleons in the
deuteron, ρ1 and ρ2, which do not change (stay ‘frozen’) in the course of
the high-energy scattering.

To calculate the amplitude, I have to project ψ′ onto the final state wave
function ψf with a given momentum pf = p + q. If we are interested in
D in the final state, we take ψf = ψD; if we investigate the decay, we look
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D

(a) (b)

D

Fig. 12.3 Independent scattering (a) and shadowing configurations (b).

for ψpψn. Since the S-matrix element does not depend on the longitudinal
coordinates, zi, the momentum transfer is purely transversal, q = q⊥.

To derive the following expression is a very useful exercise (−1 subtracts
the incoming beam):

f =
p

i

∫
d2ρc

2π
eiq⊥·ρc

∫
d3r12 ψ

∗
f (r12)

[
e2iδ(ρ1)+2iδ(ρ2) − 1

]
ψD(r12).

(12.24)

Let us take D in the final state and consider the forward scattering
amplitude, q⊥ = 0:

f(0) = ip

∫
d2ρc

2π

∫
ψ∗
D(r12)

[
1 − e2i(δ1+δ2)

]
ψD(r12) d3r12. (12.25)

At the first glance nothing in the expression (12.25) resembles the dia-
grams of (12.22).

What is the difference between the two approaches?
The quantum-mechanical expression contains no information on which

of the two particles has actually interacted and which has not, while in
the language of Feynman graphs this is the main thing that enters.

To relate the two approaches, let us look at the simple algebraic identity

1 − S1S2 = (1−S1) + (1−S2) − (1−S1)(1−S2), Si = e2iδ(ρi).
(12.26)

It can be interpreted as follows. The first two terms (1 − S) describe
independent interactions of p and n with the potential; the presence of the
third one tells us that the sum of independent contributions apparently
overestimates the answer, over-counts something. Indeed, when one of the
nucleons interacts with the target as in Fig. 12.3(a), we get a sum of two
contributions to the cross section.

However, the deuteron may also hit the potential in the configuration
shown in Fig. 12.3(b). Here both nucleons interact though this contribu-
tion should be counted only once in the total cross section. It is the rôle
of the quadratic term in (12.26) to correct for the double counting of the
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deuteron configuration in which one of the nucleons is screened by the
other. It is clear therefore that this term – the ‘shadowing correction’ –
must enter with a minus sign in the total cross section, related to the
forward amplitude by the optical theorem,

σtot =
4π
p

Im f(0). (12.27)

The magnitude of the shadowing depends entirely on the geometry of the
scattering process, on the size of the deuteron rD as compared to the size
of the potential, R. Let us analyse the two extreme cases.

R � rD. This is the case of a very broad target. The total deuteron
cross section, σtot = 2πR2, will emerge from (12.26) as

2πR2 = 2πR2 + 2πR2 − 2πR2, (12.28a)

meaning that the shadowing is 100% strong.

R � rD. In this case the shadowing will occur only when the pro-
ton and neutron happen to have the same impact parameter,
|ρ1 − ρ2| <∼ rD. The geometric weight of such rare configura-
tions translates into a small shadowing correction

Δσ

σ1
∝ R2

r2
D

� 1. (12.28b)

12.4.2 Broad target

Consider first the case of a large target. One may have in mind, e.g.
deuteron scattering off a heavy nucleus A, A1/3 ∝ R � rD. We obtain a
big cross section by integrating the deuteron impact parameter ρc over
the large area, |ρc| < R. In this situation we can neglect the dependence
on the relative coordinate, ρ12 = ρ1 − ρ2, and approximate

δ1 = δ(ρc + 1
2ρ12) � δ2 = δ(ρc − 1

2ρ12) � δ(ρc).

Since in this approximation the S-matrix does not depend on r12, we get

f(0) = ip

∫
d2ρc

2π

(
1 − e4iδ(ρc)

)
× 1, (12.29)

where the last ‘1’ originates from the wave function normalization,∫
d3r12|ψD(r12)|2 = 1. (12.30)

If a deuteron hits a big nucleus head-on, it definitely interacts and disap-
pears (is absorbed), feeding various inelastic channels. This corresponds
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to the elasticity coefficient η(ρ) in the S-matrix element being vanishingly
small at |ρ| < R, so that

e2iδ(ρ) ≡ η(ρ) e2iβ(ρ) �
{

0, for |ρ| < R,

1, |ρ| � R.

This is the ‘black disc’ picture,∫ ∞

0

d2ρc

2π
(1 − e4iδ(ρc)) �

∫ R

0

d2ρc

2π
� 1

2R
2,

yielding the total cross section

σtot =
4π
p

Im f(0) � 2πR2.

Half of this cross section is the diffractive elastic scattering,

σel =
∫

dΩ |f(q)|2 =
∫

d2q
|f(q)|2
p2

=
∫

d2ρ
∣∣∣1 − e4iδ(ρ)

∣∣∣2 � πR2;

the other half is due to inelastic processes.

12.4.3 Diffractive dissociation of a deuteron

What if I am interested not in the elastic scattering, but in the deuteron
break-up D → pn? In principle, this is one of the inelastic channels. We
are, however, interested in the specific inelastic process in which the tar-
get nucleus remains intact and scatters as a whole, D + A → p + n + A,
instead of being ‘heated up’.

Such a diffractive dissociation of the deuteron is possible only if the
momentum transfer is very small, q ∼ R−1, corresponding to scattering
angles θs ∼ 1/pR; otherwise the nucleus A would break up too.

What will be the scale of such a cross section? Obviously, its amplitude
cannot be as large as the elastic one. If it were, integrating over the same
narrow angular cone as for the elastic scattering, we would get a diffractive
dissociation cross section σdd

tot as large as the elastic one:

σdd
tot =

∫
|fD→pn|2 dΩ ∼

∫
dθ2

s

∣∣pR2
∣∣2 ∼ R2, dθ2

s ∼ 1
(pR)2

.

But there is no place left in σtot to accommodate another contribution of
the order of R2. What is going on in the formula?

The point is that in the rough approximation of the scattering phases
independent of ρ12, the main term in the forward scattering amplitude,
q = 0, cancels because of the orthogonality of the initial- and final-state
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wave functions:

fD→pn(0) =
ip

2π

∫
d2ρc[1 − S1S2] ·

〈
ψpn

∣∣ψD

〉
;

〈
ψpn

∣∣ψD

〉
=

∫
d3r12 ψ

∗
pn(r12)ψD(r12) = 0.

(12.31)

To prevent this cancellation, the expansion of the phase in ρ12 has to be
carried out,

δ[1 − S1S2] � 1
4

[
(ρ12∇ρc

S)2 − S(ρ12∇ρc
)2S

]
, S = S(ρc). (12.32)

If S changes smoothly, |∇S| ∼ R−1, then

p−1fD→pn(0) ∼
∫ R

ρc dρc

〈
ψpn

∣∣ρ2
12

∣∣ψD

〉
R2

∼ r2
D. (12.33)

If the target has a relatively sharp edge, in which region S only changes,
the forward amplitude gets enhanced,

p−1fD→pn(0) ∼
∫

ρc dρc
δ(ρc −R)

H
· r2

D ∼ R

H
· r2

D, (12.34)

where H ∼ 1/μ is the width of the transition region, R � H � rD. In
this case the inelastic amplitude is still suppressed as 1/R ∝ A−1/3 as
compared to the elastic one.

The nature of the suppression of the forward dissociation amplitude
(12.34) is consistent with the total contribution of inelastic diffraction to
the interaction cross section, σdd

tot. When we take q �= 0 in the transition
amplitude (12.24), the wave functions are no longer orthogonal; for small
q one has 〈

ψpn(p + q)
∣∣ψD(p)

〉
∼ (q · kpn) r2

D,

where kpn is the relative momentum of the nucleons. Integrating the am-
plitude squared over the scattering angle, one obtains∫

d2q
p2

|fD→pn|2 ∼ r4
D

∫
d2ρc

∣∣(kpn · ∇ρc
S2

)∣∣2 ∼ πR · r
2
D

H
· k2

pnr
2
D .

An integral over kpn produces
〈
k2
pn

〉
r2
D ∼ 1, and we get the estimate

σdd
tot ∼ πR · r

2
D

H
,

consistent with the magnitude of the forward amplitude (12.34).
Diffractive dissociation occurs only on the periphery of the target nu-

cleus. It is very important to understand that the diffraction does not
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change the internal state of the system, unless the system is scattered as
a whole, q⊥ �= 0.

12.4.4 Shadowing

We return to the discussion of the shadowing correction. Combining
(12.24) and (12.26), we have

f(q) =
ip

2π

∫
d2ρc eiqρc

〈
(1−S1) + (1−S2) − (1−S1)(1−S2)

〉
, (12.35)

where 〈 〉 stands for the average over the deuteron state. Let us con-
sider this expression term by term, f = f1 + f2 + f12. Recall that S1 =
S1(ρ1) = S1(ρc + 1

2ρ12). Introducing the Fourier transform of the profile
of the nucleon scattering matrix element,

1 − S1(ρ) =
∫

d2k
(2π)2

e−ik·ρϕ1(k),

and performing the impact parameter integrals we have

f1(q) =
ip

2π
ϕ1(q) · FD(q2), (12.36)

where F is the electromagnetic charge form factor of the deuteron, given
by the Fourier transform of the probability density to find the electric
charge (proton) inside the deuteron:

FD(q2) =
∫

d3r12|ψD(r12)|2 e−iq
2
·r12 ; F (0) = 1.

The optical theorem (12.27) tells us that ϕ(0) is simply related to the
total interaction cross section of a single nucleon with the target,

ϕ(0) = 1
2σN . (12.37)

For the last term in (12.35) we have

(1−S1)(1−S2) =
∫

d2k1

(2π)2
d2k2

(2π)2
ϕ1(k1)ϕ2(k2) e−i(k1+k2)ρc e−i

k1−k2
2

ρ12 ,

and derive analogously

f12(q) = − ip

2π

∫
d2k

(2π)2
ϕ1(1

2q + k)ϕ2(1
2q − k) · FD(4k2) . (12.38)

Assembling the three terms of (12.35), for the total cross section we obtain

σD = σp + σn − 2 Re
∫

d2k
(2π)2

ϕp(k)ϕn(−k) · FD(4k2). (12.39)
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Now we are ready to check our expectations (12.28) about the magnitude
of the shadowing correction that were based on the classical geometric
considerations.

Broad potential. In this case p and n almost always hit the target
together, and we expected in (12.28a) a 100% negative shadowing cor-
rection. Within the black-disc model, the nucleon amplitude f1 is purely
imaginary, so that ϕ is real and we can replace Reϕ2 by |ϕ|2. Using

|ϕ(k)|2
(2π)2

=
1
p2

|f1(k)|2 =
1
p2

dσN
el

dΩ
� dσN

el

d2k
,

this allows us to represent (12.39) in terms of the differential elastic
nucleon scattering cross section as

σD
tot = 2σN

tot − 2
∫

dk2dσ
N
el

dk2
FD(4k2). (12.40)

The characteristic momenta in the integral (12.40), k2 ∼ R−2 are much
smaller than the internal scale of the form factor, r−2

D , therefore we can
put F = F (0) = 1 to obtain

σD
tot = 2σN

tot − 2σN
el = 2σN

tot − σN
tot = σN

tot.

Compact potential, large-size projectile. The product ϕp(ρ1)ϕn(ρ2)
requires p and n to be at the same impact parameter in order to simulta-
neously aim at the small-size target, R � rD, and screen one another. The
deuteron form factor falling sharply above k2 ∼ r−2

D � R−2, the factors
ϕ in (12.39) can be taken out,

σD � σp + σn − 2ϕp(0)ϕn(0)
∫

dk2

4π
FD(4k2).

Invoking (12.37), this immediately gives the Glauber formula

σD � σp + σn − σpσn
4π

· r−2
D , (12.41a)

where we have used

r−2
D ≡

∫
d3r12

|ψD(r12)|2
r2
12

= 1
2

∫
dk2 FD(4k2). (12.41b)

12.5 Back to relativistic theory

The analogy between the quantum-mechanical shadowing phenomenon
and the two-reggeon branching can be made explicit if we substitute the
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relativistic amplitude in the expression (12.38) for the double-scattering
graph:

2iϕ1(q) =
4πf1(q)

p
=⇒ A(s, t)

s
.

We have used the deuteron as a model for a composite target, in order
to understand the origin of the negative correction due to the exchange
of two reggeons. Let us say a few words about the real deuteron, about
high-energy πD scattering.

12.5.1 Glauber scattering

We have analysed the double scattering in
quantum mechanics and found a large cor-
rection. We could carry out this calculation
directly from relativistic diagrams, in the
non-relativistic approximation (treating the
masses of the particles as large parameters).
But, in the framework of our former logic, this correction has to be zero,
since there is no cross in the upper part of the corresponding diagram!
On the other hand, the non-zero answer was legitimately obtained in the
non-relativistic theory. What is happening here?

Normally there are no small parameters in the diagrams describing
relativistic hadron interactions. The deuteron problem is, however, spe-
cial: calculating the diagrams for πD scattering we encounter a small
parameter, namely the ratio of the size of the pion, R ∼ r0 ∼ μ−1, to that
of the deuteron, R/rD � 1. It is the presence of this new parameter that
is responsible for the survival of the semi-AFS diagram.

π
What is the reason for that, in classical

terms? Consider the process in a reference
frame in which the π meson is fast. Assum-
ing that the situation is non-relativistic, we
have obtained three contributions: π collided
with either of p or n, or there was screening
as a result of a double interaction. Why were

there no virtual particles involved; why was the answer expressed via the
on-mass-shell amplitudes, i.e. via real particles?

We assumed rD to be large, and this was the reason why, in the non-
relativistic theory, π propagated between the two successive collisions as a
real particle. The fact that the π meson had to pass a large distance, lim-
ited the energy uncertainty, ΔE ∼ 1/Δt ∼ 1/rD � 1/R ∼ μ, and forced
π to be real. But this argument disregards the relativistic retardation
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effect (as if virtual objects could not propagate at large distances!). In
the relativistic situation, Eπ � μ, the lifetime of the virtual pion fluctu-
ation, Δt ∼ Eπ/(Δm)2, may become comparable with rD even for large
invariant masses of the virtual state, Δm. Depending on the pion energy,
we have three scenarios.

(1) E/μ2 � rD. There is just one π, and the non-relativistic quantum
mechanics gives a correct answer.

(2) E/μ2 ∼ rD. A transitional regime: the pion can be accompanied by
a small number of additional particles.

(3) E/μ2 � rD. In the space between the collisions with p and n,
multi-particle showers with large invariant masses (Δm)2 � μ2 can
propagate, and the probability of just one π becomes vanishingly
small.

12.5.2 Relativistic inelastic corrections to Glauber scattering

The deuteron example shows that the vertex blocks N that we have
treated as constant, may contain, in specific cases, small internal parame-
ters (like the deuteron binding energy) and therefore may still be changing
fast at small momenta, well below a typical hadronic scale k2 <∼ μ2.

There is another very important lesson. In the non-relativistic theory
the screening means that one particle is an obstacle for another one just
geometrically, i.e. the screening is the result of the geometry of subsequent
collisions. It looks natural to discuss the scattering of a particle off a
nucleus in terms of successive interactions with nucleons. In so doing, it
is usually implied that the projectile pre-
serves its identity when it propagates be-
tween successive collisions. This picture
takes into account the Glauber corrections
due to elastic screening. In the reggeon lan-
guage, these diagrams correspond to non-
enhanced branchings.

π 
In the relativistic case there may be a

whole shower propagating between the in-
teraction points, since when the energy of
the projectile E → ∞, it itself fluctuates at
distances exceeding the size of the target.
We get another contribution to the screen-
ing phenomenon – an inelastic screening.
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At very high energies the processes with large cascades become domi-
nant. But these are again ‘ladders’. Summing up high-mass intermediate
inelastic states we arrive at the enhanced branchings,

g 

g g 

r .



13
Interacting reggeons

13.1 Constructing effective field theory of
interacting reggeons

Now we are in the position to address an important question, namely:
what can be said about the vertex functions N for other, more compli-
cated, processes.

13.1.1 Stuffing up the vertex: R → RR transition

Let us draw a more complicated diagram for
N . Again, I will carry out the factorization
and obtain the same structure expressing N
as the energy integral (12.14) of some new
amplitude (which now has a three-particle
threshold in s1), etc.

Continuing the process I will face the following problem. As the diagram
becomes more complicated, it may start to decrease slower and slower with
the growth of energy. For a concrete diagram, N is a number. Summing up
a set of diagrams may rend, however, a diverging answer for N (if faraway
multi-particle thresholds happen to dominate the internal integrals in A1).
Stuffing the particles into N , we effectively increase s1 and may arrive,
e.g. at the graph shown in Fig. 13.1(a). This one has all the reasons to
contradict my initial expectation that it was profitable to ascribe a finite
energy 〈s1〉 to the particle–reggeon scattering blocks, and the bulk of the
total energy – to the parallel reggeons, sI ∼ sII ∼ s.

This observation exposes another flaw in our logic. In the previous
lecture we have analysed a branch cut singularity in the angular momen-
tum plane due to two reggeons. But who ever told us that the blocks

334
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(a)

1

2

f 2( j ) =

(b)

Fig. 13.1 (a) A ladder in the two-particle–two-reggeon vertex block; (b) partial
wave for the two-reggeon branching.

in Fig. 13.1(b) did not contain singularities themselves? In particular, if

contains, e.g. a pole in the total angular momentum j (as

the ladder in Fig. 13.1(a) suggests), the asymptotics of N(s1) would be
bad, and the integral (12.14) would diverge. Therefore, it was a mistake
to suppose that the reggeon production amplitude was a smooth function
in the j-plane.

Let us write, once again, the integral for the vertex function N :

N =
∫ ∞

s0

ds1

2π
A1(s1, q

2; . . .) . (13.1a)

Does this not look familiar?
Recall, how in Lecture 7 we have related the t-channel partial wave to

the imaginary part of the amplitude, cf. (7.27),

fj(t) ∼
∫

Qj(z)A1(z, t) dz �
∫ ∞

s0

ds
A1(s, t)
sj+1

. (13.1b)

Comparing the two expressions (13.1) we conclude that, if the wavy lines
in Fig. 13.1(b) were ordinary particles rather then reggeons, N would be
just the value of the partial wave fj for the 2→2 scattering amplitude
at j = −1. Thus, our N is the analogue of the partial wave f−1 for a
two particles → two reggeons transition. In this language, the problem
of convergence reduces to the question where the singularities in j are:
if they all lie on the left of j = −1 then N is finite; if the rightmost
singularity is above −1 then N = ∞. So, the divergence of the vertex N
is connected to the structure of angular-momentum singularities of the
reggeon production amplitude.
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13.1.2 Reggeon field theory: construction logic

So, what is the basic idea? We have found the branchings, and realized
that all of them are relevant for the asymptotic behaviour. To construct
an effective field theory describing high-energy scattering phenomena, I
have to have, I would say, an initial (bare) reggeon, reggeon emission
amplitudes, amplitudes of inter-reggeon interactions, etc.

. . .

Dealing with a field theory we assume that once we plug in bare quantities
(propagators, vertices), the true scattering amplitudes can be calculated,
taking into account all renormalization corrections, repetitions, etc. From
the point of view of dispersion relations, all the branchings are important.
Obviously, if such a situation persists at the level of ‘true’ (renormalized)
objects and interactions, we would have failed the task. In practice, we
would rather have an answer that is self-consistent within a scheme that
contains but a small number of bare (unknown) quantities.

Let us divide the diagrams into two classes.

(1) Diagrams with only a few lines, in configurations with not too large
relative momenta and virtualities (so that the s1 integral converges),
yielding finite functions N . These we will call ‘bare reggeon ver-
tices’, and will treat them as such.

(2) Diagrams with large pair energies s1 �μ2. As to these diagrams,
we will assume that they can be expressed, in turn, in terms of
reggeons, since s1 is large and the amplitude is in the asymptotic
regime.

By so doing we make the second class of diagrams, again, subject to
calculation. This fits well the idea of constructing a self-consistent field
theory. There is, of course, a problem: how to actually separate diagrams
into the two classes (when few becomes a good few?).

In the diagrammatic language, the main hypothesis can be formulated
as follows. I suppose that after I reformulate the theory in terms of exact
(renormalized) reggeons, the diagrams will naturally fall into two classes.



13.1 Constructing effective field theory of interacting reggeons 337

(a) (b) 

A1 A1 

s1 λs1 

Fig. 13.2 Dividing vertex diagrams into two classes: (a) a clear-cut case; (b)
setting an arbitrary separation parameter s1 = λ.

The ideal case is when the two energy regions separate naturally as in
Fig. 13.2(a). But even if the discontinuity A1 does not have a prominent
structure as shown in Fig. 13.2(b), we can introduce an arbitrary finite
cut-off λ to formally divide the two regions.

We hope that in the high energy region, s1 � λ = O(1), the picture will
get simpler in the asymptotics, and we will be able to construct a self-
consistent calculation scheme. At the same time, we will treat particle–
reggeon and reggeon–reggeon interaction blocks at low energies, s1 <∼ λ,
as input (bare) vertices. The introduction of bare vertices is a way to
separate the finite energy domain about which nothing definite can be
said from first principles.

Now that we have virtually ‘calculated’ all the diagrams of the first class
(s1 ≤ λ, s2 ≤ λ, sinternal ∼ s → ∞), we can make an important statement:
N 
= 0.

Since my ‘calculation’ is valid only for s1 ≤ λ anyway, I can deform the
contour around the right cut in spite of the divergence of the integral,
and define a ‘bare’ vertex

Nbare ≡
∫ λ

4μ2

ds1

π
A1(s1). (13.2)

About the integrand we can say that A1 > 0, at least in a certain region:
for (near to) forward scattering it is given by a sum of positive contribu-
tions

ImA = A1 = =
∑
n

an an∗ > 0,

+ . ..= + +

(13.3)
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This allows us to state that the particle–reggeon scattering does exist:
Nbare 
= 0.

At this point you may wonder: how did we manage to get N =0 for
the AFS amplitude? The total contribution of each multi-particle state is
positive since the same (full) amplitude stands there on the left and on
the right from the discontinuity in (13.3). To observe the AFS cancella-
tion, we have picked specific pieces from the multi-particle cuts through
(corrections to) the reggeon vertex, which cuts are not positively definite:

2Re=A1
AFS + + . . . (13.4)

The series of selected terms cancelled, upon integration over s1, the posi-
tive contribution a1a

∗
1 of the one-particle state. Such a selection procedure

eliminates not only the pole but some other positive terms on the r.h.s.
of the unitarity relation (13.3) as well. For example,

. . .=A1
(2) +

which diagram, being planar, has no third spectral function either. At the
same time, the diagrams with ρsu 
= 0 do survive and contribute to N . For
them an artificial procedure of extracting negative pieces from the farther
terms of the unitarity relation makes no sense: the series of potentially
compensating contributions diverges.

13.2 Feynman diagrams for reggeon branchings

Now we have to examine different diagrams and learn to calculate them.
How can one describe the contribution of branchings in a transparent

way? We start from a two-reggeon branching,

F2(s, q2) =

k2

k1− k

f
∼
f

k2+ k
p2

p1
k1

.

At high energies this diagram can be expressed in terms of the asymptotics
of the blocks f and f̃ . For one of the blocks, introducing the complex
angular momentum variable �1 and the reggeon Green function G�1 , we
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can write

f = g(k1, k)g(k2, k) · (−1)
∫

d�1
2πi

ξ�1[2k1k2]�1G�1(k)︸ ︷︷ ︸
block

.

If G has a simple pole, G = 1/(�1 − α(k2)), the integration can be carried
out producing (2k1k2)αξα. Similarly, for the second block we have

f̃ = −g(p1 − k1, q − k)g(p2 − k2, q − k)

×
∫

d�2
2πi

ξ�2 [2(p1 − k1)(p2 − k2)]�2G�2(q − k).

Taking into account that

α1 ∼ 1, β1 ∼ s−1; α2 ∼ s−1, β2 ∼ 1;

αk ∼ βk ∼ s−1, k2 � −k2
⊥,

2k1k2 = α1β2s, 2(p1 − k1)(p2 − k2) = (1 − α1)(1 − β2)s,

everything becomes factorized, and we obtain

F2(s, q2) =
1
2!
iπ

2

∫
d�1
2πi

∫
d�2
2πi

∫
d2k

(2π)2
ξ�1G�1(k)ξ�2G�2(q − k)

·N�1�2(k,q)N∗
�1�2(k,q) s�1+�2−1, (13.5)

where

N�1�2 =
1√
2

∫
d4k1

(2π)4i

∫
sdβk
2πi

g(k1, k)g(p1−k1, q−k)α�1
1 (1 − α1)�2

( ) ( ) ( ) ( )
.

We have discussed that this expression is analogous to a Feynman dia-
gram for particles with spins; α�1

1 (1 − α1)�2 are ‘cosines of angles’. Since
α1 changes in the interval 0 < α1 < 1 (cf. calculation of the box diagram
in Section 9.2.3 of Lecture 9), this factor does not pose any problem.

13.2.1 Two-reggeon branching as a Feynman integral

How to find the t-channel partial wave corresponding to the amplitude
(13.5)? This is done using the ‘relativistic projection’ (7.19):

f
(2)
j (q2) =

2
π

∫ ∞

s0

ds

sj+1
ImF2(s, q2); (13.6a)

F2(s, q2) = − 1
4i

∫
dj ξjs

jf
(2)
j (q2). (13.6b)



340 Interacting reggeons

The integral is very simple:

fj(q2) =
1
2!

∫
d2k

(2π)2

∫
d�1d�2
(2πi)2

γ�1�2N
2
�1�2G�1(k)G�2(q − k)

s�1+�2−j−1
0

j + 1 − �1 − �2
.

Here γ�1�2 ≡ Im(iξ�1ξ�2).
One may always choose units such that s0 = 1. More importantly, I will

always be interested in the region j close to the singularity so that j +
1 − �1 − �2 ≈ 0 and the factor s�1+�2−j−1

0 can be dropped, independently
of the value of s0.

The expression we have obtained reminds us very much of the old per-
turbation theory. Indeed, we took two ‘particles’ with propagators

a 

b 

α1(k) α2(q−k)

G�1 =
1

�1 − α1
, G�2 =

1
�2 − α2

,

and derived

fj(q2) =
1
2!

∫
d2k

(2π)2
γα1α2N

2
α1α2

j + 1 − α1 − α2
. (13.7)

This is a typical expression for the second-order
correction to the a → b transition amplitude in
non-relativistic perturbation theory,

δfa→b(E) =
∑
n

VanVnb

En − E
. (13.8)

We get a direct correspondence if we treat

α1(k) − 1 ≡ ε1, α2(q − k) − 1 ≡ ε2

as energies of the two particles, En = ε1 + ε2, and j − 1 ≡ ω as the total
energy (E):

E − En ≡ ω − (ε1 + ε2) = (j − 1)−(α1 − 1)−(α2 − 1) = j + 1 − α1 − α2.

The two-dimensional momentum k in (13.7) plays the rôle of the index n
of the intermediate state in (13.8).

This result can be rewritten using Feynman’s techniques (covariant
perturbation theory). To this end we return to the original representation
containing integration over �1 and �2. The contours in �i run parallel to
the imaginary axis, on the right of the singularities of the Green functions
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G�i . Consider, e.g., the �2-plane:

j + 1−   1

2 

G(  2) 

For the energy integral in (13.6a) to converge, j has to be sufficiently
large: j + 1 − �1 − �2 > 0. Then, in the �2-plane the contour lies on the
left of the pole: �2 < �pole

2 = j + 1 − �1. Therefore we may evaluate the
integral by closing the contour on the right half-plane, around the pole.
Introducing ω1 = �1 − 1 and ω2 = �2 − 1 as new variables, G�i → Gωi

, the
relation j + 1 − �1 − �2 = 0 translates into ω2 = ω − ω1 and we have

fω(q2) =
1
2!

∫
d2k

(2π)2

∫
dω1

2πi
γω1ω2N

2
ω1ω2

Gω1(k)Gω−ω1(q − k). (13.9a)

This expression can be cast in a more symmetric form by introducing two
sets of integrations,

fω(q2) =
1
2!

∫
dω1 d

2k1

(2π)3i

∫
dω2 d

2k2

(2π)3i
γω1ω2N

2
ω1ω2

Gω1(k1)Gω2(k2)

· (2πi) δ(ω − ω1 − ω2) · (2π)2δ(q − k1 − k2).

(13.9b)

ω, q

G (ω − ω1,q−k1)G(ω1, k1)

This is a Feynman diagram in the
exact sense of the word; a ‘par-
ticle’ with ‘energy–momentum’
(ω1,k1) is described by the prop-
agator G(ω1,k1). The only unfa-

miliar feature is the form of the integration in ‘energy’ ω: we have now the
integral running along the imaginary axis instead of the usual Feynman
integration contour,

This does not make much of a difference, it is just more convenient. It is
important that the singularities of the propagator G(ω,k) lie on the one
side of the contour, i.e. our ‘particles’ are non-relativistic.
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Recall the reggeon signature factor (8.8c),

ξ� = −e−iπ� ± 1
sinπ�

,

which can be represented as

ξ� = −ζ�
−1 · exp

{
−i

π

2

(
� +

1 − P�

2

)}
, ζ� =

{
sin π�

2 , P� = +1,
cos π�

2 , P� = −1,

where P� = ±1 corresponds to positive (negative) signature. The factors
ζ� may be included into reggeon propagators, G�; this way we would have
poles in � both for reggeons and particles: � = 2n for positive, and � =
2n + 1 for negative signature trajectories.

Let us look at the numerator of the γ factor in (13.9),

Im
(
iξ1ξ2

)
∝ Re exp

{
−i

π

2
(
�1 + �2 + 1

2(1 − P1) + 1
2(1 − P2)

)}
,

giving

γ�1�2 = ζ−1
�1

ζ−1
�2

cos
π

2
(
j + 1 + 1

2(1 − P1) + 1
2(1 − P2)

)
, (13.10)

where we have taken into account that j + 1 = �1 + �2. The cos factor can
either be absorbed into vertices,

√
cos · √cos, or ascribed to the interme-

diate state of the two reggeons.
The signature of the reggeon branching is given by the product of signa-

tures of participating reggeons, P (2) = P1P2. Indeed, the factor s�1+�2−1 in
the expression (13.5) contains two reggeon amplitudes, ξ�s�, each of which
transforms under the s → −s reflection according to its proper signature,
while s−1 originates from the phase space volume and is in fact |s|−1.

13.2.2 Multi-reggeon exchange: conservation of signature

Let us take into account more complicated processes. We have considered
a diagram with two blocks with Regge pole asymptotics, and arrived at the
two-reggeon branching contribution. What if the asymptotic behaviour of
the block amplitude itself corresponds to the branching rather than to
the pole?

Let us insert f (2) that we have just calculated in one of the blocks,

=f .(2) f pole
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The vertex will now contain N · g instead of g1 · g2. However, since every-

thing remains factorized in the integrand, denoting as N�1�2�3 ,

for the amplitude we obtain

F3(s, q2) =
i2

3!

∫
d2k′d2k
(2π)4

∫
d�1 d�2 d�3

(2πi)3
ξ�1ξ�2ξ�3

·G�1G�2G�3s
�1+�2+�3−2(N�1�2�3)

2. (13.11)

Here 3! accounts for different equivalent insertions, and s−2 originates
from the phase space volume.

It is clear now how to repeat the procedure an arbitrary number of
times. For the n-reggeon branching we have

Fn(s, q2) =
π

2
(−1)nin−1

n!

∫ n−1∏
1

d2ki
(2π)2

n∏
1

d�1
2πi

ξ�iG�i · s
∑

i �i−n+1N2
�1...�n .

(13.12)
Let us look into the origin of the phase in (13.12).

In the case of two reggeons we had iξ1ξ2; a three-reggeon amplitude
contains the factor i2ξ1ξ2ξ3. Each additional transverse momentum inte-
gration brings in a factor i:

d4ki
(2π)4i

=
i

2 |s| ·
dαis

2πi
dβis

2πi
d2k

(2π)2
,

since integrals over αi and βi, as we have learned before, reduce to in-
tegrations of discontinuities of reggeon creation amplitudes and produce
real-valued vertex functions. Evaluating the corresponding partial wave
using (13.6a) and introducing an integral over kn in order to symmetrize
the expression, we get

f
(n)
j (q2) =

1
n!

∫ n∏
i=1

d2kid�i
(2π)3i

G�i(ki) · (2π)2δ
(∑

ki − q
)

· Im
(
in−1ξ�1 . . . ξ�n

) N2

j + n− 1 − ∑
�i

. (13.13)

Finally, we may introduce ωi and one more integration,

f
(n)
j (q2) =

1
n!

∫ n∏
i=1

d2ki dωi

(2π)3i
· (2π)3 iδ

(
ω −

∑
ωi

)
δ
(∑

ki − q
)

· γω1...ωn
·N2

ω1...ωn

n∏
i=1

Gωi
(ki), (13.14)
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to obtain, again, a standard expression for the Feynman diagram. The
only difference is in the signature factor γ:

γ ≡ Im
[
(−1)nin−1 e−

iπ

2 (∑ �i+
∑

i

1−Pi
2 )

]
·

n∏
i=1

ζ−1
�i

. (13.15)

Recalling that we have taken the residue j + n− 1 − ∑
i �i = 0, for (13.15)

it is straightforward to derive

γ = (−1)n−1 sin
π

2

[
j +

n∑
i=1

1 − Pi

2

]
·

n∏
i=1

ζ−1
i . (13.16)

What is the meaning of this factor? Depending on the sign of the prod-
uct P (n) =

∏n
i=1 Pi, the amplitude is proportional to sin π

2 j (P (n) = +1)
or cos π

2 j (P (n) = −1). This is the manifestation of the conservation of
signature: the symmetry of the n-reggeon amplitude is determined by the
‘product’ of symmetries of all the poles.

Because of this factor, the contribution of the n-reggeon branching van-
ishes in the points of its proper signature, γ+ ∝ sin π

2 j = 0 for j = 2k, and
γ− ∝ cos π

2 j = 0 for j = 2k + 1.
The signature of a branching of n+ pos-

itive and n− negative signature reggeons
is

P (n) ≡ P (n++n−) = (−1)n− .
n+ n−

∝ (−1)n−1n

Let us examine the most important case
when all the poles are pomerons P. Then,
as we know, jn(t) = nα(t/n2) − n + 1. At
small t-values the branching jn(t) � 1 +
(α′t/n) is positioned near 1, as well as all
the poles �i, and (13.16) gives

γ�1...�n ≡ γnP � (−1)n−1. (13.17)

In another interesting case when we have n pomerons and one non-
vacuum pole with some trajectory β(t),

jn+1(t) � β(0) +
α′

α′ + nβ′ t � β(0),

the branching signature factor reads

γnP+β = (−1)nζ−1
β(0) sin

π

2

[
β(0) +

1 − Pβ

2

]
= (−1)nPβ. (13.18)
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Thus, in both cases when all (or all but one) poles are P, adding one
pomeron changes the sign of the partial wave amplitude of the branching.

We conclude that the contributions of the (simplest) branchings are
very similar to Feynman diagrams, except for the alternating signs. In
terms of the field theory, the fact that contributions to the unitarity con-
dition have alternating signs means that the Hamiltonian corresponding
to our theory is anti-Hermitian.

Where does this oscillation come from? Recall that the characteristic
feature of the vacuum pole was that the corresponding scattering ampli-
tude A was purely imaginary at small t values, A ∝ i. When we iterate n
vacuum amplitudes, n− 1 loops each produce
the factor i,

F (n) ∼ And
4k1 . . . d

4kn−1

[(2π)4i]n−1
∼ An

(
i

i2

)n−1

(i2 in the denominator participates in forming
the real multi-reggeon production vertices, as
we have just discussed), and we get

F (n) ∼ (iA)n−1A ∼ (−1)n−1A.

What if I considered a photon?

APP = −i Aγγ = i

Both processes are diffraction scatterings, but in the case of the photon
the basic amplitude is real. Thus the alternating sign takes its origin from
the complexity of the vacuum pole amplitude.

As we have discussed in the previous lecture, from the s-channel point
of view the opposite sign of the two-pomeron branching is nothing but
the screening phenomenon.

13.3 Enhanced branchings

Till now we supposed that the reggeon creation vertices N contained no
singularities in � and treated them as constants. What we have obtained
this way is known as ‘non-enhanced’ reggeon branchings.
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Now it is time to move further and try to
combine poles with branch cut singularities.

For example, what will be the contribution
to the asymptotics of a diagram like this one?
This is an example of the so-called enhanced
branchings.

To learn how to deal with enhanced branchings, it is sufficient to con-
sider a general graph (13.19), without specifying the details of the blocks:

F (q2, s) =

p1

k

p2

s2

s1

(13.19)

For the time being we assume the simplest case, with two particles in
the intermediate t-channel state; more complicated configurations will be
considered later.

F =
∫

d2k⊥ dα dβ s

2(2π)4i
f(p1, q, k)

1
m2 − αβs + k2

⊥ − iε

1
m2 − (α− αq)(β − βq)s + (k − q)2⊥ − iε

f ′(p2, q, k). (13.20)

The key question is, which invariant energies s1 and s2 are relevant? If one
of them is small, we arrive at the situation we have already considered.
So, we will suppose that both energies are in the asymptotic regime,
s1, s2 � μ2.

13.3.1 Renormalization of the Regge pole

First, we write for the blocks f and f ′ in (13.20) just the pole expressions:

f = g(q, p1)
∫

d�1
2πi

ξ�1G�1(q)(2p1k)�1g(q, k) = . (13.21)
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This leads to the picture of two reggeons connected by a particle loop,

k

(β < 0)
α 

(β > 0)

Let us investigate the singularities in α. The poles are

α1 =
m2

⊥ − iε

βs
, α2 =

m
′2
⊥ − iε

(β − βq)s
+ αq .

The cuts in α come from the lower block amplitude f ′(s2):

s1 = (p1 − k)2 = (1 − α)(γ − β)s− k2
⊥ � −βs ,

s2 = (p2 + k)2 = (γ + α)(1 + β)s− k2
⊥ � αs .

Depending on the sign of β, I close the contour around the left (β > 0) or
the right (β < 0) cut. As always, to determine the asymptotics, we have
to consider the s- and u-cuts independently (see Lecture 11):

F (q2, s) =
∫
β<0

dβs dα d2k
2(2π)3π

f(p1, q, k)
( )( )

Ims f
′(p2, q, k) +

∫
β>0

Imu f
′(p2, q, k).

(13.22)
Consider the first integral. It includes

ξ�1(−βs)�1(αs)�2 ;

the second signature factor, ξ�2 , is absent since we took the s-channel
imaginary part of the lower amplitude. Everywhere in the propagators
enters αβs = O(1), thus it is reasonable to introduce x = −αβs as an
integration variable, instead of β:

F (q2, s) = g(q, p1)g(q, p2)
∫

d�1
2πi

ξ�1G�1(q)
∫

d�2
2πi

G�2(q)

·
∫

d2k dx

(2π)4
g(q, k)g(q, k)

( ) ( )

∫
dα

α

(x

α

)�1
(αs)�2 . (13.23)

Since the propagators depend only on x, the integral in α can be easily
taken: ∫

dα

α
α�2−�1 ,

1
s
< α < 1.

The result depends on the magnitude of the difference �2 − �1.
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If the angular momenta are significantly different, for example, �2 > �1,
then the lower amplitude grows with energy faster than the upper one.
In this situation we have

α ∼ 1 ; (αs)�2 is large, while (βs)�1 ∼
( x

αs
s
)�1

∼ 1 is small,

so that the whole energy turns out to be assigned to the lower block,
s ∼ s2 � s1. In the opposite case, �2 < �1, a large energy will be assigned
to the upper block, while the lower one will contain only a few particle
interactions, away from the asymptotic regime.

An interesting case is �2 ≈ �1. This gives a possibility to get an enhanced
contribution by playing on the redistribution of energy between the two
blocks: ∫ 1

1/s

dα

α
=

1
�2 − �1

(1 − s(�1−�2)) ∼ ln s. (13.24)

This is just the phenomenon which prompted me to carry out the calcu-
lation. According to (13.24), the singularity in j of our simplest enhanced
diagram is not identical to that of the initial reggeon amplitude. Let us
rewrite the expression so that this can be clearly seen:

F (q2, s) = g2

∫
d�1
2πi

ξ�1G�1(q)
∫

d�2
2πi

r�1�2G�2(q)
s�1 − s�2

�1 − �2
. (13.25a)

Here

r�1�2 = 2
∫

d2k dx

(2π)4
g2(q, k)
( ) ( )

x�1 . (13.25b)

The partial wave is given by the integral

fj(q2) = g2

∫
d�1
2πi

G�1(q)
∫

d�2
2πi

G�2(q) r�1�2

∫ ∞

s0

ds

sj+1

s�1 − s�2

�1 − �2
. (13.26)

Let us calculate it at �1 ≈ �2:∫ ∞

s0

ds =
1

�1 − �2

[
sj−�1
0

j − �1
− sj−�2

0

j − �2

]
� 1

(j − �1)(j − �2)
.

Finally, closing the �-contours around the poles, we obtain

fj(q2) = g(q2)Gj(q) rjjGj(q) g(q2). (13.27)

Depending on the signatures of the two reggeons, the second term of
(13.22) due to the u-channel cut either cancels the s-channel contribution
(opposite signatures, P1 =−P2) or doubles it (P1 =P2; the corresponding
factor 2 is already included in the formula (13.25b) for r�1�2).
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The expression (13.27) is rather transparent from the point of view of
Feynman diagrams. The two reggeons belonging to the same scattering
amplitude, having the same quantum numbers and the same signature,
can transform one into another; they ‘mix’.

If we insert the calculated expression in the up-
per block of our general graph (13.19) and repeat
the analysis, we obtain a graph with two successive
reggeon–reggeon transitions.

If initially the reggeon Green function has the form

r 

r

G0 =
1

j − α0
,

then after taking into account all iterations of this sort we arrive at

G =
1

j − α0
+

r

(j − α0)2
+

r2

(j − α0)3
+ · · · =

1
j − α0 − r

.

The trajectory has changed.
By the way, this means that if the pole is a genuine one, there cannot

be such diagrams (r = 0). (This is just an aside.)

13.3.2 Basic reggeon interactions

What truly interests us is diagrams like

=

N

g

N
g

j

1 + 2 − 1

.

Using the results of our previous calculations, we obtain

fj(q) = g Gj(q)
∫

d�1 d
2k

(2π)3i
rj�1�2G�1(k)G�2(q − k)γ�1�2N�1�2(q, k), (13.28)

where �2 = j + 1 − �1. The new vertex rj�1�2 is analogous to r�1�2 , only
with the two-reggeon creation function N replacing one of the g(q, k)
factors in (13.25b).
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We come to the conclusion that one reggeon can
transform into two: there is a mixing. Such a tran-
sition can be important only when the upper and
the lower blocks have the same degree of the s be-
haviour, i.e. αpole ≈ αbranching. But as we already
know this is just the situation that we have, at small
t-values, for the vacuum pole P with αP(0) = 1.

Similarly, one arrives at more complicated diagrams. For example, taking
a three-reggeon branching for one of the blocks in (13.19), we will obtain
diagrams

, etc.

Thus, having started from a pole, we obtain all diagrams with different
groups of reggeons following one another in the t-channel. These diagrams
modify particle–reggeon vertex functions
and the reggeon propagator.

Will there be graphs of another sort,
which look like corrections to reggeon–
reggeon interaction vertices?

Should a reggeon diagram like this
one, (13.29), exist this would generate,

N 

N 

r 
r , (13.29)

r 
r 

r 

r 

g 

g

via (13.19), a whole new family of graphs
containing ‘reggeon corrections’ to r as well
as to other reggeon interaction vertices.

The reggeon graphs of the type of (13.29)
do appear from the analysis of the diagram
shown in the l.h.s. of (13.30). To show this is
a rather cumbersome task because of many
regions in the αi, βi variables in an ampli-
tude with five scattering blocks.

(13.30)
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The answer, however, turns out to be quite simple: just the sum of two
terms shown on the r.h.s. of (13.30). If the outer reggeons forming the
basic loop are different, these contributions are not identical, exactly as
it would have been the case in a non-relativistic quantum mechanical
problem.

Essentially, the answer reduces to a simple statement that using
reggeons we can draw all diagrams that can be imagined in a field theory.
There is one important additional rule: every reggeon vertex r has its own
signature factor γ, which is characterized by the set of reggeon complex
angular momenta �i in each intermediate state,

.

We have investigated only the structures of the diagrams. What are the
coefficients these diagrams should be added up with? Is there any corre-
spondence with a (non-relativistic) field theory? The answer is simple:
the coefficients should be such that the unitarity conditions are satisfied,
since the series of Feynman diagrams is a formal solution of the unitarity.

The asymptotic behaviour of the amplitudes at s → ∞ can be expressed
in terms of the asymptotics of the internal blocks. If we assume that the
basic scattering block is just a Regge pole, then, applying the diagram-
matical rules, everything can be constructed from this reggeon.

13.4 Feynman diagrams and reggeon unitarity conditions

In Lecture 11 we derived the reggeon unitarity condition in the t-channel,
at t > 0, which contained unknown reggeon creation amplitudes. Now we
know that the branchings can be obtained directly from the physical re-
gion of the s-channel (t < 0) where all the ingredients are well defined,
diagrammatically. It is the series of these diagrams that allows us to sim-
plify the unitarity conditions.

Recall the two-reggeon unitarity condition that we have written in the
t-channel,

δfj = −π

∫
dt1 dt2 τ(t, t1, t2)N+

j · δ(j + 1 − α1 − α2) ·N−
j , (13.31)

where τ is the two particle phase space volume, and N±
j = N±

j (t, t1, t2)
are the values of the full two-particle–two-reggeon transition amplitude
above and below the cut in j, cf. (11.37).
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We have calculated above a similar expression in terms of Feynman
diagrams, using the simplest explicit vertex functions N :

fj =

N

N

 = −
∫

d2k d�1
(2π)3i

G�1(k)Gj+1−�1(q − k)N N . (13.32)

Substituting G = 1/�− α,

fj = −
∫

d2k
(2π)2

NN

j + 1 − α1 − α2
.

The imaginary part of the partial wave,

δfj = −π

∫
d2k

(2π)2
Nδ(j + 1 − α1 − α2)N, (13.33)

has a structure resembling the t-channel unitarity condition. The only
difference is that now we have d2k instead of dt1 dt2 τ in (13.31).

So, is there a correspondence between the two formulae? Let us trade
the two-dimensional transverse momentum integration,

d2k = k dk dϕ = 1
2d(k

2) dϕ,

for the arguments of the reggeon Green functions,

−t1 = k2, −t2 = k′2 ≡ (q − k)2; (−t = q2)

k′2 = q2 + k2 − 2kq cosϕ , dk′2 = 2kq sinϕdϕ .

We obtain

sin2 ϕ = 1 −
(
k

′2 − q2 − k2

2kq

)2

, d2k =
dt1 dt2

2kq|sinϕ| =
dt1 dt2

2
√
−t · pc

,

where

pc = pc(t, t1, t2) =
[
t2 − 2t(t1 + t2) + (t1 − t2)2

4t

]1
2
.

The factor pc appearing in the denominator of (13.33) is nothing but
the relative momentum of the two reggeons in the centre-of-mass of the
t-channel. Curiously, the same factor pc is present in the unitarity condi-
tion (13.31) but in the numerator, τ ∝ pc.

The two expressions would match if we could extract 1/pc from the full
vertex N± by introducing N± = Ñ/pc(t, t1, t2), and claim that Ñ behaves
similarly to N from (13.33).
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Such an operation, however, looks intrinsically dangerous, since the
singularity we are studying emerges just near pc = 0.

Let us recall the origin of the two-reggeon creation amplitude N :

N

1

2

The production amplitude of usual particles with the orbital momentum
L behaves at small pc as N ∼ pLc . Our branch point corresponds to j =
σ1 + σ2 − 1. Comparing with

j = σ1 + σ2 + L , |j|max = σ1 + σ2 + L,

we observe that the two-reggeon singularity appears when the orbital mo-
mentum assumes the first unphysical value L = −1. Consequently, the
vertex N± is obliged to behave like 1/pc, and this is just what we need:
Ñ turns to a constant in the pc → 0 limit.

As for multi-reggeon diagrams, using in the partial wave (13.14) the
Regge-pole expression for G�i(ki) and evaluating the imaginary part gives

δf
(n)
j =

(−1)n−1π

n!

∫ n−1∏
i=1

d2ki

(2π)2
Nδ

(
j + n− 1 −

n∑
m=1

α(km)
)
N. (13.34)

This expression describes the simplest contribution to the multi-reggeon
unitarity condition, corresponding to N = const. To satisfy the genuine
unitarity condition (11.40) one has to draw and analyse the full set of
diagrams for the creation of n reggeons in a two-particle interaction, which
determines the exact vertex N±.



14
Reggeon field theory

Reggeons turn out to be similar to particles with varying spins not only
in the sense of the ‘pole’ contribution to the asymptotics, but also in the
interaction picture.

We have started with a Regge pole and generated series of non-enhanced
reggeon diagrams characterized by non-singular particle–reggeon ver-
tices N ,

+ . . .++

Angular momentum singularities in reggeon creation amplitudes gave rise
to various enhanced reggeon diagrams,

+ + +  . . .+

We are looking for an effective field theory that would solve the reggeon
unitarity. The usual field theory contains a hypothesis about the form of
the interaction. If I chose three-reggeon, or only four-reggeon, interactions

354
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to build up the theory,

,

or even employed them together, I would be able to fulfil the correspond-
ing reggeon unitarity conditions. But I have no reason to restrict myself to
such vertices. In other words, my ‘theory’ contains in principle an infinite
number of unknown constants.

Everything would have been fine if we had α(0) < 1, that is, σtot de-
creasing with energy. In this case the branchings are separated from the
pole, produce but small controllable corrections to the asymptotics, and
the interaction can be looked upon as being weak.

In the interesting case of α(0) = 1, however, the multi-reggeon inter-
actions are absolutely essential: at t = 0 branchings accumulate to j = 1,
and for t < 0 even move to the right from the pomeron pole. This means
that from a practical point of view we have lost. From the point of view
of the theory, however, the problem, although a complicated one, remains
sensible: the iteration of poles and branchings produced but new reggeon
branchings, and the picture remained self-consistent.

It is somewhat distressing that the interactions of reggeons cannot be
considered as weak ones, so the beauty of reggeons, as objects embodying
strong interaction, apparently disappears. Nevertheless, one can hope that
in certain cases just a finite number of vertices will be relevant. This
being the case, it will allow one to relate different observables and use the
reggeon field theory in order to make quantitative as well as qualitative
predictions.

14.1 Prescriptions for reggeon diagram technique

To construct a field theory we have to start with the bare propagator and
interaction vertices. To describe interacting pomerons it is convenient to
introduce the bare P Green function as

G0(k) =
−1

ω + ε(k)
; ω = j − 1, ε(k) = −α(k2) + 1 � α′k2. (14.1a)

Changing the overall sign of the propagator eliminates the oscillating
factor (−1)n−1 in the n-pomeron contribution to the reggeon unitarity
(all terms in the unitarity condition for −fj enter with positive sign).



356 Reggeon field theory

For the vertices we choose

1 r λ λ (14.1b)

Let us stress that the two four-particle vertices would have been identical
in a relativistic theory; here they are not, λ �= λ1.

In the expression for the scattering amplitude

A(s, q2) = s

∫
dω

2πi
ξj eωξfj(q2), ξ = ln s,

expanding the signature factor ξj at small ω values,

ξj = − e−iπ
2
j

sin π
2 j

= i
e−iπ

2
ω

cos π
2ω

� i +
π

2
ω,

the real part of the amplitude is conveniently represented by the derivative
of the imaginary part,

A(s, q2) �
[
i +

π

2
∂

∂ξ

]
ImA(s, q2). (14.2a)

Therefore it suffices to know the imaginary part. We will calculate the
function

F (ξ, q2) ≡ 1
s

ImA(s, q2),

whose Fourier transform, f(ω, q2), is given by the sum of diagrams with
reggeon propagators and vertices (14.1)

F (ξ,k2) = −
∫

dω

2πi
eωξf(ω,k2). (14.2b)

14.1.1 Reggeons and branchings in the impact parameter space

We start from the contribution of the non-enhanced branchings,

n
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f(ω,k2) = −
∞∑
n=1

∫
dω1 . . . dωn d

2k1 . . . d
2kn

n! [(2π)3i]n
G(ω1,k1) · · ·G(ωn,kn)

·(2π)3 iδ(ω −
∑

ωi)δ
(
k −

∑
ki

)
N2

n(ωi,ki). (14.3)

The fact that this diagram is not enhanced means that the vertex blocks
Nn are not singular and at small ω and k values, they can be replaced by
some numbers, Nn ≈ const.

By using the Fourier transformation to the impact parameter space,

(2π)2δ(k −
∑

ki) =
∫

d2ρ eik·ρ−i
∑

ki·ρ,

we factorize the transverse momentum integrations to get

F (ξ,k2) = −
∞∑
n=1

1
n!

∫
d2ρ eik·ρ

(∫
dω1

2πi
eω1ξ

∫
d2k1

(2π)2
G(ω1,k1) e−ik1·ρ

)n

.

The integrals over ωi run along the imaginary axis,∫
dω1

2πi
eω1ξG(ω1,k1) = −

∫
dω1

2πi
eω1ξ

ω1 + α′k2
1

= − e−α′k2
1ξ.

Integrating over k1 we have

−
∫

d2k1

(2π)2
e−α′k2

1ξ−ik1·ρ = −
∫

d2k1

(2π)2
e−α′ξ

(
k1+

iρ

2α′ξ

)2
− ρ2

4α′ξ

= − 1
4πα′ξ

exp
{
− ρ2

4α′ξ

}
≡ G̃(ξ,ρ).

(14.4)

The function G̃(ξ, ρ) is an important distribution whose physical meaning
we will discuss later in this lecture.

Substituting (14.4) into the n-reggeon branching amplitude,

F (n)(ξ,k2) = −(−1)n
N2

n

n!

∫
d2ρ eik·ρ

1
(4πα′ξ)n

e−
nρ2

4α′ξ

=
N2

n

nn!
(−1)n−1

(4πα′ξ)n−1

∫
d2ρ eik·ρ · −n

4πα′ξ
e

−nρ2

4α′ξ ,

we observe that the integrand here is the one we have just calculated
above, i.e. the Fourier transform of the Green function G(ξ,k), with the
only difference that α′ is substituted by α′/n. Hence, we obtain

F (n)(ξ,k2) =
(−1)n−1N2

n

nn!(4πα′ξ)n−1
e−

α′
n

k2ξ. (14.5)
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In the particular case of n = 1 we recover the pole expression, F (1) =
e−α′k2ξ. What is the magnitude of the nth branching contribution like?
Is it large or small?

j

ω = 0 

The (modulus of the) exponent in
(14.5) is at its maximum for n = 1, i.e.
the contributions of the branchings,
n ≥ 2, are larger than that of the pole,
in the sense of the position of the
singularity in the j-plane. On the other
hand, the first term is larger owing to the

suppression of the higher terms by the pre-exponential factor F (n) ∝
1/ξn−1. Thus one cannot state a priori that n → ∞, jn → 1 are the most
important contributions.

14.1.2 Qualitative estimate of the series

Let us try to estimate the sum

F =
∑
n

F (n)(ξ,k2). (14.6)

Our estimate is going to be rough since the we don’t know the dependence
of the vertex functions Nn on n, and other – enhanced – diagrams are
important too. Nevertheless, just for curiosity’s sake, let us look at which
n are relevant in the series (14.6).

If k2 = 0, everything is very simple: all singularities are at the same
point j = 1 and the pole dominates:

F (ξ,k2) = g2 − N2
2

4πα′ξ
+ O

(
ξ−2

)
.

This is true not only for k2 = 0, but in an interval of momenta where the
condition α′k2ξ 
 1 is satisfied.

In the opposite case, when α′k2ξ � 1, the far terms of the series become
important. How can we estimate the sum? It is clear that one has to find
n = nmax which marks the maximal contribution, maxn{Fn} = Fnmax .
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Since the number of relevant terms is large, we can write

F �
∑
n

eϕ(n) �
∫

dn eϕ(n) ,

and attempt to apply the steepest-descent method to the exponent

ϕ(n) = −α′k2ξ

n
− (n− 1) ln(4πα′ξ) − n lnn + iπn, (14.7)

where −n lnn originated from the combinatorial 1/n! factor. There is one
delicate point here; the series has alternating signs, therefore the term
iπn in (14.7). This is not a very sensible way to estimate oscillating series
but is good enough to illustrate the key feature of the answer.

The saddle-point equation,

dϕ(n)
dn

=
α′k2ξ

n2
− ln(4πα′ξ) − lnn− 1 + iπ = 0,

determines the scale of n at which the terms of the series are large:

α′k2ξ

n2
max

= ln(α′ξnmax) + O(1) , n2
max ≈ α′k2ξ

ln(α′ξnmax)
∼ 2α′k2ξ

ln(ξ3k2)
,

where we omitted the constant in the argument of the logarithm. Now we
approximate ϕ(nmax),

ϕ(nmax) ∼
√

2α′k2ξ ln(ξ3k2),

and obtain the scale of the answer in the region α′k2ξ � 1:

F (ξ,k2) ∼ F (nmax) ∼ e−c
√
α′k2ξ. (14.8)

Here we have dropped the ln factor in the exponent, since our estimation
is rough anyway. The decrease of (14.8) with ξ is fast, but slower than
any exponent, exp(−γξ), γ > 0.

What is the correct way of calculating the sign-alternating series? One
has to write down the representation of the Sommerfeld–Watson type,

∑
n

(−1)n−1fn =
1
2i

∫
dn

sinπn
fn ,

and include ln sinπn into the exponent ϕ(n). Its presence produces a pair
of complex conjugate points as the saddle-point solution. As a result, in
addition to the exponent of

√
α′ξk2, the answer also acquires a factor

cos(α′ξk2) which leads to oscillations in the scattering amplitude.
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Let us see, what we obtain by fixing ξ and increasing k:

F(ξ,k2)

e −c√α ξk2

k2

e −α ξk2

We have here a curious result, just like in classical diffraction: the pole
term leads to a diffraction cone; taking into account the branchings, the
slope of the amplitude falloff decreases, and oscillations appear.

We can conclude that in the region of small momentum transfers non-
enhanced branchings do not alter the pole picture. With the growth of
k2, however, the angular distribution changes drastically; due to the al-
ternating signs of the multi-reggeon branching contributions, maxima and
minima appear naturally in the differential scattering cross section.

This would have been the answer, and a rather simple one, if not for
enhanced reggeon diagrams.

14.2 Enhanced diagrams for reggeon propagator

To write down everything is impossible, so we restrict ourselves to the

simplest interaction . The exact reggeon Green function is

given by the sum of diagrams with various reggeon loops the bare reggeon
can mix with, and their repetitions,

+ . . .

r

r

++G =
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14.2.1 Reggeon loop in the reggeon propagator

Consider the first correction to the propagator:

G(1) =
1

ω + α′k2
Σ(ω,k2)

1
ω + α′k2

, (14.9)

Σ(ω,k2) = r2

∫
dω′ d2k′

(2π)3 i
1

ω′ + α′k′2

1
ω − ω′ + α′(k − k′)2

. (14.10)

To calculate the ‘self-energy’ insertion (14.10) it is natural to take the ω′

integral first. The integration contour lies between the two poles; closing
the contour around one of them we obtain

Σ(ω,k2) = r2

∫
d2k′

(2π)2
1

ω + α′k′2 + α′(k − k′)2
. (14.11)

This is a typical expression for the two-reggeon branching. The first thing
we observe is that this integral diverges at k2 → ∞. There is nothing
strange nor terrible in this, since we treated all the vertices as constants
and expanded ε(k2), being interested in region of small transverse mo-
menta. The integration has to be carried out up to a certain value k2

max.
In any case, not this is the source of our problems. More important is

the strong singularity in ω: taking ω = 0, the integral tends to infinity
in the limit of small momentum transfer, k2 → 0. This is a logarithmic
divergence corresponding to a branch-cut singularity.

Let us calculate the integral (14.11). Introducing a symmetric integra-
tion variable q such that k′ = q + 1

2k (k − k′ = q − 1
2k) we derive

Σ(ω,k2) = r2

∫
d2q

(2π)2
1

ω + 1
2α

′k2 + 2α′q2
=

r2

8πα′ ln
Λ

ω + 1
2α

′k2
, (14.12)

where parameter Λ limits from above the q-integration, q2 ≤ Λ/2α′. The
position of the singularity, ω = −1

2α
′k2 ≡ ω2 is just that of the two-

reggeon branching, cf. (11.36).
Let us imagine that we sum up the series of ‘self-energy’ corrections to

the propagator:

G(ω,k2) = G0 + G0ΣG0 + G0ΣG0ΣG0 + · · · = G0 + G0Σ ·G

=
1

G−1
0 − Σ(ω,k2)

= − 1
ω + α′k2 + Σ(ω,k2)

. (14.13)

We obtained an expression not having any pole at ω � 0 at small k2 val-
ues; the correction (14.12) is huge (infinite at ω ∝ k2 → 0). What hap-
pened could have been foreseen: when the pole is on the cut, in the same
point as the branchings, one cannot expect to get anything nice.
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m2 4m2 9m2

k2

Fig. 14.1 The particle pole and multi-particle branch cuts in QFT with m �= 0.

14.2.2 Analogy with m = 0 infrared singularity in QFT

What phenomenon in the field theory could correspond to this catastro-
phe? Recall the usual φ3 field theory. What sort of singularities did we
have there? The bare Green function contained the mass parameter m0;
the corrections lead to the appearance of the renormalized mass m enter-
ing observable phenomena. In the momentum transfer plane the particle
pole is separated from threshold branchings as shown in Fig. 14.1.

In order to feel the analogy, let us imagine that the intercept of our
pomeron is not exactly unity: αP(0) �= 1.

j � α(0) + α′k2 , ω = α(0) − 1 − α′k2 = Δ − α′k2.

In this case the multi-pomeron branchings would be in the points

ωn = nΔ − α′k2

n
.

If Δ < 0, higher branchings move away from the pole, and the struc-
ture of singularities displayed in Fig. 14.2 is analogous to that in particle
theory (Fig. 14.1). In terms of particles Δ → 0 means that the mass of
the particle is approaching zero. What would happen in field theory then?
The same trouble as in our pomeron problem.

Take m0 = 0 in the particle propagator,

G0 = −−−−− =
1

−k2
;

the first self-energy correction gives G = −(k2 + Σ(k2))−1.
Generally speaking, the pole at k2 = 0 would disappear – the particle

ω

Fig. 14.2 Regge pole α(0)−1 = Δ < 0 and corresponding branchings.
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acquires a mass, if only one does not take special measures to prevent it
from doing so. We have met such a situation in electrodynamics:

D0
μν(k) =

gμν
k2

=⇒ Dμν(k) =
gμν

k2 + Π(k2)
.

Making use of the conservation of electromagnetic current we have shown
that the polarization operator vanishes in the origin, Π(k2) ∝ k2 at k2 →
0. In this sense we can say that the photon did not acquire a mass owing
to the symmetry – to gauge invariance in this case.

We see that our situation with αP(0) = 1 is just the same; taking
the bare Green function with zero mass, the corrections diverge. This is
actually the main problem of the theory of interacting pomerons. We do
not know, have not formulated any reason why the total cross sections are
asymptotically constant. Having not understood this, having not imposed
the additional condition, we will always face the problem that the pole
does not ‘hold’ at α(0) = 1.

Can it go to the right? No, since we took into consideration the branch-
ings and respected the Froissart theorem which forbade the power growth
of the total cross section. However, there is no way to prevent it from
decreasing with energy.

Indeed, it is easy to see that the pole bounces to the left, since, owing
to the anti-hermiticity of the theory, the correction to the position of the
singularity comes with a negative sign,

δω0 = − r2

8πα′ ln
Λ
ω0

< 0.

Consequently, without understanding why the cross section is constant,
we cannot ensure the self-consistence of the theory.

14.3 σtot � const as an infrared singular point

We have come to two conclusions, namely that

(1) the pomeron pole does not stay at αP = 1; and

(2) taking into account the simplest interactions, it shifts to the left.

Nevertheless the question arises what Green function and interaction ver-
tices do we have to use in order to have the renormalized pole at 1.
Evidently, the initial position of the pole has to be chosen to the right
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from unity:

G0 =
−1

ω − Δ + α′k2
, Δ = α(0) − 1 > 0.

This, however, does not solve the problem. Indeed, inside the two-reggeon
loop Σ we have to use the renormalized poles, in order to avoid the self-
energy corrections to the loop propagators,

Σ = r2

∫
d2ω d2k′

(2π)3i
G(ω′,k′)G(ω − ω′,k − k′). (14.14)

The exact Green functions, however, are supposed to have poles in the
origin, ω ∝ k2 → 0, and the loop integral acquires singularity at the point
where the two poles pinch,

−α′k′2 = ω + α′(k − k′)2;

ω

ω   + α ( k − k  )2

The condition for the pinch in k′ gives ω + 1
2α

′k2 = 0, and we get

G(ω,k2) = −
(
ω − Δ + α′k2 +

r2

8πα′ ln
Λ

ω + 1
2α

′k2

)−1

. (14.15)

We see that Δ > 0 did not help: the infrared singularity is too strong to
be taken care of by mere introduction of a constant shift in the position
of the bare pole. One has to look deeper, to take into account more com-
plicated diagrams, to address the question of the possible behaviour of
the renormalized vertices, etc.

We face the following problem: what the Green function has to be in
order to ensure that the theory contains a massless excitation?

This is a general question which appears also in the condensed matter
physics context. In our case it is about P in 1.

14.3.1 Corrections to the vertex part

Before we start summing the diagrams, let us see what is the scale of
the correction to the vertex (as we will discover shortly, it is actually the
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vertex that plays a determining rôle).

Γ ≡ + ...= +

In terms of renormalized reggeon Green functions, the first correction
takes the form

Γ2 =

ωk

ω2k2ω1k1

ω k � r3

∫
dω′ d2k′

(2π)3 i
1

ω′ + α′k′2

· 1
ω − ω′ + α′(k − k′)2

· 1
ω′ − ω1 + α′(k′ − k1)2

. (14.16a)

Now at large k′2 values everything is all right. We will estimate this ex-
pression by simply counting the powers. Let all the external variables be
of the same order of magnitude, ω1 ∼ ω2 ∼ α′k2

1,2 ∼ α′k2 ∼ ω. Then

Γ2 ∼ r3

ω
,

Γ2

r
∼ δΓ

Γ
∼ r2

ω
. (14.16b)

For ω > r2 the correction is small, and we can use perturbation theory all
right. However, at small values of ω, ω < r2, we face a rather catastrophic
situation: the correction becomes large, and diverges in the ω → 0 limit.

What happens here is almost identical to the problem of the second-
order phase transitions (‘almost’ because our specific problem is marked
by the anti-Hermiticity of the effective Hamiltonian). Normally, corre-
lation functions in a thermodynamical system fall exponentially with
the distance, ∫

d3k
eik·r

k2 + Δ2
∼ e−Δr

r
. (14.17)

If at a certain temperature T the value of Δ turns to zero, the correlation
radius goes to infinity, and the system undergoes the phase transition. At
temperatures close to the critical, T ≈ Tc, the excitations interact strongly
and the perturbation theory becomes divergent.

Historically, the understanding of the problems of interacting pomerons
and of the second order phase transitions in condensed matter physics was
being gained practically simultaneously. The two problems turn out to be
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very similar; the only difference is that, let us stress it again, the pomeron
dynamics corresponds effectively to an anti-Hermitian Hamiltonian.

14.3.2 Equations for the renormalized vertex and
the reggeon propagator

What can be said about the exact vertex? It can be shown that all the dia-
grams for the corrections to the vertex part can be combined into skeleton
diagrams built of exact Green functions and vertices. (Skeleton diagrams
are those which contain no block that would represent a correction to an
internal vertex.)

. . .++ + += (14.18)

This is one equation for two quantities, the propagator and the vertex. A
second equation seems to be easy to write – the Dyson equation,

G(ω,k) = G0(ω,k) +
G 

G 
G 0 

Γ G . (14.19)

The impression that this equation may be more informative than that
for the vertex function (14.18), containing an infinite number of terms, is
deceiving. In fact, (14.19) is not an equation: the loop integral diverges,
and the expression contains G(q) and Γ(q,q,k) in the region of large
momenta q about which we do not know anything.

One usually performs the renormalization. This, however, does not solve
the problem but rather hides it. At the same time, there is a simple
way to derive the second equation we need. Indeed, the divergence is a
consequence of the fact that G is a ‘dimensional’ quantity: [G] ∼ 1/ω. It
is sufficient therefore to take a derivative and write down an equation for
the ‘dimensionless’ quantity ∂G−1(ω,k)/∂ω.

Imagine one of the diagrams participating in Σ, ω . The

external ‘energy’ ω flows through some of the internal lines. Differentiation
over ω leads to doubling one of these internal lines,

∂

∂ω

1
(ω − ∑

k ω
′
k + · · · ) = − 1

(ω − ∑
k ω

′
k + · · · ) · 1

(ω − ∑
k ω

′
k + · · · ) ,
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and resembles the vertex with zero ‘energy–momentum’ transfer,

∂

∂ω =  −( ) .

Indeed, it can be checked that the equation for the derivative of the inverse
reggeon Green function looks diagrammatically exactly the same as the
equation for the exact vertex:

∂G−1

∂ω
≡ ⊗ = −1 + + . . .+ (14.20)

Unfortunately, equations (14.18) and (14.20) are represented in the form
of infinite series. Therefore, there is always a danger that, owing to the
possible divergence of the series, conclusions that one would derive from
these equations may turn out to be wrong.

14.4 Weak and strong coupling regimes

Leaving aside the problem of the convergence of the series, we can guess
the structure of the solution. But first, having expressed the equations
for the vertex (14.18) and the propagator (14.20) in terms of exact ,
renormalized quantities, we have to re-examine the size of corrections. In
other words, we have to estimate the magnitude of the effective expansion
parameter.

Each subsequent term on the r.h.s. of the equation contains, compared
to the previous one, three reggeon Green functions, two vertices and an
additional integration over the reggeon loop:

δΓ
Γ

∼ δΣ
G−1

∼
∫

d2k′ dω′ G3Γ2 ∼ e2. (14.21a)

We may represent this parameter as

e2 ∼
〈
k2

〉
ω

·
(
ωG

)3 · Γ2

ω
, (14.21b)

with
〈
k2

〉
the characteristic transverse momentum in the integral. If

renormalization effects were moderate and did not drastically change the
behaviour at small ω, so that Γ ∼ r, ωG ∼ 1,

〈
k2

〉
∼ ω, this would lead

us back to the original estimate (14.16b), e2 ∼ r2/ω.
The quantity e2 depends on the external variables ω, k2 and can be

looked upon as the ‘invariant charge’ – the true measure of the ‘interaction
strength’ in the theory of interacting pomerons. Our theory may have a
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self-consistent solution in two regimes, characterized by the magnitude of
the ‘invariant charge’ in the ω → 0 limit:

� Weak coupling, e2 
 1. This regime is possible if the interaction
modifies the interaction vertex so that Γ vanishes when k2 → 0,
ω → 0. Given a small effective interaction strength, one can use per-
turbative expansion to control the corrections.

� Strong coupling, e2 ∼ 1. In this case all terms in the equations are of
the same order, and perturbation theory is not applicable.

14.4.1 Scaling solution. Strong coupling

We have seen that having taken the bare quantities and having started
the iterations of the equation, we have obtained the growing corrections.
How can we, nevertheless, make the l.h.s. and the r.h.s. of the equation
equal?

Since correction terms appear to be singular in the origin, let us sup-
pose that the bare terms could be neglected in the equations. If so, we
would arrive at a homogeneous non-linear integral equation for the sin-
gular quantities (while the constant bare terms may be cancelled by non-
singular pieces of the skeleton diagrams on the r.h.s.).

When we search for a self-consistent solution, not only the matching of
numerical values of the l.h.s. and r.h.s. of the equation is required, but also
that of the singularities. If the singularity is weak, then the perturbation
theory can be used. If, on the contrary, the singularity is strong, then the
Born terms drop out and we get a homogeneous equation.

Bearing in mind the second case, let us look for a solution in the fol-
lowing form:

G(ω,k2) = ωμg

(
k2

ων

)
, (14.22a)

Γ(ω,k2;ω1,k2
1;ω2,k2

2) = ωργ

(
k2

1

ων
1

,
k2

2

ων
2

,
k2

ων
,
ω1

ω

)
. (14.22b)

This is a statement of the ‘scaling’ type: we extracted the overall powers
of ω and introduced the functions g and γ depending only on the ratios
of all other variables. We have to substitute this scaling solution in the
equation (omitting the finite bare terms) and see if it reproduces itself
under iterations.

It is clear that the ‘homogeneous matching’ can be achieved only if
e2 ∼ 1. Substituting (14.22) into, for example, the equation for Γ, the
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first diagram in (14.18) gives

Γ �
∫

dω′

ω′
d2k′

ω′ν · (ω′)ν+1
(
ω′μg

)3(
ω′ργ

)3
. (14.23)

Due to the scale invariance of the functions g and γ in (14.22) under the
transformation

ω → λω, k2 → λνk2,

the integral (14.23) will behave as λ3(ρ+μ)+ν+1. This means that it can
always be written in the form

Γ � ω3(μ+ρ)+ν+1F (ratios)

(provided the integral is convergent). Now, equating the exponents, our
only requirement is that the relation ρ = 3(μ + ρ) + ν + 1 should be
satisfied:

3μ + 2ρ + ν + 1 = 0.

Let us note that this condition actually means e2 = O(1). Indeed,

e2 ∼
∫

d2k dω G3Γ2 ∼ ων+1ω3μω2ρ Φ(ratios) = const.

This shows that in the scaling solution the ‘effective charge’ e2 does not de-
pend on the small quantity ω. Hence, e2 ∼ 1, corresponding to the strong
coupling regime.

It can be easily verified that in all diagrams in the equations for the
Green function and the vertex, the scaling solution (14.22) reproduces
itself.

Our equations in the strong coupling regime do not contain parame-
ters at all. The phase space volume d2k dω ∼ (d3k) is the only quantity
which reflects the specific features of the theory. K. Wilson suggested
an interesting method for the investigation of such equations, namely,
the continuation in the number of dimensions. By treating the deviation
(ε) from the actual number of dimensions (three in our case) as a small
parameter, one can approximate the solution by series in ε.

14.4.2 The cross section seems to change inevitably

Let us demonstrate that the scaling (‘strong coupling’) solution is in-
compatible with the σtot → const asymptotic behaviour. Evaluating the
imaginary part of the reggeon Green function to get the total cross section
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we obtain

σtot(ξ) ∝ ImA(ξ,k2 =0) ∼
∫

dω eωξ · ωμ ∝ ξ−(μ+1) . (14.24)

Consider first the case μ + 1 > 0 corresponding to the total cross section
decreasing with energy. In this case,

∂G−1

∂ω
→ ∞ (ω → 0),

so that the bare term (−1) in (14.20) for the derivative of the inverse
pomeron Green function can be neglected. But then my equations would
not know that the Hamiltonian of my theory was actually anti-Hermitian:
with the Born terms dropped, the equations become insensitive to the
sign of G. A solution with G > 0 would not satisfy us, since in this case
the contributions of the branchings would be of the same sign, and the
unitarity condition would be not of the reggeonic type. The series must be
alternating, corresponding to G < 0. As a more detailed analysis shows,
there is no satisfactory solution for μ + 1 > 0.

Now we take μ + 1 < 0:

∂G−1

∂ω
→ 0 (ω → 0).

Now the unity can not be thrown away in the equation. In this case a
solution exists corresponding to G < 0. This means that the total cross
sections might grow logarithmically with energy.

Neither of the two cases is what we have been looking for. The scaling
solution does not allow us to have a constant cross section, μ + 1 = 0. In
fact, all negative integer μ values are forbidden by the strong coupling
equations.

How can this be seen? If μ = −1, in the ω → 0 limit we have

∂G−1

∂ω
∼ ω0 = const. (14.25)

Will this constant be reproduced by the equation (14.20)?
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Let us consider the simplest diagram,

Δ
∂G−1

∂ω
= ∼

∫
dω′ d2k′∂G

−1

∂ω
G3Γ2,

and rewrite the integrand as follows,∫
dω′

ω′
∂G−1

∂ω

[
d2k′ · ω′ ·G3Γ2

]
∼

∫
dω′

ω′
∂G−1

∂ω
· e2. (14.26)

Since e2 = O(1), substituting the constant for the derivative of G leads
to a logarithmic divergence,

Δ
∂G−1

∂ω
� const

∫
dω′

ω′ ∝ lnω,

incompatible with the assumption (14.25). This is a general feature of
dimensionless integrals.

14.4.3 How to enforce σtot � const? Weak coupling

The question arises, whether, in fact, the cross section can be still asymp-
totically constant? What would be necessary to achieve such a behaviour?
We have to force the corrections to be small, despite the divergence of the
perturbation corrections.

We have supposed that the three-reggeon vertex is finite, Γ = O(1), and
estimated the contribution of the reggeon loop in (14.16) as δΓ ∝ ω−1 –
this is, obviously, not suitable. However, if we took for the renormalized
vertex Γ an expression that vanishes with ω,k → 0,

= aω + b
(
k2

1 + k2
2

)
+ ck2, (14.27)

we might achieve the matching.
If the increasing solution is analogous to that in phase transitions, the

present – weak coupling – situation corresponds to quantum electrody-
namics: the photon does not acquire a mass because its emission vertex
contains momenta in the numerator:

Πμν = (kμkν − gμνk
2)Π(k2) =⇒ mγ = 0.

Up to now we have considered only the three-pomeron vertex. For the
self-consistence of the weak-coupling picture it is necessary and sufficient
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that the four-reggeon interaction vertices in (14.1b) also vanish in the
origin, λ, λ1 → 0 with ωi,ki → 0.

It can be shown that all possibilities for the solutions of the interacting
pomeron problem are exhausted by the described above cases of ‘strong’
and ‘weak’ coupling.

A few words about the structure of the j-plane in the two regimes.

Weak coupling. The pomeron Green function,

G(ω,k2) = − 1
ω + α′k2 − Σ(ω,k2)

, Σ(ω,k2) ∼ Γ Γ
, (14.28a)

acquires a small but complex self-energy term, Σ ∝ k4. Owing to the
complexity of the correction, the initial pole transforms into two conjugate

ω
poles. (If the theory were Hermitian,
these poles would have had to move onto
an unphysical sheet.) Apart from these
poles, we have a family of branch cuts
accumulating to ω = 0.

Strong coupling. Here the Green function contains branch point singular-
ities embedded from the start, due to its complicated structure,

G(ω,k2) = ωμg

(
k2

ων

)
. (14.28b)

For t > 0 all singularities are on the right of, and condensing to, ω = 0;
at t = 0 they form a continuous cut starting at ω = 0. In the physical
region, t < 0, this cut is accompanied
by a strong accumulation of branch
cuts, whose presence strongly affects the
angular dependence of the scattering
amplitude. We made the hypothesis that

ω
the

vacuum Pomeranchuk pole (pomeron P) exists and studied the total cross
section, and amplitudes of elastic and quasi-elastic processes of production
of a small number of particles with large rapidity gaps between them.
From this study a picture has emerged in which one has to include, apart
from the pole P, also branchings, both non-enhanced,

+ . . .++
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and enhanced

+ + +  . . .+

We have found two scenarios that may lead to a self-consistent solution
of the problem of interacting pomerons.

(1) If we insist on σtot → const in the s → ∞ asymptotics, then we
need to consider the weak coupling regime (14.28a) characterized
by vanishing three- and four-pomeron vertices, see (14.27).

(2) If we release the asymptotic constancy condition and allow the
total cross section to increase logarithmically, σtot ∼ lna s with
a ≤ 2, then we may turn to the strong coupling regime (14.28b).

One may think that in both scenarios it is the simplest graph that mainly
determines the cross sections, while the multi-pomeron diagrams provide
controllable corrections.

14.5 Weak and strong coupling: view from the s channel

Now we are going to formulate our results in terms of rapidities and impact
parameters. Then we will turn to the main question: how the picture of
interacting pomerons manifests itself in the s-channel. For example, what
s-channel processes correspond to G in the strong coupling regime?

Let us make, first of all, a technical remark. Recall representation (14.2)
for the scattering amplitude,

A(s,k2) = s

(
i +

π

2
∂

∂ξ

) ∫
dω

2πi
eωξf(ω,k2), (14.29)

where f(ω,k2) is the sum of reggeons diagrams. Recalling that ω lies on
the imaginary axis, this integral can be considered as the transition from
the frequency to the time representation. In this representation, the image
of the pomeron propagator,

G(ξ,k2) = −e−α′k2ξθ(ξ),
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resembles the Green function G(t) = exp(−i(k2/2m)t)θ(t) describing a
free non-relativistic particle, with ξ = ln s the analogue of (imaginary)
time.

Since there is a full analogy with time,
an arbitrary diagram can be written with-
out any calculations, using the rules of non-
relativistic field theory. For example, for a
semi-enhanced diagram with the transition
of one reggeon into two, we introduce inte-
gration over the transition ‘time’ ξ2 to write

ξ1 

ξ2 

k1 

k 

− k − k1

ξ 3 

g

∫ ξ1

ξ3

dξ2 G(ξ1 − ξ2,k)
∫

d2k1

(2π)2
rG(ξ2 − ξ3,k1)G(ξ2 − ξ3,k − k1)N.

14.5.1 Diffusion in the impact parameter space

One can go even further, moving to the transverse coordinates, see (14.4):

G̃(ξ,ρ) =
∫

d2k
(2π)2

e−ik·ρG(ξ,k) = −e−ρ2/4α′ξ

4πα′ξ
.

Once again, this is the Green function of a non-relativistic particle prop-
agating in imaginary time t = iξ, or, better to say, the Green function of
an equation describing two-dimensional diffusion.

Let us consider in these terms the simplest non-enhanced branching:

= g2G̃(ξ1 − ξ2,ρ1 − ρ2), (14.30a)

= N2G̃2(ξ1 − ξ2,ρ1 − ρ2). (14.30b)

In this language, the expression for the two-reggeon branching (14.30a)
is no more difficult to put down than that for one reggeon, (14.30a). This
also makes it immediately clear, why the branching contributes less than
the pole.

Consider the contribution to σtot, which corresponds to setting k = 0.
Then in the impact parameter space representation we need to evaluate



14.5 Weak and strong coupling: view from the s channel 375

the integral

∫
G̃2(ξ,ρ) d2ρ =

∫
d2ρ

e−2·ρ2/4α′ξ

(4πα′ξ)2
.

In the pomeron propagation, characteristic impact parameters grow with
‘time’, ρ2 ∼ α′ξ, but the normalization in (14.30) is chosen such that∫
G̃(ξ,ρ) d2ρ = −1 (by the very nature of the Green function). So,

∫
G̃2(ξ,ρ) d2ρ =

1
4πα′ξ

·
(

1
2

) ∫
e−2·ρ2/4α′ξ

4πα′ξ
· 2 d2ρ =

1
8πα′ξ

. (14.31)

The two-pomeron branching contribution falls with ‘time’ as 1/ξ. What
is the meaning of this smallness?

In (14.30a), a certain source produces a diffusive distribution (in our
case, δ(ρ− ρ1) at ξ = 0). With the increase of ξ, the integral over ρ of
the distribution stays constant; the total probability to find a particle
anywhere in space is determined solely by the power of the source and
does not depend on time.

In (14.30a) we create two diffusion waves (with N their emission am-
plitude). If at time ξ > 0 I measured them independently, the probability
conservation would have been intact, as in the one-pomeron case.

However, the amplitude we are interested in is given by the probability
to find the two particles in the same point ρ2, ξ2. Such probability is
inversely proportional to the typical area the distribution spreads over in
time ξ, that is 1/

〈
ρ2

〉
∼ 1/α′ξ.

Investigating the flow coming from the centre, at large distances a single
particle (P) gives the leading contribution ∝exp(−ρ2/4α′ξ). The correc-
tions (PP) fall faster with the distance, ∝exp(−2 · ρ2/4α′ξ), although
they may be significant at large times (and finite ρ2). Such an interpre-
tation looks quite satisfactory. Recall, however, how the same situation
looked in the momentum representation:

G(P)(ξ,k2) ∼ exp
(
− α′ξk2

)
, G(PP)(ξ,k2) ∼ exp

(
−1

2 · α′ξk2
)
.

Now, when ξ is large, the second contribution is larger than the first one!
The picture in the impact parameter space turned out to be intuitively
more satisfactory than that in the momentum representation.
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Similarly, we can ‘spell out’ any diagram in the language of diffusion.
For example, the enhanced graph shown in
(14.32) corresponds to the creation of one
particle at the impact parameter point ρ1

at time ξ1, which splits into two particles
at ρ2, ξ2. These particles then combine at a
space–time point ρ3, ξ3 into one, which one
is then registered at time ξ4 in ρ4.

(14.32)

14.5.2 Energy dependence of σtot

We are ready to make an important general statement about the energy
behaviour of σtot.

Consider the weak coupling regime and collect all relevant leading
corrections:

f � + + − −  − .

(14.33)

Let us examine the semi-enhanced diagram. Taking k = 0 and using the
expression (14.27) for the three-pomeron weak coupling vertex, for the
third graph on the r.h.s. of (14.33) we have

g · 1
ω
·
∫

d2k1 dω1

(2π)3i
aω + 2 · bk2

1

(ω1 + α′k2
1)(ω − ω1 + α′k2

1)
·N ∼ lnω . (14.34)

But if we take the Fourier transform of lnω,∫
dω

2πi
eωξ lnω →

∫ 0

−∞
eωξ dω → 1

ξ
,

we get the same 1/ξ behaviour as we had for the PP branching above.
We see that the P pole 1/ω in (14.34) has cancelled, and the contribu-
tion of the semi-enhanced diagram reduced to that of the non-enhanced
one:

.
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Analogous cancellation of both P poles occurs also in the enhanced dia-
gram (14.32) P → PP → P, the last term in (14.33). There is, however, a
subtle point, namely the signs. Assembling all contributions to the r.h.s.
of (14.33), for the total cross section we derive

σtot = g2 − (N − g · c)2
8α′ξ

, (14.35)

where we denoted by c the constant that emerges from the P → PP vertex
in (14.34). This shows that if the cross section tends to a constant, then
it approaches this limit from below.

In the strong coupling case we do not need to calculate anything, since
we know already that the cross section grows logarithmically with s.

We may thus conclude that at sufficiently high energies the total cross
sections should slowly grow with s, at least temporarily (weak coupling),
if not forever (strong coupling).

14.5.3 Experimental situation

What is the experimental situation?
Up to s ∼ 30 GeV2 all the cross sections decrease (but for σpp

tot and σK+p
tot

that stay nearly constant) (Fig. 14.3). Between 70 and 2000 GeV2 a new
phenomenon takes place: the cross sections flatten off and start to slowly
increase.∗ The fact that σpp

tot has a minimum, means that there exists a
definite energy at which the matter is maximally transparent.

For the first time the ‘complication’ of the theory reveals itself; without
branchings nothing of this kind would happen.

14.5.4 Would one ever reach the true asymptotics?

An impressive body of predictions of the theory has been experimentally
confirmed. Among them are the following statements.

(1) Factorization of scattering amplitudes and cross sections.

(2) Universal nature of particle production in the plateau region.

(3) High-mass inelastic diffraction in the three-pomeron limit, whose
mass distribution is spectacularly different from expectations based
on the statistical model of the hadron production.

(4) Shrinkage of the diffractive cone.

∗ From the RFT perspective, growing total cross sections (Fig. 14.3) may shift ones preference
towards the strong coupling regime (ed.).
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Fig. 14.3 Sketch of the total hadron cross sections σtot(s). Hadron accelerator
data that appeared after middle-1970s are shown by dashed lines.

(5) Increase of the total cross sections with ln s, which signals either
an approach to asymptotic constant values (weak coupling) or a
steady growth characteristic of the strong coupling regime.

Many attempts were made to describe also the angular distributions.
Qualitatively, it has become apparent that the branchings play an es-
sential rôle here. At the same time, quantitative description of the t-
dependence has not been achieved.

At first sight, the procedure seems well defined and simple; one has to
substitute known expressions into given formulae, calculate the effect and
compare the prediction with the data. Strangely enough (accidentally or,
may be, for a deep reason beyond our understanding) this happens to be
an impossible task.
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We assume ξ to be large. The true parameter of the problem is, however,
α′ξ. The easiest way to see this is by recalling the two-pomeron branching,

ρ2

ρ1

= G̃2(ξ,ρ1 − ρ2)N
2. (14.36)

Dealing with this diagram, a number is substituted for the reggeon emis-
sion amplitude N . My motivation was that I am close to the singularity
in ω. If so, ξ is large, and so is, consequently, the transverse distance
|ρ1 − ρ2| due to diffusive nature of the pomeron, G ∼ exp(−|Δρ|2/4α′ξ).

In fact, the hadron projectile has its own transverse size R, so that
inside the vertex part N there are various diagrams in which impact
parameters of participating particles vary within |Δρ| <∼ R. Therefore we
should have introduced separate transverse coordinates for the reggeons
and should have written a multiple integral over the impact parameters,

ρ′1 ρ″1

ρ′2 ρ″2
ρ2 

ρ1

N 

N  

∼
∫

N(ρ1;ρ
′
1,ρ

′′
1)G̃(ξ,ρ′

1−ρ′
2)G̃(ξ,ρ′′

1−ρ′′
2)N(ρ2;ρ

′
2,ρ

′′
2).

From the point of view of an asymptotic behaviour, we have acted
correctly by treating N as a constant. This is, however, justified only
if R2 
 4α′ξ so that |ρ1 − ρ2| � |ρ1 − ρ′

1| ∼ R. And just here lies the
catastrophe.

Strictly speaking, it is difficult to estimate the radius of a hadron; I
would say that R ∼ 1/2mπ. At the same time, the value of α′ is measured
from the shrinkage of the diffractive cone. It turns out to be rather small,
α′ ≈ 1/4m2

N , about four times smaller than the slopes of non-vacuum
Regge trajectories, α′

R � 1 GeV−2. Hence, our inequality becomes

4α′ξ � R2 =⇒ ξ � ξcrit ≡
R2

4α′ ∼
m2

N

4m2
π

� 10.

Obviously, the condition ξ � ξcrit can by no means be satisfied, ever. At
best we may reach ξ ∼ ξcrit (s = 2.000 GeV2 corresponds to ξ ≈ 8).

For reasons we do not understand, there is no way to reach the true
asymptotic regime.

Examining the parameters in the strong coupling regime, the situation
is even worse: the corresponding diffusion coefficient (effective α′) turns
out to be even smaller.
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The appearance of a new small parameter, 1/ξcrit = 4α′/R2 
 1, on the
other hand, suggests certain simplifications for the region of moderately
high energies, ξ <∼ ξcrit. Since in the α′ → 0 limit the impact parameter
diffusion disappears and parallel showers do not separate but keep in-
teracting with each other; employing α′ as a small parameter leads to
a picture of ‘heavy pomeron’, whose image is no longer a two-particle
‘ladder’ but a more complicated t-channel state of many re-interacting
particles (Gribov, 1976).

To conclude, our object diffuses in unit time at a typical transverse
distance |Δρ|2 ∼ 4α′ (the diffusion coefficient). Why did this distance turn
out to be much smaller than the size proper of the hadron? Qualitatively,
this phenomenon may be due to the fact that hadrons are composite. If
the true fundamental objects – quarks – are more compact, their smaller
size would introduce a relatively large mass scale parameter that might
explain the smallness of the slope α′ of the t-channel vacuum exchange.

It is just the smallness of α′ which impairs quantitative description of
the t-dependence of hadron–hadron scattering amplitudes. There is, how-
ever, a whole complex of problems not related to the angular distributions,
like multi-particle production processes, and it is necessary to understand
the physics which corresponds to them.



15
Particle density fluctuations and RFT

15.1 Reggeon branchings and AGK cutting rules

15.1.1 Inelastic processes corresponding to reggeon branchings

In this lecture we will investigate the correspondence between various
inelastic processes and reggeon diagrams. We begin with the simplest
object, the pole.

=

As before, we assume an essential property, namely: that the particle
distribution emerging from cutting the pomeron pole is homogeneous, i.e.
the inclusive spectrum ϕ(k2

⊥) does not depend on the rapidity η:

d3σ

dη d2k⊥
= η

ξ

0

g1

g2

= g1G(ξ − η)ϕG(η)g2 = σtot · ϕ(k2
⊥). (15.1)

For ξ − η ∼ 1 (η ∼ 1) when the particle is close in rapidity to one of
the fragmentation regions, the shape of the particle yield depends on the

381
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quantum numbers of the registered particle and of the projectile (target):

=⇒
dη

ξ0
η

dσ

If each pole corresponds to the
uniform distribution, what sort
of inelastic processes are con-
tained in the branching of two
such poles?

In Lecture 12 we have calculated the two-reggeon branching diagram
as a whole. Now I would like to find out, what sort of imaginary parts it
has; in other words, how can the diagram be cut?

(1) First of all, we can have a quasi-elastic process by making a cut
between the reggeons:

(15.2a)

(2) One can cut one of the two ladders:

(15.2b)

which gives the correction to the probability of having the usual
final particle distribution.

(3) Finally, both ladders can be cut:

(15.2c)
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I get two new processes, (1) and (3), in
addition to the correction (2). In case
(3) I observe two ladders at the same
time, i.e. the particle density is twice as
high as before. So, the branching de-
scribes fluctuations of the number of
final state particles.

2n̄

n̄

Curiously, the changes are rather sharp – there is either no particle in
the plateau region, or a 100% enhancement. Obviously, we have chosen
too simple a diagram.

By taking enhanced diagrams, we obtain various local fluctuations. For
example, by cutting the two-pomeron loop in the Green function, we get:

(1) a central rapidity gap;

η

dn
dh

(15.3a)

(2) another correction to the uniform ladder;

dn
dη

η

(15.3b)

(3) a local double density fluctuation.

η

dn
dη

(15.3c)

Considering a diagram with three reggeons in the t-channel, we will have
triple particle density as a new fluctuation (plus extra corrections to the
distributions that we already had).
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From the point of view of the s-channel, the self-consistency of our
picture implies moderate fluctuations in the particle density. Recall an
analogy with ‘particle gas’ that we have discussed in Lecture 10. A sta-
tistical system is stable when fluctuations are small. On the other hand,
we are near the critical point where fluctuations of arbitrary size emerge.
As we already know, the weak coupling corresponds to small fluctuations.
In the strong coupling regime, on the contrary, fluctuations are large, so
large that there is no average density at all.

Not having solved the interacting pomeron theory, we do not know
how to cut the exact Green function; and this is the problem. In spite of
this, it turns out to be possible to understand the pattern of fluctuations
in multi-particle production that is induced by the presence of pomeron
branchings.

15.1.2 Two-reggeon branching

Let us study the two-reggeon branching dia-
gram, F (2). Now I will be interested not in the
expression for Ims F

(2) itself, but what processes
it is assembled from. We have to learn to extract
such an information from our knowledge of the
expression for the diagram as a whole.

Recall that at high energies the amplitude became factorized,

d4k

(2π)4 i
→ i · d

2k⊥
(2π)2

· dα

2πi
dβ

2π i
,

integrals over α and β produced real particle–reggeon vertex functions,
N , on the top and the bottom of the diagram, and left us with a factor i
for the reggeon loop. So, the branching can be written as

F (2) = N · f1 if2 ·N, (15.4)

with f the reggeon amplitude. This expression is symbolic; integration
over d2k is implied. However, it represents correctly the nature of the
complexity of the amplitude.

It is convenient to calculate the double imaginary part (discontinuity),
2 Im. Then the calculation reduces to putting all cut particles on mass
shell by replacing their propagators by delta-fuctions, e.g.

2 Im
∫

d4	

(2π)4 i
1

m2 − 	2
1

m2 − (P − 	)2
=
∫

d4	

(2π)2
δ(m2− 	2)δ(m2 − (P − 	)2).

Let us see how our diagram can be cut.
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(1) The simplest imaginary part arises from cutting between the
reggeons and corresponds to quasi-elastic scattering:

2 Im(1)F (2) = N2
(
f1f

∗
2 + f∗

1 f2

)
= 2N2|f |2 . (15.5a)

+ f2f1 f2 f1

2 3
41

1
2 3

4

.

(2) We may cut through one reggeon, say, f1. The second one may then
stand either on the left from the cut (and describe rescattering of
particle 2 in the amplitude) or on the right (rescattering in the
conjugated amplitude),

2 ImF (2) =⇒ 2 Im f1 ·
(
if2 + (if2)∗).

We have to add the cut through f2 (and rescattering of particle 1):

2 Im(2)F (2) = N2
[
2 Imf1

(
if2 + (if2)∗) + 2 Im f2

(
if1 + (if1)∗)

]
= −8N2(Im f)2. (15.5b)

(3) What remains to be done is simple: the last cut has to be made
through both blocks, replacing all particle propagators inside the
reggeon ‘ladders’ by delta functions:

2 Im(3)F (2) = N2 · 2 Im f1 · 2 Im f2 = 4N2(Im f)2. (15.5c)

Adding together (15.5), we obtain the imaginary part of the branching as
consisting of three pieces,

2 Ims F
(2) = N2

[
2ff∗ − 8(Im f)2 + 4(Im f)2

]
. (15.6)

We may verify our conclusion by directly evaluating the imaginary part
of the symbolic expression (15.4):

2 ImF (2) = 2 Im
{
NfifN

}
= 2N2 Re f2 = 2N2

{
(Re f)2 − (Im f)2

}
= 2N2[ff∗ − 2(Im f)2] ≡ N2

[
2ff∗ − 8(Im f)2 + 4(Im f)2

]
.

The first and third terms in the r.h.s. of (15.6) are positive because they
represent cross sections of two processes: quasi-diffractive scattering and
double density particle production. The second term is a correction to the
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n
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2n

s

Fig. 15.1 Topological cross section distribution corresponding to single
pomeron (solid line) and multiplicity fluctuation pattern induced by two-
pomeron branching (dashed).

pole; it may be negative (though not very). The relation 2 : 8 : 4 expresses
the share of different final states contained in the imaginary part.

This simple example illustrates an important pattern of fluctuations in
the multiplicity distribution induced by branchings. The cross section in
the main region, n ∼ n̄, decreases (−8) to make room for the new particle
production processes (characterized by the shares +2 and +4) as shown
in Fig. 15.1. For the pomeron pole we have |Re f | � Im f , so that

2 Ims F � N2(2 − 8 + 4)(Im f)2 = −2N2(Im f)2. (15.7)

The overall effect of the branching is negative; the total cross section
decreases. This is screening.

This is an example of how we can sort out the content of Ims F of
arbitrary multi-reggeon diagrams. It is important that we did so according
to the cuts of f , not touching N . This means that the we have carried
the procedure in a universal way, and did not need to worry about the
(potentially complicated) internal structure of the vertices.

15.1.3 Universality of the vertex function N

In the derivation we implied only one (but essential) thing, namely that
the vertex block N remains the same in all cases (15.5). I would prove
that the expression (15.6) is correct if N , indeed, does not depend on the
way we cut the diagram.
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To see that this is indeed the case, let me remind you what we did
before. We expressed all particle momenta in terms of Sudakov variables
using the momentum vectors p1, p2 of colliding particles as

kμi = αip
μ
1 + βip

μ
2 + kμi⊥.

In the upper part of the graph, close to p1, we have αi ∼ 1, βi ∼ 1/s. The
small components, βi, do not affect the lower part of the diagram and
hence, the βi-integrations concern only the upper vertex block,

3

p1

1 42 =⇒
∫
dβ1

∫
dβ2

∫
dβ3 (15.8)

Recall

s1 = (p1 + k1)2 = (1 + α1)(γ + β1)s =⇒ s dβ1 = ds1.

This shows that the block is integrated over the invariant energies (be-
cause of energy–momentum conservation, there are three independent in-
tegrations). The integration reduces to the closing of the contour around
the physical cut and thus to the transition to real states:

N(1, 2, 3, 4) =
41 2 3

In fact, after integration over energies the function N becomes symmetric
with respect to the transmutation of particles 1, 2, 3, 4. I said that to cut
the diagram means to make a certain set of internal particles real. But
inside the block N all particles are already on the mass shell; it can be
treated as a real function, in a deep sense: there is no way to cut it any
further.

To clarify this important point, let us imagine that external particles
are represented by operators of some field theory. Then the function N is
given by the time-product

A(ki) =
∫

〈p′1|Tϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(0)|p1〉
3∏

i=1

eikixi d4xi . (15.9)

As we have already seen, this expression does not itself enter our calcula-
tions, just its integral over all energies:

N =
∫
dk10

∫
dk20

∫
dk30 A.
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It gives δ(t1)δ(t2)δ(t3), so that the time ordering sign, T , can be omitted
and we obtain an equal-time product of commuting operators,

N =
∫

〈|ϕ1(r1, 0)ϕ2(r2, 0)ϕ3(r3, 0)ϕ4(0, 0)|〉
3∏

i=1

e−iki·ri d3ri.

This expression can be written in terms of real intermediate states, in
various equivalent ways. In particular,

N =
21 43

=
2 431

=
31 2 4

In the notation of (15.8), the first representation enters the quasi-
diffractive imaginary part (15.5a), the second – (one of the four) one-
reggeon cuts (15.5b), and the third – the cut through both pomerons
(15.5c).

From our derivation it is clear that this property applies to particle–
reggeon blocks with an arbitrary number of reggeons attached. It also
holds for reggeon–reggeon interactions, like the three-reggeon vertices r
in the enhanced correction graph (15.3).

Now we will generalize the result (15.4),

F (2) ∼ N · f i f ·N,

to multi-reggeon branchings. Astonishing cancellations will allow us to
calculate inclusive particle spectra in the most general manner, even for
the case of strong coupling.

15.1.4 Cutting through many reggeons

What happens in multi-reggeon branchings? Let us write, in analogy with
the two-reggeon case, (15.4),

= N(n) f if i . . . if︸ ︷︷ ︸
n

N(n). (15.10)

In the same way as before, the particle–reggeon vertices N(n) do not
change when we cut the diagram. What is the contribution to different
processes of a non-enhanced n-reggeon diagram with n1 cut reggeons?
This is a simple combinatorial problem. We put n2 uncut reggeons on the
left of the cut ones, and the remaining n− n1 − n2 on the right, as shown
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n1

n2

Fig. 15.2 n-reggeon diagram with n1 cut reggeons.

in Fig. 15.2, and write

2 ImF (n)
n1,n2

= N2
(n)(2 Im f)n1(if)n2 (−if∗)n−n1−n2 Cn1

n Cn2
n−n1

. (15.11)

The combinatorial factors C count the number of ways to choose n1 cut
reggeons from n, and to divide n− n1 uncut ones into n2 to be put into
the amplitude (left) and n− n1 − n2 into the amplitude conjugate; Ck

m =
m!/k!(m− k)!. We are interested in the sum over n2:

n−n1∑
n2=0

Cn2
n−n1

(if)n2(−if∗)n−n1−n2 = (if − if∗)n−n1 = (−1)n−n1(2 Im f)n−n1 .

Substituting into (15.11) yields the contribution to the cross section with
n1 cut reggeons (n1 ≥ 1):

2 ImF (n)
n1

=
∑
n2

2 ImF (n)
n1,n2

= (−1)n−n1Cn1
n (2 Im f)nN2

(n). (15.12)

We have to consider the case when no reggeon is cut (n1 = 0) separately.
To this end we calculate the number of ways to split n reggeons into
n2 ≥ 1 to the left of the cut (with n− n2 ≥ 1 to the right), and take the
imaginary part of the factor i separating the two groups in (15.10),

n−1∑
n2=1

(if)n2((if)∗)n−n2Cn2
n = (if − if∗)n︸ ︷︷ ︸

(−2 Im f)n

−(if)n − ((if)∗)n,

producing

2 ImF
(n)
0 = (−1)n(2 Im f)nN(n) − 2 Re[(if)n]N(n). (15.13)

Adding together (15.12) and (15.13) we have
n∑

n1=0

Cn1
n (−1)n1 · (−2 Im f)n − 2 Re[(if)n] = −2 Re[(if)n],
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since the sum equals zero ((1 + x)n|x=−1). Thus, for the total imaginary
part we obtain

2 ImF (n) = −2 Re(if)nN2
(n) = 2 Im

[
− i(if)n

]
N2

(n),

in agreement with (15.10).
Let us note that in the case of n = 2, from (15.13) (n1 = 0) and (15.12)

(n1 = 1, 2) we rederive the known proportion (15.7):

ImF
(2)
0 : ImF

(2)
1 : ImF

(2)
2 = 2 : −8 : 4.

Thus, a simple calculation gave us an important result for the composition
of the n-reggeon branching: the contribution to the cross section with n1

cut reggeons, 0 ≤ n1 ≤ n, is

2 Ims F
(n)
n1

=
(
(−1)n−n1Cn1

n (2 Im f)n − 2δn1,0 Re[(if)n]
)
N2

(n). (15.14)

15.2 Absence of branching corrections to inclusive spectrum

Let us study the single particle inclusive spectrum. In Lecture 10 we
saw that in the pole approximation the inclusive spectrum is given by
the Mueller–Kancheli diagram (15.1). Take now a two-reggeon branching.
Since I need to register a particle in the central region, the quasi-elastic cut
(15.2a) does not contribute. In the cross section, the screening correction
diagram (15.2b) was twice as large as the graph with two cut reggeons,
(15.2c). However, when both ladders are cut, I can take the necessary
particle from either of them, and hence, this imaginary part enters with
a factor 2 the inclusive spectrum:

0 × 2 − 8 + 2 × 4 = 0

The meaning of an inclusive spectrum is the multiplicity multiplied by
the cross section: ∫

f(η) dη =
∑
n

nσn ≡ n̄σ.

Recall how we arrived at this: the phase volume of k identical particles
contains 1/k!. Fixing the momentum of one of the particles, I have for the
remaining ones 1

(n−1)!

∏n−1
i=1 dki.

Let us show that there will never be any corrections to the inclusive
spectrum in the central region. As we already know, n-reggeon branching
with n1 > 0 cut reggeons contributes to the cross section as

2 ImF (n)
n1

= Cn
n1

(−1)n−n1(2 Im f)n. (15.15)
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Calculating the inclusive spectrum, I have to multiply this expression by
n1, and to sum over n1 in order to obtain the total contribution of the
branching:

δf (n) ∝
n∑

n1=1

n1 · Cn1
n (−1)n−n1 =

n∑
n1=1

[
n− (n− n1)

]
· Cn1

n (−1)n−n1

=
{
n(1 + κ)n − κ

∂

∂κ
(1 + κ)n

}
κ=−1

= n · (1 + κ)n−1

∣∣∣∣
κ=−1

.

Since n ≥ 2 (we do not consider a pole), the total contribution of an
arbitrary non-enhanced branching to the inclusive spectrum equals zero.

Let us consider a more complicated diagram. The diagram is integrated
over rapidities η1, η2 at which the reggeons interact, while we are looking
for a particle with a certain rapidity η. Depending on the order of the
rapidities, we have three situations:

η2

η1

η

η1

η2

η1

η2

η
η

(c)(b)(a)

(15.16)

(1) η2 < η1 < η, (15.16) graph (a), or η < η2 < η1 (c). There are no
cancellations; we have a correction to the inclusive spectrum.

(2) η1 > η > η2, (15.16) graph (b). In this region the contributions of
one and two cut regions cancel; δf(η) = 0.

This consideration shows that I can draw any reggeon corrections from
above or from below of the registered particle, but never embrace the
point η. Summing up the total set of such diagrams leads, obviously, to
replacing the Green functions, G, of the bare pomeron pole by the exact
Green functions, G:

dσ

dη d2k⊥
= g1G(ξ − η)ϕ(k2

⊥)G(η)g2. (15.17)

15.2.1 Shape of the inclusive spectrum

How do reggeon branchings affect the shape of the inclusive spectrum?

Weak coupling. In the pomeron pole approximation, the inclusive spec-
trum is flat in the central rapidity region, f(η) = const. Reggeon loops
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ξ

η − −− − + . . .

1

2
(a) (b) (c) (d)

Fig. 15.3 One-loop corrections to inclusive spectrum (weak coupling).

provide sub-asymptotic corrections to the plateau. In addition to the
corrections to the top and bottom pomeron propagators (Fig. 15.3(d)),
we may take the triggered particle right from the three-reggeon vertex
r as shown in Fig. 15.3(a–c). Let us evaluate the first correction term,
Fig. 15.3(a):

f(η,k2) = g1ϕ(k2)g2 −
∫

d2k′

(2π)2
N1 · e−2α′k′2(ξ−η)ψ̃(k,k′) · g2 + · · · ,

where k′ is the transverse momentum flowing through the reggeon loop.
Since the rapidity interval ξ − η is large, k′ is small, and we may replace
ψ̃(k,k′) � ψ̃(k, 0) ⇒ ψ(k2).

f(η,k2) � g1g2ϕ(k2) − N1g2

4π
ψ(k2)

2α′ · (ξ − η)
+ · · · . (15.18)

In the weak coupling regime the vertex vanishes, r ∝ ω ∼ k2. Therefore in
Fig. 15.3(c,d) the pomeron propagators neighbouring the loop cancel, so
that these graphs reduce, in fact, to Fig. 15.3(a), modifying the function
ψ in (15.18).

We obtain the distribution

f(η,k2) � g1g2ϕ(k⊥) − C1(k2)
ξ − η

− C2(k2)
η

, (15.19)

where we added the contribution of the symmetric graph (b). We conclude
that the plateau must have a positive curvature.

Strong coupling. In the strong coupling regime this property is expressed
in a much more manifest way. Here essential multi-reggeon corrections are
contained in the Green function itself, G(ξ) ∝ ξμ, so that the inclusive
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spectrum,

f(ξ; η,k2) � g1G(ξ − η)ϕ(k2)G(η)g2,

increases with energy, as does the total cross section. It make sense to
measure the inclusive cross section in units of σtot:

φ(ξ; η,k2) ≡ σ−1
tot(ξ) · f(ξ; η,k2), σtot(ξ) ∝ G(ξ) ∝ ξμ;

φ(ξ; η,k2) ∝ G(ξ − η)G(η)
G(ξ)

∝ ξμ · zμ(1 − z)μ, z ≡ η

ξ
.

Unlike the parton model, where the system was ‘forgetting’ about its
boundaries, here the situation is different. There is now neither a ‘zeroth
approximation’, as in the weak-coupling case, nor an asymptotic plateau.
The Feynman scaling is broken: the probability of finding a particle de-
pends seriously not only on its place in the rapidity but also on the total
energy.

Let us calculate the total multiplicity:∫ ξ

0
dη

∫
d2kφ(ξ; η,k2) ≡ n̄(ξ) ∝ ξμ+1 ·

∫ 1

0
dxxμ(1 − x)μ.

The mean multiplicity has increased significantly – where did this come
from? In the strong coupling case enhanced multi-reggeon diagrams are
essential. This fact alone makes it evident that n̄ must grow.

Indeed, recall the distribution for topological cross sections, σn. From
Fig. 15.1 for multiplicity fluctuations due to the two-reggeon branching, it
is not obvious, a priori, in what direction the average value moves, to the
left or to the right. But, the more complicated branchings are included,
the more the number of cuts grows compared with the number of uncut
reggeons, resulting in the multiplicity increase.

From the space–time picture, in strong coupling our ‘ladder’ consists
often of a few ladders of normal density tied together. Hence, in the course
of the interaction a larger number of particles is ‘shaken off’.

15.3 Two-particle correlations

To study multiplicity fluctuations, not only average quantities can be
investigated but also the correlations of particles which allow us to find
the dispersion of the multiplicity distribution. Let us construct the cross
section for inclusive production of two particles with momenta k1, k2,

f(k1, k2) =
∑
n

1
(n− 2)!

∫
dΓn−2|Fn(k1, k2; q1, . . . , qn−2)|2 ,
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where

dΓn−2 =
n−2∏
i=1

dΓ(qi), dΓ(q) =
d3q

2q0(2π)3
,

is the phase space volume for n− 2 unregistered particles with mo-
menta qi.

If we now integrate the double differential distribution f over momenta
k1, k2 of the triggered particles, we obtain the second multiplicity moment:∫

dΓ(k1) dΓ(k2)f(k1, k2) =
∑
n

1
(n− 2)!

∫
dΓn|F |2

=
∑
n

n(n−1)
∫

dΓn

n!
|F |2 =

∑
n

n(n−1)σn ≡ n(n−1)σtot. (15.20)

Recall that the integral of a single particle inclusive cross section gives
the average multiplicity, ∫

dΓ(k1)f(k1) = n̄σtot.

Constructing the correlation function

φ(k1, k2) ≡ f(k1, k2)
σtot

− f(k1)f(k2)
σ2

tot

, (15.21)

we have∫
dΓ1 dΓ2 φ(k1, k2) = n(n− 1) − n̄2 = n2 − n̄2 − n̄. (15.22)

If particles are produced independently then, obviously,

φ(k1, k2) = 0 =⇒ n2 − n̄2 = n̄,

which is a property of the Poisson distribution. Hence, φ 
= 0 describes
the deviation from the independent emission.

If rapidities η1, η2 are close, nothing definite can be said. If, however,
the relative rapidity η1 − η2 is large, and both particles are far away from
the fragmentation regions (η2 � 1, ξ − η1 � 1), in zeroth approximation
we can draw a pole picture and see that φ(η1, η2) = 0. In an approxima-
tion without corrections, pomeron exchange gives rise to a homogeneous
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Poisson distribution:

f(η1,k1; η2,k2) =

0

k1

k2
= g1ϕ(k2

1)ϕ(k2
2)g2. (15.23)

We take now two-reggeon branching:

−8 + 4

⎛
⎜⎜⎜⎜⎝ ++

⎞
⎟⎟⎟⎟⎠ =⇒ 4 (15.24)

What will we get from more complicated branchings? Again, we take an
n-reggeon branching diagram, cut n1 reggeons, and choose two particles
from them:

2 ImF (n)
n1

= Cn1
n · (−1)n−n1(2 Im f)n ·

[
n1(n1 − 1)

2
+ n1

]
, (15.25)

where n1(n1 − 1)/2 is the number of ways to select two particles from
different reggeons, and n1 from the same reggeon. We know, however,
that

∑
n1

n1 · 2 ImF gives zero, cf. (15.24); hence,

n1(n1 − 1) =⇒ ∂2

∂x2
(1 − x)n

∣∣∣∣
x=1

,

and only the branching n = 2 contributes. A general statement can be
verified: non-enhanced branchings up to the nth order contribute to the
cross section of the production of n particles.

In order to generalize this result for enhanced branchings, one has to
be somewhat careful. Indeed, for the standard cancellation to take place,
we have to make sure that the reggeon interaction vertices do not depend
on the way the diagrams are cut, e.g. the vertex λ in (15.26),

λ =? (15.26)
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As a result, a very important picture emerges: in the full set of reggeon
diagrams for two-particle inclusive spectrum any interactions between the
reggeons are possible except those in the interval between the rapidities
η2 and η1 of the triggered particles.

In the weak coupling regime one can verify that the correction (15.24)
broadens the multiplicity distribution of particles compared to the Poisson
distribution.

To analyse the multiplicity fluctuation pattern in the case of the strong
coupling is a much more difficult task. To see qualitatively, what is taking
place let us consider the simplest diagram with the scaling Green func-
tions, G(ξ) ∝ ξμ substituted for the pomeron poles in (15.23). For the
double inclusive distribution we then have

φ(k1, k2) =
G(ξ−η1)G(η1−η2)G(η2)

G(ξ)
−G(ξ − η1)G(η1)

G(ξ)
· G(ξ − η2)G(η2)

G(ξ)
.

Keeping x1 = η1/ξ and x2 = η2/ξ fixed, both terms behave as ξ2μ. Now
we calculate the integral (15.22), extracting the overall ξ-dependence:

ξ−2μ−2 ·
∫

dΓ1 dΓ2 φ(k1, k2)

∝
∫

dx1 dx2(1− x1)μ|x1 − x2|μxμ2 −
(∫

dy(1− y)μyμ
)2

= 2
∫ 1

0
dx1(1− x1)μx

2μ+1
1

∫ 1

0
dy(1− y)μyμ −

(∫ 1

0
dy(1− y)μyμ

)2

=
∫ 1

0
dy(1− y)μyμ ·

[
2B(μ + 1, 2μ + 2) −B(μ +1, μ +1)

]
< 0, (15.27)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b). The problem is that the combination
of the B-functions in the square brackets is negative (μ > 0). This means
that the distribution became narrower than the poissonic one, which is
rather strange. Moreover, for a sufficiently large ξ (15.27) would violate
the mathematical fact that

〈
n2
〉
− 〈n〉2 ≥ 0. Consequently, the branch-

ing corrections must be significant. In any case, there is a large positive
correlation between particles in the strong coupling scenario.

15.4 How to tame fluctuations

We return to the discussion of fluctuations.
The simplest one is just the elastic scattering. There is an interesting

class of fluctuations of a similar nature, which we considered in Lecture 10
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(a) (b)0

Fig. 15.4 Inelastic diffraction (a) and an event with large rapidity gaps (b).

when we discussed the inconsistency of the Regge-pole approximation.
These fluctuations are characterized by large intervals in the rapidity
distribution of produced hadrons, as shown in Fig. 15.4.

15.4.1 High-mass inelastic diffraction: triple-reggeon limit

The first process, Fig. 15.4(a), is simple to measure. Indeed, to make sure
that there are no other fast particles, it is sufficient to observe a particle
with an energy very close to the initial one. (There can be no uniform
plateau when we register too energetic a particle in the final state.) This
is a correlation forced by the energy conservation.

The invariant mass of particles produced on the side of the target is

M2 = (k1 + k2 + · · · + kn)2 � m2 eη, (15.28)

where η can be equated with the rapidity of the fastest particle k1 in the
bunch (k10 � k20 � · · · � kn0 ∼ m), cf. (10.32b). In the kinematics of
Fig. 15.4(a), the mass is small compared to the total energy, M2 � s. At
the same time, it can be large in absolute terms, M2 � m2, so that the
condition ξ � η � 1 can be satisfied. Then the cross section transforms
into the three-reggeon picture as shown in Fig. 15.5. Hence, selecting a
particle with a large momentum, I virtually measure the three-reggeon
vertex directly. This is just the same vertex r that enters the reggeon
diagrams, since, as we know, it does not change when the diagram is
cut.

p
2 M 2

p
1

p
1 ξ

η

Fig. 15.5 Inclusive spectrum in the triple-reggeon limit.
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Let us see that the vertex r, indeed, has to go to zero, as this follows
from the reggeon field theory. We calculated this diagram in Lecture 10,
see (10.35):

dσ3P ∝ 1
s

d3p′1
2E′

1

· g2
1(q

2
⊥)r(q2

⊥)g2(0)

·
∣∣∣i s

M2
G(ξ − η,q2

⊥)
∣∣∣2 · [M2G(η, 0)

]
∼ d2q⊥ dη g2

1rg2 · e−2α′q2
⊥(ξ−η); dη =

dx

1 − x
.

(15.29)

Here x is the energy fraction carried by the fast registered particle which
has to be chosen in the interval m2/s � 1 − x � 1 in order to satisfy
the conditions of applicability of the reggeon approximation, ξ − η � 1,
η � 1 (see (10.32)).

Strictly speaking, the inclusive spectrum has the meaning of cross sec-
tion weighted by particle multiplicity, n · σ. However, when measuring
x > 1

2 , I am sure there may be only one particle with such a large energy
in the event. Consequently, by measuring the inclusive particle yield in
the three-reggeon kinematics we measure not multiplicity, but directly the
contribution of the total cross section.

How large is this contribution? We have to integrate (15.29) over a large
rapidity interval, η up to ξ. If the cone did not shrink, α′ = 0, we would
have e−2α′q2(ξ−η) = 1, and∫ ξ

dη

∫
d2q⊥

dσ3P

dη d2q⊥
∼ r · ξ, (15.30)

i.e. an infinitely increasing with energy partial contribution to the cross
section! This is, essentially, the same contradiction as the one we faced
when we discussed the black disc model, A = s · F (t), in Lecture 6. But
even taking account of α′ 
= 0 the result is still unacceptable:

σ3P =
∫ ξ

dη

∫
d2q⊥

dσ3P

dη d2q⊥
∼
∫ ξ−const

0

dη

α′(ξ − η)
∼ ln ξ. (15.31)

Although growing much slower with s that in (15.30), σ3P eventually
takes over σtot = const. To avoid the contradiction, we have to have, in
accord with the reggeon field theory consideration, see (14.27),

r(q⊥) = cq2
⊥, for q → 0, (15.32)

in which case∫
d2q⊥

dσ3P

d2q⊥
∼ dη

|ξ − η|2 , and σ3P = O(1) .
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(a)

q
λ

(b) (c)

Fig. 15.6

In the strong coupling regime, the reggeon–reggeon interaction vertices
also effectively vanish at small q⊥.

15.4.2 Vanishing reggeon–reggeon vertices

Let us turn to the discussion of an important question.
We see from (15.32) that the scattering cross section vanishes in the

forward direction, q⊥ → 0. This is a strong conclusion which has to have
serious consequences.

Indeed, is it not strange that the total cross section of the inelastic
diffraction processes in Fig. 15.6(a) has to turn into zero for q⊥ = 0?
(Strictly speaking, there should be no pomeron pole in the bottom part
of Fig. 15.6(a), while something like Fig. 15.6(b) could, in principle, be
there.) If I draw a ladder, would not the expression be positively definite?
One can imagine playing on the non-locality of the vertex in attempt to
effectively screen it, by integrating over the place where the reggeon is
attached, as shown in Fig. 15.6(c). As we will see shortly, this is not an
easy thing to do.

Nevertheless, let us suppose that we managed somehow to force the
three-pomeron vertex vanish for the forward scattering, r(0) = 0. Then a
two-pomeron branching in Fig. 15.6(b) gives the leading contribution to
the inclusive cross section which, obviously, has to be positive. But we
know that the total imaginary part of the branching diagram is negative:
2 − 8 + 4 = −2. To avoid the contradiction, the four-pomeron vertex λ
also has to be put to zero at q = 0.

15.4.3 Multi-particle production with large rapidity gaps

One arrives at the same conclusion, λ → 0, by considering another curious
fluctuation, when there is a large number of ‘holes’ in the distribution in
rapidity, see Fig. 15.4(b) above. (Historically, this was the first example
of a fluctuation that has led to the contradiction.)
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The corresponding cross section can be
calculated in different ways. In the j-plane
representation one easily gets

σ(ω) = ∝ λ2 lnω−1. (15.33)

Summing up two-reggeon loops,

∞∑
n=1

λn lnn ω−1 =
λ lnω−1

1 − λ lnω−1
,

we get a pole to the right from unity. Although the loop diagram (15.33)
itself amounts to a relatively small correction,

σ(ξ) ∼
∫

dω

2πi
lnω−1 eωξ ∼ ξ−1;

its repetition in the t-channel gives rise to a very strong exponential en-
hancement, exp(ω0ξ), ω0 > 0. This contradiction (the existence of a sub-
process whose cross section grows faster than the total one) requires, once
again, to have λ(0) = 0.

15.4.4 Fluctuations in the weak and strong coupling regimes

In the weak coupling case the s-channel unitarity imposes very serious
restrictions on the theory. The conditions r(0) = λ(0) = 0 are needed to
make sure that large fluctuations would not ruin the stationary uniform
rapidity distribution that characterizes the pomeron. In the language of
the reggeon field theory, these are actually the requirements that keep our
system away from the critical point.

The case of strong coupling does not contain contradictions, either in
the ‘3P limit’, or for multiple large rapidity gaps.

Given the σtot increasing with energy, the large deviations from the
scaling solution (14.22) turn out to be (relatively) suppressed. The screen-
ing of dangerous fluctuations is achieved here by summing diagrams with
‘long’ reggeons substituted for the dashed lines in Fig. 15.6(c). This tells us
(as strange as it may sound) that it is easier to verify the strong-coupling
scenario than the weak coupling one.
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In the first case we have a reggeon field theory (RFT) at our disposal.
We can plug in a bare pomeron pole and carry out the analysis∗ (al-
though we do not know a priori whether there is a small parameter in the
theory, we can at least try to calculate things within this hypothesis).

In the weak coupling, the vanishing of the vertex in Fig. 15.6(c) has to
be demonstrated at the level of particles (hadrons) rather than reggeons.
Therefore, in order to check the weak coupling regime, detailed knowledge
of the true theory of hadrons is necessary. This makes a world of a dif-
ference: while the reggeons enable us to carry out calculations, at least in
principle, hadrons do not: we do not have a theory of strongly interacting
hadrons.

The weak coupling corresponds to a rather simple physical picture:

(1) total cross sections are asymptotically constant;

(2) there is a uniform rapidity distribution;

(3) the multiplicity grows logarithmically with energy;

(4) fluctuations in particle production are relatively rare; and

(5) branching corrections to the leading pole approximation are small.

In contrast with that, the strong coupling regime has a rather complicated
structure. Here:

(1) the total cross sections increase, σtot(s) ∼ lnν s (with 0 < ν ≤ 2);

(2) there is no asymptotic particle density;

(3) no factorization;

(4) not much is left of the initial pole; branchings are 100% important;
and

(5) the leading approximation for the reggeon Green function G can be
fixed only roughly, in a ‘dimensional sense’.

These two versions are different also in the ‘microscopic’ language.
In the weak coupling there exists the asymptotic parton wave function

of a fast hadron, which ensures factorization of high-energy interactions.
This wave function is characterized by a finite rapidity density of particles
and is boost invariant.

In the strong coupling case the systems never forgets about its initial
energy. Long-range correlations are omnipresent, and the parton content

∗ Indeed, an example is known based on a definite relation between the bare vertex r and the
pole trajectory α(t), in which the strong-coupling solution does emerge (ed.).
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of colliding hadrons keeps growing with the energy of the interaction. One
might say, there is a specific Lorentz frame characterizing each collision.

On the physics side, the first reggeon field theory scenario looks more
elegant. However, from the point of view of a pure theory – summing up
the pictures – the impression is just the opposite.

Indeed, the strong coupling can be obtained directly from the dia-
grams. Meanwhile, the weak coupling calls for additional requirements
(r(0) = λ(0) = 0) which, in terms of diagrams, do not follow from any-
thing: they are just necessary to impose in order to preserve the s-channel
unitarity.

15.5 Weak coupling: vanishing pomeron–particle vertices

The study of the s-channel picture of particle production is very efficient
in understanding the conditions for the self-consistence of the theory. We
see that for the consistency of the weak coupling regime, rather strong
additional conditions must be satisfied namely, that the reggeon interac-
tion vertices r and λ vanish in the q⊥ → 0 limit. But if they do, what
will remain? Generally speaking, it is not so easy to set something to zero
by hand in a field theory; will this not result, e.g. in all cross sections
becoming zero too?

The hypothesis σtot → const looks rather attractive. So, we will recall
the main steps of the analysis of fluctuations we have carried above, to see
what are the consequences of the weak coupling conditions r(0)=λ(0)=0.

15.5.1 π-meson production vertex

Let us fix a large η value and keep increasing ξ − η. Taking into account
all corrections to the pole on the bottom part of the three-reggeon graph,

PP (15.34)

we arrive at the so-called reggeon–particle scattering amplitude:

k + + . . .= λr
k

(15.35)

We are interested in the forward scattering (t = 0). This amplitude can
be studied in terms of the partial wave, f(ω,k). The limit η → ∞ corre-
sponds to ω → 0, in which limit the vertex r goes to zero. The pomeron
contribution to the scattering block disappears, and there remain only
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non-pole contributions (branching corrections). This means that the
reggeon–particle amplitude (15.35) decreases with the growth of energy,
η. Let us recall, however, the s-channel meaning of the branchings. The
total cross section for the scattering of the pomeron P on a particle,
σ

(P)
tot ,

σ
(P)
tot =

∑
n

σn,

is a sum of topological cross sections, σn, with the production of a given
number of hadrons. We have discussed that the branchings lead to the
appearance of processes with particle multiplicity smaller (n < n̄(η)) and
larger than the average (n > n̄(η)), as well as to negative corrections to the
pole term. Now that the leading term has disappeared, these corrections
dominate the answer and would result in the negative cross section for
the processes with the average multiplicity, σn∼n̄ < 0.

We conclude that λ in (15.35) must also go to zero. The necessity of the
vanishing of the four-reggeon vertex followed also from the consideration
of multiplicity fluctuations with multiple large rapidity gaps. From that
consideration it was not clear, however, under what spe-
cific conditions λ has to be zero.

The three-reggeon vertex r on the r.h.s. of (15.35)
is zero when the momentum k, transferred along
the pomeron, vanishes (and ω = 0, corresponding to
the η → ∞ limit). This makes it evident that we
have to have λ = 0 as soon as k = 0, independently of

k

k k

k

the value of the momentum k′ in the lower part of the branching graph.
Let us construct the four-reggeon vertex λ in the ω-representation:

λ(ω;k,k′) =
k

k k

k
=
∫

dη e−ωη ImAPP(η;k,k′), (15.36)

where APP is the PP scattering amplitude. The integral on the r.h.s.
of (15.36) must vanish at ω = 0, k = 0. However, by virtue of the s-
channel unitarity condition (optical theorem for PP scattering), the imag-
inary part of the forward amplitude can be represented as a sum of cross
sections,

0 = λ(0;0,k′) =
∫

dη ImAPP(η;0,k′) =
∫

dη
∑
n

n
. (15.37a)
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We integrate a sum of the amplitudes squared. Hence, we come to the
conclusion that each of these amplitudes has to be zero at k = 0:

k
n

k
= 0 when k=0, for any η and k′, (15.37b)

identically for all energies. This is actually what we saw in the case of
the multi-gap events, with only one addition: to have λ = 0 it is in fact
sufficient to put to zero the transverse momentum of one of the reggeons.

Take a particular case n = 2, and consider the production of two pions:

k=0
≡ 0 =

∑
R

R
π
π, (15.37c)

where we have expanded the amplitude over Regge poles R (by choosing
π we exclude from the sum the vacuum pole P). But different reggeons
have different energy behaviour, hence each term of the sum is zero.

Next, the Regge-pole amplitudes factorize; therefore from (15.37c) we
conclude that each PRπ vertex vanishes in this point,

k=0

R

P
π = 0. (15.37d)

Now, let us continue this ‘zero’ in the virtuality t′ = −k′2 of the reggeon
R to the point t′ = m2

b , to obtain a particle–particle–pomeron amplitude,

P
ba

k=0
= 0. (15.37e)

15.5.2 Goodbye pomeron?

We arrived at a fantastic result: the transition amplitude b → a must
vanish with the transferred transverse momentum, k⊥ → 0, independently
of the type of the target! Moreover, if we take a = b, (15.37e) would mean
that the forward elastic amplitude is zero, and so is its imaginary part,
and the total cross section. The pomeron does not hook onto any hadron,
and therefore does not exist!

We learned that the high mass inelastic diffraction of the target hadron
does not contain the pomeron pole when the projectile particle scatters
forward, r(k⊥ = 0) = 0, and were hoping that as a result the amplitude
(15.34) would slowly decrease with the increase of η � lnM2. However,
having carried the reggeon logic through the consecutive steps (15.37), we
seem to have arrived at a totally bizarre conclusion.
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15.6 How to rescue a pomeron

We must address the two cases contained in (15.37e) separately:

� b 
= a – a surprising prediction;
� b = a – a catastrophe; the end of the pomeron hypothesis.

In the first case we deal with an inelastic process, and no formal objec-
tion can be raised against vanishing of inelastic amplitudes on a pomeron.

In order to rescue the elastic scattering, b = a, we could have the fol-
lowing situation: the genuine vertex, strictly speaking, could be singular
at ma = mb. The singularity which prevents the elastic vertex from be-
coming zero could be of the form

a
k1q

k
P

γ(k,q) ∝ 2(k⊥q⊥)
m2

a + k2
1⊥

. (15.38)

(Such an object – the transverse mass of the produced particle, m2
a + k2

1⊥,
– always enters the reggeon cross sections.) Let us introduce t = −q2,

2(k⊥q⊥)
m2

a + (q + k)2⊥
=

2(k⊥q⊥)
m2

a − t2 + 2(q⊥k⊥) + k2
⊥
,

and analytically continue the amplitude into the point t = m2
b > 0, where

the dashed reggeon line in (15.38) represents a particle b:

2(k⊥q⊥)
m2

a −m2
b + 2(k⊥q⊥) + k2

⊥

k⊥→0−→
{

1, a = b
0, a 
= b

}
. (15.39)

Hence, formally, our aim can be achieved. This is, however, not a real
proof, although this may be more than just a mathematical trick. In fact,
it is exactly what happens in quantum electrodynamics.

15.6.1 Vanishing of the vertex in quantum electrodynamics

Consider some inelastic QED process, for example photon conversion into
an e+e− pair in the external electromagnetic field:

+
k 0

= (+e) + (−e) = 0.
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The incoming particle creates a current which is scattered on the field. If
k⊥ is small, this field is almost homogeneous and therefore interacts only
with the integral of the current, i.e. with the total electric charge. But the
charge is conserved; it does not change when the system fluctuates (e.g.
γ → e+e− → γ). As a result, the scattering on a homogeneous electro-
magnetic field (k⊥ → 0) does not alter the internal state of the projectile.

How can this be seen mathematically? Writing the Weizsäcker–Williams
formula, we get just the singularity that we invented in (15.39).

Take an arbitrary process in which an incident particle a transforms
into an object (a system of particles) with the total momentum pb and
invariant mass p2

b = m2
b ≥ m2

a. A stationary field does not transfer energy,
Aμ(k) ∝ δμ,0δ(k0), and we have

0k

pa pb
k0 = 0;

p2
b =(pa + k)2 = m2

a − 2pzkz − k2
⊥ − k2

z .
(15.40)

When the energy is large, pa0 � paz ≡ p, the longitudinal momentum
absorbed by the field becomes small,

kz =
√

p2 − (m2
b −m2

a + k2
⊥) − p � −m2

b −m2
a + k2

⊥
2p

, (15.41)

and the transferred momentum is transversal, k2 � −k2
⊥.

Mμ is the matrix element of the sub-process a + γ(k) → b shown by the
grey blob in (15.40). It must satisfy the current conservation condition,

kμMμ = k0M0 − kzMz − (k⊥M⊥) = 0, (15.42)

from which we derive

Mz = −(k⊥M⊥)
kz

� 2p · (k⊥M⊥)
m2

b −m2
a + k2

⊥
� M0,

where we used (15.41). Finally, for the amplitude of the process we obtain

AμMμ ∝ M0 ∝ (k⊥M⊥)
m2

b −m2
a + k2

⊥
, (15.43)

were we have exploited the fact that in a relativistic situation, M0 � Mz

(M0 −Mz = O(1/p) → 0).
This is precisely the structure of the vertex we are seeking to rescue

the pomeron. With k⊥→0, it goes to zero for ma 
= mb but stays finite
for the elastic scattering, a = b (in which case M⊥ ∝ k⊥, for lack of any
other transverse vector in the problem).

We could discuss this phenomenon in the language of Lorentz-invariant
form factors. If the object b has no internal structure (is characterized
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only by its total four-momentum pb), we may write

Mμ(pa, pb) = Γ1(k2)(pa + pb)μ + Γ2(k2)(pa − pb)μ.

The condition (15.42) gives Γ1(m2
a −m2

b) + Γ2k
2 = 0, and we obtain

a = b : Mμ = Γ1(k2)(p1 + p2)μ,

a 
= b : Mμ = Γ2(k2)
[

k2

m2
b −m2

a

(p1 + p2)μ + kμ

]
; Γi(k2) k2→0−→ const.

In the latter case the high-energy inelastic transition vanishes in the for-
ward direction, M0(a → b) ∝ k2

⊥ · p + O(1/p), while the elastic amplitude
is finite, M0(a → a) � e · 2p.

Hence, although this example looks somewhat artificial, it demonstrates
that the solution we are looking for may exist. Actually, this is not an
argument in favour of the pomeron, since in quantum electrodynamics we
have a conservation law in the game (that of electric charge).

Nevertheless, the elastic scattering in the reggeon problem is not zero
either, and there is a reason for that.

15.6.2 Diffraction on a broad potential (deuteron)

Let us study another example.
In Lecture 12 we discussed the diffraction on a large size target. We

considered the scattering of a deuteron off the external field of size R
(Fig. 15.7) and wrote the transition amplitude from the initial state i to
the final state k:

fik ∼
∫

d3r12 d
2ρc ψ

∗
k(r12)

[
e2iδ(ρ1)+2iδ(ρ2) − 1

]
ψi(r12). (15.44a)

When the spread of the potential is much larger than the internal size
of the projectile, R � rD, in the scattering phases δ(ρ1), δ(ρ2) we can
neglect the separation ρ12 between the proton and neutron inside the

D i k

(a) (b)

Fig. 15.7



408 Particle density fluctuations and RFT

deuteron, ρ1 = ρc + 1
2ρ12 � ρ2 = ρc − 1

2ρ12 � ρc, to obtain

fik ∼
∫

d3r12 ψ
∗
k(r12)ψi(r12)︸ ︷︷ ︸
δik

·
∫

d2ρc

[
e4iδ(ρc) − 1

]
. (15.44b)

Thus, while the elastic process (i = k) goes, the amplitude becomes zero
when i 
= k that is for scattering with excitation – inelastic channel,
Fig. 15.7(b).

We have established a correspondence of these formulae with ‘pictures’.
Recall the representation for the scattering matrix element that we have
used in order to translate (15.44) in the language of the diagrams:

S1S2 − 1 = (S1 − 1) + (S2 − 1) + (S1 − 1)(S2 − 1). (15.45)

Consider two concrete cases.
First we take i = ψD, k = ψD, corresponding to the elastic scattering:

++

= 0. (15.46)

Now let us draw the decay, when ψk is the wave function of the continuous
spectrum, k = (n, p). What is the corresponding graphical representation?
The wave function of the produced n, p can be written as

ψk = eik·r12 + ψ′
n,p, (15.47)

where ψ′
n,p is an addition due to the interaction between n and p in

the final state. Let us insert it in the integral (15.44b) for the transition
amplitude fik represented in the form of (15.45).

The free propagation gives

n ++

D
p

(15.48a)
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Owing to the additional term ψ′
np in (15.47), after the interaction with

the target there is an interaction between the two outgoing nucleons:

+ +

(15.48b)
Having drawn the diagrams, we may hope that this picture can be applied
in a more general context (not only to a deuteron).

From the properties of the wave function, (15.44b), we know that the
dissociation amplitude is zero at k⊥ = 0. How does this happen in terms of
diagrams? The mechanism of the cancellation between the graphs (15.48a)
and (15.48b) turns out to be very similar to the case of a conserved
current.

The final state interaction amplitude shown by black circles in (15.48b)
may be rather complicated. However, I can expand it over intermediate
states, and I know that at k = 0 only one of them would survive namely,
the pole term corresponding to D. Then the sum of the diagrams (15.48)
reduces to two graphs displayed
in Fig. 15.8, where the dashed
block symbolizes the sum of the
amplitudes for scattering of the
two nucleons off the target.

+ +=

The two graphs of Fig. 15.8 must cancel one another in the k → 0 limit.
How is this possible?

The second graph (Fig. 15.8(b)) describes forward scattering of the
deuteron (followed by its dissociation); therefore its amplitude is pro-
portional to σtot(D) – the cross section of deuteron interaction with the
target.

p

n

(a)

k

p

n

(b)

k

DD

+

D

Fig. 15.8 (a) D → pn dissociation followed by interaction of nucleons with the
target, (15.48a); (b) D pole in the final state pn interaction amplitude, (15.48b).
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The first graph (Fig. 15.8a) can be also expressed via the total cross
section, this time, of the p + n pair. Indeed, if the potential is broad,
we may neglect, once again, its dependence on ρ12 and approximate
V (ρ1,ρ2) � V (ρc):

k1 k1

k2k2

=
∫

d2ρ12 ei(k12−k′
12)·ρ12 · V (ρ1,ρ2) ∝ δ(k12 − k′

12).

(15.49)
The internal state momenta k′

i coincide with the final momenta ki; the
proton and neutron scatter forward, and the amplitude yields σtot(np).

So it becomes clear that for the cancellation to take place, the equality
of the cross sections is necessary,

σtot(D) = σtot(np). (15.50)

This relation obviously holds in our model: both D and pn interaction
amplitudes are determined by the standard formula (15.44a), and in case
of scattering on a large target it is irrelevant, whether p and n are flying
separately, or together, inside D. If we were to carry out the real calcula-
tion, we would see that the normalization factors conspire in such a way
that (15.50) turns out to be not only necessary but also sufficient for the
cancellation of graphs (Fig. 15.8), which describe pn and D interacting
with the target, correspondingly.

Let us demonstrate how it happens, by applying the Feynman rules to
the forward a → b amplitude in the external field:

a b
γ

ab b
γ

a
+ = γ

1
m2

b − p2
σ

(b)
tot + σ

(a)
tot

1
m2

a − p2
γ. (15.51)

γ is the transition amplitude between the states (a = D, b = p + n). The
virtuality p2 of the intermediate state (shown by a thick line) is defined
differently in the two diagrams (15.51). Namely, p2 = m2

a in the first term
(state a is on the mass shell), and p2 = m2

b in the second (on-mass-shell
state b). We immediately see that as soon as σtot(a) = σtot(b), the ampli-
tude vanishes (the propagators do their job properly).

This example shows that inelastic transitions a → b can indeed be zero
at k⊥ → 0 if the interactions in the initial and final states cancel. To make
it possible, the particles a and b must interact identically with the target,
have to have equal total cross sections.

In the considered case of scattering on a large target this is true not
only for the total cross sections, σtot(a) = σtot(b), but even in a more
subtle sense: scattering does not lead to a redistribution of momenta in
the continuous spectrum, see (15.49).
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15.7 Vanishing of forward inelastic diffraction in RFT

How could one discuss this situation without appealing to the quantum-
mechanical deuteron analogy?

Let us take our hypothesis that the amplitudes of inelastic processes
vanish when the transverse momentum k transferred along the pomeron
goes to zero,

a b

c
k=0 P

= 0, (15.52)

and ask ourselves how to derive consequences of this condition, not know-
ing the theory of hadron interactions?

15.7.1 ‘Sharp screening’ in RFT

I put to zero not a constant but a function of the pair energy (invariant
mass) sbc. As any other amplitude, (15.52) has singularities. In particular,
it may have a pole at sbc = m2

a. It is not difficult to write the pole term
explicitly:

a

P c

b

k=0

a
∝ σtot(a) 
= 0. (15.53)

This contribution to the amplitude is non-zero, since it is proportional to
σtot(a). How could a function having a pole be zero? There may be other
intermediate states too,

a

P c

b

k=0

d
∝ σ(a → d) = 0. (15.54)

However, by our hypothesis, the a → d transition on the pomeron is for-
bidden, and therefore no other states contribute to the imaginary part
(the discontinuity over sbc). Have we not ‘killed’ the hypothesis (15.52)?
The answer is ‘no’, and for a subtle reason.

The amplitude (15.52) is a four-point function, having many variables.
Usually, after making use of the Lorentz invariance, we talk about two
independent variables and, correspondingly, two independent imaginary
parts (discontinuities). But a Regge amplitude is not Lorentz invariant; it
depends on the direction of the collision. We are concerned with k⊥ = 0.
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If I set to zero the total four-vector kμ = 0, the amplitude (15.52) would
turn into a three-point function. The latter is fully determined by the
particle masses, A(m2

a,m
2
b ,m

2
c), and has no free variables left.

If I take (kμ)2 = 0, this is one condition, equivalent to fixing the mass of
one external line of the four-point amplitude; two independent variables
are at our disposal.

Setting k⊥ = 0 means, however, two conditions, not one. Therefore, the
amplitude (15.52) at this point possesses only one independent variable.
As a result, when studying the sbc imaginary part, we have to take into
consideration simultaneously discontinuities over sab and sac! We can draw
two additional simple graphs straight away:

c

ba

sab c

ba sac

c

b

asbc
(15.55)

All three amplitudes have poles at the same point. Suppose, this were the
whole answer. Then the condition (15.52) would read

σtot(a) = σtot(b) + σtot(c).

But this is nonsense.
In the deuteron story it was not like that. For the system of two nucleons

we had σ(pn) = 2πR2, and not σ(pn) = 2 × 2πR2.
What is missing in (15.55)? The screening correction. It is this addi-

tional term that saved the day in the deuteron case:

a b

c =⇒ σ(pn) = 4πR2 − 2πR2 = 2πR2. (15.56)

The battle is not won yet. Indeed, each of three diagrams in (15.55) has
a pole, while the screening graph (15.56) does not seem to have one. But
it has to have a pole in order to participate in the cancellation we are
looking for.

Actually, there is a pole which emerges in a very peculiar way.
On a broad potential, the double interaction is
‘sharp’. As I have stressed above, there emerges
δ(k′ − k): momenta of particles in the intermedi-
ate state coincide with the final state ones, k′

i = ki

(i = 1, 2). The energy denominator of the interme-
diate state peaks, producing the pole.

k2

k1

k2

k1

Before we turn to the question whether such a phenomenon appears in
the reggeon problem, let me make a remark. As in the deuteron case, see
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(15.50), the self-consistency condition (15.37e) will imply

P
ba

k=0
= 0 =⇒ σtot(a) = σtot(b). (15.57)

Cross sections of different objects (hadrons) that can turn into one another
on the pomeron (having the same quantum numbers) must be asymptot-
ically equal.

15.7.2 The essence of reggeon screening

We have to discuss whether we can obtain a necessary screening contri-
bution in the reggeon framework. Let us draw the corresponding reggeon
diagram,

f(ρ1,ρ2) =

ρ1

ρ2

ηρ

ξ2

r

ξ1

and calculate it presuming r(0) 
= 0, for a start. Formally speaking, we
would not expect a branching diagram to have a pole in ω; in other words,
we would expect it to be small in the high-energy limit, ξ → ∞.

In the impact parameter language,

f(ρ1,ρ2) = r

∫
d2ρ dη G(ρ1 − ρ, ξ1 − η)G(ρ2 − ρ, ξ2 − η)G(ρ, η).

(15.58)

This is the contribution to the amplitude from the three-pomeron dia-
gram. Since the Green function G is Gaussian in ρ, see (12.19), the inte-
gral can be easily calculated. But even without calculation we can answer
the question whether there will remain the dependence on the relative
distance ρ12.

What sort of a problem is this? The rapidities ξ − η and η play the
rôle of time in the diffusion process. We deal with a probability for two
objects, emerging from points ρ1 and ρ2, to meet after time ξ − η in the
point ρ, and keep propagating, stuck together. The integral over η and
ρ means that I am looking for the total probability of such a meeting
anywhere in the ‘space–time’. The point is, in the two-dimensional space
this always happens.

The brownian motion formula,
〈
ρ2
〉
∼ T , means that the size of the

region where the diffusing object can be found at time T , increases linearly
with T . On the other hand, the path length is also proportional to T .
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This tells us that our object, typically, visits each point inside the disc of
increasing radius. Indeed, the probability to be found in a given point ρ
any time before T ,

R

r
w(T,ρ2) ∼

∫ T

0
dt

exp(−ρ2/t)
t

∼ ln
T

ρ2
,

grows with the time elapsed. It makes it look plausible that the probability
for the two objects to meet (anywhere, some time) will grow too: for
sufficiently large T � ρ2

12, the collision occurs inevitably, irrespectively of
the size of the initial separation. Let us look at the formula to see if our
expectation materializes.

Substituting in (15.58) ρ1(2) = ρc ± 1
2ρ12,

f ∼
∫

d2ρ dη

(ξ − η)2
exp
(
− (ρc − ρ)2

2α′(ξ − η)
− ρ2

12

8α′(ξ − η)

)
× 1

η
exp
(
− ρ2

4α′η

)
.

We are interested in the forward amplitude,
∫
d2ρc exp(ik · ρc) at k = 0.

Integrals over ρc and ρ compensate two nomalization factors, and we are
left with

f(ρ2
12,k = 0) ∼

∫ ξ

0

dη

ξ − η
exp
(
− ρ2

12

8α′(ξ − η)

)
� ln

8α′ξ
ρ2

12

.

The dependence on ρ12 drops out in the dominant piece of the ampli-
tude, f ∼ ln ξ, and therefore the integration over ρ12 produces the delta-
function contribution δ(k − k′) that we are looking for.

Well, I deceived you, of course. If I substitute in (15.58) the vanishing
PPP vertex, r(0) = 0 (as I should have done) this graph is simply small.

15.7.3 Bare and renormalized three-pomeron vertices

We are discussing whether particles screen each other when they interact
via pomeron exchange.

What is the difference between P and a simply large target? On one
hand, the pomeron resembles a large target because its radius grows with
energy as ln s. On the other hand, the cross section on a large target is
also very large σ ∼ R2, while in the pomeron case the disc becomes more
and more transparent with the increase of energy.

The fact that screening corrections are large on a large target is essen-
tially trivial; as soon as one particle hits the target, so does the second
one inside the projectile. If I had r 
= 0, this situation could reproduce
itself in the pomeron problem, owing to the blackening of the disc that
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(c)(a) (b)

Fig. 15.9 (a) Image of a bare pole; (b) branching; (c) interacting ladders.

corresponds to the ‘true pole’. However, if r(0) = 0, then the pomeron disc
remains transparent and does not provide the necessary sharp screening.

But what is a ‘true pole’?
We need to reflect upon the meaning of a ‘pole’ and ‘branching’. If there

is an interaction between ‘ladders’, a new mixed coherent state emerges,
representing the ‘true pomeron’ (Fig. 15.9(c)). Cutting through such an
object, I would not necessarily find large fluctuations.

And what would be a branching then?
It describes a situation when two such objects (the

true poles) do not interact during a long period. The
weak coupling condition, r → 0, means that such long-
living fluctuations are not frequent, i.e. the uniform ra-
pidity distribution is quasi-stable – it does not fluctuate
much. From this perspective, the vertex r is responsible
for deviations from the stable asymptotic distribution.
This vertex function r has to go to zero.

r

When discussing various reggeon branching issues, we drew diagrams
and used to write the same letter r for the three-pomeron vertex. However,
there were essentially different quantities!

In particular, in the case of a deuteron, the ladders surely do not overlap
for a long time since p and n inside the deuteron are far apart. Many
diffusion step are necessary in order for the ladders to meet. On average,
α′(ξ − η) �

〈
ρ2

12

〉
∼ r2

D. Thus, during a very long ‘time’ r2
D/α

′ � 1 they
typically do not mix together and develop independently.†

The proper size of the deuteron is an external factor. Thus, the prop-
erties of the deuteron wave function impose themselves on the reggeon
theory.

The vertex r that governs the magnitude of fluctuations around the
stationary distribution I would call renormalized, rren. It is this vertex that
has to vanish in the forward kinematics, for the sake of self-consistency
of the weak-coupling pomeron theory.

† There is a possibility for p, n to be initially close, but it has a small probability (ed.).
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At the same time, the quantity r that enters the deuteron scattering
problem I would treat as a bare reggeon interaction vertex, rbare → const,
because in this concrete case a (seldom fluctuating) asymptotic coherent
parton distribution does not have enough time to be formed (and hardly
ever will, at any energies imaginable).

Constructing the theory of interacting reggeons, I would have to start
from a bare vertex, rbare = const, and then (provided I really knew how
to calculate things) to demonstrate that the renormalized one indeed van-
ishes, rren(k → 0) → 0. The analysis of the triple-reggeon limit in (15.58)
was actually a step in this direction; by calculating such three-reggeon
graph we were calculating in fact the true (renormalized) deuteron–
pomeron vertex via the bare PPP constant rbare.

P

DD

rbare

Whether this program can be realized in reality remains unclear; the
full understanding is lacking of how, essentially, the renormalization of
the pomeron constants takes place.

With somewhat less certainty, we can make the statement (15.57) even
stronger; total interaction cross sections of all particles (and not only
those having identical quantum numbers) must tend to one and the same
constant in the limit of asymptotically high energies.

15.8 All σtot are asymptotically equal?

In order for the screening phenomenon to be independent of the specificity
of the state, it is necessary to be able to calculate the screening correction
graph (see, e.g. (15.56)) in a universal manner via reggeons (and not
particles!).

Suppose that in the consistency condition (15.57),

P
ba

k=0
= 0 =⇒

P

a a b

P

b
= ,

we take the particle b to be a composite object, b = c + d. Then the in-
teraction of this object with the target I will represent as a sum of three



15.8 All σtot are asymptotically equal? 417

contributions:

σb = σ(cd) =
+ +

V

c
d

c
d

c
d

where the interaction block V is universal, not depending on the types
of the participating particles. In terms of pomeron–particle interaction
constants, this is a non-linear relation,

gb = gc + gd + gcgd · V. (15.59)

But c and d can be chosen differently; a hadron can be ‘composed’ in
multiple different ways. A proton, for example: p = n + π+ = Δ++ + π−,
etc. Therefore, the only solution (15.59) admits is gc = gd = gb.

Thus, having supposed that the high-energy screening is determined by
the pure reggeon physics, we come to the conclusion

σ
(p)
tot (s → ∞) = σ

(π)
tot (∞) = σ

(D)
tot (∞) = σ

(He4)
tot (∞) = · · ·

Is it really so weird to have the interaction cross sections of all hadrons
with a given target to be asymptotically equal?

In order for this to happen in reality, one would need, of course,
grandiose colliding energies, such that the reggeon interaction processes
are fully developed: α ln s � R2

h, the Regge radius of the pomeron much
larger than the proper radii of the projectile hadrons.

Parton clouds belonging to the constituents inside the hadron must all
mix together, resulting in the coherent universal parton distribution whose
density no longer depends on the type of the incident hadron. When this
limit is reached, the interaction cross section in the centre-of-mass frame
of the initial particles A and B is expressed in a universal way, via the
interaction cross section of slow (‘wee’) partons.

In the framework of the parton picture, the hypotheses which guaran-
tees an asymptotic equality of all cross sections looks rather natural. It
presumes that, due to the fact that the hadron interaction is strong, such
a universal distribution is reached, eventually, with the unit probability,
and does not depend on the nature of colliding objects.



16
Strong interactions and field theory

16.1 Overview

16.1.1 Phenomenological approach to hadron scattering

We have considered the phenomenological theory of strong interactions.
In the last 20 years the theory was developing in two parallel directions.
The questions were:

� how the interaction takes place in a relativistic situation, irrespec-
tively to who is interacting;

� how the mass spectrum of hadrons is built up; what type of laws can
be extracted not knowing the microscopic dynamics?

Qualitatively, high-energy processes are understood. Such general conse-
quences of the complex angular momentum theory as the uniformity of
particle production in rapidity, the shrinkage of the diffractive cone and
the logarithmic multiplicity growth, are in good qualitative agreement
with the experiment. Why is there no good quantitative agreement?

In the expression for the Regge radius,

R2 = R2
0 + α′ ln

s

m2
,

the pomeron slope – the impact parameter diffusion coefficient – turned
out to be numerically small :

α′/R2
0 ∼ 1/12 .

The hadron radius increases very slowly with the energy, and hence
different simplifying properties that we have discussed in these lectures

418
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will never manifest themselves; the true high-energy asymptotics will
never be reached. We do not understand the reason why this is
so.

Nevertheless, the qualitative agreement exists, since, although the
growth of the radius is not sufficient, a relatively homogeneous distri-
bution in rapidity is established in nature.

In what concerns the possible structure of the mass spectrum of
hadrons, exploring this problem has led to the notion of ‘duality’.∗

16.1.2 Duality

Take some field theory based on a certain number of interacting fields
(bare particles). If the coupling constant is sufficiently large, bound
states (and resonances) will appear and enter the theory on equal foot-
ing with the input particles. A complicated, but legitimate, structure
of the physical particle spectrum will emerge, driven by unitarity and
analyticity.

We know that each Regge pole in the j-plane feels unitarity thresholds
which, generally speaking, essentially deform its trajectory. However, ex-
perimentally this is not true. In a large interval of t all known Regge
trajectories are linear with quite a good accuracy.

This fact looks rather strange and calls for explanation. How is it that
all along a distance of several GeV the linearity persists?

One possibility is that a large mass scale may be there, hidden at the
quark level (quark masses?)† the fact that it is mesons and baryons –
bound states of quarks – that propagate at macroscopic distances is a
secondary thing, less important for the dynamics.

Another attempt to explain the linearity consists of introducing into the
theory, from the very beginning, an infinitely large number of particles and
connecting their spins (placing them on the Regge trajectories). This way
we make a step beyond the QFT framework not by abandoning locality
but by introducing an infinite number of fields.

Why does this lead to linear trajectories specifically?
We know that all the singularities (including trajectories) are deter-

mined by unitarity, i.e. by the interaction. Hence, to insert, e.g. a
√
t

singularity by hand, does not seem clever or harmless.
The simplest analytic choice is a straight line.

∗ The concept of duality gave birth to string theory.
† On the appearance of a large mass scale in the vacuum channel, see Shifman and Vainshtein,

2005 (ed.).
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Let us approximate the scattering amplitude by the sum over s-channel
particle poles:

A(s, t) = =
∞∑
n

n 

n 
σ 
m + corrections. (16.1)

One could think that the hadron interaction that we observe is strong
already because there are many particles to exchange in (16.1). Within
this logic, one might hope the corrections to such ‘Born’ approximation
to be small.

Did we draw in (16.1) everything we had to? Should we not include
also the poles in the t- and u-channels?

This would have been necessary if the number of particles was finite, or,
at least, if the series in (16.1) converged well. However, the situation here
is not so simple: since we are planning to include particles with arbitrarily
high spins σn, the behaviour of Pσ(cos θs) at σ → ∞ is a worry. At t > 0
(cos θs > 1) the Legendre polynomials Pσ increase as a power of σ. Hence,
the series makes sense only in the physical region of the s-channel (t < 0)
and diverges at t > 0.

What does the divergence of the series mean for the amplitude A(s, t)?
It is just a singularity in t. We know, however, that all the singularities
are either poles or thresholds. We want to construct the Born amplitude
which does not take into account the interactions; consequently, there
may be only poles. Thus, we are unable to write an amplitude that would
have poles only in s.

Here lies the basic idea of duality: the requirement that the series has in
t just the necessary poles, those corresponding to particles (resonances)
that can be exchanged in the t-channel of the reaction. The scattering
amplitude can be alternatively expanded in terms of the t-channel poles:

A(s, t) =
∞∑
n

=
∞∑
n

. (16.2)

The equality of the sums over s- and t-channel resonances (duality of
the two representations) guarantees the self-consistency of the construc-
tion. Essentially, the duality idea is the only way to introduce an infinite
number of particles in the theory.

Obviously, the duality relation (16.2) imposes severe restrictions on the
possible structure of the particle spectrum. How can we write a suitable
meromorphic function having only poles? As it turns out, the problem
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can be solved quite easily (Veneziano, 1968):

A(s, t) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s) − α(t))

= B(−α(s),−α(t)) ≡
∫ 1

0
dx(1 − x)−α(s)−1x−α(t)−1

(16.3)

where α is a linear trajectory: α(t) = t (in units α′ = 1). This function
has poles in each integer point both in the s- and t-channels. It is clear
that having written a function symmetric in s and t, I have satisfied the
duality relation automatically.

5 

1                         2 

3 

4 

Actually, one can go even further and con-
struct, in particular, a 2 → 3 scattering ampli-
tude. It contains many pair invariants; contin-
uing into each particular channel, sik > 0, we
must obtain a series of the corresponding reso-
nance poles.

It is easy to draw a diagram having poles, say,
in s12 and s45. Can one invent a contribution
that would have, in addition, poles in s35?
It is clear that this is impossible: as soon as
particles 4 and 5 combine into a pole, there is no  

1                 2

3

45

information left about the momentum p5 that could correlate with p3

(only information about spins can be carried up the graph). As a result,
dual multi-particle amplitudes consist of a sum of all possible tree dia-
grams with poles in all sub-channels.

There is a technical difficulty: the amplitude must factorize; moreover,
the residues must be positive. The task of constructing the meson ampli-
tude close to the real hadron spectrum is almost completed. The case of
baryons turns out to be more difficult.

How will the Born dual amplitude behave at s → ∞? If the asymptotic
behaviour were arbitrary, there would be no hope that the pole approx-
imation is any good. In this case the correction terms to (16.1) which
have the form of loops and are responsible for the unitarization of the
amplitude would have to be significant.

From the point of view of the t-channel pole expansion in (16.2),
the reggeon behaviour A ∝ sα(t) seems to be very natural. Indeed, the
Veneziano formula matches this expectation, meaning that the theory
embedded a priori not just many particles but the true Regge families.
To see this we take the limit of large (−s) in the integral representation
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(16.3) and make use that −α(s) � 1:∫ 1

0
dx(1 − x)−α(s)−1x−α(t)−1 =

∫ 1

dxx−α(t)−1 e−α(s) ln(1−x)

≈
∫ ∞

0

dx

x
x−α(t) eα(s)x =

∫ ∞

0

dy

y

(
y

−α(s)

)−α(t)

e−y

∝ (−α(s))α(t) = (−s)α(t).

(16.4)

Actually, we could use the well-known Stirling formula for Γ in order to
derive the asymptotics of the B function. The integral representation is,
however, more suitable for generalizations.

Multi-particle diagrams also exhibit multi-regge behaviour:

 

1                 2

3

45

∼ (−s23)α(t12) · (−s34)α(t45)

As for the problem of unitarization, almost no progress has been
achieved apart from a telling technical achievement.

It turns out that in the case of an infinite number of particles, in the
same way as in the usual QFT, instead of inserting the imaginary part in
the dispersion integral one can draw a Feynman diagram automatically
satisfying the unitarity conditions. However, here the loop diagrams have
more subtle properties. Due to (16.2), there is a variety of remarkable
equalities between absolutely different graphs, for example,

==

The sharp turn from the attempts to do without the internal structure of
hadrons (local features of the objects) was, I think, due to experiments,
namely, those on deep inelastic scattering.

16.2 Parton picture

The concept of Feynman–Bjorken partons was invented to explain the
deep inelastic scattering phenomenon but may have a deeper significance.

Using perturbative language, we have seen that at high energies there
emerged significant simplifications in a wide class of hadron interaction
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processes. Is it possible to see these simplifications without appealing to
the perturbation theory, not with the help of reggeons, but directly from
the field theory?

16.2.1 Parton wave function of a high-energy hadron

How does field-theoretical description relate to the usual quantum me-
chanics? Why do we use Feynman graphs rather than the wave function
as in the non-relativistic theory? Can one return to the wave function in
QFT?

In a field theory, if we make a snapshot of a particle we will see many
particles whose number changes with time. The NQM wave function de-
pends on the coordinates of all the particles in the system; even if we
manage to invent a QFT wave function, it would be a multi-component
object.

What is a physical particle?
Even if I start with a bare object, it ‘dresses up’, and in the course of

propagation develops into a multi-particle system:

t 

1 

x 2 

x 3 

x 
Ψ =

⎛
⎜⎜⎜⎜⎝

ψ1(t,x1)
ψ2(t,x1,x2)

· · ·
ψn(t,x1,x2, . . . ,xn)

· · ·

⎞
⎟⎟⎟⎟⎠ .

An ensemble of such Green functions determines probability amplitudes
for finding 2, 3, etc. particles at a given time in definite points in space.

A wave function is a convenient object to use; it is normalized in a
definite way, the integrals of the squared wave function determine proba-
bilities of various physical processes.

So why don’t we use a wave function in quantum field theory?
Recall that the QFT diagrams necessar-

ily contain the space–time configurations in
which some particles originate directly from
the vacuum rather than from the original
particle itself. Even in the simplest case of
the self-energy correction diagram, the order
of interaction times is arbitrary, and I would
have to include into consideration all sort of
virtual process going on in the vacuum.

t 

In a quantum field theory, a free particle is not a dynamically closed
system. Rather, it is like an object in a medium – in the ‘external’ field
of vacuum fluctuations.
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(a)

t1 t2
t2 t1

(b)

Fig. 16.1 Configurations t21 > 0 and t21 < 0 in the self-energy graph.

For certain graphs, it is straightforward to dis-
tinguish vacuum processes that do not affect the
particle propagation. However, as soon as our par-
ticle and a vacuum fluctuation interact with one
another (even in the future!), the picture becomes
confusing; it is no longer possible to tell what be-
longs to the particle under consideration, and what
to the vacuum.

If the longitudinal momenta of particles in the intermediate state of a
virtual decay of their energetic parent, E � m, in Fig. 16.1(a) are of the
same order, x1/x2 = O(1), the energy difference becomes small:

ΔE =
√

m2 + p2 −
√

m2
1 + p2

1 −
√
m2

2 + p2
2 
 m2

2p
− m2

1⊥
2x1p

− m2
2⊥

2x2p
.

If you now integrate over t1, t2, an essential time interval between the
interaction points will be very large – proportional to the initial energy,
t2 − t1 ∼ 1/ΔE ∝ E. As for the configuration of Fig. 16.1(b), the energy
defect here is enormous:

ΔE = 0 −
(√

[1] +
√

[2] +
√

[3]
)
∝ E,

and the lifetime of such a fluctuation is instead small: |t2 − t1| ∼ 1/E. In
order for our conclusion about the first graph (Fig. 16.1(a)) to hold, trans-
verse momenta of intermediate state particles must be limited; otherwise,
there would be no cancellation.

Let us sketch the calculation of contributions of these two time-ordered
regions. The self-energy diagram contains two-particle Green functions:

Σ(p) =
∫

d4x12 eipx21G(x21)G(x21).

If x0 = t > 0, we close the integration contour in the lower half-plane of
the energy component k0 to obtain

G(x) =
∫

d4k

(2π)4i
e−ikx

m2 − k2 − iε
=
∫

d3k
(2π)3

e−i(t
√
m2+k2−x·k)

2
√
m2 + k2

. (16.5)
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Thus, when we integrate over positive times, t21 > 0 (Fig. 16.1(a)),

∫ ∞

0
dt21 eit21

(
p0−

√
[1]−

√
[2]
)
∼ 1

p0 −
√
m2

1 + k2
1 −
√

m2
2 + k2

2

.

When t21 < 0, the sign of the phase in the Green functions (16.5) flips:

∫ 0

−∞
dt21 eit21

(
p0+

√
[1]+

√
[2]
)
∼ 1

p0 +
√

m2
1 + k2

1 +
√

m2
2 + k2

2

.

(Clearly, the integral over d3k must converge for our estimate to make
sense.) With the growth of energy, the real time-ordered processes of
the type (a) give larger and larger contributions as compared to vacuum
fluctuations (b).

You may ask: does it make sense to separate two time-ordering regions
in the diagram which is relativistic invariant as a whole? If I choose to
sit in a reference frame where the energy is finite, E = O(m), the vacuum
processes would again be inseparable from the particle, and the simplifi-
cation would disappear.

The point is, in a high-energy scattering process there is always at least
one fast particle, and our consideration is valid. Already at this point it
becomes apparent that the wave function Ψ that we are about to introduce
will be by no means a Lorentz invariant object.

16.2.2 Feynman scaling

Let us see what will happen in more complicated diagrams. I want to
stress again that our first and basic assumption is that the transverse
momenta of the particles involved are bounded from above: k2

⊥ <∼ m2.
In Lectures 5 and 10 we have discussed the

‘ladder’ (multiperipheral) kinematics and saw
that it is most efficient to share the large momen-
tum roughly equally at each step of the particle
multiplication: k1‖ ∼ k2‖ ∼ 1

2p‖. Obviously, this is
so only on average; there are always fluctuations,

p 1

k2

1/2

1/4

1/8

k

imbalanced configurations which give, however, a smaller contribution.
Thus, when we consider more and more complicated diagrams with an
increasing number of particles, we get an ever-slower particle in the inter-
mediate state. After

n̄ ∼ ln
p

m

/
ln 2
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steps we get a slow particle with kn ∼ m, and my logic of unimportance
of the interaction with the vacuum breaks down.

interaction with the vacuum 

We come to the picture of a system of point-like particles – a ‘comb’ of
partons inside an incident fast hadron – which ‘scratches’ the vacuum by
its soft end (the so-called ‘wee’ partons).

Such a picture can be characterized by a probability amplitude ψ which
is almost a wave function. In the coordinate space, it can be normalized:

ψn(t; r1, r2, . . . , rn),
∑
n

∫ n∏
i=1

d3ri · |ψn(t, {ri})|2 = 1.

In the momentum space, we have

ψn(k1,k2, . . . ,kn),
∑
i

ki = p .

The introduction of such an object does break the Lorentz invariance, but
only slightly – at the level of the slowest parton in the ensemble. To see
how this comes about, let us try to invent a Hamiltonian for our multi-
component wave function. We take for simplicity the λϕ3 interaction,
represent the field as the sum of creation and annihilation operators, ϕ =
ϕ† + ϕ, and drop the two terms corresponding to the vacuum processes:

(ϕ† + ϕ)3 = (ϕ†)3 + ϕ3 + 3
[
(ϕ†)2ϕ + ϕ†ϕ2

]
=⇒ (ϕ†)2ϕ + ϕ†ϕ2.

The two remaining terms describe the splitting, 1 → 2, and the fusion
processes, 2 → 1. Let us look at a stationary state,

Eψ = Ĥψ,

and write down the dynamical equation for the n-parton wave function
component:

E ψn =
n∑

i=1

Ei ψn + g
∑
i

ψn−1(k1, . . . ,ki + ki+1, . . . ,kn)

+ g
∑
i

∫
dp′ ψn+1(k1, . . . ,ki−1,p′,ki − p′, . . . ,kn).

Here the first – kinetic – term on the r.h.s. is the sum of parton energies,
the second one is responsible for the splitting of one among (n− 1) partons
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into two, and the last term – for the fusion of two partons in the (n + 1)
state into one.

Let us examine the simplest, two-parton state:[
E(p) − E1(k1) − E2(k2)

]
ψ2(k1,k2) = h · ψ1(k1 + k2) + h′ · ψ3 . (16.6)

Calculating the splitting term h,

 

1

k2

p k
= g

d3k1

2k01(2π)3
d3k2

2k02(2π)3
d3p1

2p0(2π)3
· (2π)3δ(p −k1 −k2)

=⇒ g

2p
· dΓ(k1) dΓ(k2),

and expanding the difference of energies,

E(p) − E1(k1) − E2(k2) 

1
2p

[
m2 − (m2 + k2

1⊥)
p

k1‖
− (m2 + k2

2⊥)
p

k2‖

]
,

we observe that the common factor 1/2p cancels, leaving us with[
m2 − (m2 + k2

1⊥)
p

k1‖
− (m2 + k2

2⊥)
p

k2‖

]
ψ2 = g ψ1 + · · · .

We conclude that the Hamiltonian depends not on the parton longitudinal
momenta themselves, but on their ratio to the initial momentum, ki‖/p.
In other words, the wave function is a function of the rapidity difference

ξ − ηi 
 ln
p

ki‖
; η = 1

2 ln
k0 + k‖
k0 − k‖

, ξ = 1
2 ln

E + p

E − p
.

This is the manifestation of the (partial) relativistic invariance: as long
as the partons are fast enough for the expansion of the energy roots Ei in
(16.6) to be applicable, the parton wave function remains invariant under
the boosts along the direction of the large initial momentum p.

What next? Since the incident particle is a cloud of virtual particles –
the partons, we can investigate the parton wave function by studying
the integrals, representing the parton number density, two-parton correla-
tions, in other words – the density matrix characterizing the multi-parton
state: ∑

n

∫
ψn({ki})ψ∗

n({ki})
∏
j �=�

dΓ(kj) = n(k�),

∑
n

∫
ψn({ki})ψ∗

n({ki})
∏

j �=�,m

dΓ(kj) = n(k�, km), etc.
(16.7)
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I 

φ 

ξ 
η 

II 

III

Fig. 16.2 Possible regimes of the parton-density behaviour at small momenta.

16.2.3 Parton density inside a hadron

Let us fix the momentum k of one of the partons and integrate over all
the others, to obtain an inclusive parton density :

φ(k‖,k⊥) =
∑
n

1
(n−1)!

∫ n−1∏
i=1

d3ki

2k0i(2π)3
· |ψn(k,k1, . . . ,kn−1)|2 .

One can imagine different possibilities.

(1) Multi-parton fluctuations ‘bounce’ from the vacuum and collapse
back into the original particle, not producing enough ‘wee’ partons,
line I in Fig. 16.2. Such a regime is typical for weakly interacting
systems when the coupling is small and the perturbation theory
works.

(2) A fast growth of the wee-parton density (line II) is a signal of an
instability. This shows that the interaction does not stabilize the
system; the density of particles in unit volume increases indefinitely,
signalling an intrinsic instability. In particular, in the λϕ3 theory
the situation is most likely like this (no vacuum state).

(3) The vacuum plays the rôle of the boundary, but with account of
production and re-absorption of partons, a certain constant density
of slow partons emerges (line III).

The key hypothesis of the parton model is that, one way or another, as a
result of a balance between parton emission and recombination processes,
the mean parton density does occur in nature. In essence, this is the
condition for a particle to exist ‘independently of the vacuum’, in the
sense that the fast part of the parton ‘comb’ does not depend on the
reference frame (is invariant under η → η + const), and hence, does not
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know about the vacuum:

dn = φ(ξ − η) dη → φ∞ dη, ξ − η � 1.

As for the transverse momentum dependence of the parton density, not
much can be said about it from the first principles. At the same time,
it is important to bear in mind the hypothesis which is crucial for the
parton picture, namely that the transverse momentum integrals converge
at some finite scale

〈
k2
⊥
〉
∼ m2.

A plausible picture for the double differential distribution

dn(η,k2
⊥) = φ(ξ − η,k2

⊥)
dη d2k⊥
2(2π)3

can be drawn based on two observations. Firstly, if successive parton
emissions are independent of each other, then, as we have discussed in
Lectures 5 and 9, the random walk pattern emerges, and in the impact
parameter space we have

φ(ξ − η,ρ2) ∝ exp
{
− ρ2

γ(ξ − η)

}
. (16.8a)

Secondly, a fluctuation with a typical lifetime 1/μ may have a total number
(multiplicity) of slow partons of order unity. Therefore, the distribution
(16.8a) has to be properly normalized:

φ(Δη,ρ2) =
C

γ Δη
exp
{
− ρ2

γ Δη

}
,

∫
d2ρφ(Δη,ρ2) = C. (16.8b)

No surprise, this is nothing but the vacuum pole amplitude, with the
pomeron slope α′ = 1

4γ.

16.2.4 Partons and reggeons

Importantly, an analysis in terms of the partons essentially coincides with
the analysis of high-energy scattering amplitudes that we carried out in
these lectures.

Indeed, let us take the simplest ladder-type diagram, fix the momentum
k of one of the partons and integrate over all the others.

t″, x″ t, x

k

t ′,  x ′  
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An integration of the product of the amplitude and the conjugate ampli-
tude over the position of the parton x yields (in the time-ordered region,
t′ < t < t′′) the Green function describing the propagation from x′ to x′′:∫

G(t− t′,x − x′)
↔
∂tG

∗(t′′ − t,x′′ − x) d3x = G(t′′ − t,x′′ − x′).

Hence, integrating over all particles, we arrive at the diagram

p 

k                      k 

p 

=⇒
p 

k                         k 

p

which is, essentially, the scattering amplitude. Thus, studying the parton
density, we in fact investigate the scattering amplitude. If we substitute
the Regge expression for the forward scattering amplitude, sα ∼ (p/k)α,
the pomeron pole, α(0) = 1, gives us a homogeneous parton density dis-
tribution,

dn(k) ∼ dk

k
=

dx

x
= dη,

– the famous Feynman plateau in rapidity.
Our theory of the asymptotic behaviour of hadron scattering amplitudes

provides an insight into the structure of the hadron wave function, and
such a duality has a general physical significance.

The deuteron is a long-living object; the proton and the neutron inside
the deuteron collide from time to time, but most of the time they are well
separated. Does this picture apply to arbitrarily large energies?

Yes: this would mean that the deuteron always behaves as an object
that consists of two independently interacting particles.

No: the parton clouds of the two nucleons eventually overlap at high-
enough energies, so that by looking at the results of the collision
with the target, it is impossible to tell if we had a deuteron for a
projectile.

As we already know, this dilemma is related to the choice between the
strong- or weak-coupling regimes of the reggeon field theory.

The knowledge of the properties of the strong interaction between slow
partons is lacking. In spite of this, from the point of view of the parton
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picture, the asymptotic equality of the cross sections of all hadron pro-
cesses looks rather natural.

In the laboratory reference frame a slow parton from the incident
hadron interacts with the target; in the centre-of-mass frame it is slow
partons from the wave functions of the colliding hadrons that interact
with each another, in which case the hadron–hadron cross section is given
by the product of the universal slow-parton interaction cross section and
two parton densities.

=

ga

gb

a

b

a

b

 

.

In either picture the density of slow partons at the tip of a long parton
comb is universal – independent of the parent hadron (factorization).
Moreover, according to the logic of the parton picture, a hadron is almost
never in a sterile state: it is always represented by a ‘comb’.

In the reggeon language this means that the probability of emitting a
pomeron is one. Therefore, the pomeron–hadron residues, and thus the
total hadron–hadron interaction cross sections,

σab ∝ ga gb ∝
〈∑

s,s′

σss′(x, x′)

〉
,

turn out to be independent of the types of hadrons.‡

16.2.5 Hadrons ‘inside’ a parton

What is new in what the parton picture tells us about the strong inter-
action?

When a soft parton interacts with the target, the coherence of the
system breaks down. The partons of the ‘comb’ get released and, emitting
their own ‘ladders’, separate from one another producing some number of
hadrons in the final state.

The most interesting question is how the transition from partons to
hadrons occurs. One can formulate some sort of an uncertainty principle.

‡ For a detailed discussion of hadron–hadron and lepton–hadron interactions in the framework
of the parton picture see Gribov’s lecture entitled ‘Space–time description of the hadron
interactions’ in Gribov (2003).
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We say that a hadron consists, on average, of 〈n〉 ∼ ln p partons. It is clear
that the opposite should also hold; the wave function of a single parton
‘contains’ 〈n〉 hadrons:

Δnpart × Δnhadr ∼ ln p .

How to visualize the conversion of a single parton into hadrons?
I have told you that the interaction of slow partons determines strong

processes, while to explore the nature of the point-like constituents one
has to employ electromagnetic and weak probes. This is not entirely true.

If we look at rare processes with large momentum transfers, significant
simplification occur in a purely strong interaction as well. In particular,
the parton → hadrons transition can be studied in a rare process of a
large-angle scattering of energetic partons.

Such scattering produces a constituent with large transverse momentum
p⊥. With the increase of p⊥ it becomes less and less likely that the other
partons from the wave function of the incident hadron will follow suit
and recombine with the struck parton. Therefore, an isolated parton will
fragment on its own, producing a shower of hadrons.

Once we measure, say, a single energetic pion at 90o in the cms of the
hadron collision, with a unit probability it has to be accompanied by a
bunch of hadrons with logarithmic multiplicity.

Moreover, by the conservation of the trans-
verse momentum, in the direction opposite to
that of the triggered particle in the transverse
plane there must be also ln p⊥ particles that
originate from the recoiling parton.

Hadrons with large transverse momenta are
rarely produced in hadron collisions: the inclu-
sive distribution falls fast with p⊥. However,
as soon as we have triggered one such parti-
cle, there is no additional suppression for having
other large-p⊥ hadrons in the final state.

ln  p 

ln  p

Observation of hadron jets, and especially of a recoiling jet in hadron
collisions with the production of large p⊥ particles verifies the parton
picture.

16.2.6 e+e− annihilation into hadrons

The annihilation of e+ and e− into hadrons is the cleanest process from
the point of view of the parton picture. In the first order in αem an electron
and a positron may either scatter or annihilate, producing any charged
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particle and its antiparticle, e.g. μ+μ−.

e − 

e + 

e − 

e + +  

μ − 

μ 

e − 

e + 

q 

q

The corresponding cross section one calculates in a standard way in quan-
tum electrodynamics. What character should have the process of e+e−

annihilation into hadrons?
In quantum field theory the photon interacts with a point-like charge. If

the energy is large, an intermediate-state photon has a huge virtual mass
that can produce either a pair of energetic leptons or, equally well, a pair of
electrically charged partons (quark and antiquark) flying in the opposite
directions in the centre-of-mass of the collision. The strong interaction
switches on, and two bare partons convert into hadrons. If transverse
momenta in this transition process are, once again, limited, we will see
two jets of hadrons emerging from the annihilation point.

This process is especially interesting in the sense that its cross section
is easy to calculate since it has a purely electromagnetic nature. The cross
section falls with the energy as σ ∝ α2

em/s, but its ratio to the standard
QED μ+μ− production cross section tends to a constant given by a simple
expression

R(s) ≡ σe+e−→hadrons(s)
σe+e−→μ+μ−(s)



∑

i e
2
i

e2
. (16.9)

The sum runs over the species of partons that can be produced at a given
energy, i.e. with masses mi <

1
2

√
s.

Let us remark that at very high energies the production of hadrons in
e+e− collisions is dominated by another process in which hadrons origi-
nate from the ‘collision’ of virtual photons belonging to electromagnetic
coats of incident leptons:

t2e+ e+

t1
s1

s
2

s M2 dσ

dM2
∝ α4

em

M4

dt1
t1

dt2
t2

. (16.10)

The corresponding cross section is much smaller, of the order of α4
em.

However, it does fall with energy; since photon spin is one, the energy
behaviour is similar to the case of the pomeron exchanges, s1M

2s2∼s.
Moreover, the total hadron production cross section actually grows with
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energy. Integrations over momentum transfers t1 and t2 in a broad in-
terval tmin ∼ M4/s � |ti| � s give rise to two logarithms ln s; one more
logarithmic enhancement originates from the integration over the rapidity
of the hadron block: M4 dσ/dM2 ∝ ln3 s.

At small energies R(s) of (16.9) was exhibiting resonance structures
(markedly, the ρ meson peak), and then froze at R 
 2. This value came
as a gift to the hypothesis of three coloured quarks:

1
e2

(
e2
u + e2

d + e2
s

)
× 3 =

((
2
3

)2 +
(
−1

3

)2 +
(
−1

3

)2)× 3 = 2.

Now it seems that above
√
s 
 3 GeV a new threshold opens up and a

new heavier quark (‘charm’) enters the game. Independently of the theory,
in the near future we will be witnessing an avalanche of new particles. A
new spectroscopy starts following that of the 1960s when the model based
on three light quarks managed to classify hadrons.

16.3 Deep inelastic scattering

Now that we have gained certain knowledge about strong interactions, let
us discuss some aspects of the lepton–hadron scattering that we did not
touch on in Lecture 4.

Recall the essence of the deep inelastic scattering (DIS) phenomenon:
a virtual photon seems to interacts with a point-like particle (‘parton’)
inside a target hadron, which parton has spin 1

2 and a limited transverse
momentum.

16.3.1 Photon interaction with nucleons and nuclei

To penetrate deep into the proton interior, the momentum transfer
∣∣q2
∣∣

has to be large. The energy transferred by the photon from the lepton to
the proton should also be large enough, W 2 =

∣∣q2
∣∣(ω − 1) � m2, in order

to have a multi-state hadron system produced.
Imagine hadrons were point-like. Then the direct interaction process of

Fig. 16.3(a) dies out at high energies as σ ∝ 1/s.
It is easy to see, however, that there are certain unusual processes due

to which the photon–hadron interaction cross section, although small, is
constant in the high-energy limit.

The photon may fluctuate into a hadron pair, as shown in Fig. 16.3(b).
The lifetime of such a state may be very large at high energies, t ∼ q0/μ

2.
This does not happen often because the electromagnetic coupling is nu-
merically small; we may find the photon in a ‘hadron state’ only in one of
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q

(a) (b) (c)

Fig. 16.3 Direct photon–proton interaction (a); energetic photon fluctuating
into hadrons (b, c).

137 occasions, so to speak. However, once a fluctuation like that occurred,
with respect to the hadron multiplication there is no perturbation theory,
so that the photon will develop a full-scale parton comb, as a hadron does.

Thus, with the probability O(αem) the photon would approach the tar-
get as an ensemble of hadrons. Among them there are slow ones which
will interact with the target providing σγN

tot (s) 
 const. The only difference
with the hadron–hadron scattering case is in the size of the corresponding
photon–pomeron coupling: gγ ∝ αem.

There exists a rather unexpected experimental check of the validity
of this picture. What would you expect for the cross section of photon
interaction with a nucleus? A nucleus with atomic number A has a ra-
dius R ∼ A1/3. Total hadron–nucleus cross sections behave as σhA

tot ∼ πR2;
strongly interacting particles get stuck, with a large probability, and hence
the cross section is proportional to the surface of the target.

On the other hand, since the electromagnetic interaction is weak, there
is no large absorption and therefore the photon may freely pass through
the nucleus. Therefore one would expect

σγA
tot = σγN

tot ·A ∼ σγN
tot ·R3.

But if our picture of a fluctuating photon is correct, at sufficiently high
energy the photon must interact with the nucleus with a hadronic cross
section σ ∝ R2!

The condition reads q0/μ2 � R, that is, the lifetime of the hadron lad-
der fluctuation exceeding the time it takes to traverse the nucleus (Ioffe,
1969).

If we are sitting in this kinematical domain, we do not explore, with
the help of a photon probe, the interior of the hadron target but sim-
ply observe a hadron–hadron interaction. We would see nothing like the
Rutherford scattering in this case.

If our goal is instead to study the internal structure of the nucleon,
we must cut off hadron-like configurations inside the photon. How to do
that? By restricting the lifetime of the photon in such a way that it would
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have no time to develop a shower while passing through the nucleon, that
is, by making the photon sufficiently virtual:

q0
|q2|

<∼
1
μ

=⇒ 2mq0
|q2| = ω <∼

2m
μ

∼ 10.

So, the dimensionless parameter ω = −2pq/q2 that we have introduced in
Lecture 4 must be of the order of unity (but not too large) in order to see
the photon interacting with point-like partons inside the nucleon, to see
the Bjorken scaling, etc.

16.3.2 DIS in the parton picture and quarks as partons

We are going to apply the parton model to the DIS process. Since we have
a picture of the parton content of a fast hadron, let us choose a reference
frame q0 = 0 in which a fast hadron collides with a static electromagnetic
field along some direction z:

q2 = −q2
z , 2pq = −2pzqz, ω = −2pq

q2
= −2pz

qz
.

The photon will be absorbed by one of the partons with momentum k. By
which? It has to be a fast parton since otherwise an overlap of its wave
function with the photon field of the size Δz ∼ 1/ |qz| would be small. The
time the hadron passes through the field does not exceed 1/μ. For a long-
living fast parton with the ‘lifetime’ k/μ2 � 1/μ this is an instantaneous
interaction, and such interaction occurs with conservation of the energy.
This condition selects a parton with a definite momentum:

k′ = k + q, k′0 = k0 =⇒ |kz| 

∣∣k′z∣∣ =⇒ kz = −k′z = −1

2qz. (16.11)

After absorbing the photon, the struck parton flies in the opposite direc-
tion, k′z = −kz. What will happen with it afterwards is unimportant for
the DIS cross section. It is determined simply by the product of the Born
cross section for the photon absorption by a parton and the density of
partons with the given rapidity η:

dσ

dq2 dω
=

dσB
dq2

·
∫

φ(η,k2
⊥)

d2k⊥
(2π)2

, (16.12a)

ξ − η = ln
pz
kz

= ln
2pz
|qz|

= lnω. (16.12b)

Recalling that the parton density in the parton model depends only on
the rapidity distance to the parent proton (16.12b), the DIS cross section
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takes the form

dσ

dq2 dω
=

4πα2
em

q4

{
φ0(ω) · e2

part

[
1 − pq

ppe

]

+ φ1
2
(ω) · e2

part

[
1 − pq

ppe
+

1
2

(
pq

ppe

)2 ]}
,

(16.13)

where we have introduced the densities of partons with spin-1
2 and spin-

zero, accompanied by the corresponding electron scattering cross sections.
Apart from simple QED factors, this expression contains two unknown

functions φ of one variable ω. This is the Bjorken scaling. Experiments,
as we have already discussed in Lecture 4, show no presence of spin-zero
charges, φ0 
 0.

Thus, from the parton model we have derived the Bjorken scaling using
two hypotheses: φ = φ(ξ − η), that is the existence of the stationary par-
ton density, and, certainly, the hypothesis of limited transverse momenta
of partons inside the hadron wave function.

The expression (16.13) contains, obviously, the parton charge epart (in
units of the electron charge). If partons are quarks, these charges are
fractional numbers. Is there a way to measure them experimentally?

The parton density φ is not entirely arbitrary; it obeys certain nor-
malization conditions. If we integrate φ(η) over rapidity we obtain the
multiplicity of partons of a given species i:∫ ξ

0
dη φi(η) = Ni.

More informative is another sum rule, namely

∑
i

∫ ξ

0
dη φi(η) · eη =

p

m
, (16.14)

which expresses the fact that the total longitudinal momentum (energy)
of all the partons equals the momentum of the hadron they belong to.

The DIS cross section (16.13) contains the product e2
iφi, and one cannot

extract the charges without knowing the normalization of φ. Fortunately,
there is an additional source of information.

One may study weak processes like deep inelastic neutrino scattering,
νp → μ− + X. The weak interaction is insensitive to electric charges but
feels the presence of spin-1

2 partons in the proton. The mass of the inter-
mediate boson W± is apparently too large to make itself felt at presently
available energies, so that the behaviour of partons in weak DIS processes
can be described by means of the standard four-fermion Fermi interaction.
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By combining the information coming from electromagnetic and weak
DIS, one attempts to extract electric charges of partons. Modulo some
uncertainties in the neutrino–quark scattering amplitudes, the results are
consistent with ∑

i∈proton

e2
i 
 1

(
= 2 ·

[
2
3

]2 +
[

1
3

]2 )
,

∑
i∈neutron

e2
i 


2
3

(
= 2 ·

[
1
3

]2 +
[

2
3

]2 )
.

Moreover, integrating and adding up the densities of quarks–partons of
different species, one can estimate the total energy-momentum carried by
charged partons inside the nucleon. The result is telling: about 50% of the
nucleon momentum in (16.14) belongs to some electrically neutral fields
(gluons?).

16.3.3 Structure of the final state

Let us address a very important question: what happens with the parton
system after one parton is kicked off.

We turned around one of the partons of what was a coherent system.
The relative invariant energy between the struck parton and its neigh-
bours becomes large, and therefore it is unlikely to interact with the rest
of the system. This means that we have prepared an isolated parton –
a bare field-theoretical object. Flying in the opposite direction, it will
‘decay’ into ln(qz/2) hadrons.

What about the rest of the parton comb that keeps moving in the initial
direction of the nucleon?

Coherence of the bottom part of the parton fluctuation in Fig. 16.4(a)
is not disturbed by the scattering. First slow partons with ki ∼ μ and
then, successively, faster partons will be absorbed; they will revert to
assembling the initial coherent proton. However, at the level of ki ∼ kz =
1
2 |qz| the parton ensemble becomes aware that its coherence had been
broken; the upper part of the fluctuation will get released, turning into
hadrons.

The resulting rapidity distribution of final-state hadrons is sketched in
Fig. 16.4(b). It has a characteristic hole in rapidity.

This would be the structure of the final state if quarks were not confined.
The answer may be different if there is some specific dynamics (beyond
our naive field-theoretical approach based on the locality of the interaction
in rapidity) that would force the struck quark to interact with the rest
of the parton ensemble in order to prevent the two separating hadron
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Fig. 16.4 (a) Coherent collapse of an undisturbed part of the parton wave
function in DIS; (b) rapidity distribution of final-hadrons with a ‘hole’.

systems from having fractional electric charges. Such an interaction could
fill in the gap between the negative rapidity (‘current fragmentation’) and
positive rapidity hadrons (‘target fragmentation’), leading to a uniform
hadron plateau – the dashed line in Fig. 16.4(b).

The existence of the hole in the hadron distribution is a key test for
quarks in the rôle of partons. Experimentally, there is no sign of a hole in
the proton fragmentation.

Thus we face a strange situation: on the one hand, the picture of quasi-
free quark-partons works in DIS; on the other hand, the mechanism that
forces the flying-away quark to ‘communicate’ with the rest of the proton
is unclear.

16.4 The problem of quarks

There were times when quarks were thought to have large proper masses
in order to explain their non-observation as free particles. Now, from
the DIS experiments we know that the masses of (u, d) quarks must be
smaller than 1 GeV. Thus, there has to be a special reason for quarks not
appearing in the physical spectrum – the confinement.

Whatever the reason for quarks to be confined inside hadrons, looking
at what happens in the e+e− annihilation it is clear that to ensure the
quark confinement in such a process is not easy.

The quark and the antiquark fly too fast, and separate too far, to be
able to interact with one another. Nevertheless, we expect two ‘jets’ of
hadrons in the final state. Therefore, the production of multiple qq̄ pairs
which then recombine to form mesons, Fig. 16.5, cannot be explained by
the re-interaction between the quarks created in the annihilation point.
It has to be the result of the reaction of the vacuum on the production of
two relativistic charges.
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Fig. 16.5 Recombination of quarks into final-state hadrons in e+e−

annihilation.

In quantum electrodynamics such a process is accompanied by radia-
tion of soft photons (bremsstrahlung). Maybe in strong interactions an
analogous phenomenon also plays a rôle.‡

16.4.1 One-dimensional electrodynamics

We have an example of a field theory with confinement – the Schwinger
model. It is one-dimensional electrodynamics with massless fermions. It
does not answer the question why quarks are confined in the real world,
but it demonstrates nevertheless how the reaction of the vacuum results
in the formation of ‘hadrons’ (Schwinger, 1962).

In one spatial dimension two charges cannot be separated because they
interact as two infinite planes in our world, with their electromagnetic
energy increasing linearly with the distance:

E =
E2V

8π
, |E| = const.

Classically, a pair of planes with opposite charges will oscillate. In the
quantum case the system cannot have an arbitrary energy; it has to be
quantized. So, a boson spectrum with a definite mass must appear. If
we produce two planes with a large energy (as in e+e− annihilation), we
expect that many oppositely charged pairs of planes will be produced
giving rise to many bosons in the final state.

Let us study this theory in a more formal way. We have massless
fermions and a photon, and the standard electromagnetic interaction be-
tween them. Since our space is a line, a massless fermion moves with the
speed of light either in the positive or in the negative direction along it.

As we shall see shortly, an amplitude for the photon transfer into the
fermion pair is different from zero only when the fermions move in the

‡ Indeed, it is radiation of soft gluons that fills in the ‘Gribov hole’ (Gribov et al., 1987).
QCD bremsstrahlung plays a key role in the formation of final hadron states (Amati and
Veneziano, 1979; Marchesini and Webber, 1984).
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same direction (this is the consequence of the helicity conservation in the
electromagnetic interaction).

An invariant mass of a pair of massless particles moving in the same
direction is zero,

(k1 + k2)2 =k2
1 + k2

2 + 2(k10k20 − k1zk2z)=0 + 0 + 0, k1z/k10 =k2z/k20.

Therefore, we have two massless states – the photon and the qq̄ pair –
that mix, so there must be a splitting of the degenerate levels. (In fact,
qq̄ is not one state but many, with different quark energies, k10/k20.)

As a result, the discrete state – the photon – must acquire a finite mass.
Let us see how this occurs.

Πμν(k) = −e2

∫
d2p

(2π)2i
Tr
[
γμ

1
p̂
γν

1

p̂− k̂

]
= (gμνk2 − kμkν)Π(k2).

Let us calculate the imaginary part of the specific component Π00 of the
polarization tensor:

Im Π00 = −e2

∫
d2p

2
Tr
[
γ0p̂γ0(p̂− k̂)

]
δ+(p2)δ+((k − p)2). (16.15a)

The trace equals

−1
2

Tr
[
γ0p̂γ0(p̂− k̂)

]
= 2p0(k0 − p0) − p(k − p)]

= p0(k0 − p0) + pz(kz − pz).
(16.15b)

Since p0 = |pz| and k0 − p0 = |kz − pz|, the trace vanishes when the
fermions fly in opposite directions. When the momenta are parallel,
(16.15) yields

Im Π00(k2) = e2

∫ k0

0

dp0

2p0
2p0(k0 − p0)δ(k2) = e2k2

0δ(k
2) ≡ k2

z · Im Π(k2).

We get

Im Π(k2) = e2δ(k2) =⇒ Π(k2) =
e2/π

k2 − iε
.

The singularity at k2 = 0 of the polarization operator results in

Dμν =
(
gμν −

kμkν
k2

)
dt(k2), dt(k2) =

1
k2(1 − Π(k2))

=
1

k2 −m2
.

Thus, the gauge invariance is spontaneously broken and the photon ac-
quires a finite mass m2 = e2/π. (In the one-dimensional QED the charge
has the dimension of mass.) Massive photon is that very bosonic state
that represents a pair of planes.
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Given a finite photon mass, electric fields fall exponentially with
distance, E ∼ exp{−mr}. This would contradict the Maxwell equation
div E = 4πρ, unless the charge density ρ were in fact zero.

Indeed, by explicitly solving the theory one can show that the introduc-
tion of external currents provokes an appearance of the polarization cur-
rent, which results in a local compensation of electric charges. An ‘e+e−

annihilation’ process in one-dimensional electrodynamics causes the pro-
duction of multiple fermion pairs, resulting in the final-state structure
guessed at in Fig. 16.5.

16.4.2 A field theory for strong interactions?

The quark model has demonstrated that there is a simplicity in the spec-
trum of hadrons – mesons and baryons. Maybe there is a certain simplicity
not only in the mass spectrum but in a deeper sense. The apparent com-
plexity of hadron interactions does not exclude the simplicity at short
distances.

In spite of the fact that the quantum mechanics of electrons in the
Coulomb field is perfectly known, we would not dare to attempt to
quantitatively describe the structure of a final state in, say, the colli-
sion of two atoms of mercury. We just get a mess. But at high ener-
gies, and in specific observables, the simplicity of the internal structure is
manifest.

Should we approach the hadron dynamics from a short-distance side?
Although, as was mentioned in Lecture 4, the experimentally observed

Bjorken scaling is not described by any field theory, we cannot imagine
anything but a field theory based on simple point-like objects. Today
progress (if it may be called so) goes in the direction of returning to
quantum field theory with, possibly, a small coupling constant.

We saw in Lecture 2 that the effective pion–nucleon interaction coupling
constant is large, g2

πN/4π 
 14. But it may be that the coupling is large for
composite objects – hadrons – while the quarks (which sit inside and by
some reason cannot be freed) interact with a smaller constant. Otherwise,
why would a parton absorb a virtual photon in the DIS process like a
quasi-free particle?

Could it be possible to find a quantum field theory in which the inter-
action between the objects with small wavelengths is weak and the inter-
action with large wavelengths is strong? If such a theory will be found, we
will see a leap of interest; the complexity of hadrons will cease to be the
object of attention (as does the complexity of the Hg atom). Under focus
will be, rather, processes in which a relatively simple internal structure of
hadrons reveals itself.
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16.5 Zero charge in QED and elsewhere

The best developed quantum field theory is quantum electrodynamics.
What do we know about QED? On the one hand, it contains divergences,
on the other hand, it is renormalizable. What does this, essentially, mean?
Let us imagine that either the perturbation theory, or the theory itself,
is wrong at short distances. Hence, integrating over momenta, we can do
this correctly only up to a certain large momentum scale k < Λ.

What was the essence of progress in the 1950s? The uncertainty which
appears due to the existence of such a cutoff, is contained by two quanti-
ties: by the observable charge and the mass of the electron which, there-
fore, remain uncalculable. It is obvious, however, that one cannot simply
stop at that. Increasing the momenta of the external particles, sooner or
later Λ will make itself felt.

There are two ways to formulate the problem.

(1) Let the interaction have a simple (point-like) form at k ∼ Λ (and
at k > Λ no interaction whatsoever). At momentum scales k ∼ Λ
there are no corrections at all, and with the decrease of momenta,
the corrections become relevant.

(2) The second approach is, though less transparent, essentially equiva-
lent. Assume a given interaction at k ∼ m; I want to see what hap-
pens when k increases. This is a semi-phenomenological approach;
obviously, in a quantum field theory large distances are determined
by small ones and not the other way round.

The basic quantities of the theory that contain ultraviolet divergences
are the vertex part and the photon and electron Green functions. The
integrals that determine all the other quantities are converging.§

16.5.1 First approach

In the first approach one introduces the bare charge e0 at the ultraviolet
momentum scale Λ.

Each subsequent correction to the diagram adds the factor e2
0, one pho-

ton and two fermion Green functions and the momentum integration d4k.
However, it is not reasonable just to list all the corrections order by order
in perturbation theory.

As we have seen in the QED course (Gribov and Nyiri, 2001), the set
of Feynman diagrams can be rearranged into the series of the skeleton

§ For details of the renormalization programme in quantum electrodynamics see Gribov lec-
tures (Gribov and Nyiri, 2001) (ed.).
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graphs that are built of the exact vertices (Γ) and exact photon (D) and
fermion Green functions (G). The topology of the skeleton diagrams is
such that they do not contain sub-diagrams that could be attributed to
the vertex or propagator corrections.

Skeleton diagrams have a remarkable feature: each of them contains a
single power of the logarithm of the ultraviolet cutoff, ln Λ. The reason for
this is simple: the integration momenta are mixed up, each momentum en-
ters a large number of lines, and hence, the multiple integrals converge up
to the last step. This is just the property of renormalizability of quantum
electrodynamics.

For large momenta k we write G 
 −g(k2)/k̂ and D 
 d(k2)/k2, and
the magnitude of the correction is determined in fact by the combination

e2
0 Γ2G2Dd4k → e2

0 Γ2(k2) g2(k2)d(k2) d ln k2.

The quantity

e2(k2) = e2
0Γ

2(k2)g2(k2) d(k2) (16.16)

is the invariant charge which characterizes the interaction strength at
the momentum scale k. This structure is common for all renormalizable
theories.

How can the perturbative series be summed up? Initially we assumed
the bare charge to be small, e2

0 � 1. Let us decrease the external momenta
p not too much, so that e2

0 ln Λ2/p2 <∼ 1. In this situation all powers of the
parameter e2

0 ln Λ2/p2 have to be resummed. My exact propagators and
the vertex function have the following structure:

Γ(p2) = γ1

(
e2
0 ln

Λ2

p2

)
+ e2

0γ2

(
e2
0 ln

Λ2

p2

)
+ e4

0γ3

(
e2
0 ln

Λ2

p2

)
+ · · · .

(16.17)

Neglecting the corrections of the type e4
0 ln(Λ2/p2) ∼ e2

0 � 1 we get the
so-called leading logarithmic approximation (LLA) in which the problem
was first solved by Landau et al. (1956).

The higher functions γn, with n ≥ 2 are rather complicated; they are
given by skeleton diagrams with the exact LLA vertices (Γ = γ1) being
propagators. Imagine that γi(x) in (16.17) are of the same order not only
for x <∼ 1 but for any x. In this case everything seems to be ideal. If,
however, γ1 turns out to be singular or zero (e.g. at large x values), the
higher-order terms have to be investigated seriously.

Actually, due to the Ward identity,

∂G−1(p)
∂pμ

= Γμ(p, p, 0),
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the ultraviolet logarithms in Γ and g cancel, Γ = g−1, and one is left with
the photon renormalization function only in (16.16):

e2(k2) = e2
0 d(k

2).

Corrections to the propagator and to the vertex depend on the properties
of the charged particle. Therefore, if not for the Ward identity, the charge
would not be such a universal quantity.

We have calculated the invariant charge in Chew and Low (1959):

e2(k2) =
e2
0

1 + e20
12π2 ln Λ2

k2

. (16.18)

What does this expression mean? We have a simple picture: the invariant
charge decreases monotonously with the increase of the wavelength (the
situation is just the opposite of what we would like to have in strong
interactions).

The expression (16.18) is valid for large virtual photon momenta. At
small

∣∣k2
∣∣ <∼ m2, under the logarithm the mass m appears, and for the

physical charge that determines, e.g. the Coulomb scattering we get

e2
c = e2(k2 = 0) =

e2
0

1 + e20
12π2 ln Λ2

m2

. (16.19)

Suppose that I have introduced in the theory a finite charge at small
distances corresponding to the large momentum scale Λ. Then at larger
distances the effective charge becomes smaller. Moreover, for a point-like
particle there is a complete screening ; if we decrease the size of the region
over which the bare charge e0 is smeared, the on-mass-shell charge van-
ishes: e2

c → 0 with r0 ∼ 1/Λ → 0. The polarization of the vacuum screens
the point-like charge totally, so that the observable electric charge has to
be zero; e2

c/4π = 0 instead of 1/137.
How can this be explained?
We used the hypothesis that the bare charge e2

0 is small. The LLA
cannot be blamed for such an unphysical result. Our approximation of
neglecting the higher-order corrections in (16.17) becomes even better,
since the true measure of the interaction strength – the effective charge
e2(k2) – is decreasing with the decrease of the virtuality.

There remains one unsolved problem: what, if e2
0 was large initially?

More than 20 years has passed since the discovery of the running QED
charge and of the zero-charge problem, but nobody has been able to ex-
plain why the large charge would be harder to screen than the small one.

May be there is a real ultraviolet cutoff Λ in nature? From the very
beginning, it was assumed that Λ could be related to the gravitational
radius. In such a scenario one would need to have ν = 13 elementary
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fermions (presuming that only fermions are polarizing the QED
vacuum).

In any case, pure quantum electrodynamics is a contradictory theory.

16.5.2 Second approach

The property of renormalizability means that all the divergences (depen-
dence on the cutoff Λ) have to enter the observable charge ec:

e2
c ≡ e2

0 · Z3(e2
0; Λ

2), d(e2
0; k

2,Λ2) = Z3(e2
0; Λ

2) · dc(e2
c ; k

2).

Does our solution satisfy the renormalizability property? It certainly does:

d(k2) =
1

1 + e20
12π2 lnΛ2

k2

=
1[

1 + e20
12π2 ln Λ2

m2

]
− e20

12π2 ln k2

m2

=
1

1 + e20
12π2 ln Λ2

m2

× 1

1 − e2c
12π2 ln k2

m2

≡ Z3 × dc(k2),

(16.20)

where e2
c is given by (16.19). The photon renormalization function,

Z3 =
1

1 + e20
12π2 ln Λ2

m2

,

embeds the whole dependence on Λ and on the bare charge e0, while the
renormalized photon Green function dc(k2) contains only the renormalized
charge e2

c = Z3e
2
0, as it has to be, owing to renormalizability.

Of course, this result for the Green function could have been obtained
in the renormalized perturbation theory, not introducing Λ at all. We
would notice that the fermion loop behaves at k2 � m2 as

(gμνk2 − kμkν) · e2
c ln

k2

m2
,

i.e. perturbation theory breaks down when e2
c ln(k2/m2) ∼ 1. Then, re-

peating the logics of the logarithmic approximation,

e2
c � 1; e2

c ln
k2

m2
∼ 1,

we would arrive at a geometrical progression, and the running coupling
e2(k2) would be expressed directly in terms of renormalized quantities:

e2(k2) = e2
c Γ2

cg
2
cdc = e2

c dc =
e2
c

1 − e2c
12π2 ln k2

m2

, (16.21)

where we have used the Ward identity.
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In such a chain of thoughts we keep e2
c to be fixed. If so, we get a stupid

result: e2(k2) develops a singularity (‘Landau pole’) with the growth of
k2. The reason for that is that we have made a contradictory assumption,
namely, that the observable charge e2

c can be taken as a finite quantity.
The effective charge e2(k2) is the true expansion parameter. Near the

pole, where e2
c ln k2

m2 
 1, it becomes large, and the higher corrections be-
come important and may help to solve the problem. The question is not
cleared yet.

There is a simple relation between the two methods: e2
0 = e2(Λ2).

This situation has also influenced other theories. For a long time it
seemed that the screening, and therefore the zero-charge problem, was
unavoidable in any quantum field theory, and this was the reason owing
to which the interest in field theories was lost.

Let us suppose, for a minute, that the sign in the denominator of (16.21)
would be the opposite:

e2(k2) =
e2
c

1 − e2c
12π2 ln k2

m2

=⇒ g2
c

1 + c g2
c ln k2

m2

, c > 0. (16.22)

How crazy is such an expression? It looks impossible at first sight. Indeed,
how could it be that, when we move away from the charge, we see it not
screened by the medium but, on the contrary, growing as if it pulled on
other charges of the same sign?

Indeed, in electrodynamics this does not happen. However, for the grav-
itational interaction where all masses attract each other, this scenario can
be easily imagined.

Such a system would be, obviously, unstable. Something must hap-
pen at large distances; the expression (16.22) contains an unphysical
ghost pole at small momenta k2. On the other hand, an instability
may be a welcome feature which might help us to understand why the
quarks cannot be separated at large distances but are confined inside
hadrons.

16.6 Looking for a better QFT

According to deep inelastic scattering experiments, for strong interactions
we need a theory with the interaction that weakens at small distances
(e.g. as (16.22) does). We also want the theory to be renormalizable. This
requirement does not follow from any physics. Nevertheless, to have a non-
renormalizable theory is for us, unfortunately, the same as not having a
theory at all.
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In order to see whether a given theory is renormalizable, it suffices to
look at the dimension of the coupling constant: [g] = [mα]. At large virtual
momenta p, a higher-order correction then has the structure (g2/p2)α. If
α > 0, the correction falls in the ultraviolet region, and the theory is super-
convergent (as is the λϕ3 theory). If, on the contrary, α < 0, the loop in-
tegral diverges in the ultraviolet, and the theory is non-renormalizable (as
the four-fermion Fermi interaction). When g is dimensionless, corrections
are logarithmic, g2 ln p2, and the theory is renormalizable.

16.6.1 Fermion and scalar fields

There was a time when the field theory with the interaction gψ̄γ5ψϕ was
considered as being related to reality, with nucleons and pions as elemen-
tary fields. We have seen already that the coupling constant g is then
very large, g2/4π 
 14. This is, however, on the mass shell, g(mπ,mN ).
What is the form of the effective interaction? Unfortunately, the same as
in electrodynamics:

g2(k2) =
g2
0

1 + c g2
0 lnΛ2

k2

, c > 0.

At small distances the interaction is even stronger. We face the same zero-
charge problem as in electrodynamics. In reality one has to add to this
interaction the quartic point-like interaction between pions, λϕ4. Even if
we do not introduce it from the beginning, it is induced by a logarithmi-
cally divergent diagram with a four-scalar field attached to the fermion
loop. Thus, the new vertex is necessary to achieve renormalizability of all
amplitudes, including that of the four-scalar particle interaction.

16.6.2 Vector fields: how to construct a renormalizable theory

Let us consider now a vector particle (as in electrodynamics). Will such
a theory be renormalizable? Generally speaking, vector theories are not
renormalizable.

The Green function for a vector particle with mass m is

Dμν(k) =
1

m2 − k2

[
kμkν
m2

− gμν

]
. (16.23a)

Where this structure comes from? The propagator of a vector particle,

−
3∑

λ=1

eλμ(k)eλν (k)
m2 − k2

, (16.23b)
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contains the sum over three polarizations (the overall minus sign guar-
antees that the residue is positive, since (eμ)2 < 0). Three polarization
vectors out of four, eλμk

μ = 0, λ = 1, 2, 3, correspond to a spin one parti-
cle; in the rest frame there are three spin projections, eλμ = (0, eλ). The
fourth vector, e0

μ = (1,0), describes a particle with spin zero – a scalar.
In order to eliminate the term proportional to kμkν/m

2 in (16.23a),
we could try to extend the sum in (16.23b) to all four polarizations, by
allowing the propagator to describe degenerate states of spin-zero and
spin-one objects. In this case, however, the scalar would be a ghost (would
enter with negative probability).

Thus, if we want to preserve unitarity, we must keep the kμkν term in
(16.23a), and this leads to a catastrophe: superfluous momenta multiply
the vertices, and integrals diverge at large loop momenta.

Why then is electrodynamics renormalizable? There is no necessity
to take special care about the ‘scalar’ polarization, since, owing to cur-
rent conservation, it is not produced, and the kμkν term can be simply
dropped.

Is the fact that the photon is massless important for the renormaliz-
ability of QED? Not at all. A theory containing a massive photon, and
conserved current, barely differs from electrodynamics. Unfortunately, it
is also no different from QED in what concerns us, namely, the problem
of zero charge; the mass in the photon propagator is unimportant in the
ultraviolet momentum region, k → ∞.

A few years ago it seemed that there are no other renormalizable quan-
tum field theories. This situation looks strange: we have a theory of
fermions interacting with the electromagnetic field. What about the other
particles? Can they interact with the electromagnetic field? We know that
the answer is yes for scalar particles, with only one subtlety: there have
to be two vertices,

γ 
+ . (16.24)

However, the scattering of scalar particles contains logarithmic diver-
gences,

+ ,

and the local four-scalar interaction has to be introduced. Thus, scalar
particles cannot interact with the electromagnetic field only.



450 Strong interactions and field theory

A scalar particle cannot be considered as truly point-like with respect
to the electromagnetic radiation; we are forced to introduce an additional
interaction (λφ4) which makes the particle somewhat ‘smeared’.

One wonders, whether only fermions can be point-like? This would be
in agreement with the fact that particles that are ‘sterile’ with respect to
strong interactions (point-like with respect to the weak interaction) are
only fermions (e, μ, ν).

What if we take a charged vector particle ?

k

1 2r
(16.25)

For renormalizability we have to require

qρ1Γμρσ(q1, q2) = qσ2 Γμρσ(q1, q2) = 0;

in addition, conservation of the electromagnetic current requires kμΓμρσ =
0. It can be easily seen that no vertex can satisfy the current conservation
relations simultaneously with respect to all three momenta. Does this
mean that charged vector particles do not exist at all?

We can, of course, imagine a vector particle as a bound state of a
fermion and an antifermion. In this case the electromagnetic interaction
will not reduce to that with a point-like particle with spin σ = 1, and the
renormalizability will not be broken. However, we do not know how to
write down such an interaction phenomenologically; moreover, we are not
able to calculate bound states of relativistic objects.

In terms of dispersion relations, how would the problem manifest
itself?

We have the term qμqν/m
2 in the charged-particle propagator, and, if

the vertices do not give zero, the amplitude increases. It turns out that the
condition qΓ = 0 (kΓ = 0) can be satisfied if the other two vector particles

C γ 

γ C 

in the vertex are real, that is, on-mass-shell
and with physical polarizations. (We shall
see this later explicitly.) If so, the term
qμqν/m

2 in the CC̄ → γγ amplitude can be
dropped as long as the external particles are
real.
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q3

q1
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m2

(a) (b) (c)

Fig. 16.6 (a) Longitudinal term in the multi-photon annihilation amplitude.
(b) Energy growth of the imaginary part of the scattering amplitude. (c) Adding
a scalar-particle exchange.

Let us consider more complicated processes.
In the process of CC̄ annihilation into three
photons, everything is all right too: qμqν pieces
of the propagators of the internal virtual lines
q1 and q2 multiply the external vertices, and
their contributions vanish on the mass shell.

qμ
1 q

ν
1  qμ 

2  q
ν
2   

As to the production of four photons (Fig. 16.6) the situation changes.
In the amplitude Fig. 16.6(a), the term qμ2 q

ν
2 coming from the propagator

surrounded by two virtual lines q1 and q3, does not disappear. As a re-
sult, the imaginary part of the amplitude of CC̄ scattering via photons
displayed in Fig. 16.6(b) grows with energy, and the restoration of the am-
plitude requires a subtraction term – an arbitrary constant. This means
non-renormalizability of the theory, in the language of dispersion rela-
tions. Since the convolution of the momentum vector qμ2 with the vertex
Γ(q2, q3) must be zero when the particle 3 is on the mass shell,

q 
3 

q μ
2   

qμ2 Γμρσ(q2, q3) ∝ (m2 − q2
3). (16.26)

Hence, the propagator of the virtual particle 3 actually cancels in the
diagram, giving rise to a reduced diagram with two photons effectively
emerging from one point.

As I have already mentioned, the sign of the residue coming from the
badly behaving polarization is of ‘ghost’ type. Therefore, in principle, this
unwanted contribution can be cancelled by adding to the theory a normal
charged scalar particle ϕ as shown in Fig. 16.6(c). A simple tuning allows
one to make the sum of the diagrams (a) and (c) to have good asymptotics
(i.e. to cancel the divergences).

In the electrodynamics of scalar particles (as well as in the QFT with
interacting fermions and (pseudo)scalars discussed above), in order to
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have a renormalizable theory, we have to introduce an additional inter-
action. In the electrodynamics of vector particles the introduction of an
additional scalar field is required.

It turns out that the class of renormalizable theories can be enlarged
considerably by generalizing electrodynamics in a more serious way than
by just making the photon massive. What is the idea? How could one
approach the problem of renormalizability in a more general way, avoiding
the necessity of inventing the counter-term diagrams?

In electrodynamics a ‘scalar’ component of the vector field cannot be
produced even virtually due to the condition kμAμ = 0, which selects three
components of the photon field out of the four-vector Aμ. In fact a real
photon has not three, but two polarizations; the ‘longitudinal’ compo-
nent, Aμ(k) ∝ kμ, is not produced either (current conservation). Turning
to a theory of a vector field with a finite mass, three components appear.
Where do they come from? We inserted them into the massive Lagrangian
just by hand. Would it not be possible to write the third component sep-
arately, so that it would delicately join in, adding to the initially massless
two-component photon?

Let us ask ourselves whether a scalar field with zero mass can exist.
One may push in an arbitrary number of such particles with k = 0 in the
vacuum. The first thing that is likely to emerge is a constant field of φ
particles – a Bose condensate.

φ 

γ 
As soon as I introduce the interaction with

photons, a photon propagating in a constant
scalar field will experience Thomson scattering
and continuously accumulate a scattering phase,
in other words – it will acquire a finite mass.

Diagrammatically, a photon mixes up
with the scalar field; after diagonaliza-
tion the propagating states possess a
non-zero mass. Two components of the
photon and the (gradient of the) scalar
field combine into a three-component
massive vector field.

γ 

φ 

On the basis of this simple example one can try to construct a theory
of massive charged vector particles.

16.6.3 Conservation of current and cancelling diagrams
� When we try to construct renormalizable field theories, for particles

with spins σ ≥ 2 ultraviolet divergences appear which we do not know
how to deal with.
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� In the case of vector particles, σ = 1, QED has taught us that the
conservation of current can help to eliminate divergences. In partic-
ular, it is straightforward to construct a theory of a neutral massive
vector field.

� Turning to electrodynamics of charged spin one particles, we see that
there is no vertex that would provide current conservation with re-
spect to all three vector lines simultaneously.

Maybe, there exists a deeper symmetry which provides a stronger current
conservation than it can be seen just from the structure of the vertex?

Arriving at the vertices with virtual lines, kμkν gives not zero but
a quantity proportional to the departure from the mass shell, cf.
(16.26). This cancels the propagators and leads to a topologically simpler
diagram:

kμkν 

Is it not possible to invent a theory which would have such a diagram a
priori, to help to cancel the ‘longitudinal’ term?

In electrodynamics this was just the case. Let us take, for example, a
box diagram with e+e− annihilating into two photons and consider what
happens with the ‘longitudinal’ part of the photon Green function:

kμ kν p1 

p2 
(16.27a)

The photon momentum kμ, multiplying the vertex, produces

kμγ
μ = p̂1 − p̂2 = −(m− p̂1) + (m− p̂2);

the first term gives zero when it acts on a spinor describing an on-mass-
shell electron, (m− p̂1)u(p1) = 0 (Dirac equation), while the second term
cancels the virtual fermion propagator, resulting in a reduced graph,
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(16.27a). However, in QED we have also the second Feynman diagram,

k
μ k

ν

p1

p2
(16.27b)

Two diagrams cancel in the sum.
In the case of scalar charges, the cancellation between reduced graphs

(16.27) is incomplete (because of the momentum dependence of the γϕϕ
vertex). In this situation the diagrams with the four-vertex, γ2ϕ2, see
(16.24), participate to make the kμkν piece go away.

I wanted to demonstrate in terms of diagrams, what is required from
the new theories.

16.7 Yang–Mills theory

The current conservation in quantum electrodynamics had one more very
important interpretation: QED was constructed in such a way that a
photon mass could not appear there due to gauge invariance.

We want to construct a theory where, again, summing the full set of
diagrams, we get cancellation of dangerous kμkν terms. This would ensure
current conservation in spite of the impossibility to have conservation
directly in the three-particle vertex.

What is the connection to the photon mass?

Πμν(k) =
k 

p2 

p1 

Multiplying the polarization operator by the photon momentum,

kμγ
μ = p̂1 − p̂2 = (m− p̂2) − (m− p̂1),

we obtain, diagrammatically,

kμΠμν(k) = p1 − p 2 = 0.

The transversality of the photon polarization operator and, therefore,
non-appearance of photon mass, is a particular case of the cancellation of
divergences.
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16.7.1 Electrodynamics of massless vector particles

Guided by the idea that the absence of masses is already a hint to serious
cancellations, our first hope is to try to build up a theory of massless
charged particles.

Lint ∼ C̄CA

A 

C C
(16.28)

What is a charged particle? The charged field C can be represented as a
linear combination of two neutral fields, C1 and C2,

C =
C1 + C2√

2
, C̄ =

C1 − C2√
2

,

with positive- and negative-charge parity, correspondingly. Since a pho-
ton has negative charge parity, inserting this in the vertex (16.28), there
remain the transitions C1 + γ → C2 and C2 + γ → C1.

If the charged particles are massless as the photon is, it is natural to
consider three neutral fields C1, C2, C3 (C3 ≡ A) on equal footing, with
the interesting interaction

  
3 

k 2 

C1 

k 1 

C 3 

C 2 

k 
(16.29)

which is just another representation for the electromagnetic vertex
(16.25).

How to write an interaction so that the current is conserved? Let us
construct the tensor

Γμ1μ2μ3(k1, k2, k3) = gμ1μ2pμ3

(3) + gμ1μ3pμ2

(2) + gμ2μ3pμ1

(1),

where p is a linear combination of the momenta ki, e.g.

pμ(1) = a11k
μ
1 + a12k

μ
2 + a13k

μ
3 .

(It is dangerous to use higher powers of momenta, since this would increase
the divergence in the loop integrals.) Multiplying by the momentum, say,
k3, we get

k3,μ3Γ
μ1μ2μ3 = gμ1μ2(k3 p(3)) + kμ1

3 pμ2

(2) + kμ2
3 pμ1

(1). (16.30)

We need this expression to vanish upon multiplication by the physical
polarization vectors eλi

μi
(ki), i = 1, 2, which satisfy (eλi

μi
kμi

i ) = 0, when
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particles 1, 2 are on the mass shell: k2
1 = k2

2 = 0,

eλ1
μ1

(k1)eλ2
μ2

(k2) · k3,μ3Γ
μ1μ2μ3(k1, k2, k3) = 0.

Since we may choose the polarization vectors e(k1), e(k2) orthogonal
to the plane formed by the four-momenta {k1, k2, k3}, we must have
(k3p(3)) = 0 in (16.30). Representing p(3) as a linear combination

p(3) = a(k1 − k2) + b k3 (−k3 = k1 + k2),

(k3p(3)) = −a[ k2
1 − k2

2 ] + b k2
3 = 0,

we conclude that b = 0 (recall that k2
1 = k2

2 = 0). Hence,

pμ(3) = a(kμ1 − kμ2 ),

and the resulting form of the vertex is (up to an overall constant)

Γμ1μ2μ3 = gμ1μ2(k1 − k2)μ3 + gμ1μ3(k3 − k1)μ2 + gμ2μ3(k2 − k3)μ1 .
(16.31)

This is the sum of three electromagnetic vertices for a scalar particle.
Let us look again at the product (16.30):

k3,μ3Γ
μ1μ2μ3 = gμ1μ2(−k2

1 + k2
2) + kμ1

3 (k3 − k1)μ2 + kμ2
3 (k2 − k3)μ1 .

Substituting k3 = −(k1 + k2) we obtain

k3,μ3Γ
μ1μ2μ3 = gμ1μ2(−k2

1 + k2
2) + kμ1

1 kμ2
1 − kμ2

2 kμ1
2

= −(G−1)μ1μ2(k1) + (G−1)μ1μ2(k2),

where G−1 is the inverse transverse propagator of a vector particle,

(G−1)μ1μ2(k) = gμ1μ2k2 − kμ1kμ2 .

Thus, multiplying the vertex by the momentum of one of the particles
(‘photon line’), we have a difference of inverse propagators of two others
(‘charged lines’). We get the difference of the ‘reduced’ diagrams,

= −
k3 .

similar to that in quantum electrodynamics.
Is this everything we need? As often happens in bosonic theories, one

type of the vertex, (16.29), is not enough.
Recall the second-order QED interaction amplitude:

+ . . .+
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For spinor particles, σ = 1
2 , the sum of two Born amplitudes satisfied the

current conservation condition, kμMμν = 0. In the case of scalar charges,

however, it was necessary to add a four-particle
point interaction, because the triple vertex was
linear in momenta.

Exactly the same situation is there in our vector theory: for vector currents
to be conserved, one has to introduce a dimensionless four-particle vertex:

++ += +  . . .

(16.32)

16.7.2 Feynman diagrams and unitarity: Faddeev–Popov ghost

Having done so, the theory is formulated. As soon as we have Born terms,
perturbation theory can be constructed. How do we do this? A method
which always works is to use the unitarity conditions. We may take the
on-mass-shell Born amplitude on the r.h.s. of (16.32), square it, and re-
construct the higher-order scattering amplitude by its imaginary part,
employing the dispersion relation (with one subtraction). In principle,
there is no problem in carrying out this procedure; still, this is a rather
cumbersome way. Usually, we draw a Feynman diagram instead, which co-
incides with the dispersion expression. However, in the present case this
is not true.

To see what goes wrong, let us draw a diagram and take the imaginary
part by putting the cut particle lines on the mass shell, replacing the cut
propagators by the delta functions:

 

δ(k2
1  )

δ(k2
2  )

k1

k2

Which polarization states will emerge in the intermediate state? As a
rule, we expect two transverse polarizations to appear from the left and
the right, see Fig. 16.7(a), while the contributions of the longitudinal
polarizations have to be zero, owing to current conservation. However,
our four-particle amplitude (as well as the three-particle vertex Γ above)
satisfies the current conservation with respect to each external line only
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e e 

e e 

e 
(a) (b) (c) 

e

 

Fig. 16.7 Various combinations of intermediate state polarizations.

if all the other lines are on-mass-shell and with physical polarizations:

kμ1
1 Mμ1μ2μ3μ4 · eμ2(k2)eμ3(k3)eμ4(k4)=0; (e(ki)ki)=0, k2

i =0, i = 2, 3, 4.

Therefore, a situation like Fig. 16.7(b) (three transverse polarizations out
of four) will not appear in the imaginary part. The intermediate state
with two longitudinal polarizations shown in Fig. 16.7(c) will, however,
be present. Writing unitarity conditions, we summed, of course, only over
physical states, e⊥. Thus, the imaginary part of the Feynman diagram
differs from that in unitarity conditions. In fact we face here the first case
when the Feynman diagrams are not correct literally.

What can we do? A technical problem appears: is it possible, neverthe-
less, to represent the correct dispersion result in terms of diagrams, which
would provide us with the means to carry out calculations? The answer,
at the one-loop level, was given by Feynman. He suggested to introduce
a fictitious massless scalar particle (essentially, a single state e‖ can be
considered as a particle with σ=0), and subtract the corresponding loop,

−     
φ             φ 

C 
M 

A general prescription was given by Faddeev and Popov, namely: one
should introduce in the theory an additional field φ, with a normal vertex,
and handle it as a fermion, i.e. count every φ loop with a minus sign.

This example demonstrates that the Feynman technique ceases to be
transparent.

16.7.3 Gauge invariance and Lagrangian

Now we are going to discuss a different approach that leads to the theory
of interacting vector fields – the Yang–Mills theory.

So far we have considered only vector mesons. It is easy to introduce also
fermions. We should not forget, however, that up to now our construction
was symmetrical with respect to the indices 1 → 2 → 3 of the vector fields.
The symmetry of the theory with respect to the rotation in the ‘space’ of
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the three field components can be preserved if we introduce a doublet of
fermions, similar to a nucleon with two isospin states, N = (p, n).

But first let us elucidate the relation of the Yang–Mills theory with
electrodynamics. In the free fermion Lagrangian,

Lψ0 = ψ̄(x)
(
iγμ

∂

∂xμ
−m

)
ψ(x),

one can substitute

ψ → ψ′ = eiαψ, ψ̄ → ψ̄′ = e−iαψ̄, (16.33a)

with α = const, without affecting the equation of motion. This is, essen-
tially, the expression of the fact that a fermion and an antifermion can
not transform one into the other.

A prominent feature of quantum electrodynamics is that in this theory
one is allowed to carry out the transformation (16.33a) of the fermion
field, with the phase depending on the space–time point, α = α(x). (In
QED one can tell a fermion from an antifermion locally.) To keep the
action invariant under such transformation,

Lψ0 → L′
ψ0 = ψ̄′

(
iγμ

∂

∂xμ
−m − γμ

∂α(x)
∂xμ

)
ψ′,

one has to add to the Lagrangian the interaction with a vector field,

Lψ0 =⇒ Lψ = ψ̄

(
iγμ

∂

∂xμ
−m + γμAμ

)
ψ,

and simultaneously transform this field as

Aμ(x) → A′
μ(x) = Aμ(x) +

∂α(x)
∂xμ

. (16.33b)

The field Aμ changes, turns into some other field A′
μ. Hence, if A is the

dynamical variable itself, its proper action must be invariant with re-
spect to the gradient transformation (16.33b). Such an invariant photon
Lagrangian, as you know, is given by the square of the antisymmetric
electromagnetic stress tensor:

Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
, L = Lψ +

1
4e2

FμνF
μν .

From the point of view of such an approach the Yang–Mills theory is
just an exact repetition of the same logic.

Let us introduce two fermions in the theory:

Lψ = Lψ1 + Lψ2 = ψ̄

(
iγμ

∂

∂xμ
−m

)
ψ (16.34)
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where ψ is a column,

ψ(x) =
(
ψ1(x)
ψ2(x)

)
,

like a nucleon with two isospin components, N = (p, n).
If there is degeneracy in the system (even with account of the inter-

action), I can consider these two levels as one field. With the help of a
unitary matrix, I can redefine (globally) who I call the ‘proton’ and who
the ‘neuteron’. Let us try to construct a theory in which such a ‘redefini-
tion’ can be carried out locally.

Consider a transformation,

ψ′(x) = S(x)ψ(x), ψ̄′(x) = ψ̄′(x)S−1(x); S†(x) = S−1(x),

with S(x) a unitary matrix.
Let us take the Lagrangian

Lψ = ψ̄(x)
(
iγμ

∂

∂xμ
−m + iÂ(x)

)
ψ(x), Â = γμAμ,

with Aμ an anti-hermitean 2 × 2 matrix of vector fields (an analogue of
photon), and rotate the spinor fields in it:

Lψ → ψ̄(x)
(
iγμ

∂

∂xμ
−m + iγμS

−1(x)
∂S(x)
∂xμ

+ iS−1ÂS

)
ψ(x). (16.35)

The Lagrangian stays invariant if the A field also transforms as follows:

Aμ → A′
μ = SAμS

−1 − ∂S

∂xμ
S−1; (16.36a)

Aμ = S−1A′
μS + S−1 ∂S

∂xμ
. (16.36b)

In order to have an invariant theory, the invariance of the action of the
fields Â is required with respect to the transformation (16.36). One ob-
serves that the field strength tensor

Gμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
+ [Aμ Aν ] = Fμν + [Aμ Aν ]

transforms homogeneously, G′
μν = SGμνS

−1, and therefore the vector field
Lagrangian

LA =
1

4g2
Tr
(
GμνGμν

)
(16.37)

is invariant under the gauge transformation (16.36).
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How is the field A built up? The 2 × 2 matrix has four components:

Aμ = I ·A0
μ +

3∑
a=1

τaAa
μ,

with τa the Pauli matrices. The field A0 here corresponds to the usual
electromagnetic interaction. It is generated by the (Abelian) transforma-
tion subgroup U(1) contained in the group of unitary 2 × 2 matrices:
U(2) = U(1) × SU(2). Let us exclude the photon and restrict ourselves
to fields TrA = 0, i.e. to Aa

μ with a = 1, 2, 3. The full Lagrangian of the
theory will have the structure

L = Lψ + LA = L0ψ + ψ̄γμ
∑
a

iAa
μτa ψ + L(Fμν)

+
1

2g2
Tr(Fμν [AμAν ]) +

1
4g2

Tr([AμAν ][AμAν ]). (16.38)

The last two terms generate those two vertices that we have drawn
above in (16.32). In terms of rescaled fields Ã = A/g, the three-boson and
fermion–vector boson vertices are proportional to the coupling constant
g, and the four-boson vertex proportional to g2.

We considered here SU(2) gauge symmetry. The discussed scheme can
be applied, however, to any unitary group SU(N). In particular, for N = 3
we introduce quarks of three colours and obtain N2 − 1 = 8 gluons, –
fundamental fields of the quantum chromodynamics.

16.7.4 Essential gauge invariance and cyclic variables

How can one work with such gauge theories? One of the ways to construct
a quantum theory is to use the functional integral:∫

ei
∫
L[A,ψ]dx dψ dψ̄ dAμ. (16.39)

Let us say a few words about the appearing problems. Making an effort
to have a gauge invariant theory, we arrived at an undefined system, since
we introduced more variables than it has in reality.

We operate with fields Aμ which can be substituted by other fields,
S−1A′

μS + S−1 ∂S
∂xμ

, not changing the action. Hence, the Lagrangian does
not depend on S, and this shows that in the functional integral (16.39)
there is integration over a large number of superfluous unphysical vari-
ables. The relation (16.36a) allows us to choose new physical fields in
different ways, e.g. so that A′

0 ≡ 0 (by solving the equation A0 = S−1 ∂S
∂x0

).
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Let us set Aa
0 = 0 and keep only the integration over three-vector po-

tentials Aa
i . Then, Ga

00 = 0, Ga
0i = ∂Aa

i /∂x0 ≡ Ȧa
i , and what remains is a

quite reasonable Lagrangian:

L(Ai, ψ) = Lψ − 1
2g2

[
Tr
(
ȦiȦi

)
− 1

2 Tr
(
GikGik

) ]
; (16.40a)

Gik =
∂Ak

∂xi
− ∂Ai

∂xk
+
[
Ai Ak

]
. (16.40b)

(The minus sign in front of the boson Lagrangian is due to my choice
of Ai as anti-hermitean matrices.) Since Gik do not contain the time
derivative, the last term in (16.40a) plays the rôle of the potential energy
of the self-interacting fields Aa

i ; the term (Ȧa
i )

2 is their kinetic energy.
Formally, this is not a relativistically invariant description, and usually

one chooses an invariant gauge fixing condition kμA
a
μ = 0.

We saw already in electrodynamics that there are two types of gauge
invariance.

� Firstly, the current conservation makes it possible to impose the con-
dition kμAμ = 0 in order to select three components of four.

� Secondly, a deeper consequence of the gauge invariance lies in the
fact that the photon is massless, and therefore a real photon has only
two field components.

The condition (k · Aλ) ≡ kiA
λ
i = 0 (λ = 1, 2) applies only to real photons.

In diagrams with virtual particles the longitudinal component of the elec-
tromagnetic potential, (k · A‖) �= 0, is acting and represents the Coulomb
field. This essential invariance allows us to write

Ai(x) = Bi(x) +
∂ϕ(x)
∂xi

; div B ≡ ∂

∂xi
Bi = 0.

The field ϕ here is absolutely essential inside the diagrams but does not
correspond to a free particle (does not ‘fly away’); real photons are de-
scribed solely by the two-component field Bi.

Our aim is to show that the theory with the Lagrangian (16.40) de-
scribes indeed massless vector particles. The equation A0 = S−1 ∂S

∂x0
that

we have used to eliminate the scalar component of the potential, fixed S up
to unitary matrices not depending on time. Arbitrary rotations depend-
ing on xi are still at our disposal. This allows us to look for an additional
invariance in our Lagrangian where no A0 is present and everything is



16.7 Yang–Mills theory 463

determined. Let us write Ai in the form

Ai = v−1Bi v + v−1 ∂v

∂xi
(16.41)

and fix Ba
i by the condition

∂

∂xi
Ba

i = 0 (16.42)

in the same way as in electrodynamics. It is important to stress that this is
not a gauge transformation, just an attempt to separate physical degrees
of freedom. Note that since (16.41) has the form of a gauge transforma-
tion, Tr(G2

ik) does not depend on v. From the point of view of classical
mechanics, this makes v a cyclic variable, i.e. the one that has the kinetic
but not the potential energy (n the same way as the Coulomb field in
electrodynamics). A cyclic variable q in mechanics,

L = q̇2 +
∑
k

q̇2
k − U(qk),

changes linearly with time:

q̇ = const, q = ct + b.

This is actually the real difficulty of quantizing a gauge theory: there are
variables which do not oscillate but increase with time. It goes without
saying that if I measure components of the field strength, Ȧa

i , G
a
ik, all will

be fine. Nevertheless, a problem remains: perturbation theory cannot be
applied to such a Lagrangian possessing a cyclic variable.

Let us omit fermions and start with a free Lagrangian

LA0 ∝ 1
2

∑
i

Ȧ2
i −

1
4

∑
i,k

(
∂Ai

∂xk
− ∂Ak

∂xi

)2

. (16.43)

In the momentum representation,

Ai(x) =
1√
V

∑
k

ai(x0,k) eik·x, ai(x0,−k) = a∗i (x0,k),

we get

L ∝ 1
2

(
ȧiȧ

∗
i − |[ka]|2

)
= 1

2

(
ȧiȧ

∗
i − (δijk2 − kikj)aia∗j

)
, (16.44)

showing that the longitudinal component of the field, a ∝ k, does not
enter the potential energy. On the definite energy states, a(x0,k) =
e−ik0x0C(k), the Lagrangian (16.44) turns into

L ∝ 1
2

[
δij k

2
0 − (δijk2 − kikj)

]
CiC

∗
j .
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The expression in the square brackets is the inverse propagator:

D−1
ij (k) = δij k

2 + kikj , (16.45a)

Dij(k) =
1
k2

(
δij −

kikj
k2

0

)
. (16.45b)

You can verify that (16.45b) is indeed an inverse tensor to (16.45a):

3∑
α=1

D−1
iα (k)Dαj(k) = δij .

The free Green function acquires a pole in energy k0, and all the inte-
grals will diverge at k0 → 0, which divergence corresponds to the linear
growth with time of the longitudinal component of the vector field. The
Green function (16.45b) can be split into the sum of the transverse and
longitudinal contributions:

Dij(k) =
1
k2

(
δij −

kikj
k2

)
+

kikj
k2

0 k2
. (16.46)

The transverse part of the propagator, ki ·D⊥
ij(k) = 0, looks reasonable;

the longitudinal part contains an infrared divergence. Evidently, the latter
has to be defined additionally using some sort of iε (or ‘principal value’)
prescription of how to deal with the singularity at k0 = 0.

We conclude that a formulation without superfluous degrees of freedom
faces some difficulties owing to the increase of the longitudinal component
of the field with time.

What can we expect from the cyclic variable ϕ in quantum mechanics?
In classical mechanics it can be fixed arbitrarily. Since, however,

the equation of motion is ϕ̈ = π̇ = 0, the momentum is conserved,
and the wave function with a definite momentum eiπϕ is a stationary
state. The ground state corresponds to π = 0; it is the S-state in the ϕ
variable. In other words, the ground state does not depend on the cyclic
coordinate. In terms of operators,

δL
δv̇

∣∣Ω〉 = 0,

where Ω is any state of physical fields.
How does this S-state appear in terms of the action? We integrate over

all possible field trajectories in the functional integral. The usual saying
goes as follows: whichever field configuration is introduced at t = −∞, in
an infinite time the system arrives at the ground state. The functional
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integral up to A(t), ∫ A(t)

−∞
ei
∫
L[A(x)] dx dA,

is just the wave function of the vacuum. If, however, a certain field A does
not enter anything but the terms with derivatives in the Lagrangian, the
integral does not depend on the value of A; the integrand contains only
the differences over which the integral is taken. Hence, the system occurs
automatically in a S-state in cyclic variables which enter only the kinetic
energy.

16.7.5 Vacuum in the Yang–Mills theory

What does this tell us about the vacuum in our gauge theory? Let us
calculate the time derivative of the field in the form (16.41):

Ȧi = v−1Ḃiv + v−1Biv̇ + ( ˙v−1)Biv +
∂

∂t

(
v−1 ∂v

∂xi

)
.

Making use of unitarity, v · v−1 = 1 ⇒ v( ˙v−1) + v̇v−1 = 0,
we obtain

Ȧi = v−1
[
Ḃi + ∇i(B)f

]
v, (16.47)

where f ≡ v̇v−1 and

∇i(B)f ≡ ∂f

∂xi
+ [Bif ]. (16.48)

Roughly speaking, f is the time derivative of the ‘phase’ of the unitary
variable v. In electrodynamics where v is a number, v = exp iα(x), this
is literally true. The outstanding factors v, v−1 cancel under the trace in
(16.40a), and for the kinetic energy we derive

T = −1
2 Tr(Ei)2; Ei ≡ Ḃi + ∇i(B)f. (16.49)

Here Ea
i = δL/δḂa

i are analogous to ‘electric fields’. Since f enters the
kinetic energy (16.49) only, the momentum corresponding to the cyclic
coordinate reads

π ≡ δT

δf
= ∇i(B)

(
Ḃi + ∇i(B)f

)
= ∇i(B)Ei. (16.50)

Here we have used the definition of the ‘long’ (covariant) derivative (16.48)
and the transversality condition for the B field (16.42). As we have dis-
cussed above, the momentum π is conserved and should be set to zero in
the vacuum state.
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We want to extract the transversal part of the ‘electric fields’ and treat
them as canonical momenta πi conjugated to dynamical coordinates Bi:

Ei = πi +
∂φ

∂xi
,

∂

∂xi
πi = 0. (16.51)

To exclude the longitudinal part, we combine (16.51) and (16.49):(
∂

∂xi

)2

φ =
∂

∂xi
Ei = �(B)f, (16.52a)

where the operator � is defined as

�(B) ≡ ∂

∂xi
∇i(B) = ∇i(B)

∂

∂xi
. (16.52b)

Now we are ready to set the cyclic momentum (16.50) to zero:

0 = ∇i(B)Ei = ∇i(B)
(
πi +

∂φ

∂xi

)
= [Bi πi] + �(B)ϕ ,

which gives

φ =
1
∂2
i

�(B)f = − 1
�(B)

ρ, ρ = [Bi πi]. (16.53)

This is an analogue of the usual Coulomb equation φ = −(∂2
i )

−1ρ, with
ρ the charge density. When the momentum π is different from zero, after
excluding the cyclic variable, an additional centrifugal energy appears.
This is nothing but the Coulomb interaction energy. While in electrody-
namics this is the energy of external charges, ρ = ρext, in our case the
fields A are charged themselves, and we have the Coulomb energy of the
self-interacting Yang–Mills fields, produced by the ‘charge density’

ρ = [Biπi]. (16.54)

We want to find the Hamiltonian of the system,

H =
∫

d3xH(x), H(x) = − 1
2g2

Tr
(
E2

i (x) + 1
2G

2
ik(x)
)
.

For that we square the electric field (16.51):∫
d3x E2

i (x) =
∫

d4x
(
π2
i (x) − φ(x)∂2φ(x)

)
.

Finally, substituting (16.53) renders the Hamiltonian density:

H = − 1
2g2

Tr
(
π2
i + ρ

1
Δ(B)

ρ + 1
2G

2
ik

)
; (16.55)

Δ(B) ≡ −�(B) ∂−2 �(B). (16.56)
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This calculation completes the usual verification of the fact that the
initial Lagrangian describes interacting massless particles. This is not the
end of the story, however.

Usually, the vacuum state is characterized by small oscillations of trans-
verse fields. In our case it also contains randomly oscillating (S-state!)
longitudinal Coulomb fields. We see that the effective interaction turns
out to be rather unusual, non-local, because we tried to get rid of these
random longitudinal fields.

If we neglect B fields in (16.56), we get the usual Coulomb interaction
between charges:

Δ(0) = −∂2,
1

Δ(0)
⇒ 1

|x − x′| .

The dependence on B shows that the instantaneous Coulomb interaction
is modified by the presence of vacuum fluctuations of transverse (physi-
cal) fields. Instead of being purely dynamical, our problem of the structure
of the vacuum state becomes an almost statistical one. It is this speci-
ficity that reverses the behaviour of the effective coupling of the theory
(asymptotic freedom), see (16.22).

16.8 Asymptotic freedom

Now we are going to find out how the effective charge behaves in the Yang–
Mills theory. We will follow the path suggested by Khriplovich (1969),
who has calculated the invariant charge in Coulomb gauge even before
the discovery of asymptotic freedom in non-Abelian theories (Gross and
Wilczek, 1973; Politzer, 1973). He looked at the first O

(
g2
)

correction to
the vacuum energy in the presence of two infinitely heavy charges.

We add an external source ρh = gδ3(x − x0) to the charge density
(16.54), substitute ρ + ρh into the second term of the Hamiltonian density
(16.55) and evaluate the correlator between two static sources placed at
x0 = x1 and x2.

The vacuum energy of the system contains two contributions quadratic
in ρh. The first is just ‘classical’ Coulomb energy of the sources given
by the correlator of the external charge densities, ρh · ρh averaged over
transverse fields B⊥ in the vacuum:

V c
Coul = ρh

〈
0
∣∣∣ 1
Δ(B)

∣∣∣0〉ρh. (16.57)

The second is quantum correction due to the mixing term ρh · ρ in the
Hamiltonian. It leads to transition of the Coulomb field of the external
charge into a pair of transverse fields (gluons with physical polarizations),
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and back again:

V q
Coul =

∑
n

|V0n|2
E0 − En

, V0n = ρh

〈
0
∣∣∣ 1
Δ(B)

ρ
∣∣∣n〉,

where the sum runs over the energies of the intermediate two-gluon state.
Here we can replace Δ(B) 
 Δ(0), and this contribution reduces to the
Feynman diagram with two gluons in the intermediate state:

0 0 

A standard calculation yields in the momentum space

V q
Coul =

g2

k2

(
−C2

3
· g2

16π2
ln

Λ2
UV

k2

)
, (16.58a)

with C2 the number appearing from the square of the matrix commutator
(the Casimir operator C2 = N for the SU(N) group). If we add fermion
fields (nf families of quarks) into the game, additional quark loops appear,
and the coefficient in (16.58a) gets modified as follows

−N

3
=⇒ −

(
N

3
+

2
3
nf

)
. (16.58b)

This quantum correction is due to a virtual decay into physical states and
corresponds to screening all right, having the same sign as in QED and
elsewhere.

Now we return to the ‘classical’ piece (16.57). To find the O
(
g2
)

cor-
rection due to vacuum fields we need to expand the operator Δ−1 to the
second order in B. First we calculate approximately the inverse of the
operator �,

�−1(B) = ∂−2 − ∂−2
[
Bi ∂i

]
∂−2 + ∂−2

[
Bi ∂i

]
∂−2
[
Bj ∂j

]
∂−2 + · · · ,

and substitute into (16.57):

Δ−1(B) = −�−1(B)∂2 �−1(B)


 −∂−2 + 2 ∂−2
[
Bi ∂i

]
∂−2 − 3 ∂−2

[
Bi ∂i

]
∂−2
[
Bj ∂j

]
∂−2.

The term linear in B disappears upon averaging, and we are left with the
equal-time vacuum average of two transverse fields:

0 0 0 〈
0
∣∣BiBj

∣∣0〉 =
1

2|k′|

(
δij −

k′ik
′
j

k′2

)
.
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In the momentum space, the Coulomb energy takes the form

V c
Coul =

g2

k2

{
1 + 3 ·

∫
d3k′

(2π)3
N g2

2 |k′| (k′ − k)2

(
1 − (k · k′)2

k2 k′2

)}
.

The angular integration produces∫
dϕ d cos θ

(2π)3
(
1 − cos2 θ

)
=

1
(2π)2

(
2 − 2

3

)
,

and from the large momentum region we get a logarithmically divergent
correction

V c
Coul =

g2

k2

(
1 + 4C2 ·

g2

4π2
ln

Λ2
UV

k2

)
. (16.59)

Combining with the quantum contribution (16.58), we finally obtain the
first correction to the vacuum energy,

g2

k2
=⇒ g2

k2

{
1 +
([

4 − 1
3

]
C2 −

2
3
nf

)
· g2

4π2
ln

Λ2
UV

k2

}
,

which corresponds to the invariant coupling of Yang–Mills fields,

g2(k2) =
g2

1 − β0
g2

4π2 ln
Λ2

UV
k2

=
4π2

β0 ln k2

Λ2

, β0 =
11
3
N − 2

3
nf , (16.60)

which decreases with the increase of k2.
We see that the anti-screening (asymptotic freedom) is entirely due to

vacuum fluctuations of the gluon fields affecting the Coulomb interaction.
This effect is also likely to have other serious consequences related to the
infrared instability of the quantum theory of Yang–Mills fields (Gribov,
1978).



Postscript

“The theory of strong interactions,
now that is quite something”

– Gribov’s opening words to his first lecture
on hadron interactions at high energies in 1972

In the early 1970s V. N. Gribov gave two series of lectures to students of
theoretical physics at Leningrad (today St. Petersburg) State University.

The first course was devoted to Quantum Electrodynamics (QED), and
Gribov completed it without mentioning the word Lagrangian. Such a
‘bizarre’ approach to QED had a hidden purpose. It aimed higher and
represented, in fact, a constructive introduction to Quantum Field Theory
(QFT) in general, based on the language of Feynman diagrams – ‘the
laboratory of theoretical physics’, in Gribov’s words.

The QED course of 1971 was followed by a lecture series on strong
interaction physics; Gribov has later formulated his motivation: ‘I wanted
to tell everything I ever learnt about hadron interactions’.

The two courses had quite a different fate. The QED lectures appeared,
in Russian, in the proceedings of the Winter School of the Leningrad
Nuclear Physics Institute (LNPI) in 1974. Its English version, prepared
with Gribov’s participation, was published by the Cambridge University
Press in 2001 as the first volume of the Gribov Lectures on Theoretical
Physics series.

The second course – Strong Interactions – existed only in the form of
handwritten notes taken and preserved by his students. Even in the 1990s
when Gribov has been working on Quantum Chromodynamics (QCD) for
already more than a decade he thought it was important to write a book
based on these old notes. He wanted to do this, and, when we spent a
few months with him at the University of Lund in 1991, he proposed
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that we should work together on the manuscript. Gribov has edited a
few of the first lectures prepared by Sergey Troyan and one of us (Y.D.).
Unfortunately, the lecture course as a whole started taking shape only
many years after his death. The book would have certainly been different
if he could have participated in its completion.

Why to return to the ‘old theory’ of strong interactions of the pre-QCD,
even pre-quark, epoch? There are several reasons for that.

On the one hand, the Lagrangian theory of strong interactions was
spectacularly successful in describing small-distance quark–gluon dynam-
ics (hard processes) and became a working tool, in particular, in the
search for new physics beyond the Standard Model. At the same time,
our understanding of even the most general characteristics of soft hadron
processes – like total hadron interaction cross sections in the first place –
remains where the ‘old theory’ left it about 30 years ago.

The fact that the old theory had very limited means and, being devoid
of microscopic dynamics, had to rely on the most general properties of
the relativistic S-matrix theory, turns to its advantage nowadays.

The second reason is deeper, and therefore less obvious. The ‘old ap-
proach’ to strong interactions took off in the early 1960s when it was
realized that the general properties of the relativistic S-matrix theory –
crossing symmetry, unitarity, causality – put severe restrictions on the
possible high-energy behaviour of hadron interactions (elastic, inelastic,
total cross sections).

The effective theory describing the high-energy asymptotics of σtot, as
well as fluctuations in multi-particle production, – the Gribov Reggeon
Field Theory (RFT) of interacting pomerons – was constructed. It was
a turning point when it has been found to be intrinsically unstable in
the specific, but the only practically relevant, case of (nearly) constant
total cross sections. Looking into possible solutions of the corresponding
infrared unstable dynamics has helped to develop the theory of second
order phase transitions in condensed matter physics (the ‘scaling’
solution). However, the original pomeron problem remained unsolved.
Pomeron instability could not be resolved without an input from out-
side the S-matrix theory, namely, without understanding the structure of
the hadronic vacuum.

For the answer V.N. Gribov turned to QCD. The discovery of Gribov
copies in 1976, which has changed our view upon non-abelian QFTs,
was for him, in fact, a by-product of the search for the pomeron-puzzle
solution. He came to the firm belief that the pomeron instability got to
be intimately related to the infrared instability of the QCD, i.e. to the
physics of quark confinement.

There exists a deep relation between the ‘old’ and ‘new’ strong inter-
action theories, which can not be appreciated without studying both.
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The new theory – QCD – has adopted many a notion of its pre-
decessor: the Froissart regime; reggeization of quarks and gluons, and
multi-regge kinematics; [QCD, BFKL, ‘hard’] pomeron, and the reggeon
field theory; impact parameter diffusion; parton screening and satura-
tion; Gribov–Glauber multiple scattering theory, and the Abramovsky–
Gribov–Kancheli (AGK) cutting rules. Many important issues of the old
theory, its techniques, problems and achievements are, however, not ex-
posed in existing textbooks. This book fills the gap.

Topically, this book overlaps with Gribov’s Theory of Complex Angu-
lar Momenta (TCAM) (Gribov, 2003). There is, however, an essential
difference.

The TCAM volume is based on lectures given by V.N. Gribov in 1969 to
the audience of professional theorists, whereas the present course targeted
university students. It does not presume, therefore, any additional knowl-
edge beyond quantum mechanics (including the non-relativistic quantum
scattering theory), relativistic kinematics and the QFT basics covered by
the preceding QED lectures (Gribov and Nyiri, 2001). That is why many
general topics not present in the TCAM volume are extensively discussed
here: analytic properties of Feynman amplitudes, resonances, electromag-
netic interaction of hadrons.

Moreover, this course covers a number of important subjects developed
and understood during the 3–4 years that elapsed between the two lecture
series. Among them, to name a few, are the s-channel nature of the Regge
exchange (impact parameter diffusion) and the structure of multi-hadron
production (Mueller–Kancheli analysis of inclusive spectra and the pat-
tern of multiplicity fluctuations, AGK cutting rules, screening, etc.), deep
inelastic lepton–hadron scattering and the quark–parton picture, as well
as the basics of QCD in the original Gribov approach.

On the other hand, in the TCAM volume some technically involved
themes are elaborated in greater detail. So, the two books complement
each other in many ways, aiming at a comprehensive exposition of the
theory of hadron interactions that preceded Quantum Chromodynamics.

In preparing the book, we used lecture notes taken by Yu. Dokshitzer,
V. Petrov, S. Troyan and V. Vechernin in 1972–75.

We thank L. Frankfurt, A. Frenkel and M. Strikman for help and valu-
able advice. Y.D. is deeply grateful to his colleagues from the Theoretical
Laboratory of High Energy Physics, University Paris VI-VII, for constant
moral support and patience in the long course of preparing this book.

Yuri Dokshitzer
Julia Nyiri
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