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This book is dedicated to the memory of 
Professor Ferd Williams 



Quels livres valent la peine d'etre ecrits, 
hormis les Memoires? 

Andre Malraux. 



PREFACE 

This book presents an account of the NATO Advanced Study Institute 
on "Energy Transfer Processes in Condensed Matter", held in Erice, 
Italy, from June 16 to June 30, 1983. This meeting was organized 
by the International School of Atomic and Molecular Spectroscopy 
of the "Ettore Majorana" Centre for Scientific Culture. 

The objective of the Institute was to present a comprehensive 
treatment of the basic mechanisms by which electronic excitation 
energy, initially localized in a particular constituent or region 
of a condensed material, transfers itself to the other parts of the 
system. Energy transfer processes are important to such varied 
.fields as spectroscopy, lasers, phosphor technology, artificial 
solar energy conversion, and photobiology. This meeting was the 
first encounter of this sort entirely dedicated to this important 
topic. 

A total of 65 participants came from 47 laboratories and 16 
nations (Belgium, Czechoslovakia, F.R. of Germany, France, Greece, 
India, Ireland, Israel, Italy, The Netherlands, Poland, Portugal, 
Switzerland, Turkey, United Kingdom, and the United States of A 
America). The secretaries of the course were: Ms. Aliki Karipidou 
for the scientific aspects and Mr. Massimo Minella for the admini­
strative aspects of the meeting. 

The Institute opened with an overview of energy transfer pro­
cesses in various condensed matter systems. This task was the 
responsibility of the first lecturer. The next two lecturers 
presented the framework necessary to describe the physical pro­
cesses resulting in energy deposition and transfer in condensed 
matter and the methods used to observe transfer phenomena. Once 
the basic principles were established, specific treatments of energy 
transfer in various systems were presented. A lecturer covered 
the case of energy transfer in nonconducting materials, another 
lecturer the case of energy transfer in solid rare gases etc. The 
subjects of energy transfer in ruby crystals, energy localization, 
energy transfer in glasses, laser systems, and organic crystals 
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and solar energy conversion were also treated. Specific aspects 
of the theory were presented in seminar form together with several 
applications to various areas of current interest. This book in­
cludes also the contributions sent by Professors Ern, Duval and 
Powell who ,unfortunately were not able to come, 

I would like to thank for their help Dr. A. Gabriele, Ms. P. 
Savalli, and all the personnel of the "Ettore Majorana" organization 
in Erice, Prof. R. Uritam, Chairman of the Department of Physics 
at Boston College, Prof. V. Adragna, Dr. G. Denaro, Rag. M. Strazzera, 
and Avv. G. Luppino. 

I would like to thank the members of the organizing committee 
(Professors Williams, Knox and Scharmann) and Prof. Kenkre for their 
valuable help and advice. 

I am grateful to the secretaries of the course Ms. Karipidou 
and Mr. Minella whose collaboration during the course was especially 
valuable. I wish to acknowledge also Ms. Karipidou's work as 
patient and intelligent assistant editor of this book. 

It is difficult to describe the spirit of true collaboration 
and the interest with which everybody participated in this Institute. 
It was a privilege to direct this meeting and to meet so many fine 
people who came from so different and various places and worked 
together in the congenial atmosphere of the town of Erice. I am 
already looking forward to the next 1985 meeting of the International 
School of Spectroscopy; I am sure I will see again many of you, my 
friends. Arrivederci a presto! 

B. Di Bartolo 
Editor and Director of 
the Institute 

Erice, June 1983 
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INTRODUCTION TO ENERGY TRANSFER AND RELEVANT SOLID-STATE CONCEPTS 

ABSTRACT 

J.E. Bernard, D.E. Berry and F. Williams 

Physics Department 
University of Delaware 
Newark, Delaware 19711, U.S.A. 

In order to describe energy transfer involving electronic 
states of condensed matter the many-body problem ia first 
separated into electronic and nuclear problems, and then "the 
many-electron problem is approximated by one-electron band struc­
ture. These analyses are reviewed. Because several mechanisms 
for electronic energy transfer depend on coupling with nuclear 
motion, lattice dynamics and electron-phonon interaction are also 
reviewed. Energy transfer is then considered rather broadly, and 
resonant and non-resonant transfer, excitonic transfer, Auger 
transitions, and charge transport by thermal or hot electrons 
leading to energy transfer, respectively, by capture or col­
lisional excitation are introduced. A glossary of terms relevant 
to electronic energy transfer completes this introductory chapter. 

I. INTRODUCTION 

A well-known mechanism for the transfer of energy from one 
site to another in crystals, amorphous materials, solutions and 
biological systems is resonant energy t"ransfer. This mechanism 
was explained quantum mechanically by Forster [1] in the dipole 
approximation for transfer between organic molecules. Dexter [2] 
generalized the theory to higher order interactions, including 
exchange interaction, and applied the theory to energy transfer 
between dopant ions in inorganic solids. In resonant transfer the 
energy donor in its excited electronic state equilibrates with the 
lattice modes before transfer occurs to the energy acceptor. The 
theory was developed for donor and acceptor which are weakly 
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~oupled to each other but each, separately, strongly coupled to 
the lattice. As a consequence of this strong electron-phonon 
interaction, energy can be conserved during the transfer. The 
transfer probability is found to depend on the overlap of the 
emission spectrum of the energy donor and the absorption spectrum 
of the energy acceptor. The basic interaction which drives the 
transfer is the electromagnetic coupling between the donor and 
acceptor. In the dipole approximation it is essentially the same 
as the Van der Waals interaction between gas molecules. 

For dopants which are weakly coupled to the lattice the 
energy mismatch between donor and acceptor obviates transfer of 
electronic energy alone. Phonon creation and/or annihilation can 
take care of energy conservation during transfer. Single phonon, 
two phonon and multiphonon processes occur. Even for transfer 
between identical dopants weakly coupled to the lattice, thus with 
small or no energy mismatch, phonon assistance can be effective in 
transfer, as shown by Orbach [3] for quadrupole-quadrupole trans­
fer in cases for which that multipole transfer is forbidden. 

A well-known mechanism for electronic energy transfer in 
crystals is the exciton. This elementary excitation is an 
eigenstate of a periodic Hamiltonian, and thus its motion is 
distinguishable in most cases from resonant energy transfer. The 
exciton consists of a coupled electron and positive hole and 
therefore transfers no charge, only energy. Excitons divide into 
two types depending on the strength of the electron-hole coupling: 
Wannier [4] which are weakly coupled; Frenkel [5] which are 
strongly coupled. In principle their motion can be wave-like 
(coherent), however, diffusive motion is commonly observed for 
excitons. Even the tightly coupled Frenkel excitons move from 
site to site fast enough so that lattice relaxation around the 
excitation does not destroy the lattice periodicity. Otherwise 
the exciton is said to be self trapped, and pure excitonic 
transfer is less probable, though a hopping mechanism involving 
coordinated lattice and electronic dynamics can continue. It 
should be noted that in general the concept of energy transfer 
implies a subdivision of the total system, which is only clearly 
valid for weakly coupled donor and acceptor, though for strongly 
coupled components, as for some excitonic transport, the concept 
retains some validity. 

In some cases the separation of resonant energy transfer and 
excitonic transport becomes difficult. If we have an exciton 
which moves carrying lattice polarization with it, then the 
exciton together with the polarization can be considered as a 
quasi-particle whose eigenstates are those of a periodic Hamil-
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tonian. Transport of energy to dopants or defects can thus occur 
by motion of this quasi-particle but also by resonant transfer 
from the relaxed excitonic state. The range of the resonant 
transfer interaction can of course be included in the cross 
section for capture of excitons. 

Energy transfer, interpreted broadly, includes many other 
mechanisms as well. The conduction electron and the valence band 
positive hole separately carry useful energy equal to the energy 
of the eigenstate in which each moves, measured from the Fermi 
level of the material. If these electronic particles are 
thermalized with the lattice at their respective band edges then 
they carry potential energy which can be transferred to dopants on 
their capture; if these electronic particles are not thermalized 
with the lattice, that is, are hot carriers, then they carry 
kinetic energy which can be transferred to dopants or deep centers 
by collisional excitation. Interchanges between kinetic and 
potential energy occur spatially at semiconductor heterojunctions, 
and even at semiconductor/liquid electrolyte junctions. Hobile 
electrons and positive holes which carry lattice polarization with 
them are polarons. 

The mechanisms of energy transfer discussed so far are for 
transfer in position coordinate space. There are other mechanisms 
which involve energy transfer in momentum space. These include 
Auger mechanisms, as noted by Landsberg [6]. Transfer of hot 
electrons into the minima of higher conduction bands involves 
transfer of kinetic energy into potential energy in which there is 
transfer in wave vector (quasi-momentum) space. 

The mechanisms can be subdivided in several ways: (1) by the 
continuous or discrete nature of the initial and final electronic 
states for the transfer; (2) by the vehicle for transfer being a 
charged particle or an uncharged elementary excitation; or (3) by 
the intrinsic or extrinsic character of the states and tran­
sitions, that is, characteristic of the perfect crystal or of 
dopants. In Table 1 we categorize various mechanisms of energy 
transfer based on (1) and (2). 

Radiative and radiationless de-excitation are the dominant 
processes whicb compete with energy transfer. These were the 
subjects of two previous courses in this school [7], [8]and will 
not be discussed further. 

Applications of energy transfer in condensed matter are 
technologically important. Fluorescent lamps utilize resonant 
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Table 1. Energy Transfer Mechanisms in Condensed Matter 

Charged Excitation 
Charged Particle Electronic States Particle Transfer 

Transfer Only plus Excitation 

continuous ++ electrons intraband heterojunction 
continuous and posi- (subband) tunneling 

tive holes- transitions; 
thermali zed excitons 
and hot 

discrete ++ hopping; resonant charge transfer 
discrete polaron energy 

transfer; 
phonon-
assisted 
transfer 

continuous ++ tunneling Auger collisional 
discrete excitation 

transfer bet\;/een dopants in phosphors. Cathode ray tubes and 
radiation detectors operate with excitonic intermediate states. 
Sensitization of the photographic process is basically energy 
transfer. Dyes and pigments are stabilized by de-excitation 
channels which depend on energy transfer. Photovoltaic and 
photoconversion solar devices utilize electronic charge or ex­
citonic transport. Photosynthesis itself depends on energy 
transfer. Phenomena relevant to applications will be discussed in 
subsequent chapters. 

In Section II we present analyses which provide some basic 
concepts prerequisite for developing these mechanisms. The 
separation of the many-body problem of condensed matter into a 
many-electron problem and a lattice or molecular dynamics problem 
is basic to crystals, amorphous materials, solutions and biologi­
cal systems. The one-electron approximation to the many-electron 
problem is equally basic. Electronic band structure and lattice 
dynamics have largely developed for crystals utilizing the trans­
lational invariance of ordered lattices. Electron-phonon inter­
action plays a key role in several energy transfer mechanisms and 
is analyzed in the final subsection of Section II. In Section III 
the mechanisms just introduced and some others noted in Table 1 
are treated in some detail. Finally, a glossary of terms used in 
analyses of energy transfer completes the chapter. 
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II. BASIC CONCEPTS UNDERLYING ENERGY TRANSFER IN SOLIDS 

II. A. Separation of Electronic and Nuclear Motion 

It is useful, when dealing with many-body problems in which 
the particles fall into two or more subgroups in which the motion 
occurs on widely different time scales, to try to separate the 
problem of determining the motion (or states) of one subgroup from 
that of the other(s). For example, in molecules and solids it is 
common for the electrons to be moving at much higher speeds than 
the nuclei, due to the large difference in their masses. It is 
reasonable to assume then that the electrons are to a large extent 
able to follow smoothly the motion of the nuclei without under­
going abrupt transitions between states. 

Indeed, the electronic sub-system can be viewed as having a 
Hamiltonian which is slowly varying in time, and the adiabatic 
theorem of quantum mechanics assures that in the limit of 
infinitely slow time dependence, transitions among non-degenerate 
states do not occur. A discussion of this theorem can be found in 
any quantum mechanics text; the original proof, under the assump­
tions of discreteness of the spectrum and non-degeneracy except at 
crossing points, is due to Born and Fock [9], and a more general 
proof avoiding these assumptions has been given by Kato [10]. It 
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is this theorem which underlies the adiabatic approximation, a 
commonly used technique for separating electronic and nuclear 
motions. A closely related method known as the Born-Oppenheimer 
[11J,[12J approximation can be used to accomplish the same thing via 
a perturbation expansion without explicit reference to the notion 
of adiabaticity. Variations on these can be used to obtain more 
accurate (or less accurate) solutions based on separation of the 
electronic and nuclear motions. We should also like to point out 
that these techniques are by no means limited to separation into 
two sub-systems. It is possible to effect separation into more 
sub-systems, such as is sometimes done in the case of solids with 
local modes due to impurities, which may have characteristic time 
constants ~ntermediate between those of the electrons and the 
lattice modes 

The derivation we present here is due to Born [13], and is 
readily accessible in a number of other works [121. [14]. 

The Hamiltonian for a molecule or solid can be written as the 
sum of contributions due to the electrons and the nuclei (or, more 
practically, ions consisting of the nuclei plus core electrons) 
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where TN is the nuclear (ionic) kinetic energy operator, VN the 
nuclear potential energy, Tel and Vel the corresponding electronic 
quantities, and VN-el the interaction energy between the electrons 
and the nuclei. It is common to group the electronic kinetic 
energy and all the potential energy into the electronic Hamil­
tionian 

(2) 

where 

(3) 

is the total potential energy of the system. This defines the 
problem of determining the states of the electrons in the field of 
static nuclei, where the nuclear positions serve as parameters 

H l(r;R)~ (r;R) = E (R)~ (r;R) e a a a (4) 

where r = (rl, •.. ,rn) denotes the 3n electron coordinates, 
R = (RI, ••• ,RN) the 3N nuclear coordinates, and a the complete set 
of quantum numbers for the electronic problem. We should point 
out that spin-dependent interactions, such as the spin-orbit 
interaction are sometimes included in Hel when they are expected 
to be significant. It is assumed that the solutions of (4) 
are known for each set of values of the nuclear coordinates. If 
in fact the motion of the nuclei were infinitely slow, the adia­
batic theorem would guarantee that (neglecting perturbations due 
to external influences and approximations made in solving the 
electronic problem) there would be no transitions between the 
electronic states characterized by different values of the quantum 
number a, and the motion of the nuclei could be described 
classically. 

It is, however, important to assess the degree to which the 
finite speed of the nuclei affects the electronic state (causing 
transitions), and to determine the actual state of the nuclei, 
which move in a potential in part determined by the electronic 
state. To do this, we write down an expression for the wave 
function of the entire system in the form of an expansion in terms 
of the electronic wave functions taken as a complete set where the 
expansion coefficients Xa(R) are (in the adiabatic limit) the 
nuclear wave functions. 

1jI (r ,R) I Xa(R)~a(r;R). 
a 

(5) 

Then the Schrodinger equation for the complete system is 
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= o. (6) 

* Taking account of equation (4), multiplying by 1jJS(r;R), and 
integrating over the electronic coordinates results in a set of 
coupled equations for the coefficients Xa (R). 

where 

(8) 

Now let us consider the CSa in more detail. Differentiation 
of the orthonormality condition for electronic wave functions 
gives 

= V 0 = 0, for all i and all S,a. (9) 
Ri as 

This is a statement of the conservation of particle number for 
small variations in the Ri. In particular, for S = a 

Re[ f 1jJ;(r;R)VR.1jJa Cr ;R)dr] = 0, for all i. (10) 
1. 

In the absence of a magnetic field, it is always possible to write 
the 1jJa as real functions, so that the diagonal elements of A 
vanish in that case. The off-diagonal elements of C can be taken 

7 
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as a measure of the electron-phonon coupling and can be neglected 
in a first approximation if they are small compared to the 
separation between the electronic energy levels. This is a rela­
tively good approximation in the case of many molecules and 
insulating and non-degenerate semiconducting crystals, but not in 
the case of metals and degenerate semiconductors, where there are 
continuous bands of accessible levels. In Section lIE below we 
consider various means of dealing with these neglected terms in 
the cases where they are not negligible. 

It is common to keep the diagonal elements of B as part of 
the effective potential in which the nuclei move. It is, in fact, 
possible to retain the off-diagonal elements of B in the elec­
tronic Hamiltonian as well, since they, unlike the matrix elements 
of A, are not operators. Then, only the off-diagonal elements of 
A serve to effect transitions among the electronic states. It is, 
however, more usual in the literature to find the off-diagonal 
elements of B neglected entirely, with those of A being treated as 
the electron-phonon coupling. The term "adiabatic approximation" 
is most often applied to the approximation in which the diagonal 
elements of B are included in the electronic Hamiltonian,and all 
other elements of C are neglected rather than the one in which all 
matrix elements of C are neglected. Either form of the approxima­
tion can be obtained by starting with the assumption that the 
total wave function is a simple product of an electronic function 
and a nuclear function, so it is common simply to begin any 
treatment involving an adiabatic approximation by writing the wave­
function as a simple product 

¥(r,R) = x(R)~(r;R). (11) 

It is perhaps worth stressing that there is considerable 
variation in the literature in the meaning of the term "adiabatic 
approximation". We have tried to point out several of the varia­
tions, but there are surely more. 

II.B. One-electron Approximation 

In this section we outline the approximations and assumptions 
made in going from the full many-electron problem to the one­
electron approximation to this problem, the latter of which is the 
starting point in the calculation of the electronic energies and 
wavefunctions for condensed materials. We assume that the adia­
batic approximation has been made and we are now interested in the 
solutions of the electronic problem of the adiabatic approximation. 

We consider the problem in which the ions are located at their 
equilibrium positions and in which there are N ions and n electrons. 
Then the electronic problem is the many-electron problem defined 
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by the following Schrodinger equation: 

where 

H 11jJ (r;R) e CI. 
E (R)ljJ (r;R) 

CI. CI. (12) 

where r = (rl, ••• ,rj, ••• ,rn); rj is a three vector locating the 
jth electron, R = (Rl, ••• ,RJ""'~); RJ is a three vector 
locating the Jth ion, CI. = (Cl.I""'Cl.v,""Cl.n '); CI. is the complete 
set of quantum numbers indexing the different eigenstates of the 
many-electron problem which has been subdivided into sets of 
quantum numbers Cl.v where v indexes the different subsets of quan­
tum numbers, and Pj is the momentum of the jth electron. 

The formal problem described by equation (12) for the case 
of a crystal or other condensed phase of matter, including large 
molecules, is·not in a tractable form and, therefore, we must make 
some approximations to the many-electron problem. We begin by 
using the Hartree-Fock approximation, in which ljJCI.(r;R) is 
represented by a Slater determinant wavefunction composed of the 
one-electron wave functions 

Here, ~CI. (rj;R) represents the space portion of the wave function 
of the j~h electron which is in an eigenstate indexed by the set 
of quantum numbers Cl.v' The spin portion of the wavefunction of 
this electron is Sav(~j) which is indexed by the quantum number 
avo In what follows we will assume, as we have implictly done 
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in equation (12), that there are no spin-spin nor spin-orbit 
1rtteractions. Therefore, the spin portion of the wavefunction 
will not enter into the final equations of the one-electron approx­
imation and the quantum number sets Cl.v for the space portion of 
the electronic states will be doubly degenerate. Note that the 
particular one-electron wavefunctions to be used in the Slater 
determinant wavefunction depend on the state of electronic excita­
tion of the material being described. 

We begin by subdividing the electrons into two subgroups 
designated as the core electrons for Which j=n'+l, ••• ,n and non­
core electrons for which j=l, ••• ,n'. The conditions met by the 
core and non-core electrons which define this division will be 
specified later. If, for the many-electron wavefunction in 
equation (12), we substitute the approximate wavefunction given 
by the Slater determinant and if we keep track of the core and 
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non-core electrons, we then get: 

For the non-core one-electron states: 

- f 
* ~ (r) ~ (r) 1 a 0 a 0 

d 3 ro _].lr'-_--r-v'--_ ~ "'].l ( r J.) I r .-r I '-' 
J 0 

~ (r.)] 
a J 

].l 

for 1 < v < n'. 

For the core one-electron states: 

2 
P. N 2 
J '" (r.) _ \ e '" ( ) 
2 't' L I R I <r '" r J. m av J J=l r j - J '-'v 

* ~ (r) ~ (r) 
n 2[ f 3 a 0 a 0 + I e dr]..l ]..I 

]..I=n'+l 0 Irj-rol 
Wfv 

J. E. BERNARD ET AL. 

(13) 

~ (r.) a 1 v -
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* n' [ ~ (r H (r) 
+ I e2 Jd\o _o.TU_O __ -:o.~u~_o_ 

"",,1 I r .-r i .. J 0 

for n' + 1 ~ v ~ n. 

* ~ (r)~ (r) 
a. 0 a. 0 

U v 
I r.-r I 

J 0 

<Po. (r.) 
v J 

(14) 

Here we have suppressed the parametric dependence of the wave­
functions and eigenvalues on the nuclear coordinates Rand Eo.V 
£0. (R) are the one-electron energy eigenvalues. We can define 
th~ following quan ti ty: 

£ vcore 

x 

for n r + 1 < v < n. 

f 3 * * dr~ (r.><p (r) 
o o. v J o.u 0 

(15) 

This is just the energy of interaction between the vth core elec­
cron and all the non-core electrons. We then define the division 
between core and non-core one-electron states by the condition 
that 

£ < < £ vcore a. 
v 

for n r + 1 < v < n. 

This condition is just the condition that the interaction of the 
non-core electrons with a core electron is small compared to the 
energy of the given core electron. We usually make a single 
division into core/non-core one-electron states by using the sub­
division made for the ground state problem for the excited states 
as well. 

We can decouple the problem of finding the core one-electron 
states from the problem of finding the non-core states by 
neglecting the terms corresponding to £vcore in equation (14). 

11 
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We then can assume in what follows that we have found a solution 
to equation (14). Usually it is assumed that a good approxima­
tion for one of these one-electron states is just a linear comb­
bination of the corresponding one-electron atomic orbitals. These 
linear comoinatio.ns are chosen so that the translational symmetry 
is satisfied. For further details on this point see the discus­
sion on linear combinations of atomic orbitals done in connection 
with the tight binding approximation discussed later in this sub­
section. In connection with this approximation, the core elec­
trons are then assumed to be the non-valence electrons of the 
atoms. Since these electrons are so localized they do not over­
lap with one another very much in the condensed phase and, 
therefore, do not perturb one another in this phase. We can now 
rewrite equation (13) for the non-core one-electron states as: 

2 
~ ¢ (r.) + V (r.)¢ (r.) 2m av J o J av J 

* 
n ¢ (r)¢ (r) 

2 fd\o 
a 0 a 0 

I \l v 
¢ (r.) e I r .-r I (16) 

\l=n'+l a J 
J 0 \l 

* 
n' 

e2 [ pro 

¢ (r)¢ (r) a 0 a 0 

+ I \l \l ¢a (r.) Ir.-r I \l=l J 0 v J 

\lfV 

* ¢ (r)cp (r) 

f d3ro 
a 0 C/. 0 

+ \l v °0 (rj ) 1 ¢ (r.) I r .-r I = E 

J 0 \l 
av av J 

for 1 < v .:::. n' , 

where * 
N 2 n ¢ (r) ¢ (r) 

2 

f d3r 
a 0 a 0 

Vo(r j ) I e + I \l \l = - I rj-RJ I 
e I r.-r I J=l \l=n'+l 

0 
J 0 

We then make the additional approximation that we can neglect the 
exchange interaction between the core electrons and the non-core 
electrons, that is, that we can neglect the third term on the 
left hand side of equation (16). Finally, we also neglect, in 
th~·one-electron approximation, all correlation between the non­
core electrons. That is, the last two terms on the left hand side 
of equation (16) are neglected. With these assumptions we then 
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get to the one-electron approximation for equation (12) which 
is 

(17) 

for 1 < v < n'. 

Here V (r,), the one-electron potential, can be approximated by 
the swg of the potentials of the ions forming the solid. That is, 
by: 

where VionJ(ro) is the electrostatic potential of the Jth ion 
formed from the Jth atom by removal of its valence electrons. 
Equation (17) is a s~t of simple decoup1ed potential equations 
to solve for the one-electron states in the one-electron approxi­
mation. Note that the one-electron states are introduced into the 
calculation by the Hartree-Fock approximation but the one-electron 
approximation makes additional assumptions 

We can improve on the one-electron approximation by making a 
slightly different set of approximations in equation (16). First 
we replace the two exhange terms, that is, the third and last 
terms on the left hand side of equation (16), by an approximation 
having the form of a self-consistent potential, instead of neglect­
ing these terms as we did in the one-electron approximation. Slater 
[15] has shown that we can approximate equation (16). 

2 

~ ~ (r,) + V (r,)~ (r,) 
av J 0 J av J 

[ 
n * ]1/3 - t3 I ~ (r,)~ (r,) ~ (r,) 

ex '+1 a J a J a J )l=n )l)l v 

n ' ~ * (r)¢ (r) 
2f 3 a 0 a 0 

+ \ d r)l }l '" ( ) + 
Leo I r , -r I 'l' a: r j 

)l=1 J 0 v 
(18) 

)l:fV 
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n' 
L 

ll=l 
l1'fv 

* ]1/3 ¢ (r.)¢ (r.) ¢ (r.) 
a J a J a J 

II II v 

for 1 < v < n' 

2 ~ 
where Slater [15] has determined that Sex = e (8l/8TI) 2. Kohn and 
Sham [16] have disagreed on the value of Sex, contending that it 
should depend on the details of which states are occupied. In 
equation (18) we have also kept the self-consistent coulomb correla­
tion term from the non-core electrons. These are coupled one­
electron equations and are, therefore, not as easily solved as 
equation (17). A first approximation to the solution of equation 
(18) can be gotten from equation (17). 

Finally, we note that the total energy of the non-core elec­
trons in the one-electron approximation is given by 

n' 
E L E: 

a 
v=l v 

n' 
2 f d3r f 

3 
L e d r l 0 

V,ll 
V<ll 

* * ¢ (r)¢ (r) ¢ (rl )¢ (rl ) a 0 a 0 a a 
II II v 

x 
irl-roi 

n' 

+ Sex L 
v=l 

* x ¢ (r)¢ (r). 
a 0 a 0 v v 

v 

II.C. Electronic Band Structure 

(19) 

In this subsection we consider properties of the solutions to 
the equations of the one-electron approximation for a three 
dimensional periodic array of ions. In particular, we want to 
determine some of the general properties of the one-electron 
eigenvalues and eigenfunctions for the set of equations 
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H l~ (r) e a 0 v 

2 
Po 

= --2 ~ (r) + V(r)~ (r) ma 0 oa 0 
(20) 

v v 

for 1 < v < n number of valence electrons, 

where V(ro) is the algebraic sum of the electrostatic potentials 
due to the ions forming the three dimensional array. 

In order to investigate the properties of Ea and ~a (ro) , we 
must first develop some notat±on to describe the ~rray an~ the 
space of eigenvalues {av}~=l' The properties of the array can be 
described in terms of the primitive basis vectors ai' i = 1,2,3 
and the concept of a unit cell of an array. The unit cell must 
satisfy the condition that it is a subdivision of the array such 
that the space occupied by the array can be completely filled by 
identical, non-overlapping unit cells. By identical unit cells, 
is meant that if we did the gedanken experiment of cutting the 
array into the non-overlapping unit cells then, by translations 
only, the different unit cells could be moved to a common place 
and that all the ions and/or parts of ions in each of the unit 
cells would be at the same place after the translation. We define 
the unit cell of an array as the smallest unit of the array which 
meets the above condition. We define the three primitive basis 
vectors as follows: We choose a point in one of the unit cells 
and then we consider all the vectors connecting this point to all 
the equivalent points in all of the other unit cells composing the 
array. From this set of vectors is chosen a set of vectors which 
are the shortest non-pairwise collinear vectors. 

We then define the direct Bravais lattice as the lattice 
composed of the points given by 

X 
n 

N. N. 
1 1 

- 2:" 2. ni 2. 2:" (21) 

Here ni and Ni are integers. The number of unit cells, N, in the 
array is given in terms of the Ni as N = NlN2N3 and the number of 
ions in the array is N times the number of ions per unit cell. 
The Xn designate the lattice vectors. Note there is one point in 
the direct Bravais lattice for each unit cell in the array; 
however, since the unit cells can contain more than one ion, the 
number of points in the direct Bravais lattice is not in general 
equal to the number of ions in the array. In addition, every 
vector Xn corresponds to the directed distance between equivalent 
points for a given pair of unit cells of the array. And the 
directed distance between equivalent points of any two unit cells 
is equal to an Xn • 
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If we define a set of vectors Yy; y = 1,2, ... ,r = number of 
ions in a unit cell; which locate the ions in the unit cell 
relative to one of the ions of the unit cell, then the potential 
V(ro) of equation (20) is defined in terms of the ionic potentials 
V (r ), as 

y 0 

where 

V(r ) 
o 

r 

V (r -x ) cellon , 

V ll(r) = L V (r -Y r. ce 0 y 0 y 
y 

(22) 

(23) 

This definition of V(ro) is in accordance with the general 
philosophy of the division into core and non-core states of the 
one-electron approximation, in that we assumed that the core 
states, which in this case we take to be the states of the 
electrons of each ion, are not affected significantly by the 
formation of the crystal. 

In order to make this study of the properties of the wave­
functions and eigenvalues a tractable problem, we must have some 
convenient way of handling the boundary conditions met by the wave 
functions at the crystal surfaces. We will assume that the 
array is large enough so that only a few of the one-electron 
states are affected to any significant degree by the boundaries 
and that these states are localized near the surfaces of the 
array, and therefore, for these few states a perturbation-like 
calculation can be used to determine their properties. The per­
turbation is the boundary conditions at the surfaces of the 
array. We therefore idealize the array either as: (A) an array 
which is infinite in all directions so that there are no surfaces 
for the array or (B) we identify each pair of surfaces perpen­
dicular to each~of the directions defined by the three primitive 
basis vectors, ai' This latter idealization forms a cyclic finite 
ar:-ay containing N unit cells. such that a translation by XNi = 
Niai, i =, 1,2,3, returns us to the same point in the array. This 
way of dealing with the problem of the boundary conditions is 
known as the Born-von Karman boundary conditions. We will use 
both idealizations in our discussion of the solutions to equation 
(20) 

Using either of the given idealizations and the form of V(ro) 
given in equations (22) and (23). we see that 

V(r ) 
o 

V(r + X ) 
o n 

where Xn is given by equation (21) • 

(24) 
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We can define a second Bravais lattice called the reciprocal 
Bravais lattice as follows: Its primitive basis vectors are de­
fined as 

b. 
l 

2n E •• k lJ 

a.xak ] 

a l o a 2xa3 
(25) 

from which it is found that aiobj = 2noij. Note that within the 
definition of the primitive basis vectors of the reciprocal 
lattice given here there is an additional factor of 2n as com­
pared to the definition used in scattering theory and that which 
we will use in connection with our discussion of phonons. The 
reciprocal Bravais lattice is composed of the points given by the 
vectors 

N. N. 
l l 

- - < v <-
2 i - 2 

(26) 
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where the v's are integers. We define the Brillouin zone boundary 
in the reciprocal lattice space as the planes defined by the 
condition 

2 
k ·K + ~zK = o. 

o v v 

There is a Brillouin zone boundary defined for each Kv given above. 
The first Brillouin zone is the portion of the reciprocal lattice 
space such that the line joining the origin and any point in the 
first Brillouin zone does not intersect any of the zone boun­
daries. 

We begin the considerations of the solutions to equation (20) 
with the translational symmetry of the Hamiltonian. Given any 
lattice vector Xn ' then 

H l(r ) = H l(r + X ) e 0 eon (27) 

where we have defined the unitary operators, TX , as the transla-
n 

tion operators corresponding to the translations through distances 
Xn . First note that the operators corresponding to any two 
translations commute with one another. Since the operators TX 
commute with each other and with the Hamiltonian of equation (~o) 
then there exists a set of solutions which are simultaneous 
solutions to equation (20) and the following set of equations: 

- <p (r + X ) 
a 0 n 

v 
T (X) <p (r). 
a n a 0 

(28) 
v v 
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Note there is one equation for each Xn . We begin by finding the 
form of all the solutions to the equation set (28). By using 
the normalization condition and equation set (28) plus the 
unitarity of the TX operators we have 

This gives 

n 

J 3 * + d r $ (r )TX TX $ (r) oa. 0 a. 0 
v n n v 

2 I T (X) I = 1. a. n v 

From the group properties of the TX ' that is, that 
n 

it follows that 

TX +X ' 
n .m 

(29) 

T eX)T ex) = T (X + X ). (30) 
a. na. m a. n m v v v 

Then from equation (29), it is found that Ta. (X ) = 
exp[ita.v(~)] where ta.v(Xn) is a real functi~n ~f the Xn , and from 
equation (30) that 

t (X) + t (X) = t (X + X ). a. n a. m a. n m 
v v v 

This implies that t ex) has the form a. n v 

for some kv. 

t (X) 
a. n 

v 

Therefore, we have that 

k ·X 
v n 
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ik 'X v n 
~ (r + X ) = e ~ (r). 

a 0 n a 0 v v 
(31) 

This can be satisfied for all Xn if ~av(ro) is chosen to have the 
form 

(32) 
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where ukSv (ro) has the periodicity of the lattice. We have taken 
the set of quantum numbers, {a v }' for the vth electronic state to 
be {k ,Sv}. Equations (31) or (32) are just two ways of stating 
B10chYs Theorem for the solutions of equation (20) when V(ro) is 
periodic. We can choose the kv's to be contained in the reciporca1 
lattice space. If we do so, then the kv's have the form 

k 
v 

where the kv. are not necessarily integers. 
1 

All of the representations of the 
dimensional and given by exp[ikv·Xn]. 
the set of equations (28) are the same 
same value for all Xu's. Consider two 
k\J' if 

k 'X L'X + 2nn 
v n v n n 

for all X where n are integers, then n n 

ik 'X ik-'X 
v n v n e = e 

for all X . 
n 

Now if 
k_=k +KL 'Ii v 

translation group are one 
Therefore, two solutions of 
if exp [ikV'Xn] has the 
solutions indexed by kv and 

(33) 

wher~ KL is a reciprocal lattice vector, then equation (33) is 
satisfied. If we choose the set of kv's that index the indepen­
dent representations of the translation group to be those kv's 
nearest the origin of the reciprocal space, then all of the 
independent representations will be indexed by kv's in the first 
Brillouin zone. And every kv in the first Brillouin zone indexes 
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an independent representation. Finally, it is noted that any 
solution of equation (20) must be a solution of the equation 
set (28). 

If the Born-von Karman boundary conditions are used, then we 
must satisfy the additional condition, 

ik oX v N. 
e ~ 1, ~_ = N .a. 

-~i 1. 1. 

which implies that 

k o~_ = 2nv. 
v -~. ~ 

1. 

where the v. are integers, which gives 
1. 

k 0 ~_ = 21Tk N. 
v -~. V. 1. 

~ 1. 

2nv .• 
1. 

From which it is found that the kv's for the independent repre­
sentations are 

k 
v 

(34) 

We now turn to the properties of the solutions of equation 
(20). We will consider two limiting cases: case I for nearly 
free electrons and case II for tightly bound electrons. For more 
details on each of these cases see, for example, the book by J. D. 
Patterson [17]. 

1. Case I: Nearly Free Electrons. In this case, we assume 
that the non-core electrons are loosely bound to the array. The 
equations to be solved are 

(35) 

where 

exp[ik or ]~ Q (r ) • 
v 0 k I-' 0 

\) V 
(36) 

Recall that 

~ Q (r + X, ) 
KVI-'V 0 n 

~ Q (r ). 
KV I-' V 0 
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Kittel [18] has given a proof of the theorem which states that any 
function f(r) which has the periodicity of the array can be 
expanded in a Fourier series of the reciprocal lattice vectors, 
Kv' That is, if 

then 

f(r + X ) 
o n 

f(r ) 
o 

f(r) = L f(K )exp[iK 'r ]. 
o m m m 0 

Since both uk S (ro) and V(ro) have the periodicity of the array, 
we can expandvbgth in Fourier series as follows: 

where 

V(r ) 
o 

Lu(K )exp[iK 'r ] 
m m 0 

m 

I V(K )exp[iK 'r ] 
m m 0 

m 

(37) 

(38) 

The m.'s are integers. Substitution of equations (36),(37) 
and (38) into equation (35) gives the following set of coupled 
equations 

2 
[ ~ Ik +K 12 - s(k ) + V(O)]u(K ) 

2m v n v n 
- I V(K )u(K -K ) 

mlO m n m 
(39) 

where K O. 
o 

By nearly-free electrons is meant electrons in a potential meeting 
the condition that 

V(K ) «V(O) when K I K . 
m m 0 

We begin solving equation (39) by considering those k such 
that u(K )« u(o.), then equation (39) for K = 0 is v 

i'J.Z mz n 
[--z k - s(k ) + V(O)]u(O) = - L V(K )u(-K ). (40) 

m v mfO m m 

The right hand side of this equation is small, since both V(Km) 
and u(-ISn) for Km f Ko are assumed to be small. Since, at least 
one of the u's must be large, we assume that u(O) is not small. 
Therefore, we must have 
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Now looking at equation (39) for K # 0, then we have, using 
equation (41) n 

112 2 
[ -- (2k oK + K )]u(K ) + V(K )u(o) 

2m v n n n n 

L V(K )u(K -K ). 
m n m 

m#O,n 
(42) 

By assumption, the right hand side of this equation is second 
order in small quantities, whereas the left hand side is first 
order in small quantities if 2kvoKn + ~ is not a small quantity. 
Since the points of the Brillouin zone boundaries are defined by 
the condition that 2kB·Ku + K~ = 0, then the above condition means 
that we are far from the Brillouin zone boundaries. In that case, 
the right hand side of equation (42) can be neglected. We 
then have 

u(K ) 
n 

V(K )u(O) 
n 

(43) 

which satisfies the condition that the u(Kn)«u(O) as was assumed. 
On the other hand, if 2kv·K + K~ is a small quantity for a given 
kv and for some Kn , that is~ we are considering a kv near the 
Brillouin zone boundary defined by the reciprocal lattice vector 
Kn , then the corresponding u(Kn) for the given kv is not small. 
If this is the case, we cannot neglect all the terms involving 
u(Kn) on the right hand side of equation (39) in comparison to 
those on the left hand side. We then must assume that u(O) and 
u(Ku) for the given Kn are of the same order of magnitude and that 
u(KL)«u(O) for KL # Ko'~. Then equation (39) gives 

2 
[ ~m k~ - sC k) + V(O) ]u(O) + V(-Kn)u(Kn) 

I V(-K )u(K ) 
m m m#O,n 

(44) 

+ V(K )u(O) 
n 

I V(K )u(K -K ) 
m n m 

m#O,n 
(45) 
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where the right hand sides of these last two equations do not 
involve either u(O) or u(Ku) ,and therefore are of second order in 
small quantities, whereas the left hand sides are first order in 
small quantities. Therefore, the right hand sides of these equa­
tions can be neglected. In order for there to be solutions for 
which u(O) and u(Kn) are not both zero, we must satisfy the follow­
ing secular equation: 

V(-K ) 
n 

o 

V(K ) 
n 

* If VCr) is a real potential, then V(-K ) V (K ). Solving for 
dk) gives n n 

v 
K2 -K 2 

d ---E. + 15k ) V(O) +~[ .-l!.+ (15k )2) 
2 v 2m 4 v 

where we have written k = -K /2 + 15k with 15k a small quantity. v n v v 

Turning to the problem of determining the form of the allowed 
energy values, it is seen that equation (41) gives the value 
of E(kv) far from the Brillouin zone boundaries. If kv is 
replaced by -Kn/2 + 6kv in this equation then it takes on the 
following form: 

-K 2 K2 
d ---E. + ok ) VCO) +1L.[ .-l!.+ 

2 v 2m 4 

and if the square root in equation 
form is: 

-K 
d ---E. + 15k ) 

2 v 

fJ.2 K2 
V(O) + - [ .-l!. + 

2m 4 

fi2Cok ) K 
(ok ) 2) v n 

(47) v 2m 

(46) is expanded then its 

(48) 
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so that when~2okv·~/m »V(~)>> then equation (46) is to a 
good approximation the same as equation (41). The plus sign 
in equation (46") corresp·onds to negative values of ok • K in 
equation (47) and the minus sign to positive ok • K • vInnorder 
to picture the results given in equations (47) Mndn (48) we 
consi~er one direction in the reciprocal lattice space defined by 
k = Kbl' 

In Figure l the darkene·d circles on the k-axis represent 
the reciprocal Bravais lattice points. The vertical dashed lines 
represent the Brillouin zone boundaries. The dashed curve repre­
sents the allowed energies versus k when V(Ku) = 0 for all Kn f O. 
The solid curv~s represent the allowed energies versus k as given 
by equations (47) and (48). 

I I I I 
I I I I 

£(k)-V(O) 

'" 12Bz!3BZl4B~5BZI6B~ 
I 
I 
I 

I I I 
\ I I I 
\1 I I I 

I 
I 

Fig. 1. 
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~ A I I 1 I 
Y I I 1 I I I .... 

I k I 
I nO 0" I 
l(a-2)bl I 

N-Flrst ~ 
'Brillouin 
Zone 

Extended zone diagram of allowed energies vs 
k-values for nearly free-electron approximation. 
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The vectors k=kl and k=k2 correspond to identical representations 
of the translation group and therefore are indistinguishable 
reciprocal lattice vectors. However, since the energy is different 
for these two k-vectors, the energy must depend on an additional 
quantum number which can be taken to be the Brillouin zone number 
indicated across the top of Figure 1. Therefore, the set of 
quantum numbers Sv' indexing the one-electron states and energies 
in equation (34) can be subdivided into {n ,k } where n 
corresponds to the number of the Brillouin v zo~e to wIdc*' the kv 
vector of the electron would belong when all of the V(Kn) are zero. 
The values of nv for the energy states corresponding to kl and k2 
are 5 and 6. The independent kv are all in the first Brillouin 
zone as indicated by equation (34). In Figure 1, ko is the corres­
ponding k-vector for both kl and ~2 in the first Brillouin Zone. 

In Figure 2, we have enlarged the first two Brillouin 
zones. Since the onl independent k-values are contained in the 
first Brillouin zone, we have redrawn Figure 1 for the allowed 
energy values versus k in the reduced zone picture. The solid 
curve gives the allowed energies versus k for V(Kn) f 0 and the 
dashed curves for V(Ku) = O. Note that the allowed energies are 
periodic with the periodicity of the reciprocal Bravais lattice. 
See Kittel's Theorem 8 pages 185 [18]. Also indicated in Figure 2 
are the location of the energy eigenvalues corresponding to the 
kl and the k2 vectors on Figure 1. On the right hand side of Figure 
2 is indicated the ranges of allowed energies, the shaded regions 
usually designated as the allowed bands, and the unallowed energies 
designated as the forbidden bands. 

So far, we have surpressed any consideration of the spin 
degree of freedom of the electrons. If the spin quantum number is 
to be explicitly indicated, then the notation used for the one­
electron energies will be En s y (kv) , where nv indexes the allowed 
energy bands, sv~{t,~} index~sVt~e spin state of the electron, 
kv~{first Brillouin zone} indexes the translational represehtation 
of the energy state and yv are any additional quantum numbers 
needed to uniquely specify the state of the electron, for example, 
quantum numbers connected with the rotational symmetry of the 
array. 

If there are no external magnetic fields present then it can 
be shown [18]. 

1. From time reversal symmetry that 

E .1. (k). n Ty v 
v V 

(49) 
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Allowed 
and 

S(k) -yeo) forbidden 
I energies 

JE--2BZ--?k"-- IBZ IBZ~,",*--2BZ~ n~ 
I I 
I 

6 

~_~3 

2 

leo 
~ First Brillouin Zan. ~ 

Fig. 2. Allowed energies vs. k-values for first two zones in 
nearly free-electron approximation. 

2. From space inversion symmetry; that is, there is a center of 
symmetry; that 

E: (-k). 
n ty v 

v v (50) 

3. From translational symmetry that 

(51) 

2. Case II: Tightly Bound Electrons. We have just consider-
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ed the case of a weak potential and found that there are allowed 
and forbidden energy bands. This particular result is, however, 
not a consequency of the potential being weak. In order to show 
this, we will consider the opposite limiting case, that of a 
tightly bound electron. Here it is assumed that the non-core 
electrons are tightly bound to the ions, although not as tightly 
bound as the core electrons. The energy eigenvalues and states 
can be found by using perturbative techniques on equation (20) 
where the zero order approximate wavefunctions are linear com­
binations of atomic orbitals. For simplicity, we will assume 
that there is but one ion per unit cell. The ionic potentials 
of all the ions of the array are the same and are designated by 
V (r ) as was done in equation (23) The atomic orbitals for 
tHe Ron-core electrons for a single ion satisfy the equation 

H (r )~R,(r) at 0 0 
ER,~R, (ro) (52) 

where 2 

H (r) = 
Po 

V (r ). -+ 
at 0 2m o 0 

Here R, is a set of quantum numbers indexing the one-electron 
states of the ion. 
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The zero order approximate wavefunctions ~av(ro) are given in 
terms of the ~R,(ro) by 

where there exists one~R,k S (r ) for each kv in the first Brillouin 
zone and one for each ato~i~ o~bital of the non-core electrons of 
the ions. Note that this choice of the ~R,k s~(ro) satisfies 

( \) , 
Bloch's theorem as given by equation 31) or 32), for all 
~. Substitution of equation (53) into equation (20) gives 

ik ·X 
N . ~ v n 

I[H (r -x )~n(r -x )+vX (r )~n(r -x )]e at 0 n ~ 0 n 0 ~ 0 n 
n n 

(54) 

where Vxn* (ro) :: V(ro) - Yo. (ro - ~). Multiplication of equation 
(54) by ~~ (r - Xn) and integration over the ro - space yields 
(when equation (52) is used) 
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(55) 

By tightly bound electrons is meant that the electrons on one ion 
do not overlap the electrons on any of the other ions in the array 
to a good approximation. Therefore, we can assume that 

f 3 _J. -

L d r ¢~,(r -x )¢£(r -x ) ~ 0 for all £,£', 
n 0 0 p 0 n 

nip 

and then equation (IIC-36) gives 

En (k) 
:tvy V 

V 

En+ L L exp[ik oR ] 
:tv £' m V m 

(56) 

In addition, in the tight binding approximation being considered 
here it is assumed that the integrals in equation (56) are all 
small and decrease rapidly as the magnitude of Xm increases. This 
means that only the first few terms in the sum over "m" need to be 
kept to get a good approximation to E£y (kv). Let 8£(Xn) be 
defined as V 

8£ (Xm) 
1 L J d3r ¢£,(r +X )vX(r )~£(r ), = - (57) 
11 £' o 0 moo 

0 

where 8£(~) will be designated as the generalized overlap integral, 
and 

Here n is the number of non-core electrons per ion. Note that sums 
over i' in equations (56) and (57) are over the occupied non-core 
electron states. Equation (58) can be written out explicitly for 
some simple arrays. See, for example, Patterson [17]. 
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1. Simple cubic array 

En (k)= En+6n (0)+28 n (Xl) [cosk a+cosk a+cosk a] 
IvYv v Iv Iv Iv X Y z 

where Xl = a(l,O,O). 

2. Body-centered cubic array 

k a 
Ety (kv) = Et +8 t (0) + 88t(Xl)cos( 

v 

k a 
x 
2 ) cos ( + ) cos ( 

k a 
z 
2 

a 
where Xl = 2 (1,1,1). 

Here, we have used kv= (k ,k ,k ) and al 
and a3 (O,O,a). x y z 

(a,O,O), 8.2 (O,a,O) 
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We turn to the interpretation of the form of the allowed 
energies in the tight binding approximation as derived here. The 
perturbation expansion can be viewed as being in terms of the over­
lap of the electronic wavefunctions for the non-core electrons 
centered on different ionic sites where the expansion is in terms 
of nearest neighbors, second nearest nei8hbors, etc. with the zero 
order approximation being the situation when there is no overlap 
For infinitely large lattice spacing, we have N atoms each with 
the same discrete energy levels. Therefore, in the zero order 
approximation of the electronic energy eigenvalues for the array 
are discrete and degenerate. The degeneracy of the ith level is N, 
the number of ions forming the array, times vi' the degeneracy of 
ith atomic level. ~~en the energy eigenvalues for the array are 
considered using degenerate perturbation theory as done in equa­
tions (52) through (58), then the degeneracy is broken and we get 
bands of allowed energy values separated by forbidden energy 
values. The width of the allowed energy bands increases with 
decreasing lattice spacing, since the perturbation increases 
with decreasing lattice spacing. The centroid of each band is 
equal to the non-interacting energy value of the degenerate states 
from which the bands are formed. Finally, each band contains viN 
discrete levels. See Figure 3. For a macroscopic crystal and 
taking account of the zero point motion of the ions, we have 
broadening, so that each band becomes a continuum. However, each 
band can only have viN electrons in it. In addition, the width of 
the allowed bands is independent of the number of ions forming the 
array, and, therefore, when an array is formed containing of the 
order of 100 ions, the states remain discrete. When an array has 
more than one ion per unit cell, then the N used above is taken to 
be the number of unit cells in the array, and the zero order approx­
imate wavefunctions could be taken as linear combinations of 
molecular orbitials of the molecule formed from the ions contained 
in a unit cell. 
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Both the tight binding and the nearly free-electron models 
have given rise to more realistic methods of calculating the 
energy levels of real materials. We will mention here but one 
arising from each simple model. 

From the nearly free-electron model arises the orthogonalized 
plane wave method in which the zero order approximate wavefunctions 
for the non-core electrons are taken as Schmidt's orthogonalized 
plane waves where the orthogonalization is to the core electron 
states. These orthogonalized plane waves replace the plane waves 
used in the simple model and are given by 

for 1 < v .2 n'. (59) 

where V is the volume of the array. By the use of these as 
starting wavefunctions for the band calculation inclusion of the 
matching of the non-core electron states to the core electron 
states in each unit has been partially accomplished, and there­
fore ,convergence of the perturbation calculation is helped. See, 
for example, Callaway 119]. 

From the tight binding model, the concept of the Wannier 
functions arises. The problem with the simple tight binding approx­
imation is that the atomic orbitals used are non-orthogonal for 
orbitals located on different ions in the array. In principle 
this problem can be circumvented by using the Wannier functions 
which are defined as 

A (r - X ) = _1_ L 
Sv 0 n IN k (60) 

v 

where the summation is over the first Brillouin zone. 
the following matrix elements 

If we define 

H (X) = 1. L 
Sv n N k 

v 

ik ·X 
e v nES (k) 

v 

then equation (20) takes the form 

J 3 * d r AQ (r +X -X )HAQ (r -X ). 
0., onm., om 

v v 

(61) 
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H is the one-electron Hamiltonian used in equation (20). From 
either equation (61) or (62) it follows that 

-ik·X 
e: s (k) = 

\I 

I HS (Xn)e n 
n \I 

When we are interested in differences between electronic eigen­
values for a given ionic configuration of the lattice and not the 
energy changes due to changes in the ionic configuration. we can 
neglect the last two terms in equation (19) as a first approxi­
mation. These energy changes can be calculated by keeping track 
of the one-electron states whose occupancies change with excitation. 
To do this it is sufficient to keep track of the occupied electron 
states above the Fermi level and the unoccupied states below the 
Fermi level, the latter designated as being occupied by positive 
holes. The energy difference between two many-electron states in 
a first approximation is taken equal to the energy differences of 
the sum of the energies of all of the electrons above and all the 
holes below the Fermi level. This approximation is a good one, if 
there is a low density of uncorrelated electrons and holes. If 
this condition is not met, then account must be taken of the 
interaction between the holes and electrons. 

The question of the mass of these electrons and holes when 
they are in an allowed energy band state must be considered, so 
that we can describe their reaction to external forces. If 
particles are strongly interacting it is usually incorrect to 
assign individual masses to each of them independently because 
their reaction to an applied force is as a unit not as individual 
particles. For example, in the case of an electron in a crystal 
lattice, if you pull on it you also pull on the lattice indirectly, 
and therefore the mass assigned to this electron must describe the 
reaction of this unit of electron plus lattice to an applied force. 
From the relationship between momentum, kinetic energy and mass for 
a free particle, the following generalized definition of the mass, 
designated as the effective mass for the ijth component of motion 
of an electron in the nth band can be made 

* (k) =.%.2 m •. '11 
nlJ \I 

(63) 
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where kv is the ith component of the three vector kv. For posi­
tive holes the sign of (63) changes because hole motion is equi­
valent to electron motion in the opposite direction. 

The effective mass at the Brillouin zone boundary defined by 
(6kv)'Kn = 0 for the nearly-free electron model is 

I -*­
m±i 

I 
m + 

where "m" is the free electron mass. 

(64) 

The effective mass at kv = 0 for the tight binding case for 
the simple cubic and the body-centered cubic arrays is 

* m 
....ft2 

II,D. Lattice Dynamics and Phonons 

(65) 

As shown in equation (7) the ions of a many-ions system move, 
to a good approximation in most cases, in the adiabatic potential 
which is the electronic energy eigenvalue with its parametric 
dependence on the ionic coordinates. With the ions at equilibrium 
with each other the force on any ion is zero. The dynamics of 
small displacements from the equilibrium position can therefore 
be treated by a Taylor expansion around the equilibrium coordinate 
positions, retaining only the harmonic terms, choosing propagating 
wave solutions for the equations of motion, to obtain the dis­
persion relations between the energy and the wave vector; and 
finally identifying the phonons after quantization. We consider 
a linear chain of ions, all of the same type, then a linear chain 
with links of two types of ions of different masses, and finally 
a three dimensional lattice with arbitrary number of ions of 
different types in the unit cell. 

For a linear chain of ions with equilibrium positions, X, the 
expansion of the adiabatic potential for small displacements, 
u = R-X is 

VCR) VeX) + av(x) 'u + ~ 
ax • 'uu + 

In general, at the equilibrium position X, we have 

(66) 
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av(x) 'u = 0, 
ax 

The following notation has been used above: 

av(x) = 
ax 

av(x+u) I 
au u=O . 
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In the harmonic approximation, the force on the Lth_ion from inter­
action with all the other ions is 

s 

We will define the force constant K as 
s 

K 
S 

(67) 

For the case of identical ions and in the approximation of 
only nearest neighbor interactions, the equations of motion are: 

M 

where M is the mass of the ions. Note, from inversion symmetry at 
the Lth lattice site, it can be shown that KS = K-s' The propaga­
ting wave solutions have the form 

~ = 11 exp[ i(qLa-wt) ], (69) 

where q is the wave vector, "a" the unit cell distance and w the 
orbital frequency of the motion. Substitution of equation (69) 
into (68) yields the dispersion relation: 

w(q) " 2~ sin( T)' 
For additional details see Kittel 120J. 

(70) 

For the linear chain with alternate ions with one type of ion 
located at the positions indexed by the odd integers and the other 
type of ion located at the positions indexed by even integers 
having masses MI and M2 we can again consider the motion of small 
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oscillations of the ions about their equilibrium positions. Let 
K2s(OO) be the force constant between two ions of type one 
separated by an equilibrium distance sa; K2s(EE) be the force 
constant between two ions of type two separated by an equilibrium 
distance sa and K2s+l(EO) be the force constant between unlike 
ions separated by an equilibrium distance (s+l~)a. If there is 
inversion symmetry, as there must be in a linear chain, at each 
ionic equilibrium position, then it can be shown that 

In the harmonic approximation: 

The force on the 2Lth ion is 

K_ 2s (EE) 

K_2s (OO) 

and the force on the 2L+lth ion is 

The equations of motion for the ions are: 

and 

(71) 

(73) 

(74) 

(75) 

Again, the propagating solutions are assumed of the form: 
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(76) 

and 
uZL = ~Eexp{i[Lqa-wt]}. (77) 

When equations (76) and (77) are substituted into equations (74) 
and (75) and equation (71) is used, then it is found that ~O 
and PE must satisfy 

-MZ I {KZ +l(EO)cos[(s~)qa]~E + [KZ (OO)(cos sqa-l) 
1 s>O s s 

Z 
- KZS+l(EO)]~O} + w ~o = 0 

Z 
+ KZs+l(EO)cos[(s~)qa]~ } + w ~E = O. 

From the secular equation for these coupled equations we can 
determine the dispersion relations between wZ and q. The secular 
equation is 

Bl I - 0 C-wZ - , (79) 

where A, Bi and C are real functions of q and are given by 

A == -MZ I {K Z (00) [l-cos sqa] + KZ +l(EO)} 
1 s>O s s 

_ Z \' 
B. = - M L {KZ +l(EO)cos[(s~~)qa]} 

1 i 8>0 s 

C == ~ I {K Z (EE)[l-cos sqa] + KZs+1(EO)}. 
Z s>O s 

(80) 
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We now investigate some of the properties of the solutions of 
equations (78), which can be written in matrix form as 

(81) 
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Note that each unit cell contains an ion of mass MI and one of 
mass M2' We will choose the Lth unit cell so that the 2Lth and 
2L+lth ions are in it. For polar materials the two different ions 
would have opposite charge. If the ions within a unit cell move 
in the same direction, then the net change in the local polariza­
tion would be very small. On the other hand, if the ions within a 
cell move in the opposite direction, then the net change in the 
local polarization would be large in comparison to the first case. 
That is, for the first case the two sublattices, where the two 
sub lattices are defined as the lattices composed of ions of a 
single type, move in the same direction and for the second case 
they move in opposite directions. It is of interest to keep 
track of whether or not there is a large varying polarization 
created for a given motion. We therefore define a new set of basis 
vectors ~p and ~np where ~p corresponds to a large polarization 
and ~np to a small polarization. The transformation from ~O' llE 
to llnp, IIp is defined by 

u 

where 

1 

rz CXp( ~ia ) 
~ exp( 2 ) 

We can transform equation Gn) to 

e" f2l 
~12)C"P) -2wfnp

) 
22 IIp IIp 

where 
A + C + Bleiqa/2 + B2e-iqa/2 fll -

f22 - A+C B iqa/2 
Ie 

B -iqa/2 
2e 

f12 - A - C ~eiqa/2 + B2e-iqa/2 

f2l :: A - C + B eiqa/ 2 
1 

B -iqa/2 
- 2e 

, (82) 

The coupled equations given in equation (78), (81) or (82) define 
two modes of vibration for each q-value in the first Brillouin 
zone, where the first Brillouin zone is defined as those q-values 
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such that -n/a ~ q 2 If/a. The q's are analogous to the reciprocal 
lattice vectors k for the electronic dynamics. Note that the q's 
have been defineda~lightly differently from the k's in that the Zn 
factor has not been incorporated into the q's. Since the w(q)'s 
vary slowly with q it is natural to group the vibrational modes 
for various q's into sets designated as branches. Each branch con­
tains one mode from each set of modes for a given q-value. 

The conditions that the rij'S must satisfy in order that the 
modes corresponding to the two branches separate into ones which 
are primarily nonpolarizing and ones which are primarily polariz­
ing is that the off-diagonal elements of equation (88) mu~t be 
small in comparison to the diagonal elements. If only the rlZ 
element meets this requirement for a given q-value, then one mode 
for that q-value is primarily of type ~p' that is, a polarizing 
mode; while the other is of mixed type,~p and ~np. On the other 
hand, if only the rZI element meets this requirement then one mode 
is primarily of type ~np and the other is of mixed type. 

We now consider the solution to equation (81) and/or (8Z) for 
some special cases. The following notation is used 

<K (EE» L n 
- s KZs(EE) n s>O 

(00» L n <K - s KZS(OO) (83) n s>O 

<K (EO» L n 
- s KZs+l(EO). n s>O 

1. Case 1: The case of Small q-Values. First it is noted that 
r12's leading term in q is 4<K (EO»x (1/M1 -l/MZ) and that r 21 's 
leading term is -i<Ko (EO»x (~/M1 + l/MZ)qa. Therefore, for small 
enough q-values we have modes of type ~ ,designated as the 
acoustical branch, and the other set ofnp modes is of nlixed type, 
~p and ~np which are designated as the optical branch. The 
corresponaing dispersion relations are: 
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Acoustical Branch 

Note from the definitions of the <Kn> given in equation 
(83) (that the larger the value of n the more important are the 
long range interaction terms in determining the values of the <Kn>' 

~2~.~C_a_s_e __ I_I_:_T_h~e __ C~a~s~e~o~f __ q~~TI~/ __ a. In this case, we are consider 
ing the q-value corresponding to the Brillouin zone boundary. It 
is easily seen that Bl = B2 0 and 

A = 

C 

where the mode corresponding to w~ is given by the solution ~O = ~ 
and ~E'= 0 which implies that ~np = ~p = i~, while the mode corres­
ponding to w~ is given by ~ 0 = a and ~E = ~ which implies that 
~np = -~p =~. Therefore, both branches at the zone boundary are 
equal mixtures of polarizing and non-polarizing vibrational motions. 
In between the small q-values and the zone boundary, the mixture of 
polarizing and non-polarizing components for the acoustical branch 
varies from 0-100 to 50-50. The larger of the two w2,s above cor­
responds to the optical branch. 

The analysis of the general three dimensional lattice is 
analogous to the analysis of the one dimensional alternating ions 
situation. Equation (66) becomes in this general situation 

VCR) = VeX) + I av(x) 
-UJI 

J,I aXJI 

+1. L L a2v(x) 
UJIUJ'I' + ... , 2 

J,I J' ,I' aXJI XJ'I' 

(86) 

where XJI and uJI are three dimensional vectors with J indexing 
the unit cell in which the corresponding ion is located and I 
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indexing the location within the cell. The three degrees of 
freedom for each ion lead to one longitudinal and two transverse 
modes per ion in the unit cell. From equation (86) the equations 
of motion are found to be 

where 

K(J1, J'I') -

I K(J1,J'1').uJ'1" 
J' ,I ' 

(87) 

is the general force tensor. In equation (87), 1,1' = 1,2, •.• , 
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r = number of ions per unit cell. Substitution of the propagating 
plane wave solutions of the form 

into equation (87) 

(88) 

Note that equation (88) is a set of 3r coupled equations and 
that q is a three dimensional vector in this case. The solutions 
~o. equation (88) give the 3r dispersion relations roy (q); y = 
1,2, ••• ,3r; of the 3r branches and the corresponding e1(y,q). In 
equation (88) ~ = ~(y,q) is the amplitude of the y, q mode of 
vibration and the er(y,q)'s are normalized three dimensional 
polarization vectors. 

For the case of alternating ions in one dimension for q=n/a, 
the eI (y , q) 's and w2 (y , q) are . 

2 w (l,n/a) 

e (l,n/a) 
o 

2 
w 

o 

1 

In general, the eI(y,q) satisfy 

2 2 
w (2,n/a) = WE 

e (2,n fa) 
o 

o 

1 . 
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and 

o yy' orthornormality 

completeness, 

where j,j' index the vector components. 

(89) 

(90) 

For each mode specified by {y,q} quantization leads to 
harmonic oscillator states for the ~(y,q) with energies given by 

E (y,q) =.fiw (q)(n~~) , 
n y (91) 

where n specifies the phonon occupancy. 

It will be convenient in what follows to use a second quanti­
tization notation for the phonon which is defined in terms of the 
creation and annihilation operators b~y and bqy for the phonon 
eigenstate having wy(q) and vibrational form 

(92) 

In particular the operator b~y operating on a state of the lattice 
vibration creates a state for which the lattice vibration is 
increased by one phonon belonging to the yth branch having wave 
vector q. These operators satisfy the commutation relations 

+ [b ,b ] =0 ,0 , . 
qy q'y' qq yy (93) 

The displacement and momentum operators for the Ith ion in the Jth 
unit cell can be given in terms of the creation and annihilation 
operators as 

and 
+ b qyexp [-iq 'XJI ]} (94) 

1iMI w (q) :k: + 
[ 2NY ] ~eI(y,q){bqyexp[iq'XJI] + 
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where 

- b exp[-iq·X ]} qy JI' 

a = -i.fl-­aUJI 

For further details see Jones and MarchI2l]. 

II.E. The Electron-Phonon Interaction 
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(95) 

As shown in subsection IIA the electron-phonon interaction is 
given by the off-diagonal elements of the A matrix given in equa­
tion (8) which has the form 

Ai2 f 3n * ~ , k'Q = - L L MI d r~k (r;R)VR ~k'Q(r;R)'VR , (96) 
Il, j.J J I I Il JI j.J JI 

where ~ka(r;R) is the many-electron electronic wave~unction of the 
adiabatic approximation, The Bloch theorem applies to the many­
electron wavefunction as well as to the one-electron wavefunction 
and has the form 

ik'X 
~kll(r+Xn;R) = e n~kll(r;R), (97) 

where 

k = L k v v 

with kv's corresponding to the wavevectors 
electron states when that approximation is 
-ihVRJI where PJI is the momentum operator 
equation (96) can be written as 

of the occupied one­
us.ed. Since P JI = 
for the J1th ion, 

equation 

3n * d r~ka(r;R) (98) 

+ iq-XJ1 -iq"X 
[b e -b e JI], 

qy qy 

where equation (95) has been used to represent PJ1 , 

We consider the formal evaluation of the integral in equation 
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(97) when the magnitude of the oscillations of each ion is 
small. Equation (4) specifies the wavefunct10n ~ka (r;R). 
VT(r,R) can be approximated using the expansion given in equation 
(66) keeping only the first two terms. In this approximation 
equation (4) has the form 

[Te1+VT(r,X) + I uJI'~X VT(r,XJI)]$k (r;X+u) (99) 
J, I JI a 

Let the last term on the left hand side of this equation be 
handled perturbative1y since it is assumed that the uJI's are 
small, then $ka(r;X+u) is to first order terms in the UJI'S 

$k (r;X) + I J 
a k'l3 

k'J'k 
Ma 

• (100) 

Since the {$ka(r;X)} are an orthonormal set, then from equation 
(100) we have, to the approximation used in the equation, 

(101) 

The conservation of energy, which must hold because of the 
time translational symmetry of the Hamiltonian in equation (1). 
implies that for real transitions 

(102) 
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for some y and q. The plus sign corresponds to the creation of a 
phonon of energy hwy(q) and the minus sign to the annihilation of 
a phonon. In addition, by space translational symmetry of the 
Hamiltonian for translation through a distance of a lattice vector, 
Xn , conservation of quasi-momentum must hold, that is 

k'-k = +q + K , (103) - 'J 

where K'J is a reciprocal lattice vector. From equations (98) 
(101),(102) and (103) it is found that 

~a;k'f3 L L L I 
y q J I 

{ + iq 'XJI 
b e 6(Ek 'Q(X)-Ek (X)-hw (q»6(k'-k-q-K ) qy ~ a y 'J 

We again look at equation (4) for an arbitrary u, but 
this time write it as 

(105) 

The term in square brackets is treated perturbative1y. In the zero 
order approximation the ionic motion is separated from the elec­
tronic motion completely. This zero order approximation is known 
as the Crude Adiabatic Approximation. See for example, the review 
of Williams, Berry and Bernard [22]. The states, in this 
approximation, have well defined numbers of phonons and electronic 
energy, and the perturbation causes transitions between these 
states. The transition matrix elements, which will be designated 

by ~a;k'f3' are 

(106) 

From equations (66) and (94) to first order in u, we have 



44 J. E. BERNARD ET AL. 

L L L L 
y q J I 

iq'X -iq'X 
x {b+ e JI + b e JI}. 

qy qy 

Equations (106) and (107) together with conservation of 
energy and momentum give 

A = A. 
ka;k'~ -Ka;k'~ 

107) 

within the approximation used, Bloch [23]. [24] first used Aka;k'S 
as the electron-phonon coupling matrix. For additional 
details of the connection between the Bloch matrix and the electron­
phonon adiabatic interaction matrix. see Sham and Ziman [25]. 

Note that going from the adiabatic electron-phonon inter­
action to the Bloch form depends critically on the use of pertur­
bation theory. Since the correct form of the electron-phonon 
interaction is that given by the adiabatic approximation, whenever 
the Bloch form is used in a situation where the perturbation cal­
culation is invalid the results could be in error. Sham and Ziman 
[25] point out that calculations involving virtual transitions 
would be in error if the Bloch form is used. In what follows we 
will use the Bloch formulation, as is usually done. 

When the array is deformed there are two possible 
effects on the electrons due to the deformation. First, for all 
arrays there is a local change in the potential near each lattice 
site of a displaced ion, but the combined displacements of all ions 
are such that there is no long range electric field established in 
the array. Second, if there are ions in the array having different 
charges, then there can be a long range interaction between the 
phonons and the electrons which arises due to the phonons inducing 
changes in the dipole moments within the unit cell. Usually, this 
second interaction is the large~ and thus, the first can be 
neglected. The short range interaction is treated by the theory 
of the deformation potential. and long range interaction is in­
cluded in the Frohlich Hamiltonian formulation. 

1. Deformation Potential Theory. Bardeen and Shockley [26} 
introduced deformation potential theory, in which the changes in 
the energy due to a uniform strain are related to the Block form 
of the electron-phonon interaction. Here, we will follow the 
presentation of Jones and March [271. 
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Consider a uniform strain Eij defined as follows: Given any 
distortion of a periodic array where the Jth ion is displaced by 
an amount uJ where we are considering an array having one ion per 
unit cell, we define a vector function u(ro), ro being the 
vector coordinate of a single electron, such that it is the 
smoothest function having the property 

Then f ., is 
1J au. (r ) 

1 0 

ar . 
oJ 

(108) 

where i and j index the vector components of the vector function 
u(ro) and r o ' respectively. 
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Begin by finding the change in ES(k) , the one-electron energy, 
given by equation (20) due to a uniform strain £., Note that 
for a uniform strain the periodic array is distJ~ted into another 
periodic array with changed lattice constant. Therefore, there 
exist Bloch states for both arrays, but they are not the same 
states. Since the distortion can be represented mathematically by 
the transformation of the ro space of equation (20) wh~re the 
transformation is given by 

7,;0 = r - u(r ) ~ r - €"r , 
o 0 0 0 

we can find the energies of the distorted Bloch waves in terms of 
the energies of the undistorted Bloch waves by solving the trans­
form of equation (20) perturbatively. The result, to the first 
order in the strain,is 

ES(k;strained) = ES(k;unstrained) + .L. tijDij(k,S), 
1,J 

where 

with 
1 aV(ro'x) 

- - p . p . + L (X i-r i) -,,-X--':::"'-
m 01 oJ n 0 a. 

n nJ 

-llk. 
1 + -p .. 

m OJ 

(109) 

Here i,j index the components of vectors and tensors ,and the 
~ka(ro) are the unstrained wavefunctions. 
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On the other hand, for non-uniform strains where u(ro) is 
given by 

then 
u(r ) 

o 
~e(y,q)exp[iq·r ], 

o 
au. (r ) 

l. 0 

ar . 
oJ 

iq. u. (r) • 
J l. 0 

(llO) 

(lll) 

If equation (110) is substituted into the Bloch form of the 
electron-phonon interaction matrix given by equation (106) and 
calculated in the same approximation used to get equation (109) 
then 

A ka.;k'f3 

where 

= L f 
l.J 

3 * d r l/Jk (r ) t:= •• (r ) h. . (r ) l/Jk ' 0 (r ), 
o a. 0 l.J 0 l.J 0 f> 0 

(ll2) 

aVer ,X) ihw (q)q.p . 
() 1 \ ( 0 + y ] Ol. h .. r = - - P .p . + L X .-r .) -~2:----'-"::"::' l.J 0 m Ol. oJ nl. Ol. ax. 

n nJ q 

(ll3) 

The upper sign is for creation of a phonon and the lower for 
annihilation. The deformation potential is defined as 

oV(r) :: L E .. (r )h .. (r·). 
o ., l.J 0 l.J 0 l.,J 

(ll4) 

The last term in hij(ro) can be approximated by ±i~Cj(y,q)Poi for 
longitudinal acoustl.cal modes with Wy(q) approximatea by 

L C.(y,q)q., 
j J J 

where C(y,q) is the phase velocity of the phonon mode indexed by 
{y,q}. By comparing equations (109) and (119) it is seen that 
in this approximation the deformation potential matrix elements 
are 

L 
i,j 

f 3 * d r l/Jko (r )!.. (r ) rD. . (kf3) 
o f> 0 l.J 0 l l.J 

-tik. 
- _l. P . + i-HC.(y,q)P.J l/Jk'o(ro). 

m OJ - J Ol. f> 
(115) 

The last two terms in the integrand are zero at the band extrema. 
Therefore, the electron-phonon interaction is 
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f 3 * AkQ k'Q = L D .. (k,B) d r ~kQ(r )8 .. (r )~k'Q(r ), 
fJ , fJ •• ~J 0 fJ 0 ~J 0 fJ 0 

~,J 
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(116) 

where Dij(k,S) is determined from static uniform strain measure­
ments. Note first that we are using a diagonal matrix element of 
Vij to determine the above 0 ff-diagonal matrix elements. If 
Dij(k,S) depends strongly on k then some type of average of 
Dij(k,S) and Dij(k' ,S) would have to be used. Second, if we take 
the limit of the ionic potential going to zero, the "empty lattice 
test", then the matrix elements for the deformation potential are 
not zero. On the other hand the matrix elements for the electron­
phonon interaction are zero, as are those in equation (112) 

2. Frohlich Hamiltonian. Frohlich developed the polaron 
interaction given below [28]. In this case, we are interested in 
an electron interacting with phonons which cause lattice polari­
zation. For these phonons, there will be both a deformation inter­
action and an additional interaction due to the electric field 
produced by the polarization. The Frohlich Hamiltonian is usually 
developed for longitudinal optical phonons and has the form 

HF (r ) L {V b + exp [ iq • r ] - V b exp [-iq. r ]}, (117) y 0 
q 

qy qy 0 qy qy 0 

where 

4nie w (q) 1 1: )]!z V [ -t-=- ( 
qy q 8 8 

00 0 

Here 8 0 and 8 00 are the low and high frequency dielectric constants, 
and the values of y correspond to any longitudinal polarizing mode. 
The essential steps in deriving equation (117) are: 

(a) to use equation (94) for uJl to define the relative 
displacement in each unit cell as 

(118) 

(b) to use the long wavelength limit for the phonons, that is, 
assume small q-values. 

(c) to assume that a continuous approximation is valid, so 
that X ir equation (118) is replaced by roo 
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(d) to write the polarization in terms of the relative dis-
placment 

(119) 

Note that the motion of the polarizing phonons can be described 
either in terms of the motion of the ions or in terms of the 
dynamical polarization produced by them. 

(e) to use the dynamical equations for the ions and the 
connection between the ions and the polarization to develop the 
dynamical equations of the polarization in terms of microscopic 
quantities. 

(f) to note that EO includes the polarization induced by ionic 
motion and due to electronic motion whereas E~ includes the 
polarization due to the electronic motion only. Since we are 
interested in the polarization induced by the ionic motion only, 
the appropriate polarization to be related to the phonons is the 
difference between the low and high frequency polarizations. 

(g) once having the above inter-relation between the macro­
scopic polarization and the ionic motion, then a connection 
between the microscopic quantities and macroscopic quantities can 
be made which gives rise to equation (119) as the interaction of 
the long wavelength longitudinal polarizing phonons and the elec­
trons. For further details of this derivation see Kubo and Nagamiya 
[ 29] • 
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III. GENERAL METHODS OF ENERGY TRANSFER 

III. A. Resonant Energy Transfer 

This process is important for en~rgy transfer between dopants 
or defects in both semiconductors and insulators. It arises from 
a weak electromagnetic coupling between the electrons on the 
energy donors and those on the acceptors, which are not to be 
confused with charged donors and acceptors in semiconductors; 
these energy donors and acceptors undergo only changes in their 
state of excitation not in their state of ionization. A key 
concept in the analysis of resonant energy transfer is that the 
transfer occurs between the excited donor, which has relaxed with 
respect to the nuclear coordinates, and the ground state of the 
acceptor, which is also relaxed with respect to the nuclear 
coordinates. When this is not the case, as for nearest neighbors, 
departures from the Forster predictions are not unexpected. Each 
relaxed nuclear configuration in a unique way is characteristic of 
its specific electronic state. The transfer takes place in a time 
of the same order as radiative transitions, and therefore the 
nuclear coordinates cannot change during the transition. In 
addition, no real photons or phonons are involved in this process. 
It is common to distinguish between radiative transfer, exciton 
motion, non-resonant transfer and resonant transfer as follows: 
In radiative transfer a real photon is created by the energy donor 
and is then absorbed by the energy acceptor; For pure excitonic 
motion the nuclear configuration remains unrelaxed, however, 
motion of the excitonic polaron involves at least partial relaxa­
tion; For non-resonant transfer phonons are created or annihilated 
as part of the transfer process, whereas for resonant transfer 
phonons are neither created nor destroyed • 

• ~~r_d __________________ ~~~ 
L 

Donor Acceptor 

Fig. 4. Relative locations of the electrons and ion cores 
of the energy donor and acceptor. 

The essentials of the process of resonant energy transfer are 
evident from an analysis of the transfer between an energy donor 
and acceptor each having a single electron changing its state, as 
illustrated in Figure 4. Here we assume that all electronic 
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states involved are singlets. The adiabatic approximation and a 
simple Hartree product wave function are assumed for the two­
electron system of the donor and acceptor. The second assumption 
is possible if we neglect exchange, which is a good approximation 
when the distance between the donor and acceptor is large. The 
initial and final states for the transfer are thus: 

(120) 

and 

~ f (r d ,r a; Rd ,R a) (121) 

where ~D* and ~D are the excited and ground states of the donor, 
having energies ~D* and ~D' and ~A* and ~A are the excited and 
ground states of the acceptor, having energies ~A* and ~A' The 
transfer probability per unit time between given initial and final 
states, ~i and ~f' is given by Fermi's golden rule in terms of the 
matrix element of the electromagnetic interaction, HDA, as 

(122) 

where p(Ef) is the density of final states, and the Dirac brackets 
denote integration over all electronic coordinates. Due to HDA 
being small the density of final states takes the form of a 
product, p (Ef)=PD(~D)P A(~A*)' and the initial and final state 
energies are Ei=~A+~D* and Ef=~A*+~D' The transition energy for 
the donor is ~E=~D*-~D' and the delta function in equation 
(122) implies that £A*-~~=~E as well. 

In order to compute the transfer rate it is, of course, 
necessary to take a weighted average over all initial states and 
sum over all final states which contribute to the process. With 
the assumption of no electronic degeneracy, the only remaining 
summation needed over initial and final states is then due to the 
phonon broadening of the levels. It is convenient, in the 
weighted average over initial states, to employ probability dis­
tributions WD*(~D*) and WA(~A) which are normalized to unity. 
Then the transfer rate is given by 
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(123) 

Substitution of equation (122) into this expression gives 

where I$;EA,EO> is the state $ in which the acceptor has energy EA 
and the donor has energy ED. The interaction Hamiltonian, HOA, is 

(125) 

which can be seen from Figure 4. Here E is the appropriate die­
lectric constant for the material. Note the last three terms in 
equation (125) cannot couple initial and final states in which 
both the donor and acceptor have made a transition, and therefore, 
do not contribute to the transfer rate. When only the first 
term is retained, and the result is expanded in powers of L 

From (126) and (124), we find 

p ::::L6 f d(6El{ fd£A[I<£A+6Elr.I£A>12PA(£A+6ElWA(£Al] 

f d£D*[ 1 <£D*-"I r dl £D*> 12pD (£D*-,,)WD*(£D*'] } , 

where averaging over all possible orientations of L has been 
employed. 

(127) 

We now write equation (127) in terms of the transition 
probabilities for the emission and absorption of a real photon in 
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the dipole approximation. Note that since the interaction in­
volved in (127) is the coulomb interaction, the coupling in­
volves virtual longitudinal photons, whereas real photon processes 
involve transverse photons. However, in the non-relativistic 
dipole approximation these two interactions are proportional to 
one another. 

The dipole transition rate for emission at an energy donor is 

and for absorption (per incident photon) at an energy acceptor is 

where ~E is the energy of the photon emitted or absorbed. We can 
define tne normalized line shape functions for the emission and 
absorption as 

(128) 

and 

(129) 

where nem and nab are normalization constants. They are related 
to the mean radiative life time, TD*' of the donor state ~D* and 
the total absorption, 0A, of the acceptor from the state ~A to the 
state ~A* as follows: nem~Tn* and crA=1/nab' We can now use equa­
tions (128) and (129) in equation (127) to find that 

p 

4 4 
3c fl a A 

2 6 
41Tf: L Tn* 

(130) 
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This equation gives the probability of resonant energy transfer 
between dopants and defects, with broad band optical spectra where 
the broadening is due to electron-phonon interaction, in terms of 
the overlap of the emission spectrum of the donor and the absorp­
tion spectrum of the acceptor, as illustrated in Figure 5. 

I 

6E 

Fig. 5. Emission and absorption spectra of the energy donor and 
acceptor, respectively, used in the calculation of the 
resonant energy transfer process. 

If the leading non-zero coupling term is a dipole-quadrupole 
or quadrupole-quadrupole term in equation (126) the the trans-
fer probability is proportional to L-8 or L-10, respectively. 
These are important when the L-6 dipole-dipole term vanishes due 
to symmetry. If determinantal Hartree-Fock two-electron functions 
are used in place of equation (120) and (121) exchange terms 
resul t giving an exponential dependence on L. The exchange t'erms 
are important for energy donor and acceptor systems for which the 
separation distance is small. 

Resonant energy transfer provides an additional decay 
mechanism for the excited donor, and therefore, the lifetime of 
the donor as measured by the decay of its characteristic fluores­
cence is decreased. This clearly distinguishes this process from 
radiative transfer by sequential donor emission and acceptor ab­
sorption, which would not change the lifetime of the donor excited 
state. Note that the dependencies on donor and acceptor con­
centrations of the transfer probability can be used to extract the 
multipole character of the transfer. The dependence on the over­
lap of the donor emission and acceptor absorption contains 
evidence of the lattice relaxation before transfer, in contrast to 
exciton motion. Conservation of electronic energy during the 
transfer distinguishes resonant transfer from non-resonant trans­
fer. 
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If we consider the theory outlined above from the point of 
view of electromagnetic field theory, the essentials of the 
calculation connecting the energy transfer probability to the 
emission spectrum of the energy donor and the absorption spectrum 
of the acceptor are: (1) that the electromagnetic interaction is a 
vector interaction, and therefore, there are really three parts to 
the interaction; (2) that in free space, these three parts 
correspond to transfer of either a transverse photon, with two 
independent polarization components, or a longitudinal photon; (3) 
that the longitudinal p~ton interaction is a pure coulomb 
interaction and that the transverse photon interaction involves 
emission or absorption of'radiation; (4) that the energy transfer 
calculation involves the coulomb interaction whereas the radiative 
transitions involve the transverse photon interaction; and (5) 
that in the calculation considered above, we expressed the 
longitudinal photon interaction in terms of the transverse photon 
interaction. This latter is done by expanding each interaction as 
a power series of the coordinates of the electronic charges and 
then eliminating these coordinates. 

Included in both the energy transfer process and the emission 
and absorption processes are the variations of the electronic 
charge distributions due to the motion of the ions of the lattice. 
The important changes in the charge distributions for the energy 
donor and acceptor for this problem are summed up in the 
probability functions WD*(E*) and WA(EA)' The explicit forms of 
these functions are not need>ed, since they can be eliminated from the 
energy transfer calculation by using the measured results for the 
emission spectrum of the donor and the absorption spectrum of the 
acceptor, in which they are included. This is only possible if 
the initial state of the lattice plus electronic particles of 
interest is the same for the energy transfer process and for the 
radiative transition process. That is, that the lattice motion is 
the same in both cases. In particular, that for both processes 
the initial state is the relaxed lattice state, which is only 
possible for the transfer process if the transfer rates are slow 
compared to the relaxation process. 

III.B. Nonresonant Energy Transfer 

For dopants with weak electron-phonon interactions, for 
example, trivalent rare earth dopants (RE3+), the optical spectra 
consist of zero-phonon (ZP) lines and their phonon replicas. 
Energy transfer between these types of dopants may not be possible 
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by the resonant transfer mechanism due to a lack of overlap of the 
spectra of the donor and acceptor. However, phonon-assisted 
transfer is possible. This may involve, for moderately small 
energy mismatch, creation and/or annihilation of a phonon at the 
sites of either, or both, the donor and the acceptor, and for 
large energy mismatch, many-phonon processes. For very small 
mismatch, the creation of one phonon and annihilation of another 
of a slightly different energy may be required. The latter, two­
phonon process can have a higher probability than a single-phonon 
process involving a low energy phonon because of the low density 
of states of these latter phonons. In addition to phonon-assisted 
processes which create or annihilate real phonons, there are also 
phonon-assisted transfer processes involving virtual phonon 
exchange, in which a phonon is first annihilated/created at one 
site and then created/annihilated at the second site. Orbach [3 ] 
first showed the importance of the phonon-assisted processes in 
connection with the transfer between isolated cr 3+ ions in ruby, 
which leads to capture of the excitation at Cr 3+ pairs. Imbusch 
[30] had suggested earlier that phonon-assisted transfer could be 
responsible for this since the calculated resonant transfer 
process was too small to account for the observed transfer rate. 
In these situations the calculated resonant transfer rate is small 
because of the large separation of the emission and absorption 
bands of the energy donor and acceptor in comparison to the 
homogeneous line widths. 

The simplest non-resonant transfer is the single-phonon 
creation or annihilation process. The corresponding energy 
transferred to the acceptor is EZPO~wq' where EZPO is the zero 
phonon transition energy of the donor, ~Wq is the phonon energy 
and the plus and minus signs go with the annihilation and creation 
of the phonon, respectively. The Stokes process, in which a 
phonon is created, is the more probable. The phonon involved may 
correspond to either a local or normal mode depending on the 
dopant and the crystal. For the situation in which there are many 
phonons involved, that is, iEzPO-EZPAI is greater than any of the 
phonon energies available for energy conservation, where EZPA is 
the zero phonon transition energy of the acceptor; the probability 
of a sequential phonon creation or annihilation of n phonons all 
having the same energy, ~Wq' is proportional to exp[-S~£], where 
~wq=~£/n and ~£ =iEzPO-EZPAi. This process is observed for RE3+ 
doped crystals and glasses [31]. 

The actual calculation of the phonon-assisted energy transfer 
is more complex than for resonant transfer; however, the basic 
ideas are the same. In a lattice at any temperature there is a 
given magnitude and form of the lattice vibration. If we view 
this lattice vibration in terms of phonons, then there exists a 
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corresponding equilibrium distribution of phonons. It is this 
equilibrium distribution and its effects on the energies and 
charge distributions of the energy donors and acceptors which are 
represented in the resonant energy transfer calculation by 
WO*(£O*) and WA(£A), and which are also present in the calculation 
of the non-resonant energy transfer process probability. In the 
non-resonant energy transfer calculation, we use the radiative 
transition spectra of the donor and acceptor to evaluate the 
integrals of these functions times the electronic transition 
matrix elements involved in the transfer process,as was done in 
the resonant energy transfer calculation. However, the difference 
between the resonant and the non-resonant transfer calculations is 
that the latter also involves the creation or annihilation of a 
real phonon, that is, an extra or missing phonon with respect to 
the equilibrium phonon distribution. The perturbation used in the 
non-resonant transfer calculation is the sum of the electromag­
netic interaction term used in the treatment of the resonant 
transfer problem and the electron-phonon interaction terms 
discussed in subsection lIE. In first order perturbation theory, 
the electromagnetic interaction corresponds to the resonant 
transfer process, radiative transitions, etc., and the 
electron-phonon interaction to phonon creation and annihilation 
plus the interaction between the virtual phonons and the energy 
donors and acceptors, which causes the broadening of their levels. 
In higher order perturbation theory, there are terms which cause 
changes in the number of phonons only, terms which cause pure 
electronic transitions that can give rise to additional effects in 
the resonant energy transfer and in the radiative transitions, and 
finally terms which involve both the electron-phonon interaction 
and the electromagnetic interaction that describe, in part, the 
non-resonant energy transfer process. For a single-phonon 
creation or annihilation transfer process we can use the mixed 
terms of the second order perturbation calculation. 

In this case the matrix element to be used in Fermi's golden 
rule for the calculation of the transfer probability per unit time 
between the initial and final states is 

+ <~D'~A*,{nq}IHDAI~o*'~A·{nq}> 

• <~D'~A*.{n +0 ,}IH 1 hl~D'~A*,{n }>/nw ,}. q- qq e -p q q (131) 
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where the summation is over terms with the upper or lower signs. 
The state I¢D'¢A,{nq}> is a state of the donor, acceptor and 
phonons where ¢D and ¢A indicate the states of the donor and 
acceptor, in accordance with the notation of equations (120) and 
(121) and {nq}indicates the state of the phonons, where the nq's 
are the phonon occupation numbers. Note that we must keep track 
of whether the phonon was created or destroyed at the donor or 
the acceptor. Note also that involved in equation (131) is the 
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same matrix element of HDA as was used in equations (122) and (124), 
except that the energy of the donor or acceptor has been shifted 
by ~Wq. The matrix element given in equation (131) is used with 
Fermi's golden rule which is then multiplied by WD~WA' and inte­
grated over ED*' EA' EA* and ED to give the non-resonant transfer 
probability. The result of this calculation can be related to 
the radiative spectra of the donor and acceptor, from which it is 
seen that the non-resonant transfer rate contains terms which are 
proportional- to 

f *(~E)fA(~E +~w ) D - q 

(~E) 3 (~E +.flw ) 
- q 

where Pph(~Wq) is the density of states of the phonons and 
~E=ED*-£D which is equal to EZPD for non-resonant zero phonon 
transitions. For details of this type of calculation for the 
non-resonant transfer rate see Orbach [3]. Note that due to the 
factor Pph(~Wq) the transfer rate will increase as the energy 
mismatch increases so long as ~E is less than the maximum energy 
of any phonon that is available for the non-resonant process. 

Finally, we note the effect designated as energy localization 
which is due to the spectra of the donor and/or the acceptor being 
inhomogeneously broadened. The inhomogeneous contribution to band 
widths can be distinguished and arises because dopants are located 
at sites with different crystal or ligand fields. The results for 
resonant and non-resonant transfer rates calculated above use the 
homogeneous line shape functions. It is found that the transfer 
rate, in general, decreases rapidly with increasing average 
separation between the donors and acceptors, the latter of which 
can be determined from the concentrations. Inhomogeneous 
broadening reduces the number of donors that can participate in 
transfer with a particular set of acceptors and vice versa, so 
that the rate will be smaller than that suggested by a calculation 
of the average separation which is based solely on the 
concentrations. A system in which this occurs is referred to as 
having energy localization. This effect is particularly important 
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in disordered materials, such as glasses, but also exists for 
randomly distributed gopants in crystals, especially for higher 
dopant concentrations. This effect is significant for resonant 
energy transfer if the inhomogeneous broadening is large compared 
to the homogeneous broadening due to the electron-phonon interaction. 

III.C. Electronic Charge Transport and Energy Transfer 

In this subsection the transfer of energy associated with 
charge transport is discussed. We begin with some observations 
and discussion of terminology to be used. The energy associated 
with a charge is equal to the difference between its energy and 
the Fermi energy. In most systems either the mobile electrons or 
the mobile holes predominate in the equilibrium state. Since the 
characteristics of the charge transport depend more on whether or 
not it is the predominant carriers that are involved in the 
transport than the sign of the carriers, we differentiate the 
carriers as majority or minority. The term majority carriers 
designates those carriers predominant in number in the equilibrium 
state and the term minority carriers those which are not. When the 
electrons are the majority carriers the Fermi level is closer to 
the conduction band whereas the Fermi level would be closer to the 
valence band when the holes are the majority carriers. Although 
all charges which are transported through a material and have 
non-zero energy relative to the Fermi level can transfer energy, 
the only useable energy is that which the carriers as a whole have 
in excess of what they would have in the equilibrium state. This 
excess energy can exist either because there are excess electrons 
and/or holes as compared to the number in the equilibrium 
situation or because the carriers have additional kinetic energy. 
Note that here we are using the terms electron and hole to 
indicate an electron in a state above the Fermi level and an 
electron state below the Fermi level which is empty, respectively. 
It is only the excess energy that is useable since at equilibrium 
the lattice and charges have the same temperature. If energy 
could be extracted from the charges when they are in the 
equilibrium state, then their temperature would be decreased below 
that of the lattice, and this is only possible thermodynamically 
if there is a reservoir colder than the lattice available to the 
electrons. 

Because of the electron-phonon interaction, carriers that are 
out of equilibrium with the lattice because they have excess 
kinetic energy usually return to equilibrium rapidly by creating 
phonons. Non-equilibrium can be maintained, however, if energy is 
supplied to the carriers at a rate equal to or greater than this 
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rate of loss. On the other hand, when the non-equilibrium in a 
semiconductor or insulator is due to an excess of electrons and/or 
holes equilibrium can only be re-established by the recombination 
of carriers of opposite type or by charge transport. Recombina­
tion can be with either free or bound carriers and can be done 
either by multi-phonon or radiative recombination. The rate of 
recombination of electrons and holes from different bands by 
multi-phonon emission can be small if there are few states in the 
middle of the forbidden gap, which is the case for many semiconduc­
ting and insulating materials. If there are few charged donors 
and acceptors which can bind holes and electrons, and the radia­
tive recombination rate is small, then the excess carriers can exist 
for a long enough time so that they can transfer energy while being 
transported through the material. 

The question of supplying energy to the carriers in order to 
maintain them in a state in which they have an excess kinetic 
energy must be considered. Energy can be supplied by an electric 
field, F, to an electronic ~article at the rate e2F2T/m*, where e 
is the electronic charge, m the effective mass and T the momentum 
relaxation time. In metals the fields that can be generated by 
external means are usually small, and therefore, the kinetic 
energy gained per unit time is usually smaller than the energy 
lost to the phonons. For this reason the carriers in metals are 
rarely far out of equilibrium with the lattice for any Significant 
length of time, and therefore, the useable energy transferred when 
charges are transported is small. 

On the other hand, for semiconductors and insulators there 
can be significant amounts of energy transferred via charge 
transport. There are two reasons for this. First, if there are 
excess minority carriers, then their associated energies are 
large, since these carriers are far from the Fermi level. Their 
energies are at least equal to half the width of the forbidden 
gap. This is the case whether or not they have large kinetic 
energies. Second, any of the carriers can have large excess 
energy because large electric fields can be developed in these 
materials, which can maintain the carriers in a state having 
excess kinetic energy. The large fields are possible because 
there are fewer mobile carriers in these materials as compared to 
metals. However, for this same reason there is less transport of 
charge in these materials even though there is large transport of 
energy per charge. It must also be noted that although the fields 
that can be maintained in these materials can be quite large, the 
distribution of the carriers which can be maintained or reached 
with these fields cannot have an arbitrarily large excess kinetic 
energy since most of the electron-phonon interaction matrix 
elements increase with the momentum of the phonon created, which 
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in turn increases with the initial energy of the carriers being 
scattered. The one exception is the electron-optical phonon 
interaction in polar materials. Note that the minority carriers 
have a large potential energy in addition to their kinetic energy, 
whereas the majority carriers' energy is primarily kinetic. It is 
usual to distinguish carrier distributions having excess energy by 
whether or not they have large excess kinetic energy. The usual 
designation for carrier distributions with a large excess kinetic 
energy is to call them "hot" carriers. However, this terminology 
has some problems associated with it. First, it implies that 
there is only one way in which the carrier distribution can be out 
of equilibrium when there is"an excess kinetic energy, which is 
not true. Second, it implies that all non-equilibrium 
distributions can be characterized by a temperature, that is, that 
they are either Maxwellian- or Fermi-Dirac-like distributions 
which are defined by a temperature, and this temperature is 
greater than the lattice temperature. However, there are 
distributions for which there is no characteristic temperature 
that can be defined. For example, there are distributions which 
contain ballistic and/or streaming electrons, which are not 
characterized by a temperature. Ballistic electrons are electrons 
for which the electron-phonon interaction is negligible, and 
therefore, do not lose any significant amount of energy to the 
lattice during transport. Streaming electrons are electrons for 
which there is only a weak coupling to the optical phonons, which 
can happen when they have a sUbstantial amount of kinetic energy. 
This is possible in polar materials, since for large kinetic 
energy the electron-optical phonon interaction decreases with the 
energy of the electrons. If either ballistic or streaming 
electrons are present in a given situation, the distribution would 
have peaks narrow in comparison to the width of the Fermi-Dirac or 
Maxwellian peak for the same situation. 

To study the transport properties we use either the Boltzmann 
equation or the master equation and/or its generalization. In the 
rest of this subsection we discuss the Boltzmann equation and the 
master equation. The generalized master equation will be 
discussed in the subsection on excitons. For a detailed 
discussion of the Boltzmann equation see the proceedings of the 
conference on the "Physics of Nonlinear Transport in 
Semiconductors" [32], and for the master equation see the works of 
Dresden [33] and Chester [34]. 

The Boltzmann equation has the form 
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(132) 

where f:f(ro,po,t) is the carrier distribution function and F the 
electric field. ro and Po are the position and momentum of a 
single carrier and (3f/3t)coll gives the change in the 
distribution due to collisions. It is this latter term which is 
the most difficult to determine, and it is this term in which the 
properties of the particular system are contained. We can rewrite 
the collision term as follows: 

( d3p'[f(p')w(p'+P )- f(p )w(p +p') 
J 0 000 000 

(133) 

where w(p~P2) is the probability per unit time of a carrier being 
scattered from the state in which it has momentum P1 to the state 
with momentum P2' In the case of scattering by phonons, w(P1+P2) 
is given by 

Ap~'P1S is given by equation (96). It should be noted that 
the terms in equation (132) containing Vrof and pof are 
usually designated as the streaming terms. 

The master equation has the form 

ap (t) 
(l 

at (134) 

where PaCt) is the probability at time t that the quantum 
mechanical system is in a group of states indexed by a where 
a={al,aZ, ... ,av,"'}' The PaCt) are designated as the many­
particle probability functions. Theav's are subsets of the 
quantum number set a indexing the states of the individual 
particles of the many-particle system. Note that the grouping of 
the states into groups indexed by the a'S is usually done by 
having some of the particles' quantum numbers specified, with the 
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rest of the particles having their quantum numbers varying over 
all possible values. For example, the electronic particles might 
belong to the first set of particles and the phonons to the second 
set. Note that the quantum numbers for the phonons would be their 
occupation numbers. The matrix elements rlaS of the operator rl are 
the transition probabilities per unit time from the group of 
states indexed by S to those indexed by a. The properties of the 
particular system being described are incorporated in the rlaS. 
Note that one of the assumptions made in deriving the master 
equation from the dynamical equation for the quantum mechanical 
density function is that the states indexed by the a's are weakly 
interacting and therefore the matrix elements of the operator 
rl should be small. 

We can define the one-, two-, etc. particle probability 
functions by summing the many-particle probability functions over 
all but one, two, etc. of the particle indexes. Dresden [33] has 
shown that under appropriate assumptions and with the use of the 
one-particle probability functions that the Boltzmann equation can 
be derived from the master equation. However, the streaming terms 
are missing because there are no corresponding terms in the master 
equation from which he started. 

Note that the Boltzmann equation is a semiclassical equation 
in that the collision term is usually found quantum mechanically 
whereas the streaming terms imply a classical specification. In 
addition we should note that it is implicit in the Boltzmann 
equation that only infinitesimal changes are described. On the 
other hand, the master equation is more suited to systems in which 
discrete quantum jumps are important. Also note that once we have 
either f or PaCt) then any prediction of experimental results that 
can be made can be found by taking weighted averages of the 
appropriate quantity weighted by f or P (t). 

Ct. 

When solving the Boltzmann equation for real systems, since 
the collision term is usually complicated, it is usual to look 
for approximate solutions. We assume that the carriers are 
characterized by a temperature, which will be the case if the 
electron-electron scattering rate is large in comparison to the 
rate of change of the energy of the carriers as a whole. If this 
is the situation, a commonly used approximation is the displaced 
Maxwellian given by 

f (P ) = A exp { _ ( Po 2 
- v • P ) /k T } 

o * d 0 -'"B e ' 2m 
(135) 
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where vd and Te are parameters to be determined, kB the Boltzmann 
constant and A a normalization constant. The parameter Te gives 
the elevated temperature of the carriers caused by the applied 
electrio field. Note the analogy between the assumption made in 
this approximation for the Boltzmann equation and the assumption 
of the adiabatic approximation. In both, because of an internal 
fast rate of adjustment in a subsystem as compared to the energy 
supplied to or lost from the subsystem, a partial separation can 
be made between the internal subsystem, in this case the 
electrons, and the external subsystem, in this case the lattice 
and electric field, by including the effects of the external 
system on the internal system parametrically. Although it seems 
reasonable to assume this form as an approximation to the solution 
of the Boltzmann equation when the above conditions are satisfied, 
it is probably better to think of this solution as a particular 
two-parameter fit to the solution. The displaced Maxwellian is 
appropriate for situations in which the carriers are 
non-degenerate. If the carriers were degenerate then a displaced 
Fermi-Dirac distribution would be more appropriate. 

The values of vd and Te can be determined in terms of the 
field, F, and the parameters describing the scattering mechanisms 
by making use of the balance equations for the energy and 
momentum. These equations are derived from the Boltzmann equation 
by first multiplying the Boltzmann equation by either the energy 
or the momentum and then integrating over the momentum space. The 
results are: 

Momentum Balance Equation 

eF = f d3po f d3p'(p'_p )w(p'~p )f(p') 
00000 0 

Energy Balance Equation 

(136) 

( ,2 2) 
f 3 I 3 Po Po evd·F = d pdp' -* - -* w(p'~p )f(p'). (137) 

o 0 2m 2m 0 0 0 

Equations (136) and (137) can be solved for vd and Te with 
which f(po) is then given. Note that the displaced Maxwellian 
solution is appropriate for situations in which there is spatial 
homogeneity. If an improved parametric solution is wanted, a ten 
parameter solution could be used since there are ten independent 
conserved quantities, in general, for any three dimensional 
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problem to which there correspond ten balance equations. These 
ten balance equations could be used therefore to specify the ten 
parameters. In essence we have chosen arbitrarily six of these 
parameters when we use the displaced Maxwellian approximation. 
The reason for doing this is that in most situations it is 
difficult to specify the form of the additional balance equations. 
If we have found the f(po) for the displaced Maxwellian 
distribution then we can determined the momentum and energy 
relaxation times, which are defined as follows: 

dl<p >1 (l3B) 0 L = 
d(el FI) m 

and 
2 * d<p 12m> 

0 
(139) LE d(eF.vd) 

where <~> =fdpo f(po)~(Po)' which is the average value of ~(Po). 
The two parameters Lm and LE can be used to define an approximate 
parametric solution of equation (132) which is more general 
than the displaced Maxwellian approximation. In most cases LE is 
much longer than Lm' which allows for some interesting effects. 
For example, the approach to equilibrium does not have to be 
monotonic. That is, there can be an overshoot for a short length 
of time [35]. In the above discussion of the displaced Maxwellian 
distribution it was implicitly assumed that the energy bands were 
parabolic. We can take care of the explicit band shape by using 
the actual energy-momentum relationship in the displaced 
Maxwellian and in the energy balance equation. The simplest way 
to do this is by assuming that the effective mass is momentum 
dependent. 

If we consider a transport problem for which there is a 
fundamental quantum discreteness then it would be more appropriate 
to use either the master equation or a generalization of it. An 
example of this type of problem is the transport of carriers 
across an interface where the quantum discreteness involved is 
that the carriers are either on one side of the interface or the 
other. In this situation a possible subdivision of the states is 
into states for which the particle is on one or the other side of 
the interface. Equation (134) then takes the form 
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ap(i,E,t) 
at = J dE I [P (j , E I , tHL . (E, E ') -P (i, E, t) n .. (E I , E) ] , 

1J J1 

(140) 

where i~j, i,j:1,2 index the states for the two sides of the 
interface and E is the energy of the particle. Once the n's and 
P(i,E,O) are given, then we have a set of coupled linear 
integro-differential equations to solve for P(i,E ,t). Note that 
the linearity of the master equation is in contradistinction to 
the Boltzmann equation which is nonlinear in f. 
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When there is transport of charge the energy of the carriers 
can be transferred to charged donors or acceptors by capture of 
cool carriers. The kinetic energy of the "hot" carriers can be 
transferred to localized centers by collision excitation or by 
Auger processes. The latter two processes will be discussed later 
in this section. 

III.D. Energy Transfer by Excitons 

1. Exciton Structure. As introduced in Section I, excited 
states of crystals in which the electron and positive hole are 
correlated and propagate as a neutral particle, the exciton, 
constitute and important mechanism of energy transfer in semi­
conductors and insulators. The exciton is an elementary excita­
tion, a boson, and an eigenstate of a periodic Hamiltonian, how­
ever, its description goes beyond the one-electron approximation 
of subsection II.B and the electronic band structure of subsection 
II.C. Nevertheless, the analyses of the properties of excitons 
depend on the concepts developed in these subsections. As noted 
in Section I, excitons can be divided into two classes: Wannier 
(effective mass) and excitons and Frenkel (tight binding) excitons. 
In the following we shall outline the formulation of these, then 
consider generalized excitons as elementary excitations, and then 
analyze their energy transport properties. 

A simplified treatment of the Wannier exciton can be done 
using effective mass theory. A derivation of the effective mass 
approximation is presented in the appendix. Here we use a general­
ization of two-particle states. The zero-order Hamiltonian is now 
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(141) 

where the potentials are the interactions between the particles of 
interest and the lattice, and Te and Th are the kinetic energy 
operators. In the approximation of a continuous dielectric 
background the interaction between the electron and hole is 

e2 
H'(re,rh) = - , 

E::I r e - r h I (142) 

where re is the electron coordinate, rh is the hole coordinate and 
E:: is the dielectric constant. HI is assumed weak compared to the 
crystal potential; equivalently the average separation is assumed 
large compared to unit cell dimensions in order for the continuum 
approximation of equation (142) to be valid. The zero-order 
wave functions are simple products of Bloch functions since the 
particles are distinguishable. The exciton wavefunction is then 
represented as an expansion in these functions 

where the sum is over bands, and the integrations are over a 
Brillouin zone. The SchrBdinger equation for the exciton 
wave function is then 

(144) 

From here, the procedure is essentially the same as that shown in 
the appendix, except that the basis states are the two-particle 
products used in equation (143). The resulting equation is 

[Enm(ke,kh) - E]Fnm(ke,kh) 

+ I I f Fn'm,(k~,kh)Cnn,(ke,k~,K )Cmml(kh,kh,K~) 
n I ;m I c\, B C\ 

x H'(q)d3k~d3kh = O. (145) 

Here q = ke-k~-Ka+kh+k~+Y.B' HI (q) is the Fourier transform of the 
HI given in equation (142), and E is the eigenvalue in equation 
(144). The approximations made here will be the same as those 
made in the appendix, namely that a single band is important for 
each particle (a conduction band for the electron and a valence 
band for the hole); the bands are isotropic, with extrema at k=O; 
the F functions are localized about k=O; and all the CIS are 
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approximately equal to 1. Then 
Schrodinger equation results: 

the following momentum-space 

[
fl2k2 fl2k2 

e h -- + -- + H'(q) + 
2m* 2m* e h 

(146) 

where Egt the energy gap, merely sets the position of the energy 
scale. In order to transform this equation to real space, we 
define the double Fourier transform of F(ke,kh) by 

F(ketkh) = f F(re,rh)exp[-ike·re-ikh·rhJd3ked3kh· 

Then the effective mass equation is 

[ 
n2 -fl2 

- _\12 - - ,,2 + H' (r ,r ) + 
2 *e 2*h eh me mh 
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This is, of course, just the Schrodinger equation for the hydrogen 
atom. The internal and center of mass motion can be separated by 
making the coordinate definitions 

r = re - r h , 

(149) 

Then the effective mass function F can be written as a product 

and f and G satisfy 

and 

[- ~~vl- ,e~}(rl • (E - Eg -tlf(rl, 

fi2 2 
- 2 (* *)" R c;( r) = t G( r) , 

me+mh 

respectively, where 

11-
m*m* e h 

= m*+m*· e h 

(150) 

(151) 

(152) 

(153) 
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The eigenvalues of equation (151) are just those of the hydrogen 
atom in the center of mass frame, and the eigenvalue of equation 
(152) is just the total kinetic energy of the exciton. Note that 
contrary to the usual practive in solving the hydrogen atom problem, 
we do not assume that the total momentum of the electron and hole 
system is zero. Thus, the energy of the exciton (E in equation 
(144) is 

l)2K2 u*e4 
E = Eg + (* *) - 2 2 2· 

2 me +II1h £ 2fl n 
(154) 

This approach is rather limited in its applicability to real 
systems but is of interest nevertheless due to the clear physical 
picture it affords. Unfortunately, it is somewhat difficult to 
generalize this calculation, so for accurate calculations it is 
best to use an approach which is more general from the start. We 
refer the reader to the review by Knox [36] for a more general 
treatment. 

The Frenkel exciton includes excitons which can be ap­
proximated in terms of intramolecular excitation and those ap­
proximated by charge transfer transitions. Excitonic states of 
alkali halides were early investigated by von Hippel [37] and 
their energies approximated from charge transfer between nearest­
neighbor anion and cation 

(2A - 1) 
Eex = X - I + R + Epol ' 

o 
(155) 

where X is the electron affinity of the anion, I is the first 
ionization energy of the cation, A is Madelung's constant, Ro is 
nearest-neighbor anion-cation distance in the crystal and Epol is 
the polarization energy. 

Intramolecular excitons have been investigated more recently 
by more sophisticated methods. For these a tight binding approach 
using approximations to the Wannier functions is useful. For 
crystals, such as rare gas solids and some organic crystals, the 
interactions between the molecules are weak, i.e. van der Waals 
interaction only, and excitonic wavefunctions can be described as 
follows: 

$ ex(K) = (156) 

where A*(r - Rj) describes an excited molecule at the jth site; 
A(r - Ri), ground state molecules at the ith site; and the sum 
over sites including the exponential factor makes ~ex(K) an 
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eigenstate of the periodic Hamiltonian of the crystal •. Frenkel 
excitons in aromatic organic crystals such as anthracene have been 
extensively investigated by Pope and collaborators [38]; excitons 
in rare gas crystals by Zimmerer [39] and Hahn and Schwentner 
[40]. Intracore excitons have been investigated for some 
materials, including alkali halides [41]. 

Excitons can be generalized as elementary excitations and 
formulated as follows: 

(157) 

where ~ is the electronic wave function and is usually taken to 
be of t~e Hartree-Fock form, civ is the annihilition operator for 
a valence electron at the ith site, cjc is the creation operator 
for a conduction electron at the jth site, and f(Ri - R·) is a 
correlation function for the two operators. Some limiting cases 
are: 

f(Ri - Rj ) = Qij intrasite exciton, 
e.g. core exciton 

f(Ri - Rj ) = Oi ,i±1 charge transfer exciton, 
e.g. alkali halide 

f(Ri - Rj ) = F(re,rh) effective mass exciton, 
e.g. III-V semiconductors. 

2. Exciton Transport. Now we shall briefly examine the pro­
blem of exciton transport. It has been pointed out [42] that the 
study of exciton transport can be viewed an encompassing all forms 
of spatial energy transfer in which mass and charge are not trans­
ported. Here the point of view is that any quantum of electronic 
excitation whether localized at a lattice site or impurity, or de­
localized, regardless of the state of relaxation of the lattice is 
an exciton. In this view, the resonant and non-resonant energy 
transfer problems can be seen as a part of the somewhat more generali 
topic of exciton motion. Thus, the study of the motion of excitons 
is of considerable importance in the process of sensitized lumines­
cence, whether in organic or inorganic crystals. It is also fund­
amental to many other processes. For example, it is known that in 
photosynthesis the initial excitation must migrate to particular 
sites where trapping occurs and the chemistry of sugar synthesis 
takes place. 
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The microscopic interactions responsible for the motion of 
excitons have been discussed earlier in the sections on resonant 
and non-resonant energy transfer, so we will deal in this section 
only with the macroscopic, or statistical, treatment of the 
transport problem. It is instructive to consider first the two 
limiting cases for the type of motion undergone by excitons as 
this is one of the principal issues involved in modern theories of 
exciton transport. In one limit the motion can be characterized 
as wave like, that is, an exciton wave characterized by a wave 
vector ko propagates through the crystal with little scattering by 
phonons. This type of motion is generally termed "coherent", and 
it is well described by the microscopic equation governing the 
system, the Schrodinger equation. In the opposite limit, the 
motion is that of a random walk through the lattice, that is, a 
diffusion process. This type of motion is called "incoherent" or 
"diffusive" and is best described by a master equation. The 
latter type of motion is clearly an irreversible process, whereas 
the former is reversible. The source of the irreversibility is 
the interaction between the excitons and phonons. 

In general, the situation in real crystals lies somewhere 
between these two limits, and in order to relate the microscopic 
interactions responsible for exciton motion to macroscopic observ­
abIes it is necessary to develop statistical procedures which 
include aspects of both. Previous techniques, such as the 
diffusion equation approach and the master equation approach, 
dealt only with incoherent motion. A great deal of work on this 
problem has appeared recently, principally dealing with the motion 
of Frenkel excitons in molecular crystals. Since the classic 
review of Knox [36], several new approaches have been developed to 
treat both the coherent and incoherent aspects of exciton motion. 
Among these are: 1) a polaron-like treatment, due to Grover and 
Silbey [43], [44], 2) a stochastic Liouville equation approach, 
initiated by Haken and Strobl [45], and 3) a generalized master equa­
tion approach, originated by Kenkre and Knox [42], [46]. Reviews 
of the latter two, together with extensive lists of references, 
have been published recently by Kenkre [47] and Reineker [48]. 
Our discussion is based primarily on these reviews. 

The application of generalized master equations (GME's) to 
exciton transport is the most recent of the methods to appear. It 
was developed in order to unify the treatment of coherent and 
incoherent exciton motion in a very general way within a single 
framework. The appropriate GME is 
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t 

= f ~ [Wmn(t-t')Pn(t') - Wnm(t-t')Pm(t')]dt', (158) 
o 

where Pm(t) is the probability of occupancy of site m, and the 
Wmn(t - t') are "memory functions", that is, functions which serve 
to include an appropriate amount of dependence on "past history" 
in the equation. This non-locality in time means that the GME is 
non-Markovian. In the limit of infinitely rapidly decaying 
memory, Wmn(t - t') = nmno(t - t'), the GME becomes the ordinary 
Markovian master equation and yields 

= (159) 

and is appropriate to the description of completely incoherent 
motion. The cause of the decay in the memory functions is the 
interaction of the excitons with the reservoir of phonons. In the 
limit of no interaction with the phonon reservoir (infinitely long 
memory), the GME becomes the microscopic equation for the diagonal 
elements of the density matrix, and is then a description of 
completely coherent motion. Thus, the fundamental problem of the 
GME approach is now that of determining the memory functions from 
the microscopic dynamics. In some cases this can be done exactly. 
It is quite interesting that in some cases in which an exact 
calculation is not possible, the memory functions can be related 
directly to measurements of spectra. For more details on the 
calculation of memory functions in specific cases, the reader is 
referred to the review of Kenkre [47]. 

The actual memory functions appropriate for a given system 
are, in general, somewhere between the limits of infinitely short 
and infinitely long memory, and thus, their effects mayor may not 
be apparent on comparison with particular experiments. The 
solutions of the GME show coherent behavior only for times short 
in comparison to a parameter called the "coherence time". On this 
basis, one would expect the effects of the coherence to be 
observable only in experiments with temporal resolution finer than 
the coherence time for the system being observed. However, even 
in steady-state sensitized luminescence experiments coherence can 
be observed if the radiative lifetime of the excitons is com­
parable to, or shorter than the coherence time. In this case, the 
excitons move coherently during most of their existence, and 
transfer rates are affected. At high temperatures, the increased 
phonon density causes the motion of excitons to be less coherent 
than at low temperatures. Therefore, in this regime, as well as 
in those steady-state experiments where the exciton radiative 
lifetime is larger than the coherence time, the memory functions 
would be close to those appropriate for incoherent motion, and an 
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ordinary Markovian master equation serves to describe the trans­
port properties adequately. 

Whereas the GME approach unifies the treatment of coherent 
and incoherent motion in a very general way through the use of 
memory functions, the stochastic Liouville equation (SLE) approach 
treats the two types of motion in a more specific way as the sum 
of two contributions. The method was developed by Haken and Strobl 
[45], and has undergone considerable development since then by 
Haken, Reineker, Strobl and others [49], [50]. Kenkre [47], [51J has 
pointed out that the method developed by Grover and Si1bey [44] 
results in a transport equation which is formally identical to the 
SLE. For this reason, we will not discuss the Grover and Si1bey 
method separately. The form of the SLE is 

dPmn(t) I 
dt = -i [Ho,p]mn - 26mn k Ylm-nl(Pmm - Pnn ) (160) 

where the Pmn are the density matrix elements, [".] denotes the 
commutator, Ho is the non-core electronic Hamiltonian, 

r = 

and the various yls are rates which we discuss briefly below. The 
first term on the right-hand side represents the coherent motion 
of excitons. Note that it, together with the left-hand side, is 
formally identical to the von Neumann equation for the density 
matrix. The second term on the right-hand side represen~s 
incoherent motion with rates given by 2Ylm_nl for sites 1m - nl 
apart. The diagonal matrix elements present in this term 
represent the probability of occupancy of particular lattice sites 
by the exciton. Note that if only this term is kept on the 
right-hand side, the master equation results. The remaining 
terms, involving only off-diagonal elements, represent inter­
actions with the phonons. The first of these describes the decay 
of phase relations between the lattice sites, the decay constant 
2r being independent of site. 

Kenkre [47] has shown that the SLE with its last term 
neglected can be put into the form of a GME with memory functions 
given by 

(161) 
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where W~n(t) is the memory function appropriate to completely 
coherent motion, i.e. with no interaction with the phonons. The 
second term clearly represents incohererit motion, due to its 
infinitely rapid decay in time. We can see from this comparison 
that the SLE method appears to contain somewhat less generality in 
the type of coherence it can describe. However, this is offset by 
the fact that it is an equation which gives off-diagonal as well 
as diagonal elements of the density matrix, whereas, the GME only 
gives the diagonal matrix elements. 

IILE. Auger Processes as Energy Transfer 

Auger processes involve the transfer of energy between 
electronic particles in such a way that one of the particles in 
the final state lies in a continuum. in solids this can be viewed 
as a three-particle process in which two carriers collide, causing 
one of them to recombine with a carrier of opposite type, the 
binding energy being given up to the remaining collision partner. 
The recombining particles may be intrinsic carriers, or one or 
both may be bound to dopants or defects, or they may be bound 
together as an exciton, either free or trapped. The concept of 
Auger transitions in solids has been applied to metals as well as 
semiconductors, but it is of greatest utility in the latter, and 
the bulk of research has been concentrated there. 

While Auger transitions do not themselves involve spatial 
energy transfer over significant distances, they do involve 
transfer of energy from one particle to another, and the final 
state always involves having at least one particle in a continuum 
state, usually with non-zero kinetic energy, so that energy is 
then available to be transferred by particle transport. For this 
reason, we take the view that Auger processes constitute a form of 
energy transfer, but in themselves, only in momentum space (the 
latter remark is due to Landsberg [ 6 ]), that is, there is 
transfer of energy from one state or group of states localized in 
momentum space to another. It is worth emphasizing that Auger 
decay of an exciton or excited impurity is a competitive process 
to both spatial energy transfer (i.e. resonant or non-resonant 
transfer, or exciton transport) and radiative decay. 

It is possible to envision a wide variety of different types 
of Auger processes in semiconductors. Generally it is convenient 
to classify them into four distinct groups according to whether 
they are intrinsic (occur in a pure material) or extrinsic 
(involve impurity or defect states), and whether they are phonon­
less or phonon assisted. Distinctions are also often made between 
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processes occurring in direct-gap materials (direct processes) and 
those occurring in indirect-gap materials (indirect processes). 
We shall follow the convention of denoting those processes 
involving collision between two electrons with one of them 
receiving the energy from the recombination of the other with a 
hole as eeh processes, and the corresponding collisions of two 
holes as ehh processes. 

The simplest of the Auger processes is the phononless 
band-band Auger process in direct-gap materials, which was inves­
tigated in detail by Beattie and Landsberg [52]. The eeh version 
of this process is shown in Figure 6. Here the lack of phonon 
assistance means that energy and momentum conservation must 
be satisfied by the two colliding particles (electrons or holes). 
As a result, it is not possible for either of the particles to 
undergo a band edge-to-band edge transition (~E=Eg, ~k=O). Thus, 
there must be an activation energy associated with the process, 
and it is related to the size of the energy gap. For direct-gap 
materials with large gaps, the activation energy is large, so that 
the probability of this type of transition is expected to be 
small. 

I' 

E 

k 
--7 

Fig. 6. Direct, Phononless band-band Auger process (eeh), 
showing conservation of energy and momentum. 

In their treatment of this process, Beattie and Landsberg 
used perturbation theory, starting from zero-order states which 
were taken to be Bloch states, with the perturbation being the 
screened electron-electron interaction 
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2 
H' = !.... e-Ar 

e:r ' (162) 

where e: is the dielectric constant and 1/A is a screening length. 
The dielectric constant takes account of screening by inner 
electrons, and 1/A takes account of screening by conduction 
electrons. 
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In order to obtain the net recombination probability, it is 
necessary to take the difference between the probabilities for the 
forward (Auger) process and the reverse (impact ionization) 
process. If energy is conserved, the net probability is zero 
unless the electrons in the bands of interest are not in 
equilibrium. Beattie and Landsberg considered the electrons 
within each band to be in equilibrium among themselves but not 
with those of the other band. They defined quasi-Fermi levels for 
each band, and it was the difference in these quasi-Fermi levels 
that was responsible for the existence of a net non-zero Auger 
transition probability. They calculated carrier lifetimes (under 
the assumption that the Auger process was the only available 
recombination process) and compared them with experimental results 
in InSb. Above about 250K they found reasonable (order of 
magnitude) agreement, suggesting that Auger transitions form the 
dominant recombination process in InSb at high temperatures. 

It can be shown that the dependence of the band-band Auger 
transition rate on carrier density depends on n2p (eeh process) or 
np2 (ehh process), where, as usual, n denotes the negative carrier 
concentration and p the positive carrier concentration. Following 
Haug [5~ we write the Auger recombination probability for the eeh 
process in the form 

where A is a constant factor, M is a matrix element of H', and the 
particle indices are shown in Figure 6. P consists of the 
appropriate occupation probabilities and contains two terms, the 
first for the forward process and the second for the reverse 
process: 

(164) 

Here fe and fh refer to Fermi-Dirac distributions involving 
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appropriate quasi-Fermi levels Fe and Fh for the electrons and 
holes, respectively: 

fe = 1 + exp[(E-Fe)/kBT] 

f _ 1 
h - 1 + exp[(Fh-E)/kBT], (165) 

where kB is Boltzmann's constant. Taking energy conservation into 
account we can rewrite P in the form 

Now if the Fermi-Dirac distributions are approximated by Boltzmann 
distributions 

(167) 

where 1-fe % 1, 1-fh ~ 1. fe and fh are proportional to nand p, 
respectively [54]. Thus, the forward rate goes as n2p, and the 
inverse rate as nnopo' where the subscript indicates the equi­
librium densities. Thus, the net Auger recombination rate depends 
on n2p. This is a faster increase with carrier concentration than 
that for radiative rates by a factor of n (or p in the case of the 
ehh processes). Note that the analysis on which this is based 
breaks down for degenerate semiconductors, since it requires the 
approximation of the Fermi-Dirac distribution function by a 
Boltzmann distribution. 

While in direct-gap semiconductors phononless Auger tran­
sitions require an activation energy, it is theoretically possible 
that a phononless Auger transition could occur in an indirect-gap 
material with no threshold energy. Such a material would have to 
have a rather special band structure. However, it turns out that 
the band structure of germanium is a reasonably close approxima­
tion to that required for phononless ehh processes without 
activation energy. The band structure of silicon, on the other 
hand, does not favor this process. Both materials have band 
structures that would seem to favor the corresponding eeh process, 
but Pilkuhn [55] has pointed out that it appears to be improbable 
because of a small matrix element and a small region of k space 
for the transition. 
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Phonon-assisted Auger recombination was studied by Eagles 
[52] for direct-gap materials, and by Huldt [53] for indirect-gap 

materials. These are second-order processes, and as such, would 
generally be expected to be less probable than the phononless 
processes. However, phonon assistance makes possible the satis­
faction of the momentum conservation condition more easily, and 
this may compensate for the decreased probability due to the 
higher order. Indeed it is often observed experimentally that 
Auger transition rates have only weak temperature dependence, 
which is consistent with phonon participation because the activa­
tion energy is thus obviated. This suggests that the phonon 
assisted process may be of considerable importance in many common 
semiconductors. 

Phononless Auger processes in indirect-gap materials were 
investigated by Huldt [54] and by Hill and Landsberg [55], with 
the result that the recombination coefficients were lower than 
those determined experimentally. 

The case of degenerate semiconductors has been considered by 
Haug [56], [57] for both direct and indirect-gap semiconductors. He 
showed that phononless Auger recombination is highly improbable in 
degenerate materials, so both papers concentrate on phonon­
assisted processes. In the later paper he applies the theory to 
the phenomenon of electron-hole drops and finds fairly good 
agreement with experiment. 

Other types of Auger processes include those involving 
localized centers, or traps. These are known as band-trap Auger 
transitions. Here a conduction electron recombines with a trapped 
hole, or a valence hole with a trapped electron, the recombination 
energy being given to a fr.ee carrier. Auger transitions involving 
two trapped particles are also possible, as in electron transfer 
between a donor and an acceptor with the energy again given up to 
a free carrier. Annihilation of free or bound excitons in which 
an electronic particle receives the recombination energy are yet 
another type of Auger process. Pilkuhn [58] has remarked that 
Auger transitions involving bound excitons are important in 
silicon. 

III.F. Inelastic Collisions: Hot Electron Excitation 

Impact excitation in solids involves the transfer of energy 
from an energetic charge carrier to a localized state, which may 
be an impurity ion (localized in real space), or some quantum of 
excitation of the crystal, such as an exciton or plasmon 
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(localized in either real or momentum space). The projectile may 
be quite energetic, as in cathode ray bombardment, or it may have 
only a few eV of energy, as in electroluminescence. This 
inelastic scattering process is just the inverse of a particular 
type of Auger process in which the recombination occurs between 
bound charges on a single site. As such, it can be considered to 
be a form of energy transfer. 

We shall be concerned here only with the field of 
electroluminescence, where the excitation energy is of the order 
of two or three electron volts, much greater than thermal 
energies. As a consequence, the carriers which participate must 
be more energetic than those which are equilibrated with the 
lattice, and so they are dubbed "hot carriers", even though it may 
not be correct to assume that they can be characterized by a 
temperature. 

There remains some controversy in the literature as to 
whether the mechanism of excitation is direct impact excitation or 
impact ionization of the lattice followed by energy transfer to 
the luminescent center [59, 60]. However, it appears that the 
bulk of experimental work supports the impact excitation mode at 
least in the case of ZnS:Mn and ZnS doped with various rare earths 
[61], [62], [63], [64], [60]. 

Tanaka et al. [60] have performed experiments involving 
ZnS:Hn in both photoluminescence (PL) and electroluminescence 
(EL). In the former case, time resolved spectroscopy showed 
recombination luminescence followed by a build-up of emission from 
the manganese, clearly revealing lattice ionization followed by 
energy transfer as the mechanism of excitation. However, in the 
case of EL, no recombination luminescence was observed, suggesting 
that energy transfer was not the excitation mechanism. This 
suggests further that the carrier energy distribution tails off 
quite sharply in the region between the manganese excitation 
energy (about 2.2 eV) and the band gap (about 3.7 eV). This last 
conclusion is also supported by a result of Zhong and Bryant [65] 
which can be used to estimate the temperature of the hot carriers 
as about 1800K, assuming that it is reasonable to characterize the 
distribution by a temperature. For a Maxwellian distribution at 
that temperature less than one percent of the carriers have 
sufficient energy to excite the manganese. 

Evidence against direct impact excitation has been published 
by Walentynowicz et al. [59]. Their experiment, also using ZnS:Mn 
as the active layer, showed the Mn2+ emission peaking about 200 II s 
after excitation in both PL and EL. Also, only one peak was 
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observed in both cases, with no change in the intensity distribu­
tion. Thus, they claim that non-radiative transfer is the 
excitation mechanism. They also measured the delay in the 
emission peak vs concentration of Mn2+ and found a sUbstantial 
decrease above one percent by weight. They claim that this is 
consistent with the dependence of non-radiative transfer on 
activator-sensitizer separation. It should be pointed out, 
however, that it is also consistent with the dependence of 
resonant transfer among Mn2+ centers on the separation between the 
Mn2+ ions. This would cause concentration quenching, but no 
mention was made of this phenomenon. Having noted this con­
troversy, we shall be concerned below only with the process of 
direct impact excitation of the luminescent centers. 

Allen [66]. [67]. [68] has presented a simple model describing 
the impact excitation process. In the case considered, the device 
is a reverse-biased Schottky diode, in which the acceleration of 
the energetic carriers takes place in the same region in which the 
excitation occurs. If NL and N~ represent the concentration of 
luminescent centers and the concentration of excited centers, 
respectively, in the region of interest, then 

* J * NL q o\HNL - NL) = T\~' (168) 

where W is the width of the region, J the current density, q the 
charge, T the lifetime of the excited state, and 

a= <~> fV(E)~(E)f(E)dE (169) 

o 
is a sort of average cross section. aCE) is the cross section for 
the excitation process, feE) is the carrier energy distribution, v 
is the carrier velocity, and <v> is the velocity averaged over the 
distribution function. From (168) the fraction of excited 
centers is obtained: 

(170) 

Now, the number of centers excited by an electron in crossing 
the region is given by ~(NL - Nt)W, so the quantum efficiency is 

(171) 
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where nrad is the radiative quantum efficiency. Unfortunately, 
there is no clear physical interpretation available for cr as 
defined in (169). In most situations of interest there will be 
significant variations in carrier velocity across the region 
containing the luminescent centers, so that the variation of 
cr across the region must be taken into account. In Allen's case, 
there are high fields within the active region which are respon­
sible for acceleration of the carriers. The variation of the 
field within the region and of cr with the strength of the field 
are thus important. Allen has taken these into account by simply 
assuming particular functional forms. He is then able to 
determine an expression for the dependence of the quantum ef­
ficiency on applied voltage. The expression agrees reasonably 
well with experimental values when the voltage is not too high. 
We do not present the expression or its derivation here, as it may 
not be directly applicable to more general situations. 

The problem of calculating the cross sections for the 
excitation process has not been extensively investigated. There 
are probably a number of reasons for this. Among them are the 
difficulty of the problem. At the relatively low energies 
involved the Born approximation is known to represent the cross 
sections poorly, and more precise methods, such as the close­
coupling methods, are quite unwieldy when dealing with the large 
numbers of electrons present in the typical luminescent center 
(transition metal ions and rare earth ions are common). In 
addition, there are unknown effects due to the presence of the 
crystal lattice, the states involved in the transitions arlslng 
from degenerate states split by both the crystal field and 
spin-orbit interaction. As a result it is difficult to obtain 
reliable wave functions for the states involved. 

For these reasons Bernard, Martens and Williams [69], ap­
proached the problem from a semi-classical point of view, using a 
very simple calculation. It was based on an adiabatic picture of 
the scattering process, in which the incoming hot electron was 
viewed as perturbing the energy levels of the center via the 
interaction between itself and the induced dipole moment of the 
center. The levels have different polarizabilities (with the 
excited states having the greater polarizabilities), so that the 
separation of the levels varies with the distance between the 
projectile and the target. In particular, the level separation 
decreases as the distance decreases. It was assumed that the two 
levels of interest could be considered in isolation and that at 
some distance the two levels would become degenerate (cross), the 
probability of occurrence of the transition being greatest at that 
distance. This separation was then considered to be the effective 
geometric radius for the cross section for that transition. In 
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addition, it was assumed that the interaction could be described 
as that between a point charge and a polarizable center at large 
distance. Under these assumptions, the interaction energy is 

CX e2 
,6.En = - ~, (172) 

2r 

where cxn is the polarizability of the nth level and r is the 
distance between the incoming electron and the target. If ro is 
the separation distance at which crossing occurs, the cross 
section is then given by 

2 - (CXe - CX g ) _1/2 

(J = 1Tro = 1TeL 2 (Ee -Eg) J ' (173) 

where Eg and Ee are the unperturbed ground and excited state 
energies, respectively. 
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Some of the effects of the host lattice were taken into 
account by using the energy levels (with respect to the vacuum) as 
measured in the crystal in the determination of the polarizability 
difference between the levels, as well as in the denominator of 
equation (173). The final expression for the cross section was 
from (174), [69], [70] 

a' I~:I { 1 :K~ [b + ~g (,++i~) ]} (174) 

where k, K, and b are constants for a given center and are 
determined by the mean square radii of the electron orbits, the 
polarizability of the ground state, and the binding energy (in the 
free ion) of one of the electrons occupying the level in which the 
transition is said to occur. ,6.E is the separation of the energy 
levels when the projectile is an infinite distance from the 
target. In the usual case ,6.E/Eg is small compared to unity and 
k/Eg is small compared to b, so that (J is approximately inversely 
proportional to IEgl. Thus, deeper centers should be expected to 
have smaller cross sections. 

Comparisons of the results obtained from (174) [691, [70] 
showed reasonably good agreement with experimental information 
currently available in the case of ZnS:Mn [71] and ZnF2:Mn [72], 
[73], [74]. In all these cases the cross section was estimated 
to be about the same as the geometric cross section of the free 
ion, about 10-16 cm2 • Support was also provided in the case of 
ZnS:Mn by Tornqvist [75] who indicated that an early estimate by 
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Allen [67] was too low, and by a more recent comment by Allen 
[68], who stated that the cross section for ZnS:Mn may be as high 

as the geometric cross section. However, there was relatively 
poor agreement with a cross section inferred [70] from results of 
Suyama et ale [76] in the case of Y203:Eu3+. In the latter case, 
however, the inferred experimental cross section is in con­
siderable doubt. We are aware of no other available experimental 
information on cross sections for rare earth dopants. 

It was pointed out in [70] that the theoretical calculation 
described above is a semi-classical approximation to a physical 
process which can only be properly treated by a completely quantum 
mechanical calculation. This is particularly true for the 
manganese and the trivalent rare earth ions, in which the 
transition involves a spin flip of an electron within a particular 
configuration, 3d5 in the case of Mn2+ and 4fn in the case of the 
trivalent rare earths. This can occur by an electron exchange 
process which can be fully described only via the formalism of 
quantum mechanics. 

IV. CLOSING REMARKS 

Condensed matter is a many-body system, and the concept of 
electronic energy transfer is based on two separate subdivisions 
of the system. On the one hand, into the energy donor and energy 
acceptor; on the other hand, into the electronic energy and the 
energy associated with lattice dynamics. Both separations are 
approximations: the separation into electronic and vibrational 
energies is based on the quantum mechanical adiabatic approxima­
tion; the separation into energy donor and energy acceptor is 
handled differently depending on the strength of the coupling 
between these two subsystems. 

The many-electron subsystem of condensed matter is usually 
further approximated in terms of one-electron states. These allow 
determination of the electronic band structure, which has been 
well developed for crystals, that is, condensed matter whose 
structure has translational invariance. From the lattice dynamics 
for these structures phonon dispersion has been similarly 
developed. The electronic bands and phonon states of crystals, 
plus the effects of electron-phonon interaction provide the 
background for theoretical analyses of the mechanisms of 
electronic energy transfer in condensed matter. However, trans­
lational periodicity is not essential for treatment of some 
similar mechanisms which occur in amorphous solids and in liquids. 
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The conventional definition of electronic energy transfer 
encompasses transport of energy in position-coordinate space. The 
classic mechanism is resonant transfer between inequivalent and 
weakly-coupled dopants which are separately equilibrated with the 
lattice in their respective electronic states before transfer. 
Non-resonant and excitonic transfer are also included within the 
scope of this definition. These mechanisms do not depend on 
translational invariance of the structure. 

Excitons were conceived originally as electronic eigenstates 
of a periodic potential with correlation of an electron and a 
positive hole so that the coupled electron and hole moved 
together, transporting no charge. The concept is now applied more 
widely, including any excited, non-conducting states of condensed 
matter, amorphous and liquid as well as crystalline, and thus 
includes many extrinsic as well as intrinsic mechanisms for the 
transfer of electronic energy in position-coordinate space. 

Electronic transfer in which net charge is transferred may 
also transport energy. This is most evident in semiconductors for 
which the minority charges carry potential energy almost equal to 
the band gap. Hot electrons in insulators, semiconductors or 
metals carry kinetic energy. In general, electrons or positive 
holes may transport energy equal to their eigenenergies as 
measured from the Fermi energy of the material. 

A general definition of electronic energy transfer includes 
the transport of electronic energy in momentum-coordinate, as well 
as in position-coordinate, space. That is, transfer between sets 
of states having their probability densities localized in momentum 
space or between a set localized in position space and another 
localized in momentum space is now included. Thus, Auger 
transitions and charge transfer between subbands now fit within 
the category of energy transfer processes. The possibility is 
suggested, of course, of applying the techniques of energy 
transfer in position space to transfer in momentum space, and vice 
versa. It will be of some interest to see whether, in the future, 
attempts to do this prove fruitful. 

APPENDIX: EFFECTIVE MASS APPROXIMATION FOR DOPANTS WITH COULOMB 
FIELDS 

Our derivation follows closely that given by Pantel ides [77]. 
We consider a system consisting of an electron in a crystal, under 
the influence of the lattice potential and an impurity potential, 
the latter assumed to be hydrogenic. The Hamiltonian is 



84 J. E. BERNARD ET AL. 

H - H + H' 
- 0 ' 

(A-1) 

where 

Ho = T + V, (A-2) 

and 

H' (r) (A-3) 

Here T is the electron kinetic energy, V the interaction with the 
lattice, and f the dielectric constant. The wavefunction for the 
electron is expanded in terms of eigenfunctions of Ho (Bloch 
functions) : 

(A-4 ) 

where the integration is over a Brillouin zone, and the sum is 
over bands. Now take the inner product 

(A-5) 

where 

(A-6 ) 

Here we have made use of the fact that 

(A-7) 

The Bloch functions have the form 

(A-8 ) 

where un is a function having the periodicity of the lattice (see 
the glossary entry for Bloch's theorem), so equation (A-6) can be 
rewritten as 
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H~n' (k,k') = L e-ik •r u~(k,r)H' (r)eik ' ·r un' (k' ,r)d3r. 
a 

(A-9 ) 

The product u~un' can be expanded in terms of plane waves 

u~(k,r)Un' (k' ,r) = L Cnn , (k,k' ,Ka)eiKa·r , 
a 

(A-l0) 

where the sum is taken over reciprocal lattice vectors. Thus, 
(A-9) becomes 

H~n,(k,k') = LCnn,(k,k',Ka)H'(k-k'-Ka ), (A-l1) 
a 

where H'(q) is the Fourier transform of H'(r) 

ff'(q) = H'(r)e-iq •r d3r = -4'IT-. J 
e2 

Eq2 
(A-12) 

Thus, equation (A-5) can now be put into the form 

[E-En(k)]Fn(k) + L LJ Fn,(k')Cnn,(k,k',Ka)ff'(k-k'-Ka)d3k' 
n' a 

= o. (A-13) 

Now we introduce a number of approximations. First, it is 
assumed that the sum over bands can be reduced to a single band. 
This is expected to be valid if the state of the electron is not 
too different from that of an electron in a particular band (a 
shallow state). Also, it is assumed that the band is isotropic 
and has a non-degenerate extremum at k=O. In this case, it is 
expected that F(k) will be fairly well localized about the 
extremum, so that the contributions to the integral will only come 
from the region with k and k' small compared to the non-zero Ka's. 
From equation (A-12) we can see that A'(q) falls off fairly 
rapidly with q. This, together with the fact that we need only 
consider small values of k and k' (and, hence, Ik-k' I), motivates 
the omission of all terms in the sum on a for which K iO. a 

The constants C(k,k') are given by 

(A-14) 

Note that the band index has been dropped. The orthonormality of 
the Bloch functions then gives C(k,k,O)=l, and we assume this is 
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approximately true for k~k' as well. The energy E(k) for an 
isotropic band with extremum at k=O can be expanded to give 

where m* is the effective mass. 

(A-15 ) 

Then, after making these approximations, the integrations on 
k are extended to all of k space, and equation (A-13) becomes 

which is just a momentum-space Schrodinger equation. Using the 
Fourier transform 

we obtain the effective-mass equation: 

(A-18) 

GLOSSARY 

Adiabatic approximation: For a system composed of two interacting 
subsystems which have greatly differing inertia an adiabatic 
approximation to the dynamics of the system can be made. In 
this approximation the wavefunction is assumed to be a product 
of coupled wavefunctions for the individual subsystems. The 
wavefunction for the small inertia subsystem (usually referred 
to as the fast subsystem) depends only on the static 
properties of the large inertia subsystem (usually referred to 
as the slow subsystem), not on the rate change of the latter. 
This assumption can be made because we assume that the motion 
of the large inertia subsystem is slow compared to that of the 
small inertia subsystem, so that the latter, to a good 
approximation, never lags behind in its adjustment to the 
former. On the other hand, the small inertia subsystem is 
viewed as producing a force on the large inertia subsystem via 
an average potential. With these assumptions about the 
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interactions between the parts of the system, the product 
wavefunction can be taken to have the form $s(r;R)Xls(R), 
where $s(r;R) is the wave function for the small inertia 
subsystem, whose coordinates are r, and Xls(R) is the 
wavefunction for the large inertia subsystem, whose coor­
dinates are R. Note that X depends on the state of the small 
inertia subsystem, whereas $ depends on the configuration of 
the large inertia subsystem. Here we have differentiated the 
subsystems in terms of their inertia, since it is their 
relative ability to adjust to each other's changes that is 
important. 
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Adiabatic theorem of quantum mechanics: In general, there are no 
stationary solutions to the time-dependent Schrodinger equa­
tion for a time-dependent Hamiltonian H(t). However, for any 
fixed value of t stationary solutions do exist. The theorem 
asserts that in the limit of infinitely slow variation of H(t) 
with time the stationary states for a particular value of t 
change smoothly into those for adjacent values of t. 

Allowed and forbidden energy bands: The energy eigenvalues of the 
one-electron states for crystalline materials group into sets 
of closely spaced energy levels, that is, sets of quasi­
continuous levels. The range of energies corresponding to 
each set is designated as an allowed energy band. The 
intervening energy ranges in which there are no closely spaced 
energy eigenvalues are designated forbidden bands. 

Auger process: In atoms, an autoionization, in which an atom in 
an excited state of energy greater than the first ionization 
energy decays into an ion and a free electron. In solids, a 
collision process between two electronic particles in which 
one recombines with a third electronic particle of opposite 
type, with the energy released by the recombination being 
given to the other particle participating in the collision. 
The latter always lies in a continuum of energy levels in the 
final state, though it may not in the initial state. 

Bloch's theorem: states that the solutions to Schrodinger's 
equation for a periodic potential have the form 

where uk~(r) has the same periodicity as the potential. Here 
k and rare 3n-vectors. 

Born-von Karman boundary condition: The Born-von Karman boundary 
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condition is defined by the identification of the surfaces of 
an array in pairs which are perpendicular to any given 
primitive basis vector. This identification removes the 
effects of the surfaces on the consideration of the form of 
the wavefunction for the particles of the system. With this 
identification the array is considered to be periodic, with 
periods Niai, i:1,2,3. 

Brillouin zone/Brillouin zone boundaries: The Brillouin zone 
boundaries are those planes in the reciprocal Bravais lattice 
space whose points correspond to those wave vectors k which 
satisfy the equations 2k·Kv+Kv2:0, where Kv is any reciprocal 
Bravais lattice vector. These planes are the perpendicular 
bisectors of the reciprocal lattice vectors. The Brillouin 
zones are defined as the connected subregions of the recipro­
cal lattice space when this space is subdivided along the 
Brillouin zone broundaries. 

Charge transport energy transfer: When charge is transported 
through a lattice, energy that can be extracted from the 
charge distribution is also transferred through the system. 
The energy transferred is the energy of the charge-carrier 
distribution in excess of that of the equilibrium distribu­
tion, in other words, the energy of excess carriers with 
reference to the Fermi level. 

Core electron and non-core electron: The electrons in any system 
can be subdivided into two groups designated as the core and 
non-core electrons. This subdivision is made in the following 
way: For a core electron the one-electron energy is large 
compared to its total interaction energy with all the non-core 
electrons, whereas for a non-core electron the one-electron 
energy is small or of the same order as its interaction energy 
with all of the core electrons. It is usual to assume that in 
a condensed system the non-core electrons are the outer shell 
electrons of the atoms, which can be easily removed by 
interaction with other atoms, and the core electrons are the 
electrons left on the positive ion of the atom. Both 
conduction and valence band electrons are non-core electrons. 

Crude adiabatic approximation: is the approximation within the 
framework of the adiabatic approximation in which the 
wavefunctions of the small inertia subsystem are assumed to be 
independent of the coordinates of the large inertia subsystem 
as well as independent of the rate of change of the configura­
tion of the large inertia subsystem. See entry for the 
Adiabatic approximation. 
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Deformation potential: The deformation potential is a short range 
interaction between phonons and electronic particles which 
arises because of the local deformation of the lattice. This 
local deformation alters the potential seen by the electronic 
particles in the region and causes scattering. The potential 
describing this interaction can be apprQximated by that for a 
static uniform deformation. This is designated as the 
deformation potential. A further approximation can be made 
wherein the deformation potential is approximated as a con­
stant, En' the deformation potential parameter, times the 
local strain. The deformation potential parameter for the 
electronic particles in the nth band is given ~,y 
En = OEn(O)/~, where ~ = oV is the static uniform volume 
dilatation. 

Direct Bravais lattice/lattice vectors: The direct Bravais 
lattice is the lattice composed of the points given by the 
direct Bravais lattice vectors, which are defined by 
Xn=n1a1+n2a2+n3a3' where ni is an integer between ±Ni/2. H~re 
Ni is the number of unit cells in the direction defined by ai 
in the array. 

Effective mass: Electronic particles in crystals react to an 
applied force as if they had an inertial mass which is 
different from the free-elect,ron inertial mass. This mass is 
designated as the effective mass. The difference between the 
effective mass and the free-~iectron mass is due to the 
interaction between the electronic particles and the periodic 
potential. The effective mass, m~i(k), for the nth allowed 
band in the ith direction is defined as 

2- a2En(k) J-1 
~.(k)=±6L 2 ' 

1 ok i 

where the plus sign is for electrons and the minus sign is for 
holes. 

Electronic energy transfer: A restrictive definition of 
electronic energy transfer can be inferred from the original 
energy transfer processes studied by Forster [1], Dexter [2] 
and Orbach [3]. These authors considered the transfer of 
electronic energy localized in one region of the lattice to a 
second localized region which did not overlap the first, for 
example, the transfer of the electronic excitation from an 
isolated cr 3+ ion to a pair of Cr 3+ ions or another isolated 
cr 3+ ion. More generally, we consider any transfer of energy 
from one set of electronic states to a second set of states, 
in which the two sets of electronic states differ from one 
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another in a specifible way, to be energy transfer. 

In the case of the more restrictive definition the 
characteristic which differentiates the two sets of states is 
that their probability densities are localized to different 
regions of position space. In the more general case energy 
transfer takes place between sets of states which are distin­
guished by having their probability densities localized to 
different regions of either position or momentum space. In 
addition, we can consider energy transfer between sets of 
states which are differentiated by one set having its prob­
ability densty localized in momentum space, while the other is 
localized in position space. 

Energy acceptor: The subsystem responsible for the set of states 
to which electronic energy is transferred. 

Energy band structure: is the designation for the relationship 
between the one-electron energy eigenvalues and the quasi­
momentum, k, that is, the relationship En(k). The term also 
refers to the energy ranges of the allowed and forbidden 
energy bands. 

Energy donor: The subsystem responsible for the set of states 
from which electronic energy is transferred. 

Exciton: Any excited electronic state of a lattice, involving 
correlation of the electron and positive hole. Thus, it may 
be viewed as a bound electron-hole pair. If the separation 
between the electron and hole is small enough that they can be 
considered to occupy the same unit cell, the name Frenkel 
exciton is applied. The term Wannier exciton is used if the 
separation is large compared to the size of a unit cell. Note 
that motion of an exciton involves no transport of charge or 
real mass. The term "exciton" is also often applied to 
electronic excitations in disordered solids and other systems. 

Excitonic energy transfer: Energy is transferred during exciton 
motion. In this energy transfer process the sets of states 
are localized in position space, but not so localized as not 
to be localized in quasi-momentum space as well. The initial 
configuration distribution for excitonic energy transfer is an 
unrelaxed distribution. 

Fermi energy: The Fermi energy is that energy for which the 
occupation probability is one-half. The Fermi energy is also 
referred to as the Fermi level. 
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Fermi's golden rule: gives the transition probability per unit 
time, Pfi' from initial state ~ i to all final states ~ f having 
energy Ef as 

Pfi = ¥ f ~~(ro)HI~i(rO)pf(Ef)Q(ErEi)d3ro' 
where P f(Ef) is the density of the final states having energy 
Ef ·and HI is the interaction causing the transition. 
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Frohlich Hamiltonian: describes the long-range interaction of the 
polaron theory. This arises in polar materials because of the 
interaction between electronic particles and the electric 
field produced by the polarization of the lattice by those 
phonons which are associated with large polarization. The 
form of the Frohlich Hamiltonian is given by equation 
(IIE-22). 

Hartree-Fock approximation: In the Hartree-Fock approximation the 
many-electron wavefunction, ~ (r;R), for the n-electron system 
with electronic coordinates r~(r1,r2, .•• ,rn)' where ri is the 
three-vector coordinate of the ith electron, is approximated 
by 

~ (r;R) = 
CI. 

Here the ~CI. .(rj)'s are one-electron wavefunctions, and the 
ai's are thS sets of quantum number indexing these one­
electron states. The right-hand side of this equation is 
known as a Slater determinant wavefunction. 

Intraband energy transfer: Intraband energy transfer takes place 
between subbands of a given band. When the subbands' minima 
have different energy values the process involves conversion 
of kinetic energy to potential energy or vice versa. The sets 
of states between which this transfer process takes place are 
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localized in momentum space, and the configuration distribu­
tion is the relaxed distribution. 

Markov process: Any dynamical process in which transitions among 
regions of space or states or groups of states are completely 
chaotic, that is, have no dependence on past history. A 
classic example is Brownian motion. The transition 
probabilities for a Markov process satisfy the Chapman­
Kolmogorov equation [78]: , 

rl(x,t;x',t') = J f rl(x,t;x",t")rl(x",t";x',t')dx"dt", (1) 

t 
where rl(x,t;x' ,t') is the probability that the system 
originally at x at time t will be at x' at time t'. In terms 
of transitions among states or groups of states, equation 
(1) is written 

rl as = L rl ay rl as 
y 

(2) 

Nearly free electron approximation: In the nearly free electron 
approximation we assume tpat all Fourier coefficients for 
non-zero K-values of the potential of the non-core electrons 
are small compared to the zero K-value coefficient. 

Non-resonant energy transfer: Non-resonant energy transfer, like 
resonant transfer, takes place between two sets of multi­
electronic-particle states whose charge distributions are 
localized in position space. The initial and final states of 
the system are products of two multi-electronic-particle 
wavefunctions, one from each of the sets of states between 
which the energy is transferred. The initial configuration 
distribution is that corresponding to the relaxed initial 
state. That is, the ions about the energy donor are in the 
vibrational state that corresponds to the excited electronic 
state of the donor and the temperature of the lattice, while 
the ions about the energy acceptor are in the vibrational 
state that corresponds to the ground electronc state of the 
acceptor and the temperature of the lattice. In the non­
resonant transfer process there are real phonons created 
and/or annihilated. 

One-electron approximation: In the one-electron approximation for 
the non-core electrons, we approximate the many-electron 
wavefunction by a Slater determinant of one-electron functions 
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and assume that the interaction among the non-core electrons 
is zero and that there is no exchange interaction between the 
core and non-core electrons. The equations determining the 
one-electron functions for the non-core electrons are: 

p2 
o 

-2 ~ (ro ) + V(ro)~ (ro) = e:: ~ (ro)' m ao ao ao ao 

where V(ro) is the sum of the ionic potentials. 
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Phonon branch: The energy function of the phonons, .hu:(q) , is a 
quasi-continuous, multi-valued function of q, where q indexes 
the different allowed propagating wave solutions of the array. 
Here the function ;w( q) is defined for q between ±'IT /a. The 
multi-valued function w(q) is equivalent to a set of single­
valued quasi-continuous functions of q designated by wy(q). 
Each wy(q) defines a phonon branch. Note that each {q,y} set 
of values corresponds to a normal mode of the lattice 
vibration. 

Phonons: are the quanta of the vibrations of a crystal. For each 
normal mode of vibration of an ordered array there is a 
corresponding phonon. The term is sometimes applied to 
quantized vibrations of disordered solids and even to those of 
molecules. 

Polaron: Longitudinal optical (LO) vibrational modes in ionic 
crystals cause relatively large polarization of a crystal 
lattice. The resulting dipole fields couple strongly with 
mobile electrons. Thus, moving charges tend to carry along 
with them a localized lattice polarization, which can be 
thought of as a "cloud" of phonons. The coupled system of an 
electron and LO phonons is called a polaron. 

Primitive basis vectors: We defined the primitive basis vectors 
of any periodic array as the set of vectors that are the 
shortest non-pairwise collinear vectors that can be chosen 
from the set of all vectors which connect the origin of one 
unit cell with the origins of all the other unit cells in the 
periodic array. In a three dimensional lattice the three 
primitive basis vectors are denoted by ai' i=l,2,3. 

Quasi-momentum: The quasi-momenta are the eigenvalues of the 
translation symmetry group of a lattice. 

Reciprocal Bravais lattice/lattice vector/primitive basis vectors: 
The reciprocal Bravais lattice is the set of points given by 
the vectors Kv=V161+v262+v363' where vi is an integer between 
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±Ni/2. The primitive basis vectors, bi, are defined by 
equation (25). An important property is that each of the 
primitive reciprocal lattice vectors is orthogonal to two of 
the primitive lattice vectors of the direct lattice. 

Resonant energy transfer: Resonant energy transfer, like non­
resonant transfer, takes place between two sets of multi­
electronic-particle states whose charge distributions are 
localized in position space. The initial and final states of 
the system are products of two multi-electronic-particle 
wavefunctions, one from each of the sets of states between 
which the energy is transferred. The initial configuration 
distribution is that corresponding to the relaxed initial 
state. That is, the ions about the energy donor are in the 
vibrational state that corresponds to the excited electronic 
state of the donor and the temperature of the lattice, while 
the ions about the energy acceptor are in the vibrational 
state that corresponds to the ground electronc state of the 
acceptor and the temperature of the lattice. In the resonant 
transfer process no real phonons are created or annihilated. 

Tight binding approximation: In the tight binding approximation 
we assume that all the overlaps between Wannier functions for 
the non-core electrons centered in different unit cells are, 
to a good approximation, zero. 

Unit cell: is a subdivision of a periodic array such that the 
complete space occupied by the array can be filled by 
identical, non-overlapping unit cells. By identical unit 
cells is meant cells which can, by translation only, be 
located at a common place in space such that each ion in each 
unit cell lies at the same place as the corresponding ions in 
all the other unit cells of the array. The unit cell is the 
smallest repeatable unit of a periodic array. 

Wannier functions: are defined as a complete set of localized 
states which are the Fourier transforms of the Bloch func­
tions. In terms of the Bloch functions the Wannier functions 
are defined as 

where the summation is over the first Brillouin zone and Xn is 
a direct Bravais lattice vector. The Wannier functions are 
localized about a unit cell of the periodic array located by 
the vector Xn. 
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ENERGY TRANSFER AMONG IONS IN SOLIDS 

ABSTRACT 

B. Di Bartolo 

Department of Physics 
Boston College 
Chestnut Hill, Massachusetts 02167 

The subject of interactions among atoms is introduced by con­
sidering first the static and then the dynamic effects of these 
interactions in a two-atom system and in a linear chain of atoms. 
Subsequently the different types of interactions (multipolar, ex­
change and electromagnetic) are examined. After reviewing the 
different modes of excitation of a solid containing both donors and 
acceptors, a "statistical" treatment of energy transfer is presented 
by considering first the case of energy transfer without migration 
among donors, and then the case of energy transfer when such migra­
tion occurs. Finally the concept of collective excitations in 
solids is introduced and a general theory of these excitations is 
presented. 

I. INTERACTION AMONG ATOMS 

I.A. Two-Atom System 

Let us consider for simplicity two atoms of hydrogen with the 
two nuclei located at positions a and b and the two electrons at 
positions (Xl, Yl, zl) and (x2' Y2' z2) as in Figure 1. Let the 
internuclear distance R be such that 

so that the overlap between the wavefunctions of the two atoms may 
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Fig. 1. System consisting of two hydrogen atoms. 

be neglected. The wavefunction of the system, neglecting the 
interatomic interaction is given by [1] 

(2) 

where ~a(l) and ~(2) are the wavefunctions of the individual atoms; 
1 and 2 stand for the coordinates of the two electrons. The inter­
action Hamiltonian is given by 

where 

r 12 = j(Xl - x2)2 + (Yl - Y2)2 + (zl - z2 - R)2 

r a2 = Jx~ + y~ + (R + Z2)2 

r bl = Jxi + y~ + (zl + R)2 

(3) 

(4) 

The correction to the energy eigenvalue to first order in H' is 
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We use the expansion 

1 

1 + E: 

8 3 2 15 3 1--+-8 --8 + 
2 8 48 
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(5) 

(6) 

and retain only the first two powers of the electrons' coordinates. 
The result is 

(7) 

and 

2 
=':3 <~a(l) ~b(2) I (xl x2 + Y1Y2 - 2zl z2) I~a(l) ~b(2» = 0 

(8) 

because H' is an odd operator and ~a and ~b have definite parity. 
The correction to the ground state energy to first order in H' is 
zero. But to second order 

E" I 
klO 

<0 I H' I k><k I H' I 0> 
E - E 

o k 
(9) 

where 10> and /k> are ground and excited states of the two-atom 
system, respectively. The energy levels of the hydrogen atom are 
given by 

2 
E = - _e2--

n 2n a 
(10) 

o 

where ao = ~2/me2. The ground state energy Eo is equal to -(e2/ao)' 
The states Ik> that contribute to the sum in (9) are made up of 
products of odd wavefunctions of the two atoms; the energy of the 
iowest such state is -(e2/4ao) and the energy of the highest such 
state is zero. Therefore (Eo - Ek) lies in the interval 

3 e 2 
(- --

4 a 
o 

• 2 
-~) 

a 
o 
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we shall approximate this quantity with the value -(e2/ao) for all 
k's. 

Going back to (9) we find 

E" = - -I- L <OIR' 1k><kIR' 10> 
e /a k~O 

o 

= - -I- [L <OIR' 1k><kIR' 10> + <OIR' 10<0IR' 10>] 
e /a k~O 

o 

= - -I- L <OIR' Ik><kIR' 10> = - -I- <01(R,)2Io> (10) 
e /a k e /a 

o 0 

where we have used the relation (8) reexpressed as 

<0 IR' 10> = 0 

and also 

L <0 I R' 1 k><k 1 R' 1 0> = <0 1 (R ') 21 0> 
k 

We have 

In the ground state of the hydrogen atom 

and 

Then 

(12) 

(13) 

(14) 

(15) 

(16) 
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, and 

E" - 2~a <01(H,)2Io> 
e 0 

6e2 a5 
o 
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(17) 

(18) 

If we extend the expansion of H' and include higher power of the 
electrons' coordinates the result is [2] 

E" 
6 25 
e a 

o (19) 

This energy, intrinsically negative, is called the van der WaaZs' 
energy. Note that this energy goes to zero as h -+ O. 

For many electron atoms the perturbation Hamiltonian is repre­
sented by a sum of terms of type (7) with one term for each pair 
of electrons [3]. 

The van der Waals Hamiltonian is responsible for lowering the 
ground state energy of the two-atom system. The van der Waals 
bonding is an effect of this interaction. We shall see later that 
the van der Waals interaction is also responsible for the time 
evolution of a two-atom excited system, i.e., it leads to energy 
transfer from one excited atom to the other atom. This is one of 
several examples of interactions that produce both static and 
dynamical effects. 

I.B. Dynamical Effects of the Interaction 

Consider a system with a time-independent Hamiltonian Ro' The 
time-dependent Schrodinger equation is 

H 11' 
o 

If the system is in a stationary state labeled i 

(20) 
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(21) 

where the energy values are given by 

(22) 

We shall assume that the wavefunctions ~i(t) are orthonormal. 

Let us now suppose that the system is subjected to a time­
dependent perturbation represented by R'(t). The system will be 
represented by a wavefunction ~(t) such that 

R~(t) = (Ro + H') ~(t) = ~ d~~t) (23) 

We can expand ~(t) in terms of the complete set ~i(t) 

~(t) = I c.(t) ~i(t) (24) 
i 1. 

If H' = 0, the coefficients ci's are time-independent. Replacing 
Eq. (24) in Eq. (23) 

dC i (t) ] 
dt ~i(t) 

(25) 

Then 
dCi(t) 

I ci(t) H' ~i(t) = i~ I d ~.(t) (26) 
i i t 1. 

where we have taken advantage of Eqs. (21) and (22). Multiplying 
by ~~(t) and integrating over all space we obtain 

where 

= L ci(t) <~k(O) IH' l~i(O» 
i 

(27) 
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1. Coherent Energy Transfer in a Two-Atom System. We shall 
now make the fallowing assumptions: 

(a) The system has only two energy states, say 1 and 2; and 

(b) the perturbation H' is constant, but is turned on at 
time t = O. 

In a two-atom A and B system, state 1(2) consists of atom A(B) 
excited and B(A) deexcited. 

Set 

The coupled equations (27) become 

iw t 
+ c2(t) <~l(O) !H'I~2(O» e 12 

iw21 t 

i~ c2(t) = cl(t) <~2(O) IH'I~l(O» e 

+ c2(t) <~2(O)IH'I~2(O» 

I <~i(O) !H' l~i(O» = Vi 

<~i(O) !H'I~k(O» = Mik 

Then 

If at time t = 0, the system is in state 1: 

c 2 (O) = 0 

the time evolution of the system is given by the equations 

(29) 

(30) 

(31) 

(32) 
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where 

a = 

It is 

at all times. Assume now 

In this case 

where 

2 cos at 

e 

-1 sec 

B. 01 BARTOLO 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

and the time evolution of the system is represented in Figure 2. 

At time t = 0 

(39) 

At time t 



ENERGY TRANSFER AMONG IONS IN SOLIDS 111 

/---
C, (0)=/ 

111" 
2a 

-

1T 
a 

... -

.3.1T 
2a 

----2 
C2 (0)=0 
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a 
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2a 

Fig. 2. Coherent time evolution of a two-atom system. 

Ic(...!...)12=0 
1 2a 

This time evolution is called cohepent. 

(40) 

2. Incoherent Energy Transfer in a Two-Atom System. If at 
time t = T (small) th~ phase of the wavefunction is interrupted, 
the change in IC2(t) I· in time T is 

(41) 

and in time t » T 

1 2 12 t 1 12 t 2 2 2 c2(t) ~ T ~ c2(t) = TaT = a Tt (42) 

The probability IC2(t) 12 is now proportional to t and a probability 
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per unit time can be defined 

(43) 

But 

T = 1I~ (44) 

where ~E = width of the transition. Then 

w12 = 
1M 12 

21 ~ = 2rr I<~ (0) IH' I~ (0»1 2 (E) 
h2 liE 11 2 1 g (45) 

where g(E) = density of final states. If both state 1 and state 2 
are smeared 

gl(El ) dEl = probability that state 1 has energy in 
(El , El + dEl) 

g2(E2) dE2 = probability that state 2 has energy in 
(E2, E2 + dE2) 

and g(E) in (45) is replaced by 

(46) 

The question now is: If at time t = 0, the system is in 
state 1, how will it evolve? And the answer is: Since probabili­
ties per unit time are appropriate, a master equation treatment 
must be used. Let 

PI (t) 

(47) 

Then, since w12 = w2l = w 
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(48) 

Given the initial conditions 

(49) 

the solutions of (48) are 

(50) 

and are represented in Figure 3. 

~(tl 

20:P=--
'----------.. t 

~(tl 

ZO'V "'--------0 t 

Fig. 3. Incoherent time evolution of a two-atom system. 
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This time evolution is called incoherent. 

We want at this point to associate some key words and ex­
pressions to coherent and incoherent evolutions. 

Coherent evolution 

Reversibility 
Oscillations 

1 Characteristic time ex; 
M Transfer rate ex; M 

Incoherent evolution 

Irreversibility 
Approach to equilibriuwl 
Characteristic time O'l 2 
Transfer rate ex; M2 M 

3. Coherent Energy Transfer in a Linear Chain. Consider a 
linear chain of equal interacting atoms. Let state ~m be that 
corresponding to atom m being excited. From (27) we have 

iw .t 
ifi c (t) 

m 
\' m1 
L c. (t) M • e 
i 1 m1 

(51) 

where 

(52) 

Since the atoms are all equal Wmi = O. If we assume only nearest 
neighbor interaction and take the matrix element M as real for 
simplicity, Eqs. (51) become 

(53) 

• • e • • 
In. -/ In 1TL+ / 

Fig. 4. A linear chain of interacting atoms. 
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If the excitation is localized on atom m at time t = 0: 

Let 

where 

Then 

c (0) = I 
m 

2M 
x = ~ t 

i-m f (x) 
m 

df (x) d 2M df (x) 
C (t) = i-m m ~ = i-m __ m 
m dx dt 11 dx 

() .-(m-l) ( ) = i-m+l f (x) 
cm-l t 1. fm-l x m-l 

.-m-l 
cm+l(t) = 1. 

It is 

ift c (t) 
m 

2M df (x) .-m+l df (x) 
itl i -m T :x = 1. 2M :x 

Therefore 

-m+l df (x) m+l -m-l 
i 2M :x = Mi- fm-l(x) + Mi fm+l(x) 

df (x) 
2 m 

dx 

The solutions of the above equation are Bessel functions: 

f (x) = J (x) m m 

Then 

c (t) = i-m J ( 2M t) 
m m ii. 
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(54) 

(55) 

(56) 

(57) 

(58) 
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and the probability of finding atom m excited at time t is 

1 12 2 2M P (t) = c (t) = J ( ~ t) m m m -11 
(59) 

4. Incoherent Energy Transfer in a Linear Chain. Let us 
consider again a linear chain of interacting equal atoms and let 
us again assume only nearest neighbor interactions. This time, 
however, we assume an incoherent time evolution with w being the 
transition probability per unit time that the excitation moves 
from, say, atom m to atom (m - 1) or (m + 1). The equation to 
solve is a master equation 

P (t) = w[Pmt1 (t) - P l(t) - 2P (t)] m m- m 
(60) 

where Pm(t) = Icm(t) 12. Let, as before, the initial conditions be 

Set 

where 

Then 

P (0) = 1 
m 

P .J. (0) = 0 nrm 

P (t) 
m 

-2wt 
e ~(2wt) 

-x e g (x) 
m 

x = 2wt 

P (t) 
m 

The master equation then gives us 

gm(x) are modified Bessel functions: 

g (x) = I (x) 
m m 

g (2wt) = I (2wt) m m 

Then 

(61) 

(62) 

(63) 
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P (t) = e- 2wt I (2wt) m m 

where 

I (x) = modified Bessel functions 
m 

I.C. The Relevant Energy Transfer Hamiltonian 
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(64) 

Let us now consider again a two-atom system as in Figure 5. 
Let HA and HB be the Hamiltonian of atom A and B, respectively. The 
Hamiltonian of the two-atom system is then given by 

(65) 

where 

Z Z 2 2 Z e2 
b e = a + ~ __ ...:a=--__ 

R r 12 lit + ;b2 1 
(66) 

Let la> and la'> be the ground state and excited state wavefunctions 
of atom A, respectively and Ib> and Ib'> the ground state and ex­
cited state wavefunctions of atom B, respectively. We shall con­
sider a transition from an initial state 11> to a final state 12> of 
the two-atom system, where 

(67) 

- 2 

';'~~J~' 
aRb 

A 8 

Fig. 5. Two-atom system. 
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11> = la'b> 12> = lab'> 

The relevant matrix element is given by 

<a'(l) b(2) IHABla(l) b'(2» 

2 
= Za Zb ~ <a'(1)la(1»<b(2)lb'(2» 

2 
+ <a'(l) b(2) ~ a(l) b'(2» 

r 12 

_ Z e2 <a'(1)la(1»<b(2) 1 b'(2» 
a IR+;b2 1 

-zb e2 <a'(1) 1 a(1»<b(2)lb'(2» 
I-it + ;al l 

2 
= <a'(l) b(2) ~ a(l) b'(2» 

r 12 

B. 01 BARTOLO 

(67) 

(68) 

Taking into account the overlap of the wavefunctions we replace 
the relevant product wavefunctions as follows: 

lla'(l) b(2» -+...!...Ia'(l) b(2) - b(l) a'(2» 
12 

la(l) b'(2» -+...!...Ia(l) b'(2) - b'(l) a(2» 
12 

Then 

<a'(l) b(2)IHAB la(1) b'(2» 

-+ i <a'(l) b(2)IHAB la(1) b'(2» 

+ i <b(l) a'(2)IHAB lb'(1) a(2» 

-t <b(l) a'(2)IHAB la(1) b'(2» 

(69) 
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and 

-i <a'(l) b(Z) IHABlb'(l) a(Z» 

= <a'(l) b(Z) IHABla(l) b'(Z» 

- <a'(l) b(Z) IHABlb'(l) a(2» 

<a'(l) b(Z) IHABlb'(l) a(Z» 

Z 
Za Zb ~ <a'(l) Ib'(l»<b(Z)la(Z» 

Z 
+ <a'(l) b(Z) ~ b'(l) a(Z» 

r 12 

- Z eZ <a'(l) Ib'(1»<b(2) 1 a(2» 
a IR: + ;bZ I 

- Zb eZ <b(2) I a(2»<a' (1) 1 b' (1» 
I-R: + ;al l 

Z 
~ <a'(l) b(Z) ~ b'(l) a(Z» 

r 12 

The relevant matrix element is then given by 

2 
<IHABI> = <a'(l) b(Z) ~ a(l) b'(2» 

r 12 

2 
- <a'(l) b(2) ~ b'(l) a(2» 

r 12 
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(70) 

(71) 

(72) 

where the first term is called the di~ect term and the second term 
the exchange term. 

I.D. Interaction Between Two Atoms in Solids 

Let A and B be two atoms in fixed position in a solid; Figure 
6 reports the relevant coordinates. It is 
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Zs 

ZA r. t ______ 5 

I:~s R 
ATOM 8 

Fig. 6. Two-atom system. 

it :: (Rt 0 t <1» 

The relevant energy transfer Hamiltonian is 

(73) 

where the sum is over the electrons of the two atoms. 

Carlson and Rushbrooke [4] have carried out the expansion of 
HAB in spherical harmonics taking into account the fact that 
R » rAst rBt. The result of their calculation is 

(74) 

where 
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51, 

G12 = (-1) 1 

C;(Q) = )251,4: 1 Y 5I,m(Q) 

Cl j2 
J3 ) • 

j -j -m 
(-1) 1 2 3 /2j + 1 

m1 m2 m3 3 

.. 
3j symbols 

C1ebsch~rdan coefficients 

3j symbols = 0 unless 

Example 

y = IT cos e = IT ~ 
10 J 4Ti J 4rr r 

y = + - e]. sin e = + - -~ ±'<j> ~ x + iy 
1 ,± 1 8rr 8rr r 

Then 

1 & &[Iz z 
Co = J3 YlO = J3 J 4rr r = r 

_ 1 x ± iy 
= +----

.f2 r 
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(75) 

(76) 

(77) 
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and 

Dl = rC: = z o ·0 

Dl == r2- = - J:.. (x + iy) 
1 1 12 

Dl = reI = J:.. (x - iy) 
-1 -1 12 

<a 'b I H I ab '> = I 
AB Q, Q, 

1 2 

B. DI BARTOLO 

(78) 

The relevant quantity that enters the transition probability is 

( 79) 

We average over e, <p: 
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and use the following approximations 

where 

2 (2R. 1 + 2R.2 + 1)! e1 
R.2 

G12 = (2R. 1)! (2R. 2)! m1 m2 

(2) Take average of Gi2: 

2 1 L <G12> = (2R. 1 + 1) (2R. 2 + 1) m1,m2 

~+~ )2 
1 2 

2 G12 

(2R.1 + 2R.2 + I)! 

(2R. 1) ! (2R. 2)! 

123 
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(2tl + 2t2 + 1): 

(2tl + 1)!(2t2 + l)! L 
ml ,m2 

~,----.... ~ .. ----_/ 
"'I"" 

1 

Therefore 

(2tl + 2t2 + 1): 1 

(2tl + 1)!(2t2 + 1): 2tl + 2t2 + 1 

II. DIFFERENT TYPES OF INTERACTIONS 

II.A. Multipolar Electric Interactions 

-+ An electric multipole of a charge distribution p(x) with 
-+ -x = (r, 8, ~) is defined as follows: 

(81) 
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If we set 

+ \' + + p(x) = L eo(x - x ) s 
s 

we obtain 

\'~ R. 
= e ; J 2R. + 1 r s Y R.m ( e s' <P s) 
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(82) 

(83) 

These multipoles are, apart e, the same quantities nR. defined in 
(76) . m 

The square of the matrix element of the mUltipolar interaction 
can be written as 

where 

C(6) = dipole-dipole term 

C (8) d' 1 dIe 4 6 ~ = 1pO e-qua rupo e term = R8 3:5~ 

. ![)_ll<a l In;la>1 2 ][ J_2 1<b 1n;lb l >1 2] 

(84) 

+ U)<a'ID;la>12lU_ll<bID~lb'>12 ]1 (86) 
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4 8' 
quadrupole-quadrupole term = :10 5!5! 

The quantities l<a l ln;la>12, I<b ' In~lb>12 can in principle be 
derived from spectroscopic data. 

Example: dipole-dipole term 

In classical electrodynamics the power irradiated by an 
oscillating electric dipole M cos wt is given by 

(87) 

(88) 

A classical oscillator of amplitude M has two Fourier components 

1 iwt 1 -iwt M cos wt = - Me + - Me 2 2 
(89) 

with frequency wand -w. Classically we do not distinguish 
frequency w from frequency -w, namely photons absorbed from 
photons emitted. Quantum mechanics, however, allows only one of 
the two components to enter the relevant matrix element 

M + 21M I classical QM 

and 

w 4 12M 12 4w 4 1M 12 PQM = -3 =-3 
3c 3c 

Therefore 

A = rate of decay 

1 
-= 
T 

o 

energy emitted per unit time 
energy of a photon 

where T = radiative lifetime. Then 
o 

(90) 

(91) 

(92) 
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(93) 

The f number, a quantity usually derived from absorption data, 
is defined as follows: 

We can then write 

If we use (93) and (95) in (85) we obtain 

(6) 1 4.' 3h 3 1 'l.1< 2 
C = 1< IH I> I dd (_c -) (_JU_e f) 

AB = R6 3! 3! 8lfw3 LoA 2llXAl B 

where E = 1iw 

_ _ probability of radiative decay 
€ - probability of radiative decay + probability of 

nonradiative decay 

l/ToA 
= liLA = quantum efficiency 

(94) 

(95) 

(96) 

(97) 

where LoA = radiative lifetime of atom A and LA = effective lifetime 
of atom A. 

The transfer rate is then given by 
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2 3L 5 gA(E) gB(E) 
Ro = EfB ( 3e ~mn 'IT ) f E4 dE 

radius at which the transfer rate is equal 
to the decay rate 

B.DIBARTOLO 

(98) 

(99) 

Let w~g, w~~ and w~~ be the energy transfer rates by dipole­
dipole, dipole-quadrupole and quadrupole-quadrupole mechanisms, 
respectively. We can compare the magnitudes of w~ and w~: 

1 3 1 <n2> 12 

= R2 '2 l<nl>12 

(100) 

(101) 

(102) 

If the electric dipdle transition in atom B is not allowed, then 
l<n1>12 < ao and it is possible that 

Note that 

l<n2>121<n2>12 ~ 
l<n\121<nl >12 

II.B. Exchange Interactions 

(103) 

(104) 

We shall now examine more closely the matrix element (72). 
The direct term can be written as follows: 
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2 2 e -+-* -+- e <a'(l) b(2) - a(l) b'(2» = II a'(r1) a(r l)-r 12 r 12 

(105) 

and represents the Coulomb interaction between the charge distri-
-+- * -+- (-+- ) * '(-+-) =r butions ea'(rl) a(rl) and eb r2 b rz at distance R from each 

other. The exchange term can be written 

z 
-<a'(l) b(2) ~ b'(l) a(2» = 

r 12 

(106) 

and represents the Coulomb interaction between the cha~ge distri­
butions ea' (tl) * b' (tl) and ea(tZ) b(tZ) * at distance R !rom each 
other; these two charge distributions ar~ very small if R is large. 
Therefore the exchange term is small if R is not small. 

The exchange term can also be written 

z 
<a'(l) b(Z) ~ b'(l) a(Z» 

r 12 

Z e 
= -<a'(l) b(Z) - P12 a(l) b'(Z» 

r lZ 

where PlZ is an operator that interchanges the two electron 
coordinates. For many electron atoms 

(107) 

Z 
<a'bIHABlab'> (exchange term) = <a'bl- L ~ Pi' lab'> (108) 

i,j r ij J 

The overlap of the electron charges makes the condition R > rAs' rBt 
invalid. However, if the overlap is small the multipolar part can 
be treated as previously. As for the exchange part, 

2 
- L ~P , 

i ,ri' iJ ,J J 

it can be replaced by an equivalent operator [5]: 
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Hexch - I I I . nun ' (0, cp) J U ' AB s,t R.,R.' m,m' 

CR.(S R.' 1 -+ -+ 
cps) Cm,(St'CPt)( 2 + 28 . 8 ) 

m s' s t 

- L J (1.+ -+ -+ (109) 28 . 8 ) 
st 2 s t 

s,t 

where 

I I . nun' cp) CR.(S cps) 
R.' 

cP t) (no) J = J U' (0, Cm,(St' st R.,R.' m,m' 
m s' 

This equivalent operator operates only on the angular and spin 
part of the wavefunctions. The quantities j~: contain the radial 
integrals. 

We can make the following observations: 

(1) The sum I is over all the electrons of the unfilled 3d 
s,t 

(2) 

(3) 

(4) 

(5) 

(transition metal ions) or 4f (rare earth ions) shells. For 
each couple of electrons we have a parameter 

<J t> = matrix element of J st taken between angular parts of 
s the orbital wavefunctions 

The number of independent <Jst> parameters is reduced if the 
synunetry is high. 

<Jst> depends exponentially on R, for large R. 

If ill the arbitals have the same asymptotic radial dependence 
e-r ro (ro = effective Bohr radius), then <Hexch> ~ e-2R/ ro in 
the limit of large R. 

o 
For rare earth ions ro < 0.3 A [6] and the separation of even 
the nearest ions may be large compared to r o ' so that the ex­
change interaction is small. For transition metal ions 
ro ~ 0.6 A [7]. For both types of ions supepexchange is 
important; the form of the equivalent operator in this case is 
the same as for the simple exchange case. However, the values 
of the parameters <Jst> are more difficult to estimate. 
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(6) Magnetic order in solids is a "static" effect of the exchange 
interactions. 

II.C. Electro-Magnetic Interactions 

Let us consider two ato~s A and B at distance R from each 
other, as in Figure 7. Let H be the magnetic field at B, due to 
currents in A. It is 

-+ -+ 
-+ e R x vA 
H = - --::-­

C R3 

since 

-+ 
v = 

A m 

On the other hand 

<~fl[H,x]l~i> = <~fIHx - xHI~i> 

= 1'1w<~flxl~i> 

where w It is 

. i 
x = 11 [H,x] 

. . im [ ] p = mx = -- H,x x 1'1 

Then 

imw<x>fi 

G 
A 

E) 
B 

Fig. 7. A system consisting of two atoms. 

(Ill) 

(1l2) 
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<-ifi~7> = imw<-;-> 

~ mE-+ <v> = - - <r> 
112 

(113) 

and 

(114) 

This magnetic field will interact with the magnetic dipole moment 
of B, giving an interaction energy 

Hdd(em) ~ ].I <H> = efi ~ <r> 
B 2mc c'flR2 

(115) 

In order to compare the magnitude of this interaction with the 
dipole-dipole electrostatic interaction we evaluate the ratio 

<Hdd (em) > eE<er>/(2mc2R2) ER 
dd = 3 = 2 

<H (el) > <er><er>/R 2mc <r> 

Note that 

ERe2 E(e2/fic) 2 

= 2c2.ri ~ e2/R 

ER 
2 2 2 2mc (i'i /me ) 

2 
~c = fine structure constant = 7.3 x 10-3 

We have 

hc 6.625 x 10-27 x 3 x 1010 4 x 10-12 
E ~ T = 5000 x 10-8 ~ 

-5 
5.3 x 10 

(116) 
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and 

<Hdd(em» 

<Hdd(el) > 

4 x 10-12 x 5.3 x 10-5 
~ --------~~~~~---

4.6 x 10-12 
-5 4.6 x 10 

The electromagnetic interactions are then negligible. 
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(117) 

It can also be shown that the effects of the interactions 
among magnetic multipoles are negligible. 

II.D. Phonon-Assisted Energy Transfer 

The probability for energy transfer between two ions in solids 
is proportional to the overlap integral 

(118) 

where gA(W) and gB(w) are the line shape functions for ions A and 
B, respectively. If we consider the case of two Lorentzian lines 
of width 6WA and 6wB, centered at wA and wB, respectively, we find 

(119) 

where 6w = 6wA + 6WB. For sharp and well-separated lines the value 
of the integral (119) and the probability for energy transfer 
become negligible. At low temperatures, where the lines in solids 
tend generally to be Gaussian, the value of the integral may be 
even smaller. In these circumstances the energy transfer process 
may be favored by the emission or absorption of a phonon whose 
energy compensates for the energy mismatch between the two 
transitions and ensures the conservation of energy in the process. 
The transition probability per unit time of the energy transfer 
process accompanied by the production of a phonon, if 6E = EA - EB > 0 
as in Figure 8, is given by [8] 

WAB = ~TI l<a'bIHAB lab'>1 2 S[n(w) + 1] f gA(E) gB(E - ~w) dE 

(120) 

where S = ion-vibrations coupling parameter and ~w = 6E. If 6E < 0 
then the energy transfer process is accompanied by the annihilation 
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Fig. 8. Two-atom system requiring phonon assistance for energy 
transfer. 

of a phonon and 

(121) 

If the transfer rates in both A + Band B + A directions are much 
greater than the intrinsic decay rates of A and B, phonon-assisted 
energy transfer processes may establish a Boltzmann distribution 
of populations between the excited states of A and B [9]. 

If ~E » ~Wm where wm is the maximum phonon frequency, energy 
transfer is assisted by the creation of many phonons and the 
probability per unit time of the process is given by [10, 11]: 

where S = temperature-dependent parameter related to similar 
parameter for mUltiphonon decay rate. 

III. STATISTICAL TREATMENT OF ENERGY TRANSFER. MODES OF 
EXCITATION 

III.A. Introduction 

(122) 

A typical sequence of events that includes the transfer of 
energy from one atom or ion called sensitizer or energy donor (DJ, 
to an atom or ion called activator or energy acceptor (AJ consists of: 

i) absorption of a photon by D, 
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ii) energy transfer from D to A, and 

iii) emission of a photon by A. 

In the present treatment we shall assume that D and A are weakly 
interacting, so that the energy level shifts due to the inter­
action are smaller than the width of the D and A levels. This means 
that the absorption bands of D and A are identifiable. 

Also, the present treatment will not consider the process of 
radiative transfer which consists of the emission of a photon by D 
and the absorption of the same photon by A. When such a process 
occurs the lifetime of D is in general not affected by the presence 
of A. If only one ion, say D, is present in the sample and if its 
concentration is high, the D ~ D radiative transfer may lead to 
trapping of the radiation and to an increase of the measured life­
time. In such case this lifetime may depend on the size and shape 
of the sample. 

The process we will be considering consists of the nonradiative 
transfer of energy from D to A (step ii above). 

III.B. Pulsed Excitation 

Assume that we have a number ND of donors and NA of acceptors 
and call wDA the probability of D ~ A energy transfer per unit time. 
Assume also that wDD the probability of D ~ D energy transfer is 
negligible. 

The 
excite a 
respond? 
time t 

question we shall try to answer is the following: If we 
number of donors with a light pulse, how will the system 
Let the pulse of light begin at time t = -T and end at 

0, and let T be much smaller than wnl: 

Let 

T « w- l 
DA 

number of excited donors at time t = 0 

N ,(0) = number of excited acceptors at time t = 0 
a 

We shall put 

N ,(0) = 0 
a 

(123) 

(124) 
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because during the short interval of time (-T, 0) no relevant 
D ~ A transfer takes place. If 

number of donors in the ground state at time t = 0 

N (0) 
a number of acceptors in the ground state at time t 0 

it will be 

(125) 

(126) 

We shall also call T the lifetime of the donor, in the absence of 
the activator: 

where 

T- l = P + w 
nr 

P = probability of spontaneous emission per unit time 

Wnr probability of nonradiative decay per unit time 

We shall define 

(127) 

~ 
Pi(t) = probability that the donor at position Ri is excited 

at time t 

and 

p(t) = statistical average of P.(t) 
1. 

The number of excited donors at time t is given by Nd'(O) p(t) and 
the probability of finding a donor excited at time t by 

(128) 

The number of quanta emitted as luminescence by the donors per 
unit time is 

(129) 
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The total number of quanta emitted as luminescence by the donors 
is 

00 _ 

N = P Nd,(O) J pet) dt 
o 

(130) 

The total number of quanta emitted by the donors, in the absence 
of activators, is 

No = P Nd,(O) I"" e-(t/T) dt = P Nd,(O) T 
o 

The quantum yieZd of Zuminesaenae is 

: = ~ /0 pet) dt 
o 0 

III.C. Continuous Excitation 

(131) 

(132) 

If we excite the donors with a light pulse beginning at to - T 
and ending at to' pet - to) is the response of the donor system. 
The response of this system to N short pulses of equal amplitude 
will be 

cp(t) (133) 

The luminescence signal due to this excitation is 

N 
Set) = const I pet - t k) ) const J+OO p(t- t') dt' 

k=l (tk+l-tk)+O-oo 
(134) 

where the constant depends on the intensity of light and the donor 
absorption transition probability. By making the interval between 
pulses go to zero we are essentially exciting the donor system 
continuously. If we replace +00 with zero in the integral we get 

set) = const JO pet - t') dt' "" -const J pet') dt' (135) 
t 

and 
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00 _ 

S(O) = const J p(t) dt 
o 

B. 01 BARTOLO 

(136) 

The quantity S(O) is proportional to the number of excited donors 
at the time of observation under continuous excitation. 

In order to find the value of the constant let us consider 
the donor system with the same type of excitation, in the absence 
of acceptors, as in Figure 9. w is the absorption transition 
probability per unit time; it depends on the intensity of light and 
on the d ~ d' absorption cross section. In steady state 

1 
w Nd - T Nd, 0 (137) 

But 

Nd, = ND - Nd (138) 

Then 

Nd, 
w Nd w T Nd 

-1:> w T ND (139) =--= 1 + WT 1 
W+- W « T 

T 

On the other hand, using the result (136) 

Fig. 9. Donor system in the absence of activators. 
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const T 
o o 

(140) 

Therefore the value of the constant is wND and in general 

00 -

Nd , = w ND J pet) dt 
o 

The quantum yield of luminescence is given by 

Nd , in presence of activators 

Nd , in absence of activators 

00 -

wND f pet) dt 
o 

(141) 

(142) 

Comparing this result with (132) we can conclude that quantum 
yields can be measured by either the pulsed excitation method or 
the continuous excitation method. 

IV. STATISTICAL TREATMENT OF ENERGY TRANSFER. CASE WITH NO 
MIGRATION AMONG DONORS 

IV.A. Basic Equation 

Following the pulsed excitati~n of the donor system, the proba­
bility that the donor at position Ri is excited at time t is given 
by the function Pi(t) whose time evolution is described by the 
equation [12] 

NA 

[_1._ I wDA(IR. -R.I)]p.(t) 
T • 1 1. J 1. 

J= 

(143) 

where Rj = position of acceptor j. In the equation above we 
assume that only a small number of acceptors is excited at all 
times, so that it is always Na(t) ~ NA' 

The solution of the equation above, if the initial condition 
is 

1 (144) 
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is given by 

Pi (t) [ 
t NA + + ] 

exp - T - t 2 WDA ( 1 R. - R.I) 
j=l 1. J 

(145) 

The mode of decay described by Pi(t) depends on the particular 
environment of donor i. 

Let pet) be the average of Pi(t) over a large number of donors. 
Let also w(R) be the probability distribution of D - A distances R 
in the volume of the solid V; if this probability is uniform 
within the solid, as we assume, w will be given by ltv: 

pet) -(tIT) lim [~ e 

-twDA (R) 
w(R) d1R:]NA e 

NA~ 
V~ 

-(tIp) 
lim 

[47T ~ -twDA (R) 2 JNA 
= e V feR dR 

NA~ 0 
V-+oo 

-(tIT) 
N 

e lim [I(t)] A (146) 
NA~ 
V~ 

where V 3 (4/3)7TRV and RV = radius of the largest spherical volume, 
and 

47T Rv -twDA (R) R2 dR 
let) = - J e 

V 0 
(147) 

Note that the limit in (146) is taken for a large solid, but in 
such a way that the concentration of activators NA/V remains 
constant. 

In order to evaluate let) and then pet) we need to know the 
function wDA(R). 
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IV.B. Simple Models 

Then 

where 

1. Perrin Model. In this model [13] 

00 

wDA(R) = < 
o 

R < R 
o 

R > R 
o 

I( t) 

3 R3 
4n ~. - t"l-'DA (R) 2 4 ~---

= _ /'1 e R dR = _ V 0 

V 0 3 V 

c = concentration of acceptors 
A 

(148) 

(149) 

(150) 

c- l = 4n R3 = volume of donor's "sphere of influence" (151) 
030 

cA _-
c 

o 
number of acceptors in the sphere of influence of donor 

(152) 

We have then 

- -(tiT) NA 
p(t) = e lim [I(t)] 

NA~ 

lim e -(tIT) (1 _ ~ ) NA 
NA~ Co NA 

V-wo V~ 

(153) 

Note that if Ro = 00, Co 
Ro = 0, Co = 00 and p(t) 

o and P(t) = 0 (immediate transfer). If 
e-(t/T) (no transfer). 

The quantum yield of the donor luminescence is given by 
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(154) 

The transfer yield is 

N -(cA/co) 
1- N =1-e (155) 

o 

2. Stern-Volmer Model. In this model [14] wDA has the form 

Then 

and 

wDA(R) = w = const 

e 
-N wt 

A 

where purposely we have not taken the limit NA + 00. 

The quantum yield of the donor luminescence is 

N 1 00- 1 
N = T f p(t) dt = -::--:-"'=-

o 0 1 + NAw 

The transfer yield is 

IV.C. Multipolar Interactions 

For multipolar interactions 

(156) 

(157) 

(158) 

(159) 

(160) 

(161) 
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Assume a prevalent multipolar interaction 

c(n) 
w (R) =--

DA Rn 

We define a radius R as follows 
o 

c(n) 1 Ro n 
w (R) = -- = - ( - ) 

DA Rn T R 

143 

(162) 

(163) 

Ra is the distance at which the energy transfer rate is equal to 
the decay rate of the donor. 

We set 

where 

Also 

Then 

I (t) 
n 

n 
4n ~ 2 -(t/T) (Ro/R) 

= - J R e dR 
V R 

m 

R smallest possible D - A distance 
m 

~ = radius of largest spherical volume 

x = 

x = 
m 

(164) 

(165) 

(166) 

(167) 

(168) 
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n -3/n -xm + n -3/n -~ n foo -3/n e-x dx 
- 3" xm e 3" ~ e - 3" x 

o 

+ ~ f~ x-3/ n -x n foo -3/n -x 3 e dx + 3" x e dx (169) 
o 0 

where IP indicates integration by parts. Note that 

foo x3/ n e-x dx = r(l _ 1 ) (170) 
n 

o 

We shall consider the limiting situation where 

R 
( ~ )n! ~oo 

xm = R T t-+oo (171) 
m 

(172) 

Note the following asymptotic expansions of incomplete r functions 

-x 
foo x-3/ n e-x dx ~ x- 3/ n e m (1 _ 1 x-I + ... ) 

x-+oo m n m x m 
m 

-3/n -xm 3 -(3/n)-1 -x 
x e --x e m+ 

m n m 

f ~ x- 3/ n e-x dx -----::;:;? 1.,-(3/n) [1 _ ( n) ] 
o ~ . v V 2n - 3 ~ + ... 

l-(3/n) 
~ 

n 2-{3/n) 
2n - 3 ~ + ... 

(173) 

(174) 
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We have 

I (t) 3 3/n JXm -1-(3/n) -x 
n = n ~ x e dx 

~ 

_ 3 3/n[ n -xm -(3/n) + n -(3/n) -~ n 3 - n ~ -"3 e xm "3 ~ e - "3 r(1 - "il ) 

x -x 
+ ~ x-(3/n) e m -(3/n)-1 m + n 1-(3/n) 

3 m - xm e "3 ~ 

n n 2-(3/n)] 
- "3 2n - 3 ~ 

-~ 3/n 3 3 3/n -(3/n)~1 ~xm 
= e - ~ r(1 - n ) - "il ~ xm e 

n 2 3/n 3 
+ ~ - 2n - 3 ~ xv+t 1 - ~ r(1 - n ) (175) 

Xm-+oo 

Then 

I (t) = 1 - -2/n r(1 _2 ) = 1 _ r( Ro }n.! ]3/n r(1 _ 2 ) 
n v n L~ T n 

R3 
= 1 - ~ ( .! ) 3/n r(1 _ 2 ) 

~ T n 
(176) 

But 

NA NA 
C A = -V = -(-4 rr-/"::':3:"") -RV-3 

(177) 

-1 
C =--

o 3 
(178) 
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Then 

Also 

I (t) 
n 

lim I (t) 
n 

NA~ 
V-+«> 

B. 01 BARTOLO 

(179) 

(180) 

[ c ] A t 3/n 3 exp - -- ( - ) r(l - - ) 
Co NA T n 

(181) . 

and finally 

pet) = e -(tIT) [I (t) tA = exp [_ .!. _ CA r(l _ 1 )( .!. ) 3/ nJ 
n T c n T 

o 
(182) 

This result was first derived by Forster [15]. We want to discuss 
the conditions under which this formula has been derived. xm» 1 
means 

and 

.!.» 
R 

( -.!!! ) n 
T R 

0 

Take R 3A R = lOA and n = 6 m ' 0 

.!.» (~)6 = 7 x 10-4 
T 10 

t » -4 7 x 10 T 

This shows that the approximation xm » 1 may be good even for 
very short times. 
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x.y < < 1 means 

Take Rv = 1cm, Ro = lOA and n = 6 

which is indeed always the case. 

Figure 10 reports a plot of the function p(t) given in (182) 
for the case n = 6 (dipole-dipole interaction). 

pet) 

I 0-3L-...---L_--'-_....L-..I......L----L_--'-~1IJ 
o 234 5 6 

tiT 

Fig. 10. The average probability of donor excitation in the case 
of dipole-dipole interaction. 
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The following observations can be made regarding Figure 10: 

(1) At the beginning the decay is faster, because the donors close 
to the acceptors decay first. 

(2) After a while other donors, which are farther away from ac­
ceptors, and remained excited, start transferring energy. 

(3) At very long times donors that are very far from acceptors 
will finally decay with their own lifetime. 

(4) The greater is cA/co = number of acceptors in donor's sphere 
of influence, the longer one has to wait for the p(t) curve 
to become parallel to the one for cA/co = O. 

In Figure 11 a comparison is made of the p(t) curves for the 
various processes: n = 6 (dipole-dipole), n = 8 (dipole-quadrupole) 
and n = 10 (quadrupole-quadrupole). 

Fig. 11. The average probability of donor excitation for n = 6 
(dipole-dipole interaction), n = 8 (dipole-quadrupole 
interaction), and ri = 10 (quadrupole-quadrupole inter­
action). The ratio CA/c o is equal to S. (Reproduced from 
[12] by courtesy of R. K. Watts and permission from 
Plenum Press.) 
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We have seen that the conditions Xv « 1 and Xm » 1 are in 
accord with the practical cases of interest. However, we want to 
consider the limits of very short times by making 

~ + 0 

X + 0 
m 

or v+oo (as before) (183) 

(184) 

One should expect pet) to decay exponentially, since at very short 
times only donors with acceptors as nearest neighbors transfer 
their energy. 

The relevant integral in this case is still 

fXm x-1-(3/n) e-x dx ~ X 
f m x-1-(3/n)(1 - x) dx 

~ ~ 

n -(3/n) n -(3/n) n 1-(3/n) + n 1-(3/n) 
= 3' ~ - 3' xm - n-:3 xm n - 3 ~ 

(185) 

Then 

I (t) - 3 3/n fXm -1-(3/n) -x 
n - n ~ x e dx 

~ 

1 _ ( ~ )3/n __ 3_ 3/n x1-(3/n) + _3_ (186) 
x n-3~ m n-3~ 

m 

But 

(187) 

R 
x = (..2.)n!. 
m R 't 

(188) 
m 

(189) 
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Then 

R R R R 
I (t) ~ 1 _ (~ ) 3 __ 3_ ( ~ ) 3 ( -E. ) n-3 .! + _3_ ( -E. ) n t 

n Rv n - 3 l\r Rm T n - 3 l\r T 

= 1 _...L [CA + _3_ ( C A )( cm ) (n/3)-l .! 
NA C m n - 3 Co CoT 

+ _3_ ( C A ) n/3 .! 1 J 
n - 3 Co T Nln/3)-1 

(190) 

-1 4 3 (c = -1T R ) 
m 3 m 

For very large NA 

I (t) ~ 1 _ ...L [ cA + _3_ ( cA )( cm ) (n/3)-1 .! J (191) 
n NA C n-3 C C T moo 

and 

[I (t)]NA ~ \1 _...L [CA + _3_ ( cA )( cm )(n/3)-1.!J INA 
n NA C n-3 C C T moo 

--7 exp[- cA __ 3_ ( cA ) ( cm ) (n/3)-1 .!J (192) 
N C n-3 C C T 

A-KJO moo 

Finally 

where 

...L = 1: [1 + _3_ cA ( ~cmo- ) (n/3)-lJ 
'T n - 3 c 

T 0 

-(tIT') 
e (193) 

(194) 

Therefore at very short time the function pet) decays exponentially 
as expected. 

We wish to consider now the quantum yield of donor luminescence. 
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If n = 6 (dipole-dipole interaction) 

- [t cA 1 t 1/2J [ cA P (t) = exp - - - - r ( - ) ( - ) = exp - i - - /iT 
T C 2 T T C 

o 0 

Then 

N 1 00 [t cA 12 ] 1/ 2 
N = T J exp - T - -Z- liT ( ~ ) 1 dt = r e -t-2qt dt 

o 0 0 0 

2 ( + 1/2)2 2 
eq 00 - q t 

dt = 1 - 2qeq Joo e-x J e 
0 q 

where 

cA 
2q = liT --

Co 

But 

2 Joo -x 
2 

dx = ~ Jq 
2 

erf q -x dx 1 - - e e 
IiT q rno 

Then [15]-[17] 

N 2 

N= 1 - q eq /TI(l - erf q) 
0 

We shall examine the following two limiting cases: 

q + 0: 

q + 00: 

erf q + 0 

N 'IT cA 
-+1---+1 N 2 C 

o 0 

N 
N+ 0 

o 

erf q + 1 

2 
dx (196) 

(197) 

(198) 
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IV.D. Exeh~uge Interactions 

We refer back to the result (72) and in particular to the 
second term, called the exchange term. The transition probability 
due to this term in the interaction Hamiltonian is given by 

2 
w = :TI I<dl(l) a(2) II ~I al(l) d(2»1 2 J gD(E) gA(E) dE DA '11 r 12 

(199) 

where the symbol I indicates the sum over the electrons. We can 
make the following observations: 

i) The exchange term is strongly dependent on the D - A distance. 

ii) In contrast to the case of the multipolar interaction, the 
matrix element of the interaction is not proportional to the 
oscillator strengths of D or A, and cannot be related to any 
spectroscopic characteristic of D or A. 

We shall assume that [18] 

I<dl(l) a(2) al(l) d(2»1 2 

where 

K = const with dimension of energy 

Then 

Set 

Then 

L const, called "effective Bohr radius" 

2R 
_0 =y 

L 

e 
2R /L 

o 

T 

K2 e -(2R/L) (200) 

(201) 

(202) 

(203) 
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1 2(R /L)(I-R/R ) 
o 0 =-e 

T 

1 y[I-(R/Ro)] 
=-e 

T 

Note that if R = Ro' wDA = T-1 We have from (147) and (204) 

Let 

Then 

It is 

and 

t 2R/L t 
z = eY - = e -T . T 

-y(R/R ) 
o 

Y = e 

-zy -(tiT) y[I-(R/RO)] 
e = e e 

-y(R/R ) 
dy = - leO dR = - ::L Y dR R R 

o 0 

R d 
dR = _ -.2. EY. 

Y y 

R In y = -y­
R 

o 

R 
o R = - -In y . y 

2 R~ 2 Ro d R3 2 
R dR = - (In y) (- - EY. ) = - ....E. (In y) dy 

2 Y Y 3 y 
Y Y 

153 

(204) 

(205) 
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Also 

47T 47T 3 

V = (47T ~) /3 = ~ 

Then 

R 2 
47T R2 dR = _ 2 ( ~ ) 3 (In y) dy 
V l Rv y 

and 

R Y [1- (R/R )] 2 
I(t) = 47T J-V e-(t/T) e 0 R dR 

V 0 

Y R 2 
= J V _ 2 ( ~ ) 3 (In y) e -zy dy 

1 y3 Rv y 

R -zy 2 
3 (~) 3 JI e (~n y) dy 

= y3 --v YV 
(206) 

-Y(Rv/Ro) 
where yv = e • For small yv (Rv + 00) 

1 -zyV 3 1 [1 -zy 3 = - 3 e (In yV) + 3 z ~ e (In y) dy 

yv -zy 3] - J e (In y) dy 
o 

1 3 1 [ 1 -zy 3] + - - (In y) - - -z J e (In y) dy 
3 V 3 0 
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1 YV -zy 3 - "3 z f e (In y) dy 
o 

1 3 1 13~3 1 '" - "3 (In yV) -"3 g(z) = "3 Y ( R) -"3 g(z) (207) 
o 

where 

Then 

p( t) 

R 3 L N 
lim e-(t/T) {~ ( -2. )3[1- ( _-V )3 _ 1:. g(z)l} A 

N 3 lL_ 3 R 3 J 
-+00 Y -V 0 

A 
V-+<» 

R N 
lim e-(t/T) [1 _ -\- (-2. )3 g(z)] A 

N-+oo Y ~ 
A 

V-+OO 

Taking (179) into account we obtain 

c N 
_ I' - (tIT) [1 1 A ()] A - 1m e - - --- g z 

N 3 c NA A-+oo Y 0 

V-+oo 

c 
= exp - !. - J:... .-! g(eYt/T)] 

T 3 c Y 0 

2R 
o 

where Y = L . 

We note, in regard to g(z) [18]: 

(1) g(O) = O. 

(2) g(z) is positive and monotonically increasing for z > O. 

(208) 

(209) 

(210) 
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(3) Expansion of the exponential e-zy and integration term by term 
gives the series 

00 

g(z) 6z 4 
m=O m! (m + 1) 

(211) 

For small values of z this series converges rapidly. 

(4) For z > 10 g(z) can be approximated by the expression 

g(z) = (In z)3 + 1.7316 (In z)2 + 5.934 In z + 5.445 

(212) 

V. STATISTICAL TREATMENT OF ENERGY TRANSFER. CASE WITH MIGRATION 
AMONG DONORS 

V.A. Migration 

The case treated in the previous part IV deals with direct 
transfer from donor to acceptor, with no migration among donors 
and is exemplified in Figure 12(a). We shall now consider the 
case in which wnD 1 0, and energy transfer processes can take place 
among donors, so that the energy of excitation may reach an acceptor 
after hopping resonantly among donors as in Figure 12(b). 

Since migration among donors can be viewed as a diffusion 

D* .. A D* .. D 

D D D D t 
D 

D* D A • D 

\ A D 
a) A b) 
Fig. 12(a). Direct transfer; (b) Transfer with migration. 
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process we shall review some elementary considerations regarding 
the phenomenon of diffusion. 

V.B. Diffusion 

Consider a system consisting of N similar molecules in a 
volume V, and let n be the density N/V. Let nl be the density of 
especially labelled molecules, for example, of radioactive molecules. 
Assume nl = nl(x) , i.e. a non-equilibrium situation, but assume also 
n = const, so that no net motion of whole substance occurs during 
diffusion. 

The mean number of molecules of type 1 crossing the unit area 
of a plane perpendicular to the x direction in the x direction in 
the unit time is given by 

J x 

where 

-2 -1 [cm sec ] 

D = coefficient of self diffusion 

(213) 

2 -1 
[cm sec ] 

The above formula (213) is valid for gases, liquids and isotropic 
solids [19]. If anl/ax > 0, J x < 0 and the flow takes place in the 
-x direction. 

Let us consider now the crossing by molecules of type 1 of an 
area A perpendicular to the x direction, as in Figure 13. It is 

and 

or, because of (213) 

anI (x, t) 

at 

2 a n l (x, t) 
D-~---

ax2 

aJ (x) 
x 
ax 

The above equation is called diffusion equation. 

We shall consider the initial condition of Nl molecules 

(214) 

(215) 
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A A 
dx 

-x 

Fig. 13. Crossing of plane by especially labelled molecules. 

n,lx,t} 

t, <1z <t" 

Fig. 14. Evolution of the density function of especially labelled 
molecules. 
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introduced at the time t = 0 near the plane x = 0: 

(216) 

The solution of the diffusion equation under this condition is 

N 2 2 
nl(x,t) = ___ 1 __ e-(x /20 ) 

0121i 
(217) 

The shape of the nl(x,t) curve is always gaussian (see Figure 14) 
with the standard deviation 

o = I2Dt 

It is also 

<x2> = Nl J+OO x2 nl(x,t) dx = 02 = 2Dt 
1 _00 

In three dimensions the diffusion equation is 

If the initial condition is 

the solution is given by 

Also 

2 1 2 -+ 3+ 
<r > = -- J r nl(r,t) d r = 6Dt 

Nl 

V.C. Migration as Diffusion Process 

(218) 

(219) 

(220) 

(221) 

(222) 

(223) 

-+ 
We shall be c~ncerne~ with a function p(R,t) which we define 

by stating that-+p(R,t) d3R is the probability that the donor with 
coordinate in (R, R + dR) is excited at time t. We shall now con­
sider the rollowing cases. 
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1. Diffusipn Only. In this simplest c~se the diffusion 
equation gives us 

a + 2 + 
Bt p(R,t) = D g p(R,t) 

If the excitation is initially localized at R = 0, then 

p(R, t) 
1 -(R2/4Dt) --.;::....-- e 

147T Dt 

with 

(224) 

(225) 

(226) 

2. Diffusion and Relaxation. In this case a term has to be 
added to the relevant equation 

If we set 

p(R,t) = $(R,t) e-(t/t) 

we obtain for $(R,t) 

+ If, again, the excitation is initially localized at R = 0, we 
obtain 

++ p(R, t} -(tit) 
e 

It is 

(227) 

(228) 

(229) 

(230) 

(231) 

3. Diffusion, Relaxation and Transfer. In this case the 
relevant equation is 

N 

a + [2 1 t 1+ '* I] + at p(R, t) = D g - T - j~l WDA ( R - Kj ) p(R, t) (232) 
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where the first term in the [ ] parentheses deals with diffusion 
among donor, the second with the self-decay of donors, and the 
third with donor-acceptor energy transfer. 

161 

Equation (232) is analogous to (143), but differs from it in 
two respects. First, the diffusion term is included in (232) and, 

+ 3+ also, the equivalent of Pj(t) is p(R,t) d R. The form of Pj(t), 
given the initial condition Pj(O) = 1, is given by (145); the 
average of Pj(t) over a large number of donors is given by (146) 
and finally by 

exp [- ~ - cA r(l _ 1)( ~ )3/n] (multipolar interactions) 
T c n T 

o 
pet) = 

[ t 1 cA liT] exp - - - ---- gee ) 
T 3 c 

where 

2R 
y=~ 

L 

y 0 

g(z) -z l e -zy (In y) 3 dy 
o 

(exchange interactions) 

(233) 

In the present case the analogous of pet) is the function 

1 + 3+ 
¢let) = -- J peR, t) d R (234) 

ND 

¢let) reduces to the pet) in (233) in the limit D + O. 

No general expression for ¢let) has been found. However, Yokota 
and Tanimoto [20J have obtained an expression for ¢l( t) in the case 
of dipole-dipole interaction when 

(235) 

This expression was obtained by using the method of the Pade ap­
proximants and is now reported 
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2 
exp[-.!: _ cA r( 1. ) (.!: )1/2 (1+10.87x+lS.Sx )3/4 

T c 2 T 1+8.743x 

where 

x = DT ( .!:) 2/3 
R2 T 

o 

o 

DC-l/3 2/3 
DA t 

For x « 1 cp(t) reduces to 

[ t cA 1 t 1/2J cp(t) = exp - - - -- r( - )( -) 
T c 2 T 

o 

(236) 

(237) 

(238) 

At early times diffusion is not important. Only donors with nearby 
acceptors are decaying; the time is not sufficient for the excitat­
ion to diffuse among the donors before being transferred to the 
acceptors. 

or 

DC-l / 3 t 2/ 3 « 1 
DA 

t « 
Cl / 2 

* DA 
t = 3/2 

D 
(239) 

Note that if CDA is large (D - A interaction strong) t* is large, 
and if D is large (fast diffusion among donors) t* is small. Before 
the characteristic time t* diffusion is negligible. During the 
time t* the excitation, if initially localized in one place, would 
diffuse a distance R* given by 

*2 * R = 6Dt 

It is 

* 
Cl / 2 CDA )1/4 /6D?" = DA R 6D 3/2 '" (- (240) D 
D 

The asymptotic behavior of cp(t) can be found by letting t + 00, 
namely x + 00. In this case. 
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,f.,(t) ~e 1-! _ cA r(!)(! )1/2( 15.5x )3/4] 
'Y ~ xP T C 2 T 8.743 

o 

t cA L t 1/2 3/4 
= exp1- T - -- vTI ( T) (1.733x) ] 

Co 
(241) 

Now 

3/4 3/4 
(1.733x)3/4 = 1.5361 :~ ( f )2/3]3/4 = 1.536 D R3/~ ( f )1/2 

o 0 

(242) 

and 

3/4 
= 4TI C _D_ 1/4 C1/ 4 0 907 

A 1/4 T DA. t 
T 

where 

(242) 

Then 

<P(t) t-;:;t exp(- f - 4TI D cA ~ t) 

_ t -(t/Teff) 
- exp(- :r - ~ t) = e (243) 

where 

(244) 
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-1 -1 
T = T + L eff -1) 

(245) 

At these "later" times the only donors that are still excited are 
those far away from any acceptor. They now transfer their energy 
by first diffusing it, i.e., by sending it to a donor near an 
acceptor. 

¢ It} 

~--------------_____ 1 
"t" 

Fig. 15. Behavior of the average probability of donor excitation 
in the case of migration among donors. 

The behavior of the function ~(t) is sketchily presented in 
Figure 15. 

Summarizing the results just obtained: 

(1) ~(t) is non-exponential for t small enough that migration is 
not important. In this limit ~(t) has the previous form found 
for the no-migration case. 

(2) ~(t) is exponential for large t; it decays at a rate determined 
by migration. 
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(3) As migration becomes more rapid, the boundary between these 
two regions shifts. 

Cl / 2 
* ~ DA 

t - D3/2 
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shifts to shorter times, until, for sufficiently fast migra­
tion, the decay appears to be entirely exponential. 

V.D. Migration as Random Walk 

Consider a donor 1, excited at t = O. The probability that 
donor 1 is still excited at time t is 

N 

1/!1 (t) = exp [- f - t it wDA (Rl - Ri )] (246) 

At time t = tl' the excitation hops to donor 2. The proba­
bility that donor 2 is still excited at time t > tl is given by 

[~IJi is the probability of finding donor i excited at time t, then 

Hop 
II 

................................................................... 
k 1/!k(tk) 1/!k_l(tk) 1/!k(T - t k) = 1/!1(tl ) ~2(t2 - t l ) 1/!3(t3 - t 2) 

... 1/!k(T - t k) 
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The actual path of the excitation is affected by two random 
quantities (see Figure 16) 

i) t - t. 1 = interval of time between jumps, and 
j J-

ii) energy transfer probability per unit time 

We shall consider the two random quantities 
other. In addition, we shall call s the generic 
jumps and shall assume that the probability that 
is given by -(SiT ) 

where 

o 
P(s) ds ..:.e ___ ds 

T 
o 

T 
o 

<s> foo S P(s) ds 
o 

The probability of a sequence of intervals 

o 

independent of each 
time interval among 
s is in (s, s + ds) 

(247) 

(248) 

Fig. 16. Energy transfer probability per unit time as affected by 
the hopping of excitation among donors. 
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is given by 

-(t2-tl ) ITo dt2 
e -

T 
o 

-(T-tk) ITo dtk 
e --

T 
o 

T 

k 
T 

o 

o 

k dt. 
1 

1f -
i=l To 
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(249) 

The meaningful function ~(T) expressing the probability of donor 
excitation, has to be obtained by averaging over the two random 
processes. In evaluating the function ~(T) we have to sum over the 
different sequences of events that can take place in the interval 
(0, T). In particular, one term will correspond to "no-jump", the 
following terms to "one-jump", "two-jumps", etc. 

For no jumps: 

-(TIT) -
~ (T) = e p(T) 

o 

For one jump: 

-(TIT) 
o 

~l (T) = _e_T-- fT dtl p(tl ) p(T - t l ) 
o 0 

For two jumps: 

-(TIT) 
o 

e 
~2(T) = 2 

T 
o 

Summing over all the terms ~.(T): 
1 

. . . . . . . . . 

(250) 

(251) 

(252) 
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-(TIT) -(T/TO) 

cj>(T) = e 0 p(T) + ..:;,e_T-- IT dtl p(T - t l ) p(t1) 
o 0 

- (TIT ) 
e 0 T -

+ 2 I dt2 p(T -
T 0 o 

+ ••••••••• 

-(TIT ) 
= e 0 [p(T) + Sl(T)] (253) 

where 

TIT 
= e 0 cj>(T) - p(T) (254) 

TIT d 0- T Multiplying (253) by e p(T - T) ~ and integrating over T 
o 
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where 

TIT 
; IT e 0 ~(T) p(T - T) dT 

o 0 

1 T - -= ~ I p(T) p(T - T) dT + S2(T) 
o 0 

On the other hand 

1 T - T t2 
+ 3" I dT p(T - T) I dt2 P (T - t ) I dt1 
Too 2 0 

o 
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(255) 

(256) 

(257) 
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B. DI BARTOLO 

Fig. 17. Decay of donor luminescence in the energy hopping model; 
cA = 2co and n = 8 (dipole-quadrupole interaction). 
(Reproduced from [12] by courtesy of R. K. Watts and 
permission from Plenum Press.) 

But 

= e 
T/T. 

o 

Then (255) becomes 

1 T T./T.o 
-- f e ¢(T.) peT - T.) 
T. 

o 0 

or 

= e 
T/T. 

o 

(258) 

¢(T) - peT) 
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-(T/To) 1 T 
Q>(T) = p(T) e + - f Q>(T) p(T - T) 

T 
o 0 

-(T-T/T ) 
o 

e dT 

171 

(259) 

which can be written [22] 

-(t/To) 1 t 
Q> (t) = p ( t) e + - f Q> ( t I) P (t - t I ) 

T 
o 0 

-( tIT ) 

-(t-t'/T) 
o e dt ' 

= p(t) e 0 +.l It Q>(t - t l ) p(t l ) 
-(tIlT) 

o 
e dt ' 

T 
o 0 

(260) 

The following observations can be made on Eq. (260): 

(1) This equation is a renewal equation, the value of Q> at time t 
depending on the value of Q> at time t - tl. 

(2) The solution of this equation is generally found by numerical 
methods. 

(3) p(t) in Eq. (260) takes a form appropriate to the type of 
D - A interaction: multipolar or exchange. 

Figure 17 reports the decay of the donor luminescence following 
an exciting pulse, for the case cA/co = 2 and n = 8 (dipole­
quadrupole interaction) 

Figure 18 reports tbe donor luminescence yield for n = 6, 
8 and 10 obtained by integrating the solution of Eq. (260) [12]. 
Note that the smaller is To (the greater the hopping rate), the 
weaker is the luminescence yield of the donors. 

A couple of more things ought to be said regarding Eq. (260). 
First, let us cite a theorem that applies to Laplace transforms: 
"Given two functions fl(6) and f2(6) with Laplace transforms 
Fl(s) and F2(s) , respectively 

= fafl(a - a ' ) f 2(a ' ) da' " 
o 

(261) 



172 B. 01 BARTOLO 

n·6 

0.1 10 
CA/Co 

Fig. 18. Yield of donor luminescence obtained by integrating 
the solution of Eq. (260). (Reproduced from [12] by 
courtesy of R.K. Watts and permission from Plenum 
Press). 

Let us now use this theorem to deal with Eq. (260). If we set 

T = a T 
o 

t 
- = e 
T 

Eq. (260) is written 

t t 
- = a - = ae 
T T 

(262) 
o 

epee) = pee) e-ae + a fe e-a(e-e') pee - e') epee') de' (263) 
o 

Assume now that 
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It is 

Then because of (261) 

f9 e-a (9-9') p(9 - 9') <1>(9') d9' = p(s + a) <I>(s) 
o 

and (263) gives 

or 

<I>(s) = p(s + a) + a p(s + a) <I>(s) 

<I> (s) = _....I:P:...!(_s _+:......=a~) _ 
1 - a p(s + a) 

<1>(9) is the inverse Laplace transform of (264) above. 

173 

(264) 

Second, we want to check the general validity of (260). We 
note that 

(265) 

Let us now assume that no acceptors are present or, that the W.DA = 
const as in the Stern-Volmer model. In this case we expect that 
the hopping of excitation should have no effect. 

Let 

Then 

= e 

T = a T o 

-(tiT) 

-(t/TO) -(tiT) (l+a) 
e = e 
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(t ') -(t-t')!T. - -t 0 
P e 

-(l+a) (tIT) (l+a)(t' /T) = e e 

and (260) becomes 

~(t) = e-(l+a) (t/T) + ~ e-(l+a) (t/T) It e(l+a)(t'/T)~(t') dt' 
T 

o 

which gives 

_ 1 + a ~(t) + 1 + a e-(l+a) (t/T) 
T T 

a(l; a) e-(l+a) (t/T) It e(l+a)(t'/T) ~(t') dt' 

T 0 

On the other hand 

or 

d~(t) 1 + a -(l+a) (t/T) a(l + a) -(l+a) (t/T) 
d"t=--T- e 2 e 

T 

. It e(l+a) (t'/T) ~(t') dt' + ~ ~(t) 
T 

o 

= _ 1 + a e -(l+a)(t/T) _ 1 + a ~(t) 
T T 

+ 1 + a e-(l+a)(t/T) + ~ ~(t) = _ 1 ~(t) 
T T T 

V.E. Comparison of Two Models 

We summarize now the results found for the two models. 

(267) 

(268) 

(269) 
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1. Diffusion Model 

I t cA 1 t 1/2 
~(t) = exp - - - - r( - ) ( - ) 

T c 2 T 
o 

[ 1 + 10.87x + ls.si J3/41 
1 + 8.743x 

(270) 

where 

x = DT R-2 ( .! )2/3 = _D_ t 2/ 3 
o T cl/3 

DA 

(n = 6 only) (271) 

2. Random Walk (Hopping) Model 

-(tIT) 1 t ~ -(t-t'/T) 
~(t) = p(t) e 0 + - J (t') p(t - t') e 0 dT' 

T 
o 0 

for any p(t). 

Watts has compared the two equations (270) and (272) and 
found agreement, as shown in Figure 19, for the case n = 6, 
cA = 2co and 

x = 0 -----~) T = 00 
o 

x = 0.14( .! )2/3 -4 T 
T 0 

= T 

V.F. Calculation of Transfer Rates 

(272) 

1. Diffusion Model. We call cD the concentration of donors: 

The average D - D distance is given by 

471" cD -1/3 
L=(-3-) 

(273) 

(274) 
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- HOPPING MODEL 
• •• DIFFUSION MODEL 

qHt) 

2 

Fig. 19. Decay of donor luminescence according to the diffusion 
model and to the hopping model. (Reproduced from [12] 
by courtesy of R. K. Watts and permission from 
Plenum Press.) 

Considering the general relation D = R2/6t, we have [23] 

R2 2 
dD = 6t cD R sin e dR de dcjl 

R2 eDD 2 1 1 
= '6 -6 cD R sin e dR de dcjl = '6 eDD cD 2" sin e dR de dcjl 

R R 
(275) 

and 
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= ! ( 4TI )4/3 4/3 C = 3 375 4/3 C 
2 3 cD DD • cD DD (276) 

Measured value for D for rare earth ions are 10-11 - 10-9 cm2 sec-l 
[24] • 

We shall now use the expression (244) to find 

Cl / 4 
4/3 DA 

KD = 4TI D cA ~ = 4TI(3.375 cD CDD) cA( 1/4) 
D 

Cl / 4 
~ 42 4/3 c C __ ---,,~D7-=A~_:_::_......,....,..,... ~ 30 c c3/ 4 cl / 4 

cD A DD 1/4 1/3 1/4 D cA DD DA 
(3.375) cD CDD 

2. Hopping Model. If n = 6 (dipole-dipole interaction) 
Eq. (182) gives us 

c 
pet} = exp [- !. - ...A r( 1: ) ( .! )1/2 ] 

T c 2 T 
o 

But 

1 
cA r( "2 ) 
C 1/2 o T 

Therefore we can write [22] 

where 

l6TI3 2 
A = -9- cA CDA 

IfA»l 
T 

pet) ~ e 
_(At)1/2 

(277) 

(278) 

(279) 

(280) 
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Consider the following distribution 

</>(W) = ( ..!.- )1/2 W- 3/ 2 e-(A/4W) (281) 
47T 

We shall show that this distribution is normalized. If we set 

-1/2 W = z 

1 -- dW = -2dz 
W3/ 2 

- lW-3/ 2 dW = dz 
2 

We obtain 

/" "'(W) dW = ( ..!.- )1/2 /X) W- 3/ 2 e-(A/4W) dW 
'f' 47T 

o 0 

2 
2( ..!.- )1/2 Joo e-(A/4)z dz 

47T 
o 

Let us now calculate the following integral 

2 2 ( ..!.- )1/2 2 Joo e-(A/4)z -(t/z ) dz 
47T 

o 

Set 

A 2 2 "4 z = x 

2 dz = - dx 
Ii. 

(282) 
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Then 

/>0 e -Wt HW) dW = fI 2 t' .2. dx [e _x2 - (At/4) (l/x2)] 
o V41i 0 IA 

= _2 ;00 -x2-(At/4) (1/x2) _(At)1/2 
e dx = e = p(t) (283) 

liTo 

We may then say that ¢(W) dW is the probability that the energy 
transfer rate is in (W, W + dW). The most probable migration rate 
is obtained from (281) and is equal toA/6; we then set 

1 A 2 3 2 
T = 6" = ( "3 If) cD CDD (284) 

o 

where we have replaced CDA with CDD because we are dealing with 
D + D transfer. In this derivation it is assumed that A » lIT, 
namely that the hopping rate is much larger than the intrinsic 
donor decay rate. 

-9 For very high rare earth donor concentrations To < 10 sec 
[25] • 

We define a critical radius Rc for the donor such that 

6 6 
CDA 1 Ro 1 Rc 

w =--=--=--
DA R6 T R6 ToR6 

(285) 

Rc is the distance at which the D + A transfer rate is equal 
to the D + D transfer rate. Ro' as before, is the distance at which 
the D + A transfer rate is equal to the D decay rate. The number 
of acceptors inside the sphere of radius Rc is 

R6 
4lf R3 = 4lf If C (~T )1/2 4 (C T )1/2 3 c cA 3 A T 0 = "3 If cA DA 0 

(286) 

The D + A energy transfer probability is greater than liTo for all 
the acceptors inside this sphere. 

The rate of D + A transfer is equal to the number of acceptors 
that fall into the strong interaction zone around the migrating 
donor excitation per unit time: 
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1/2 
_!!. c 1/2 _1 __ !!. el/2 cD eDD 
- 3 1T A eDA Tl/2 - 3 1T C A DA -(--'-='2=-7 ;:;"')--:1:-;/"='2 

o 81T3 

~ 40 cA cD el / 2 el / 2 
DD DA 

V.G. Regimes of Donor Decay 

There are three regimes of donor decay: 

(287) 

1. No Diffusion. 
is given by pet). pet) 
to the various transfer 
donor which is far away 
function is 

cD is small. The decay of donor excitation 
is the average of exponentials corresponding 
rates wDA(R). An extreme case is that of a 
from all acceptors; the donor decay 

pet) = e-(t/T) (288) 

where T = intrinsic lifetime of donor. The other extreme case is 
that of a donor which has an acceptor as nearest neighbor; in this 
case 

where ~ = minimum D - A distance. 

2. Diffusion-Limited Decay. cD is higher. 
pet) is the ~ame as for the case of no migration. 
t » el / 2/D3/2 

DA 

_ -(t/T)-~t 
pet) 'V e 

(289) 

For t « e5~2/D3/2, 
For 

(290) 

* 1/2 3/2 t = e:OA ID represents a boundary between the "transfer without 
migrat~on" region and the "transfer with migration" region. 

3. Fast Diffusion. cD is still higher. An increase in the 
concentration of donors produces a faster migration of energy, i.e. 
a larger D, and a larger KD' The characteristic time t* becomes 
shorter and shorter until it reaches the valuewni(Rm), Rm being 
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the shortest D - A distance. Any additional increase of CD has 
effect on D, but no effect on KD which takes a "saturated" value 
[26]. In these conditions the decay of the donor luminescence is 
purely exponential, since the fast diffusion averages out all the 
different donor environments. 

In the present case we set 

(291) 

where K = const, independent of CD' or, taking into account the 
possibility that a large fraction of acceptors are excited 

(292) 

where nA = concentration of ground state acceptors. In this case 
the evolution of the excited donor population follows the rate 
equation 

(293) 

Rate equations h~ve been used for explaining energy transfer in 
rare-earth doped systems [27]. 

V.H. Migration in the Case of Inhomogeneous Broadening of Donors 
Levels 

Inhomogeneous broadening results when the sites occupied by 
the optically active ions are not exactly equal. In glasses the 
disorder produces an inhomogeneous line broadening of ~100 cm-l for 
rare earths. 

Even in a "perfect" crystal there may be environments which 
are different for the various donors. The difference of the 
environments can be due to slight changes in the local crystalline 
field. Also, a donor may have an acceptor nearby, another donor 
may be far away from all acceptors, and this may also affect 
slightly the levels of the donor. 

Consider now the donor system where donors are in different 
environments exemplified in Figure 20. Donor-to donor energy 
transfer in this case takes place among nonresonant levels. 

If gi(E) is the homogeneous line shape function of level i, the 
transfer rate between level i and level k is proportional to the over­
lap integral of the line shape functions corresponding to the two 
levels: 
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---> ---> 
---> 

D, 

Fig. 20. Inhomogeneous broadening of donor levels. 

This means that the energy transfer rate between two donors i and 
k is now a function not only of their relative distance IRi - Rkl , 
but also of the difference of their excited state energies 
(Ei - Ek): 

Consider now the case in which IRi - Rkl is large. Because 
of the large distance energy transfer is improbable, even if 
Ei = Ek; the inhomogeneous broadening has then no effect in this 
case. 

If IRi - Rkl is small, the inhomogeneous broadening may 
reduce the overlap integral (294) and consequently prevent the 
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i + k energy transfer. 

If Pi(t) is the probability that ion i is excited at time t: 

(296) 

This relation gives us a system of equations which are coupled 
through the last term in the right member. 

Inhomogeneous broadening may have relevant effects on the 
spectral characteristics of an emitting system, even if this system 
consists of ions of one type. Consider Figure 21, where for 
simplicity only two different environments are represented. In 
general the distribution of the ions in the available sites may be 
random, but, by the use of monochromatic (laser) light it is 
possible to excite selectively the ions residing in a particular 
environment, say Dl' Ions Dl are then brought to level Ei from which 
they decay nonradiatively to level El' Assume the exciting light 
intensity to be constant in time and let T and T' be the intrinsic 
lifetimes of level El and Ei, respectively. If T' » (~ Wik)-l or 

k . 
T » (~ wlk)-l, then it takes the excited Dl ions much less time 

k 
to transfer their energy to the other Dk ions than to relax. Under 
these circumstances the selective excitation has no effect, since 
the energy spreads rapidly among the ions in different sites; the 
luminescence spectrum will be similar to the one obtained with 
wideband excitation. 

If, on the other hand, T' « (~ wik)-l and T « (~ wlk)-l then 
k k 

it takes the excited Dl ions much less time to relax than to 
transfer their energy to the other Dk ions. Under these circum­
stances only the Dl ions will luminesce with a definite photon 
energy El; the luminescence spectrum will be much narrower than 
the one obtained with wide band excitation. This effect is called 
fluorescence line narrowing (FLN) [28]. 

VI. COLLECTIVE EXCITATIONS 

VI.A. Introduction 

We have considered the energy transfer processes taking place 
among donor centers and between donor and acceptor centers. In the 
systems examined donors and acceptors are distributed over the 
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Fig. 21. Energy levels of ions in different environments. 

available sites and replace substitutionally an .intrinsic consti­
tuent of the solid. We wish to consider now the case of an 
ordered solid consisting entirely of identical atoms and to study 
how the interactions among these ions lead to excitations of 
collective type. We shall begin our treatment with a linear system 
and extend later this treatment to three dimensions. 

Consider a linear crystal consisting of a chain of N identical 
atoms with a unit cell of length a. 

Assume that the Hamiltonian of the system is the following 

H = H + HI 
o 

where 

H = o 

N 
I H 

s=l s 

(297) 

(298) 
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H' = { L 
s,s' 
s';s' 

v sst 

185 

(299) 

The Hs are one-atom Hamiltonians and the Hss' are terms repre­
senting interactions between different atoms. The ground state 
wavefunction of Ho is given by 

The first excited state of Ho corresponds to the following N 
degenerate wavefunctions 

(300) 

(301) 

In these wavefunctions ui represents a localized one-atom ground 
state and vi a localized one-atom excited state. Both ui and Vi 
are assumed to be nondegenerate. 

The ground state of the Hamiltonian Ho is nondegenerate; the 
first excited state of Ho is N-fo1d degenerate, because there are 
N distinct ways to excite only one atom. For all these wave­
functions the energy is Eo: 

The eigenfunctions of H are given by 

H 1/1' = (H + H') 1/1' = E' 1/1 ' v 0 v V v (303) 

The excited-state eigenfunctions of H can be expressed as follows: 

1/1' = 
V 

Replacing this in Eq. (303) we find 

t avt(Eo - E~) 1/1t + t avt Hf1/1t o 

(304) 

(305) 
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Multiplying by ~* and integrating 
m 

a (E' - E - H' ) 
\lm V O11)Pl 

o (306) 

We note the following: 

E' v = total energy of the system 

E + H' energy of the chain if the excitation cannot move 
0 mm 

E' (E + H' ) EV energy associated with the motion 
V o mm of the excitation 

We see from Eq. (306) that the motion of the excitation is related 
to the of f-diagonaJ. terms of the Hamil tonian H! 

VI.B. Eigenfunctions 

In order to look for functions that approximate well the wave­
functions Wv that satisfy the eigenvalue equation (303) we want to 
take advantage of the symmetry of the system. We shall assume 
periodic boundary conditions to take care of "surface" e~fects and 
translational symmetry for the chain 

H(x + ta) = H(x) (307) 

Later in this treatment we shall generalize our results to 
three-dimensional crystals. It seems appropriate at this time to 
digress from the present sequence of derivations and express a 
general result for the three-dimensional case. 

Let us assume that an electron is in a periodic field of force 
and its Hamiltonian is such that 

-+ -+ -+ 
H(r + R ) = H(r) (308) 

n 

-+ 
where Rn = lattice vector. The eigenfunctions of H are given by 
the equation 

-+ -+ 
Hw(r) = Ew(r) (309) 

We shall assume these functions to be orthonormal. IS is always 
possible [29], even if E is degenerate, to express w(r) in such a 
way that 
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(310) 

The vector k is defined, apart from any reciprocal lattice vector 
Ks. For any vector of the latter type 

+ + 
iK ·R 

e s n = 1 (311) 

+ + for any Ro. This gives us the possibility of keeping k within the 
first BriZZouin zone. 

The values of k are determined by the periodic boundary con­
ditions that we impose on the wavefunctions. 

We apply now these considerations to our linear crystal. As 
we noted in Eq. (304), the desired wavefunctions have the form 

N 

l/J' = I akn l/Jn 
k i=l k k 

(312) 

where we have changed the wavefunction index from V to k. In the 
expressions above k runs over N possible values and we note that 
the wavefunctions l/Jk may involve some degeneracy. 

As we established in Eqs. (301), the first excited state of Ho 
is related to the wavefunctions 

~[x - (N 1) a] 

~ [x - (N - 1) a] 

l/JN(x) = u1 (x) u2(x - a) u3(x - 2a) .•• vN[x - (N - 1) a] 

(3l3) 

Let us consider the effect of a shift of the origin in the +x 
direction by an amount a: 

(314) 

It is 
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~(x - Na) 

~(x) 

= 1/J2(x) (315) 

We have made use of the periodic boundary conditions in the inter­
mediate step. In general it may be seen that 

(316) 

Let us now examine the effect of this shift of or1g1n on the 
wavefunctions 1/Jk' First, according to the result (310), 

-ika 
e (ak1 1/J1 + ~2 1/J2 + ... akN 1/JN) (317) 

On the other hand, we may also write 

(318) 

The comparison of the coefficients in Eqs. (317) and (318) gives 
us 

The desired wavefunctions can now be written 

ika i2ka 
1/Jk = ak1 (1/J1 + e 1/J2 + e 1/J3 + ... ) 

The normalization of 1/Jk yields 

and we may choose the phase of ~1 so that 

1 ika ak1 = - e 
IN 

(319) 

(320) 

(321) 

(322) 
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resulting in 

(323) 

Therefore the approximate wavefunctions of Hare 

ground state 

~> (324) 

first excited state 

N 
,/,' =.l... \' eHka lu 
'f'k IN R.~1 1 u2 ... vR. ... ~> (325) 

The above wavefunctions are approximate for the following reasons: 

(1) We treated the localized electronic wavefunctions Uj as 
non-overlapping. In fact, any functions used to approxi­
mate them do overlap. 

(2) We did not take explicitly into account the interaction 
terms Vss in generating the 1/Ig and 1/Ik' 

Finally, we consider the allowed values of k which are, as we 
said, determined by the boundary conditions that we impose. If we 
choose periodic boundary conditions, 1/Ik(x + Na) = 1/Ik(x) and 

ak N+l = akl (326) , 

or 

ik(N+l)a ika 
e = e 

This implies 

ikNa 
e = 1 

with the solutions 

k = 2'11ll 
Na 

If we take 

(327) 

(328) 

(329) 
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N N --<n<-2 - 2 

the range for n is compatible with k being in the first Brillouin 
zone. 

VI.C. Dispersion Relations 

We have already seen in the previous section that 

1 Uka 
=- e 

IN 

These coefficients appear in Eq. (306) as follows 

where 

akm Ek - L a H~n = 0 
Mm kR. III-" 

E = E' - E - H' 
k k 0 mm 

Substituting (330) in Eq. (331), we obtain a relationship 
between Ek and k 

and 

E = L ei(t-m)ka H' 
k t';m ~ 

(330) 

(331) 

(332) 

(333) 

This dispersion reU2tion is independent of m; in addition, the N 
different values of k generate N values for Ek' We may recall that 

(334) 

which in the present case reduces to 

H' = <v u IH I I u v > rot m t m t (335) 

In many cases only nearest neighbor interactions are non-negligible; 
for such systems the matrix elements may be written 
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H~ = M O~ m+l (336) 
'-

where M is the strength of the interaction. The dispersion re­
lation represented by Eq. (333) then becomes 

E = Meika + Me -ika = 2M cos ka (337) 
k 

The total energy of the system is then of the form 

E I = E + HI + E = E + HI + 2M cos ka 
k 0 rom k 0 rom 

(338) 

where we have taken into account the expression (332). We observe 
that, as a result of the perturbation HI, the N-fold degenerate 
state has become a band of N states (recall the N allowed values 
of k). 

The dispersion relation is sketched in Figure 22. 

E 

2M 

I 
: 2M----T 

I 
I Eo + H;,. I 
I 1 I 
I 
I ./( _If 0 If 
a a 

Fig. 22. Dispersion relation for collective excitations of a 
linear chain. 
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VI.D. Effective Mass 

The collective excitations can be treated as quasi­
particles with an effective mass. By forming wave packets with a 
spread ~k about k we can define a particle velocity as the group 
velocity 

(339) 

We note that this formula is also valid for electromagnetic waves. 

Since, for a free particle, 

we can associate to our quasi-particle the mass 

In the present case 

e:k = 2M cos ka 

and 

oe:k 
ok = -2Ma sin ka 

2 o e:k 2 
-_. = -2Ma cos ka 
ak2 

Therefore 

1 ae:k 
v =---=-

k 11 ak 

and 

2Ma sin ka 
'Ii 

(340) 

(341) 

(342) 

(343) 

(344) 

(345) 
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* 11.2 112 
m = = -2 2Ma2 cos a e:k ka 

(-) 
ak2 

* e:k' vk and m are represented in Figure 23. 
small k 

2Mka2 
vk=-~ 

* 1\2 
m = - 2Ma2 
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(346) 

We note that for 

(347) 

(348) 

In order to establish some qualitative features of the effec­
tive mass approach, let us treat only the absolute values of v and 
m*. We note: 

(1) The velocity is linearly dependent on both M and k. As 
the strength of the interaction increases, the speed of 
excitation propagation also increases (all other factors 
being equal). The dependence of v on the interatomic 
distance a is more subtle, since a portion of this de­
pendence is "hidden" in Mk. As a typical example, let 
us consider the electric dipole-electric dipole inter­
action between nearest neighbors. This interaction goes 
as a-3• In this case, we have v « a-2, since k « a-I. 
We therefore see that the velocity decreases (possibly 
dramatically) as a increases. 

(2) The effective mass is inversely proportional to M. A 
strong interaction between nearest neighbors would then 
result in a relatively small effective mass (all other 
factors being equal). This reinforces our general notion 
that a strong interaction enhances the de1oca1ization of 
excitation energy in the system. As for the velocity, 
the dependence of m* on a requires some specification of 
the interaction M. For the electric dipole-electric 
dipole case given above, it is easy to verify that 
m* «a1• This results in the physically reasonable be­
havior that an increased separation distance hampers the 
movement of excitation energy. 
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Fig. 23. Energy, velocity and equivalent mass of collective 
excitations. 
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VI.E. Generalization to Three Dimensions 

We generalize our treatment to an ordered solid in three 
dimensions. Let ~l' t2 and t3 be the primitive basic lattice 
vectors and N = Nl . N2 . N3 the total number of atoms. We 
introduce the notion of reciprocal lattice, a geometrical con­
struction which consists of an array of points. The primitive 
basic vectors of the reciprocal lattice are given by 

+ + 

21T 
a 2 x a3 

+ + + 
al 

. a 2 x a 3 

+ + 
a 3 x al + + 

21T 0ij) 21T (b,' a, = 
+ + + ~ J a . a 2 x a 3 1 

+ + 
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21T + 

al x a 2 
(349) 

+ + 
a l a 2 x a3 

In the reciprocal lattice we carve out the Brillouin Zone~ another 
-+ geometrical construction in k space. It is constructed by starting 

from a lattice point of the reciprocal lattice, drawing lines to 
the nearest neighbor points and cutting these lines halfway with 
perpendicular planes; the smallest volume enclosed by these planes 
is the (first) Brillouin Zone. 

The wavefunction of the crystal corresponding to the first 
excited state is now designated as follows: 

(350) 

The allowed values of k are determined by the periodic boundary 
conditions. 

The dispersion relation is given by 

+ + + 
ik· (R -R ) 

~ m 
e HI 

~ 

The group velocity is given by 

( 351) 
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-+ I * v-+ = - V.-+ e:-+ 
k 11 k k 

(352) 

and the mass tensor by 

m 
* fl2 

(353) 

VI.F. Periodic Boundary Conditions and Density of States 

Consider a crystal with 

-+ NI cells in the al direction 

-+ 
N2 cells in the a 2 direction, and 

-+ 
N3 cells in the a3 direction. 

Call 

(354) 

If we impose periodic boundary conditions (PBC), we obtain 

-+ -+ 
1Pk:(r + ~) 

-+ 
1/ik(r) (355) 

namely, 

-+-+ 
ik.~ 

e = I (356) 

-+ 
This equation determines the allowed values of k; it implies that 

-+ 
~ = 21TS (s = integer) (357) 

The wave vector can be expressed as follows 

(358) 
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A + 
where b i = unit vector in the bi direction. 

Therefore 

+ + 
k· ~ 

21TS (359) 

This relation is satisfied if 

21T sl 
kl + 

Nl a l b l 

k2 
21T s2 

+ A 

N2 a 2 b2 

k = 
21T s3 

3 + 
A 

N3 a 3 b3 

(360) 

with sl' s2 and s3 positive or negative integers or zero. 

Claim 

The values of sl greater than Nl , 

the values of s2 greater than N2, and 

the values of s3 greater than N3 

are redundant. 

Proof 

Let us assume that si < Ni and let us replace si by si + Ni • 
Then 
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21T 8 1 
= ---+--"';;;;"'-::-A-+ 

Nl al • bl 

and 

But 

Therefore the values of 8 1 > Nl , 8 2 > N2 and s3 > N3 are re­
dundant. Q.E.D. 

We can then limit kl , k2 and k3 to the following values: 

21T sl 
k = A 1 -+­

Nl (al • b l ) 
sl = 1, 2, ... , Nl 

Nl 
or ± 1, ± 2, ••• , ± ""2 
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s2 = 1, 2, ••• , N2 

or .±1, .±2, ... , 

s3 = 1, 2, ... , N3 

N2 
+­- 2 

N3 
or .±l, .±2, ... , .± "2 

199 

The number of states with kl in (kl + dkl), k2 in (k2 + dk2) and 
k3 in (k3 + dk3) is given by 

• -+ 
The infinitessimal volume element 1n k space is given by 

Therefore 

But 
-+- A -+ A -+-

(a1 • b l )(a2 • b 2)(a3 b 3) 

b l . b2 x b 3 

We know that 

and 

-+ -+ 
a. b. 

1 J 2'IT 0ij 

-+ -+ 
b2 x b3 = volume of unit cell of reciprocal 

lattice = 8'IT3/Qa 

(361) 

(362) 

(363) 

(364) 
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where 

Qa unit cell of "direct" lattice 

Therefore 

(365) 

and 

(366) 

because 

NI NZ N3 Qa = V = volume of the crystal 

The volume of the (first) Brillouin Zone is also 8TI3jQ. The 
number of allowed t values in this zone is a 

VI.G. Interaction of Photons with Collective Excitations 

The relevant quantity in the creation or annihilation of a 
quantum of collective excitation via the absorption or emission 
of a photon is 1Z9] 

-+ -+ 

I q. ik·r. 
<ljJ L 2. e a ~(~ 

u . m. a 
~ ~ 

(368) 

-+ -+ 
where ka = wave vector of the photon, TIg = (unit) polarization 
vector, and the sum extends to all the electrons in the optically 
active atom. 

In our case 

(369) 
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++ 
1 ik'R 

1/1 =-2e slu u u INs 1 2 vs '" ~> 

We can now write 

++ 
-ik'R 

= ~ I e s<ul U2 '" v 
IN s s 

++ 
-ik'R 

= ~ I I e S<v Ic. 
!Nis s 1. 

+ + 
ik 'r! 

a. 1.1 >0 e Us is 

+ + + + + 
i(k -k) 'R ik 'r! 

= ~ I e a. s<vl I c. e a. 1.lu> 
INs i 1. 

qi +0 
where C. = - 1T 1. mi a. 

umklapp processes) 

+ 
Setting K 

s 
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(370) 

(371) 

o (no 

(372) 

This selection rule is+ill¥strated in Figure 24 which indicates that 
only excitations with ~ = ~ ~ 0 can be created in absorption and 
only excitations with k = ka. ~ 0 can produce the emission of a 
photon, We observe also that no dispersion effect can be seen 
because the dispersion curve of the collective excitations and that 
of the photons cross at one point, 

+ + 
The k = ka. rule is relaxed if more than one collective excita-

tion is involved in the radiative process, For example, in 
absorption 
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(373) 

would correspond to the creation of a collective excitation of wave 
~ ~ 

vector Kl and of a collective excitation of wave vector K2; 

would correspond to the creation of a collective excitation of wave 
vector I1 and the annihilation of a collective excitation of wave 
vector I 2• 

For a more extensive treatment of collective excitations in 
solids the reader is referred to reference [29] which is an intro­
ductory treatment of this subject and to the book in reference 
[30] • 

Fig. 24. Radiative processes and collective excitations. 

ACKNOWLEDGEMENTS 

The author wishes to thank Dr. R. K. Watts for the benefit 
of discussions on energy transfer processes during the 1974 NATO 



ENERGY TRANSFER AMONG IONS IN SOLIDS 203 

Advanced Study Institute in Erice and the Plenum Publishing Corpora­
tion for the permiLsion to reproduce some figures that appear in 
R.K. Watt's article in the proceedings of the above mentioned 
meeting. 

REFERENCES 

1. H. Eyring, J. Walter and G. F. Kimball, Quantum Chemistry, 
Wiley, New York (1944), p. 351. 

2. H. Margenau, Phys. Rev. 38, 347 (1931). 
3. H. Hargenau, Rev. Mod. Phys. 11, 1 (1939). 
4. B. C. Carlson and G. S. Rushbrooke, Proc. Camb. Phil. Soc. 46, 

626 (1950). 
5. P. M. Levy, Phys. Rev. 177, 509 (1969). 
6. A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962). 
7. E. Clementi, IBM J. of Res. and Dev. 9, 2 (1965). 
8. B. DiBartolo, Optical Interactions in-Solids, Wiley, New York 

(1968), p. 456. 
9. R.C. Powell, B. Di Bartolo, B. Birang and C.S. Naiman, in 

Optical Properties of Ions in Crystals, H. M. Crosswhite and 
H. W. Moos, eds., Interscience, New York (1967), p. 207. 

10. T. Miyakawa and D. L. Dexter, Phys. Rev. B1, 2961 (1970). 
11. F. Auze1, in Radiatiort1ess Processes, B. Di Bartolo, ed., 

Plenum Press, New York (1980), p. 213. 
12. R. K. Watts, in Optical Properties of Ions in Solids, 

B. Di Bartolo, ed., Plenum Press, New York and London (]975) , 
p. 307. 

13. F. Perrin, Compt. Rend. 178, 1978 (1928). 
14. O. Stern and M. Volmer, Physik Z. 20, 183 (1919). 
15. Th. Forster, Z. Naturforsch. 4a, 321 (1949). 
16. Th. Forster, Discussions Faraday Soc. 27, 7 (1959). 
17. M. D. Galanin, Zh. Eksperim. i Teor. Fiz. 28, 485 (1955) 

[English translation: So--iet Phys. JETP 1-,-317 (1955)]. 
18. M. Inokuti and F. Hirayank J. Chem. Phys~ 43, 1978 (1965). 
19. F. Reif, Fundamentals of ~~~~!stica1 and Thermal Physics, 

McGraw Hill, New York (196"-';: '. 483. 
20. M. Yokota and O. Tanimoto, j lYS. Soc. of Japan~, 779 

(1967) . 
21. R. K. Watts, notes from 197, ~ATO ASI lectures. 
22. A. I. Burshtein, Soviet Phys cs JETP 35,882 (1972). 
23. M. V. Artamova, Ch. M. Bris1 la, A. 1. Burshtein, L. D. 

Zusman and A. G. Sk1eznev, S "iet Physics JETP 35, 457 (1972). 
24. N. Krasutsky and H. W. Moos, Phys. Rev. B8, 10101(1973). 
25. W. B. Gandrud and H. W. Moos, I. Chern. Phys. 49, 2170 (1968). 
26. R. K. Watts and H. J. Richter Phys. Rev. 6, 1584 (1972). 
27. J. T. Karpick and B. Di Bartol. J. of Luminescence 4, 309 

(1971). -
28. L. A. Riseberg, Phys. Rev. A7,1971 (1973). 



204 B.DIBARTOLO 

29. B. Di Bartolo, in Collective Excitations in Solids, 
B. Di Bartolo, ed., Plenum Press, New York and London (1983), 
p. 19. 

30. B. Di Bartolo, ed., Collective Excitations in Solids, Plenum 
Press, New York and London (1983). 



MATHEMATICAL METHODS FOR THE DESCRIPTION OF 

ENERGY TRANSFER 

ABSTRACT 

V. M. Kenkre 

Department of Physics and Astronomy 
University of Rochester 
Rochester, New York 14627 

Some modern mathematical methods developed for the investiga­
tion of energy transfer are described. They are based primarily on 
master equations and are particularly useful for the description of 
coherent motion, capture, annihilation, and related phenomena in­
volving quasiparticles such as Frenkel excitons. 

I. INTRODUCTION 

LA. Preliminary Remarks 

This article describes a unified framework of mathematical 
methods developed in recent years for the description of energy 
transfer in solids occuring via the motion of excitons. It is hoped 
that the article will fulfill two functions: the description of 
some modern theoretical approaches of transport theory of interest 
not only to exciton dynamics and energy transfer but to the broader 
area of quasiparticle transport, and the presentation of an over­
view,from the theoretical viewpoint, of Frenkel exciton motion in 
molecular crystals. 

Although the applicability of these mathematical methods ex­
tends over a wide area, the systems of direct interest to these 
developments are molecular crystals. Examples are crystals of aro­
matic hydrocarbons such as anthracene, napththalene, and tetrachlor­
obenzene. The special characteristics of these systems are that the 
entities occupying the lattice sites in the crystal, the molecules, 

205 
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have complex internal structure and motion (whence intramolecular 
motions arise); that intermolecular interactions are weak relative 
to most inorganic solids; that anisotropy can prevail as a result of 
the non-spherical shape and orientation of the molecules; and that 
dynamic disorder is of paramount importance in transport phenomena. 
These characteristics force the transport theorist to abandon tradi­
tional methods of analysis that have been used with success for many 
years in fields such as that of electron transport in metals, and to 
look for fundamentally new formalisms. The traditional methods 
employ kinetic treatments in k-space. They are based on the theory 
of bands which are slightly perturbed b,y interactions with phonons 
or other sources of scattering which can therefore be treated as 
small corrections. However, in molecular crystals, the bandwidth of 
the moving quasiparticle, the thermal energy kBT, phonon energies, 
and other interaction energies can all acquire magnitudes comparable 
to one another. The new methods that are described below are based 
on master equations, usually in real space. These master equations 
are of the so-called "generalized" kind as well as of the simple 
kind. The existence of disorder which is not a small perturbation 
on crystalline properties, and the fact that molecular crystals 
often retain the properties of the individual constituent molecules, 
lead to the use of real space transport equations. On the other 
hand, the fact that the disorder is dynamic rather than static 
(which would be the case for amorphous sytems), the system being 
still perfectly crystalline at zero temperature, leads to trans la­
tionally invariant master equations being used for the analysis. 

The quasiparticle whose motion brings about the process of 
energy transfer in molecular crystals is the Frenkel exciton. Dif­
ferences of opinion exist about the convenience of the terminology 
used around the phrase "Frenkel exciton." Some authors (see else­
where in this book) prefer to mean b,y that phrase a Bloch state of 
the electronic excitation of the molecules in the crystal, following 
early usage [1]. Other authors [2-6] look upon the Frenkel exciton 
as a quasiparticle (in analogy with the electron) which may occupy a 
delocalized Bloch state, a localized Wannier state, or any other 
allowable state. We find the latter usage conceptually more natural 
and practically more convenient and therefore employ it in this 
article. Thus, excitation transfer is identical to Frenkel exciton 
transport in this article and, if one were to consider systems with 
sufficient static disorder to make quasimomentum a very poor quantum 
number, we would still describe excitation transfer as the motion of 
a Frenkel exciton albeit among the sites of a disordered array. 

As is well known, the subject of energy transfer is of special 
importance because of its obvious connections to other disciplines 
such as biology [7]. Energy transfer in molecular crystals derives 
its particular importance both from the fact that it raises basic 
issues about transport as mentioned above, and from the well-known 
fact that a molecular crystal is a solid state physicist's 
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experimentally realizable first approximation to a complex biologi­
cal system. 

The present article stresses mathematical methods for the 
transport description, although special effort has been made to 
relate the contents to experimental observations. 

I.B. Processes and Questions of Interest 

Optical absorption can produce electronic excitations in the 
crystal, i.e., it can create Frenkel excitons. These excitons lead 
a rather eventful life before they die their radiative or radiation­
less death. They may undergo vibrational relaxation which may be of 
a simple kind as when the excited molecule relaxes among its intra­
molecular modes, or of a relatively dramatic kind as when an 
excimer, involving a drastic interaction of two (or more) molecules, 
is formed. They may decay through luminescence, which may be fluor­
escence as in the case of singlets, or phosphorescence as in the 
case of triplets. They may undergo internal conversion, i.e., a 
transition from one singlet manifold to another, or intersystem 
crossing as when a singlet changes into a triplet. The excitons may 
move from molecular site to molecular site, i.e., bring about 
energy transfer from one spatial location to another. If during 
this motion they come under the influence of traps in the crystal, 
which may be there either inadvertently or precisely because they 
were put there to detect motion, the excitons may be captured. They 
may also come under the influence of one another during motion and 
undergo mutual annihilation. The latter process is particularly 
striking when the moving excitons are triplets because the product 
of the mutual annihilation is often the formation of singlets which 
luminesce differently - much faster and at higher frequencies pro­
ducing blue rather than red light which is typical of triplets. 

A variety of questions are of interest in this field. The 
extent and speed of energy transfer depends on the magnitude of the 
diffusion constant of the excitons. Measurements of this central 
quantity have been made by many experimentalists over the last three 
decades but serious problems of interpretation remain. The value of 
the diffusion constant of singlet excitons in a prototype crystal 
such as anthracene is therefore still unknown even at room tempera­
ture although opinions abound. There is thus a disparity of several 
orders of magnitude in the reported values of this quantity. The 
temperature dependence of the diffusion constant and the nature of 
the underlying processes are also under question. In particular, 
the coherence issue, concerning whether excitons move in a wave-like 
coherent manner or a diffusive incoherent manner, continues to be 
widely debated. The validity of the simple picture of an exciton 
thermalizing before each transfer event, i.e., the question of 
whether energy transfer occurs after, before, or during relaxation, 
also continues to be under study. So does the connection between 
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exciton motion and optical spectra. The validity of simple kinetic 
schemes for understanding exciton trapping and mutual annihilation, 
the role of the capture process (as differentiated from the motion 
process) in the former, and the existence of time-dependent versus 
time-independent rates of energy transfer constitute other important 
questions in this field. 

I.C. Some Experiments 

Of the large variety of experiments that have been carried out 
in the area of energy transfer in molecular crystals we depict 
schematically in Fig. 1, four kinds which use direct probes into 

Fig. 1. 

, 
~ 
• 

(a) (b) 

( c) 

• 
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• 
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Schematic depiction of four kinds of experiment for the 
measurement of energy transfer via exciton motion. Cir­
cled asterisks e represent excitons, wavy lines with 
arrows show illumination and dotted lines with arrows 
represent the process which allows the measurement. In 
(a) and (b), D represents the detector material whose 
luminescence is monitored, and in (d), T and 0 respec­
tively depict transparent and opaque regions of the 
gratings. 
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energy transfer. Conceptually, the simplest experiment to measure 
energy transfer consists of starting excitons at one location in the 
crystal and detecting them at another. The two ends of a crystal 
serve as these well-defined lO,cations in one of the oldest experi­
ments [8] in this field. Shown in (a) in Fig. 1, the experiment 
uses a detector coating of a material which luminesces at a differ­
ent frequency as the host crystal, illumination being at the oppo­
site end of the crystal. Another, and more popular, kind of capture 
experiment is represented in Fig. l(b) and involves homogeneous 
illumination of the entire crystal which is doped with other mole­
cules serving as traps. Fig. l(c) shows experiments which use no 
external agencies to probe into the motion of the excitons but 
employ the excitons themselves as the detectors. Their mutual 
annihilation is the probe process. In these capture and annihila­
tion experiments, observables may be time-independent as in the case 
of steady-state quantum yields, or time-dependent as in the case of 
luminescence intensities. In capture observations they may refer 
either to the host or the guest, i.e., the traps. Fig. l(d) repre­
sents the Ronchi grating experiments in which triplet excitons are 
created in the bulk of the crystal in spatially alternating regions 
by covering the crystal by an array of alternating opaque and trans­
parent strips during illumination, and detecting their motion from 
the delayed fluorescence signal arising from their mutual annihila­
tion. In a modern modification of this experiment which uses pico­
second observations and studies singlet motion, laser beams are 
crossed to create a sinusoidal population of excitons, and the 
diffraction of a third laser beam off this population used to detect 
the decay of the amplitude of the inhomogeneity in a time-dependent 
manner. 

We have not described many other important experiments used in 
the investigation of energy transfer simply because they are not as 
closely related to the mathematical methods to be developed in this 
article. Many excellent reviews exist on various aspects of the 
experiments [9-13] and should be consulted for further information. 

LD. Outline Of This Article 

The basic transport equation to be used in most of the analy­
sis, viz, the generalized master equation, is presented in section 
II. It contains the motivation for non-Markoffian, i.e, memory­
possessing, transport equations and an explanation of their particu­
lar suitability for the systems and questions under study. Central 
to these transport equations are their "memory functions." Proce­
dures for the calculation of these memory functions and explicit 
results for various models and interactions are exhibited in section 
III. Calculations of experimentally observable quantities are pre­
sented in section IV. They are directed specifically at capture and 
grating observations. Miscellaneous mathematical methods appro­
priate to energy transfer and concluding remarks form section V. 



210 V. M. KENKRE 

II. THE BASIC TRANSPORT INSTRUMENT: THE EVOLUTION EQUATION 

II.A. Introduction and the Coherence-Incoherence Problem 

Insight into the physics of the basic evolution equation to be 
used in the sequel can be gained by studying briefly some historical 
aspects of the subject. In 1932 Perrin attempted to use the Schroe­
dinger equation among sharp molecular site states to describe exci­
tation transfer in the context of experiments on fluorescence depo­
larizatiQn [14] and found clear disagreement with observations. 
That the problem lay in the evolution equation itself, and not in 
the specific transport mechanism assumed by Perrin - diplole-dipole 
interactions - was shown a number of years later by Foerster [15]. 
He recognized that the levels among which the motion transitions 
were occuring were not sharp but rather 'broadened' into groups of 
states as a result of bath (i.e., reservoir) interactions. By using 
a Master equation with transition rates given by the Fermi Golden 
Rule, with the same dipole-dipole interactions assumed by Perrin, 
Foerster was able to obtain excellent agreement with experiment. 
However, as further experiments were carried out at various tempera­
tures with various environments and on various systems, departures 
from the Foerster theory were observed. The Schroedinger equation 
and the Master equation were clearly understood to be valid in the 
two extreme limits, called coherent and incoherent respectively. 
But one was faced with two non-trivial tasks: how to give a unified 
description which would reduce to the two limits and would further­
more be capable of treating the intermediate range, and how to 
ascertain practically which limit is applicable to a given experi­
mental system. 

The simplest way of appreciating the coherence-incoherence 
issue is to consider motion of the exciton in a system of just 2 
sites, 0 and 1, which would have equal energies in the absence of 
the intersite interaction. If the latter is V, one solves a simple 
Schroedinger equation and shows that the probability po(t) that the 
initially occupied site is occupied by the exciton at time t, is 

Here and henceforth we put h=l. Equation (1) shows oscillations, 
and a reversible or ringing character. However, if the 2 sites 
provide smeared-out (rather than sharp) levels, i.e., if each site 
represents a group of an extremely large number of states as a 
result of bath interactions, the familiar procedure is to take for 
the evolution equation the Master equation, the rates of transfer 
between the sites F being given by the Fermi Golden Rule 

where l/a contains an appropriate density of states factor in 
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addition to other proportionality constants. The result for the 
probability of the initially occupied site is then 

and shows a non-oscillatory decay and an irreversible approach to 
equilibrium in contrast to (1). Equation (1) depicts coherent 
motion, while equation (3) describes incoherent motion. It is clear 
that these motions have entirely different character relative to 
each other. 

A more realistic system is an infinite linear chain wherein the 
exciton moves via nearest-neighbour matrix elements V in the coher­
ent case and nearest-neighbour transport rates F in the incoherent 
case. The evolution equation for coherent motion is the Schroe­
dinger equation for the amplitude cm(t): 

(4) 

To solve (4) one multiplies it by exp(ikm) and sums over all sites 
m, i.e., performs a discrete Fourier transform. This is a standard 
mathematical procedure for the solution of translationally invariant 
equations such as (4). Denoting the discrete Fourier transforms by 
superscripts k as in 

the interconnected equations ~) are transformed into N unconnected 
equations for the individual c 's, where N is the number of sites in 
the crystal (infinite in the present case). Thus, 

(6) 

with the immediate solution ck(t) = ck(O)exp(-i2Vtcosk). If, ini­
tially, the exciton occupies a single site which, without loss of 
generality we shall call 0, the ck(O)'s are all equal to 1 from Eq. 
(5). The inversion of (5) through 

and multiplication by the complex conjugate of cm then give Pm(t), 
the probability of occupation of site m. In the limit N -+oothe 
right hand side of (7) equals (1/2~) times an integral over a con­
tinuous k-variable from -~to ~. One immediate obtains for this 
infinite chain, 
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(8) 

where J is the ordinary Bessel function. The probabilities exhibit 
oscillations as in (1), although the infinite size of the system 
considered destroys Poincare recurrences evident in the 2-site re­
sult (1). 

The evolution equation in the incoherent case is the Master 
equation 

rather than (4). This probability equation can also be solved with 
the use of discrete Fourier transforms. Proceeding as above, 

Pm = (l/N) I exp[-4Ftsin2 (k/2)]e-ikm 
k 

which is analogous to (7) in the coherent case and results in 

(10 ) 

where 1m is the modified Bessel function. Unlike (8), this incoher­
ent result shows a non-oscillatory decay. 

The profound difference in the nature of the motion depicted 
respectively by the coherent probability propagators (8) and their 
incoherent counterparts (11) is also reflected clearly in the mean­
square-displacement <X2>. With a as the lattice constant, i.e., the 
distance between nearest neighbour sites on the linear chain, one 
has the general result 

The discrete Fourier transform of (8) is 

whereas that of (11), which occurs in the process of the derivation 
of (n), is 

pk = exp[-4Ftsin2 (k/2)] (14) 

On combining (13), (14) with (12), one sees that the mean-square­
displacement is bilinear in t for the coherent case, 



MATHEMATICAL METHODS 213 

but linear in t for the incoherent case, 

(16) 

The quantities in parentheses in (15) and (16) should be famil­
iar from standard treatments. In the incoherent case, it is the 
diffusion constant of the exciton, D = Fa2 • In the coherent case it 
is the square of the average over the band of the group velocity of 
the exciton. To recover the latter result, observe that the ck(t)'s 
in (6) are nothing other than amplitudes in the Bloch representa­
tion, and the factor 2Vcosk in the exponent in the solution of (6) 
is but the band energy Ek in the tight-binding scheme. The group 
velocity, given b,y a times the k-derivative of Ek, therefore has the 
band average I2Va. 

Fig. 2 shows the self-propagator, i.e., Po' the probability of 
occupation of the initially occupied site for the purely coherent 
case and the completely incoherent case obtained respectively from 
(8) and (11). These plots as well as the expression (15) and (16) 
for the mean-square-displacement <x 2 ) given above make clear the 
strong differences between coherent and incoherent motion. While we 
have seen that it is trivial to describe these two extreme limits, 
the construction of a unified framework to treat them both as well 
as the intermediate range presents a challenging problem. A result 
of the solution of this problem is seen in Fig. 2, where the inter­
mediate self-propagator is also plotted for two given arbitrary 
degrees of coherence. The corresponding expression and its deriva­
tion will be found in IIV. For now the form of the problem and the 
relevant questions should be amply clear. What is the general 
expression for the probability propagator which has the general 
unifYing behaviour shown in Fig. 2 and which reduces to (8) for a 
system wherein the exciton does not suffer any scattering but to 
(11) when the scattering is so strong that the exciton motion has 
the aspect of a random walker? What is the general evolution equa­
tion whose respective limits are (4) and (9)? What is a practical 
prescription to extract the degree of coherence, i.e., the degree of 
the departure from the two extreme limits, for a given realistic 
crystal? What are the observable effects of this departure in 
practical experiments? 

It is worth commenting in passing that the discrete Fourier 
transform technique explained above can be used to obtain explicit 
solutions in the case of long-range interactions Vmn or Fmn as well 
as for higher-dimensional systems. To treat the former one merely 
forms the Fourier transforms of V n or Fmn since translational 
invariance demands that the V's or F's are functions of the differ­
ences m-n, and proceeds exactly as shown in the case of nearest­
neighbour transfer. The generalization to higher-dimensional crys­
tals is also straightforward. The indices m, k, etc. then represent 
vectors of appropriate dimensionality and expressions such as km in 
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Fig. 2. The profound difference between coherent and incoherent 
motion shown through plots of the self-propagator, i.e., 
the probability of occupation of the initially occupied 
site, displayed as a function of (a dimensionless) time. 
Shown are the purely coherent case, the perfectly inco­
herent case and two intermediate cases, one being almost 
coherent and the other almost incoherent. 

(5), (7), (10) represent dot products. Furthermore, for nearest­
neighbour interactions in simple cubic lattices, allowing for arbi­
trary anisotropy, i.e., different V's or F's in different direc­
tions, the probability propagators Pm are simply products of the 
one-dimensional ones given in (8) and (11). 

II. B. Motivation for the GME 

The most natural and convenient solution of the unification 
problem posed in section II.A. is found in the method of the gen­
eralized master equation (GME). The essential characteristic of the 
GME is that it is non-Markoffian, i.e., an integro-differential 
equation with kernels which are non-local in time. These kernels, 
which are known as memory functions, give the GME its particular 
suitability £or the analysis o£ the coherence-incoherence issue. In 
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order to understand this suitability consider the two functions 
yc=cos(wt) and y:i,=exp(-Kt). The former oscillates and the latter 
decays. The single equation 

t 
dy( t) + f dt' z (t-t ' )y( t ') = 0 
dt 0 

gives both Yc and Yl as solutions in the respective extreme limits 
z(t)=w 2 and z(t)=KcS~t) of the "memory kernel" z(t). Furthermore, 
for an extremely large class of z's the solution of (17) behaves 
like y,;- and Yi at long times. To appreciate this quantitatively, 
take z l t )=w 2 exp( -at). One then has 

g + a ~ + w2y = 0 ( 18 ) 
dt dt 

which shows that one recovers from (17) Yc and Yi as extreme solu­
tions for a+o and ~, w+ oo , w2 /a=K respectively. These corre­
spond to the above two choices of the memory kernel z: a constant 
and a cS -function respectively. Also the solution of (17), i.e. of 
(18) behaves like Yc and Yi respectively for times which are much 
smaller than, and much larger than, l/a. Equation (18) is only a 
special case of (17). Generally the time for comparison (lla in the 
simple case of the exponential z(t) corresponding to (17)) will be 
the characteristic time over which the kernel z decays. The initial 
value of z equals the square of the frequency of the oscillation of 
Yc while its time integral from t=O to t=oo equals the decay con­
stant of Yi. The unification of the oscillatory behaviour of the 
cosine and the decay behaviour of the exponential can thus be done 
with the help of (17). 

We have seen the simplest possible example of the unification 
of oscillatory and decay behaviour via an evolution equation which 
is non-Markoffian. It should be immediately clear that such equa­
tions would be of value in the coherence-incoherence issue since 
oscillations and decay are indeed characteristic of coherent and 
incoherent motion respectively. 

The above example corresponds to an actual physical system: 
the quantity y could be the amplitude of a damped harmonic oscilla­
tor with frequency wand damping constant a. Although this example 
does not contain site-to-site motion, one can easily include it by 
replacing w2y in (18) by -c 2 (d 2y/dx 2 ). One now has the well-known 
wave equation and diffusion equation as the extreme (coherent and 
incoherent) limits which are unified by the single telegrapher's 
equation 
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or what is the same, a memory-possessing diffusion equation with 
exponential memory. A perfect memory corresponds to wave-like beha­
viour with its oscillations and speed c, while a perfectly absent 
memory (a a-function) to diffusive behaviour. The general solutions 
of (19) are well known to combine wave-like and diffusive behaviour. 
They exhibit transport coherence for times short with respect to the 
decay time of the memory and incoherence at large times. 

All the power of evolution equations possessing memory func­
tions would of course be useless to the issue under analysis if such 
equations were not natural to the exciton transport problem. In 
fact the telegrapher's equation (19) is of little direct use to 
excitons because the wave equation does not describe exciton motion 
in the coherent limit. The dispersion relation is quite different. 
However, memory-possessing evolution equations do turn out to be 
completely natural to exciton transport. Indeed they are actually 
unavoidable in the process of the derivation of the Master equation, 
the basis of Foerster's analysis of incoherent motion. We will 
therefore be able to harness their unification properties for the 
description of transport with arbitrary degree of coherence. 

II.C. Derivation and Validity of the GME 

Extensive details of the derivation and validity of the gener­
alized master equation have been given in other reviews of the 
author [5,16] and will not be repeated here. Only a brief descrip­
tion follows. 

The starting point for the evolution is the Von Neumann equa­
tion for p, the density matrix of the exciton along with whatever 
bath (phonons, imperfections, etc.) it is in interaction with. One 
defines projection operators P which diagonalize and coarsegrain the 
density matrix. The coarsegraining eliminates the bath coordinates 
and the diagonalization is in the representation of site-local 
states. Acting on the full density matrix p, the operator P thus 
yields a reduced probability vector which describes the probabili­
ties of site occupation by the exciton. The procedure is exact, 
although it involves the elimination of the coordinates of a part of 
the total system - the bath - and although it involves only the 
diagonal part of the reduced density marix. The Von Neumann equa­
tion is 

i~ = [H, p] = L P 
at 

(20) 

where L is the Liouville operator which, acting on any operator, 
produces the commutator of the full Hamiltonian H with that opera­
tor. The respective application of the projection operator P and of 
its complement (1- P) to (20), followed by the elimination of (l-P) 
from the equation involving P through the simple substitution of 
the formal solution of (1- P) , gi ves 
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dP~~t) = _ !dt'PLe-i(t-t')(I-P)L(I-P)LPP(tq 

- iPLe-it(I-P)L(l-P)P(O) 
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(21) 

This equation is always exact. Furthermore, if the full density 
matrix at t=O equals the projected density matrix, i.e., p(O) = 
Pp(O), the last ter~ in (2l) is zero at all times. One then has an 
evolution equation for Pp, i.e., for the site-occupation probabili­
ties of the exciton, which is closed in Pp (i.e., in the probabili­
ties), and is non-Markoffian in nature. Since P has no off-di­
agonal elements in the site representation, the tetradics in (2l) 
reduce to square matrices and one obtains the probability equation 

t 
~ = Jdt' "[W {t-t')p (t') - w (t-t')p (t')] (22) 
dt 0 * mn n nm m 

This is the generalized master equation. 

The W's are the memory functions. Their functional form 
depends on the extent of coarsegraining as well as on the interac­
tions in the Hamiltonian. A detailed examination of how the memory 
functions vary on varying the level of coarsegraining may be found 
elsewhere [17]. What is important to realize is that, if the ini­
tial state is such that the last term in (21) vanishes, the GME is 
an exact consequence of microscopic dynamics. Even if the last term 
in (21) does not vanish at all times but does in some practical time 
range, the GME becomes exact in that time range. The GME is more 
general than the Master equation, the basis of traditional theories 
such as Foerster's, in that its W 's are not 0 -functions. In fact 
the Master equation can be derived only when the approximation of 
replacing W{t) by 

00 

o{t)[!dsW{s) ] 
o 

is made in the GME. To address the coherence issue, and to describe 
the exciton transport problem in a general way, one need merely 
refrain from making this approximation. The powers of non-Markof­
fian equations pointed out in section lIB are then at our disposal 
in an entirely natural manner. 

The range of validity of the GME is decided by the validity of 
the passage from (21) to (22), i.e., the validity of neglecting the 
last term in the former. The condition p{O)= PP{O) me~ns, first, 
that the initial state is an outer product of an exciton state and a 
bath state and, second, that the exciton is initially site diagonal. 
The latter condition is extremely restrictive and would seldom apply 
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in exciton physics since the creation of excitons usually involves 
optical absorption and, therefore, an initial state that is b,y no 
means localized. An initial Bloch state would be much more appro­
priate than an initial site-local state. Fortunately it can be 
shown [5,18] that a sufficient condition for the vanishing of the 
first term in (21) is that L(l-P)p(O)=O rather than (l-P)p(O)=O. 
Initial Bloch state occupation or generally the initial occupation 
of a delocalized state does indeed result in L(l-P)p(O)=O for crys­
tals. The GME is thus valid for the practically occuring case of 
initially delocalized excitons as well as for initial localization. 

To obtain the memory functions explicitly, it is necessary to 
evaluate the first term on the right hand side of (21). Some exact 
evaluations will be described in section III. Here we give the 
exact definition of the projection operator and a general approxi­
mate expression for the memory functions when the site-to-site 
interaction is small enough to be treated perturbatively. 

The general definition of the projection operator P is 

(23) 

where the ~, ~ are eigenstates of the full exciton-bath system., 0 
is any operator, Q is arbitrary except for being subject to the 
condition 

L:Q = L:l 
~e:m ~ ~e:m 

to ensure that P is idempotent. The summation of ~ in the "grain" m 
is the coarsegraining operation and involves the elimination of the 
bath coordinates. The Q's do not affect the expresssions for the 
memory functions in an exact calculation but do affect them in 
calculation~ involving approximations. If the Hamiltonian is Ho + 
V, the part Ho being site-diagonal, the memory functions are given 
perturbatively b,y 

(24) 

W (t) = 2~L: L: [Q._/~]I<~lvl~>12cos[(E~-E }t] nm ..,e:m lle:n 1; '-'Ill .., ~ 

where ~. = ~L: 1 and EL = L: l. 
'-'Ill ",e:m '"'Il ~e:n 

Equations (24) and (25) are coarsegrained generalizations 
[16,17] of memory expressions given originally b,y Zwanzig [19]. 
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II. D. Solution of Foerster's Problem 

If the interaction V responsible for exciton motion is dipole­
dipole in nature, its dependence on the intersite distance R is 
given by I/R3. The rate of transfer calculated through the Golden 
Rule is proportional to the square of V and has therefore the dis­
tance dependence I/RG. However, if the motion is coherent, the 
oscillations of probability would be characterized by a frequency 
which is proportional to V at least for a two-site system. It was 
often thought, therefore, that the distance dependence of transfer 
rates in the coherent limit should be I/R3. Foerster sharpened this 
form of the coherence question by presenting a plot of the transfer 
rate versus the intersite distance R. He stated that the dependence 
was I/RG for large R, i.e., for weak enough V for perturbation 
theory in terms of the Golden Rule to be valid, and that one might 
argue that the dependence was I/R3 for small enough R which would 
make the V overwhelm the bath broadening. He further hoped that a 
theory of transfer rates which could bridge the two limits would be 
available [20]. 

The unification of transfer rates which Foerster had hoped for 
is possible in a natural way through the GME. No details of the 
memory functions are necessary. To stress the extreme simplicity of 
the argument, assume that the memory functions are of the separable 
form %tn(t) = FmnqAt), the F's being the transition rates in the 
corresponding Master equation, which one would arrive at on replac­
ing ¢(t) by a a-function. One first realizes that it is necessary 
to define a transfer rate unambiguously and not merely take it to be 
a transition rate in one case and a frequency in the other. To that 
end one calculates the mean-square-displacement <X2> of the exciton 
for an initial localized condition, finds the time for which it 
becomes equal to the square of the lattice constant, and defines the 
reciprocal of that time as the rate of transfer w. Obviously this 
definition is sensitive to the time taken by the exciton to move one 
site irrespective of the degree of coherence. It is straightforward 
to see that this definition leads to 

(26) 

The unification is apparent from (26). For incoherent transfer is 
a a-function, the first integration gives a constant and the rate w 
is proportional to i2 and for nearest neighbour Frs to R- G• For 
coherent transfer ¢ is a constant, the first integration gives t, 
an~ w2 is proportional to m2 and thus the rate w is proportional to 
R-. To calculate an explicit expression for the R-dependence of 
the rate, assume a simple expression for¢ (t) such as an exponential 

¢(t) = ae-at 
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Fig. 3. The solution of Foerster's problem demonstated through a 
plot of the exponent of Rin the transfer rate for the 
case of dipolar interaction, as a function of the trans­
fer rate in units of d. The inflection point is at w fa "" 
0.22. 

along with a simple expression such as (2V2 fa)(om n+l+om n-l) for 
FJlln, representative of nearest-neighbour interacti6ns on 'a linear 
chain. Substitution in (26) gives the implicit expression 

(28) 

With V = constant· R- 3 , a plot of the rate w versus the intersite 
distance R can be given from (28) and Foerster's problem solved 
explicity [21]. In Fig. 3 is shown a plot of the exponent n in w = 
constant . Rn, defined [21] as 

n = d9-n(w) = 6(~ _ 1 ,) 
d9-n(R) a l-e -a/Til 

This plot has found use in analyzing excitation transfer in some 
biological systems [21,22]. 

II.E. General Remarks about the GME 

The characteristic features of the GME are that it is an exact 
consequence of the microscopic dynamics for some initial conditions, 
that its memory functions may be obtained from knowledge of the 
microscopic interactions at least in principle, and that its non­
Markoffian nature makes it especially adapted to the analysis of the 
coherence-incoherence issue. The structure of the GME approach is 
as follows. One calculates the memory functions of the GME from the 
microscopic interactions whenever possible. These calculations may 
be exact as is the case in a small number of model systems, or they 
may involve standard perturbation techniques. The memory functions 
may also be obtained in some cases directly from experimental 
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observations which do not involve transport,an example being opti­
cal spectra. With the memory functions as an input, one calculates 
probability propagators. These appear directly in various experi­
mental observables. A connection is thus established between memory 
functions and observables. Memory functions which are long-lived 
generally correspond to coherent motion and little or no bath inter­
actions, although factors other than the latter also affect the 
decay. Rapidly decaying memory functions signal incoherent trans­
port. The decay characteristics of the memories are reflected in 
the propagators and therefore in the observables. There are experi­
ments such as the grating ones shown in Fig. ld which probe directly 
the Fourier transforms of the propagators and are therefore highly 
sensitive to the degree of coherence in the system. While any 
realistic non-pathological system behaves coherently at short enough 
times and incoherently at long enough times, it is thus possible to 
measure the degree of coherence quantitatively by analyzing observa­
tions with the help of the GME framework outlined above. 

III. MEMORY FUNCTIONS: EXPLICIT CALCULATIONS 

III .A. Outline 

Exact evaluation of the memory functions for a realistic system 
is obviously out of the question since such an evaluation would be 
tantamount to an exact solution of the dynamics of the full complex 
system. Model calculations are therefore undertaken as elsewhere in 
physics with the hope that in simplifying the mathematical problem 
the model does not sacrifice the essential features of the system 
under consideration. Such exact model calculations are to be found 
in III.B. and IILC. below. It is also necessary to perform approx­
imate calculations of realistic systems which defy exact solution. 
Here the hope is that the approximation procedures employed do not 
destroy the essential features of the system. Section III.D. pro­
vides an example. An attractive result in the GME theory is that it 
is sometimes possible to obtain the memory functions for a real 
system directly from observations in a different realm. This is 
described in section IILE. 

III.B. Exact Results for Pure Crystals 

The general expression for the memory function Wnm(t) for 
motion in a crystal of arbitrary dimensionality and size (but obey­
ing periodic boundary conditions) is [5,23]: 

(30) 

where the s-integration is on the Bromwich contour, where m,n are 
direct lattice vectors, k, q are vectors in the first Brillouin zone 
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of the reciprocal lattice of the crystal, km represents a dot pro­
duct, the k and q summations are within the first Brillouin zone, 
and V is the discrete Fourier transform of the interaction matrix 
elements Vmn = Vm- n, the only peculiarity of the expressions rela­
tive to standard usage being that k,q,m,n are dimensionless in (30) 
as also elsewhere in this review. 

Translational invariance, i.e., a true crystalline environment, 
is the only requirement to obtain (30). The proof is as follows. 
The Schroedinger equation for transport in the crystal is 

dcm(t) = -i Iv c (t) 
dt n mn n 

the site energies being taken to be zero without loss of generality. 
Equation (4) representing motion on a linear chain is a particular 
case of (31) and so is the 2-site equation whose solution leads to 
(1). Discrete Fourier tkansforms in the manner of section ILA. 
lead to the solution of c (t) and thence through a Fourier inversion 
to cm(t). For the initial condition that the exciton occupies a 
single site, which we label zero, the solution gives, when multi­
plied by its complex conjugate, 

If \,we define the quantities Amn as equal to -Wmn for m ":/: n, with Amm 
= ~ Wnm, the GME (22) takes on the form 

t 
dPm(t) + r dt' LA (t-t') P (t') = 0 

dt 0 n mn n 

A discrete Fourier transform, a Laplace transform, and the initial 
condition stated above which leads to pk(O)=l, yield from (33) 

(34) 

The calculation of the memory functions is now immediate on substi­
tuting the transform of (32) in (34) and using the relation 

which follows from the above definition of the A's. The derivation 
of (32) is thus complete without the need to disentangle the projec­
tion operator expression (21). 

It is possible for one to have two misconceptions about this 
derivation: that it is useless because it assumes knowledge of the 
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probability solutions which it is the function of the GME and of its 
memory functions to arrive at, and that it cannot be correct since 
it claims to obtain the N(N-l) quantities Wmn from the N quantities 
Pm' The latter misconception is easily removed by observing that in 
a translationally invariant system (which alone is under consider­
ation) the quantities Wmn are functions of m-n, there being thus 
only N independent W's or A's. The other misconception will disap­
pear in section III.C. when this calculation will be put to use to 
obtain results which are extremely hard to get without its help and 
for which the probability solutions are certainly not known before­
hand. 

Particular cases of the exact general result (30) are presented 
in the table below. The interaction is characterized by the single 
matrix element V in all cases and is of nearest-neighbour range in 
all cases but the last one. In that last case the interaction is V 
between ~ two sites. A system whic_h can be said both to have such 
a universal range in its interaction and to be of the nearest­
neighbour kind, as in the case of the others presented in the table, 
is the trimer (3 sites). All the systems shown above obey periodic 
boundary conditions, i.e., have no ends or surfaces. The crystals 
being all pure (no bath interactions), the motion is perfectly 
coherent in all cases. 

The result for the dimer (2 sites) shows the constant memory 
familiar from the pedagogical examples given in section II.A. 
Introduction of bath interactions can indeed be shown to cause the 
decay of this memory. In section III.C. we shall see that the 

Table I 

NO. OF SITES 
IN THE CRYSTAL RANGE OF INTERACTION 

2 

3 

4 nearest-neighbour 

linear chain) 

between sides 1 and 2, 
2 and 3, 3 and 4, and 
4 and 1. 

nearest-neighbour 

N equal among all sites 

MEMORY FUNCTIONS 

W12=W 23 =W 31t =WIt1 = 
2V2 cos (tV212) 
W13 =W 21t =4V2sin2 (tVv'2) 

W (t) = 1 ~ [J2 (2Vt)] mn t dt m-n 
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exponential decay referred to in II.A. is quite physical in origin. 
However, it must not be concluded that coherent motion is always 
accompanied by constant memory functions. The result for the trimer 
already shows that the memory generally oscillates in the case of 
coherent motion. The frequency of this oscillation happens to be 
zero for a dimer. For crystals of finite size, true decay of memory 
fun~tions does not occur unless some degree of incoherence is intro­
dUCed. But the infinite chain result shows that the memories can 
decay even for purely coherent motion as a consequence of the 
destruction of Poincare cycles brought about by the infinite size of 
the system. An alternative form of Wmn(t) for the infinite linear 
chain is given below 

Wmn(t)=2V2[J2mrn+l+J2mrn_l+2Jmrn_lJmrn+l 

-2J2 mrn -Jm-rl J mrn+2+J mrn-2) ] 

The J's are all Bessel functions of argument 2Vt. 

III.C. Exact Results for an SLE 

(36) 

A transpOrt equation that has often appeared [2,3,6,24] in the 
analysis of exciton motion as well as in other transport contexts is 
the stocha.stic Liouville equation (SLE). A form of the SLE is 

ap -
a~ = -i L (VmrPrn - VrnPmr ) - (1- 0m,n) aP mn 

r 
+ om n L (YmrPrr-YrmPmm) (37) , r 

where P is the exciton density matrix; m,n,ej;c., represent site­
localized states as always in this review; V's are the 1rltersite 
interaction matrix elements; a represents scattering and is the rate 
at which the off-diagonal elements of P (in the m,n representation) 
decay; and the Y's are additional rates of incoherent transfer. In 
microscopic derivations such as Silbey's [3], one nat~ally attaches 
the following meaning to these various quantities: V's are propor­
tional to the bandwidth of the exciton dressed with phonons, in 
other words to the bandwidth of the excitonic polaron; a arises from 
scattering of phonons and other sources; and the Y's are phonon­
assisted rates~ An exact calculation of the memory functions 
appearing in the GME corresponding to (37) is possible [5,25] and 
leads to (22) with the W's given by 

In (38) the quantities W c are the purely coherent memory functions 
corresponding to (37) in the absence of a and of the y's. The 
expression for them is given in (30) above. 
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The proof of (38) is facilitated by the introduction of some 
operator manipulations involving the projection operators P. One 
rewrites the SLE as 

where Lc represents the first term in the right side of (37) which 
describes coherent motion, Li represents the second term in (37) 
which describes the primary source of incoherence, and La represents 
the third term in (37) which describes the "assisted" transport. 
The application of the diagonalizing projection operator P to (39) 
in the manner described in section II.C. leads to a slightly modi­
fied form of (21): 

dPp(t) = PL Pp(t) - tf dt'P(L +L )e-i(t-t' }(l-P}(Lc+Li ) 
Mao c i 

(40) 

where we have dropped the initial term involving (l-P)p(O) as in 
section II.C. With the definition 

0" = (l-P)O (41) 

for any operator 0, the identity 

{exp[ -it( l-P}(Lc +Li) DO" 

= [l+(-it)(L~-ia) + ••• ]0" = e-atexp[-it(l-P)Lc ] (42) 

follows for any off-diagonal operator 0". This remarkably simple 
result is a consequence of the fact that L1 = (l-P)Li , acting on any 
off-diagonal operator, merely multiplies it by -i a. Equation (42) 
when substituted in (40), immediately produces the first term in the 
memory function result (38). The other part of the memory function 
in (38) follows directly from the term La in (40) and is the 
complete contribution of La. 

This calculation of the memory functions for the SLE (37) is 
exact. It illustrates the method of direct computation with projec­
tion operators and clarifies the questions raised in section III.B. 
about the usefulness of the calculation of the coherent memories W c. 
Although the latter are obtained from knowledge of the probability 
solutions in the coherent case, the result (38) for the full memory 
functions in the presence of the scattering a and of the "phonon­
assisted" transport signified by the y's has been obtained without 
such knowledge. The probability solutions in the presence of the a 
and the y's do not bear a very simple relation to those in their 
absence and must be computed by solving the GME after the result 
(38) is obtained. On the other hand the memory functions in the two 
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cases are simply related. One meEeiy multiplies the coherent memory 
functions by the exponential e a and adds the o-function terms 
ymno(t) to obtain the expresssion valid in the SLE case. 

The physics underlying the SLE is that of the coexistence of 
two channels of transport: band or coherent transport represented 
by the V's which is interrupted by scattering events controlled by 
a, and diffusion-type or incoherent transport represented by the 
y's. It is extremely satisfying that this coexistence is reflected 
so clearly in the expresssion for the memory function as a sum of 
two terms. The effect of scattering appears as a decay with time 
constant I/O. superimposed on whatever time dependence the coherent 
memory function WC has. Such a clean separation of the contribu­
tions of the two scattering mechanisms also appears in transfer 
rates or diffusion constants obtained from the SLE [5,6] since they 
merely involve the integration of the memories from t = 0 to t = 00. 

III.D. Perturbative Evaluation for Linear Exciton-Phonon Coupling 

The Hamiltonian H given by 

H = Eo l atmam +Jnvmnatman + ~ Wqbtbq 

where a and b destroy respectively an exciton and a phonon, and 
where W q is the phonon frequency, is an important and useful model 
for the description of exciton transport in realistic systems. 
While the evaluation of memory functions is trivial when the exci­
ton-phonon coupling term - the last term in (43) - is negligible or 
relatively small, the case when it dominates requires a transforma­
tion to be carried out prior to the application of a perturbative 
formula such as (24). The transformation [3,26] is designed to 
eliminate the coupling and it is said to dress the excitons with 
phonons, giving rise to excitonic polarons. The perturbative form­
ula (24) is then applied to the residual interaction which is 
treated as a small quantity. 

The transformation is given by the relation 

where Z is the transformed operator corresponding to any operator z. 
It gives rise to the excitonic polaron operators Am given by 

A = a exp[- Lg (b -bt )eiqm] "1n m q q q -q (45) 
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Their form obviously justifies the statement that the polaron con­
sists of the bare particle surrounded by a cloud of phonons. The 
new (displaced) phonon operators Bq are given by 

B = b + Lg at a e- iqm 
q q m qmm 

The Hamiltonian H is now expressed as 
at (j, 

H = ~ [Eo -~ g~Wq]AtAn + ~WqBliBq +m~nVmn4nAne me n 

where 

N = \ g (b -bt )eiqm Um ~ q q -q . 

(46) 

(41) 

Application of the perturbative formula (2~) with the last term of 
(47) as the perturbation leads [27] in the case of a dimer to the 
memory function expression 

where rand s each take the values m and n, and h.rs is given by 

~s(t) = - ~ 4g~Sin2q(r-s)[Nqeiwqt + (Nq+l)e-iwqt] 

(48) 

Nq being the average fumber of phonons given by the Bose distribu­
tIon [exp(wq/kBT)-l]- . 

Equation (48) is the generalization of the pure dimer results 
displayed in the table of section III.B. to the case of exciton­
phonon interactions as described in the Hamiltonian of (43) or (47). 

III.E. Evaluation from Spectra 

The rate of transfer Fm for singlet exciton transport is given 
by the theories of Foerster f15] and Dexter [28] in a form which is 
extremely convenient from a practical point of view. In these 
theories the Fls are proportional to the spectral overlap of the 
emission of the donor and the absorption of the acceptor. The great 
advantage of such a prescription is that, when valid, it allows one 
to bypass model calculations and assumptions and to connect exciton 
transport directly to another experimental realm, viz, optical 
spectra. In situations wherein the Foerster-Dexter mechanism of 
transport is valid but the Master equation formalism underlying the 
Foerster-Dexter theory is not, the memory functions can be obtained 
through a simple generalization [5,29] of their prescription. The 
generalization is based on the fact that an expression such as (24) 
for the memory function is a straightforward generalization of the 
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corresponding Golden Rule expression for the transfer rates F: 

Fmn = 27f I I [Q /gnJ I <slvlwl 2 o(Ec- - E ) (50) 
sEm~En ~ ~ ~ 

The only difference between (24) and (50) is that cos (EC~)t appears 
in the former where 7fO(Es-E~) appears in the latter. Indeed the 
latter can be obtained from (2lJ) by replacing each cosine by a 0-
function in t, times the integral from t=O to t =00 of the cosine. 
This is the Markoffian approximation necessary to convert the GME 
into the ordinary Master equation and is responsible for the fact 
that, while the GME is able to describe transport at short times, 
the Master equation is not. To gain the capability of providing a 
short-time (i.e. coherence) description while retaining the basic 
mechanism of transfer, one need therefore make only the necessary 
modifications in the Foerster-Dexter formula and obtain 

-f<Jo 00 
W mn(t) = constant· ni- I dz cos(zt) I dw A(w-z)E(w+Z) (51) 

Rmn z=-oo w-o (W-Z)3 (w+z) 

The constant factor in (51) is unimportant for the present discus­
sion. The quantities A and E are the absorption and emission 
spectra respectively and R is the intersite distance, the sixth 
power being characteristic of the diple-dipole interaction. The 
prescription implied by (51) is as follows. One obtainsFmn as given 
by the Foerster-Dexter prescription, renames it fmn(O), recalculates 
it after displacing the two spectra on the frequency axis by z/2 and 

Fig. 4. 
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The time dependence of the memory function for exciton 
transport among anthracene molecules in cyclohexane solu­
tion at room temperature obtained from the spectral pre­
scription of (51). Ordinates are chosen in a way to nor­
malize the memory function. 
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-z/2 respectively, renames the results fmn{z) and repeats for all 
values of z. The Fourier cosine transform of the function fmn{z) 
thus obtained is the memory function Wmn{t). 

An intimate relation thus exists between spectra and memory 
functions. Narrow spectra generally correspond to long-lived memo­
ries and therefore to coherent behaviour in the transport whereas 
bath interactions cause incoherence as well as spectral broadening. 
Well-known restrictions exist on the applicability of the Foerster­
Dexter theory, particularly when inhomogeneous broadening is impor­
tant. These restrictions have been discussed elsewhere in this book 
and must certainly not be ignored in the use of the above procedure. 
However, when the restrictions do not apply, (51) provides a direct 
method of extracting memory functions from experiment. As an exam­
ple of the application of (51), Fig. 4 shows the time-dependence of 
the memory function for exciton motion from one anthracene molecule 
to another in cyclohexane solution at room temperature. 

IV. CALCULATION OF OBSERVABLES 

IV.A. Prelude: Calculation of Propagators 

The previous sections of this article have set up the basic 
evolution equation, the GME, and shown how its memory functions are 
obtained. Now we shall use that equation to address experiment. Of 
central relevance to the experimental quantities, particularly in 
the context of the experiments described schematically in Fig. 1, 
are the probability propagators ~, which are nothing other than 
special solutions of the GME for initially localized conditions or, 
what is the same, the Green functions of the GME. Thus, by ~m(t) is 
meant the probability that the exciton occupies the site m at time 
t, given that it occupied site 0 and time O. Although for a dis­
ordered system with no translational invariance, the propagator 
would depend explicitly both on the site of initial occupation and 
that of later interest, the crystalline nature of our system makes 
the propagator a function of the single index m, the difference 
between the indices representing the two locations in question. 
Some of the observations require knowledge of ~JJl(t), while others 
are related to its discrete Fourier trans fo:tnJ. :~t t) an§ yet others 
probe their respective Laplace transforms ~m(s) and ~k(d. Thus, 
the grating experiments depicted in Fig. Id are directly sensitive 
to the time dependence of the propagator in the Fourier domain, 
Le., to ~k(t) and the capture experiments shown in Fig. Ib probe 
the self-propagator in the Laplace domain, i.e. ~o(8). The GME 
itself is an integro-differential difference equation with a vari­
able upper limit and a difference t-kernel in the time integration. 
The t-structure of the equation suggests the use of the Laplace 
transform for its solution while the crystalline nature, i.e., the 
properties in m,n-space, suggest the discrete Fourier transform. 
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Thus, purely calculational considerations focus one's attention on 
the propagator in the Laplace and Fourier domain. It is a de­
lightful accident that some of the experiments probe the transformed 
propagators directly and thereb,y save the theorist the often trou­
blesome - and always tedious - task of inverting the transforms. 

One begins then with the GME (22) and uses the procedure 
already outlined in section IILA.: One calculates the Amn(t)'s 
from the memory functions Wmn(t)'s, obtains the Fourier transform 
Ak(t), and uses its Laplace transform in the following general 
relation between propagators and memory functions which is a triv­
ial consequence of the GME itself: 

Here d is the number of dimensions of the crystal, taken to be 
infinite in extent, and the integration is in d-dimensional k-space. 
In arriving at (52) one also encounters the propagator in the 
Fourier domain: 

Equations (52) and (53) show how the various characteristics that 
memory functions possess enter into the behaviour of the propaga­
tors, Le., the solutions of the GME, and therefore into that of 
observable quantities. Thus, if the memory functiozr, are short­
lived, the A's are largely constant in £-space, the'1/! 's are expo­
nential, and the behaviour of the 1/!m's is the same as from a Master 
equation. It exhibits no coherence. For highly coherent systems on 
the other hand, A's are far from constant in £ -space, the time 
dependence of the propagators is profoundly different from that of 
solutions of a simple Master equation and can indeed exhibit oscil­
lations characteristic of coherence. 

In order to study the effects of coherence on observables we 
shall choose the simplest possible evolution capable of describing 
exciton transport of arbitrary degree of coherence. It has the form 

3p 

atm n = -iV(Pm+1 n + Pm-l n - Pm n+l - Pm n-l) - (I-Om,n)aPm n 
(54) 

It was first used for exciton transport b,y Avakian et al. [30] and 
can be considered to be a particular case of the SLE (37). In the 
absence of the scattering a, the off-diagonal elements of the den­
sity matrix do not decay and the motion of the exciton is purely 
coherent. The evolution is exactly the same as that of (4) if the 
system is taken to be a linear chain, and the propagators are given 
by (8). One can show that, if the scattering is very large and 
justifies the limita-+ oo , V -+00, 2V2/o.= F, (54) reduces to the 
Master equation (9) and the motion is perfectly incoherent. The 
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underlying picture in (54) is "band motion" with a bandwidth 
proportional to V and scattering at the rate a. This can be made 
particularly clear by transforming (54) to k-space. The diagonal 
part of p in the k-representation follows the "Boltzmann" equation 

which shows scattering with equal scattering rates (a/N) among all 
k-states, N being the number of sites in the crystal. 

It is possible, in principle, to analyze the observables with 
any GME with any degree of complexity by following the procedure 
outlined earlier. However, to understand the coherence issue, it is 
important not to be distracted by other elements of the evolution 
which are not essential to the issue. All the calculations in this 
section will be made, therefore, from (54). The GME corresponding 
to (54) has the memory functions [5] 

W (t) = [1.L J2 (2Vt) ]e-cxt 
ron t dt m-n 

as is clear from (36). The corresponding Ak(d is given by 

Ak(() = [( ( + a)2 + 16V2sin2(k/2)]~ - ( 

The discrete Fourier transform of the square of the ordinary Bessel 
function with respect to the space index is given quite simply. 
Thus 

-f-oo 

I Ji(x)eikm = Jo(2xsin Ik/21 ) 
m=-oo 

It is this simple result that allows the effortless passage from 
(56) to (57). Equation (53) yields, on Laplace inversion, 

1jJk(t) = e-at Jo(bt) + J duae-a(t-u)Jo(b~) (59) 
o 

where b = 4Vsinlk/21. The derivation of (59) uses a well-known 
theorem in Laplace-tEansform th~ory which allows inversion of trans­
forms of the form f[ (S2 + C 2) 2] in terms of known trans forms of 
r(s). Here f is any function and c is some (-independent quantity. 
To obtain the real-space propagators one must evaluate the Fourier­
inverse of (59). For this purpose one uses (58) in reverse. Then 

(60) 

Equations (59) and (60) constitute the solutions of the GME 
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corresponding to (54) and, with their counterparts in the Laplace 
domain, enter directly into the description of experimental observa­
bles. They exhibit oscillations when the degree of coherence is 
high, i.e., when a is small, and show incoherent behaviour when a is 
large. The former case is obtained trivially by taking the limit of 
small ain (59), (60); the latter is obtained by expressing the 
square root in (57) in the form of a Binomial expansio~ and retain­
ing the lowest power of Via. The cases (13) and (14) are thus 
recovered as extreme limits of (60). The solutions for intermediate 
degree of coherence displayed along with those extreme limits in 
Fig. 2 are given by (60). 

IV.B. Application to Grating Experiments 

The grating experiment of Fig. ld consists of creating a 
periodic inhomogeneity in the spatial distribution of the excitons 
and measuring the time evolution of that inhomogeneity [31]. The 
spatial inhomogeneity is produced simply by covering the crystal 
with an array of alternating opaque and transparent strips during 
illumination. The excitons under study are triplets. The measure­
ment of the time evolution can therefore be made by monitoring the 
delayed fluorescence which arises as a result of the formation of 
singlets through the mutual annihilation of the triplets. It is 
possible to make the illumination strength small enough to make the 
annihilation a negligible perturbation on the evolution of the 
exciton distribution and yet large enough to make the signal clearly 
discernible. The characteristics of the motion of the excitons is 
reflected in the time dependence of the delayed fluorescence. Expo­
nential decay after illumination would be typical of incoherent 
motion. Oscillatory features would characterize a high degree of 
coherence. 

The evolution equation is the GME (22) corresponding to (54) 
but with its right hand side augmented by two terms: a radiative 
term -Pm(t)/rwhere T is the exciton lifetime and a term Sm(t) which 
describes the spatial and temporal dependence of the illumination. 
The former term merely multiplies the GME solutions by exp( -tiT), or 
replaces s in the Laplace domain by s' = s + liT. The source term 
Sm(t) introduces an additional driven contribution in the solution. 
Thus the solutions in the Laplace domain are now 

The Ronchi grating experiment consists of three parts. In the 
build-up part, in which the delayed fluorescence signal builds up to 
its saturation value, P (0) is identically zero as there are no 
excitons initially, and (Cl) gives, through the Fourier transform, 
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Here the illumination is switched on to a constant value which, when 
multiplied b,y the appropriate absortion coefficient, equals i o' and 
has a spatial dependence gm characteristic of the ruling geometry. 
The second part of the experiment is concerned with the steady­
state-value of the signal. The limit of pk(t) as t~ is given from 
(62) as 

(63) 

The third part of the experiment consists of observing the time 
dependent decay of the signal from the steady state value. To 
calculate this decay, one returns to (61). There is no driving term 
Snow, but the P n (0) are given b,y (63). Thus, for the decay 

(64) 

It suffices for illustrative purposes to study only this decay stage 
(64). We see that, except for the time-independent quantity in the 
square brackets in (64), the probability solution is given in the 
time domain b,y exp(-t/'r) times that given in (59) above. 

The measured quantity is the delayed fluorescence signal which 
is proportional to 

I [Pm(t)]2 
m 

and therefore to 

following a standard Fourier result. It is therefore clear that, if 
the illumination were to excite a single Fourier component k, the 
delayed fluorescence signal would be given essentially by squaring 
the result (59) for 1jJk(t). It is thus that the grating experiment 
contains a direct probe of the time dependence of the Fourier trans­
form of the propagator. 

The actual Ronchi grating experiment does not populate a single 
Fourier component but several ones with amplitudes given by the 
Fourier transform of the square wave, since a mask is employed. The 
expression for gm and, therefore, for gk in (62)-(64) is written 
down trivially. Straightforward calculations [32] lead then to 
explicit expressions for the normalized decay signal of delayed 
fluorescence. Careful experimentation requires that this signal be 
subtracted from one in the absence of the mask in order to eliminate 
spurious contributions. The difference signal thus obtained is 
given by ~~(t) with 
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(65) 

(66) 

(67) 

The quantity ~ appearing in (61)-(63) is the dimensionless wave­
vector given by 

with a as the lattice constant of the crystal and Xo as the period 
of the ruling, i.e., of the mask. The dynamics of the exciton is 
reflected in the fs appearing in (66) and (67). The grating period 
decides which Fourier components appear in the expression. 

The time dependence of E(t), equivalently that of the delayed 
fluorescence difference signal which differs from E(t) only by the 
factor exp(-2t/T), is completely controlled by the time dependence 
of the Fourier transform of the propagator. For incoherent motion 
the latter is an exponential as given by (14) and -E(t) rises from 0 
to the value 

[1+ I A£]-l[ I A£] 
£ £ 

monotonically. For purely coherent motion, i.e., when the exciton 
suffers no scattering, -E(t) rises in an oscillatory fashion. The 

0.5 1.0 

Fig. 5. The delayed fluorescence signal for the decay stage of the 
Ronchi ruling experiment times the factor exp(2t/T) plot­
ted as a function of time for several degrees of exciton 
coherence. The effect of coherence is seen in the charac­
teristic shape near the origin and in oscillations. See 
equation (66). 
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spatial inhomogeneity disappears monotonically in the former case 
but overshooting with resultant oscillations occurs in the latter. 
Fig. 5 shows the evolution of -E(t) for various degrees of coherence 
typified by several values of aT. The latter parameter is the ratio 
of the exciton lifetime to the time between scattering events. 

The measured quantity is ~~(t) rather than E(t). The clear 
oscillations seen in E(t) are not always seen in ~~(t) because the 
exponential factor in (65) generally suppresses them. However, 
oscillations are not the only characteristic of coherence. It is 
manifested also in the shape near the origin - concave versus convex 
- of the time dependence. Quantitative analysis for representative 
crystals has shown [32] that this latter effect would be quite 
discernible in realistic systems. Fig. 6 shows the actual measura­
ble quantity -6~, rather than the quantity E(t), plotted for the 
extreme limits of pure coherence and complete incoherence for sev­
eral values of the quantity, tT/xo' which is the ratio of the ex­
citon transport length t T to the ruling p.eriod xo' The transport 
length tT is a generalization, to arbitrary degree of coherence, of 
the well-known diffusion length. For the present system it is given 
by [32] 

Fig. 6. 
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Delayed fluorescence decay signal - M (t) plotted as a 
function of the dimensionless time t/Tfor the extreme 
cases of pure coherence and complete incoherence. Curves 
a, b, c, d, refer, respectively, to the values 
O.QS,O.15,O.35,O.45 of tT/xo' the ratio of the transport 
length to. the ruling period. Solid lines represent the 
purely coherent case, and the dashed lines the completely 
incoherent case. Curves of the latter kind have been 
already observed experimentally [31]. 
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Fig. 7. 
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Plot vs (l/xo)' the spatial frequency of the rulings, of 
the dimensionless quantities Sc-oh = 27112(9, T)cob!'xo for the 
purely coherent case (curve a) and !=;inc = 7f v'2( 9,T)inc/xo 
for the completely incoherent case (curve b), as obtained 
by graphically inverting the relevant expressions for the 
same "observed" signal -lI<j>(t). The latter is obtained by 
fitting curves such as those in Fig. 6. The straight-line 
behaviour a indicates that the correct theory has been 
used to interpret the measurements. The clear departure 
of curve b from straight-line behaviour shows that the 
theory used for b is incorrect. The straight line a 
corresponds to a transport length 9, T=50 f.l m. 

The measurable shown in Fig. 6 is quite different in the coherent 
and incoherent cases. Attempts to fit one with any of a family of 
curves of the other kind show [32] such poor results that experi­
mental differentiation would be quite unambiguous. We exhibit this 
consequence graphically in Fig. 7. 

The question of coherence has been debated for a long time in 
the literature. However, clear experimental methods for its mea­
surement have not been developed. A careful study along the lines 
outlined in the present section has recently shown [32-34] that the 
Ronchi grating experiment is an excellent candidate for this task. 
This had not been realized earlier, although grating experiments 
have had a long history [31]. It is expected that such experiments 
will be carried out in the near future. 
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IV.C. Capture Experiments 

The capture experiment represented by Fig. lb employs homoge­
neous bulk illumination of the host crystal under study which is 
doped with guest molecules. These capture the excitons moving in 
the host and luminesce at a frequency different from that of the 
host. Monitoring the luminescence from the host and/or guest allows 
one to measure exciton motion in the host. An enormous amount of 
information has been gathered over the years through the use of this 
technique [9,13,35,36]. 

The evolution equation is the GME (22) once again with two 
terms appended to its righthand side: -Pm(t)hto describe decay as 
in IV.B. and a term which represents capture by the guests or traps. 
The simplest form of the latter term is 

and means that whenever the exciton is at one of the trap-influenced 
host sites r (over which the primed summation runs), its probability 
decays into the trap from the host at rate c. To solve the GME with 
these terms, a new mathematical technique needs to be introduced. 
This is the defect technique of Montroll [37]. The Laplace trans­
form of the augmented GME gives an equation similar to but different 
from (61) 

Here, as in (61), t:' = E: + lIT and n is the homogeneous solution, 
i.e., the first term on the righthand side of (61). 

The experimental observable is the total illumination intensity 
which is proportional to 

the probability that the host is excited. Summation of (70) over 
all host sites m gives 

, 
nH(d = ;, [l-c L Pr (d] (71) 

r 
and shows that nH is simply related to the probability that the 
trap-influenced host region is excited. However, the latter cannot 
be generally evaluated since, from (70), 
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where the initial illumination has been assumed explicitly homoge­
neous as in usual experiments, where P is the trap concentration, 
i.e., the ratio of the trap-influenced host sites to the total 
number of host sites, and v is defined as 

v s ( t) = I l/! r-s ( t ) 
r 

An exact evaluation is possible for small P since then one can 
use the single-trap solution of (71)-(73). The v-function is then 
equal to the self-propagator l/!o(t) and (71) is easily evaluated. An 
important observable is the steady-state yield ¢H defined as the 
ratio of the number of photons emerging radiatively from the host to 
that put initially through illumination and is given by 

for the simple case when the radiative lifetime equals the total 
lifetime. For the single-trap case one gets 

Thus, in the capture experiment, characteristics of exciton 
motion influence the observable, in this case ¢H' through the self­
propagator ~Q(l/T). To study the effect of coherence, (60) may be 
used as in Iv.B. The propagator to be calculated is the m=O case of 
(60) evaluated in the Laplace domain. The result is [38J 

where 

al 2 = 16v2(s 2+2sa+16V2)-1, 

k = 4v[(S+c02+l6v2J-~ 

andKand 11 are elliptic integrals of the first and third kinds 
respectively defined through 

J«(b) = f~x( I-x 2 )J-z( I-b2x2 )J-z 
o 
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rr(a~ b) = fldx(1-x2)~(1-b2x2)~(1-a2x2)-1 (80) 
I ' 1 o 

In the coherent limit a + 0, (76) gives 

(l/T)~o(l/T) = (2/~) (1+16v2T2)~I([4VT(1+16v2T2)~] (81) 

whereas in the incoherent limit a-+oo, V + 00, 2V2 h = F, one has 

(82) 

For exciton transport VT»l and FT»l usually applies: the 
excitons cover a distance of many lattice constants before they die. 
It is then possible to express (81) and (82) more simply. The 
elliptic integral reduces to a logarithmic expression and (81) gives 

as the key quantity in this experiment for coherent transport. On 
the other hand, for incoherence, (82) gives 

These results show that the quantity examined by these capture 
experiments is ~T/a, the ratio of the transport length (see (69)) to 
the lattice constant. For higher concentration of traps the probed 
quantity can be shown to be ~T/ ~e where ~e is the distance between 
traps. 

I 0 -4 L-::---'---'--::--'--'-:--'---'-:--'----'-::"~--' 
10-' 10-3 10-' 10' 10' 

a/V 

Fig. 8. Guest yield plotted as a function of the (in)coherence 
parameter a/V, Le., the ratio of the lattice constant 
to the mean free path, for several values of the trap 
concentration. 
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To treat the multi-trap case one returns to (72) and by assum­
ing s-independence of v s writes an average form of (73): 

vs(t) = v(t) = Lwm(t)Pm (85) 
m 

Here Pm is the pr~bability that the mth host-site is trap-influenced 
given that the ot is; it will be called the trap pair correlation 
function. The problem is now immediately solved, the generalization 
of (75) to the multi-trap case being 

PT 
<PH = 1 - (l/cT)+(l/r )V(l/T) (86) 

For random placement of traps, it follows that [39] 

Fig. 8 is the guest yield, i.e., l-<PH obtained from (86) and (87), 
the exciton dynamics being given by (54), plotted to show the effect 
of coherence. The coherence parameter is Via, which is proportional 
to the mean free path of the exciton in units of the lattice 

Fig. 9. 

O.OIL---~-----L----~----L---~ 
023 4 5 

Guest luminescence intensity plotted as a function of time 
for two values of the trap concentration to show the 
explicit effect of transport coherence. The extreme 
limits of completely coherent motin and completely inco­
herent lIJ,.otion are fthown. The parameter values are 
VT=1.8xlO~, Fr =1.8xlO, and cT=105. 
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constant. Higher degree of coherence is seen to result in more 
efficient trapping but no dramatic differences comparable to those 
in Figs. 5-7 in the grating context occur here. Fig. 9 shows the 
time dependence of guest luminescenc obtained from the solution of 
(71) by using numerical inversion of the Laplace transform but again 
no striking difference occurs [39]. 

The fact that such a pronounced difference exists between the 
qualitative effects of coherence for capture experiments on the one 
hand and grating observations on the other suggests that one compare 
the two analyses. In both kinds of experiment one begins with 

dPm(t) + Pm(t) + /dt'L Amn(t-t')p (t') = ° (88) 
dt Ton n 

In the grating analysis one adds an annihilation term which gives 
rise to the delayed fluorescence signal but neglects it in finding 
solutions of (88). In the capture analysis one adds a capture term 
which, however, cannot be neglected. This difference is in keeping 
with the experimental situation. No information can be gathered 
about exciton motion if c in (70) is put equal to zero. 

The initial condition on the exciton population is different 
for the two kinds of experiment. In the grating case it is inhomo­
geneous but periodic. In the capture case it is homogeneous. It is 
certainly possible to make it inhomogeneous in the latter case but 
the experiments carried out so far use homogeneous illumination or 
populations near one end. The latter case [5] is not treated in the 
present article. 

The observed signal measures 

\' -kp-k ,. \' _,k,,,-k_k -k t. ):'"- J..e., L V-'f' g--g 
k k 

in the grating experiment but is sensitive to ),tjJ mP m in the capture 
observations. Here gk is the Fourier transform of the spatial 
dependence - square wave - of the initial illumination and is con­
trolled by the ruling period. The corresponding control in the 
capture case is exercised by the trap concentration p on the trap 
pair correlation function Pm. Thus, for random placement of traps, 

Pm = P + (I-P)Om,O 

The control in the capture case is, however, much weaker than in the 
grating case because it is not as systematic. The rulings have a 
periodic arrangement. The doping by guest or trap molecules is 
random. This is the reason that dramatic manifestations of coher­
ence are possible in the grating case but not in capture experi­
ments. The quantity to measure in these experiments is the 
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diffusion length of excitons if the extent of transport is under 
study while it is the mean free path if the quality of transport 
(i.e., degree of coherence) is under study. The measuring unit 
employed in capture observations of the kind discussed is the inter­
trap distance and is a random quantity. The measuring unit in 
grating observations is the ruling period which is a fixed quantity. 
In modern singlet grating experiments it appears possible to make 
the grating measurement unit even more systematic as it involves the 
selection of a single Fourier component of the pIS by illuminating 
the crystal with crossed laser beams [5,40] instead of through a 
ruling. 

V. MISCELLANEOUS METHODS AND CONCLUSIONS 

V.A. Methods for Cooperative Trap Interactions 

The mathematical technique of the GME and the issue of exciton 
transport coherence are well matched to each other, play a central 
role in the subject of energy transfer, and have been explained in 
sections II-IV. However, the subject poses other important issues 
and requires other useful mathematical methods. Although space 
considerations do not allow us to treat them all, an attempt is 
being made to describe one of them and briefly mention some of the 
others. The present section contains techniques used in capture 
situations with a high concentration of traps with particular refer­
ence to the difficult question, seldom discussed in the literature, 
of the effect of cooperative interactions among the traps, Le., 
among the guest molecules in sensitized luminescence observations. 

The interesting feature of this treatment is that it combines 
the methods of non-equilibrium statistical mechanics, i.e. transport 
theory, with techniques of equilibrium statistical mechanics, par­
ticularly Ising model arguments. Although time dependent observa­
bles can be analyzed as well as steady state quantities [39,41,42], 
attention will be restricted to the latter for simplicity. Central 
to this analysis are (86) which relate the observable, the yield, to 
the v-function, and (85) which expresses the v-function in terms of 
the Pm and the ljJ m' The powerful feature of (85) is that the 
observables can be calculated by combining two distinct parts of the 
system under study: (i) the dynamic part which involves the motion 
of the exciton in the pure host as described by the propagators ljJm' 
and (ii) the static part which involves the placement of the traps 
in the doped crystal as described by the pair correlation function 
Pm' Calculation of the propagators has been illustrated in earlier 
sections. A procedure for obtaining the pair correlation function 
Pm follows. 

If one represents the crystal under investigation by a lattice 
gas, one can exploit the well-known analogy between the latter and 
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the Ising model, and use known results for spin correlation func­
tions in the Ising model. The host sites are treated as the lattice 
gas sites, and are considered "occupied" if they are trap-influenced 
and "unoccupied" otherwise. The interaction between any two trap­
influenced host sites is characterized by an energy which equals 
infinity if the two sites coincide, -Mf they are nearest neigh­
bours, and zero in all other cases. It follows that the quantities 
!J. and 2p-l, where p is the trap concentration, respectively corre­
spond to the magnetic interaction 4J and magnetization M of the 
Ising model. The spin-spin correlation function <aoam> is related 
to the Pm we seek, through 

We shall restrict ourselves to a one-dimensional system. Ising 
model arguments and the above correspondence then give 

Pm = 0m,o + (l-Om,o )[p+( 1- p)x 1m I] (91) 

The details of the computation of <aoam> may be obtained from exten­
sions of standard textbook calculations and therefore have not been 

1.0 

0.8 '",-_ /E~,{)' 
0.6 

a: ----0.4 

0.2 E=102 

0.0 
0 5 10 15 20 25 

INTERTRAP OISTA NeE m 

Fig. 10 The trap pair correlation function Pm plotted as a func­
tion of the dimensionless intertrap distance m for attrac­
tive~ repu1sive, and no interaction among the traps 
(E=lO, 10- , 1 respectively). The value of the concen­
tration has been arbitrarily made 0.4. 
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shown here. The quantity x in (91) is defined by 

x = (y - 1)/ (y + 1) (92) 

and can take values between -1 and 1 depending on the nature of the 
trap-trap interaction and the value of the concentration. Here y is 
given by 

y = [1-4p(1-P)(1-E)]~ 

and E, the trap-trap interaction parameter, equals exp(~/kBT) where 
T is a characteristic temperature. For no interactions b. vanishes, 
E equals 1, x vanishes since y equals 1, and (91) reduces to the 
random placement result (87). Attractive interactions lead to the 
formation of clusters while repulsive ones generally cause desert 
regions to form. Fig. 10 shows the pair correlation function for 
three values of E showing typical spatial oscillations for repulsive 
interactions and slow decay for attractive ones. 

The v-function is obtained by combining (91) with (85): 
00 

v(t) = p + (l-p) I x Iml1/Jm(t) 
m=-oo 

and reduces to (87) for random trap placement. The sum in (94) can 
be evaluated in simple cases. Thus, for incoherent motion with 
nearest-neighbour transfer rates F as in (9 ) or (11), the v-func­
tion gives, for the relevant quantity appearing in (86) 

(l/T)v(l/T) = p + (1-~)[tanh(~/2)][tanh{(~+].1)/2} ]-sgn(x) (95) 

The factors tanh(].1/2) and tanh(~/2) respectively equal y and 
(l/T)iPo(l/T) where 1/J o is, as before, the self-propagator. The 
behaviour of v, and therefore that of the observab1es, is controlled 
by the interplay of the two quantities I; and].1. They characterize 
the motion of the exciton and the interaction among the traps re­
spectively and are given by 

~ = cosh-l[l + (1/2F-r)] 

].1 =,Q,n (l/Ixl) 

Simple physical meaning can be ascribed to these two quantities in 
certain limits. Thus, for excitons in molecu1ai' crystals usually 
Fr»l with the consequence that ~ equals (4F1T'2 to an excellent 
approximation. Except for a factor of /2, ~, therefore, equals the 
ratio of the lattice constant a to the diffusion length 12Fa 2 T= 
/Of. It can be similarly shown [41] that, except for unimportant 
proportionality constants, ].1 equals the ratio of the lattice con­
stant to the effective distance over which the trap-trap interaction 
extends. The effective distance is defined as one over which the 
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pair correlation function Pm falls off by some characteristic 
amount. The reciprocal of jl therefore measures how far the effec­
tive trap-trap interaction extends, whereas the reciprocal of ~ 
measures how far the exciton can travel in its lifetime. 

Fig. 11 shows the result of the application of this theory to 
compute the observable, the guest quantum yield $G which is obtained 
from (86). Specifically, 

$G = Vd(l/cT) + (l!T)v(l/T)rl (98) 

with (95)-(97). One draws the conclusion that trapping is more 
efficient for repulsive interactions. 

The present technique can be used for arbitrary degree of 
transport coherence (whose effect will be felt through the propaga­
tors appearing in (87)) and also for arbitrary strength of the 
capture rate. However, it involves the averaging approximation 
inherent in the use of the v-function theory [5.39]. An exact 
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Fig. 11. The guest (trap) yield $G plotted as a function of the 
guest concentration P for the three values of trap-trap 
interactions corresponding to Fig. 10. Repulsive interac­
tions are seen to lead to enhanced efficiency of capture, 
whereas attractive interactions inhibit capture. 
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solution which avoids all approximations is possible [42] if one is 
willing to sacrifice the ability to cover arbitrary degree of coher­
ence and capture. For incoherent one-dimensional exciton motion 
with nearest-neighbour rates F and nearest-neighbour trap-trap 
interactions characterized by as above, the exact expression for 
the guest yield for the case of infinite capture rates is 

00 

¢G = Pe L Pe (l-Pe)N-I 
N=l 

[tanh(~/2)]-I{tanh[(N+I)~/2]-tanh(~/2)} 

where P e is an "effective" trap concentration which equals P(l-x), 
with x as in (92). 

V.B. Conclusion 

There is a large number of important questions and techniques 
which it has not been possible to describe in this review. One of 
those techniques addresses mutual annihilation of excitons. The 
procedure [5] is to consider the evolution of the system point 
representing two interacting (annihilating) excitons in a space of 
twice the number of dimensions as the real crystal. The annihila­
tion problem reduces then to the capture problem explained in sec­
tion IV. Another question concerns the applicability of traditional 
expressions for the so-called energy transfer rate and the time 
dependence of the latter. For many years sensitized luminescence 
observations had been interpreted in terms of a simple kinetic 
scheme involving an energy transfer rate which described the trans­
fer of energy from the host to the guest [9]. Later experimentss 
reported a time dependence of this rate [13] and various theoretical 
and experimental investigations of this time dependence began. The 
most recent developments on this question are as follows. The 
systems that were reported earlier [13] to exhibit time dependence 
in the energy transfer rate have been found [36] to have a time­
independent rate. The earlier observations appear to have been an 
experimental artifact. However, time dependence in the rate is seen 
[43] for one-dimensional systems. The unified theoretical framework 
described in this article is able to reconcile quantitatively both 
of these observations (time-dependent rates in the experiments of 
ref. [43] and time-independent rates for the system of ref. [36]), 
as is clear from detailed fits carried out recently [44]. A related 
new development [45] is the concern that usual exciton capture 
experiments probe capture rather than motion parameters and a feel­
ing is developing that a large amount of information gathered over 
the years may be of little relevance to exciton motion. 

Another issue in this field is that of the interplay of energy 
transf'er with vibrational relaxation. The natural mathematical 
technique to study it is to employ two interlocked master equations 
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[5], one for the relaxation and the other for transfer. It is 
possible to investigate in this way the dependence of energy trans­
fer on the wavelength of initial excitation which could be observa­
ble if relaxation occurs on a scale comparable to or slower than 
transfer. 

A number of other techniques exist including those involving a 
return to k-space equations such as the Boltzmann equation. The 
interested reader is referred to several reviews by the author for 
detailed [5] as well as perspective [46-48] descriptions and also to 
other reviews cited in this article. 
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ENERGY TRANSFER IN INSULATING MATERIALS 

ABSTRACT 

G. Blasse 

Physical Laboratory, University of Utrecht 
3508 TA Utrecht, The Netherlands 

In many important luminescent materials energy transfer plays 
an important role. First we review shortly energy transfer between 
two ions with an extension to macroscopic energy transfer. The 
results are applied on some special cases, especially cross relax­
ation. Multistep energy migration including donor-donor and donor­
acceptor transfer is summarized in a next paragraph. A number of 
important classes of materials in which energy migration plays a 
role is discussed. They are divided into two groups, viz. those in 
which the energy migration has a strong temperature dependence and 
those in which it has a weak temperature dependence. Examples in 
the former group are YV04, CaW04 and certain Ce3+ compounds. Exam­
ples in the latter group are transition metal ions (MnF2). uranium 
compounds and rare earth compounds. It is shown that the migration 
processes depend strongly on the nature of the rare earth ions and 
the type of impurities. The reason for this is discussed and some 
recent experiments are summarized. Finally fluorescence line narrow­
ing and energy migration in glasses is dealt with shortly. 

I. INTRODUCTION 

Energy transfer is not only an interesting and intriguing phy­
sical phenomenon, but has also found application in many materials 
of importance. In 1942 the well-known lamp phosphor Ca5(P04)3(F,Cl): 
Sb3+,Mn2+ was discovered. Excitation is into the Sb3+ ion, which 
transfers the excitation energy partly to the Mn2+ ion. In this way 
a white emission results. In 1941 the U.S. production of fluorescent 
lamps was 21 million lamps, in 1970 260 million. Other codoped ma­
terials have also been applied for some time, e.g. CaSi03:Pb2+,Mn2+ 
[1]. 

251 
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In 1964 the phosphor YV04:Eu3+ was introduced as the red com­
ponent of a color television picture tube. In this material energy 
transfer occurs from the broad-band emitting vanadate groups 
(V043-) to the Eu3+ ions. However, also transfer among the V043-
groups appeared to play an important role. 

In the new three-color fluorescent lamps the green phosphor is 
(Ce,Tb)MgAlIIOI9. Here energ3 transfer from Ce3+ to Tb3+ occurs. 
Energy transfer among the Ce + ions appeared to be of no importance 
[2]. Further energy transfer finds application in sensitizing 
solid state and glass lasers and in luminescent solar concentrators. 

It is therefore not surprising that through the years the phe­
nomenon of energy transfer has been studied extensively. 

Following the early work of Botden [3], Dexter presented in 
1953 his theory of energy transfer in solids [4]. This paper had an 
enormous influence up till today. The introduction of pulsed lasers 
(time-resolved spectroscopy) made a more detailed study possible. 
A recent book gives a good review of the state of the art [5]. 

It is the purpose of this chapter to review the characteristics 
of materials in which energy transfer plays a role. We restrict our­
selves to insulating materials, i.e. we exclude energy transfer by 
electric charge carriers. This is treated in the chapter by Kling­
shirn. Also we will not dwell into theory, but restrict ourselves 
to a short summary in a form suitable for further treatment. A 
similar approach has been presented elsewhere [6J. 

II. SINGLE-STEP ENERGY TRANSFER 

Dexter has considered energy transfer from a donor or a sensi­
tizer ion (S) to an acceptor or activator ion (A). This may occur if 
the energy differences between the ground and ex~ited states of S 
and A are equal (resonance condition) and if there exists a suitable 
interaction between both systems [4]. The interaction may be either 
an exchange interaction (if the wave functions overlap) or an elec­
tric or magnetic multipolar interaction. In practice the resonance 
condition can be tested by considering the spectral overlap of the 
S emission and the A absorption spectra. 

The Dexter result looks as follows 

PSA = 2tl<~s~~IHSAI~;~A>12fgs(E)gA(E)dE. 
Here the integral presents the spectral overlap, HSA the interacti­
on Hamiltonian and ~S and ~S, ~A and ~A the excited and ground state 
wave functions of S and A, respectively. The distance dependence de­
pends on the interaction mechanism. For exchange interaction it is 
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-n exponential, for the other interactions of the type r 
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The final results of Dexter's calculations can be applied 
rather generally, which makes them useful up till today. It has 
been shown by Orbach, however, that certain transfer processes are 
omitted in spectral overlap treatments [7]. The reason for this 
lies with the character of the ion-phonon coupling. If the ion­
phonon interaction takes place at only a single site, the Dexter 
approach is equivalent to that in [7]. If the interaction takes 
place at both sites in the transfer process, there is no obvious 
connection with the optical linewidth. so that the transfer rate 
cannot be obtained from spectral overlap considerations. The reader 
is referred to [7] for detailed treatment. Since in our case the 
precise character of the ion-phonon coupling is usually unknown, we 
will mainly use Dexter's theory. 

In general, in a real crystal there is a random distribution 
of sensitizers and activators. An excited sensitizer can interact 
with all unexcited activators and it is necessary to account for 
the distribution in SA separations. This problem was treated by 
Forster and later by Inokuti and Hirayama [8]. They obtained the 
following expression for the decay of S in the presence of A: 

I(t) 
t 3 cA t 3/s 

I(o)exp [ (- -)-r(l--)-(-) ] 
T S C T ' o 0 

where To is the decay constant of S in the absence of A, cA is the 
concentration of A, Co is the critical activator concentration and 
S = 6, 8 or 10 depending on the electric mUltipole interaction. For 
exchange interaction their result reads 

t -3 cA eYt 
I(t) = I(o)exp[(- -)-Y - g(-)], 

T c T o 0 0 

where Y = 2ro/L with ro the critical distance and L an effective 
Bohr radius. Note that I(t) is not an exponential in the presence 
of A. In this treatment only SA transfer is considered and SS trans­
fer is assumed not to occur. These equations have been encountered 
in many experimental situations. 

3- 3+ Let us now consider some examples. For V04 + Eu transfer 
the resonance condition is satisfied (the blue. vanadate emission 
overlaps several Eu3+ absorption lines). For backtransfer this is 
not the case (the red Eu3+ emission does not overlap the uv vana­
date absorption), so that it does not take place. The nature of the 
interaction in the case of the V043- + Eu3+ transfer has not yet 
been clarified convincingly. 

3+ 3+ . 
In (Ce,Tb)MgAIII019 the absence of Ce + Ce transfer 1S due 

to the vanishing spectral overlap of the Ce3+ emission and absorpti-
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on spectra, so that the resonance condition is not fulfilled. The 
Ce3+ emission overlaps several Tb3+ absorption lines, so that 
Ce3+ + Tb3+ transfer is possible. 

A case where the interaction is vanishing, is transfer between 
Eu3+ ions in YAl3B4012 [9]. At low temperatures only the SDo and 
7Fo levels are occupied. These are connected by an optical transiti­
on which is strictly forbidden in this host lattice. Due to the 
vanishing interaction the Eu3+ - Eu3+ transfer does not occur, al­
though the resonance condition is fulfilled (see also below). 

A special case is cross relaxation in rare earth ions of which 
we will consider a few examples. In this case the excited donor 
transfers only part of its excitation energy to an acceptor (which 
may be identical with the donor). 

An illustrative example is the Sm3+ ion, where cross relaxati­
on between identical ions quenches the Sm3+ luminescence above a 
certain critical concentration. The Sm3+ ion shows emission from 
the 4GS/2 level (see Fig. 1). For high enough Sm3+ concentrations 
the following transfer may occur: 

4 6 6 
Sm( GS/ 2) + Sm( HS/ 2) + 2 Sm( F9/ 2), 

20 

103 em-I 

t 15 

10 

5 

a 

3+ Fig. 1. Energy level scheme of the Sm ion. 
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so that the orange 4GS / 2 emission is quenched. As a matter of fact 
the transitions 4GS/2 ~ 6F9/2 and 6HS/2 ~ 6F9/2 should match each 
other. The critical distance for this transfer is estimated to be 
some 20 1. As a consequence Sm3+ compounds usually do not luminesce. 
An exceptio~ is (bu4N)9SmWI0036~ but here the shortest ~m:+ - s~3+ 
separation ~s > 18 ! [10]. Consequently the quantum eff~c~ency ~s 
high. 

An application of this cross relaxation phenomenon in the case 
of Sm3+ is found in the direct observation of a structural detail 
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Fig. 2. Energy level scheme of the Tb3+ ~on. 
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of solid electrolytes based on the fluorite structure [11]. These 
have composition Mf~~+F2+x (!f2+ = Ca, Sr, Ba and M3+ = lanthanide). 
The M3+ ions occur in the lattice as clusters. This fact determines 
the ionic conductivity. Samples Cal-xSmxF2+x do not show any lumi­
nescence at all in contradiction with samples NaYI-xSmxF4 where 
quenching occurs for x > 0.02. The absence of emission shows direct­
ly that the Sm3+ ions occur in pairs, so that the excitation energy 
is lost by cross relaxation even if the Sm3+ concentration is ex­
tremely low. 

A cross relaxation of the type described for Sm3+ has also been 
observed for Dy3+. A comparable ~rocess quenches the higher level 
emission of the Eu3+ and the Tb3 ions and ~s of great importance 
for practical application. The energy level diagram of the Tb3+ ion 
has been given in Fig. 2. Emission occurs from the 5D3 and the 5D4 
level (blue and green, respectively). At low.Tb3+ concentrations 
both emissions are usually observed. For increasing Tb3+ concentra­
tion the 5D3 emission is quenched by 

Tb3+(5D ) + Tb3+(7F ) ~ Tb3+(5D ) + Tb3+(7F ) 
3641· 

This transfer occurs by electric-dipole interaction [12]. Its cri­
tical distance is about 13 A. Note that this cross relaxation re­
sults in green 5D4 emission. If one is interested in the preparati­
on of green Tb3+-activated phosphors, the Tb3+ concentration cannot 
be too low. Due to the high price of terbium, this is rather unfa­
vourable. In certain blue-emitting X-ray phosphors (e.g. LaOBr-Tb) 
the Tb3+ concentration should be low to avoid the green Tb3+ emis­
sion. 

b3+ . A way to keep the T concentrat~on low and 
green emission is to quench the 5D3 emission with 
Finally 5D4 emission from Tb3+ results. The exact 
is not yet known [13]. 

to obtain still 
the Dy3+ ion. 
transfer mechanism 

A similar situation exists for the Eu3+ ion which has emission 
from 5D2 (blue), 5DI (green) and 5DO (red). The Eu3+ ion is used as 
an activator in redemitting phosphors, where only 5DO emission is 
required. This is obtained by increasing the Eu3+ concentration, so 
that the other emissions are quenched by cross relaxation. Due to 
the high europium price this is economically not very favourable. 

In all these examples only pairs of ions play a role in the 
total transfer process. In many cases, however, this is more compli­
cated. In concentrated materials the energy may migrate through the 
lattice looking for a place where it can end its life. Such situa­
tions will be the subject of the remainder of the next section. 
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III. MULTISTEP ENERGY TRANSFER 

Up till now we have considered only the microscopic, single 
step donor-acceptor energy transfer. It is possible, however, that 
donor-donor transfer plays also a role. Excitation energy may mi­
grate among the donor species before being transferred to an 
acceptor. A good survey of earlier and recent attacks of this 
problem has been given by Huber [14]. From this survey we derive 
the following for our purpose. 

Consider the time evolution of Pn(t), the probability that 
species n is excited and all other atoms are in their ground state: 

dPn(t)/dt = - (YR + X + ,1 W ,)P (t) + ,1 W , P ,(t). n n Tn nn n n rn n n n 

The first term on the right-hand side corresponds to processes 
which bring the species n back to the ground state: YR is the ra­
diative probability, Xn is the transfer rate to acceptors and E,W , 

. h f f . h· d . n nn glves t e trans er rate rom specles n to ot er onor specles 
n'. The second term describes the reverse process. For simplicity 
back transfer from the acceptors is neglected. 

The energy difference between ground and excited state, En" 
will vary from donor to donor due to perturbations from impurities, 
strains, etc. This yields the inhomogeneous line broadening observ­
ed under broad-band excitation. There are two techniques to follow 
the excitation energy migration in the donor system, viz. fluores­
cence line narrowing (FLN) and the time evolution of the donor lu­
minescence in the presence of acceptors. 

In FLN a pulsed, narrow band light source (a laser) excites 
those donors whose resonance frequencies span a small part of the 
inhomogeneous liRe. After the pulse, the luminescence evolves as 
shown schematically in Fig. 3. Broad-band luminescence arises to 
donors which were not excited directly. The decay of the narrow 
component yields information on the microscopic transfer process. 

A well-known example is the case of LaO.8PrO.2F3 [15]. 
In Fig. 4 we give the time evolution of the emission of the , 
3PO + (3H6 )1 transition on the Pr3+ ion. Excitation is at 12 cm-1 
higher energy than the line centre. Note that the line decreases 
in time, whereas the background luminescence increases. This shows 
that energy transfer occurs within the Pr3+ subsystem and that the 
temperature is high enough (14 K) to make the transfer process in­
dependent of the energy mismatch. From these experiments we can 
find the ratio R(t): b d' . . 

R(t) = narrow. an :ntenslt~ at tlme t 
total lntenslty at tlme t 
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(0) 

Fig. 3. Schematic diagram of the time development of the lumines­
cence in a FLN experiment. (a) t = 0, (b) t > O. The shaded 
area corresponds to luminescence from ions which were not 
initially excited [14]. 
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Theo.retical expressio.ns fo.r R(t) have been derived in the litera­
ture. In this way it beco.mes po.ssible to. derive transfer characte­
ristics fro.m a co.mpariso.n between experiment and theo.ry. Fo.r the 
case o.f Fig. 4, fo.r example, it has been fo.und that electric dipo.le­
dipo.le transfer is do.minant in the system LaO.8PrO.2F3 and that 
the nearest-neighbo.ur transfer rate is 0.4 x 106s-1 (14 K). 

The time evo.lutio.n o.f the do.no.r fluo.rescence upo.n bro.ad-band 
excitatio.n is an o.ld pro.blem in luminescence. By measuring the 
time dependence o.f the do.no.r fluo.rescence it is po.ssible to. o.btain 
info.rmatio.n abo.ut the do.no.r-do.no.r and do.no.r-accepto.r transfers by 
analysing the decay curve. 

Since the integrated intensity at a time t is pro.po.rtio.nal to. 
the number o.f excited do.no.rs at that time, Nn(t), the decay can be 
described by 

Here Nn(O) is the number o.f excited deners at the time the pulse is 
turned eff and f(t~ is the fractien ef excited deno.rs if the radia­
tive lifetime (YR- ) weuld be infinite. The functien f(t) depends 
en time as described abeve fer Pn(t), if YR = O. 

Exact selutien is pessible fer two. extreme cases, viz. no. 
dener-do.ner transfer at all (the case censidered in chapter II) and 
very rapid do.ner-dener transfer. The behavieur o.f f(t) in between 
these two. cases is extremely cemplicated. 

In the limit ef no. dener-dener transfer at all we ebtain 

(1) 

This is a generalizatien o.f the results ebtained by Inekuti and 
Hirayama [8]. CA gives the accepter cencentratio.n and Xei the trans­
fer rate frem a dener at site 0 to. an accepter at site i. The value 
ef l-CA gives the prebability to. find no. accepto.r o.n site i. If 
site i is o.ccupied by an accepto.r, it co.ntributes a facto.r 
exp(-Xo.it) to. exp(-~t). Here ~ is the to.tal do.nor-accepter trans­
fer rate fo.r the nth do.no.r. Our equatio.n represents therefere an 
average o.f exp(-Xnt) o.ver all cenfiguratio.ns o.f accepto.rs. 

In the case ef rapid transfer the do.no.r-do.ner transfer takes 
place so. quickly that fo.r t > 0 all do.ners have equal prebability 
to. be excited. f(t) has new a very simple fo.rm, viz. 

(2) 



260 G.BLASSE 
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Fig. 5. Schematic plot of f(t) vs t. (a) donor-donor transfer 
absent, (b) rapid transfer, (c) intermediate between (a) 
and (b). 

In Fig. 5 we present some schematic plots of f(t) vs t. In 
general f(t) is initially nonexponential, but becomes exponential 
after a certain time. In the rapid transfer case [(b) in Fig. 5] 
ND(t) is exponential in the whole time region. In the absence of 
donor-donor transfer ND(t) becomes exponential after long times 
only~with a slope equal to the radiative decay time (compare chap­
ter II). Also in the intermediate case ND(t) is initially nonexpo­
nential, but becomes exponential in the limit t + 00. The slope, 
however, is steeper than in the absence of donor-donor transfer 
[(c) in Fig. 5]. 

Several theories have been presented in the literature, e.g. 
a hopping model [16] and a diffusion model [17]. Especially the 
latter solution has become popular if the diffusion is not fast 
enough to maintain the initial distribution of excitation (diffusion­
limited transfer). The following expression was found 

3! 2 ~ 
ND(t) = ND(o)exp(-YRt)exp[-~~2C (Ct)2(1+IO.87x + 15.50x )4] 

3 A 1+8.743x 

Here C is the interaction parameter for donor acceptor transfer, 
and x = DC- I / 3t 2/ 3 where D is the diffusion constant. For t + 00 an 
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exponential time dependence is predicted with decay rate TD- 1 
11.404 cAcl /4D3/4. Here the diffusion is assumed to be isotropic. 
For one- and two-dimensional diffusion, however f(t) has the 
asymptotic limits [41T(CA/a)2Dtrl/2 and (41TCAa-2Dt)-I, respectively, 
where a is the lattice constant [14],[15]. A more fundamental theory 
of energy transfer has been gi~en by Huber [14],[15]. 

Note finally that back transfer from acceptor to donor was 
neglected up till now. It is possible, however, to incorporate back 
transfer in the existing theories [14]. For our purpose the formu­
lations given above are sufficient. We will distinguish three cases, 
viz. (a) no donor-donor transfer; (b) diffusion-limited energy mi­
gration, i.e. donor-donor transfer is less probable than donor­
acceptor transfer; (c) fast diffusion or trapping-limited energy 
migration, i.e. donor-donor transfer is more probable than donor­
acceptor transfer. We will apply these models especially to com­
pounds with high concentrations of luminescent ions, i.e. high donor 
concentrations. 

IV. CHARACTERISTICS OF MATERIALS 

In the following sections we review experimental results which 
contribute to our knowledge of energy migration in solid insulators. 
A large part of these results is of a qualitative nature only. Never­
theless this is instructive and often of large value in predicting 
transfer phenomena in new materials. The number of quantitative 
results is increasing, especially after the introduction of laser 
spectroscopy. 

This section divides the materials to be discussed into two 
categories depending on whether the energy migration in the lattice 
exhibits a strong or a weak temperature dependence. A special 
section is devoted to glasses. 

A strong temperature dependence is found if the excitation 
energy is self trapped after each step due to the relaxation of the 
surrounding lattice. In this category we find tungstates and com­
pounds of Ce3+ and Bi3+. A weak temperature dependence is encounter­
ed if the excited state shows only a very small amount of relaxation. 
Energy migration persists down to low temperatures. Examples are 
compounds of Mn2+, U6+ and the rare earth ions. 

The spectra in both cases are different. In the former they 
consist of broad bands, in the latter they show vibrational struct­
ure and zero-phonon lines. In the case of the rare earth ions the 
latter are dominating. 

It is an easy task to make this more quantitative [6]. At low 
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temperatures the transfer probability between identical ions is 
proportional with the spectral overlap of the zero-phonon lines in 
emission and in absorption. Therefore the transfer probability 
vanishes if the spectra do not show vibrational structure with 
zero-phonon lines. 

V. STRONG TEMPERATURE DEPENDENCE 

Let us first consider the classic phosphor CaW04' The lumines­
cent centre is a W04Z- group. The optical transitions are broad 
band and of the charge-transfer type. They involve considerable 
lattice relaxation. In CaW04 the concentration of luminescent 
groups is high and the question whether excitation energy migrates 
among the lattice or not, has been the subject of many investigati­
ons. In view of the absence of a zero-phonon line energy transfer 
between tungstate groups is expected to be negligible at low tem­
peratures. At higher temperatures, however, it is conceivable that 
energy migration occurs. Since thermal quenching of the lumines­
cence is another possibility at high temperatures, it is necessary 
to distinguish between the two processes. This can be done as f~l­
lows without using any complicated instrumentation. In CaW04-Sm + 
the Sm3+ emission upon host lattice excitation can be studied as a 
function of temperature. At low temperatures the Sm3+ emission in­
tensity is very low, but it increases above a certain temperature 
(~Z50 K). This indicates that above this temperature the tungstate 
excitation energy starts to migrate. The thermal quenching can be 
studied in the very similar, but diluted system CaS04-W where no 
energy transfer is possible due to the low tungsten concentration. 
The quenching occurs also above 250 K, which makes the situation 
rather complicated. 

In CaMo04 the situation is a little different, because thermal 
quenching occurs above 150 K. In the composition CaMo04-Sm3+ the 
molybdate emission intensity decreases above 150 K, but no increase 
of the Sm3+ emission intensity is observed. This is only observed 
at still higher energies. 

A strikingly different situation occurs in PbW04 and YV04 
where energy migration among the tungstate and vanadate sub1attice 
starts at much lower temperatures than the thermal quenching tem­
perature does. Fig. 6 gives a survey of these results. The situat­
ion encountered in the case of PbW04 and YV04 makes host lattices 
of this type promising for efficient phosphors. This has been re­
alized, for example, in the case of YV04-Eu3+. Excitation at room 
temperature into the vanadate group results in efficient Eu3+ emis­
sion, because the vanadate excitation energy migrates through the 
lattice until it is trapped by the activator. Other host lattices 
of this type are BaZCaW06 and LazMgTi06 [6]. 
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Fig. 6. Onset of energy migration (m) and thermal quenching (q) 
for several materials. 

Nevertheless La2MgTi06-Eu3+ is not an efficient luminescent mate­
rial. This is due to the fact that the lattice provides its own 
traps due to a certain amount of crystallographic disorder between 
the Mg2+ and Ti4+ ions. This results in pairs of titanate octahedra 
which emit at much longer wavelength than the intrinsic titanate 
octahedra. The real activator, Eu3+, cannot compete successfully 
with these defect centres for the migrating energy. 

Surprisingly enough; not much quantitative data are available 
on these, often important, materials. Some work has been performed 
on YV04-Eu3+ (for a review, see [6]). The critical distance for 
energy transfer between the vanadate groups is about 8 A, to be 
compared with the shortest v-v distance of 3.6 K yielding a hopping 
time of about 10-7 s at 300 K. The interaction mechanism is not yet 
known. Values for the vanadate + Eu3+ transfer probability in the 
literature vary from 104-108 s-l. This illustrates the unsatisfact­
ory situation for materials of this type. 

3+ .3+ Many compounds of Ce and B1 belong also to the present 
class of materials [6]. A good example is CeF3 which shows at 300 K 
and lower temperatures high Ce3+ efficiency. This is also the case 
in the system La1-xCexF3. The relevan~ spectra are broad band, so 
that no energy migration is possible. Consequently CeF3-Tb does not 
yield much Tb3+ emission upon Ce3+ excitation. This is not the case 
with CeB03-Tb, but here the Ce3+ emission and excitation overlap 
considerably. 

It is interesting to note the similarity between CeB03-Tb and 
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YV04-Eu on one hand and between CeF3-Tb and (for example) YNb04-Eu 
on the other hand. In the former case energy migration in the host 
lattice occurs at room temperature, resulting in efficient phosphors. 
In the latter case, however, energy migration is negligible. 

Two well-known Ce3+ compounds activated with Tb3+ have been in­
vestigated more in detail, viz. CePS014-Tb [18] and CeMgAll1019-Tb 
[2]. However, Ce3+-Ce3+ energy transfer was not observed. 

It is here the place to mention an unresolved problem in ener­
gy transfer between two species, viz. Ce3+ + Eu3+ transfer does not 
occur, nor does vanadate + Tb3+ occur. Not only is the transfer 
absent, also the luminescent centres seem to quench each other. It 
has been proposed that quenching occurs via a charge-transfer state 
which could be at low energy in the cases mentioned (viz. Ce4+-Eu2+ 
and V4+-Tb4+, respectively) [19]. 

Some Bi3+ and Pb2+ compounds belong also to the present class 
of materials. The situation with compounds of that type is complic­
ated, however. The reason for this is that some of them behave as 
semiconductors, for example Bi203, CsPbCl3 and CS3Bi2Br9 [6]. 
Others belong to the materials with energy migration with weak tem­
perature dependence, for example CS2NaBiCI6' Large Stokes shifts 
without any indication for energy migration at low temperatures 
have been encountered in others, for example Bi4Ge3012, Bi2A1409, 
PbS04 and PbF2. The observation of several types of energy transfer 
processes in Bi3+ and Pb2+ compounds has the same origin as the ob­
servation of several types ot emission spectra, i.e. exciton recom­
bination, zero-phonon line with vibrational structure and broad 
band spectra. 

VI. WEAK TEMPERATURE DEPENDENCE 

VI.A. Transition Metal Compounds 

Manganese fluoride, MnF2' has become an outspoken and well­
studied example of an inorganic material in which exciton diffusion 
persists down to very low temperatures [20]. Rare earth ions (Eu3+ 
and Er3+ have been used as activators. The emission of the 
Mn2+ (3 dS) ion corresponds to the 4T]_6A] transition which is 
strongly forbidden. The radiative lifetime of the excited 4T) level 
in MnF2 is about 30 ms. The relaxation around this excited state is 
not very large and a zero-phonon line has been observed (Fig. 7). 
In MnF2 the excitation does not stay on the same ion, but can travel 
readily through the sublattice of in-resonance Mn2+ ions. Even in 
the purest MnF2, the emission originates, therefore, from Mn2+ ions 
associated with impurities and from defects. Common impurities are 
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Fig. 7. Part of the absorption and emission spectrum of a MnF2 
crystal at LHeT. Mg(II) or Mg(III) refer to Mn2+ ions with 
a second or third nearest neighbour Mg2+ ion. 

2+ 2+ d 2+. h' I . Mg ,Zn an Ca 10ns w 1ch are a ways present at concentrat1-
ons of a few parts per million. They occupy regular cation sites 
in the lattice and perturb the surrounding Mn2+ ions, lowering 
their energy levels relative to those of the unperburbed (intrinsic) 
Mn2+ ions. The diffusing excitons can now be trapped by the perturb­
ed Mn2+ ions. At low temperatures this excitation cannot return to 
the exciton state; the excited, perturbed Mn2+ ions decay radiati­
vely with a spectrum characteristic of the particular trap. Examples 
of such traps are Mg(3 nn, 48 cm- I ), Mg(2 nn, 77 cm- I ), Zn( 3 nn, 
36 cm- I ), zn~2 nn, 66 cm- I ) and Ca(1 nn, 300 cm- l ). Here we have in­
dicated a Mn + ion in the first, second or third nearest-neighbour 
site around Mg, Zn or Ca and its trap depth. Deeper traps are also 
present and are effective as killer sites, i.e. traps from which no 
emission occurs, but where the excitation is lost nonradiatively. 

Below 4 K the traps are effective. Around 4 K, however, the 
shallower traps [like Zn (3 nn), Mg (3 nn)] begin to lose their trapped 
excitation energy by thermally activated back-transfer to the exci­
ton level. From here the energy may be trapped by deeper traps. 
Finally all the emitting traps are emptied and only the deep, non­
emitting traps are operative. As a consequence the luminescence has 
been quenched. These quenching traps may be Ni and/or Fe ions 
(Fig. 8). 

It has been found that the net low-temperature transfer rate 
from the exciton level to all traps amounts to 8 x 103s-1 [20]. 
Since the radiative decay rate of the exciton is 30 s-l, transfer to 
traps is about 270 times more probable than intrinsic exciton emis­
sion. In fact the ratio of trap to intrinsic emission has been 
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Fig. 8. Model used to describe the populating of Mn traps, Eu traps 
and quenching traps in MnF2-Eu3+. 

measured to be about 250. The transfer rate increases rapidly with 
temperature. This has been explained in the following way. The 4TI 
state of the Mn2+ ion is split by the combined effect of the ortho­
rhombic crystal field, spin-orbit coupling and exchange. The two 
lowest levels, EI and E2 are 17 cm- I apart, EI being the lower one. 
At higher temperatures the E2 state becomes thermally populated. The 
E2 exciton state transfers more readily to the traps (transfer rate 
6 x 106 s-I). This higher transfer rate from the E2 level has been 
ascribed to a more favourable spectral overlap resulting from life­
time broadening due to fast relaxation down to EI [20]. 

The luminescences of MnF2-Eu3+ and MnF2-Er3+ have also been 
studied. The Eu3+ emission usually originates from the 5DO, 5DI and 
5D2 level of this ion. The EI level is above the 5DO level, but be­
low the 5D I and SD2 level. Excitation into the 5DI and 5D2 level 
does not yield emission from these levels. It is assumed that the 
5D1 and 5D2 level relax by energy transfer to the EI level of a 
neighbouring Mn2+ ion, and that this ion in turn transfers its ener­
gy to the SDO level of the Eu3+ ion. Excitation into the MnF2 host 
lattice results in a considerable amount of Eu3+ emission indicating 
that the Eu3+ ion acts indeed as a trap. Whereas the luminescence of 
pure MnF2 is quenched above 50 K, the Eu3+ emission is quenched 
above 100 K. This occurs by back transfer from the SDO level of Eu3+ 
to the exciton levels which transport the energy to killer sites. 
The trap depth of the Eu3+ ion is some 1300 cm- I • Since the emitting 
levels of the Er 3+ ions are more than 3000 cm- I below EI, Er 3+ traps 
remain effective at much higher temperatures and their emission is 
observed at room temperatures. 

Finally we note that transfer between nearest-neighbour Mn2+ 
ions in MnF2 does not occur within the exciton lifetime. 
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All Mn2+-Mn2+ transfer mentioned above are between next-nearest 
Mn2+ neighbours. The reason for this is that MnF2 is antiferromag­
netic in the temperature region involved. The Mn2+ ions are on two 
sublattices with antiparallel magnetic moment. Energy transfer 
between Mn2+ ions with antiparallel spin moments is a relatively 
improbable process. 

Some properties of the exciton dynamics of MnF2 crystals have 
been elucidated through time-resolved studies of the emission at 
different parts of the exciton band after selective laser excitati­
on [21]. In some cases phase memory was found to be retained up to 
V\ I vsec but the details of the exciton dynamics require further 
knowledge of the exciton scattering mechanisms. 

Similar effects have been observed for other manganese(II) 
fluorides e.g. KMnF3, RbMnF3, and BaMnF4 doped with rare earth acti­
vators. An interesting result for KMnF3:Eu3+ crystals is that the 
activator ions perturb the neighbouring Mn2+ ions which act as traps 
for the host excitons which then transfer the energy to the Eu3+ 
1.ons [22]. 

For Mn2+ compounds with linear manganese chains a different be7 
havior has been found. In tetramethyl ammonium manganese cloride 
the manganese spins are correlated antiferromagnetically. This pre­
vents energy transfer between nearest chain-neighbours. Transfer 
between next-nearest neighbours has to occur over a large distance. 
As a consequence the emission of this compound exists of intrinsic 
Mn2+ emission at low temperatures. The energy becomes mobile above 
about 50 K [23]. 

A considerable amount of work has been performed on the lumines­
cence of the ions Co(CN)~- and Cr(CN)~- [24]. The interesting 
point is that quantitative measures for the relaxation around the 
excited ion have been derived fr~~ the vibrational structure of the 
spectra. In K3Co(CN)6 the Co(CN)6 ion emits a broad band peaking at 
14000 cm- I . The corresponding absorption band peaks at 26000 cm- I . 
This is a very large Stokes shift. There is a weak vibrational 
structure. The maximum intensity lies at about the 10th member of 
the progression in the totally symmetric Co-C vibration. The zero­
phonon line is not observable. The Co-C distance in the excited 
state is 0.11 A longer than in the ground state. This points to a 
strong relaxation in the excited state. The luminescence quenches 
below room temperature. It is generally agreed that there is no 
energy migration in K3CO(CN)6 in view of the negligible spectral 
overlap between the emission and absorption bands. The thermal quen­
ching is ascribed to internal nonradiative decay in the Co(CN)~- ion. 

3-
In the system K3Col-xCrx(CN)6 the Cr(CN)6 ions can be excited 

selectively. Concentration quenching of the Cr(CN)~- luminescence 



268 G. BLASSE 

occurs between x = 0.05 and x = 0.1. This has been ascribed to 
energy migration among the Cr(CN)~- ions. At lower Cr concentrati­
ons the Cr(CN)~- luminescence has a high quantum efficiency up to 
room temperature. This behaviour, completely different from that of 
CO(CN)~- is due to small relaxation around the excited state. The 
change in the Cr-C distance upon excitation is only some 0.02 A. 
The zero-phonon line in the emission spectrum dominates the spect­
rum. Only in [(C6HS)4P]3Cr(CN)6 the distance between the Cr3+ ions 
has become so large that energy migration is no longer possible. 

The large difference in the relaxation of the two ions (with 
all its consequences) is due to the difference in the nature of the 
crystalfield transitions involved in the emission: in the CO(CN)~~ 
ion 3Tlg ~ tAlg and in Cr(CN)~- ion 2Eg ~ 4A2g. Note, finally, 
that in K3Col_xCr~(CN)6 no energy transfer from the cobalt to the 
chromium ion has been observed. Due to the large relaxation of the 
cobalt system it is out of resonance with the chromium ion levels. 

VI.B. Hexavalent Uranium Compounds 

The study of hexavalent uranium compounds illustrates what 
types of centres are involved and which factors determine their 
concentration. The U6+ ion in solids occurs as the linear uranyl 
ion (U022+) or as the octahedral uranate group (U066-). 

Fig. 9. The crystal structure of an ordered perovskite A2BW06. 
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Let us first consider the ordered perovskite Ba2CaU06 where 
U066- groups are present. The crystal structure is shown in Fig. 9. 
The shortest U-U distance is about 6 !. At low temperatures this 
compound luminesces efficiently, but above 20 K the luminescence is 
quenched [25]. The emission spectrum shows several zero-phonon 
lines. These do not coincide with the zero-phonon line in the excit­
ation spectrum, which indicates that the emission, even at the low­
est temperatures, does not originate from the intrinsic uranate 
group. The emission lines depend on sample history and quench sub­
sequently with increasing temperature. 

The explanation is as follows. After excitation the energy mi­
grates through the lattice among the intrinsic uranate groups. This 
energy is trapped by uranate groups near defects which have energy 
levels at somewhat lower values than the intrinsic groups. From the 
"defect" uranate groups the energy is emitted as luminescence. The 
trap depth in Ba2CaU06 is some 100 em-I. If the temperature is in­
creased, the traps are emptied (see Fig. 10) and the energy reaches 
the killer centres. In Ba2CaU06 the trap concentration is very high, 
viz. about I at. %. A slight disorder in the ordered perovskite 
structure (probably between Ba and Ca) is responsible for this dis­
order. Due to the disorder the migrating energy is trapped and can­
not reach the killer sites. Note that the deviation from the perfect 
crystal structure is responsible for the fact that Ba2CaU06 lumines­
ces at all. 

This is different in MgU04 [26]. Even at the lowest temper­
atures (1.4 K) the quantum efficiency is not higher than 10%. The 
number of traps is large as follows from the number of zero-phonon 
lines in emission. More important, however, the ratio of killers 
and traps must be larger than in Ba2CaU06, so that the greater 
part of the migrating energy is lost at killer sites. Itcan 
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Fig. 10. Schematic energy level diagram of Ba2CaU06 
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also be shown what the nature of these killer centres is, viz. US+ 
ions. These give an intervalence charge-transfer absorption, which 
picks up the excitation energy. In fact MgU04 is slightly oxygen 
deficient. The strongly oxygen-deficient Y6UOl2 does not luminesce 
at all. 

Uranyl compounds are usually more stoichiometric. In fact 
CS2U02Cl4 shows efficient luminescence at 300 K. The killer concen­
tration is low and the traps are no longer effective. At LHeT, how­
ever, also trap emission is observed. The trap concentration is so 
low that at low temperatures the migrating excitons meet each other 
whereby they annihilate themselves (biexciton decay) [27]. 

In the corresponding CS2U02Br4 the killer concentration is 
higher and quenching occurs below room temperature. The trap con­
centration is some 100 ppm and the trap depth 40 cm- I [28]. 
Fig. II shows the time dependence of the intrinsic and the trap 
emission at low temperatures, showing energy migration among the 
intrinsic groups to the "defect" groups (the traps). Excitation is 
by selective excitation into the intrinsic uranyl groups. 

t 
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.~ 50 
> :. 
I'Q 
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Fig. II. Time dependence of intrinsic and trap emissi0n of 
CS2U02Br4 after excitation into the intrinsic centres. 
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The diffusion constant for the hexavalent uranium compounds is 
about 10-8cm2s-1 with a resulting hopping time of about 10-8 s 
(10 K). Note that the spectra of the U6+ ion in oxides show always 
a zero-phonon line, so that energy migration down to very low tem­
peratures is possible. 

VI.C. Trivalent Rare Earth Compounds 

Compounds of the rare earth ions have been investigated in 
detail. Their sharp line spectra (mainly zero-phonon lines) are 
very suitable for this purpose. High-concentration rare earth com­
pounds may be used as minilasers. The surprise has been that in 
these compounds concentration quenching of the luminescence may be 
absent. For phosphors it is sometimes important to have a low cri­
tical concentration of the activator in view of its expensive price. 

It has become use to refer to undiluted rare earth compounds 
with efficient luminescence as stoichiometric (laser) materials. We 
want to stress that the term "stoichiometric" used in this sense is 
incorrect. High concentration materials may well be non-stoichiome­
tric, whereas diluted compositions can be stoichiometric. This will 
be illustrated below. 

The different possibilities for energy migration in high-con­
centration materials will first be illustrated on a study of rare 
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3+ Fig. 12. Energy level scheme of the Eu ion. 
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Fig. 13. Time dependence of non-regular and regular Eu3+ lumines­
cence of EuA13B4012 after excitation into the non-regular 
ions. 

earth luminescence in the huntite structure (YA13B4012)' We choose 
this example, because diluted as well as concentrated materials, 
crystals as well as powders were investigated and because the re­
sults depend on the choice of the rare earth ion. Secondly we will 
deal with some other example~ studied in more detail. 

Our first example is EuA13B4012 [9]. In the huntite 
structure the rare earth ions occupy trigonal prisms, so that no 
inversion symmetry is present. The shortest distance between the 
Eu3+ ions is about 6 A, which is a relatively long distance. At 
room temperature the single crystals show only weak luminescence, 
whereas the powders emit efficiently. The energy level scheme of 
Eu3+ ~s given in Fig. 12. The emission spectrum of EuA13B4012 in 
the 5DO-7Fl region shows not only the two lines expected for the 
trigonal prismatic coordination. There are also a couple of other 
weak lines. These lines have their own excitation lines. They can 
be excited selectively and their time dependence can be followed 
(Fig. 13). The extra lines have been ascribed to Eu3+ ions which 
occupy sites different from the regular Eu3+ sites. These non-regu­
lar sites transfer excitation energy to the regular sites, so that 
the non-regulars do not act as optical traps. Consequently, 
EuA13B4012 is not stoichiometric. At least one of the non-regular 
Eu3+ ions is a Eu3+ ion on an A13+ site. 

Fig. 14 shows the decay curves of the regular Eu3+ ions of 
EuA13B4012 crystals at different temperatures. At LHeT the curve 
is identical to that for diluted samples Yl-xEuxA13B4012' This 
means that the decay occurs only by radiative transitions in the 
excited centres. No energy transfer occurs. At higher temperatures 
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Fig. 14. Decay curves of regular Eu3+ luminescence of EuAl3B4012' 

the decay is much faster than expected for radiative decay. Energy 
migration among the Eu3+ sublattice occurs and brings the excitati­
on energy to killer sites. An analysis of these curves shows that 
the excitation diffuses slowly through the lattice. We are dealing 
with diffusion-limited energy migration. During its life time the 
excitation energy performs at 300 K some 1400 transfers from Eu3+ 
to Eu3+, reaching a diffusion length of 230 ft. In crystals this is 
long enough to have a reasonable probability to reach a killer site, 
but in powders it is too short. This makes the powders efficient 
phosphors. The killer sites appear to be M0 3+ on Al3+ sites. The 
molybdenum is incorporated from the flux (K2S04-Mo03)' 

Why is there no migration at low temperatures? At low tempera­
tures the Eu3+ ion in the ground state occupies the 7FO level (see 
Fig. 12), and in the excited state the 5DO level. The transition be­
tween these levels (0-0) is strongly forbidden and is not observed 
in the spectra. Consequently the interaction strength vanishes. If 
the temperature increases, the 7FI level becomes populated. The in­
teraction strength increases and migration starts. The diffusion co­
efficient has an activation energy of about 200 em-I, equal to the 
energy difference between the 7FO and 7FI levels as observed from 
the spectra. 

A linear crystal field at the site of the Eu3+ ion induces a 
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certain trans~t~on probability in the SDO_7FO trans~t~on. This is, 
for example, the case for NaEuTi04. It has been observed recently 
that in this compound energy migration among the Eu3+ sublattice 
persists down to the lowest temperatures [30]. 

In the EuA13B40I2 crystals the transfer probability for 
Eu3+-Eu3+ is much smaller than for Eu3+-Mo3+ (killer) as required 
for diffusion-limited energy migration. This is different in the 
systems (Y,Ce,Tb)A13B40and (Y,Bi,Tb)A13B40l2 [31]. Excitation is 
into the Ce3+ or Bi3+ ions. The energy migrates rapidly over the 
Ce3+ or Bi3+ ions which have allowed transitions. The probability 
for transfer from Ce3+(Bi3+) to Tb3+ is smaller than that for trans­
fer among the excited ions. This is the case of trap-limited mi­
gration. A similar situation was encountered in (La,Bi,Tb)MgBS010 
[32]. In designing efficient phosphors such effects are of large 
importance. 

The situation in TbA13B40I2 is different from EuA13B40I2 at 
low temperatures [33]. Let us have a look at the emission spectra 
(Fig. IS). Immediately after the excitation pulse into the regular 
Tb3+ ions (Fig. ISa), the emission is equal to that of a diluted 
sample (Y,Tb)A13B40I2 (Fig. lSc). But after longer times it changes 
dramatically (Fig. ISb). This is due to energy migration among the 
Tb3+ sublattice which is here possible because the transition in­
volved (SD4-7F6) is not so strongly forbidden as in the case of the 
Eu3+ ion. The other difference with EuA13B40I2 is that the non-regu­
lar Tb3+ ions, also present here, act as optical traps. It is their 
emission which we observe some time after the pulse. An analysis 
shows that we are dealing with trap-limited diffusion. At higher 
temperatures the Tb3+ traps are too shallow (trap depth 2S cm- I ) to 
be effective. Migration ends on the M0 3+ ions. This migration 
appears to be diffusion limited. However, the diffusion constant 
decreases with increasing temperature. This has been ascribed to a 
decreasing spectral overlap which is not compensated by thermal po­
pulation of higher crystal-field levels. In Tb3A1SOI2 the reverse 
behaviour has been observed [34]. These studies present a reliable 
overall picture of the transport processes in a wide temperature 
region. 

The material which induced the extensive research of concen­
trated rare earth systems is undoubtedly NdPSOI4 in view of its un­
usually weak concentration quenching. This quenching is linearly 
dependent on the Nd3+ concentration and the luminescence decays ex­
ponentially for all temperatures and Nd3+ concentrations. Several 
mechanisms have been put forward to explain these effects, for 
example, a crystal-field overlap model, a surface quenching model 
and cross relaxation [6], [39]. However, recently it has been 
shown that it is possible to use existing energy-transfer theories to 
explain the behaviour of the system Lal_xNdxPSo14 [3S]. In this study 
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Fig. IS. Emission spectra of TbA13B4012' 
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the author applied resonant and high-resolution excitation and 
measured the time-resolved fluorescence line narrowing for several 
Nd 3+ concentrations. Donor-donor transfer appeared to be absent 
at low temperatures (up to 20 K for x = 210 and x = 0.75 and up to 
6 K for x = 1). At higher temperatures donor-donor transfer starts. 

Eq.(l) can be approximated by 

(3) 

for small trapping rates. This results in an exponential decay rate 
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given by 

-I -I L 
T = T + X X 

o R, OR, 

which shows a linear dependence on the concentration [35]. 

At room temperature rapid donor-donor transfer is observed. 
This shows that the donor-donor transfer rate increases rapidly 
with temperature which means that this transfer is phonon-assisted. 
In this case a T3 or higher-power dependence is expected [7]. 

The exponential decay can also be explained. For room tempera­
ture it follows from eq. 2. For low temperatures it follows from 
eq. 3 by realizing that we are involved with the early time regime, 
i.e. 

3 -I 
For X01 (the nearest-neighbour trapping rate) a value of 1.lxlO s 
was found, which is comparable with the radiative decay rate. Note 
that trapping corresponds to cross relaxation whereby the donors 
act as their own acceptors. For the nearest neighbour donor-donor 
transfer rate at 5 K a value of 7x103s-1 was found in two indepen­
dent ways, viz. from the fluorescence line narrowing and by extrapol­
ation from the 300 K value of the diffusion constant. This value is 
comparable with the decay rate too. Note that the temperature depen­
dence of the donor-donor transfer is responsible for complete diffe­
rent behaviour at low and high temperatures. 

Another model system in this type of studies is Lal-xPrxF3 (see 
also section III). Also here trapping is due to cross relaxation, so 
that all donors can act as trapping centres for excitation [36],[37]. 
In fact the quantum efficiency as well as the luminescence lifetime 
decrease with increasing Pr3+ concentration for the levels emitting 
in the visible. 

The cross-relaxation behaviour can be measured by observing the 
luminescence decay after pulsed excitation. Hegarty et al. [36] were 
able to interpret the results for LaO.8PrO.2F3 by assuming that 12 % 
of the Pr3+ ions are in non-quenching sites and contribute an expo­
nential to the decay. The remaining Pr3+ ions are in quenching sites. 
Cross relaxation occurs directly in steps after transfer within the 
inhomogeneous line. However, the assumption of two types of Pr3+ ions 
seems to be a little artificial. 

Another solution of this problem has been presented by Vial and 
Buisson [37]. They criticise the use of the Inokuti-Hirayama formula, 
because of the use of a single trapping mechanism. Earlier comments 
were made by Heber et al. who proposed to use a discrete instead of 
a continuous model [38]. Also Hegarty et al. use a single mechanism. 
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The lower curve is the ab~orption spectrum of LaF3-Pr3+ 
(0.1 %) around the 3H4 + Po transition. The two other 
curves are time-resolved excitation spectra of the Pr3+ 
luminescence for two different delays [37]. 

Vial and Buisson have measured directly pair relaxation in diluted 
crystals and use the obtained results to explain the data for con­
centrated compositions in an elegant way. 

Their measurements are reproduced in F.ig. 16. The main line is 
the 3H4-3PO transition on Pr3+ in a 0.1 % Pr 3+ sample. The satelli­
tes are due to pairs of ions. The pairs have a shorter decay (see 
Table 1). The cross relaxation rate Wc follows from Wc =.- - '0-1, 
where '0 is the radiative lifetime. From these data the authors de­
duce that the interaction between the Pr3+ ions is of the superex­
change type. 

What is of interest here is that they can explain in this way 
the luminescence decay in heavily doped crystals. In eq.(I) XO~ 
gives the cross relaxation rate for ions of a certain class of pairs 
with the central ion. The contribution to f(t) of the class ~ is 
(l-x)NR, for t » Xol and (l)N~ for t « xol. Here N~ is the number 
of equivalent ions which make a certain class of pairs with the 
central ion. 
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Table 1. Decay time T and cross relaxation rate Wc 
for various pairs in LaF3-Pr3+ (0.1 %) [37]. 

Line T (lls) Wc (llS-I) 

a 22 2.5 x 10-2 

b 45.5 1 x 10-3 

c >47 <5.4 x 10-4 

d >47 <5.4 x 10-4 

e >46.5 CA5.4 x 10-4 

f 8.5 9.7 x 10-2 

In the experimental time interval (100 - 200 llS) only the pairs 
a and f contribute, and well by (l-x)Nf+Na. Therefore, the lumines-
cence decay can be described by 

In the experimental results [36] the exponential variation with To 
is indeed observed (and ascribed to Pr3+ in non-quenching sites). 
By comparing this equation with the experimental results it follows 
that Nf+Na = 9, so that only cross relaxation between one ion and 
its possible 9 first neighbours has to be considered. Crystallogra­
phically Nf=6 and Na=4 seems to be an obvious choice. In this way 
the decay can be described assuming only two types of pairs where 
cross relaxation occurs (see Fig. 17). These results show convin­
cingly the importance of studying the diluted and the concentrated 
systems simultaneously. 

Auzel [39] has developed a criterion to predict self quenching 
of Nd3+ luminescence in concentrated materials. This author stres­
ses that the energy mismatch in the cross-relaxation process is of 
large importance. As a matter of fact this mismatch is determined 
by the crystal field splitting of the Nd3+ energy levels involved, 
viz. 4F~/2' 4115/2, 419/2. The crystal field parameters B~ determine 
a quantlty 

N =[ E (Bk)2] 1/2. 
v k';'O,q q 

If Nv < 1800 cm- I , we have materials with low quenching. We illus­
trate this with some data: (La,Nd)C13 Nv = 928 cm- I , NdP5014 
Nv = 1406 cm- I , (La,Nd)F3 Nv = 1841 cm-I, Li(Y,Nd)F4 Nv = 
2194 cm- I and (Y,Nd)3A15012 Nv = 3575 cm- I (ref. [39]). The cri­
terion Nv < 1800 cm- I corresponds to 8EI < 470 cm- I , where 8EI is 
the total crystal field splitting of the 419/2 level. Auzel tried 
to correlate these criteria to simple physical properties and found 
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0.10 100 tiS 

Fig. 17. The 3PO luminescence decay of a LaF3-Pr3+ (20 %) sample. 
Points are experimental points from Hegarty et al. [36J. 
The curve is the theoretical expression given in the text. 

also Tmelting < 1200 °c. From the material presented, his criterion 
seems to be reliable, although it is based on the Dexter's spectral 
overlap condition (compare the comment in chapter II). 

We will close this paragraph with an application to luminescent 
materials. If energy migrates through a host lattice, we have avail­
able a suitable host lattice for an efficient phosphor. A condition 
is that the excitation energy can be introduced into this lattice 
by an allowed transition and that it can be trapped by an activator 
which takes care of the emission •. An example has been given by De 
Hair [40], viz. GdAI3B4012-Bi,Dy. Excitation is into the Bi3+ ion 
via the allowed ISO + 3PI transition. Transfer occurs into the Gd3+ 
sublattice in which energy migrates rapidly [41], until it is trap­
ped by the Dy3+ ion from which emission occurs. 

Recently we have studied the system (Y,Ce,Gd,Tb)F3 [4?]. 
Samples GdF3-Ce,Tb are efficient green phosphors. The luminescence 
and energy transfer processes can be given schematically as follows 

e~c. Ce3+ + (Gd3+) + Tb3+ e~ •• 
n 

In YF3-Ce,Tb energy transfer from Ce3+ to Tb3+ is not complete, 
showing the influence of the Gd3+ intermedium. It turns out that 
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about 20 % Gd3+ is enough to "connect" the Ce3+ and Tb3+ ions. In 
GdF3-Ce3+ excitation into the intrinsic Ce3+ ion results in Ce3+ 
defect emission: 

These phenomena are probably rather general and comparable with 
those described above. In GdNb04, for example, luminescence is 
quenched at room temperature as follows: 

e~c. Nb043- -+ (Gd3+)n -+ Nb0 30-. 

In the trifluoride system these phenomena are not strikingly 
temperature dependent in view of the pronounced spectral overlaps 
involved. It cannot be exluded that attractive new phosphors will be 
developed on this principle. 

VII. FLUORESCENCE LINE NARROWING IN GLASSES 

Laser-excited luminescence spectroscopy has contributed consi­
derably to our understanding of glass structure. For an extensive 
review the reader is referred to Ref. [43]. Since glass is a strong­
ly disordered medium, the environment of each ion in .a glass is dif­
ferent and the local fields at individual ion sites vary strongly. 
The spectra exhibit, therefore, considerably inhomogeneous broaden­
ing unless the technique of fluorescence line narrowing (FLN) is 
used. In crystals this broadening may be about 1 cm- 1 in the case 
of the narrow line transitions, but in glasses the same transition 
may be broadened by some 100 cm- 1• Consequently, FLN may be of the 
greatest importance as a microscopic probe of the local environment 
in a glass. A typical example of such a study is the work by Brecher 
and Riseberg [44] on the Eu3+ ion in sodium-barium-zinc silicate 
glass. With the FLN measurements of site-to-site variations in ener­
gy levels and transition probabilities, the authors succeeded in 
finding a geometric model of the glass structure. In this study 
energy transfer was excluded by studying diluted samples short after 
the excitation pulse. 

A good example of energy migration in a glass studied by FLN is 
the case of Yb3+ in a silicate glass [45]. The time-resolved spect­
ra are given in Fig. 18. The emission corresponds to the transition 
between the lowest levels of the 2F5/2 and 2F7/2 manifolds. Follow­
ing the laser pulse, the initial line-narrowed luminescence decays 
due to radiative decay and nonradiative transfer to other Yb3+ ions 
without pronounced broadening. However, luminescence from the accept­
or ions results in a rise of the inhomogeneously broadened emission 
profile, demonstrating that transfer occurs to nearby, but spectral­
ly different sites. The transfer was attributed to multipolar pro­
cesses with an effective range of about 1 nm. 
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Fig. 18. Time evolution of the resonant line-narrowed 2F5/2 ~ 2F7/2 
lu~inescence of 0.5 % Yb3+ in silicate glass at 100 K 
[45] . 

Quantitative comparison between transfer rates an~ the time 
development of the luminescence with theoretical expressions is 
very complicated for glasses, because the inhomogeneities are large. 
As a consequence there is a site-to-site variation of energy levels, 
line strengths and linewidths. This makes a quantitative descript­
ion of energy transfer in a glass very difficult. 
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ENERGY TRANSFER IN SEMICONDUCTORS 

ABSTRACT 

C. Klingshirn 

Physikalisches Institut der Universitat 
Robert-Mayer-Str. 2-4 
D 6000 Frankfurt am Main 

From the rather large and complex field of energy transfer pro­
cesses in semiconductors we selected for this article the following 
topics: The transfer of energy from a photon-field in vacuum through 
the surface into a semiconductor, the propagating modes of light in a 
semiconductor (the socalled polaritons), the trarisfer of energy from 
exciton-polaritons to the phonon field and finally the transfer of 
energy from one exciton-polariton mode to others by nonlinear inter-
action. . 

I. INTRODUCTION, OR THE PHYSICAL PROBLEM OF LOOKING THROUGH A WINDOW 

Interaction processes of "real" particles in vacuum or of quasi;.. 
particles in condensed matter are connected with energy and momentum 
transfer. Since there exist many different quasiparticles in semicon­
ductors, it is obvious, that the field of energy transfer processes in 
semiconductors will be a rather wide and complex one. Therefore only 
selected aspects may be presented in a contribution of finite length. 
Here, we restrict ourselves to the following topics: the transfer of 
energy from a photon field through the surface into a semiconductor, 
the propagating modes of light in a semiconductor (the socalled pola­
ritons), the transfer of energy from exciton-polaritons to the phonon 
field and from one exciton-polariton mode to another by nonlinear in­
teraction. Other aspects of energy-transfer in semiconductors e.g. the 
energy conversion in solar cells [I] are treated in this volume by 
other authors. Some important ideas concerning the efficiency of these 
devices are reviewed in [2]. A comprehensive presentation of photocon­
ductivity is found e.g. in [3], aspects of photoluminescence and exci­
ton migragtion are reviewed e.g. in [4,5]. 

285 



286 C. KLiNGSHIRN 

vacuum sampl~ vacuum 

Fig. 1. Schematic presentation of various processes which may occur, 
when a light beam falls on a slab of matter. Ii incident in­
tensity, Ir and I r , reflected intensities, It and It, trans­
mitted intensities, Ia absorbed intensity and Is scattered 
intensity. Interference effects e.g. between the amplitudes 
of waves It and I r , are neglected. 

The simple and common phenomenon of looking through a window in­
volves already many aspects of the topics selected for this contribu­
tion. To illustrate this and to bring the problem in a physically con­
ceivable form, the process is shown schematically in Fig. 1: 
An electromagnetic wave or in other words a photon field comes from 
the left-hand side. The incident intensity is called Ii (for a more 
precise definition of "intensity" see II. I). At the surface of the 
medium a part Ir is reflected and the rest It transmitted. The propa­
gating modes of light in the medium are no longer pure electromagnetic 
waves or simple photons but polaritons as will be discussed in some 
detail in section II.4. A certain part Ia of the transmitted light is 
absorbed in the medium on the way from one side of the sample to the 
other. This means, energy is transformed into other degrees of free­
dom of the system, often into heat. Another part Is is diffused in 
some other directions, either with or without frequency shift. Raman 
and Brillouin scattering are examples of scattering with frequency 
shift (see 111.4,5), the spectrally unshifted component in the scat­
tered of diffused light is called the Rayleigh scattered part. A third 
fraction finally reaches the other side of the sample and here again 
some part is reflected, I r , and some part transmitted, It'. In this 
example of looking through a window the part It' finally may reach the 
eye and produce a picture on the retina of what is on the other side 
of the window. 

In the following we want to discuss a physically well defined 
situation. So we assume to have vacuum around our medium instead of 
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air. The glass of the window, which is a rather complex, amorphous, 
supercooled melt is replaced by a perfectly crystallized semi­
conductor without any impurities, vacancies, dislocations, etc. Since 
energy transfer processes between dopants are extensively treated in 
other articles of this volume, we restrict ourselves in the following 
to the ideal semiconductor, and give only as an appendix some com­
ments about impurities (Appendix 3). 

In Chapter II we deduce the dielectric function of a semi­
conductor from a simple, mechanical model. From the dielectric 
function, we deduce the polariton concept and apply it to phonons 
and excitons. The transfer of energy through the surface is investi­
gated in some detail. 

In Chapter III we discuss the energy transfer between various 
systems of quasiparticles with emphasis on the interaction between 
excitons and phonons. 

In Chapter IV finally we present some aspects of energy transfer 
between various exciton-polariton modes by nonlinear interaction. 

In the Appendix we give additional aspects of subjects which 
are relevant to the field but which would interrupt the logic 
development of the subject if incorporated in the main text. 

To keep the list of references limited, we generally restrict 
ourselves to the citation of review articles which then contain 
exhaustive lists of the original literature. 

II. ENERGY TRANSFER FROM AN EXTERNAL PHOTON-FIELD INTO A SEMI­
CONDUCTOR 

II.A. Photons in Vacuum 

To start with, we review in the following the properties of an 
electromagnetic field in vacuum. In the classical description, the 
electromagnetic phenomena are governed by Maxwell's equations. They 
read in their general form 

+ + + + + + + 
(la,b) 'V x E = -B 'V x H = j + D 

V + V + 
(2a,b) • D = P . B = 0 

+ + + + + + 
Oa,b) D e: E + P B 110 H+M 

0 

where 
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-+ -+ 
E = electric field; H = magnetic field 

-+ -+ 
D electric displacement; B = magnetic induction 

p charge density; r = current density 

P = polarization density of the medium 

-+ 
M = magnetization density of the medium 

E = permittivity of vacuum 
o 

~o permeability of vacuum 

-+ 
The Nablaoperator V is given by ~ = [(a/ax), 
the operator "dot" means differentiation with 
(e.g., A = a/at A). 

(a/ay), (a/az)] and 
respect to the time 

Equations (la,b) tell us how temporally varying electric and 
magnetic fields generate each other. Equations (2a,b) show that the 
charge density p is the source of the electric displacement and that 
the magnetic induction is source-fr~e. E~uations (3a,b) are th~ 
~terial equations. In many cases P and M are proportional to E and 
H, respectively. In these linear cases (3a,b) simplify to 

and (4a,b) 

with £ known as dielectric i'constant" or relative permittivity and ].l 

as relative permeability. In the following we discuss only non­
magnetic materials, i.e. ].l = 1. The quantity £ is indeed a function 
of w for periodic fields, as will be shown in Sections 11.2 and 11.3. 

In vacuum we have 

-+ 
j = 0 p = 0 

This simplifies Eqs. (la,b) to 

. 
-+ -+ -+ 
~ x E = -~ H o 

Applying Vx to Eq. (Ba) and a/at to Eq. (Bb) gives 

(5) 

(6) 

(7a,b) 

(Ba,b) 
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. 
V x (V x E) = -~ V x H 

o 
-+ 
E (9a,b) 

From (9a,b) we find 

(10) 

The first term on the righthand side of (10) is zero because of (2a) 
and (7b) and we are left with the well-known wave equation 

V2 E - ~ E: E = 0 
o 0 

(ll) 

The solutions are transverse, electromagnetic waves. For the case 
of plane waves we can write 

-+-+ E = E ei(k.r-wt) 
o 

(12) 

We find from (la) 

(13) 

where 

k = wave-vector Ikl k = 2Tf/).. 

).. = wavelength 

w = angular frequency 

-+ -+ 
For a non-absorbing medium k is real. For an absorbing one, k is a 
complex quantity, where Re{k} describes the wave propagation and 
Im{k} the absorption. (See e.g. Section 11.5). If not stated -+ 
otherwise we denote in the following by k always the real part. 

The wavevector k is ~lways-+(also in medium) perpendicular to 
the wavefront defined by D and B 

-+1-+1-+1-+ D k B D 

In vacuum (and isotropic materials) we have 

D II E and B II it 
The phase velocity is defined by 

(14) 
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and the group velocity by 

dw v (w) =-
g dk 

In vacuum we find 

v = v 
p g 

c being the vacuum speed of light. 

(15) 

(16) 

(17) 

-+ 
The momentum of the electromagnetic field per volume TI is given 

by 

-+ -+ -+ 
TI=DxB 

-+ 
The Poynting vector S gives the energy flux density 

-+ -+ -+ 
S = E x H 

-+ 

(18) 

(19) 

Since S is a rapidly varying function of time (see (12) and (13» 
one generally considers its time average 

<S> = 1 IE x it I 
2 0 0 

The quantity <S> is often referred to as light intensity I or 
(average) energy flux density. 

(20) 

In the picture of quantum electrodynamics, the electromagnetic 
field is quantized in a way that the energy of this field may be 
increased or decreased only by integer multiples of nw, resolving 
thus the dualism of wave and particle. The quanta of energy ~w 
are called photons. The Hamiltonian for the photons reads 

(21) 

+ 
where the creation and annihilation operators ck and ck' respec-
tively, obey the usual commutation relations for Bosons. The sum 
runs over all possible values of t and two polarizations for every 
-+ -+ 
k. The wavevector k is used as a label for the various photon modes. 
ct • ck is the number operator. The energy in a single photon-mode k 
is then given by 
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nk = 0, I, 2, ~ .• (22) 

The zero point energy (1/2)~wk' which is responsible for the stimu­
lated emission, is generally neglected in energy considerations. 
The momentum of a photon is given by 

-+ -+ 
P='flk (23) 

The energy flux density of the photon-field is given by 

(24) 

-+ 
where Nk: is the density of photons k, and Vk their energy velocity 
with Vk = c in vacuum. The momentum per volume reads 

(25) 

-+ 
The relation between eigenenergy E and wavevector k is called in the 
following "dispersion relation." By this relation we shall charac­
terize the various (quasi-) particles. The reason for this choice 
i~ that there are conservation laws for both the (quasi-) momentum 

11k and the energy E = 11w. 

For photons the dispersion relation is given by E 
(Figure 2). As in the classical limit we find 

cp cflk 

Fig. 2. The dispersion relation E(k) for photons in vacuum. 



292 C. KLiNGSHIRN 

a b 

/m 

f3 

-laI-

C ~ A minj.-
d 

Fig. 3. An ensemble of uncoupled harmonic oscillators, representing 
excitations in a semiconductor. According to [6] 
(a) all oscillators in their equilibrium positions 
(b) all oscillators elongated in phase (A = 00) 
(c) all oscillators elongated in antiphase (A = 2a) 
(d) a "wave-packet" 

1 
vp = ~ Elk = c 

II.B. A Mechanical Model for a Medium 

(26) 

The aim of this subjection is to present a simple mechanical 
model from which we may deduce in the next subsection the dielectric 
function E(W) of semiconductors. In a semiconductor (insulator) the 
forces between the ions are in first approximati9n harmonic. The 
electrons, which are responsible for the chemical binding are situ­
ated energetically in the valenceband, which is completely filled for 
T = OK and which is separated from the conduction band by a finite 
energy gap Eg• The transitions between the bands may be considered 
as "effective oscillators." It may thus be a reasonable approximation 
to represent a semiconductor by an ensemble of various harmonic os­
cillators. For simplicity, we assume in the moment that these 
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oscillators are not coupled to each other, that they have all the 
same eigenfrequency w', and that we have one of these oscillators 
per unit cell. 0 

The mechanical model which represents the oscillators by masses 
m bound to the rigid lattice-site by a spring with force constant B 
looks like Figure 3a in the one-dimensional case, with w' = (S/m)l/2. 

o 

If we elongate the oscillators in phase, Figure 3b, correspond­
ing to the limit A ~ 00 or k ~ 0, the whole ensemble will oscillate 
with the frequency w~. If we excite the oscillators in antiphase 
(Figure 3c), the same will be true. The latter case corresponds to 
the shortest physically reasonable wavelength Amin = 2a or to the 
maximum k-vector kmax = ~/a (~ boundary of first Brillouin-zone). 
For all intermediate cases 0 < k < ~/a the eigenfrequency is also 
w~. Thus a dispersion-relation results which is a horizontal line 
(Figure 4). A wavepacket produced e.g. by exciting only on of the 
oscillators (Figure 3d) will not propagate since the group velocity 
Vg = dw/dk vanishes in this system, or, in other words, since there 
is no coupling between the model-oscillators. This shows one of the 
physical shortcomings of our model. Some consequences of the case 

E 

L-_______ ...&....._ .... k 

'IT/a 

Fig. 4. The dispersion relation of waves in an ensemble of uncoupled 
oscillators which have all the same eigenfrequency w~. 
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dw/dk I 0 will be discussed in Sections II.G and II.H. 

Now we want to couple our oscillators to the electromagnetic 
field of the light. This can be done by assuming that every mass is 
connected with a charge e. For neutrality-reasons we have to assume 
that at every equilibrium position there is a fixed charge - e. An 
electric field will exert a force on the mass and elongations of the 
oscillators by the amount x are now connected with a dipole-moment 
ex. Still we assume that the oscillators interact only with an ex­
ternal electromagnetic field but not with each other. 

If now a plane electromagnetic wave polarized in x-direction 
travels through the medium in z-direction given by 

+ 
E = (E , 0, 0) 

o 
e 
i(k z - wt) 

z (27) 

the differential equation for the motion of the oscillators at every 
lattice site is given by 

mX+ymi+Sx=eE o 
-iwt 

e (28) 

To be physically realistic, we introduced a small damping term y in 
Eq. (28). Equation (28) is the differential equation of an externally 
driven, damped oscillator. After switching on the external force 
e Eo e-iwt at a time to = 0, the reaction of the system consists of 
two parts, shown by Eq. (29) 

-i(w ,2_y2/2)1/2t 
o -ty/2 + -iwt x e e x e 

o p 
x(t) (29) 

The first term of the righthand side of (29) is a damped oscillation 
with the eigenfrequency of the system. It disappears after t» y-l. 
The second part describes the forced oscillation with the frequency 
of the perturbation. 

The amplitude x is given by the resonance formula 
p 

x 
p 

_-=---=e:..:../..::;:m'--__ E 
,2 2 0 

w - w - iury 
o 

(30) 

This oscillation is connected with a dipole moment exp and we can 
define a polarizability a(w). 
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(31) 

II.C. The Dielectric Function 

The polarization density of the model substance is given by 

Ne 2 1 
= -;- -w-,"=2--w::'2-_-i-W-Y Eo 

o 

From this we conclude with (3a) for the electric displacement 

Ne 2/m E -r -r -r O-r 
D = E E + P = E (1 + 2--2-"---) E 

o 0 w, _ w _ iwy 
o 

Comparing (33) with Eq. (4a) we find 

E (w) 
Ne2/m E 

1 + _-::--_~-..::o __ 
,2 2 w - W - iwy 
o 

(32) 

(33) 

(34) 

The quantity X(w) = E(W) - 1 is introduced in the literature as 
susceptibility. 

A quantum mechanical treatment will yield the same result, 
except that the term Ne2/m Eo is replaced by a term f' proportional 
to the square of the dipo1-matrix element between ground- and 
excited states of the oscillators 

(35) 

yielding thus 

f' 
E (w) = 1 + -.,,------

,2 w2 . 
W - - 1WY o 

(36) 

-r 
Until now, we silently assumed that the macroscopic field E of the 
electromagnetic wave travelling through the medium is equal to the 
local electric field i10c acting on a single oscillator. This is 
true only in dilute systems like gases. In condensed matter the 
electric fields produced by the other dipo1s act on the dipo1 under 
consideration, too. Taking into account this effect leads to Eq. 
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(37) instead of Eq. (36). The equation (37) is known as C1ausius­
Mosotti formula. Its derivation is given in every textbook on 
optics, e.g. [7], [8]. 

E(W) - 1 A 

E(W) + 2 a(w) 

2 
Ne 13m E 

o 
,2 2 . 

W -w -1W¥ 
o 

(37) 

It can be shown that (37) can be rewritten in the form (36), how­
ever, with a shifted eigenfrequency Wo given by 

2 
W 

o 
(38) 

In a semiconductor we can only measure the eigenfrequency woo It 
is not possible to produce a "dilute" semiconductor. So we just 
continue to use Eq. (36), however, with Wo instead of w~. 

To make our model somewhat more realistic, we assume that we 
have in every unit cell oscillators with various eigenfrequencies 
Woj' Equation (36) then becomes 

f' 
1 + I j 

j w2 . _ w2 - iwy. 
OJ J 

E(W) (39) 

For frequencies W « Wo the resonance term in (36) and (39) gives 
a constant contribution 

f' 
E =-
b 2 

W 
o 

(40) 

For W » Wo the contribution of the resonance term tends to zero. 
If we are spectrally in the vicinity of a single resonance j' and 
the other resonances j ~ j' are reasonably far away, Eq. (39) can 
be approximated by 

E(W) 
f! ,I b 

Eb (1 + --::-_-..ooI..J -~-- ) 
2 2 

W ., - W - iW¥J" OJ 

(41) 

where Eb is the background dielectric constant. It describes the 
contribution of all oscillators with frequencies higher than Woj" 
The quantity 

(42) 
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EI E2 11=0 

71 <72<73 

Es 

Eb 

0 W 

Fig. 5. Schematic representation of the frequency dependence of 
real and imaginary parts El(w) and E2(w) of the dielectric 
function in the vicinity of a resonance for various values 
of the damping y. 

is called oscillator-strength fj' of the resonance j'. 

In the following we regard for simplicity a single resonance j' 
well-separated from the other resonances, and we drop the index j'. 
The dielectric function E(W) can be separated into a real and 
imaginary part 

f 
E(W) = Eb(l + 2 2 ) 

W -W -iury 
o 

(W2 _ w2) f 
o ) + 

( 2 2)2 + 2 2 w - w W y 
o 

(43) 

In Figure 5 we show qualitatively the frequency dependence of El(w) 
and E2(w) for various values of the damping parameter y. For y ~ 0 
El exhibits a singularity at Wo and E2 becomes a a-like function 
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centered at woo With increasing y El(w) has always finite values 
and E2(w) broadens to a Lorentzian-like curve. 

Two comments about s(w) shall be added: We treated s(w) as a 
scalar-function until now. This is true for isotropic materials 
only. Semiconductors with cubic symmetry are, e.g., isotropic 
within a good approximatio~. Fo~ anisotropic materials s(w) is a 
tensor. As a consequence E and D are for certain orientations no 
longer parallel. Fo~ th~se ~ases the vectors of energy p~opa~atlon 
S (Poynting vector) S = E x H and for the field-momentum 7f = D x B II k 
are no longer parallel and we encounter the wealth of phenomena 
connected with optical birefringence (see, e.g. [7],[8]). These 
aspects are beyond this review on energy transfer, however, and we 
shall use in the following the isotropic approximation throughout. 

Without real charges Eq. (2a) reads 

or s V s(w) . E = 0 
o 

In vacuum s(w) = 1 and the only solution is V 
transverse waves. 

(44) 

+ 
E = 0 yielding 

In matter, we have this solution as the main one, too. As can 
be seen from Figure 5, Eq. (44) can be fulfilled for small damping y 
also by s(w) = O. For S = 0 a longitudinal eigenmode exists with 
frequency 1 which is a pure polarization mode with E I I k; D = 0, 
+ + ± 
B = H = 0; = -so ~. 

We deduce from (41) 

2 2 
s(wL) = 0 =l> W = W + f 

L 0 
(45) 

the eigenfrequency Wo in turn corresponds to the resonance for 
transverse oscillations wT. So we can rewrite Eq. (41) 

w2 _ 2 
L wT 

sb (1 + --:-2 -w-2--- ) 
wT - - iwy 

s(w) (46) 

and we find immediately the Lyddane-Sachs-Teller relation 

(47) 

where Ss and sb are the static and background dielectric constants, 



ENERGY TRANSFER IN SEMICONDUCTORS 299 

i.e. the values of E(W) according to Eq. (41) for frequencies much 
smaller or much larger than wT' respectively. One finds 

(48) 

If an oscillator couples to the electromagnetic light field (i.e. 
f ~ 0) a finite longitudinal-transverse splitting and a finite dif­
ference between Es and Eb are necessary consequences as seen from 
Eqs. (47) and (48) and vice versa. 

The term "small damping" used already several times can be 
defined more precisely as 

(49) 

~LT being the longitudinal-transverse splitting. 

The complex dielectric function E(W) is connected with the 
complex index of refraction new) 

neW) = new) + ik(w) 

dw) = n2(w) (50) 

and 

c1 (w) 2 = n (w) _ k2(w) 

E2(W) = 2n(w) k(w) (51) 

The set of Eq. (51) is an implicit representation of n(w) and k(w) 
since E1(w) and c2(w) are known. In Figure 6 we represent new) and 
k(w) schematically for various damping values y. 

The comment about the tensor-character of E(W) given above 
results in an orientation dependence of n(w). With the known complex 
index of refraction we are now able to describe the propagation of 
light in matter. 

Th~ wavevector in vacuum and the complex wavevector in medium 
kv and kM' respectively, are connected by 

-+ -+-
~ = kv new) (52) 
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n 

w 

Fig. 6. Schematic representation of the real and imaginary parts 
n(w) and k(w) of the complex refractive index in the 
vicinity of a resonance for two different values of y. 

If we have in vacuum a plane electromagnetic wave (again E I I x-axis 
and it II z-axis) 

-+ E(z,t) = (E ,0, 0) vx e 
i(k z-wt) 

v 

the corresponding wave in the medium reads as: 

-+ 
EM = (~, 0, 0) e 

= (EMx, 0, 0) e 

i(k ii(w) z-wt) 
v 

i(k n(w) z-wt) 
v 

e 
-k k(w)z 

v 

(53) 

(54) 

k(w) obviously describes the absorption of the light. Since the 
intensity is proportional to the amplitude squared one gets 

* -2k k(w)z 
I'VE E'Ve v 

On the other hand we have 

I(z) I e-a,(w) z 
o 

(55) 

(56) 



ENERGY TRANSFER IN SEMICONDUCTORS 301 

a(w) being the absorption coefficient. From the comparison of Eqs. 
(55) and (56) we find 

1 41T 
a(w) = 2kv k(w) = c 2w k(w) = X- k(w) (57) 

v 

In principle, we are able to describe with Eqs. (52) to (57) and 
(10) or (13) for the magnetic field the propagation of light in any 
medium if E(W) or new) are known. However, it is worthwhile to 
think a little bit more what we mean by the term "light propagating 
through a medium." 

II.D. Polaritons 

In Section 11.1 we have seen that the light field in vacuum is 
a pure electromagnetic wave. The quantization yields the photons. 
If light propagates through a medium, we have always a superposition 
of an electromagnetic wave and the driven vibrations of the oscil­
lators in the medium. In other words, we have a mixture of an 
electromagnetic wave and a polarization wave according to 

+ + + + 
D = E E + P = E(W) E E 

o 0 
(58) 

The Hamiltonian of this mixed state of electromagnetic field and 
polarization can be diagonalized (see, e.g. [6],[9]) and the quanta 
are called polaritons. 

The energy of light travelling through matter propagates as pola­
ritons. This is true for insulators, semiconductors and metals, and 
it is true from the far IR over the visible to the far UV. Only for 
frequencies w that are well above all eigenfrequencies of Woj of 
the medium (Eq. (39» we find £(w) = 1. This occurs in the spectral 
region of y-quanta and means that there is virtually no more coup­
ling between electromagnetic field and matter. It is only in this 
region that pure photons can propagate through matter. For all lower 
frequencies we have in matter only polaritons and no photons. 

Now, we want to characterize the polaritons by their dispersion re­
lation (E(k). In vacuum the total energy and the total momentum are 
conserved. In matter the total energy !s conserved (e.g. in an inter­
action process) the total wavevector L k. of the involved particles 

i l. 

is conserved in a crystalline solid only modulo integer multiples of 
vectors of the reciprocal lattice. For this reason, the quantity 
is referred to as "quasi-momentum" in crystals. 

Until now, we have £(w). 
a relation between £(w) and k. 

To find w(k) or E(k) = ~w(k) we need 
This relation is given by the 
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so-called polariton equation introduced by Huang [10] 

c 2 k2 
E(W) = --2-

W 

c. KLINGSHIRN 

(59) 

~ 
This equation is valid for complex E and k. If we consider for the 

-+ 
moment only the real parts of E, nand k, Eq. (59) is easily intel-
ligible by 

c ck 
new) = ~(w) = W 

2 c2 k 2 
n (w) = El(W) ---- w2 

(60) 

where cM and k are the phase velocity of light and the wavevector 
in the medium. 

From Eqs. (59) and (41) we find 

c2 k 2 f 
-2-= E(W) = ~(1+ 2 2 ) 

W w-w-iury 
o 

photon 
polariton, 1=0 

polariton, 1 > ° 
long. mode 1=0 

Jm {k} 

E 

(61) 

/ 

R~ {kj 

Fig. 7. Schematic representation of the polariton dispersion E(k) 
for a single resonance, without and with damping. 
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The right- and lefthand sides of (61) are an implicit representation 
of E(k). In Figure 7 we show the dispersion for the real and 
imaginary parts of k for y = 0 and y > O. First we discuss the 
case y = O. The dispersion starts for small energy as a straight 
line with a slope dE/dk = ~ c 8;1/2. Below the transverse eigen­
frequency Wo the dispersion bends over to a horizontal line. This 
part of the dispersion curve is called lower polariton branch (LPB). 
Between the transverse and longitudinal eigenfrequencies, there 
exists no propagating mode in the material, k being purely imaginary. 
At wL exists the longitudinal eigenmode as discussed in Section 11.3. 
For W ~ wL starts the upper polariton branch (UPB) which bends over 
to a straight line with slope ~ c ES-~' The parts of thepolarito~ 
dispersion which coincide with lines with slope ~ c ES~ and 1'1 c Eb 2 

respectively are called "photon-like" since the dispersion of 
photons is also a straight line. However, this name is somehow 
misleading, because we are dealing with polaritons in the "photon­
like" part of the dispersion, too. This is immediately obvious by 
comparison with the dispersion of pure photons which is also shown 
in Figure 7 and which has a slope of ~c, differi~~ thus from the 
"photon-like" parts of LPB and UPB by a factor Es'1b . For y > 0 
the dispersion is modified as shown by the dashed' lines. Between 
Wo and wL occurs a propagating mode with anomalous dispersion, 
which is strongly damped, however. 

The k-vectors of upper and lower polariton branches get some 
imaginary part (i.e. some sbsorption; see Eq. (57» which decreases 
with increasing distance from the resonance. 

To summarize this subsection, we have seen that the energy flux 
of a light field is carried by photons in vacuum and by polaritons 
in the medium. In the next subsection, we shall discuss what happens 
at the interface between vacuum and medium. 

II.E. What Happens at the Surface 

In Fig. 8 are schematically shown the wave fronts of a plane elec­
tromagnetic wave, travelling in vacuum and impinging on the surface 
of a semiconductor. A part of the incident intensity is reflected, the 
other part is transmitted through the surface and propagates as a po­
lariton field. 

The da~a o! the incident wav~ (electric and magnetic field 
amplitudes Ei, Bi and wavevector ki) are given and the values for 
the reflected and the transmitted wave have to be calculated. Since 
we have two unknown waves, we need two boundary conditions. They 
can be deduced from Maxwell's equations and state that the components 
of the electric field Ep parallel to !he surface and the normal 
components of the magnetic induction Bn must be steady through the 
surface, i.e. 
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VACUUM SEMICONDUCTOR 

Fig. 8. Schematic representation of the reflection and refraction of 
a plane wave at the interface vacuum-semiconductor. The wave­
vectors and a "snapshot" of the wavefronts are shown. Diffrac­
tion which occurs at the boundaries of the beams is neglected. 

"R . + R p1. pr 
+ + 
B i + B n nr (62) 

where the indices i, rand t refer to the incident, reflected and 
transmitted wave, respectively. The quantitative treatment yields 
the following results (see, e.g., [7],[8]). The laws of reflection 
and refraction can be expressed as: 

sin o.i 
sin o.t 

new) a. = a. 
i '[ 

(63) 

new) being the real part of the refractive index of the medium. 
They can also be written in terms of the real parts of the wave­
vectors. They read: 

k. = k 1. r 

(64) 

Since the problem has translational invariance parallel to the sur­
face {modulo integer mUltiples of lattice vectors parallel to the 
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:+ 
surface), the parallel components ~ of the wavevector are conserved 
(modulo integer multiples of reciprocal lattice vectors parallel to 
the surface), thus 

(65) 

For the normal components we find then from (64) and (65) 

+ + 
k. -k n1. nr 

(66) 

Furthermore, the reflectivity and the transmittivity for the field 
amplitudes 

E 
r = ~ = r{ai , new), e) 

E. 1. 

E 
t = Et = t{ai , new), e) 

o 

may be deduced by applying (62). 

(67) 

The quantities rand t depend on the angle of incidence a i on 
the complex refractive index n{~) and on the angle e defined as the 
angle between the directio¥ of E~and the plane of the main section. 
The main section contains ki an~ kt • With e = 0° we describe 
linearly polari~ed light, with E in the main section, and with e = 
90° light with E perpendicular to the main section. The explicit 
representation of Eq. (67), known as Fresnel's formulas, is somehow 
lengthy and is found, e.g., in [7],[8]. 

For reflectivity under normal incidence r{ai = 0, n, e) 
simplifies to 

rea = 0) = new) - I (68) 
i new) + I 

The reflectivity Rand transmittivity T of the surface for the light 
intensities are given by 

* * R = r • r T = t • t R + T = I (69) 
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For ai = 0 we find from (68) and (50) 

(70) 

Figure 9 gives a summary of some of the main aspects concerning Eq. 
(70). First we discuss the case for y = O. Figure 9a shows the 
refractive index of the LPB and the UPB; Figure 9b shows on the same 
energy scale the reflectivity R(w). 

Coming from lower energies, R starts with a value given by 

Approaching the resonance frequency, R increases and reaches the 
value R = 1 for w = Woe Since we have no propagating modes in the 
medium for Wo < w < wL we obtain total reflection in this region 
(R = 1). For E > ~L R drops very rapidly and is zero for the value 
where n(w) = 1. Above this value R increases gradually and reaches 
finally the high frequency limit 

The part of the light intensity which is not reflected is transmitted 

I 

\~ 

o 1 

a 
w 

n o 

b c 
w 

R x 
Fig. 9. Real part of refractive index n(w) , reflectivity R(w) and 

imaginary part k(w) in the vicinity of a resonance. Full 
line: without damping; dashed line: weak damping. 
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through the surface, penetrates into the sample and propagates 
according to Figures 9a and c. 
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For Y > 0 we obtain the dashed lines in Figure 9. This means 
that the reflection structure is somewhat smeared out and reaches 
only maximum values slightly below 1. On the other hand, the 
polariton-modes are damped outside the resonance region. 

Now we know in principle everything concerning the energy trans­
fer of a light field through the interface between vacuum and a medi­
um. However, we must bear in mind that all the above results have been 
obtained using the simple mechanical model of chapter 11.2. 

In the subsection 11.6. and 7. we shall inspect the main constit­
uents of a semiconductor, namely the electronic and the ionic systems 
and shall see to which extent they can be described by the above de­
veloped model and/or which corrections have to be added. 

II.F. Phonon Polaritons 

In this subsection we discuss the phonons as an example for an 
oscillator as used in our model. Phonons are the quanta of the normal 
modes of the lattice vibrations. These normal modes are collective 
excitations of the ions or atoms forming a semiconductor. 
The concept of collective excitations and of quasi-particles as the 
quanta of these collective excitations has been presented in some de­
tail in the preceeding summerschool of this series [II] or e.g. in 
[12 ]. 

To recall the properties of phonons, Figure 10 shows some typical 
normal modes of a diatomic chain, i.e. a chain with two atoms per unit 
cell. If the atoms of different type are elongated in phase between 
two nodes of the wave, we call these modes acoustic phonons. There 
are two transverse and one longitudinal mode for every f. If the 
different kinds of atoms are elongated in opposite directions, we 
have optical+phonon modes. The number N of optical normal modes 
for a given k is 

N=3m-3 (71) 

where m is the number of atoms per unit cell. 

Figure lla shows the dispersion of the phonons of the diatomic 
chain. The two transverse modes, polarized either in the plane of 
drawing or perpendicular to it are degenerate in this model. An ex­
tension to a three dimensional lattice gives no qualitative differ­
ences. 

If the different atoms in the unit cell carry a charge, i.e. if 
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Fig. 10. Schematic representation of acoustic (A), optic (0), 

transversal (T) and longitudinal (L) normal modes of a 
diatomic chain, i.e. a chain with two different atoms in 
the unit cell with masses m and M, respectively. The 
masses are connected by identical springs with force 
constant S. The dispersion relation resulting from this 
model is given by 

E(k) 
2 

{S( 1 + 1 )}1/2 {I ~ (1 _ 4Mm sin ka )}1/2 
M m (M+m)2 

The - sign refers to the lower (acoustic), the + sign to 
the upper (optic) branch (see Figure lla). This model 
differs considerably from the one of Figure 3. In Figure 
3 every mass was attached by a spring to its lattice site, 
without coupling to the neighboring oscillators, resulting 
in the dispersion of Figure 4. Here we have only coupling 
between neighboring atoms resulting in the completely 
different dispersion of Figure lla. 
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the chemical binding is at least a partially ionic one, some of the 
optical normal modes may be connected with a polarization wave 

-+-+ 
-+ -+ i(k'T-wt) 
p = P e 

o 

They then couple to the electromagnetic field, (f > 0), resulting 
in a finite longitudinal transverse splitting ~LT at k = O. (See 
Eq. (47». In Figure 11a we assume a case with finite ~LT' 

In contrast to the model of Chapter II.2, the ions forming the 
1a-tice are coupled to each other. A necessary consequence of 
coupling between the oscillators is a finite group-velocity Vg + 0 
or a finite width 2B of the band. This width 2B is shown in Figure 
11a for the TO-bran~h. The dependence of the eigenfrequency Wo of 
the oscillators on k 

~ w = w (k) 
o 0 

(72) 

is called spatial dispersion. The model of Chapter II.2 was thus 
one without spatial dispersion, the phonons exhibit spatial disper­
sion. 

If we look a little bit closer to the phonons, we shall see, how­
ever, that neglecting the spatial dispersion of the optical phonons is 
a reasonable approximation: The eigenenergies of optical phonon modes 
are situated in the range from 10 meV to 100 meV i.e. in the IR-part 
of the spectrum. The corresponding photon-wavelength in vacuum is 
between 100 ~m and 10 ~m. If we use as an average Av = 30 ~m we 
find kv ~ 2 • 103 cm-l • The first Brillouin zone shown in Figure 
lla extends to ~/a ~ 108 cm-1 • If we want to plot the dispersion 
of the photons in Figure lla we would get a line which practically 
coincides with the ordinate. 

If we change the scale of the abscissa in a way to be able to 
show the photon dispersion, the k-dependence of the eigenfrequency 
is negligible, and we may apply the model without dispersion. 

Figure lIb thus gives the E(k) relation of the phonon-polariton. 
The phonon-polariton is said to be photon-like for ~w < ~wo (LPB) 
and for flw > 1iwL (UPB). For flw ~ 1iwo the dispersion curve bends 
over and the polariton is said to become more and more phonon-like. 
For fiw ~ fiwL the UPB starts phonon-like and gradually becomes 
photon-like again. 

In order to show that this phonon-polariton concept is valid for 
the reflection and transmission of the light at the interface vacuum­
semiconductor, we show in Fig. 12 reflection spectra for various 
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Fig. 11. Dispersion of acoustic and optic phonon modes of a dia­
tomic chain in the first Brillouin-zone (a); dispersion 
of the lower and upper polariton branches and of the 
longitudinal phonon mode (b). Note the different scales 
for (a) and (b) on the abscissa. 

III - V semiconductors from [13]. The reflection structures coincide 
well with the prediction of the polariton concept (see Fig. 9). The 
fine structures seen in some of the reflection spectra are due to the 
more numerous and complex branches of optical phonons in these mate­
rials as compared to Fig. 11. The spectral regions with high reflec-
tivity R ~ 0.8 are called Reststrahlen-banden for the following 
reason. If a "white" IR-spectrum is reflected several times at a 
material a considerable intensity is reflected only in the region 
l1wT 2,1iw 2, 1iWr,' To give some numbers: If we have R '" 0.2 outside 
the Reststrahlen-bande and R = 0.9 inside we have after four reflec­
tion processes Ra = (0.2)4 = 1.6 . 10-3 outside and Ri = (0.9)4 = 0.65 
inside, corresponding to Ri/Ro '" 0.4 . 10+3• 

The subsection about phonon polaritons is concluded by two 
comments: 

If a material has perfect homeopolar binding like the elementary 
semiconductors Ge or Si, there is only weak coupling between the op­
tical phonons and the electromagnetic field. The L - T splitting is 
zero for k = o. Still it must be remembered that the photon-like 
branch describes a polariton-state. In this case, however, only the 
driven oscillations of the electronic system are contributing. 

The slope of the dispersion of the acoustic phonons is given for 
small k by the velocity of sound vs' Because of vs/c '" 10-5 the dis­
persion of the acoustic phonons almost coincides in Fig. lIb with the 



ENERGY TRANSFER IN SEMICONDUCTORS 

R 

0.8 

Or-------~------------------------~------~ R 

0.8 

InSb GQSb 
0~--------~ ______________ ~ __________ ~ ____ -4_ 

25 n(&l (meV) 35 

311 

Fig. 12. Reflection spectra of phonon polaritons in various III-V 
semiconductors. From [13]. 

abscissa. Because of the large discrepancy of k-vectors for phonon­
polaritons and acoustic phonons of the same energy it is obvious that 
there is no direct interaction between these two modes. A weak inter­
action is possible in scattering-processes involving several partic­
les (III. D. ) • 

More literature on phonon polaritons and on Raman-like scattering 
experiments showing rather directly the dispersion of phonon polari­
tons are found e. g. in [14]. 

II.G. Excitons: Oscillators with Spatial Dispersion 

In this section, we investigate the properties of light in the 
vicinity of electronic resonances. We use here throughout an idealized 
electronic bandstructure as shown by Fig. 13. We assume that conduc­
tion and valence bands are isotropic, parabolic and nondegenerate, 
and that the maximum of the valence band and the minimum of the con­
duction band occur at k = 0, i.e. at the r-point. With this assump­
tion, we may use the effective mass approximation, me and ffib 
the effective masses of electrons and holes, respectively. 
The modification brought about by a realistic band structure and the 
case of indirect gap materials is outlined in appendix I. 



312 C. KLiNGSHIRN 

a b 

Eg 

-----L----_k 

Fig. 13. Band structure (a) and exciton dispersion (b) for an 
idealized, direct gap semiconductor. 

If we excite an electron in a semiconductor across the forbidden 
energy gap e.g. by absorbing a photon we create simultaneously two 
quasi particles: the electron in the conduction band and the unoccu­
pied place in the valence band. Instead of regarding all the electrons 
(about 1022 cm- 3) in the va' nce band with one missing, it is more 
convenient to introduce the quasi-particle concept of the holes (see 
e.g. [12],[15]). The hole is a quasi-particle with positive charge. 
Wavevector and spin are opposite to those of the electron which has 
been removed from the valence band. 
The negatively charged crystal electron and the positive hole (or de­
fect electron) interact with each other due to their charges. They may 
form bound states in analogy to the hydrogen- or the positronium atom 
characterized by the main quantum number nB (see Fig. 13b). These 
bound states are called exciton states. The excitons are the energeti­
cally lowest excitations of the electronic system of an ideal semicon­
ductor at T = oK. They correspond to the electronic oscillators which 
we have to introduce in the polariton concept for the spectral region 
around the band gap. The properties of the excitons in the limit of 
our idealized band structure are given by: 
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E -g 

2 2 
R*J:..+~ y 2 2M 

~ 

with the modified Rydberg energy Ry* given by 

2 
Ry* = 13.6 eV ~/El 
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1, 2, 3, .•• (73) 

(74) 

The symbols in Eqs. (73) and (74) have the following meanings: E = 
Bandgap at k = 0; nB = main atomic quantum number; M = translatio~al 
mass of the exciton; ~ = reduced mass of the exciton. 

Typical values for Ry* in semiconductors are 

1.0 meV $ Ry* $ 200 meV (75) 

The Bohr-radius aB of the nB = 1 grounds tate is ranging from 

This means that aB is generally considerably larger than the lattice 
constant a. In this limit the excitons are called Wannier-excitons. 
Their wavefunction is given by 

(76) 

l/IIT is the normalization factor, R the vector of the center of 
± + + 

mass K = (me re + mh rh)/(me + mh). 

Pe/h(te h) represents Wannier functions of electrons or holes cen-
+ , + 

tered at re and rh' respectively. For the relation between Bloch- and 
Wannier functions, see e.g. [12],[15]. The envelope function ~nB t,m 
is the modified Hydrogen-function with the usual quantum numbers ' 
nB, 1, m. Modified means that everywhere the free electron mass mo 
has to be replaced by ~ and the permittivity of vacuum Eo by Eo • El. 
In Figure l3b the E(k) relations of the excitons are summarized. 
Above the ionization-limit of the discrete exciton states (nB => 00). 
the continuum states start. They considerably modify the density of 
states for E > Eg as compared to a Simple square root function. The 
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influence of the Coulomb interaction extends roughly over a region 
of 10 Ry* into the bands. Many aspects of excitons are summarized 
e.g. in the following review a~ticles and the literature cited 
therein [11],[16]-[2lJ. For phonons, the bandwidth 2B (see Figure 
11 a) is about 10 meV and we were able to neglect the spatial dis­
persion in the discussion of the optical properties of phonon 
polaritons. For the excitons, the bandwidth 2B is given by the 
sum of the widths of conduction and valence band, 2B being thus 
of the order of 10 eV. In this case, the spatial dispersion is 
so large that it must not be neglected even for wavevectors com­
parable to those of the photon. Photon wavevectors in the spectral 
region around 2 eV are roughly 105 cm- l . In our mechanical model 
of Figure 3, a spatial dispersion can be introduced by a coupling 
between the oscillators, e.g. in the way shown in Figure 14 (see 
also [6]). 

Before we investigate in the next section the optical and energy 
transport properties of excitonic polaritons in detail, it should be 
stated that the exciton concept is a very important one for the opti­
cal properties of semiconductors and insulators. Almost all absorption 
and emission processes of light in the electronic system are via exci­
ton states, i.e. they always involve an electron and an empty state 
(hole) and the Coulomb-interaction between these two quasiparticles. 
To illustrate this, we enumerate some other types of excitons: 

Fig. 14. Mechanical model for an ensemble of oscillators with spatial 
dispersion. Compare Fig. 3a 
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In semiconductors one has apart from the free (Wannier) excitons 
presented above also bound excitons, i.e. excitons bound and 
localized at some defect or impurity. There are monocentric bound 
excitons like donor or acceptor bound excitons or polycentric bound 
excitons including donor-acceptor pairs (see, e.g. Appendix 3). In 
insulators, rare solid gases (see [20],[22]) and organic molecular 
crystals (see, e.g. [20]), the electrons and holes involved in an 
optical transition are often located at the same lattice site forming 
so-called Frenke1-excitons. The self-trapping of a carrier in 
insulators with strong electron-phonon interaction gives rise to the 
formation of self-trapped excitons which may coexist with free 
excitons (see, e.g. [20]). The discussion will be limited in the 
following to Wannier-excitons. 

II.H. The Exciton Polariton and the Problem of Additional Boundary 
Conditions 

Excitons may couple to the electromagnetic field, yielding po1a­
ritons. In our simplified model the selection rules are roughly the 
following. If the band to band transition is dipole-allowed, excitons 
states with opposite electron and hole spin (singletts) and s-enve­
lope function (1 = 0) will couple strongly to the electromagnetic 
field thus forming po1aritons. The longitudinal transverse splitting 
depends on nB [16],[17]: 

(77) 

M is the band to band dipole matrix element. Triplet states (electron 
a8~ hole spin parallel) and states with p,d ••• envelope function do 
not couple to the electromagnetic field. They remain pure excitons and 
do not form polaritons. The longitudinal modes are also generally 
pure excitons. 

In the following we discuss only the nB = 1 exciton state, bear­
ing in mind that the same results are true for the higher states, how­
ever with reduced oscillator-strength (Eq. (77». In order to take 
into account the spatial dispersion, we have to introduce the k­
dependence of the eigenfrequency. For the Is excitons we find with 
Eq. (41): 

f 
Eb(l + ----,------- ) 

l1k2 2 2 
(wo + 2M) - w - iwy 

(78) 

with Wo (Eg - Ry*) l"ft. 
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In principle f and y may also depend on k (and, in fact, do so 
in real semiconductors) but we ignore here this additional complica­
tion. 

By Eq. (78) E now becomes a function of the two independent 
variables wand k. The term 

is generally approximated by 

2 ll.k2 w 
(w + 11k . ) 2 ~ w2 + 0 

o 2M 0 M 
(79) 

neglecting the terms proportional to k4. 

The transverse and longitudinal eigenenergies may be deduced 
for y = 0 from (78) 

and 

+2 
= (w + 11k ) 2 

o 2M 

w 'fik2 
w~ + f + 0 M 

2 1J.k2 
=w +--w oL M 0 

(80) 

The dispersion of the mixed state of electronic excitation and 
electromagnetic field is found again with the help of the polariton 
equation (59) yielding 

c2 k2 
Eb(l + f ) (81) ---= 

2 2 11k2 Wo w 2 - iwy Wo + M - w 

The quanta of this mixed state are called exciton-po1aritons. 

Equation (81) is quadratic in k2• The solutions for E = 'flw(k) 
are shown for y = 0 and real and imaginary k in Figure 15a. The 
dispersion of the exciton-polariton starts as in the case of the 
phonon-polariton with a photon-like lower polariton branch. For 
E $ ~wo' the LPB bends over to an exciton-like dispersion, the 
transition region being generally called bottleneck. 

The longitudinal exciton branch starts at ~woL' The upper 
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Fig. 15. Dispersion of the lower and upper polariton branches, of the 
longitudinal and of the triplett exciton without damping (a) 
and for small damping (b). In (b) the pure exciton states 
have been omitted for simplicity. 

polariton branch has a purely real wavevector for E ~ ~woL and a 
purely imaginary one for E <~woL' The latter case describes not a 
propagating mode but an exponentially decaying one. The dispersions 
of the triplet excitons and of the longitudinal exciton mode which 
do not interact with light are shown, too. 

For small damping the picture is modified according to Figure 
lSb. Approaching the resonance region, the LPB is damped (Im{k} > 0) . 
The UPB gets a small real k for W < woL' connected, however, with 
very large damping, which exhibits a tail for W > woL' For increasing 
damping, the small peak of the UPB around~wo increases and may reach 
the LPB. This is the beginning of strong damping ~y > ~LT (see e.g. 
[23]-[25]. For strong damping, we still have an oscillator with 
spatial dispersion and the exciton-like branch for large k, but 
the optical properties like reflection and absorption can then be 
described to a good approximation by the model of II 5 without spatial 
dispersion. Though the dispersion of the exciton-polariton is exciton­
like only in the vicinity of the resonance, a theoretical analysis 
shows, that the wave function of the polariton is predominantly exci­
ton-like over a rather large region of E given by the inequality [25]: 

IE - ~w I 5 (~ • ~w )1/2 
o LT 0 

(82) 

This allows in the evaluation of transition-matrix elements the use 
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of the exciton-wavefunction for the same wave vector as the polariton 
which is involved. 

To discuss the reflection and transmission of a light beam at 
the interface vacuumrsemiconductor, we come back to Fig. 15. There 
are two main differences as compared to the case without spatial dis­
persion: There is no forbidden region between Wo and woL' i.e. we 
have for every frequency at least one propagating mode in the semi­
conductor. This reduces even for y = 0 the maximum values of R from 
Rmax ~ 1 (Figure 12) to about 0.2 ~ ~ax $ 0.6. 

For every frequency, there are in fact at least two possible 
modes in the medium. For W ~ woL there are two propagating modes 
(LPB, UPB); for W < woL there is one propagating mode (LPB) and one 
exponentially decaying mode which, however, has a finite amplitude at 
the semiconductor-side of the surface. In the case of oblique inci­
dence there may even be some coupling to the longitudinal mode (Fig. 
16) for some crystal symmetries. For a given incident field amplitude, 
Maxwell's equations give only two boundary conditions (see eq. (62» 
for the reflected and the transmitted amplitudes. In order to know 
how the amplitude in the sample is distributed over the various modes, 
one needs an additional boundary condition (abc). Many abc's have 
been discussed in the literature. The most widely used ones are that 
either the excitonic contribution to the polarization should be zero 
at the surface 

P (x = 0) = 0 ex 
(83) 

or the derivative normal to the surface. Linear combinations of both 
abc's are discussed, too. Often the abc is connected with the idea 
that there is an exciton-free layer on top of the semiconductor, 
described by £b' This "dead layer" has a thickness d of at least the 
exciton Bohr-radius and takes into account that the center of mass of 
the exciton cannot approach infinitely close to the surface because 
of the finite diameter of the exciton. 

It is a common feature of all abc that the energy of light 
travels almost exclusively on the LPB for E < ~Wo' In the region 
E ~ ~woL both modes share comparable parts of the intensity and for 
E » £woL the light intensity goes over on the UPB. 

Recent reviews of the abc-problem are found in, e.g., [20] and 
[26]. In [27] it is assumed that there is a de tuning of the exciton 
eigenfrequency close to the surface because of electric surface 
potentials. 

The different abc give different calculated reflection spectra, 
if the other parameters are kept constant. However, it was until 
now not possible to deduce the "correct" abc from a detailed analysis 



ENERGY TRANSFER IN SEMICONDUCTORS 319 

VACUUM S l"MICONDUC TOR 

Fig. 16. Wave vectors and electric fields for reflection and refrac­
tion of an incident electromagnetic wave at the boundary be­
tween vacuum and a medium with spatial dispersion. 

E E E 

k o 0.5 R 

Fig. 17. Polariton dispersion, reflection spectrum and effective ab­
sorption coefficient for an excitonic resonance. 
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of the reflection spectra. With almost every abc, it is possible 
to get a reasonably good fit to the experiment by a suitable choice 
of the other parameters like Eb, wo ' ~LT' M, Y and the thickness of 
the dead layer. If these parameters are determined by an independent 
method, e.g. resonant Brillouin scattering, it has been found that 
none of the abc was able to describe consistently all experimental 
findings [24]. 

This is a highly unphysical situation. The reflection spectrum 
of a given sample of a semiconductor may depend on a large number of 
parameters but definitely not on the abc, the experimentator is bear­
ing just in mind. 

In fact, the problem of the abc is an artifical one. If we calcu­
late the dielectric function and the polariton dispersion, we do this 
for the bulk of the crystal, i.e. we are investigating the volume 
modes. Then we want to use this model to describe the properties of 
the interface between vacuum and a semi-infinite sample. The price we 
have to pay for this not appropriate use of the bulk dielectric func­
tion is the problem of abc. If the optical properties would be cal­
culated from the very beginning for a semi-infinite material including 
the surface, the problem of more or less arbitrary abc would not oc­
cur. However, calculation of the bandstructure, the Coulomb interac­
tion etc. for the semi-infinite space is a very hard problem, too. Un­
til now, only approximative but promising attempts have been made to 
tackle this problem e.g. [28]. The "state of the art" is to use one of 
the abc's, generally the Pekar-Hopfield one, which uses eq. (83) to­
gether with an exciton-free layer on top of the sample. On this back­
ground, it is astonishing that a great deal of the knowledge about 
exciton polaritons come from the investigation of reflection spectra. 

In Fig. 17 we summarize the results of energy transfer through 
the surface, reflection, and the damping of the transmitted modes. 
Fig. 17a gives the polariton dispersion for y = 0, Fig. 17b the re­
SUlting calculated reflection spectrum and Fig. 17c finally the effec­
tive absorption coefficient a. It should be noted that the damping 
of the various modes is different for the same energy. This means that 
the intensity travelling on the different modes decays spatially into 
the sample with different absorption coefficients resulting thus in 
a nonexponential decay on the total intensity. 

11.1. Experimental Proofs for the Concept of Excitonic Polaritons 

In recent years, several linear and nonlinear spectroscopic meth­
ods have been found which allow to really investigate the volume 

,+ 
modes of light in semiconductors including their dispersion E(k), i.e. 
these methods offer the possibility of direct spectroscopy in k-space. 
The most prominent of these techniques are two-photon Raman scatter­
ing (see IV.B.) resonant Brillouin scattering (see III.D.) the time of 
flight measurements (see below), the transmission through a Fabry-



ENERGY TRANSFER IN SEMICONDUCTORS 

sample 

±-, 
20ps • 

delay 

fi 
I' 
I ' I \ 

-< '.. t 

321 

Fig. 18. Schematic drawing of the setup for time of flight 
measurements. 

Perot resonator (see below) or the refraction of light by a thin prism 
[29]. A recent review of these methods will be published in [30]. The 
principle of the time of flight measurements is the rollowing: 
A spectrally narrow, tunable, short pulse is created by a picosecond 
laser. Typical values of the temporal FWHM are about LL = 20 psec 
and the spectral ha1fwidth E is limited by the uncertainty relation 

L ·L\E~h 
L 

(84) 

This pulse travels through vacuum and is transmitted through a thin 
slab of matter (Fig. 18). When it appears on the other side of the 
sample, it has a certain time delay as compared to a pulse which 
travelled only through vacuum. From this delay, it is easily possible 
to deduce the velocity of energy propagation ve in the medium, if 
the geometrical thickness of the sample is known. According to the 
theoretical investigations of Birman [31] one finds 

1dE v ~ v -e g - 11 dk (85) 

except with some minor deviations in the regions of very high absorp­
tion. If E(k) is known for one energy e.g. by a precise measurement 
of the refractive index, the dispersion-curve can be constructed from 
the measured energy dependence of ve with the help of Eq. (85). For 
E > hWbL two propagating modes exist. If for a given damping the 
sample thickness is chosen suitable, both modes will contribute to the 
energy transport to the opposite surface. Since the group-velocity is 
different for the LPB and the UPB, two transmitted pulses may appear. 
This situation is depicted in Fig. 18. The time of flight method has 
been applied successfully to various semiconductors like CuC1 [32],[33], 
GaAs [34] or CdSe [351,[36]. Fig. 19 shows results for CuC1 from [33]. 
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Calculated dispersion of lower and upper polariton branches 
of the lowest free exciton resonance in CuCl (a). Measured 
values (0) for the energy velocity and calculated curves 
(--) for the group velocity (b). From [33]. 

On the lefthand side are the dispersion curves of LPB and UPB cal­
culated with the parameters M = 2.5 IDa, Eb = 5.0, 1iwo = 3.2025 eV 
and ~LT = 5.5 meV, y = O. The solid lines on the righthand side of 
Figure 19 are calculated curves vg(E) deduced from the dispersion 
relat~on. They coincide very well with the measured data of ve(E) , 
giving thus direct evidence for exciton polaritons as the modes which 
carry the energy of light through the semiconductor. It should be 
noted that the energy transport velocity may become smaller than 
10-4 c in the vicinity of the resonance. 

A problem is to prepare samples of appropriate thickness. In 
the vicinity of the resonance, the absorption coefficient may be as 
high as 106 cm-l • To get a measurable transmitted intensity, samples 
with a thickness 

-1 
10 ~m $ d $ 1 ~m 

are required. High quality samples of this thickness are difficult 
to prepare and to handle. 

Before considering the specific implications of a Fabry-Perot 
etalon made from a medium with spatial dispersion i.e. with two or 
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more propagating modes for one energy, we regard some general features 
of such an optical resonator [7],[8]. A Fabry-Perot (FP) consists of 
two plan-parallel, partly reflecting surfaces with a geometrical dis­
tance d. We assume that the medium inside is described by a refractive 
index new). Outside is vacuum. If a light beam falls on the FP, we get 
at every surface partial reflection and partial transmission. The 
partial waves in the FP may interfere, if the coherence length is 
sufficiently long. For normal incidence, we get constructive superpo-
si tion for waves wi th . 

2 • d • new) = m • A 
m 

m = 1, 2, 3, ••• (86) 

Am is the wavelength in vacuum connected with the transition maximum 
m situated energetically at l1Wm. Constructive interference in the 
FP means a high field amplitude in the resonator and correspondingly 
a transmission maximum. In the case of destructive interference, a 
transmission minimum results. Transmission maxima of a FP coincide 
with reflection minima and vice versa. It is possible to translate the 
condition of eq. (86) for transmission maxima in the language of dis­
persion curves. Maxima occur for polariton energies ~Wm with wave­
vectors ~ in the medium given by 

k = 
m 

1T 
m-

d 
m = 1, 2, 3, (87) 

It is thus obvious that the transmission maxima are equidistant In k­
space, the separation k between adjacent maxima being 

(88) 

Quantitatively, one gets from a summation over all amplitudes for the 
transmittivity of the energy flux TpF and the reflectivity RpF the 
following relations for normal incidence and a nonabsorping medium: 

(89) 

l),F (90) 

(91) 

The phase argument 0 is given by 
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F=200 

Fig. 20. Transmission through a Fabry-Perot as a function of the 
phase shift 0 for two different values of the finesse F. 
From [8]. 

o = 2d k n(w) = 2d k vac (92) 

It is the phase shift connected with one round-trip in the resonator. 

The finesse F is defined with the help of the reflectivity of a 
single surface rr* as 

F 
4rr* (93) 

(1 - rr*) 

Figure 20 gives examples to the transfer of energy through a FP for 
two different values of F. TpF is plotted as a function of O. 

The transfer of energy through a FP made from a semiconductor 
has been investigated by several authors for CdSe and CdS (see, e.g. 
[36],[37]) and for CuCI [38]. Here we review the results for CuCl 
which can directly be compared with those found from the time of 
flight method. 

The measured reflectivity RpF and transmittivity TpF , and the 
calculated polariton dispersion are plotted in Fig. 21 on a common 
energy scale for a 0.15 m thick CuCl platelet. The sample has high 
quality, i.e. small damping y. For E 2 ~woL there is only one propa­
gating mode. The transmission maxima calculated from Eq. (87) are 
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indicated on the dispersion curve by crosses. Their positions co­
incide perfectly with the observed transmission maxima. 

For E > ~WoL an LPB-wave and an UPB-wave are created from the 
incident wave. Both travel through the medium to the opposite side. 
The phase shift 0UPB of the UPB-wave is much smaller than 0LPB because 
of the smaller k. Both waves are partly transmitted and partly reflec­
ted at the opposite side. But now, the UPB-wave produces both a reflec­
ted LPB and UPB wave, and so does the LPB wave. As a result, there are 
already after half a round-trip two LPB-waves which may interfere, one 
has a phaseshift 0LPB and the other 0upB' as mentioned with 
0LPB »oupB. As a consequence, the transmission maxima are still 
equally spaced for E > 1iwoL but with a L',k which is roughly given by 

27f 
L',~PB = d (94) 

as shown by the crosses on the righthand side of Figure 21. The 
doubling of L',k when going from E ~1iwoL to E > ~woL is a consequence 
of the spatial dispersion only. A quantitative analysis of the 
spectral positions of the transmission maxima allows us to reconstruct 
the polariton dispersion E(k). 

o 

Fig. 21.. Reflection and transmission of a 0.15 ]llI1 thick Fabry-Perot 
etalon made from CuCl. From [38]. 
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References on review articles which give more information on 
the dispersion and the optical properties of exciton polaritons [11], 
[16]-[38]. In Appendix 1, where we shortly discuss modifications of 
the polariton properties brought about by the bandstructure of real 
semiconductors, additional references may be found. 

III. ENERGY TRANSFER FROM THE EXCITON-POLARITON TO THE PHONON-FIELD 

III.A. Review of Energy Transfer Processes in Semiconductors 

In section II we have treated various types of quasiparticles. 
There are various possible definitions for the terminus "quasipartic­
Ie". We regard them here as the quanta of the collective excitations 
in a solid. There is a rich variety of such quasiparticles. Most of 
them are to a good approximation Bosons like phonons, plasmons, pola­
ritons, magnons, etc. Others obey Fermi-statistics, like crystal-elec­
trons, polarons, etc. 

The energy transfer processes can now be described as interaction 
between different or equal quasiparticles either among themselves or 
with lattice imperfections or localized excitations. To elucidate this 
concept further, we present in the following part of this subsection 
some examples from various fields of semiconductor-physics. 

In a first example, we regard a simple resistor R connected with 
an electrical power source (Fig. 22). This resistor consumes an elec­
trical power P = UI = U2R- J and transfers it into heat. This energy 
transfer process can be attributed on a microscopic scale to the in­
teraction between (crystal) electrons and/or holes with the phonons. 

a b c 

e 
R 

Fig. 22. An ohmic resistor R, transferring electric energy into 
heat (a). Schematic representation of the "path" of a 
crystal electron without (b) and with applied dc electric 
field (c). 
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In Fig. 22b the "path" of a crystal-electron in the sample is 
schematically depicted without applied voltage. After a free path of 
a certain length the electron is scattered e.g. by absorbing or 
emitting a phonon or by collision with an impurity (here a charge 
acceptor A-). In the latter case only the direction of k, but not the 
amount of k, is changed because of mA- »me1. The mean kinetic en­
ergy of the electron is constant and given by <E> = 3/2 kBT for a 
nondegenerate electron system. This means that the amount of energy 
the electron gains and looses in the scattering processes, cancel each 
other on the average. If now an electric dc field E is applied to the 
resistor, the e1echron is accelerated during the free path according 
to~ = e E = mel r. The path of the electron looks now like that 
shown in Figure 22c. As a result the electron has superimposed on 
its thermal motion a drift velocity vn given by 

]In E (95) 

]In is the drift mobility, T the mean time of flight between two 
collisions. For the applicability of this relaxation time model it is 
necessary that the drift velocity vn is much smaller than the thermal 

vacuum semiconductor 

e 

e------.-~~----~ 

Ekin!lf 1 k~V 
e 

e 

Fig. 23. Schematic representation of some energy loss and scat­
tering mechanisms of electrons in a semiconductor. 1: 
creation of a valence-band plasmon. 2: creation of an 
electron-hole pair. If the hole is in a deeper valence­
band subsequently an Auger process (3) or an X-ray emis­
sion may occur. 4: creation ofa phonon. 
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velocity vth' If the electron has travelled along a di.stance d it 
has got an amount of electrical energy e E • d and has transferred 
it to the phonon-system, i.e. into heat since the single creation 
and absorption processes of phonons are not correlated but random. 

In the next example, we regard an electron which is accelerated 
in vacuum by a voltage U of about 103 V and then hits the surface of 
a semiconductor. The electron is transmitted through the surface with 
a certain probability, and then travels through the sample as a crys­
tal electron in a very high conduction band. It will relax down to 
lower conduction bands by interaction with other quasiparticles. Some 
possible processes are shown schematically in Fig. 23. The first pro­
cess shown is the creation of a valenceband plasmon (a short discus­
sion of plasmous will be given in appendix 2) or it may create an 
electron-hole pair. If the hole is in a deep valence-band, it may re­
combine with an electron of a higher valence-band by either emitting 
an X-ray quantum or an Auger-electron. Furthermore, the electron may 
be scattered by absorbing or emitting a phonon. Eventually, the elec­
tron may come back to the surface, is remitted and may be detected by 
an energy sensitive detector. Fig •. 24 shows schematically the energy­
spectrum of these secondary electrons. There is a peak of electrons 
elastically scattered from the surface (for a review of these see e.g. 
[39] and the literature cited therein). Towards lower energies there 
are some structures in the N(E) spectrum. They are due either to elec­
trons which have suffered a single energy-loss (e.g. by emitting a 
plasmon) or to Auger electrons [40]. The former have a fixed energetic 
distance L1E from Eo, the latter ones occur at a fixed energy indepen­
dent of Eo. Finally, there is a broad unstructured peak of so-called 
"true secondaries". These are electrons which have undergone many 
scattering processes and thus contain no information about an indivi­
dual procesS. 
Electrons interact strongly with many quasiparticles in a semiconduc­
tor because of their electric charge. Neutrons can interact - apart 
from strong interaction - only via their magnetic moment with the 
spins of electrons and nuclei. This interaction is much weaker. If mo­
noenergetic neutrons fallon a semiconductor of about I cm3 size, 
most of them will interact not at all or only once with a quasipar­
ticle creating e.g. a phonon or, in a magnetic material, a magnon. 
By measuring energy and wavevector of the incident and scattered neu­
trons, it is possible to reconstruct the dispersion curve of the 
quasiparticle under investigation. 

As the last example of this subsection, we consider a monochroma­
tic light beam falling on the surfaces of a semiconductor. A part is 
reflected, and one (or two) polariton-modes are excited in the sample 
as discussed in some detail in chapter II. A polar.iton may now be 
scattered by creating e.g. a phonon. Depending on the scattering an­
gle, it may return to the surface and here again one (or two) reflec­
ted polariton-modes are created and a part is transmitted through the 
surface. These "scattered" photons now contain the information about 
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N(E) 

L----------------------+~~E 

Fig. 24. Schematic drawing of the energy distribution N(E) of second­
ary electrons, emitted from the surface of a semiconductor 
or metal. One observes (quasi-) elasticall) scattered elec­
trons at Eo. Eo is assumed to be around 10 eV. Then there 
are some structures which are due either to scattered elec­
trons, which have suffered only one or two discrete energy 
losses or to Auger electrons. Since the former ones occur 
at a fixed energetic distance from Eo and the later ones at 
a fixed energy, they can easily be separated by modulation 
techniques. The broad unstructured peak is due to "true" 
secondaries. 
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the interaction process of the polariton with the phonons in the 
sample. The following part of this chapter will be devoted to a 
detailed study of this example. 

III.B. Interaction Mechanisms Between Excitons and Phonons 

In this subsection the most important interaction processes be­
tween exciton-polaritons and phonons are discussed. For polar ones we 
should more precisely use the term phonon-polaritons. In many inter­
action processes of exciton-polaritons (k ~ 105 cm-l ) the wavevectors 

of the involved phonon-polaritons are of the same order of magnitude. 
The phonon-polaritons then are to a high degree phononlike. Cases 
where the phonon-polariton dispersion shows up explicitely are dis­
cussed e. g. in [14]. 

An interaction mechanism which is possible both for polar and 
non-polar optical phonons is the deformation-potential scattering. The 
basic idea is the following: the band parameters, especially the ener­
getic positions of the bands are functions of the lattice parameters. 
The dependence of these energies on the lattice deformation is de­
scribed by the deformation-potential. A phonon can now be considered 
as a periodic distortion of the lattice. Via the deformation-potential 
this is connected with a periodic modulation of the band gap and this 
isfel t by the electron and hole forming the exciton. With the argu­
ment that the exciton polariton wavefunction is exciton-like over a 
rather large spectral region eq. (82), we can use the exciton \,zave­
function for the same k as the exciton-polariton involved. The inter­
action between one polariton (wavevect~r k, main quantum number nB) 
with a field of phonons of wavevector q and occupation number Nq is 
given by [25],[41] for qaB « 1: 

<n k N-+ H Ill- k' N-+ + 1> B' , q DeL Pot. ti' 'q -

h 
( 2]1. Nw 

~ 0 

E - E 
/ / 2 c v (N-+ + 1. + 1:. ) 1/2• k' 

a q 2-2 ' 

(96) 

The minus sign in + describes absorption of a phonon, the plus sign 
the (stimulated) e;ission. Ec and Ev are the deformation-potentials 
of conduc tion and valence bands, respec ti vely. The case Ec - Ev = 0 
means that both bands are shifted by the same amount. The relative 
gap would be constant and the interaction zero. N gives the density 
of unit cells, Wo the energy of the phonons. ]1i is here the reduced 
mass of positively and negatively charged ions and a the lattice 
constant. 
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Polar optical phonons are connected with a macroscopic electric 
field. The electron and the hole in the exciton may be influenced 
by this field. The interaction with the field of LO-phonons is 
predominant (Frohlich coupling). 

The transition matrix element between two exciton states with 
equal main and angular quantum numbers is given by (see, e.g. [25]) 

e = -
q 

)(N+ + 1. + 1. ) 1/2 
qh q 2 - 2 

(97) 

V is the volume of the unit cell, qe and qh a measure for the charge­
distribution of electrons and holes in the exciton. For Is excitons 
qe/h reads [25]: 

m Ih q aB 2-2 
- [(1 + ( e ) ) ] 

qe/h - me + ~ -2- (98) 

ES and Eb are the low- and high-frequency dielectric constants of the 
phonon-resonance, respectively. The other quantities have their usual 
meaning. The matrix element is zero for Eb = Es' In this case the os­
cillator strength of the phonon is zero (see Eqs. (47) and (48» and 
it is not connected with an electric field. 

The matrix element vanishes for qe = qh' In this case, the 
charge-distributions of electrons and holes coincide, so every 
fraction of the exciton is neutral and has in first order no inter­
action with an electric field. 

The Frohlich-interaction is proportional to q for q « aBle 
Therefore this interaction is sometimes called a forbidden one, 
though it may be the dominant one in polar materials. For q = 0 
the electric field of the phonon degenerates to a homogeneous 
electrostatic field and the Stark effect of the Is-exciton is zero 
in linear, first-order approximation. 

The latter statement is true, however, only for scattering pro­
cesses between exciton states with the same parity (see Figure 25). 
Transitions between exciton states with different parity are allowed 
for q = O. For large q (q » aBl) the electric field of the LO-phonon 
oscillates many times over the diameter of the excitons and the op­
posite contributions tend to cancel each other. Therefore IMI 



332 C. KLiNGSHIRN 

Fig. 25. Dependence of the matrix element M of the Frohlich inter­
action on the wavevector of the LO-phonon q, for transi­
tions between exciton states of equal parity {ls + ls or 
2s + 2s} or different parity {ls + 2p or ls + 3p}. From 
[42]. 

decreases for large q. The decrease is faster for states with 
higher nB due to their larger radius. Similar arguments hold for 
qaB » 1 in the case of deformation potential scattering, too. 

The interaction between exciton-polaritons and acoustic phonons 
is generally some orders of magnitude smaller than with optic ones. 
Again there exists the possibility of deformation-potential inter­
action. Since all atoms in a unit cell are elongated in phase for 
acoustic phonons, the important quantity is here the variation of the 
amplitude from one unit cell to the next, not the amplitude itself. 
The deformation-potential interaction is generally stronger for LA 
than for TA phonons. For our idealized semiconductor with isotropic, 
nondegenerate bands, the deformation-potential interaction would be 
zero for TA phonons [41]. In piezoelectric materials an acoustic pho­
non may produce an electric field which in turn interacts with the 
electron-hole pair in the exciton. As to the piezoeffect itself, the 
piezocoupling between acoustic phonons and exciton-polaritons is 
strongly direction-dependent. Fig. 26 gives an example. The piezo­
coupling is generally stronger for TA than for LA phonons. 
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Fig. 26. Dependence of the matrix element squared of the piezo­
coupling on the angle ~etween phonon-wavevector q and 
crystallographic axis c for transverse and longitudinal, 
acoustic phonons. From [43]. 

More information about exciton-phonon coupling may be found, 
e.g. in [20],[25],[41] and the references cited therein. 

III.C. LO-Phonon Assisted Luminescence 

In this and the following subs~ctions, various aspects of exci­
ton-phonon interaction are discussed. Here we assume that we have a 
population of exciton-like polaritons which is in thermal quasi-equi­
librium. It can thus be described by a temperature Tx using Boltzmann­
statistics for not too high densities and too low temperatures. Tx 
may be different from the lattice temperature. Deviations of the exci­
ton distribution towards Bose-statistics can be observed only under 
extreme conditions [86]. 

The distribution of exciton-like polaritons is then described 
by their kinetic energy Ek 
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o otherwise 1i. 2 k2 
E =--
k 2M (99) 

Eq. (99) gives a good approximation for the exciton-like part of the 
polariton dispersion. In the transition-region from exciton-like to 
photon-like behaviour (bottleneck) there occurs a tail in the popu­
lation to lower energies which is not described byEq. (99). If the 
exciton-like polaritons reach the surface, they will be partly trans­
mitted and appear as a luminescence photon in vacuum. This direct 
luminescence of the free excitons is generally rather weak for two 
reasons: first, the damping (i.e. the Im{E(w)}) is rather large 
around the resonance (see Fig. 17) and thus only exciton-like polari­
tons from a thin layer may reach the surface. Second, the reflectivi­
ty is rather high in this spectral region and so only a small frac­
tion of the polaritons is transmitted through the surface as photons. 
More information about the diffusion of excitons and their lumines­
cence is found e.g. in [4],[11],[44] and references given therein. 
Another luminescence process of the exciton-like polariton involves 
some energy transfer to the phonon field: an exciton-like polariton 
may be scattered onto the photon-like part of the dispersion curve by 
emitting one or more LO-phonons (Fig. 27). The transition rate is 
somehow restricted by the small density of final states on the photon­
like part of the dispersion (see also 111.2.). This is compensated, 
however, by the fact that all exciton-like polaritons in the volume 
of the sample can contribute, since the photon-like polaritons are 
almost undamped and may reach the surface. Due to their samller index 
of refraction, they are also easily transmitted through the surface. 
As a consequence, the LO-phonon satellites of the free excitons are 
generally more intense than the zero-phonon emission. 

The 1ineshape of the band arising from the emission of m LO­
phonons is given by [45]. 

for Ek > 0 

I ('fiw) 
m 

o otherwise (100) 

with 
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Fig. 27. Luminescence from exciton-polaritons under emission of one or 
two LO-phonons. Right hand side: schematic drawing of the 
scattering process, left hand side: resulting luminescence 
bands. 

Wm is the square for the transition matrix element for the emission of 
m Lo-phonons. Often Wm can be approximated by a power law 

W (E ) = Elm (101) 
m k k 

Then one finds for the position of the emission-maximum of band m: 

m 1 iiw = E - nlfiwLO + (I + -2 ) k_ T max 0 m -13 x (102) 

The ratio Qml,m2 of the integrated emission bands ml and m2 is given 
by 

(103) 

As explained in 111.2, the Frohlich interaction between excitons and 
phonons is proportional to the wavevector q of the LO-phonon. Already 
for temperatures Tx > 3K, the average k-vector of the exciton-like 
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Fig. 28. Emission spectra of ZnO for two different temperatures 
showing LO-phonon replica of the free exciton luminescence. 
From [46]. 

polaritons in the initial state is considerably larger than in the 
photon-like final state. Thus we may write for m = 1 

-(~w+fiwLO-Eo)/~Tx 
e 

(104) 

For m = 2 there is only a rule for the sum of the wavevectors of 
the two LO-phonons 

-+ -+ -+ 
k = ql + q2 {IDS) 

-+ -+ 
ql and q2 may spread over the whole Brillouin zone. As a consequence 
W2 does not depend on Ek. Thus 
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Fig. 29. The ratio of the integrated intensities of the first and the 
second LO-phonon sideband QI/2 as a function of temperature 
for volume and surface excitation. From [46]. 

-E /k T 
E1/2 e k --:8 x = (1i.w + 2 '1i1lL - E ) 

k --10 0 

- ('fiw+2fiwLO-Eo) /~ Tx 
e 

(106) 

Comparing Eq. (106) with Eq. (99), one sees that I2(~w) directly re­
flects the distribution of the exciton-like po1aritons and the inte­
grated intensity J I2(llw) dw is directly proportional to the density 
of excitons. 

Finally one gets from (103) 

(l06) 

The II-VI semiconductor ZnO is used to compare the above results to 
experiment: 

Fig. 28 shows two emission-spectra for 55K and 80K, respectively. 
The first three LO-phonon replica are seen. For 55K the shape of the 
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spectra of the first two satellites is well described by Eqs. (104) 
and (105). The small tail to lower energies is due to the population 
of the dispersion in the bottleneck region which is not considered 
by Eq. (99). For T = 80K the first LO-satellite is already in­
fluenced by the damping of the photon-like polariton, which extends 
to lower energies with increasing temperature (Urbach-Martienssen 
rule, see, e.g. [87]). 

Fig. 29 shows the temperature dependence of Ql/2' For tempera­
tures up to about 70K, Ql/2 follows the linear temperature dependence 
predicted by Eq. (107). For higher T, Ql/2 decreases because of the 
increasing damping in the spectral region of 11, which is not consid­
ered in the model-calculation ,above. This deviation is obviously more 
pronounced for two-photon excitation, where exciton-like polaritons 
are created homogeneously in a sample of about 2 mm thickness, as 
compared to one-photon band-to-band excitation, where a layer of a 
few ~m depth is excited only. 

incident 
beam 

scattered 
beam 

d S2out'" 
d S2 i n~ 

polaritons 
sample 

Fig. 30. Geometric configuration for the calculation of the scat­
tering efficiency according to Eq. (108). 

III.D. Resonant Brillouin Scattering 

Before we discuss in this subsection an aspect of the energy 
transfer from exciton-polaritons to acoustic phonons, namely the 
Brillouin-scattering, a formula is presented for the scattering effi­
ciency which is applicable both to Brillouin- and Raman-scattering. 
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The geometry is shown in Figure 30. A monochromatic beam of photons 
with intensity Ii and frequency wi falls on the surface of the semi­
conductor. The scattered intensity is collected from a solid angle 
dQout which for dQout « 4n is connected with the inner solid angle 
dQin by 

2 
dQ = dQ. n (w ) (108) out 1n s 

(ws ) being the frequency of the scattered light. One finds [41], 
[49], [50]: 

dI 
n = .l:... __ s_ - T(w.) T(w ) 

Ii dQout - 1 s (109) 
4n2 'fl2 n2(w ) v (w.) v (w ) 

s g 1 g S 

where T(wi) and T(Ws ) are the probabilities that the incident beam 
is transmitted through the surface into the sample and the scattered 
light out of the sample. Leff is an effective scattering length 
given by 

= {Length of the sample 

-1 
[a(w.) + a(w )] 

1 S 

(whatever is shorter) 

The other symbols have their usual meaning. 

(1l0) 

In Fig. 31 the Brillouin scattering ?rocess is presented for 
various spectral regions. In agreement with most experiments, a back­
scattering-geometry is assumed. The slopes of the transition arrows 
are given by ~va' va being the velocity of the acoustic phonon 
branch involved in the scattering (see Fig. 10). 

In the region 1 we are below resonance. The dispersion is al­
most a vertical line and Stokes and anti-Stokes lines are situated 
symmetrically to the incident laser. The intensity ratio depends on 
the sample temperature. For Eo ~ ~wi ~ El (region 2) the anti­
Stokes shift is larger than the Stokes shi~t due to the transition 
from a photon-like to an exciton-like dispersion. For ~wi > Elo 
(region 3), there are two polariton branches for the ingoing and 
two for the scattered polaritons, resulting in a total of four pos­
sible Stokes and four anti-Stokes lines. Since the frequency shift 
~E is directly proportional to ~k according to 

M = 11v ~k = 11v It - k I 
a a 1 s 

(lll) 

resonant Brillouin scattering allows for direct spectroscopy in 
momentum space. This scattering has been observed in several direct 
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Fig. 31. Brillouin scattering in backward configuration for different 
parts of the dispersion of exciton-polaritons. 

and indirect gap semiconductors (see, e.g. [18], [25],[41], [47]). If 
scattering with different acoustic phonon modes is possible, the 
different sound velocities have to be taken into account in Figure 
31. 

In Figure 32 results are shown for GaAs. The Stokes and anti­
Stokes shifts are plotted along an energy scale for ~Wi' Dots are 
experimental points, solid lines are calculated. The data agree with 
the predictions given above and close coincidence between experiment 
and theory shows that the properties of the exciton-polariton in GaAs 
are well understood. The discussion of RBS will be completed by two 
comments: RBS allows in a direct way to demonstrate the uncertainty 
relation ~Px • ~x ~ ~. 

If the material is strongly absorbing for wi and/or Ws the ef­
fective scattering length Leff is small (see Eq. (110». The place 
where the acoustic phonon is created is known for the direction 
normal to the surface with a precision ~x ~ Leff' A momentum 
broadening ~~qx results in 

~q x 
(112) 
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Fig. 3Z. Stokes (S) and Anti-Stokes (AS) shift in resonant Brillouin 
scattering of GaAs involving LA phonons. Solid line: 
theory; crosses, points and circles: experiment from [49]. 

Equation (lIZ) is valid for the incident and the scattered light 
beam resulting in [49] 

6hw Im{k. + k } 
~ _ 1 S 
M - Re{k. + k } 

q 1 S 

(113) 

Figure 33 gives an experimental example of this so-called opacity 
broadening. 

As is clear from Figure 31, in region 3 different polariton 
branches yield different (anti-) Stokes shifts. From an analysis 
of the intensities, information about the abc should follow [31]. 
Unfortunately, the efficiency is determined by many, partly unknown 
quantities (see Eq. (109». 

It has been tried to find out which is the correct abc by simul­
taneously measuring the reflection, transmission and RBS-spectra. 
This has been done to our knowledge only once in Ref. [Z4] for CdS. 



342 

L T R T L 

-6 -4 -2 0 2 4 6 

-6 -4 -2 0 2 4 6 
Frequency shift (cm') 

Ge[111] 
nw=1.959 e~ 

Ge [111] 
nw= 2.409 eV 

C. KLiNGSHIRN 

Fig. 33. Brillouin scattering from Ge in backward configuration for 
two different photon energies. The increase of the ab­
sorption coefficient with photon energy results in an 
increasing opacity broadening seen for the scattering with 
TA-phonons. From [50]. 

The result was that none of the abc was able to explain all data. 
The reason for this result has been already discussed in Section 
II.G. 

III.E. Raman Scattering 

Raman scattering means scattering of an exciton-polariton under 
emission (or absorption) of one or more optical phonon-polari tons. Tile 
process is shown schematically in Fig. 34 for backward and forward 
.scattering geometry. Since the eigenenergies of optical phonons are 
of the order of 10 meV to 100 meV, at low temperatures the Stokes 
emission is observed only. Since the dispersion of phonon­
polaritons is rather flat except for the photon-like region, the 
energy-shift for Raman scattering 



ENERGY TRANSFER IN SEMICONDUCTORS 343 

E 

--------------~----------___ k 

Fig. 34. Raman-scattering in forward and backward configuration. 

i~~independent of the scattering geometry for changes in wavevector 
I~kl = Iql larger than 104 cm-l • In a nonresonant Raman scattering 
experiment, i.e. if ~i and nws are several ~LT below resonance, 
the values of q are about 8.l0~ cm- l and 2.l0q cm-1 for backward and 
forward scattering, respectively. In the case of the Frohlich inter-
action, the transition matrix element is proportional to q (see 
III. B.). So there should be an enormous increase in the scattering 
efficiency when going from forward to backward scattering. In an ex­
periment on CdS only a factor of two has been found [51]. It has been 
argued that localized bound exciton states are involved as virtually 
excited intermediate states. Due to the localization, the k-conser­
vation is relaxed, resulting in·a rather weak dependence of the 
scattering efficiency on the scattering geometry. 

Raman scattering below resonance gives mainly information on 
~man-active optical phonon modes. For one phonon scattering, infor-
mation is obtained about the eigenenergies at the r-point (q ~ 0). 
If more 10 phonons are involved in a single scattering process, only 
the sum of their wavevectors must be small and points with a high 
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Fig. 35. Excitation spectra of resonant Raman-scattering in CdTe 
showing the resonances when either the incoming or the 
scattered light falls energetically on the exciton 
resonances. From [49],[53]. 

density of states far in the Brillouin zone show up (see, e.g. [41], 
[52] and references therein). 

In contrast, Raman-scattering experiments at resonance give in­
formation about the exciton-polariton and the mechanism of energy 
transfer, too. In the following two examples of this type are 
presented. 

As seen from Eq. (109) the scattering efficiency is inversely 
proportional to the group velocities of ingoing and scattered light 
in the medium 

(114) 

This dependence has nicely been shown e.g. in CdTe [49],[53]. As 
seen in Figure 19 (nB = 1 state for CuC1), the group-velocity de-
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creases considerably at the resonance. As exp"lained in II. 7, such 
resonances occur also for the higher exciton states (nB = 2, 3, ••• ), 
however, with decreasing oscillator strength. 

Figure 35 gives the scattering efficiency of the 1 LO Raman­
scattering as a function of ~i in CdTe. D,istinct resonances occur 
when1iwi coincides with the nB = 1, 2 and 3 states of the exciton 
series. These peaks are due to the minima of v~(wi). Shifted by 
the energy of an LO-phonon to the blue, three s1milar maxima occur. 
In this case, the energy of the scattered light coincides with the 
excitonic resonances and the structure is caused by the minima of 
vg(ws )· 

As already mentioned above, the phonon wavevectors in Raman­
processes involving more than one phonon may be rather large, en­
hancing thus the transition probability in the case of Frohlich in­
teraction. In Fig. 36 a multiresonant, multiphonon Raman process is 
shown schematically. The incident photon energy is situated above the 
band gap and the polariton states are imbedqed in the excitonic con­
tinuum. The I LO Raman process has a rather small probability due to 

E 

n = 2 

n =1 

Fig. 36. Schematic drawing for a multiresonant, multiphonon Raman­
scattering process. 
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Fig. 37. Multiphonon-Ramanemission spectrum of ZnTe. From [45]. 

the small q of the phonon. For higher Raman processes (in Fig. 36 de­
picted up to m = 7) always many scattering processes are possible in­
volving large q phonons. As sketched for the 2 LQ Raman emission con­
tinuum states or discrete branches (represented here by nB = 1 nB \" 2) 
may be reached. Fig. 37 gives an experimentally measured spectrum 
from [45], corresponding to the schematic drawing in Fig. 36. The one 
LO Raman line is below detection limit. The other Raman lines are en­
hanced both by the group velocity terms Eq. (114) and by the q depen­
dence of the Frohlich interaction. Below the nB = I resonance, the 
Raman lines are too weak to be detected. The reasons for this decrease 
are the high group velocity and the small q-vector possible in the 
phonon-emission processes. The m = 7 Raman line is superimposed on a 
broader, luminescence-like emission band. A LO-phonon replica of this 
band is seen around A = 533 urn. This transition from Raman scattering 
to hot luminescence and to "normal" photoluminescence will be the sub­
ject of the last section of this chapter. An exhaustive treatment of 
light-scattering phenomena in solids and the energy transfer processes 
connected with them, is found e.g. in [48]. Some aspects of scattering 
of polaritons under simultaneous emission of optical and acoustic 
phonons are found e.g. in [41},[48]. 

III.F. Resonant Raman Scattering, Hot Luminescence, Thermalisation 
and Photoluminescence 

In this subsection, we discuss comprehensively resonant Raman 
scattering, hot luminescence, thermalisation and photoluminescence. 
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In all of these processes, energy is transferred from exciton polari­
tons to the phonon field. In a resonant Raman scattering process with 
emission of only one phonon (e.g. Fig. 34) the properties of the 
scattered polariton are known, if the incident polariton and the pro­
perties of the phonon are known. In other words, there is a close 
correlation or even some phase coherence between incident and scat­
tered polariton. 

In Raman processes where several phonons are emitted (see Fig.36) 
the phase coherence between incident and scattered polaritons is 
lost, because there are many possible scattering-paths which are su­
perimposed. Due to the weak dispersion of optical phonons, there is 
still an energy-correlation between incident and scattered polariton 
given by 

(115) 

and the spectral width of the Raman emission is not very much broader 
than that of the incident laser (see e.g. Fig. 37). 

Now it may happen that there occurs - apart from emission of 
LO-phonons - emission of acoustic phonons or scattering between exci­
ton polaritons. These processes lead to an enetgetically broad distri­
bution of the polaritons and consequently to a broad emissionband. 
The shape of these emissionbands depends on the energy of excitation, 
and a lineshape analysis shows that the distribution is either non­
thermal or corresponds to an effective temperature, which is consider­
ably higher than the lattice-temperature and which depends on~exc' 
This type of emission is called "hot luminescence". The two broad 
emissionbands on the low energy side of the spectrum in Fig. 37 could 
be due to hot luminescence. If the lifetime of the exciton-polaritons 
is sufficiently long, they may come into thermal equilibrium with the 
lattice. They relax down first mainly by emission of La phonons. This 
process becomes ineffective, if the final state of the scattering is 
below the resonance (see 111.2.). Then further relaxation and ran­
domization of the distribution take place by emission (and absorption) 
of acoustic phonons. A complete thermalization is reached if the 
distribution of the polaritons on the exciton-like part of the dis­
persion can be described by the lattice temperature. The distribution 
of the polaritons is then completely independent of the excitation 
energy. The emission from such a state has been treated in 111.3. It 
is simply called (photo-) luminescence. As a conclusion of this dis­
cussion, we may state that resonant one-phonon and multi-phonon Raman 
scattering, hot luminescence and photoluminescence from a thermalized 
distribution are related phenomena. The correlation to the excitation 
conditions is decreasing from Raman scattering to photoluminescence 
by an increasing energy transfer to the lattice or to other degrees of 
freedom. More information about this subject may be found e.g. in [49]. 
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IV. ENERGY TRANSFER BETWEEN VARIOUS EXCITON-POLARITON MODES BY 
NONLINEAR INTERACTION 

In the preceding chapters II and III, predominantly the energy 
transfer from one system of quasi particles to another one has been 
discussed. It is also possible to get an energy transfer from one ei­
genstate to another one of the same type of quasiparticles. This pro­
cess is generally due to nonlinearities. To illustrate this concept, 
we recall shortly the case of phonons which is treated in every text­
book on solid state physics (see, e.g. [11],[12],[15]) and then we 
shall discuss in more detail various aspects of the nonlinear inter­
action between exciton polaritons. 

IV.A. Nonlinear Interaction Between Phonons 

In an idealized model for the lattice vibrations one assumes 
that all forces are harmonic, i.e. the forces acting between the 
atoms (or ions) of the lattice are assumed to be strictly proportion­
al to the elongation. This assumption leads to a good overall descrip­
tion of the properties of phonons, e.g. concerning the specific heat, 
but also to some conclusions which do not agree with the experience, 
like: 

• there is no thermal expansion of matter 
• phonons do not influence each other 
• the heat conductivity is proportional to the geometric 

dimension of the sample for all temperatures. 

It is well known that the harmonic approximation of the vibration 
potential is strictly valid only for very small amplitudes. For larger 
amplitudes deviations occur. 

As a result, phonons start to interact with each other and the 
average "lattice constant" changes with the amplitude, Le. with tem­
perature. Due to the nonlinear interaction, one high energy phonon 
may decay into two phonons of lower energy or two incident phonons 
with e~ergies ~wl/2 and wavevectors ql/2 may form a third phonon 
(~w3' Q3)' In both processes energy and momentum are conserved, 
e.g. 

If q3 is outside the first Brillouin-zone, the transfer of a momentum 
~g to the lattice as a whole (where g is a vector of the reciprocal 
lattice) brings phonon "3" back into the first Brillouin-zone. This 
type of Umklapp-process is, e.g., responsible for the finite heat­
conductivity of reasonably pure materials at elevated temperatures 
T ~ 8Debey' 
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Fig. 38. Two-"photon" Raman-scattering via virtually excited 
biexcitons. 

IV.B. Two-Photon Raman Scattering 

In this subsection, we describe a process which is known in the 
literature as two-photon Raman scattering (TPRS) or hyper-Raman scat­
tering (HRS). Before giving details of the process, a further quasi­
particle is introduced, namely the biexciton (or excitonic molecule). 
It is a bound state of two electrons and two holes. If the exciton is 
an analogon to the hydrogen atom, then the biexciton corresponds to 
the HZ molecule. The existence of this biexciton has been proved in 
various semiconductors. Recent reviews of this subject are found e.g. 
in [9],[30],[54]. The dispersion of the biexciton is given by 

(116) 

where Ex(k = 0) is the eigenenergy of the lowest free exciton state, 
which is generally a triplet state (see Fig. 15a). Eg. is the bind­
ing energy of the excitonic molecule and the third te}~Xon the right 
hand side of Eq. (116) gives the kinetic energy, under the assumption 
that the translational mass of the biexciton is twice that of the 
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exciton. This assumption is roughly verified by experiment [55]-[57]. 
In the TPRS-process, two polaritons from a spectrally narrow, incident 
laser beam virtually excite a biexciton. Virtual excitation means 
that the biexciton is created at an energy which deviates frwm the 
eigenenergy by an amount ~E. This is possible due to the uncertainty 
relation for a time T given by 

(117) 

After this time, the virtually excited state has to disappear. As 
shown schematically in Fig. 38 for a backward scattering geometry, a 
possible decay process is into a photonlike polariton and an exciton­
like polariton (or a longitudinal exciton). Energy and momentum are 
conserved during this process: 

-+ -+ -+ 
2k. = k + kf 1 S 

(118) 

The index i refers to the incident polaritons, s means the photonlike 

nws r-----------------~ 
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T=2K a 

nwsr-------------~ 

2.370 

(IlV) 

2.360 
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Fig. 39. The relation between the photon energy of the incident 
laser light (~wi) and the two-photon Raman-emission~ws' 
for backward (a) and near forward (b) scattering geometry 
in ZnTe. Points: experimental data; solid lines: theory. 
From [58]. 
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outgoing polariton and f the other particle in the final state. For 
backward scattering kf is rather large, and Ef corresponds to a state 
on the exciton-like part of the dispersion. The energy variation 
with kf is weak in this part, ~ws shifts with a slope of two com­
pared to ~wi' These slope two curves (Fig. 39a) are the experimental 
proof for the two-polariton character of TPRS. In near-forward 
scattering experiments the wavevectors of both particles are on the 
photon-like part of the dispersion. Both particles in the final 
state may be detected outside the sample, and a typical result are 
two TPRS-lines situated energetically above and below~wi as shown 
in Fig. 39b. TPRS has been observed, e.g., in CuCl, CuBr, CdS, 
ZnSe or ZnTe. See, e.g. [9],[30],[54],[58] and the literature 
ci ted ther ein. 

It should be noted that a strong population at the polariton­
state ~wi' ki will result in an additional polariton-branch with a 
resonance-like dispersion an an energy ~wan' 

fu = R. (k) - 1iw. (119) 
anb3.ex 3. 

due to two-polariton transitions to the real biexciton state. In 
other words, shining an intense laser-beam on a sample may result 
in variations of the refractive index and the appearance of ad­
ditional absorption bands by nonlinear interaction. The transition 
to the biexciton is only one example of numerous processes of this 
kind [9],[30],[54],[57],[59]. We shall use this knowledge in 
Sections IV.C and IV.D. 

IV.C. Degenerate Four Wave Mixing 

In IV.2. we considered the case that the two polaritons creating 
the biexciton virtually have parallel k-vectors and equal energy. 
This is not a necessary condition. They may have different energies or 
may propagate into different directions. Another peculiar situation is 
to excite the virtual, intermediate state by two counter-propagating 
polaritons of equal energy. The wavevector of this state is then zero. 
An infinite number of decay processes becomes possible which must ful­
fill the conditions: 

(120) 

• c+ c+ If the two po1ar3.tons ks and kf are on the same polariton branch, 
one gets from Eq. (120): 

(121) 

If they are on different branches ~wf # fus ' but Eq. (120) still has 
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Fig. 40. Geometrical arrangement for degenerate four wave mixing. 

to be fulfilled. We consider in the following only the case that in­
going and outgoing polaritons have the same energy. One of the decay 
mechanisms possible in this case may be selected by stimulation: 
Additional to the two counter-propagating "pump" beams, a probe beam 
with the same photon energy is sent on the sample at some arbitrary 
angle. This probe beam stimulates the decay of the virtually excited 
biexciton. As a consequence, a second polariton is created which is 
identical to those of the probe beam and another one propagating in 
the opposite direction. (See Fig. 40). Though at least five polaritons 
are involved in this nonlinear interaction process, it is referred to 
in the literature as "degenerate four wave mixing" DFWM [30], [61]-[63] 
or sometimes as "three wave mixing". 

The process shown in Fig. 40 has some similarity with the reflec­
tion from a mirror. But it is a special type of mirror. One generally 
speaks of a phase-conjugate mirror or phase-conjugate reflection [62]. 
The difference to a usual mirror is worked out in Fig. 41. As already 
discussed in II.E., the law of reflection reads: 

k pr 
-+ 
k . 
nl 

-+ 
-k nr (122) 
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and if there is some phase-delay in the incident plane wave, the 
reflected wave will have the same phase-structure. For a PC-mirror, 
the law of reflection reads 

k. 
1 

+ 
-k 

r 
(123) 

and if there is a phase delay in some part of the incident wave, 
there will be just the opposite phase-structure in the "reflected" 
beam. This phenomenon which gave the name, is important for the 
reconstruction of distorted wavefronts. Various other aspects of 
DFWM are discussed, e.g., in [61]-[63]. 

IV.D. Laser Induced Gratings 

As we have seen in Section IV.B, an intense light beam propa­
gating through a medium may produce a variation ~n of the real and/or 
imaginary part of the refractive index. In Figure 42 we assume that 
two plane polariton waves intersect in the medium under an angle a. 
Both waves have the same energy hWi and amount of the wavevector k. 
As is known from simple wave-theory, the constructive interference 
occurs on planes indicated by dotted lines in Figure 42 which form 
an angle of a/2 with the wavevectors. Along these planes ~n reaches 
its maximum value. In the region of destructive interference ~n is 
small. As a result, we get a plane amplitude- or phase-grating, 
depending whether Im{~n} or Re{~n} is predominant. (LIG = laser 
induced grating). If we shine now a third beam on the sample, 
diffraction will occur. If this beam 3 has the same energy and 
opposite wavevector to beam 1 it is easy to show that one of the 
diffracted beams is counter-propagating to beam 2. This means 
we have the same situation as in DFWM discussed in Section IV.C. 

It is obvious that we discussed in these three subsections 
almost identical processes: TPRS is the spontaneous process of 
nonlinear frequency mixing via a virtually excited intermediate bi­
exciton state, DFWM is the same process stimulated by a third ex­
ternal beam. However, while in TPRS phasematching (i.e., k­
conservation) depends on the angular and energetic configurations, 
it is automatically achieved in DFWM and LTG. Whereas TPRS and DFWM 
stress the quasiparticle concept, the laser-induced gratings are the 
adequate description of the same phenomenon in the wave-picture. 
Higher diffraction orders in LIG correspond to higher nonlinearities 
of DFWM, i.e. processes involving more than five polaritons. In 
CuCl this higher-order emission is easily observed in the vicinity 
of the biexciton resonance [64]. 

Though the three effects TPRS, DFWM and LIG are very closely 
related, they have been investigated by various research groups 
which did not take too much notice of each other. It was only 
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Fig. 42. Creation of and diffraction from a laser-induced grating. 
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rather recently that the close connection has been realized and 
now one tries to describe these phenomena from a unified point of 
view. 

As a concluding remark of this chapter, it has to be stressed 
that the excitation of biexcitons is by far not the only possible 
process to produce nonlinearities which result in DFWM or LIG. The 
formation of an electron-hole plasma is, e.g., connected with a 
considerable renormalization of the bandgap and consequently with 
large 6n [65]. The bleaching of an optical transition also gives 
rise to phenomena of the type discussed above. For some recent 
reviews of this field, see e.g. [30], [57]-[65]. 

v. CONCLUSION 

As already stated in the introduction, the field of energy 
transfer processes in semiconductors is a very extensive and complex 
one. Some examples have been mentioned in the introduction. In 
this contribution, some aspects of the propagation of light in semi­
conductors have been stressed. The most important message of this 
article is that polaritons are the propagating modes of light in 
semiconductors. To summarize this, we have plotted the dispersion 
of polaritons and of some other quasiparticles from the IR to the 
X-ray region in a double-logarithmic scale in Figure 42. We have 
used a sum-formula for the dielectric function similar to Eq. (39) 
but properly taking into account the k-dependence of the eigen­
energies, i.e., 

c 2 k2 -+ 
--2- = e:(w, k) 1 + 

w 

3 f. 
l: J 

. 1 2 2 
J= w. (k) - w 

OJ 

(124) 

Damping is neglected for simplicity. One optically active phonon 
resonance is included in Eq. (124) and two electronic resonances. 
The energetically lower one represents an exciton resonance and the 
higher one all other band-to-band excitations. Note that the upper 
polariton branch of the phonon polariton is simultaneously the 
lower polariton branch of the exciton polariton. 

APPENDICES 

Appendix A. Exciton-Polaritons in Real Semiconductors 

Until now, we considered semiconductors with an idealized 
electronic bandstructure only (see Section III.A). In this appendix 
we shall summarize the main properties of the bandstructures of the 
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Fig. 43. Schematic dispersion of photons, acoustic phonons and of 
polaritons in a semiconductor. Three resonances are 
included, representing the phonon polariton, the exciton 
polariton and the band-to-band transitions. 

most common semiconductors. An extensive review of the corresponding 
(and other) data of almost all semiconductors is found in [66]. 

In Table 1 we summarize the more widely known semiconductors 
of the families of I-VII, II-VI, III-V and the elementary semi­
conductors of group IV. All of these materials are tetrahedrally 
coordinated. The crystal-structures are either the diamond struc­
ture, the zinc-blende structure or the wurtzite-structure. 

For ionic binding the lowest conduction band is formed from 
the lowest unoccupied s-levels of the kations and the valence-band 
is formed from the highest occupied p-levels of the anions with a 
more or less pronounced admixture of kation d-levels. The covalent 
binding is due to sp3 hybridization. The bonding and antibonding 
states form the balence and conduction-bands, respectively (see,. 
e.g., [9]). 

Figure 39 in Volume I of Ref. [12] gives a nice schematic 
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Table 1. Synopsis of bandstructure, lattice- and binding typed of 
the most widely known semiconductors. 

Familiy of 
Semi conduc to r 

Direct gap 

Indirect gap 

B. Blende-type lattice 
W. Wurtzite-type lattice 
D. Diamond lattice. 

! I - VII II - VI 

CuCl, CuBr, lnS, lnSe, lnTe, 
CuJ (B) CdTe (B) 

lnS, lnO, CdS, 
CdSe (W) 

AgBr (B) 

III - V 

GaAs,InSb 
GaN 

GaP 

IV (-IV) 

(B) 
(W) 

(B) C, Si, 
Ge (D) 
SiC (B) 

Type of chemi- Ionic 0\»») )'j) »22/7 Covalent cal Binding 

drawing of the bandstructure of tetrahedrally coordinated semi­
conductors for diamond and blende type lattice. The details of the 
bandstructure show up in the dispersion of excitons and excitonic 
polaritons. In the following, some typical cases are shortly 
reviewed, starting with direct gap materials. The conduction band 
is isotropic to a good approximation and often parabolic in the 
vicinity of the f-point. The valence-band is split by spin-orbit 
interaction at the f-point into a fourfold and a twofold degenerate 
band. The fourfold band is generally the upper one and splits for 
k = 0 into a light and a heavy hold band. This results in heavy 
and light exciton- and polariton-branches, as shown e.g. in Figure 8 
of Ref. [58]. Warping and k-linear terms bring about some additional 
complications. For CuCl, the twofold valence band is the upper one 
due to a negative spin-orbit splitting [67]. Thus CuCl corresponds 
closely to our idealized model, as can be seen by comparing, e.g., 
Figure l5a and Figure 19. 

In a wurtzite-type lattice, the crystai field and spin-orbit 
interaction result in a splitting of the p-levels into three twofold 
degenerate bands, which are often strongly anisotropic with respect 
to the crystallographic c-axis [9). The exciton- and polariton­
dispersion for the typical wurtzite-type material CdS are shown, e.g., 
in [9], [19],[20],[29],[30],[57] and [68]. The second valence band 
has a k-linear term, resulting in an additional polariton branch. 
In lnO, the ordering of the two upper valence bands is interchanged 
because of a negative spin-orbit coupling [44), [69]. Some of the 
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Fig. 44. Schematic drawing of exciton and polariton states for a 
semiconductor with an indirect gap. The whole first 
Brillouin zone is shown. If the direct band-to-band 
transition is dipole-allowed at k = 0, a polariton is 
formed in the way discussed in Chapter II. Excitons in 
the absolute minimum can be created only under momentum 
transfer to another quasiparticle, e.g. by creation or 
annihilation of a phonon. 
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resonance are optically allowed only for one orientation of the 
electric field relative to the crystallographic c-axis, resulting 
in strong birefringence and dichroism in the resonance regions. 
The frequency dependences of E(W) and of the polaron corrections, 
the exchange interaction and other phenomena often lead to a con­
siderable deviation of the exciton-states from a simple Rydberg 
series equation [73]. More detailed information on the dispersion 
of excitons and polaritons in the direct gap materials is found, 
e.g., in [9],[20] and [30]. In indirect gap materials, the valence 
band is qualitatively the same as in blende-type direct gap materials. 
In contrast, the conduction band minimum is situated not at the 
r-point but somewhere else in the Brillouin zone. In Ge it is 
situated, e.g., at the L-point and in Si in the ~-direction rather 
close to the X-point resulting in several equivalent minima. The 
resulting exciton and polariton dispersions are shown schematically 
in Figure 44. The abscissa covers here the whole first Brillouin 
zone. Absorption sets in, when phonon-assisted transitions to the 
indirect minimum become energetically allowed. At the direct gap, 
a polariton is formed in the usual way. The damping of this 
resonance is larger than in direct gap materials, however, since 
polaritons in the vicinity of the r-point may easily relax in the 
indirect minimum by phonon emission. More details about excitons 
and polaritons in indirect gap material are found, e.g., in [12], 
[18] and in the literature cited therein. 

Appendix B. Surface Polaritons 

In Chapter II, we treated only the volume polariton modes. 
From Maxwell's equations it can be deduced that there exists a 
surface polariton mode to every volume polariton. A surface 
polariton mode can propagate only along the interface between dif­
ferent materials. Here we consider the interface between a semi­
conductor and vacuum only. The field amplitudes decay exponentially 
on both sides of the interface. If we choose the coordinates so 
that the x-y plane represents th~ surface and k is parallel to the 
x-axis, then the electric field E of the surface polariton is in the 
x-z plane and the magnetic induction is parallel to the y-axis. The 
surface polariton mode exists if the following conditions are ful­
filled: 

and 

(125) 

where EM(W) is the dielectric function of the semiconductor. We do 
not go through the Maxwell theory to prove all the above statements 
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Fig. 45. The dispersion of bulk and surface polariton modes and 
of photons for various quasipartic1es in a semiconductor. 
Heavy solid line: bulk po1aritons; dashed line: surface 
po1aritons; light solid line: photons. 

(see e.g. [69]). Looking, however, at the law of refraction (Eqs. 
(64-66» 

k2 = € (w) k7 _ k2 
nt M ~ p 

(126) 

One immediately finds for €M(w) < 0 the result ~t < 0, i.e. a polar­
iton mode decaying exponentially into the medium. 

In Figure 45 we give the dispersion of volume and surface po1ar­
itons for phonons. excitons and plasmons, neglecting damping for 
simplicity. The dispersion of the surface polaritons for the first 
two examples is intelligible from Figures 6, 7 and 15a, and Eq. 
(125). P1asmons have not yet been treated and we shall give some 
comments. P1asmons are the quanta of longitudinal collective ex­
citations of the electron-system. There are two types of p1asmons. 
The more common ones which are treated in every textbook [11],[12], 
[15] are connected with the electrons of a partially occupied con­
duction band. Their optical properties can be described by an 
oscillator having a transverse eigenfrequency which is identical to 
zero for all k and a longitudinal eigenfrequency given for k = 0 
by the plasma-frequency 

(127) 

and showing a quadratic dispersion for k > O. The lower polariton 
branch coincides then with the abscissa (Figure 45c) and the upper 
polariton branch starts at wPLo and then turns over to a photon-like 
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Fig. 46. Arrangement for the excitation of surface polariton modes 
by attenuated total reflection. 

dispersion. With Figure 9 and Figure 45c, it is obvious that a 
material with a partially occupied band will show a reflectivity 
close to 1 for ~w <~WpLo and a reflection minimum around~WpLo' 
For metals, the plasma energy turns out to be in the UV. For semi­
conductors, ~L can come to the IR-spectral region if a high 
density of free carriers is produced, e.g., by high doping. (See, 
e.g., the standard example in [70].) 

In a more classical approach, the high reflectivity of metals 
can also be explained by the shortcircuiting of the electric field of 
an incident electromagnetic wave by the high conductivity connected 
with a partially occupied band. The reflected wave is produced by the 
surface currents which are necessary to shortcircuit the field. From 
this point of view it is immediately obvious that collective excitat­
ions of a completely filled band will not result in such spectacular 
optical properties as mentioned above. The quanta of the collective 
excitation of a completely filled band are called valence band p1as­
mons. They can be treated in a certain analogy to excitons, but they 
are situated energetically not below the band gap but above an energy 
given by the energetic distance from the bottom of the valence band 
to the top of the conduction band. For more information of valence 
band plasmons see e.g. [71]. 

Returning to Fig. 45 it is obvious that the dispersion of the 
surface plasmons intersects neither the upper or lower polariton­
branch nor the photon-dispersion. This means, there is no possibility 
of direct optical coupling to the surface polariton modes. Surface 
p1asmons can be excited by electrons and are observed in electron 
energy-loss spectroscopy (see 111.1. or [72]). There exist, however, 
some tricks, to transfer energy by optical means to surface po1ari­
tons. The most widely used is the attenuated total reflection (ATR). 
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Fig. 47. Attenuated total reflection signal of an exciton surface 
polariton in ZnO. Experiment and theory (a), dispersion 
of bulk and surface modes (b). From [73]. 

In ATR a parallel, monochromatic light-beam with frequency wi is 
sent into a prism with refractive index ~(w) in the way shown in 
Figure 46. If the internal angle of incioence e is above a critical 
value eT, total reflection occurs. eT is given by 

(128) 

In the case of total reflection, an evanescent wave is "leaking" 
into the vacuum. The frequency of this wave is wi and its wave­
vector ~ can be varied by varying e from 90° to aT between 

wi wi 
- n (w.) > k >­
c P 1. - p- C 

(129) 

The distance over which the evanescent wave decays in the vacuum 
is comparable to the wavelength. If the medium in which we want to 
investigate surface polaritons is brought sufficiently close to the 
base of the prism, the evanescent wave couples to the surface polar-

+ 
iton modes, if energy and wavevector ~ coincide. In this case, 
energy is transferred to the surface polariton modes and the 
reflectivity falls below 100%. This method of attenuated total 
reflection has been applied successfully to all surface modes shown 
in Figure 45. Figure 47 gives an example for exciton surface 
polariton modes in the semiconductor ZnO. For a recent review and 
for other possibilities to detect surface polariton modes like 
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diffraction from surface gratings or nonlinear mixing, see e.g. 
[69] • 

Appendix C. The Role of Impurities 
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The discussion of energy transfer in semiconductors has so far 
been limited to intrinsic aspects. But even the purest semiconductors 
available still contain about 1015 - 1016 imperfections per cm3• By 
intentional doping, this number can be increased by several orders 
of magnitude. These imperfections include various types of point de­
fects, like vacancies or interstitial atoms or dopants, both inter­
stitial and substitutional ones. Furthermore, there are line defects 
(dislocations) or two-dimensional aefects, like small angle grain­
boundaries. In the following, we shall shortly mention some aspects 
of point defects. For a recent review of this field see e. g. [74]. 
The transfer of energy from donor to acceptor-states is discussed in 
great detail for many materials in other contributions of this volume, 
So this point will only shortly be touched in this chapter (see be­
low). 

Point defects also play an important role in electrical conducti­
vity of semiconductors both by influencing the concentration and mo­
bility of free carriers. 

Besides the Umklapp-processes, the scattering at impur1t1es li­
mits the heat conductivity, especially at low temperatures. Here also 
isotopes act as impurities because of their different mass. The main 
aspect investigated in the following is the influence of point de­
fects on the optical properties of semiconductors, i.e. on the propa­
gation and absorption of light. 

Impurities like isoelectronic traps (I), neutral acceptors (Ao) , 
neutral donors (DO), charged donors (D+) and charged acceptors (A-) 
may bind an electron-hole pair forming a bound exciton complex (BEC). 
The binding energy of the exciton to the complex is decreasing from 
IX complexes over AOX and DOX to D+X and A-X. The A-X complex is 
generally unbound, i.e. it is for this BEC energetically more favour­
able to form a neutral acceptor and a free electron. The wave function 
of a bound exciton can be described in simplest approximation by a 
superposition of free exciton wavefunctions ~x(nB' k) 

~BEC r ak ~x(nB' k) 
k 

(130) 

Equation (130) shows that the k-selection is relaxed for a BEC, 
because it is a localized state, without translational invariance. 
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If we want to represent a bound exciton state in a E(k) diagram, we 
can do this by a horizontal line, the thickness of which represents 
lakl (Figure 48). Obviously, it is a type of oscillator without 
spatial dispersion. The singlet states of the BEG are generally 
coupling to the electromagnetic field. The oscillator strength per 
impurity atoms of a BEG is considerably larger as compared to the 
oscillator-strength per unit cell of free excitons [79]. On the 
other hand, the density of the impurity centers is in "pure" 
materials several orders of magnitude smaller than that of unit 
cells, resulting in moderate values of absorption 

101 -1 < < 103 -1 cm _ ~EG _ cm 

104 cm- l < a f . < 106 
- ree exclton -

-1 cm (131) 

As a consequence, BEG gives rise to narrow absorption-bands. The re­
sonance-structure in the polariton dispersion is generally too weak to 

E 

CD 

frotor exciton 
polariton 

BEC, 

--.......I'-~~~-- SECO 

----~---~-k 

Fig. 48. Dispersion for a free exciton polariton and of bound ex­
citon complex (BEG). The upper BEG is regarded as an 
excited state of the lower one. The transitions are 
described in the text. 
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show up, e.g. in reflection experiments (see, e.g., the small re­
flection structure around 2.545 eV in the 5K spectra of Figure 2 
of Ref. [75] as an exception). 

There are many optical phenomena connected with BEC, which have 
an analogon in the optical properties of free exciton-polaritons. As 
an example, they can act as virtually excited intermediate states in 
Raman scattering, or they can give luminescence without emission of 
phonons or under emission of one or several optical phonons. In con­
trast to the case discussed in 111.3., the lineshape is not determined 
by the thermal distribution of BEC, because they populate only an 
energetically narrow state. The width of the zero-phonon lines 
is therefore small at low temperatures and increases roughly propor­
tional to T2 due to a detuning of the eigenenergy by thermal lattice 
vibrations e.g. [76]. The shape of the phonon replica is influenced 
by the dispersion of the optical phonons and the spread of the BEC­
wavefunction in k-space. 

The BEC can also decay under emission of acoustic phonons in a 
photonlike polariton which is observed as luminescence light. In con­
trast to free exciton-polaritons, acoustic phonons with various wave­
vectors may participate, resulting in a rather broad "acoustic wing" 
on the long wavelength side of the emission, the spectral shape of 
which may be used as a temperature probe for the popUlation of acous­
tic phonons [9],[77]. In the excitation spectra of BEC, a similar 
acoustic sideband appears on the high energy side, i.e. a photon­
like polariton decays in the sample into a BEC and an acoustic 
phonon (see, e.g., [78],[79]). 

A lot of information about excited states of BEC has been col­
lected rather recently by photoluminescence excitation spectroscopy 
(see, e.g., for ZnO [21],[79],[80], for CdS [78],[79],[81],[82]. 
This phenomenon can be nicely described in terms of energy transfer. 
In Figure 48 we plot the dispersion of the LPB together with two 
energy levels of a BEC, the lower one being the grounds tate, the 
upper one the excited state. If a spectrally narrow, tunable 
(laser-) beam (~i) is sent on the sample, it will be absorbed if 
hwi = EBECo ' In addition, strong light scattering (or resonance­
fluorescence) occurs. For ~Wi > EBEC ' polaritons on the LPB are 
created. They may relax to a small e~tent by acoustic phonon 
emission to the BECo producing some luminescence in this spectral 
region (1). If ~Wi = EBECI a large number of BECI will be created. 
They relax to BECo by transferring energy, e.g. to the acoustic 
phonon system (process (]». As a consequence, a peak appears in a 
plot of the BECo-luminescence intensity as a function of ~wi for 
constant excitation intensity whenever ~wi falls on an optically 
allowed excited state of the BEC. Such excitation spectra are 
found, e.g., in [71],[79]-[82]. 

If a semiconductor contains donors and acceptors, DO and AO 
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complexes may be formed by illuminating the sample with photons of 
an energy larger than the bandgap. If the localized wavefunctions 
of electrons and holes of the DO and AD complexes overlap at least 
a little bit, the electron-hole pair may recombine under emission 
of a photon-like polariton of energy ~w 

E 
g 

(132) 

where Eg is the energy of the gap, Eg and E1 are the binding 
energies of electrons and holes measured relative to the bottom of 
the conduction band and the top of the valence band, respectively. 
RDA is the geometric distance between the donor and acceptor. The 
term containing RDA describes the Coulomb-energy between D+ and A­
centers after the recombination. The last term on the righthand side 
gives the participation of optical phonons. The zero-phonon line 
corresponds to m = O. The DO AD-system can be regarded as a poly­
centric bound exciton. 

The matrix element for the optical transition depends strongly 
on the overlap of electron- and hole-wave functions and thus on RDA. 
With increasing doping and excitation level, the average distance RDA 
decreases, resulting in an increase of the Coulomb term in Eq. (132) 
and a blue-shift of the emission maximum. This blue-shift with in­
creasing excitation is characteristic for the donor-acceptor pair re­
combination. 

If the concentration of lattice defects is increased further, 
the overlap of the wavefunctions will increase, too. As a consequence, 
the BEC will no longer form energetically narrow states but will 
broaden to impurity-bands. The transition from BEC to impurity-bands 
has been investigated extensively e.g. in the system CdSI_xSex in 
[83],[84] by increasing the content of Se. One observes localized and 
free states. The mobility edge is found to coincide with the high 
energy edge of the emission band. Energy transfer between localized 
states and coupling to acoustic phonons are investigated by excita­
tion spectroscopy, resulting at least in a good qualitative knowledge 
of energy transfer processes in this system. 
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TRIPLET EXCITATION TRANSFER STUDIES IN ORGANIC 

CONDENSED MATTER VIA COOPERATIVE EFFECTS 

ABSTRACT 

V. Ern 
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Universite Louis Pasteur, 5 rue de l'Universite 
67000 Strasbourg, France 

The fundamental elementary excitations of most molecular organic 
condensed matter are the Frenkel excitons, neutral excited states 
which transport electronic excitation energy without transport of 
charge. Of special interest are the metastable paramagnetic triplet 
excitations which are known to travel during their lifetime over 
macroscopic distances. These excitations exhibit cooperative effects, 
notably triplet-triplet pair annihilation which leads to the creation 
of a higher energy singlet and to the emission of detectable delayed 
fluorescence. The scope of this presentation is to show how this 
mutual annihilation process can be put to use to extract information 
on the transport of the excitation energy. The advantage of such 
approach is that the migrating exciton itself is thus used as a probe 
to detect the excitation motion in the crystal. A direct technique 
using a spatially inhomogeneous, periodic, excitation of the crystal 
will be described and it will be shown how diffusion constants and 
coherence effects can be extracted from the delayed fluorescence data. 

I. INTRODUCTION 

Transfer of excitation energy in organic condensed matter has 
been subject of an intensive study in the last decade. Different 
theoretical approaches and experimental techniques have been used to 
tackle the problem. An overall, concise review of the subject can be 
found in the recently published text of Pope and Swenberg [1]. More 
details on specific theoretical models of motion like the use of Gene­
ralized master equations (GME), Stochastic Louiville equations (SLE), 
percolation; spin-relaxation, as well as of techniques for measuring 
exciton transfer, for instance via optical lineshapes, magnetic 
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resonance or quantum yields of sensitized luminescence in purposely 
doped crystals, can be found in several review articles [2]-[11] and 
in the references given therein. 

Because of the naturally limited extension of this presentation 
we shall restrict ourselves to present here in some detail one speci­
fic, direct approach to study exciton motion in neat organic solids. 
The approach relies on the detection of the signal due to the mutual 
annihilation of two excitons which takes place when the two excita­
tions, due to their motion, come sufficiently close to each other so 
that a fusion in a new, higher energy excitation, can take place. The 
advantage of this technique lies in the fact that no impurities must 
be added to the lattice to act as detectors of motion, and, as will 
be seen below, at sufficiently low intensities of excitation, that is, 
at low free exciton densities, the annihilation process itself can be 
neglected in the kinetics, and one can view this approach as one in 
which the migrating exciton itself is used as a probe to detect the 
motion of the excitation in the crystal. The technique requires only 
the initial exciton density to have a known spatial distribution, the 
spatial inhomogeneities having characteristic distances comparable to 
the distance travelled by the exciton during its lifetime in the 
crystal. 

The approach using the biexcitonic process is best put to use 
to study the motion of triplet excitons in organic solids, since in 
many materials the outcome of triplet-triplet annihilation can lead 
to an excited singlet state, and hence to an easily detectable delayed 
fluorescence signal [1]. As will be seen below, the time-dependence of 
this signal contains direct information on the excitation transport 
and no additional theory (which already would require some model for 
the motion) for the triplet-triplet annihilation rate constant YT is 
needed. Singlet-singlet annihilation [1] on the other hand doesntt 
typically lead to a new emitting species and motion parameters, e.g. 
the diffusion constants, can be deduced only indirectly from the 
measurement of the singlet annihilation rate constant YS which, for 
instance, can be obtained from studies of fluorescence quantum yield 
efficiencies as a function of the exciting intensity [1]. 

Whenever it is possible to detect delayed fluorescence there are 
several advantages to use the direct experimental approach described 
here to get triplet motion parameters, and test any general theory 
of exciton transport in a neat organic crystal. First, triplet exci­
tons are long-lived excitations so that during their lifetime they 
can scan macroscopic distances in the crystal, even in the completely 
incoherent, diffusive, case. Moreover, due to the low S ,+ Tl absorp­
tion coefficient the triplet exciton popUlation can be ~xcited 
throughout the bulk of the sample so that ill-defined surface quench­
ing effects, which usually play an important role for singlet excitons, 
become negligible. Also, the paramagnetic nature of the triplet exci­
tation allows ESR experiments [12],[5],[11] on the excited states as 
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well as the possibility to modulate the triplet-pair annihilation 
rate with an external magnetic field [13],[14],[1]. The theoreti­
cal understanding of the observe~ ESR linewidths [5] and of the 
magnetic field dependence of YT(H) [14] will typically require some 
knowledge of the magnitude and of the anisotropy of triplet exciton 
transport. This is especially the case in the Y (H) experiments in 
which an external magnetic field is used as a ha~dle to probe the 
pair-annibhilation process itself. A priori direct, independent, 
measurements, as will be described here, of triplet's transport 
parameters, for instance, hopping rates in a given crystallographic 
plane, are essential to reduce the number of parameters needed for 
an unambiguous fit of the experiments by the theory [14],[15]. 

This presentation is laid out as follows. In section II a brief 
introduction to crystal band states and to the delayed flourescence 
mechanism will be given. Section II will present an analysis of the 
direct experimental approach, using a spatially periodic excitation 
of the crystal, to detect triplet motion effects via the delayed 
fluorescence signal. In section IV, the approach will be applied to 
the study of the macroscopic exciton diffusion equation and in section 
V, practical experimental techniques as well as examples of extraction 
of triplet-exciton-diffusion tensor components will be given. Finally, 
section VI will present briefly recent work using generalized master 
equations (GME) which shows that, in principle, coherence effects in 
the transport can be detected using exactly the same experimental 
techniques as up to now applied to study the completely incoherent 
diffusive triplet motion. 

II. INTRODUCTION TO MOLECULAR CRYSTAL BAND STATES 

As compared to inorganic solids a molecular crystal can be 
considered as an ordered ensemble of weakly interacting asymmetric 
units consisting either of groups or of a single organic molecule. 
As an example, let's consider the case of many organic solids, notably 
those of the best studied aromatic hydrocarbons molecules, which 
crystallize in the monoclinic space group C~h(p21/a) containing two, 
four or eight translationally enequivalent molecules in the unit 
cell [16]. Figure 1 schematically depicts the molecular packing in 
the ab plane of such a crystal for the case of two translationally 
inequivalent molecules in the unit cell. The two differently oriented 
molecules are related by the two-fold symmetry l axis, as required 
by the point group C2h of the unit cell. As shown, the structure 
can also be regarded as consisting of two equal interpenetrating 
lattices of differently oriented molecules. For the general case of 
N molecules packed in Nih unit cells each containing q=1,2, •••• h trans­
lationally inequivalent molecules, the crystal hamiltonian can be 
written as [17],[19] 

H = I hnq + i I I (1 - 0nn,Oqq,)V(nq,n'q') (1) 
nq nq n'q' 
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n' I ---I ---

Fig. 1. Schematic representation of a typical molecular packing 
in an organic crystal. The particular case shown corre­
sponds to the projection down c!, that is, the ab plane 
of the monoclinic space group C2h with h = 2 molecules 
per unit cell. The heavy line lattice is the q = 1 sub­
lattice, the dashed !ine one, the q = 2 sublattice. All 
unit cell positions Rn are referred to the site (q = 1) 
on the extreme lower left. For such a choice of the 
origin, the molecul~s on the q = 1 sublattice are speci­
fied by the vector lq= 0, while the ones on the q = 2 
sublattice by the vector tq = (~+ b) /2. The transfer 
matrix elements (see text below) between the nearest­
neighbor molecules are indicated as Sa' Sb' and Sd' 

where h is the hamiltonian for the molecule situated at the qth 
site ofn~he n~ unit cell, and V(nq,n'q') represents the interaction 
energy between molecules on sites (nq) and (n'q') due to nuclear­
nuclear, electron-nuclear, and electron-electron interactions. The 
Kronecker deltas ensure that in the double sum the interaction of a 
molecule with itself is excluded. In the Frenkel exciton limit [17]­
[19] one assumes that the second intermolecular interaction sum in (1) 
constitutes a small perturbation to the first sum in which hnq is 
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taken to be the hamiltonian of the free isolated molecule. This is 
a reasonable assumption for most molecular crystals, especially for 
the relevant low-energy lying states, since one expects that the 
electronic wavefunctions of a molecule, e.g. the TI-orbitals do not 
appreciably extend beyond few A's. The intermolecular interaction 
energies are thus usually much smaller (say less than few percent) 
than a typical electronic energy £f of the fth excited state of the 
isolated molecule. In this tight-binding approximation the first 
sum in (1) is the hamiltonian of an aggregate of N noninteracting 
mplecules placed at the positions, and in orientations, as prescribed 
by the crystal structure, that is, of an "oriented gas", and the 
intersite interaction term is treated by well-known methods of per­
turbation theory. The eigenfunctions of the oriented gas hamiltonian 
are thus the basic functions for the perturbation treatment of (1). 

The wavefunctions for the ground state of the oriented gas are 
simply given by 

cpo = A II y0 
= nq"nq 

(2) 

where XO is the ground state wavefunction of the free molecule, 
that isDft ~ = £oXo , £0 being the molecular ground state energy, 
and wheren~heqoperatg~ A is the one which antisymmetrizes the product 
with respect to intermolecular exchange of a pair of electrons. The 
excited states for the oriented gas hamiltonian are now obtained when 
one of the molecules is taken to be in one of its excited states. The 
zero-order wavefunction for hamiltonian (1) corresponding to the 
excitation in its fth state of the molecule situated on the qth site 
of nth unit cell is-given by --

,hf - Avf II' y0 
~nq - ~nqn'q"n'q' 

(3) 

where hnqX~q = £fXhq , £f being the molecular energy of the fth 
excited state, and IT' means that in the product the molecular-ground 
state function for the site (nq) has now been excluded. While there 
is only one ground state function (2), there are N possible locali­
zed, usually called single site, excitation functions (3). They form 
a N-fold degenerate set since anyone of the molecules of the crystal 
can be in the fth excited state giving the same zero-order (or orien­
ted gas) crystaY-energy. Turning on the intermolecular interaction 
as a perturbation in (1) will lift this degeneracy and mix the local­
ized functions (3) giving rise to ! delocalized crystal, or exciton, 
states, whose energies are spread over a band and which will belong 
now to the entire crystal. 

The perturbation problem can now be solved by first constructing 
the so-called one-site exciton functions for each sub lattice which, 
due to the translational symmetry, can be written as the normalized 
Bloch sums 
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~ + + 
1 ik. (R + T ) 

1J!f (k) = (h/N) 2 L ~f e n q 
q n nq 

(4) 

+ 
q = 1,2 •.•• h, where Rn+is the lattice vector specifying a given unit 
cell (see Fig.l) and k is the exciton wavevector spanning the first 
Brillouin zone. The entire crystal problem is now solved by switching 
on the interaction between the molecules on different sublattices. 
The exciton bands deriving from a fth molecular state are now obtai­
ned by solving the hxh secular determinant 

o (5) 

where the matrix elements 

(6) 

can be reduced to the sums 
+ + + + + 

Mf ik·(T, -T ) L n' ik·R = e q q 8 ,e n' qq ' qq n' 
(7) 

in which the nth reference unit cell has been taken as the common 
origin (Rn = OY-for all distances. The key quantities in (7) are 
the values of 

8n ' _ <~f IHI~f > 
qq' - ~Oq ~n'q' 

(8) 

the so-called exciton transfer matrix elements, which determine the 
spread of the exciton energy band dispersion. For q' = q one has the 
transfer matrix elements between the translationally equivalent mole~ 
cules in a given sublattice, while for q' F q between all the transla­
tionally inequivalent ones which are in the same (n' = 0) or diffe­
rent unit cells (n' F 0). When the transfer matrix elements are known 
the band structure calculation is simply obtained by constructing 
matrix elements M~q' via sums (7) a~d then solving the hxh secular 
problem, (5) whicli will yield the Ei(k) i = 1,2 •••• h exciton band 
branches derived from a given molecular excited state f. In practice, 
a considerable simplification of the ~ecular problem is obtained 
throu~h symmetry considerations when k has special values or 
when k lies along a special direction or in a special symmetry plane 

+ 
of the Brillouin zone [19],[20][21]. Once the exciton bands E (k) 
are known, a dey exciton transport parameter, anme1y its mean square 
velocity, can be obtained by calculating the terma11y weighted aver­
age of the square of the exciton wave-packet group velocity 

~(k) = ~-l~k E(k) 

over the entire Brillouin zone. 
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The transfer matrix elements (8) can be calculated explicitly 
[18],[22] via (2) and (3) if the one-electron (molecular orbital) 
approximation is used for the molecular wavefunctions Xf. In this 
approximation one has [22] for an excited singlet state 

1 n' n' 
, 

(3qq' J qq , + Kn 
qq' (9) 

and 
3(3n' n' 

qq' 
= K , 

qq (10) 

for the triplet state if the molecular spin orbit ~oupling is 
neglected [22],[23]. In the usual notation the In , are the inter­
molecular Coulomb integrals and KU', the intermol~gular exchange 
integrals, the integrations beingq8arried-over the spatial coordi­
nates of two electrons. The exchange integrals appear in the pro­
blem because of the antisymmetrization operator ~ in (3), that is, 
of Pauli's principle applied to pair-electron exchange between 
different sites. The Coulomb integrals do not contribute to tri­
plet states because of the orthogonality of the spin functions 
which can be integrated separately from the spatial part if spin­
orbit coupling in the molecule is neglected. In practice, this 
coupling is indeed negligible [18] for transfer matrix elements 
calculations, notably for aromatic hydrocarbons [24], however, 
its inclusion becomes essential for understanding optical singlet­
triplet transition intensities and polarisations [25]. 

It will be instructive at this point to make some qualitative 
remarks on the effects that the difference between Eqs (9) and 
(10) makes on the band structure calculations and the behavior 9f 
singlet and triplet excitons. Unlike t~e exchange integrals Kn , 
the intermolecular Coulomb integrals In , are strongly depende8g 
on the electronic structure of the iso~ated molecule and can be 
reduced using a multiple expansion to products of integrals over 
electrons on the same molecule. The lattice sums (7) with trans­
fer matrix elements given by (9) are slowly convergent and contri­
butions fr~m distant neighbors must be taken into account, espec­
ially for k ~ 0 [17]-[19]. Long-range interactions must thus be 
included in singlet exciton band structure calculations. On the 
other hand, the intermolecular exchange integrals (10) decrease 
rapidly (nearly exponentially [22],[18] with distance and the 
lattice sums (7) converge rapidly. Hence, consideration of just 
few nearest-neighbor interactions is usually sufficient to obtain 
a good approximation to triplet exciton band structures. Clearly, 
the price of this simplification is the fact that the exchange 
integrals are very sensitive to the behavior of the molecular 
wavefunctions in the region between the molecules and also the 
relative intermolecular orientation which determines the degree 



378 V. ERN 

of overlap. Hence, a good knowledge of the crystal structure and 
of the wave functions at great distances from bhe molecules are 
needed for a first-principles band structure calculation. The small­
ness of the exchange integrals makes the result more sinsitive to 
the assumptions involved in the numerical computation, and to 
effects like non-orthogonality and admixture of charge transfer 
states [23]. In the usual case of aromatic crystals the electrons 
involved in the lower triplet transitions are ~ electrons whose 
orbitals are perpendicular to the plane of the molecules. One 
expects the biggest overlap, and therefore, the biggest transfer 
matrix elements between neighboring molecules whose planes cover 
the most each other in a nearly parallel way. So a simple in­
spection of the crystal structure can allow sometimes a qualitative 
prediction of the anisotropy of the triplet exciton bandwidths and 
hance of triplet migration. 

The fact that transfer matrix elements for singlet excitions are 
typically two to three orders of magnitude bigger than those for 
triplet excitions, should not mis.1ead the reader into thinking that 
the transport length for singlets will be correspondingly larger than 
for triplet excitions. Indeed, the excitation transfer time between 
two sites is 102 - 10 3 times faster for sing1etexcitions, but triplet 
exciton lifetimes ( ... 10-2 sec) are typi12a11y 6 orders of magnidude 
longer than those for singlet excitions (~ 10-8 sec) and, as pointed 
out first by Stern1icht et a1. [26], the degree of transfer during 
the lifetime for triplet excitions is usually considerab1ey greater 
than that for singlet excitions. As has been first suggested by 
Avakian et a1. [27], triplets do indeed travel macroscopic distances, 
several thousands of lattice spacings, and clearly represent a bu1d 
property of the organic solid state. 

It will be instructive for what will follow in this presentation 
to close this section with a simple example of triplet exciton band 
structure for the packing shown in Fig. 1. As mentioned before, it 
corresponds to the ab plane of the C~h structure with two molecules 
per unit cell, like anthracene, naphthalene and others. The triplet 
transfer matrix elements between molecules lying in adjacent ab (ab 
is usually the cleavage plane) planes can be considered as negligible. 
The relevant nearest-neighbor matrix elements will be donoted by Sa' 
Sb' and S , as shown in Fig. 1. This last matrix element corresponds 
to the in~eraction between the two trans1ationa11y inequivalent latti­
ces. The [-dependent part of lattice sums (7) is simply given by 

+ + ++ ++ 
Mll(k) = Mzz(k) = 2Bbcos(kob) + 2Bacos(k oa) 

1+ + 1+ + 
MIZ = MZl = 4Bdcos(zkoa)cos(zkob) 

(11) 
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since each molecule is surrounded1by 8 nearest-neighbors, namely, 
~ -+ -+ ~ 

two at ±b, two at ±a and four at 2(±a ±b). With matrix elements 
(11) the eigenvalue problem (5) is trivial and the dispersion re­
lations for the two exciton band branches are given by 

Figure 2 illustrates a typical behavior of the two branches given 

Fig. 2. 

T 
Typical example of the two (±) branches for the lowest 
triplet exciton band state of a crystal of space group C~h 
with two molecules per unit cell. The bands are drawn for 
Sd~2Sb> 0, and S «Sb' Note the brake in the ener¥y sca­
le. Typical band~idths are of the order of 10-20cm- , while 
the center of gravity of the bands lies above the ground 
state ([ = 0) point at an energy which roughly corresponds 
to the molecular first triplet excited state, e.g., typi­
cally, 2 x 104cm-l. 
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-+ by (12) for k along the a and b directions for the first BZ in the 
reciprocal lattice. A general-treatment of the space group C~h can 
be found in Ref. (21). Note that, contrary to inorganic solids, 

-+ 
the crystal ground state is not a band b¥t a single state at k = 0 
(r point of the BZ). In Fig. 2 the two k = 0 triplet states have 
A and B symmetries [20],[23], so that they are optically acces­
s~le fr8m the A ground state. The separation of the A , B 
k = 0 band stateg is usually called the factor group or HavyHov 
splitting and can be observed spectroscopically [25],[28],[29]. 
For the case shown, this splitting ~ is the total bandwidth along 
the k//~* dire~tion, and according to (12) is ~ ~ 8Sd , so that Sd 
can be directly extracted from spectroscopic date even at room 
temperature [25],[28],[29]. 

As stressed before, the quantity of interest for transport 
studies is the exciton's mean-square velocity. As bandwidths for 
triplets are typically much smaller than kBT the Boltzmann weighting 
factor can be neglected. For instance, from (12) one immediately 
gets 

(13) 

-+ -+ 
as the mean-square exciton velocities along the a and b crystallogra-
phic axes, ~ and ~ being the lattice constants. 

For a one-dimensional crystal having just one strong nearest­
neighbor matrix element a along one direction of lattice constant ~, 
one simply has 

E(k) = 26cos(ka) (14) 

the bandwidth being 46, and the exciton's mean-square velocity 

(15) 

so that in the purely coherent limit of motion the exciton's trans­
port length 1", that is, the distance travelled by the exciton along 
the chain during its lifetime t will be simply given by 

(16) 
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III. DIRECT APPROACH FOR STUDY OF TRIPLET TRANSPORT VIA DELAYED 
FLUORESCENCE 
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From the previous section it is apparent that triplet excitons 
can be viewed as mobile pseudoparticles which during their lifetime 
L can travel in the coherent (absence of scattering) limit a distan­
ce LT = <V2>~L' As temperature is raised, scattering by phonons 
diminishes this transport length , the motion tending to the diffusi­
ve (completely incoherent) limit. Even in this limit the transport 
length LT = (2DL)~ , D being the diffusion constant, can be conside­
red as macroscopic (e.g. several microns). Thus, even at a low exci­
ton concentration excited in a crystal ,there will be a non-negligible 
pr~bability that two excitons will meet, e.g. reside on two neighbo­
ring sites. This leads to the formation of virtual pair-states (T,U 
which can simply dissociate or undergo a fusion, that is, a pair­
annihilation process which in turn can lead to creation in the crys­
tal of a higher energy singlet or triplet state [k],[14]. The path 
leading to emission of delayed fluorescence is depicted schemati­
cally in Fig. 3. For more details about fusion and dission of ex­
citons the reader is referred to Ref. (1) and more specifically to 
the works of Merrifield [13] and Suna [14]. 
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Fig. 3. Schematic representation of triplet-triplet annihilation 
leading to emission of delayed fluorescence. 
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In Fig.3 the first narrow excited triplet and singlet bands 
are depicted as single energy levels. The heavy line levels are the 
purely electronic states, while the lighter lines the vilbronic bands 
associated with these states. Upon So + Tl excitation and creation 
of a population in the Tl band, the triplets can disappear by direct 
radiative (phosphorescent) or radiationless decay with an overall 
lifetime T (typically lO-2 sec) and .by formation of pair states (Tl, 
Tl) a fraction of which undergoes a spin-allowed fusion process into 
a near-resonant vibrationally excited first singlet state SI~ , which 
in turn, very rapidly (lO_12 sec) relaxes in the lowest SI band. An 
excited first singlet population (typical lifetime ~lO-8sec) is thus 
built in the crystal leading to an emission of fluorescence. This 
fluorescence differs from the usual prompt fluorescence by the fact 
that its buildup and decay are governed by the slowest rate in the 
overall process, that is, by the triplet exciton lifetime. Hence the 
name of delayed fluorescence. In many aromatic molecular crystals 
the relative energies of the Tl and SI states are such that the dou­
ble of the energy of Tl lies well above the SI energy so that singlet 
creation via triplet-triplet fusion can be considered as a relatively 
common process and delayed fluorescence emission can be observed in 
many materials upon excitation of the lowest triplet state. 

We shall discuss now in which way observations of the delayed 
fluorescence emission can be put to use to extract information on 
the transport properties of the triplet exciton itself [30]-[33]. 
Let's suppose that a spatially inhomogeneous, time-dependent triplet 
exciton population has been created in the crystal by a direct So+Tl 
excitation. The spatial and temporal evolution of the concentration 
n(t,t) [cm-3] of this population will be in general governed by the 
kinetic equation 

an + n ani 
~t = G(r,t) - - + ~I + 
at" T at ann 

ani at mot (17) 

+ 
On the right-hand side, G(r,t) represents the spatially inhomogeneous 
time-dependent source term, the second term the exciton's decay with 
lifetime T. The third term is the loss of excitons due to mutual anni­
hilation and the fourth term gives the change in time of the exciton 
concentration at a point t in space due to exciton motion. The mutual 
annihilation term is assumed, for not too high concentrations [14], to 
have the form 

ani 
at ann 

(18) 



TRIPLET EXCITATION TRANSFER STUDIES 383 

that is, proportional to the square of the concentration via a total 
annihilation rate constant Ytot • 

solution of (17) for a given source term G(t,t) and different 
initial conditions n(t,O) will yield n(t,t) from which the observable 
delayed fluorescence signal is obtained as 

1 J 2 -+ 3-+ ~(t) = 2 fY tot vn (r,t)d r (19) 

where the integration is performed over the excited volume V of the 
crystal. Factor 1/2 in (19) takes care of the fact that two triplets 
produce only one fluorescing singlet, while factor f<1 accounts for 
the fact that only a fraction of pair-annihilations leads to singlet 
states which in general will emit fluorescence with some quantum 
efficiency n ~ I. The signal ~(t) contains information on the motion 
of excitons due to the fact that the square of the concentration must 
be integrated in (19) which forces the integral to depend on the 
actual spatial triplet exciton distribution at any instant t. Note 
that this would not be the case for the phosphorescent signal due 
to the direct decay [30],[33]. 

For several experimental and practical reasons detailed below, 
it is convenient to perform transport experiments based on (17) and 
(19) under the following conditions: 

a) To avoid complications in obtaining the solution, which 
would be typically numerical, of the non-linear equation 
(17) it is convenient to perform the experiments using 
sufficiently low exciting intensities so that the annihi­
lation term (18) that is, Ytotn2, becomes negligible as 
compared to the direct decay and motion terms in (17). 
With such experimental precaution analytical solutions of 
(17) can be used in practice, which, not only eases the 
computation of (19) but also avoids the necessity of fit­
ting the observed function ~(t) with additional parameters 
like the exciting light intensity, the mutual annihilation 
rate Y ,and the ground state singlet-first excited 
triplefokbsorption coefficient, quantities which are known 
to be difficult to obtain with great accuracyl. As will be 
seen later, in the low-exciton concentration limit the ob­
servable time evolution of ~(t) will only depend on the 
easily measurable triplet lifetime T and on the exciton 
transport parameters of interest which are contained in 
the last term of (17). 

b) The mutual annihilation process leads typically (e.g. Y 
~ 10-11cm3sec- 1) to weak delayed fluorescence signals, ~~~ 
restriction a) will require that the excited crystal volu-
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me V in (19) is made as big as possible so that adequate 
signal-to-noise ratio for the signal ~(t) is achieved. Thus, 
in practice, sufficiently big samples of the material, typi­
cally ~lcm x lcm x O.2cm platelets, and excitation with an 
expanded laser beam are required. 

c) As seen in section 3, triplet exciton band structures can 
be highly anisotropic so that, typically, one should expect 
a highly anisotropic exciton motion. Thus, in order to ex­
plore this anisotropy and to extract, for instance, tenso­
rial motion parameters, it is necessary to perform the ex­
periments using in (17) a source function G(r,t) which 
creates a strong spatial exciton-concentration gradient 
only along one, easily controlable, direction, say xQ, with 
respect to the crystallographic axes. 

d) For the purpose stated in c) the best spatially inhomoge­
neous excitation of the crystal would be that through a 
narrow slit of some width Xo so that a sharp excitation con­
centration gradient is created along the xodirection. This 
direction can be varied with respect to the crystal axes 
by cutting or cleaving samples in the form of platelets 
according to chosen crystallographic planes, and then rota-, 
ting the slit around the exciting beam axis so as to explo­
re the motion anisotropy in each plane. However, there is 
a strong drawback to such single slit-excitation. It is 
clear that in order to obtain noticeable effects due to mo­
tion from the last term in (17) the slit width Xo must be 
comparable to exciton's transport length LT during its life­
time. In practice this will mean that the excited volume 
of the crystal will be small, in contradiction with the re­
quirement stated in b). 

e) A good compromise between conditions a) through d) above 
can be met by exciting the crystal not through just one slit 
but through an array of periodically alternating open and 
opaque strips with spatial period xo, that is, through what 
is usually known as a Ronchi ruling or grating. Such rulings 
are available with spatial periods xo ranging from fractions 
of a cm to fractions of a micron. In this way, a sufficient­
ly big volume of the crystal can be excited, through the 
ruling, for instance, with an expanded to~. lcm diameter 
laser beam. At the same time one has a spatially inhomoge­
neous distribution whose basic length x can be chosen to 
be comparable to exciton's transport le~gth so that motion 
effects can be detected in (19) where the signal ~(t) is 
collected by a photomultiplier from the whole excited vo­
lume. 
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f) Finally, to ease the solution of (17) it is convenient to 
have a source term of the form 

G(x,t) = aoiog(x)f(t), (20) 

that is, to separate the spatial and temporal dependencies. 
In (20) ao is the So -+ TI absorption coefficient [1],.,t the 
exciting beam intensity, and g(x) and f(t) are normalize~ 
to unity functions determining the space-time-dependence, 
respectivelY,of the source term per unit volume and unit 
time. As will be seen below, in the experimental setup such 
separation of variables is very simply achieved, for instan­
ce by using a chopped or pulsed laser beam which excites 
the crystal through a stationary Ronchi ruling of known 
period Xo. An example of the case of a moving ruling can 
be found in Ref. [32]. 

By meeting experimental conditions a) through f) above, equation 
(17) can be written with l..l :: 1/T. as 

~nt = ao~og(x)f(t) - l..ln + ~nl o ot mot (21) 

in which g(x) can be any spatially periodic function. For a Ronchi 
ruling whose open strips can be, in general, a fraction r ~ 0.5 of 
the period Xo as shown in Fig.4, one can write g(x) in terms of its 
Fourier components as 

with coefficients 

the parameter 

So = r, for 1/, = 0 
S_1/, = sin(1/,~r)/1/,~, 

n = 2~ / Xo 

(22) 

(23) 
1/,=1,2,3 •.• 

(24) 

being just the spatial angular frequency. For the typically used Ron­
chi gratings with equal open and opaque strips one gets only contri­
butions from the odd spatial harmonics, that is 

1/,=1,3 .. 5... (25) 
(oda) 
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Fig. 4. The spatial modulation function g(x) introduced by a 
Ronchi ruling. 

If some amount of uniform stray light 6i is assumed to be present in 
the shadow (g(x) = 0) regions due to diffraction and scattering from 
the illuminated strips the coefficients S~, ~ F 0 will be diminished 
to [30]. 

S' = as 
~ ~ 

(26) 

with 0 = 1 - 26i/io ~I, reflecting the loss of contrast in the per­
fect shadow pattern of the ruling. The experiments require good opti­
cal quality crystals and surfaces, typical values for 6i/i& achieved 
in practice being of the order or less than 5% [30]-[33] •. 

A spatially periodic excitation of the crystal can also be obtai­
ned by using two crossed laser beams whose interference will give the 
pattern 

1 
g(x) = 2 (I + cosnx) (27) 

that is, So = S} = S_1 = i , S~ = 0 for ~>I in (22) the n given by 
(24), the spatial period Xo being now determined by the beam-crossing 
angle e and the wavelength A of the excitation by Bragg's formula 
Xo = A/2sin(!e). Such spatially periodic excitation has been success­
fully applied to study, via delayed fluorescence, the diffusion of 
excited molecules in solution [34]. An advantage over Ronchi rulings 
of distribution (27) is that smaller periods Xo can be obtained, a 
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disadvantage being the fact that the observable effects due to 
transport become considerably smaller as only ~ spatial harmonic, 
and hence a less sharp exciton concentration gradient is used to 
probe exciton's motion. The spatially periodic excitation (27) 
has been recently applied using two crossed pulsed laser beams to 
study singlet exciton diffusion [35],[36], a third laser beam being 
used to probe the scattering by the cecaying pattern. Ref. [36] 
describes in detail the precautions that should be taken to in­
terpret such experiments in terms of singlet transport. 

IV. THE TRIPLET EXCITON MACROSCOPIC DIFFUSION EQUATION 

At not too low temperatures, due to the strong exciton phonon 
interaction in organic solids [1], exciton motion is expected to be 
completely incoherent so that a macroscopic diffusion equation is 
expected to be valid to describe exciton transport in a neat organic 
crystal. The motion term in (21) wit11 be then given by Fick's law 

(28) 

where D is the component of the triplet exciton diffusion tensor 
along tfie xo direction of the rulings periodicity, which is perpen­
dicular to the ruling lines. If the chosen direction xo for the ru­
ling periodicity makes the angles e. j = 1,2,3 with the tensor's 
principal axes, one has J 

3 

D = L 
X 

j=l 
(29) 

where D .. j = 1,2,3 are the principal values of the triplet diffu­
sion te~~or whose knowledge allows to map out the diffusion anisotro­
py in any crystallographic plane of the crystal. 

With (28) and (22) equation (21) can be written as 

an 
00 

a2n 
aoio L S i£nx f (t) (30) at"- £e -].In+D --

£= 
x ax2 

_00 

which represents the macroscopic triplet exciton diffusion equation 
under a spatially periodic excitation. For vanishing or spatially 
periodic initial conditions as used in the experiments to be descri­
bed later,one can write the solution of (30) in the form 

n(x, t) (31) 
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in which the time-dependence of the spatial amplitudes of exciton­
concentration harmonics is determined by 

(32) 

in which the quantities 

(33) 

are factors which, for each spatial harmonic, increase due to diffu­
siollithe exciton's decay rate ~ = T- 1 • In (33) the adimensiona1 
motion parameter ~ is defined as 

(34) 

that is, it scales the exciton transport, here diffusion, length 
during its lifetime 

(35) 

to the "yardstick" used to probe the transport, which here is the ru­
ling periodicity Xo • For any time-dependence f(t) of the exciting 
beam, solutions of equations (32) can be in general written as 

t 
nt(t) = aoioSt I e-at~t'f(t - t')dt' + nt(O)e_at~t (36) 

o 
or more compactly in the Laplace transform form 

where the tildes denote the Laplace transforms in the time domain, 
rate E being the Laplace variable. 

The delayed fluorescence signal (19) can now be obtained by 
squarin& (31) and integrating over one ruling period. One gets 

00 

~(t) = K L (2 - 0RO)n~(t) 
R,=O 

(38) 

the signal being thus determined by the sum of the squares of the 
spatial amplitudes of the exciton concentration harmonics given by 
(36). The time-dependence of ~(t) is sensitive to exciton motion 
through the at's which, in turn, depend on the transport parameter ~. 
For a given Xo in an experiment, the best fit of the observed time­
dependence of delayed fluorescence will yield a value of ~, from which 
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the triplet-exciton-diffusion tensor component D is extracted via 
(34) and (35). As will be seen in the next section such extraction 
can be carried out without a priori knowledge of the proportiona­
lity factor K in (38) which in general contains unknown crystal and 
experimental parameters. 

Before going into details of the work needed in actual experi­
ment, it will be instructive to point here the basic interest in ob­
taining this tensor for an organic material. First of all, a direct 
measurement of the principal values Djj j = 1,2,3 of the triplet 
exciton diffusion tensor will be of interest to verify calculated 
exciton band structure anisotropies [23],[28] and for obtaining the 
intermolecular exciton hopping rates. In the hopping model one has 

q I -+q' 
D • • = - L Fq 

I (R I 
1"J 2 I I nn n 

n q 

(39) 

where Fqq ' is the hopping rate between a molecule in the nth unit 
nn' • • 11' d cell for sub lattice q and some other molecule 1n un1t ce ~ an 

sublattice q' and where (tq: - Rq). . is the distance between the 
, . n R1,.,J· . h f h pair projected, respectlvely on t e 1,. and J1- axes 0 t e tensor 

component. As stressed before, the ne~rest-neighbor appr?xi~ation 
is typically adequate for triplet exc1tons so that (39) 1S 1n prac­
tice simplified by considering hopping rates in just one or a few 
unit cells. For instance, for the lattice shown in Fig.1 having a 
triplet band structure given by (39) one has in the ab plane 

(40) 

and Da'a' « D~, Dbb' In (40) the hopping rates are labelled with 
the same subscr1pts as those used for the nearest-neighbors triplet 
transfer matrix elements shown in Fig.l. In a crystal like anthrace­
ne one expects Fa « Fd so that a measurement of Daa ' the triplet 
diffusion tensor component along the crystal a axis, can yield imme­
diately Fd, the hopping rate between the inequivalent molecules in 
the unit cell [39],[37],[38]. If Dbb is also measured one can get Fb 
from Fb = (Dbb/b ) - (Dbb /a2). 

An independent determination of the principal intermolecular hopping 
rates is of primary interest to test basic theories like thos of the 
magnetic field effects on the triplet mutual annihilation rate cons­
tant [14], of the ESR linewidths [5], and of the exciton dynamics 
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itself. For instance, in the SLE approach to exciton motion of 
H~ken and Strob~e [2],[5], t~e hopping rate Fd for the lait~ce con­
sl.dered above Wl.ll be ~eterml.ned by two terms Fd = 1'i. -l(SdT' 1 + 2yd) , 
where the first term Sir, sometimes called the local [37] or 
phonon hindered term, ~an be determined from spectroscopic data 
on the S + Tl absorption band: Sd from the Davydov splitting, 
and r fr8m the (0,0) absorption l1.newidth [51.[28[,[37]-[41], so 
that yd, the strength of the correlation in the fluctuations of 
Sdm which determines the nonlocal or "phonon assisted" contri­
bution to diffusion in this theory can be estimated from the 
diffusion measurements. For more details on all thes theoreti-
cal aspects the reader is referred to the references cited above. 

V. EXPERIMENTAL DETERMINATION OF THE TRIPLET EXCITON DIFFUSION TENSOR 

We shall focus now our attention on basic experiments which 
allow determination of the triplet diffusion tensor using the forma­
lism of the previous section, that is, via detection of delayed fluo­
rescence from a crystal excited with a spatially periodic pattern of 
light. The starting point is equation (36) in which f(t), the time 
modulation of excitation, can be any function of time. This func­
tion will be now chosen so that the experiments can be performed 
in the easiest and most reliable way. In practice, three approaches 
have been developed for this purpose: A) Time-dependent buildup 
and decay transient experiments [30]. B) Phase-lag steady-state 
experiments using a periodic in time excitation [31]-[33], and C) 
Steady-state experiments in which the crystal is excited through 
a ruling using a constant intensity excitation [27], As has been 
remarked early [30] steady-state experiments C) can lead to gross 
overestimation of the diffusion constant since such experiment can­
not simply distinguish if the presence of the excitons in the non­
illuminated regions of the ruling is due to their motion or to 
spurious effects like diffraction or scattering of the exciting 
light into the dark regions. In the time-dependent experiments 
of type A) and B), the relatively slow spreading of the excitons 
from the illuminated into the dark regions .can be distinguished 
from the instantaneous effects due to presenceof stray light in 
these regions. l{oreover, the experiments are performed in such 
a way that spurious stray-light effects can only lead to a de­
creas~ of the effect attribuable exclusively to exciton motion 
and the interpretation of the experiment can never lead to over­
estimations of the extent of exciton's travel. In what follows 
we shall thus only describe the transient and phase-lag experi­
ments A) and B). The experimental setup for both experiments is 
shown schematically in Fig. 5. The experiments will be illustrated 
in what follows using rulings 'of equal open and opaque strips, 
that is, with coefficients SF given by (25) and taking a stray­
light factor of cr = 1. Addifional experimental details can be 
found elsewhere [30]-[32]. 
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V.A. Time-Dependent Buildup and Decay Transient Experiments 

In Fig.5 the switches S are set on positions 1. The time-modula­
tion consists of either a sudden. step-function illumination of the 
sample for the buildup study. or of a sudden cut-off of a constant 
excitation so that the decay of ~(t) from its steady-state value can 
now be followed. The signal-to-noise ratio of the delayed fluorescen­
ce signal is improved with a transients-averaging computer triggered 
by the exciting light signal. The time-dependent signals are norma­
lized by dividing by the saturation value for buildup and by the ini­
tial value for decay experiments. respectively. From each normalized 
to unity time-dependence ~N(t) obtained in this way for a given ru­
ling.of known period xo.the normalized time-dependence ~o(t) in the 
absence of motion effects is substracted. These curves are obtained 
in the same way but just with a blank glass substituting the ruling 
in the beam path so that LT « xo(~~O). the diffusion effect beco­
ming negligible. The difference curves 6~(t) = ~N(t) - ~o(t) are 
plotted or printed for analysis and extraction of the motion parame­
ter ~. 

Fig. 5. 

TAe 

PD 

F TM 

LB iof(t) 

Experimental setup to study triplet transport via time­
dependent delayed fluorescence. LB expanded laser beam, 
F filters, TM time-molulator. R Ronchi ruling, X crystal 
platelet, PD and PE photo-multipliers detecting through 
appropriate filters the time-dependent delayed fluores­
cence and exciting light signals, respectively; S swit­
ches, TFA two-channel Fourier analyser, PHM digital pha­
se meter, TAG signal averaging computer, XY recorder or 
printer. Rulings can be replaced without disturbing crys­
tal position in the beam. 
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1. Buildup of Delayed Fluorecence. For this case one has f(t) 
9(t), the Heaviside function, the initial conditions being 

nl(O) = O. From (36) one gets 

(41) 

The delayed fluorescence buildup time-dependence is then by (38) 
of the form 

(42) 

where 

(43) 

The steady-state saturation value S - S (~) for the buildup is given 
by 

00 00 

S - ~b(oo) ex: L Ay" = 1 + L AR, (44) N R, ... O R,=1 

and depends also on the motion parameter ~ defined by (34). Note 
that for the R, = 0 term, Ao = I, ao = I, so that, as expected, the 
spatially uniform component of the ruling's periodicity doesn't con­
tribute to the diffusion effect. The normalized buildup of delayed 
fluorescence is customarily written in the form 

(45) 

As explained before the function of interest to the experiment 
is the time-dependence of the difference ~~b(t) between (45) and 
(1 - e-~t)2 the normalized time-dependence obtained in the absence 
of rulings (~~O). Specifically, for the typical experiments with ru­
lings with equal open and opaque strips (25), that is, r = 1/2, one 
has AR, , 0 for R, , 0 odd only, so that AO = I, 

A - 8 -2 l R, - 7T -::"R,"'"2 7":(l:--'-+-J/,"""2""'~""'2~)""'2 ' t = 1,3,5 ••. 
(odd) 

and the difference buildup function can be written as 

(46) 

(47) 
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with 

where 

8- 1 L A£(Bi(t) - 1), 

~dd 

Eqs (47) - (49) have been written in the form must suitable for 
computer calCUlttl.Ons. Tne calculated tur1ct~ons are compared to 
experimental ~~ (t)'s obtained for rulings of known periods xo ' 
best fits yielding ~ and hence LT from which Dx is extracted. 

393 

(48) 

(49) 

the 
the 

2. Decay of Delayed Fluorescence. For the decay experiments one 
has as initial conditions the value ni (00) =ao~oT8iai-l as given by 
(41) and f(t) = O. Eq. (36) yields immediately 

(50) 

Proceeding now in the same way as above one gets for difference 
function ~~d(t) for the decay 

with 

where 

8- 1 L A£(D 2 (t) - I), 

~dd 

(51) 

(52) 

(53) 

Expressions (47) and (51) for coefficients Ai as given by (46) 
are plotted in Fig.6 for several values of the motion parameter ~ 
as a function of time expressed in units of lifetime. An experi­
mental example of measured differences of normalized delayed fluo­
rescence is shown in Fig. 7. 

In order to perform the experiments unde the most favorabel 
conditions some remarks on the behavior of the ~~(t) functions will 
be useful. It is important to note that the behavior of the ~~(t)'s 
being determined by the product of two time-dependent fuctions in 
(47) and (51), passes for each value of the motion parameter ~ 

through a maximum. The diffusion effects increase as the parameter 
s or, equivalently the ratio LT/xo increases, and attain their big­
gest values for ~ ~ 0.9 when the diffusion length is about 1/5 or 
the ruling period x~ used to probe the motion, that is, about one 
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Fig. 6. Plot as a function of time in units of lifetime of the 
buildup and decay difference functions ~~(t) given by (47) 
and (51). Curves a,b,c,d, correspond to values of motion 
parameter ~ = 0.2, 0.4, 0.9, and 1.5, respectively, or equi­
valently, for diffusion length to ruling period ratios 
LT/xO of 0.045, 0.09, 0.20, and 0.35, respectively. 

half of the width of a dark region. The maximum effects occur at 
times in the vicinity of the triplet excitoq lifetime T(at t ~ 

1.06 T for the buildup and at t ~ 0.36 T for the decay, respecti­
vely). As physically expected, when the parameter s increases 
further, that is, as the exciton diffusion length LT becomes com­
parable or larger than the ruling period, the observable effects 
begin to decrease, with the maximum of the effect occuring at 
increasingly shorter times, since now the excitons diffusing out 
of a given illuminated strip can reach during their lifetime the 
neighboring illuminated regions, and the triplet exciton concen­
tration becomes more rapidly uniformized over the whole crystal. 
In practice it is convenient to use ruling periods x which, 
typically, lie in the range 2 to 20 times the diffus~on length LT 
to be extracted from the data. For a given ruling the effect in 
the buildup is always bigger and appears at longer times from 
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fig. 7. Experimental behavior (points) of the normalized delayed 
fluorescence differences observed for an anthracene crystal 
having a triplet exciton lifetime of 1 = 24.0 msec. as in­
dicated by the arrow. The numbers labelling each curve cor­
respond to the spatial frequencies x;l of the rulings used 
to probe the motion, expressed in number of lines/inch. 
(From Ref. (30)). 

the start of the process than that for the decay. It is thus advan­
tages, whenever possible, to perform the experiments detecting 
changes in the buildup of the delayed fluorescence. Spurious effects 
dur to presence of stray light in the dark region when taken into 
account by using coefficients (26) instead of (25) in (43) lead 
to a nearly uniform decrease of the observable ~~(t) effects. Ef­
fects as those shown in Fig. 6 and 7 can be only interpreted as due 
to triplet diffusion. an overestimation of the transport length be­
ing not possible [30],[33]. The experimental behavior shown in 
Fig. 7 is for an ab plane anthracene platelet, the ruling lines 
being set parallel to the crystal ~ axis so that motion along the 
crystal b axis is being studied. Analysis of the data [30] yield 
a di~fusion length of 30 ± 3~m and by (35) the value Dbb = 
1.9 - 0.3 x 10-4 cm2sec-l for the triplet diffusion tensor com­
ponent along b in anthracene. 
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V.B. Phase-Lag Steady-State Experiments 

Transient experiments described above provide a direct phy­
sical way to extract exciton diffusion parameters. However, the 
experiments become cumbersome and time-consuming if one wishes to 
map out the complete anisotropy of the triplet diffusion tensor of 
a crystal at different temperatures. It was soon realized [31] 
that some information can be more quickly extracted from measure­
ments of the changes of phase-angles of the delayed fluorescence 
signal harmonics with respect to those of a periodic in time 
modulation of the exciting light. Because of the intrinsic tri­
plet lifetime the delayed fluorescence waveform under periodic il­
lumination lags that of the exciting light. Since motion effects, 
appearing when a ruling is introduced in the beam, speed-up both 
buildup and decay of delayed fluorescence, this phase-lag is re­
duced, the changes depending thus, for each harmonic, on the dif­
fusion parameter ~. 

In the experimental setup shown in Fig.5 the switches S are set on 
position 2. The time-modulation of the laser beam is made to be pe­
riodic in time, that is, in general, proportional to 

f(t) = 
n= -co 

(5.4) 

where w is the angular frequency. This excitation signal, detected 
with photomultiplier PE, and the resulting delayed fluorescence si­
gnal ~(t) which will be also a periodic function of time when the 
steady-state regime is reached, that is, of the form [31]. 

co 

q,(t) a: l (55) 
p=-oo 

are fed to a two-channel Fourier analyzer TFA, The phase-lag of 
a given harmonic of ¢(t) with respect to that of the excitation 
(54) is measured with the digital phase meter PHM with a high de­
gree of accuracy, Typically 0.2°. As written in (55) the amplitu­
des Hp are in general complex quantities, their arguments being the 
phase-lags of interest to the experiment. 

The complex amplitudes H are obtained by specializing (36) 
for the periodic in time excftation f(t) given by (54) and one 
has then 

00 

n~(t) = aDiDS~ L fneinwt 
n= 
_00 
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In the periodic in time steady-state regime, reached in the li­
mit t + 00, that is, for t » T so that contributions from the ini­
tial conditions vanish in (56), the integral is then the Laplace 
transform of unity with variable a£~ + inw, one gets 

(57) 

each spatial amplitude being thus a periodic function of time. By 
squaring (57) and using (38) one obtains the delayed fluorescen­
ce signal in the disired periodic in time form (55) in which the 
complex amplitude Hp for the pth harmonic can be written as 

00 

H ex: L L f f ,L Ann' 
p n n' n n R,=O £ (58) 

nn' with the condition n + n' = p, and in which the quantities AR, are 
given by 

S6(1 + 12t2 + iUWT) (1 + R,2~2 + in'wT) 
(59) 

Expressions (59) can be viewed as a generalization of the quanti­
ties A£ defined by (43). Because of the restriction n + n' = p in 
the double sum (58) its numerical calculation, and extraction of 
its phase ~p , as a function of the motion parameter ~ or of WT does 

not offer in practice particular difficulties. 

The experiments are usually performed using the, strongest, first 
harmonic (p - 1) in (55). For a square-wave time-modulation [33], 
[38] of the exciting beam one has fO = 1/2, f ± n = l/nlT,E.odd only, 
and by (58) the first harmonic ampl~tude of delayed fluorescence is 
then ~iven b¥ 

00 

(60) 

If, as done above for the transient experiments, one considers the 
case of rulings of equal open and opaque strips, one has explicitly 
using (59) 

(61) 



398 V.ERN 

whose argument ~l = arg(H 1) , 

~l = tan-1(ImH1/ReH 1) (62) 

ImH 1, ReHl being the imaginary and real parts of (61), can be rea­
dily computed. The first term in (61) determines for this harmonic 
the phase-lag in the absence of the motion effect 

~o = -tan-1(wT) (63) 

and which is measured with no ruling (~~) in the beam. This angle 
can be us~d to obtain the triplet lifetime T. As in the transient 
experiments motion effects stem exclusively from the second term 
in (61) to which contribute the I # 0 harmonics of the spatial 
periodicity. Hence, the observed decreases in the phase-lag 

(64) 

when a ruling of period Xo is inserted in the beam, are determined 

5.0 

b 

4.0 

----~ 3.0 
~ 
L 
~ 
~ 

~2D 
~ 
~ 

Fig. 8. Phase-lag differences due to exciton motion given by Eq. (64) 
as a function of WT for different values of the diffusion 
parameter ~ = 0.5, 1.0, 1.5, 2.0, 3.0 for curves labelled 
(a) to (e), respectively. 
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by the motion parameter ~ from which the triplet diffusion tensor 
component is extracted via (34) and (35). Fig. 8 and 9 show the 
expected observable phase difference due to diffusive motion as gi­
ven by (64) with (61). Fig. 8 shows the 6p's as a function of WT 

for several values of the motion parameter ~. It is seen that to 
obtain the biggest motion effects (e.g. ~ 4.50 ) it is convenient to 
use chopping angular frequencies such that WT lies between 1 and 2, 
and using rulings of periods Xii so that tpe diffusion parameter 
~ = IzTfLT/xO for the particular srystal studied lies in the neighbor­
hood of ~ f\j 1. In Fig. 9 function (65) is plotted as usually done 
to fit experimental data, ~rat is, for a given WT as function of the 
ruling spatial frequency Xo and using the diffusion length LT as 
the fitting Iparameter. For the figure shown WT = 2. ° with diffusion 
lengths of 15, 20, 30, 40 ~m for the curves (a) through (d), respec­
tively. 

The precision typically achieved in the stationary phase-lag 
experiments is illustrated in Fig. 10. The figure shows measure­
ments of phase-lag differences (points) observed for an anthracene 

5.0 .----,-----,-----,-------.------, 

4.0 

,-.... 
IJ) 

~3.0 
c.. 
~ 
"0 
--20 
cr' 
<J 

1.0 

Fig. 9. Phase-lag differences given by (64) for WT = 2 and plotted 
as a function of the ruling spatial frequencies for different 
values of the diffusion length LT = 15, 20, 30, 40 ~m for 
curves labelled (a) to (d), respectively. 
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crystal at room temperature having a triplet lifetime T = 16.9 X 
10-3 sec [31]. The ruling lines are set perpendicular t9 the 
crystal a axis along which the diffusive transport will be measured. 
The solid curves are the expected behaviors given by (64) plotted 
as in Fig. 9 for the indicated values of the diffusion length. 
From the best fit one deduces a diffusion length along the~ axis 
of this crystal of L~ - 22.0 ± l.~ ~m so that D = 1.5 ± 0.2 x 
10-4 cm-2 sec-I. Fig. 11 illustrates the resul~ of a complete 
measurement of the anisotropy of the triplet diffusion length 
and of the diffusion tensor as described by (29) in the ab plane 
of a ~terphenyl crystal [38]. The direct technique via delayed 
fluorescence described in this section to measure components of 
the triplet exciton diffusion tensor has been applied to several 
organic solids, namely anthracene [30],[31],[28],[37],[12],[14], 
[5], naphthalene [40],[41],[5],[15],[42],1-4 dibromonophthalene 
[40],[43],[45], tetracene [46]-[48], trans-stilbene [40], p- ter­
phenyl [38],[49], and pyrene [50]-[53], The by-no-means exhaus­
tive list of references given for each material include also those 
for related studies in which triplet diffusion tensor values have 

2 4 6 8 

l/Xo [mm-1] 

Fig. 10. Measured phase-lag differences due to diffusion in an 
anthra~ene crystal (from Ref. [31]). 
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Fig. 11. Anisotropy of diffusion length and diffusion tensor in the 
ab plane of p-terphenyl (from Ref. [38]. 

been used to test theories of exciton dynamics in organic matter, 
to fit experimental behaviors of other triplet properties, as well 
as those in which triplet hopping rates have been inferred in-
directly. . , 

VI. POSSIBILITY OF DETECTING COHERENCE EFFECTS IN TRIPLET TRANSPORT 

The direct approach to study triplet-exciton motion via delayed 
fluorescence described in Section 4 has been developed in Section 5 
and 6 specifically for the case when a macroscopic diffusion equa­
tion is applicable to describe triplet motion in a near organic 
crystal. Recently, the theory of this experimental approach has been 
extended [54] to the situation in which the motion would not be co~ 
pletely incoherent as in the diffusive case, that is, when coheren­
ce effects are present in the transport. The microscopic theory of 
exciton transport used in Ref. [54] is that of generalized master 
equation (GME) [4],[55], which is capable of providing a unified 
analysis of coherent and incoherent motion [4],[56],[57]. The theory 
allows, in principle, to gradually move as the conditions, for in­
stance, the interaction with the phonon bath, change from the co~ 
pletely coherent case when the exciton transport length is given by 
(16) to the completely incoherent (diffusive) case in which the ex­
citon transport length is given by (35). The theoretical basis of 
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the powerful GME approach and an analysis of its applicability to 
a variety of situations including singlet motion can be found in 
the presentation of V.M. Kenkre [58]. 

For the experimental situation described in detail in Section 4 
the starting point of the theory is, instead of the macroscopic 
equation (21), the motion equation 

(65) 

for the probability Pm(t) of finding an exciton at the mth site of 
the crystal at time t. The motion contribution in (65) is given 
by 

aPml 
at mot 

t 

~, f 
o 

{W ,(t - t')P ,(t') - l.J, (t - t')P (t')}dt' mm m 'm m m 

(66) 

where the W~' (t)'s are the standard GME memory functions [4], the so­
lutions of t(66) being, usually written in the form [4],[56],[57]_ 

P (t) = L ~ ,P (0) 
m m' mm m 

(67) 

where the ~mm'(t)'s are the propagator-functions between the sites 
m and the site m', the Pm'(O)'s being the initial (t = 0) conditions 
for the probabilities of occupation [4], [54]. In (65) gm is the discre­
te site-function determined by the spatially periodic e~citation, 
and f(t), the normalized time-dependence of the exciting beam, the 
parameters ao' i o , T having similar meanings as in Section 4. To 
illustrate the appearance of coherence effects, the delayed fluores­
cence signals of interest to the time-dependent experiments descri­
bed in Section 6 will be obtained explicitly for one dimensional 
crystals in the nearest-neighbor approximation, that is crystals 
whose triplet exciton's band structure and mean-square velocity are 
given by expressions (14) and (15). For motion studied along the 
crystalline chain of lattice spacing a the site function characte­
ristic of the ruling geometry will be-given by 

00 

g = L 
m £= 

_00 (68) 
where now n stands for the adimensional wavevector 

n = 2na/xo (69) 

the coefficients S£ being given, as before, by expressions (23). 
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(25), or (26) depending on the periodic spatial geometry used. 

With (67) and (68) the solution of the augmented GME equation 
(65) for any time-dependence f(t) for the exciting beam can be 
written as 00 t 

P (t) = aoio I sneiR,nmf ~R,n(t')e-~t'f(t - t') dt' 
m R,= )(, 

-00 0 

where rate ~ = ,-1, as before, and ~~n(t) stand for the discrete 
Fourier transforms of the propagator for the wavevectors R,n. It 
should be noted that because of .the translational symmetry of the 
crystal the GME memories and propagators ~mm' can be considered as 
single-indexed quantities ~m-m'(t) = ~m'-m(t), depending only on 
the distance (m - m') separating sites m and mI. The time-dependence 
of the delayed fluorescence signal of interest to the experiments 
of Section V is obtained as 

<p(t) ex I p2(t) 
m 

m 
(71) 

that is, proportional to the sum of the squares of the probabilities 
Pm(t)'s as given by (70) for the specific time-dependencies f (t) 
and initial conditions used in Section V. To make the results imme­
diately comparable to the graphs presented in Section V for the dif­
fusive case, all expressions will be directly written for the case 
of rulings of equal open and opaque strips (r = 1/2), that is So = 1/2, 
SR, = S_R, = sin(R,~/2)/R,~, R, = odd (Eq (25» and separating in the 
sums over the spatial harmonics the uniform, R, = 0, term which as 
before doesn't contribute to the effects on the time-dependence of 
<p(t) due to the exciton transport. Stray light effects can be accoun­
ted for by using coefficients (26) instead of (25). 

VI.A. Buildup and Decay Transient Experiments 

The experiments are performed in the same way as described in 
Section V. The experimental signals sought are, as before, the dif­
ferences 6<p(t) = <PN(t) - <Po(t) between the normalized delayed fluo­
rescence with and without the ruling in the exciting beam. 

For the buildup of delayed fluorescence one has f(t) = 8(t) as 
before and Pm(O) = 0 for all mI. For a ruling with equal open and 
opaque strips one gets from (70) 

(72) 
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whose steady-state saturation value is given by 

P (00) ex: 
m 

~g, 

+ 2 I g,~ cos(£nm)~ n(~) 
&dd 

V. ERN 

(73) 

In (73) ~g,n(~) stands for the Laplace transform of variable 
~=T-l of the Fourier transform of the propagator function appropria­
te to the motion under study. The expressions for ~~b(t) of interest 
to the experiment can be now written in a manner which parallels 
Eqs (46) to (47). Squaring (72) and (73) and performing the sum 
(7) one gets 

with 

Eb(t) = S-l I Ag,{Bi(t) - I} , 

&dd 
as before, but where the functions 

t g, , t g, 
Bg,(t) = f ~ n(t')e-~t dt'/(l - e-~ ) ~ n(~) 

o 
and coefficients 

8 ~g,n 
Ag, = £2n2 {~~ (~)} 

(74) 

(75) 

(76) 

(77) 

depend specifically on the propagators, or equivalently on the GME 
memory functions, which describe the motion under study. The quanti­
ty S in (75) stands, as before, for the steady-state saturation 
value 

S - (78) 

in which the A£'s are given now by their generalized form (77) 

For the decay of delayed fluorescence one has f(t) = 0, the 
tial conditions Pm' (0) being given by (73). From (70) one gets 

ini-

P~(t) ex: e-~t + 2 I 
&dd 

~g,n g,n -~t -H- cos(g,nm)~ (~)~ (t)e (79) 
in 

and the difference delayed fluorescence decay signals are given by 

Md(t) = e-2~tEd(t) (80) 

with 
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Ed(t) = S-1 ~ A£{Di(t) - I} 

~dd 
where one has now 

D£ (t) :: ,¥£n(t) .I 

with A£ and S given by (77) and (78) 

405 

(81) 

(82) 

Exact analytic expressions for the propagators have been given 
[4],[54]-[58] for the case of one-dimensional crystals in the near­
est neighbors approximation for three types of motion: completely 
coherent, completely incoherent, and an intermediate case for which 
the exciton-phonon interaction is taken into account via a scattering 
rate a and whose memory function is assumed to decay in time as 
~,(t) - Wim'(t)e-a; W~,(t) being the GME memory of the complete­
ly coherent motion [4]. 

For the case of completely coherent motion the propagator for 
a one-dimensional crystal with triplet exciton band structure (14) 
and nearest-neighbor transfer matrix element S is '¥m(t) = J~(2St) 
where Jm is the mth ordinary Bessel function, its Fourier transform 
for wavevector £n~eing 

'¥.Q,ll(t) = J o (4Ssin(~.Q,1l) t) • 
c (83) 

By the difinition (69) the n~'s can be considered as very small 
quantities since the lattice constant a typically ranges from 5 to 
10 A while the ruling periods Xo as used in the experiments are at 
least of the order of several microns. The continuum limit approxi­
mation can be considered here as applicable so that 

(84) 

As discussed in Section IV, it is. physically logical to present the 
results by defining an adimensional motion parameter, to be extrac­
ted from the experiment, which scales the exciton transport length 
(given here by (16) to the ruling period Xo used to probe the 
effects of transport. If, instead of (34), one defines for the co­
herent case 

(85) 

where LC = 12SaT (Eq. 16), the Fourier transforms (83) needed 
for (82) and (81) can be simply written in the continuum limit 
(77) as 

(86) 

and its Laplace transform needed to obtain the coefficients (77) as 
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(87) 

For the completely incoherent (hopping or diffusive) case the 
propagator is ~m(t) = exp(-2Ft)Im(2Ft) where I~ is the mth modified 
Bessel function and F the nearest-neighbor hopping rate7:For the 
one-dimensional crystal under study this motiop can be also charac­
terized from (39) by a diffusion constant along the chain D = Fa 
and the transport(diffusion)length given by (35)'can also be writ­
ten as 

(88) 

The Fourier transform of the propagator is here ~rR = exp(-4Fsin 2 

(!tn)t) which in the continuum limit can be written as 

~~n(t) = e_t2n2Ft = e_t2~2~t (89) 
1.n 

and its Laplace transform, to obtain coefficients (77) 

~~n(~) = 1/ (1 + t2~2) . (90) 
1.n 

In (89) and (90) the adimensiona1 motion parameter for the com­
pletely incoherent case 

(91) 

with Lr given by (88), has exactly the same meaning as the parame­
ter (34) defined for the macroscopic diffusion equation study in 
Section IV and V. It is a simple matter for the reader to verify 
that (89) and (90) for the GME completel6 incoherent case lead via 
(74) and (80) to experimental signals ~~ (t) and ~~d (t) having 
exactly the same time-dependences as those obtained in Section V 
for the macroscopic diffusio~ equation and plotted in Fig. 6. 

Finally, for the intermediate coherence case characterized by 
an exponentially decaying memory with scattering rate a the Fourier 
transform of the propagator in the continuum limit approximation 
(84) is given by [54] 

~:n(t) = J (t~ ~t)e_at + a 
u. 0 c 

whose Laplace transform is 

f~n(~) = 1/{«1 + 0.1)2 + t2~~)i_ a1} (95) 

and the transport length, calculated from the mean-square displace­
ment 4 (t = T) , is given by L~ = 12L~(aL T e-aT - l)~/aL' Eq. (93) 
and L~ tend to the coherent values (87) and (16) for aT + 0 (no 
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scattering), and to the completely incoherent ones (90) and (88) 
for the hopping limit F + 2S2/a as e/~ and a/~ tend to infinity 
[4], [54], [28]. 

407 

The experimental signals ~¢b(t) and ~¢d(t) given by (74) and 
(80) can now be written in analytical form for the three kinds of 
motion described above using (86), (89), or (92) in (76) and (82) 
for the buildup and decay, respectively, and by calculating co­
efficients (77) with expressions (87), (90), or (93). In practice, 
sums (75), (81) and (78) converge rapidly so that in a numerical 
computation inclusion of just the first ten spatial harmonics is 
more than amply sufficient to obtain the time-dependence of 
~¢(t) with accuracy. Also, for the buildup case calculation of 
(76) by a numerical integration doesn't pose special difficulties. 

The fact that the delayed fluorescence experiments described 
above will indeed have a sensitivity to the type of triplet motion, 
well above the typical signal-to-noise ratio found in practice, is 
illustrated in Figs.12 and 13 for the case of the buildup 6~b(t) 
differences given by Eq. (76). Figure 12 compares a family of ex­
pected signals 6~b(t) for the purely coherent motion (solid line 
curves) with those for the completely incoherent case (dashed line 
curves), these last ones having the same behavior as already dis­
played in Fig.6. To facilitate the comparison of the differences 
in the temporal behavior for the two types of motion, in the two 
families,curves obtained with the same LT/xo ratio have been label­
led with the same lower case letters. In practtce, this means that 
either with a given ruling of period Xo the 6~ (t) behavior is com­
pared for two crystals having same transport lengths but in which 
motion is of a different type or, alternatively, if the experiments 
are performed with the same crystal, the ruling periods Xo being 
adapted so that LT/xo remains the same as motion change~ from one 
type to the other. For instance, if one considers the pair of cur­
ves labelled (b), that is, for a LT/xo value which lies in the range 
for which maximum motion effects due to the presence of the ruling 
occur in the t ~ T region,a coherent motion leads to 6~b(t) values 
in the vicinity of 12%, a value which under no circumstances can be 
observed in the completely incoherent case (see discussion in Sec­
tion V). Similar considerations apply to the other pairs so that 
coherence is unmistakably distinguishable in the data plotted in 
this way. Fig.13 illustrates the evolution of the coherent behavior 
into the completely incoherent one by showing a family of curves com­
puted using the intermediate case propagator formulae (92) and 
(93) with LT/xO = 012 taken to be the same for different values of 
aT as shown. The aT = 0 case corresponds to the purely coherent mo­
tion while for aT ~ 10 3 the behavior becomes already experimentally 
undistinguishable from the completely incoherent diffusive case. 

The behavior of 6~d(t) for the decay of delayed fluorescence 
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Fig. 12. Delayed fluorescence buildup changes ~~(t) for coherent 
(solid line curves) and diffusive (dashed curves) triplet 
motions. The pairs labelled a,b,c,d are for same ratio 
LTlxo = 0.075, 0.15, 0.30, and 0.45, respectively. 
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Fig. 13. Buildup ~~d(t) changes using intermediate coherence propa­
gator (92). Ratio LTlxO = 0.2 is the same for all aT. 
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corresponding to the cases shown for buildup in Figs. 12 and 13 has 
been given in Ref. [54] leading, as physically expected, to the same 
conclusions as above. In Ref. [54] the reader can also find an exten­
ded discussion showing that, as usually done in practice, the extrac­
tion by best fit of motion parameter ~ from measurements with a se­
ries of rulings of periods x for a given sample will yield, as re­
quired by definition of ~, aOstraight line for a ~ = f(l/xo) plot, 
only if the correct theory has been applied to fit the experimental 
~~(t) data. It should be noted that the mathematical structure of 
Eqs. (74) and (80) is such that buildup effects due to motion, 
notably for the coherent case, are bigger than those obtained for the 
decay. This makes buildup experiments, whenever possible, preferable 
as better signal-to-noise ratios are obtained for the data. However, 
as manifestations of coherence produce opposite effects in buildup 
and decay, it is advisable to perform at the same time both types 
of observations to double-check the self-consistency of the fit. 

VI.B. Phase-Lag Steady-State Experiments 

As discussed in Section V these time-dependent experiments cons­
titute the preferable experimental tool to obtain information on 
triplet motion, notably when an extensive study of the motion aniso­
tropy is desired. The extension to this experiment of the GME ap­
proach given above is immediate. Following the reasoning developped 
in Section V and taking as starting point, instead of (36), the GME 
solution (70) one gets with the periodic in time excitation (54) 
the occupation probabilities given by 

t 

P (t) = . ~ f inwt \ S i£nm f e-(~ + inw)t'~£n(t') dt' 
m ao~o L ne L £e 0 

n= £ 
-00 

+ I ~ ,(t)P, (O)e-~t • (94) 
m' m-m m 

When, as discussed in Section V, the periodic in time steady-state 
regime is reached one has 

00 • 

. \ ~nwt 
P (t) = ao~o L f e m n (95) 

n= _00 

in which ~£n(~ + inw) is the Laplace transform with variable ~ + inw 
of Fourier transforms of the propagator appropriate for the motion 
under study. 

The periodic in time delayed fluorescence signal given by (71) 
with (95) can now be written in form (55) in which the amplitu­
des of the temporal harmonics can be written as (58) 

00 

H ~ I L f f, I A~n' 
p n n' n n £=0 

(96) 
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condition n + n' = p, but in which now the quantities 
the generalized form59 

Ann' oc S~,(2 S; OR,O) ipR,n()l + inw) ipR,n()l + in 'w) 
R, 0 
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nn' 
AR, 

(97) 

which, for each spatial harmonic of the ruling, depend on the par­
ticular type of transport through the Laplace transform of variable 
)l + inw of Fourier transform for wavevector R,n of the propagator ap­
propriate to the motion. 

As discussed in Section v, the experimental quantity of inte­
rest is the phase-lag, that is, the argument of (96). Considering 
again the typically used experimental case of the first harmonic of 
delayed fluorescence, and specializing the expressions for rulings 
of equal open and opaque strips one has now, instead of (61), the 
expression 

, (98) 

which using (87), (90), and (93) can be written, respectively, 

with 

for the 
rameter 

with 

1 

KR,(WT) = {(I + iWT)2 + R,2~~}2 

completely coherent motion with the adimensional 
~ defined by (85), as c 

Hin oc 
I 8 L I 

I + iWT 
+ -2 R,2CR,(0)CR,(WT) 1 1f 

5dd 

CR,(O) = I + R,2~2 

CR,(WT) = I + iWT + R,2~2 

(99) 

(100) 

motion pa-

(101) 

(102) 

for the completely incoherent, diffusive, transport,~ being the adi­
mensional incoherent motion parameter defined by (91), and as 

(103) 
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with 1 

It(O) = {(I + aT)2 + t2~~}2 - aT 
1 

It(WT) = {(I + iWT + aT)2 + t2~~}2 - aT 
(104) 

for the intermediate coherence case with scattering rate a. In the 
limits aT + 0 and aT + 00 one retrieves the completely coherent and 
diffusive behaviors (99) and (101), respectivley. 

The changes (64) in the phase-lag due to exciton motion have 
been obtained [59] for the first harmonic of the delayed fluorescence 
signal with the harmonic amplitudes (99), (101) and (103) for 
the three types of motion. Fig. 14 illustrates the big difference, 
in amplitude and frequency domain behavior, to be expected in the 
~$ data obtained in the completely coherent and diffusive cases. 
The solid line curves correspond to the coherent motion, the das­
hed ones to the completely incoherent case. These last ones exhibit, 
of course, the same behavior as that already shown in Fig.8. Pairs 
labelled in Fig.14 with same letter correspond to same LT/Xo ratio 
for the two types of motion. The effects of coherence become espe­
cially noticeable, well above the typical signal-to-noise ratios, 
if in the experiment one uses modulation frequencies and ruling pe­
riods such that WT lies in the 2.0 to 5.0 and Lm/xa in the 0.1 to 
0.6 range for the crystal under study. Fig.15 iilustrates the in­
termediate coherence behavior as predicted by (103). The ~~ beha­
vior becomes experimentally undistinguishable from the diffusive 
case when the scattering rate is such that aT ~ 10 3 • As already 
stressed in Section V, phase-lag experiments constitute the prefe­
rable tool to probe triplet exciton motion via delayed fluorescen­
ce. As seen in Fig.14 coherence makes the observable effects big­
ger with a maximum of _ 80 , a value·which never can be observed 
in this geometry with diffusive motion. A typical,S to 10%, spu­
rious stray light effect, if taken into account by using coefficients 
(26) in (77), will reduce nearly uniformly the size of the ~~'s 
plotted as functions of WT. but the different positions of the ma­
xima would still allow to discriminate between coherent and diffu­
sive effects [59]. 

The model discussed in this section must be now generalized to 
three dimensional crystals containing several translationally ine­
quivalent molecules in the unit cell, at least for the simple ca­
se of materials with two molecules per unit cell in the C~h symme­
try as anthracene and naphthalene. A first step in this d1rection 
has already been taken by an analysis of the case of a simple or­
thorombic crystal [60]. The analysis given above for the one-dimen­
sional case could be experimentally tested in materials in which one 
of the triplet exciton transfer elements is known to be much bigger 
than the other ones, so that, motion can be considered as nearly 
one-dimensional [9]-[11], [40]. [43], [44]. For these materials 
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the challenge is to be able to grow highly purified and crystallo­
graphically perfect crystals of appropriate size so that secondary 
factors, for instance, trapping at low temperature, would not mask 
coherence effects in the time-dependence of delayed fluorescence. 
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Three types of energy transport are essential in condensed 
rare gases: migration of free excitons, transfer by localized 
centers and mass diffusion of electronically excited centers. The 
first two processes are observed in solid rare gases, a combination 
of the last two processes in liquid rare gases. Free and localized 
exciton states are described and the balance between localization 
and migration of free excitons is analyzed because it determines 
the transfer range of free excitons. Photoelectron and luminescence 
experiments are discussed which monitor the migration of free ex­
citons. Forster--Dexter type of energy transfer for localized centers 
is illustrated by host to guest and guest to guest electronic and 
vibrational transfer. The competition between transfer and non­
radiative relaxation is crucial and examples for transfer prior to 
electronic or vibrational relaxation are presented. The long life­
time of triplet states especially in liquid helium causes transfer 
ranges of the order of centimeters. Finally the application of 

417 
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emission from self trapped excitons in rare gas crystals for vacuum 
ultraviolet solid state lasers is shown. The efficiency is deter­
mined by losses due to energy transport. At these high excitation 
densities an extremely hot electron plasma is created in the 
crystal which induces additional transport and scattering processes. 

I. INTRODUCTION 

The atoms in rare gas crystals are densely packed by Van der 
~Jaals forces in a fcc structure. The structural properties follow 
from the gas phase pair potentials. The crystals are insulators and 
are transparent far into the vacuum ultraviolet spectral region. 
The onset of absorption is dominated by strong exciton bands 
The group velocities of free excitons in solid rare gases are large 
compared to those of other typical Van der Waals crystals like for 
example organic molecular crystals. Therefore a fast wave like or 
diffusive transport of energy by free excitons is feasible as has 
been pointed out quite early by Gould and Knox [1]. An excited rare 
gas atom is highly reactive in contrast to an inert ground state 
atom because the excited electron resembles the lone electron of 
an alkali atom and the remaining hole in the valence shell corre­
sponds to the partly filled shell of an halogen atom. In the gas 
phase strongly bound excimers between the excited atom and a ground 
state atom are formed. The reactive excited atoms in the rare gas 
crystal induce local structure changes which are similar to excimers 
or to bubbles. These structural changes destroy the free exciton 
states and localized excitons are formed. The various types of ex­
citons provide a case study for the competition of wave like and 
diffusive energy transport by free excitons, localization of ex-­
citons and transport by localized excitons. Furthermore the struc­
tural and electronic properties of rare gases change rather 
smoothly in going from the gas phase through the liquid phase to 
the solid phase. Therefore the influence of mass diffusion, density 
and structural order or disorder on energy transport can be studied 
for the whole range of densities. 

Rare gas crystals are easily doped with atoms or molecules by 
codeposition on a cold substrate. The electronic and vibrational 
states are in general preserved in the rare gas matrix due to the 
inertness and softness of the matrix. The coupling to the matrix 
is weak in many cases and radiationless depopulation of excited 
electronic and vibrational guest states is comparatively slow. The 
resulting long lifetimes of the excited states present ideal con­
ditions for energy transfer from even high excited electronic and 
vibrational host or guest states to guests. By an appropriate choice 
of guest and matrix the dependence of energy transfer on the ini­
tially prepared state, the coupling to the surrounding and on the 
phonon spectrum of the matrix can be studied in a systematic way. 
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The emission bands of pure solid rare gases are nearly identi­
cal with the gas phase excimer bands which are used in commerical 
excimer laser for the VUV. Rare gas crystals are the only materials 
which could be used for solid state VUV lasers. Doped rare gas 
crystals could provide in principle a way to cover the range from 
fiw = 17 eV to the visible with solid state lasers. The efficiency 
depends on energy transport and energy dissipation in the excited 
electronic states of the crystal and on the transfer to the dopands. 

II. ELEMENTARY EXCITATIONS OF RARE GAS CRYSTALS 

II.A. Lattice Vibrations 

The excess energy in radiationless relaxation processes is dissi­
pated into phonons. The fcc lattice with a basis of one atom allows 
only acoustic phonons with one longitudinal and two transversal bran~ 
ches. The weak Van der Waals bonding results in soft crystals with 
low phonon energies of the order 5-10 meV (Fig. 1). The structural 
changes in excited electronic states of rare gas crystals will be re­
sponsible for local modes. The compression of the surrounding at an 
excited bubble state causes a breathing mode . The stretching modes 
in an excimer center will have energies which are similar to the 
free excimer vibrational energies. Atomic dopands introduce ' in: gene­
ral even in the ground state local modes due to the different masses, 
sizes and Van der Waals binding energies. For molecular guests the 
internal vibrational modes can be considered as local modes. Rota­
tion of guest molecules is often hindered and librational modes 
will appear in addition. The spectra of local modes cannot be presen­
ted in a general way like in Fig. 1 since they depend strongly on 
the special combination of host, guest and electronic state. 
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Fig. 1. Density of phonon states of rare gas crystals versus 
phonon energy [2], [3]. 
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II.B. Resonant Electronic States 

A description of the physical properties of a solid starts 
with the total Hamiltonian for all ions, electrons and their mutual 
interactions. The resonant electronic states follow from band 
structure calculations in which a periodic potential is assumed 
given by the ions at their equilibrium positions and in addition 
the one electron approximation is used. The band structure calcula­
tions yield the electron energy E(k) versus the wave vector k of 
the electron. An example for Xe (Fig. 2) shows the valence bands 
around -10 eV, originating from the outer atomic p levels. The upper 
two levels with a total angular momentum j = 3/2 of the hole are 
degenerated at the center of the Brillouin zone r. At r the j = 3/2 
and the lower lying j = 1/2 bands are separated by a spin orbit 
splitting of ~ 1.3 eV. The considerable dispersion i.e. width of . .. ~ 
the ~nd~v~dual valence bands of the order of 1 eV has been con-
firmed experimentally by photoelectron spectroscopy [7]. These 
large widths (Table 1) indicate a significant overlap of the p wave 
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L 

Fig. 2. Two band structure calculations for Xe \4,5\ compiled 
by Rossler [6]. 
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Table 1. Band structure parameters like band gap energy EG, 
valence band width VBW, light and heavy hole effective 
masses mt, mR and electron effective mass me' Also 
exciton~inding energy B and the lattice relaxation 
energy for eximer centers ELR are given. 

EG (eV)a 

VBW (eV) 

ml in free 

n{ electron 

m mass units e 
B (eV) 

ELR (eV)b 

aRef • p 1 ] 
b Ref. [20] 

c 

c 

Ne Ar Kr 

21.58 14.16 11. 61 

0.4 0.7 0.9 

6.16 1. 93 1. 21 

24.8 11.6 7.66 

0.802c 0.488c 0.418c 

5-6.93a 2.36 e 1.53e 

2.0 1.86 1. 38 

cA•B• Kunz and D.J. Miklisch, Phys. Rev. 8, 779 (1973) 

dRef. [4] 

Xe 

9.33 

0.9 

0.35d 

1.02e 

0.85 

eVe Saile, W. Steinmann and E.E. Koch in Extended Abstracts, 
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V. International Conference on VUV Radiation Physics, Montpellier 
Vol. 1, p. 199 (1977) 

functions of neighbouring atoms in the crystal and establish a 
rather high group velocity of these resonant hole states. The 
lowest empty conduction band states are separated from these 
occupied valence bands by a large band gap EG of the order of 10 eV 
(Table 1). Near r the lowest conduction band is free electron like 
(Fig. 2) and has s-symmetry. The contributions of additional bands 
complicate the picture at higher energies. The calculations and 
experiments differ in details (Fig. 2) but they all give this 
general scheme and the trends in the band gap energies, valence 
band widths and effective masses of the light mf and heavy ~ holes 
and of the electrons m at r (Table 1). -

e 

The partly screened Coulomb interaction between an electron in 
the conduction band and a hole in the valence band leads to a 
hydrogen like series of bound states within the band gap. Two such 
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Fig. 3 . Absorption bands of solid Ne~ Ar, Kr, Xe. Eg: band gap; 
nand n' are j = 3/2 and j = 1/2 exciton bands [8]. 

series of excitations converging to the bottom of the conduction 
band are observed in absorption and reflection spectra (Fig. 3). 
These two series are separated by the spin orbit splitting of the 
j = 3/2 and j = 1/2 hole states. The wave function of an exciton 
can be constructed from valence band and conduction band wave 
functions [,6], [9] .The continuum approximation of the Wannier model 
is appropriate for excitons with a separation of the hole and 
electron t:7hich is large compared to the nearest neighbour separa­
tion of the atoms. Within the effective mass approximation it pre-' 
diets for the excitation energies E : 

n 

E 
n 

B n2 k2 
EG - 2' + 2M 

n 
n = 1,2,3 

with an exciton "Rydberg constant" 

B 

(1) 

(2) 

e is the dielectric constant, ~ is the reduced effective mass de­
fined by 
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Table 2. Energies of bulk and surface excit<>ns and 
quantum defect 0 (eV). 

j 

n = 1 

2 

bulk 3 

4 

5 

n = 

sur­
face 2 

Xe 5p 
a 

3/2 1/2 

8.37 9.51 

9.07 

9.21 

8.21 

. c 
-0.03-0.06 

a see e Table 

b Ref. [11] 

Kr 4p 
a 

3/2 1/2 

10.17 10.86 

11.23 11.92 

1 1 . 44 ( 1 2 . 21) 

11.52 

9.95 10.68 

10.02 

11.03 

0.08-0.17c 

Ar 3p 
a 

3/2 1/2 

12.06 12.24 

13.57 1).75 

13.87 14.07 

13.97 

11. 71 11. 93 

11. 81 

12.99 

13.07 

0.21-0.28c 

Ne 

3/2 

17.36 

20.25 

20.94 

21.19 

21.32 

of the 

2p 
b 

1/2 

17.50 

20.36 

21.02 

21.29 

17.15 

cL. Resca, R. Resta and S. Rodriguez, Sol. State Comm. 26, 849 
(1978) 

m 
e 

1 +-
~ 

and M is the total exciton mass 

423 

(3) 

(4) 

The last term in (1) describes the center of mass motion of the 
exciton as a plane wave with wave vector k and group velocity 
bk/M. In optical spectra only k ~ 0 excitons are excited because of 
the small wave vector of the lig~t compared to the extension of the 
Brillouin zone. The hydrogen like term B/n2 fits the exciton series 
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for n > 2 (Fig. 3) nicely with the binding energies B given in Table 
1. The-radius of the electron orbit for the n = 1 excitons is 
smaller than the nearest neighbour separation and the Frenkel model 
should be used in this case. This model, which is more complicated, 
starts with an excited atom at a given lattice site. A calculation 
for the dispersion of the n = 1 and n' = 1 excitons in Ar has been 
carried out by Knox [9],[10] within the framework of the Frenkel 
model (Fig. 4). The n = 1 exciton state in optical spectra corre­
sponds to the lower ~5 transverse branch, the n' = 1 exciton to the 
upper ~5 transverse branch near k = O. The absolute energies are 
about 3 eV to low due to convergence problems in the calculation. 
But this picture shows that in optical spectra only some points of 
the three-dimensional exciton dispersion curves are accessible and 
several branches are completely missing in optical spectra. Many 
attempts have been made to derive a consistent description of all 
exciton bands (Table 2) for this situation which is intermediate 
between the Wannier and Frenkel case (11]. One approximation uses a 
central cell correction in (1) for the n = 1 excitons, another 
introduces a quantum defect a in (1) of the form (Table 2) 

2 E = E - R/(n-a) 
n G 

(5) 

Besides these bulk exciton states also surface exciton states are 
observed with energies about 0.2 eV smaller than the bulk states 
t11] (Table 2). These exciton states are restricted to the surface 
and can act as sinks in energy transport processes to the surface. 

II.C.Localized Electronic States 

Up to now a periodic potential for the electrons due to a 
periodic arrangement of the ions has been assumed. An electronic 
excitation in an insulator causes local distortions of the electron 
distribution which induces also structural changes. To get a feeling 
for the new equilibrium configurations which are favoured by elec­
tronically excited solid rare gases we make use of the smooth 
change of the electronic properties with density. We start with the 
interaction of a free electron in the conduction band with the 
surrounding neutral atoms. The energy V = T+U of an excess electron 
at the bottom of the conduction band re~ative to the vacuum level 
consists of an attractive polarisation energy U and a repulsive 
kinetic energy term T arising from mUltiple scattering at nearest 
neighbours [12]. This energy V is required to inject an electron 
from the vacuum into the condenged rare gas. A positive value of V 
indicates a dominating repulsive interaction and the electron can 0 

lower its energy by pushing away neighbouring atoms thus creating 
an empty sphere, i.e. a bubble. In this way the electron becomes 
localized. The trend to form bubbles decreases in going from the 
light rare gases to the heavy rare gases and for Kr and Xe the 
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Table 3. Electron polarisation energy V of solid rare gases 
together with energetic and st~uctural parameters of 
rare gas molecules. D+ molecular ion dissociation 
energy, r k : nearest neighbor separation in a crystal; 
r , r*, r : internuclear distance of rare gas molecules 
ig the gr6und state, excited state and of molecular ions 
respectively (compiled in Ref. [15]). 

He Ne Ar Kr Xe 

V (eV) 1.05 1.3 0.4 -0.3 -0.4 
0 (liquid) 

D+ (eV) 2.67 1.2 1.25 1.15 0.99 

rK (K) 3.156 3.755 3.992 4.335 

r d~) 2.96 3.102 3.761 4.006 4.361 
0 

r* d~) 1.04 1. 79 2.42 3.04 

r d~.) 1.06 1. 75 2.43 2.79 3.04 
+ 

10 .. 01-------------. 

( eV) 
X.' 

• .4 

XI' 

u 

----Xl~ 

k 
Fig. 4. Exciton bands of solid Ar in (100) direction. 65 : transverse 

exciton; 61: lon~itudinal excitons? dashed lines: forbidden 
branches due to P2 atomic states [9[,[10]. 
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attractive polarisation term dominates (Table 3). The bubbles 
around excess electrons in liquid He are of considerable SLze 
(~ 30 R) and have been studied extensively [13]. 

A rare gas ion Rg+ is che~ically aggressive and tends to form 
strongly bound excimer ions Rg2 with dissociation energies D+ of 
the order of 1-2 eV (Table 3). The bond length r of the eXCLmer 
ion is about 30 % smaller than the position of the ground state Van 
der Waals minimum r and the nearest neighbour separation r k of the 
crystal in the grouRd state (Table 3). An ion in the crystaI 
lattice i.e. a hole tries also to form an excimer ion by attracting 
one of the nearest neighbours and thus becomes localized as an R~ 
c~nter. An R~ hole tries to capture an electron resulting in an 
R~ excimer center in the crystal. The local structure at this center 
depends on the mainly repulsive interaction of t~e orbiting electron 
with surrounding atoms and on the attractive R-R interaction. The 
orbiting electron is bound in Rydberg states R;. The electron on its 
large orbit has little influence on the structure of the R; center. 
The dissociation energies and the equilibrium separations r* remain 
essentially that of the excimer ion R~ (Table 3). The Rydberg states 
of the electron form a, series convergmg to the ionisation energy 
similar but more complicated like the free exciton series. A re­
pulsive interaction of the electron with the surrounding will cause 
bubbles around the R; centers similar to the excess electron 
bubbles. In addition also atomic excited states Rg*within bubbles 
are observed. 

* * Liquid He is a good example for illustrating Rg and Rg2 
centers in bubbles. The arrows in Fig. 5 indicate experimentally 
investigated transitions in atomic He* and molecular He~ bubble 
centers. The sizes and shapes of the bubbles are derived from the 
shift of transition energies relative to the gas phase values and 
from the width of the bands together with theoretical predictions. 
Bubble diameters of 10-20 R are found compared to an average inter­
atomic spacing in31iquid He of 3 Rf The bubble diameters for the 
atomic 2s 3S, 2s P, 3s 3S and 3s S states are 12 R, 12 R, 22 R, 
and 26 R, respectively. Furthermore the bubble diameter can be 
reduced by external pressure [14], [15]. 

In solid rare gases we have to deal with free electrons and 
localized electrons in bubbles, free holes and localized holes in 
Rg+ and Rg! centers, free excitons and localized excitons in Rg* 
and Rg~ configurations. Typical recombination times are of the 
order of 10-9 s or shorter. Thus free excitons and localized 

" R * d R * f' , excLtons Ln one center g an two center g2 con LguratLons are 
the most important species. The contribution of free and localized 
centers to energy transport is rather different. Therefore the time 
scales and the efficiencies for localization of free excitons in 
the two types of centers have to be discussed. 
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Fig. 5. Potential curves and observed transitions of liquid He 
compiled in [15]. 
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Fig. 6. Scheme for a) dispersion of free excitons versus wavevec­
tor k, b) self trapping versus configuration coordinate Q 
and c) tunneling through self trapping barrier [17], [18]. 
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II.D. Localization (Self-Trapping) of Excitons 

The fate of an exciton will be analyzed in subsequent steps. 
Is the initially created exciton free or localized? Does a free 
exciton remain free or does it become localized before it decays 
radiatively or by an energy transfer process? Finally we ask for a 
microscopic description of the localized states. This field has 
been treated theoretically by several groups [9], [15], [20]. 

1. Exciton-Phonon Scattering. The exciton-phonon scattering time 
T and the line width r of an exciton are determined by the balance 
between the local nature characterized by D and the wave like nature 
characterized by B' [18]. 

2r 
Ii T 

(6) 

The width of the exciton dispersion curve 2B'(Fig. 4) corresponds 
essentially to the valence band width (Table 1). D2 represents the 
statistical fluctuations of the exciton energy due to nuclear 
motion. D2 follows from the energy gain ELR by a lattice relaxation 
into a new local equilibrium structure. 

fiw 
p 

k T 

for kT « nw 
p 

for kT » liw 
p 

(7) 

liw is a mean phonon energy (Fig. 1). The motion of the exciton is 
slgw compared to the thermal fluctuations in the case of strong 
scattering D » B'and the exciton will be localized. In the weak 
scattering case D « B'the exciton is fast and stays only a small 
fraction of time on each lattice site on the time scale of nuclear 
motion. Thus the effect of nuclear motion is smeared out and the 
exciton remains free. ELR values have been estimated semiempirical 
from the Stokes shift or luminescence bands for Rg; centers (Table 
1). A comparison of the D values with 2B'shows thaE the heavier 
rare gase like Xe correspond to the weak scattering limit 
(D ~ 0.07 « 2B'~ 0.9) whereas Ne with D ~ B'is still on the verge 
~.~ ~ 

of weak scatterlng. 

The local or wave like character follows also from the line 
shape of exciton absorption bands. The line shape is Lorentzian and 
the half width r is given by (6) for the case of weak scattering. 
Strong scattering results in a Gaussian line shape with the half 
width fwhm given by 2.355D. Unfortunately the line shapes are 
partly obscured by longitudinal excitons, overlap of spin orbit 
partners and surface excitons. The line shape seems to be Lorentzian 
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with a fwhm of ~ 80 meV for the n = 1 excitons of Xe, Kr and Ar 
[11]. Thus the ~eavier rare gases belong also according to this 
criterion to the weak scattering case with phonon scattering times 
of the order of T ~ 10-15 s. The larger line width of ~ 200 meV for 
Ne [11] perhaps in~icates a transition towards the str~ng scatter­
ing case. 

2. Self-Trapping. Does an initially free exciton become self­
trapped during its lifetime? A free exciton remains stable from 
the point of view of energy minimalization if the energy gain due 
to the free wave like propagation exceeds the energy gain given 
by the lattice relaxation B'>ELR or vice versa (Fig. 6). This 
criterion allows localization even if the scattering criterion 
predicts the excitation of initially free excitons. But besides 
ELR > B' it is necessary for localization that the localization 
t1m~6is sho!ger than the radiative lifetime of the exciton 
(10 to 10 s). The energy balance E(a) is given by [8]: 

(8) 

f ' ,1 'd 'b d b G ' or an exc1ton whose extens10n r ~ - 1S escr1 e y a aUSS1an 
wave function with orbital exponentaa. a = 0 (r + 00) represents a 
free exciton state and a =1 a localized exciton. E(a) increases 
with a near a = 0 because more energy is required to squeeze the 
free exciton compared to the energy gain delivered by the lattice 
deformation. But after crossing a maximum of height HM the energy 
is reduced below E(a = 0) provided ~R > B~ 

IL = 4B'727 E 2 --M LR (9) 

The barrier ~I prolongates the localization time of excitons and a 
coexistence of free and localized excitons becomes possible. The 
efficiency ratio of for example energy transfer by free or local­
ized electrons follows from the rate constant for crossing the 
barrier scaled by the transfer rate. The calculation of quantitative 
rates for localization· by tunneling 1, thermoactivated tunneling 2, 
over barrier transitions 3 and reverse tunneling in competition to 
relaxation of hot localized excitons 4 is a difficult task (Fig. 6). 
Approximate expressions [17},[2l[ contain a prefactor representing a 
mean phonon frequency and the transparency Tr. Tr = exp(-2 S) re­
sults for process 1 in Fig. 6 with a quasiclassical action Sand 
Tr ~ (l-T/e)-a for process 2 with a density a of vibrational modes 

~ , 
and the Debye temperature e. Th1s treatment and also the elaborate 
calculations of Nasu and Toyozawa [22] yield a high tunneling rate 
for the solid rare gases compared to the radiative lifetimes. The 
tunneling rate should decrease with the exciton band width, i.e. in 
going from Ne to Xe. Thus luminescence originates mainly from 
localized excitons and the rather spurious contributions from free 
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excitons should be strongest for Xe. But for fast energy transfer 
processes the contribution of free excitons can be quite important. 

3. Microscopic Picture. A quantitative description requires 
a microscopic picture for the localized states in addition to the 
general criteria delivered by the contiuum models discussed above. 
A microscopic model [23],[24], for a1ka1iha1ide and rare gas crystals 
predicts one center and two center self-trapped excitons. The two 
center state is oriented along the (110) axis. The essential vi­
brational modes for coupling these centers to the lattice are the 
breathing mode Q1 for both centers and the stretching mode in ad­
dition for the two center state. The similarity of these centers 
with the atomic and the excimer bubble centers is obvious. 

Luminescence experiments yield broad emission bands (Fig. 7) 
for solid Ar, Kr and Xe width quantum efficiencies near 1. These 
bands are nearly identical concerning the transition energies and 
shapes with the well known gas phase excimer bands {25]. Time 
resolved luminescence experiments [26], [27] allow even to separate 
the contributions of the dipole allow~d trfnsition lL+ ~ lE+- and 
of the dipole forbidden transition 3L ~ L+ due toUthe tWo 
lowest excimer states (Fig. 7). The u 3L+ sfate is responsible 
for the temperature dependent long lifetiMes and the 1L+ state for 

u 
the short lifetimes (Fig. 7). Transient absorption experiments 
[27], [28] starting from the lowest excited state 3L)J after the 
lattice relaxation to excimer centers reveal that also the*next 
higher states in these centers are similar to molecular Rg2 states 
in agreement with calculations [19]. The exciton Rydberg ~2) and 
the continuum states are strongly influenced by the surrounding 
crystal atoms [27]. 

In solid Ar, Kr and Xe also spurious signals (Fig. 8) from 
free excitons (a), atomic bubble centers (b), hot molecular centers 
(c) with quantum efficiencies of 10-2 - 10-3 have been reported. 
The free exciton emission of Xe is quite well established and has 
been analyzed also in terms of a polariton model [31]. Recently 
also the temperature dependence of its lifetime has been studied 
[32]. The assignments of the (a), (b) and (c) emissions for Kr and 
Ar have to be considered as preliminary because for example also 
contributions due to surface excitons have been identified [32]. 
The emission bands of solid Ne (Fig. 8) seem to depend in a compli­
cated way on the excitation conditions. There is no doubt that the 
main emission band (b) around 16.8 eV is due to an excited atomic 
bubble state. The n~arest neighbour separation in the bubble in­
creases by about 1 A i.e. 30% to 50% compared to the configuration 
of the grc 1md state [33], [34], [35]. Transient absorption experi­
ments [36], [37] show that in addition to this fast bubble forma­
tion also 3 to 4 vacancies are accumulated at these atoms on a 
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Fig. 8. Lower part: complete emission spectra of Xe [20], Kr, Ar 
[20]and Ne [29] with a: free excitons, b: atomic centers, 
c: vibrationally excited excimer centers and d: vibratio­
nally relaxed excimer centers. Upper part: temperature de­
pendence of a and b [10] compiled in [15]. 
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time scale of 10-4 s - 10-6 s [35], [36. The temperature dependence 
of a growth rate proves that the vacancies are thermally created 
and these migrating vacancies are captured by the center. The lower 
lying emission bands (c in Fig. 8) originate from hot excimer 
centers. Vibrational relaxation in the excimer center is retarded 
around the 3 to 5 vibrational levels because the vibrational 
spacing increases due to the anharmonicity and becomes large com­
pared to the phonon frequencies of the lattice [15],[16],137]. 

III. ELECTRONIC STATES OF GUEST ATOMS AND MOLECL~ES IN RARE GAS 
MATRICES 

III.A. Transition Energies 

In this very brief discussion it will be distinguished between 
Rydberg transtions and valence transitions. In a Rydberg transition 
of a free atom or molecule an electron is excited to a state with 
higher main quantum number and its orbit will increase accordingly. 
The higher Rydberg states converge to the ionisation limit I g • In 
the matrix these ionisation energies will be reduced to E~ due to 
the polarisation energies of the hole P and the electron V [38] 

o 

(10) 

The Rydberg of the free states will be reduced to Bi by the shield­
ing of the Coulomb interaction (1/€2) and by introducing the re­
duced effective mass instead of the free electron mass like in (7). 
The reduced effective masses of the guest centers and the host 
excitons are very similar because the dominant contribution comes 
in both cases from the dispersion of the host conduction band [39]. 
Therefore a relatiou similar to (1)and(5) holds also for the ex­
citation energies E1 of guest Rydberg states (Table 4) 

n 

E 
n 

E~ - Bi / (n-o i )2 ( 11) 

with Bi ~ B (see eq. 2). The quantum defect O. accounts for the 
deviations from the Coulomb potential within tfie core of the guest 
ion and for the small orbit of the first Rydberg states. 

The valence transition represent a change of the electronic 
configuration within the molecule. Therefore the valence transition 
energies are only weakly changed by the surrounding matrix. The 
shifts are of the order of 0.01 - 0.1 eVe In general an increasing 
red shift in going from a Ne matrix to Xe matrix is observed mainly 
because of the increasing polarisability of the matrix with atomic 
weight. The relative intensities of different valence transitions 
are often strongly modified due to a reduced symmetry and addition­
al spin orbit mixing by the matrix. 



ENERGY TRANSFER IN SOLID RARE GASES 433 

Table 4. Exciton energies E~ of Xe, Kr and Ar guest atoms in Ne, 
Ar and Kr ~trices together with ~he impurity binding 
energies B~ and quantum defects 6~ (in eV). 

M a 
Guest Nea 

n = 1 9.10 
nf= 1 10.06 
n = 2 11. 31 
n = 3 12.00 

Xe n = 4 12.19 
n = 5 12 .. 43 
nf= 2 12.60 

Bi 
nf= 3 13.34 

5.00-6.93 
6~ 0.43d 

n = 1 10.60 
nf= 1 11.22 
n = 2 13.32 

Kr 
nf= 2 13.94 
n = 3 14.05 

B~ 
n = 4 14.48 

5.00-6.93 
6~ 0.31 d 

n = 1 12.48 
nf= 1 12.74 
n = 2 14.84 

Ar 
nf= 2 15.25 
n = 3 15.51 
n = 4 15.75 

B~ 
nf= 3 15.90 

5.00 d-6. 93 
6~ 0.40 

a 
bRef. [41] 

G. Baldini, Phys. Rev. 137A, 508 (1965) 
c 

t r i x 
Arb 

9.22 
10.53 

9.97 
10.25 
10.36 

10.80 

2.36 

10.79 
11.36 

2.36 

dsee Tab. 1 
L. Resca and R. Resta, Phys. Rev. B19, 1683 (1979) 

Krb 

9.01 

9.76 

1.53 

W. Bohmer, R. Haensel, N. Schwentner and E.Boursey Chem. Phys. 49, 
225 (1980) 
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III.B. Lattice Relaxation and Line Shapes 

The optical line shape of transitions localized at guest centers 
follows from the lattice rearrangement of the matrix around the 
excited centers [40]. The situation can be illustrated in a configu­
ration coordinate diagram. The separation between the guest and the 
first shell of matrix atoms might be an appropriate configuration 
coordinate. The potential surfaces are represented by parabola 
which are displaced for different electronic states. The size of 
the displacement determines the strength of the interaction of a 
specific guest electronic transition with the host lattice vibra­
tions. This strength can be defined by ehe Huang-Rhys coupling con­
stant 

S ELR/nwp (12) 

which is the number of phonons nw dissipated during the lattice 
relaxation around the excited sta¥e. Simple analytic expressions 
are obtained in the linear approximation and for one phonon energy 
fiw • The absorption and emission spectra in the weak coupling limit 
S ~ 1 consist of a zero phonon line followed by one and multiphonon 
contributions. The intensity I of the zero phonon line relative to 
the rest of the bands is given by 

I(T) = exp(-S coth(fiw /2 kT» 
p 

( 13) 

The strong coupling limit S > 1 yields a Gaussian line shape in 
absorption and emission with a Stokes shift ES and widths H(T). 

E = 2 S fiw 
S p 

H(T) = ISln2 S coth(fiw/2 kT) fi w 
P 

(14) 

( 15) 

Valence transitions usually fall into the class of weak coupling. 
For Rydberg transitions the interaction of the excited electron 
with the matrix is strong due to the large orbit. Broad bands with 
widths of the order of .1 eV and Stokes shifts of the order of 
0.5 eV are observed. The interaction of the electron is often re­
pulsive as is indicated by V and bubbles around excited Rydberg 
states with considerable dis~lacements of the neighbouring atoms 
are formed [41]. 

IV. ELECTRONIC AND VIBRATIONAL RELAXATION 

To pin down the initial state for energy transfer it is 
necessary to know the fate of the excited states. It is well known 
that high lying electronic states in solids decay in most cases 
very fast to the lowest excited electronic states or even to the 
ground state by converting the excess energy nonradiatively into 
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local phonons and de localized lattice phonons. Since we are mainly 
interested in examples where energy transfer can compete with re-' 
laxation, the time scale of relaxation has to be examined. Relaxa­
tion to a new equilibrium configuration by a continuous change of 
the configuration coordinate within the same electronic state (Fig. 
9) corresponds to a successive emission of the excess energy in 
single phonon steps. This process is expected to occur on a time 
scale given_ by the vibrational frequency and is therefo:e very fast 
(10-'12 - 10 13 s). The decay to the next lower electronl.c state 
separated by an energy gap ~E requires the emission of N = ~E/nw 
phonons in one step. The rate constant W for this multiphonon p 

nr process follows from [15],[16],[43]. 

W A exp{-S(2v+1)} {(v+1)/v}N/2 I N{2S(V(V+1»}1/2 (16) 
nr 

A 271 I Vab 12/ (112 wp) 

v = {exp(nw /kT)-l}-l 
p 

( 17) 

with the modified Bessel functions IN(Z) and the electronic matrix 
element V b' For large coupling strength S (see eq .• 12) it can be 
shown tha~ the rate decreases exponentially with N and increases 
with S [43]. 

W (T-+O) 
nr 

y 

A 
=---

hliS' 
exp(-S) exp(-yN) 

In (N/S) - 1 

( 18) 

( 19) 

Conversion of vibrational energy of guest molecules into matrix 
phonons follows the same scheme [16]. 

First we discuss the relaxation processes following electron­
hole recombination in a pure crystal. In the gas phase recombination 
of an R~ center with an electron leads to dissociation to an excited 
atom R* and several successive recombination-dissociation-recombina­
tion processes due to crossings of bonding and repulsive potential 
curves [44]. A similar series of processes is expected in the R; 
states of a localized exciton in a crystal because the excimer 
centers in the crystal show up similar crossings of bonding and re­
pUlsive potential curves (Fig. 9). It is interesting to note that 
dissociation of an excimer center can lead either to an atomic 
bubble state or even a free exciton again. Since these relaxation 
processes involve continuous changes of configuration coordinates 
it is expected that the relaxation down to the lowest excited 
electronic state of an excimer center is fast. Only vibrational re­
laxation within this excimer centers can be retarded when the 
vibrational spacing exceeds the phonon energies as in the case for 



436 

12~------T-~------~ 

11 

~ 
>-
C) 10 
a: 
UJ 
z 
UJ 

o 2 TT/a 
r k 

N. SCHWENTNER ET AL. 

Fi8' 9. Scheme for exciton states in solid Kr [42]. 
Right: estimated dispersion of the n=1 and n' =1 excitons 
versus wave vector k; T and L indicate transversal and 
longitudinal excitons; dashed are optically forbidden 
branches. 
Center: exciton series at k=Q as observed in absorption 
Left: estimated energy of excimer-type localized excitons 
versus internuclear separation of an excited Kr atom and a 
neighbouring Kr atom. 
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Ne. Little experimental information is available for the intermedi­
ate steps in the relaxation cascase. Decay time measurements show 
that the whole cascade is completed within the radiative lifetime 
of about 10-9 s. Therefore these intermediate steps are not access­
ible to experiments using radiative decay of excitons. Fast energy 
transfer experDnents give additional information about these early 
stages. 

Next we ask for electronic relaxation in guest centers. Energy 
gaps of the order of 1 eV appear between the Rydberg levels of 
excited guest atoms. A detailed investigation [41] of the relaxa­
tion processes for Xe, Ar and Kr guest atoms in Ne matrix and for 
Xe and Kr guest atoms in Ar matrix showed that for sufficiently 
large gaps the relaxation times exceed the radiative lifetimes con­
siderably.Thus energy transfer from high excited species becomes 
feasible. Furthermore the nonradiative relaxation rate can be con­
trolled via the temperature of the sample [41]. In molecules the 
electronic relaxation cascade is complicated by an overlap of vi­
brational progressions belonging to different electronic states. 
An interesting oscillation between two electronic states via close 
lying vibrational states has been reported for example for CN in 
Ar matrix [45). The gaps are still large enough to hinder relaxa­
tion and to allow for radiative decay. Thus in molecules vibration­
al and electronic relaxation are often mixed. A clear cut case that 
vibrational relaxation in an excited electronic state can be very 
slow provides N2 in rare gas matrices. Selective excitation of vi­
brational levels of the lowest excited state A 3E+ of N2 in the 
matrices shows that more than 50 % of the intensi~y remains in the 
initially populated vibrational level on the time scale of radiative 
decay ~46]. This demonstrat~s that vibrational relaxation in this 
case is much slower than 10- s. More details will be discussed 
later. 

Several examples of slow vibrational relaxation in the electron­
ic ground state are known [45]. The most spectacular case of CO in 
rare gase matrices will be also discussed later on 147]. For vi­
brational relaxation it has been shown that especially in the case 
of hydride molecules conversion into rotational levels plays an 
important role [45], [48]. 

V. ENERGY TRANSFER 

V.A. Concepts 

The investigation of exciton states has been stimulated by the 
idea of transport in solids not connected to transport of free 
charges [9]. A wealth of information has been collected for proto 
type mater1als like organic crystals and for application purposes 
in solid state laser systems. This volume represents a profound 
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review on the current act1v1t1es. Several contributions have been 
devoted to the difficult task of a reliable description of energy 
transfer processes. In this part only some basic equations are 
collected which have been used in the description of experiments. 
The examples of energy transfer in solid rare gases have been 
selected mainly to illustrate the competition between localization 
and energy transfer of free excitons and to demonstrate that elec­
tronic states and vibrational states which lie above the lowest 
excited states also contribute to energy transfer. 

Three time scales the scattering time, ,the thermalization 
time, and the localization time '1 gove~a the migration of free 

. th oc exc1tons.' determ1nes the mean free path A of a coherent wave 
like free eigiton before its momentum and energy are changed by 
scattering with phonons or imperfections. The grgup."velocity vg(k) of 
an exciton with wave vector k follows from v = *~ and corresponds 
in the effective mass approximation near r togIik/M [see q~.] or to 
v = 12E/M . According to the scattering times, ~ 10- 7 s derived 
fPom the line shape of exciton absorption and fo~cv ~ 10 cm/s, 
which is typical for an exciton with a k!getic ener~y E of some 
tenths of an eV, a mean free path A ~ 10 cm is calculated from 

A (k) = v (k) " (k). 
g sc 

(20) 

This mean free path is of the order of the lattice spacings. The 
excitons are scattered at each lattice site and the migration of 
free excitions will not be wave like but diffusive. 

The localization times '1 are not really known. The rise 
times in t~me resolved luminesg~nce experiments indicate that 
'~ < 10- s. After localization the energy of the exciton lies oc -a out 1 eV (E R see Table 1) below the energy of the free, i.e. 
resonant exciton states (Fig. 9). The localized states are off-re­
sonant by this energy compared to any excited state with the ground 
state equilibrium configuration. Due to this off-resonance and the 
lattice distortions involved in the localization process it is clear 
that these localized excitons are really spatially fixed. Therefore 
only free excitons are able to migrate and energy transfer by migra­
tion is restricted to the very short time before localization. 

Each main quantum number n of a free exciton state is connected 
with several exciton bands (transversal, longitudinal, allowed and 
forbidden substates, spin orbit splitting, see Figs. 4 and 9). 
Phonon scattering lowers the exciton energy by a small amount but 
the momentum transfer can have any value of the Brillouin zone, 
because of the flat phonon dispersion curves (Fig. 1). An exciton 
with n = 3 for example can be scattered within the same branch from 
higher to lower kinetic energy (interstate scattering). Alternative­
ly it can be scattered from a small k value in n = 3 to an approxi­
mately energetically resonant state of n = 2 or n' = 1 with high k 
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value as is suggested by the level scheme in Fig. 9 (intrastate 
scattering). In this case a n = 3 exciton with low kinetic energy 
is converted to an exciton with lower nbuthigh kinetic energy. The 
sum of all scattering times involved in scattering an exciton state 
with a given main quantum number and kinetic energy down to the 
bottom of the lowest n = 1 branch can be defined as the thermaliza­
tion time T h of this exciton state. After reaching this bottom the 
kinetic enefgy will be stabilized to the lattice temperature by 
successive phonon absorption and emission events. 

For T «T I we can expect a rather simple description for 
the energytgransfe~cprocesses. In this case we deal essentially 
only with one type of excitons. They belong to the lowest branches 
and have only small kinetic energies of almost 1 meV given by the 
lattice temperature. The spatial range of these free excitons is 
limited by the localization time and can be described by a diffusion 
length I or a diffusion constant D by 

I ID Tloc 

The diffusion constant can 
ho~ping distance a(lattice 
<v > and A. 

g 2 
a 
6TH 

D 

D = l<v2>' A 
g 

(21) 

be expressed by a hopping time TH and a 
spacing) or by a mean group 'velocity 

(22) 

(23) 

Experiments indicate a dependence of the transfer range on the 
initially prepared exciton state in solid rare gases. This case is 
more complicated but also more interesting because it opens the 
possibility for a systematic investigation of migration properties 
of higher excited excitons. General equations have been derived [9]. 
But an application to the available experimental results including 
the different scattering pathways is still missing. The experiments 
suggest an even more complicated case. Also the higher exciton 
states can become localized (Fig. 9). Therefore an initially free 
exciton with n > 1 may be localized in a state with n > 1 which is 
energetically still resonant with a free state of lower n. Perhaps 
these localized excitons are detrapped by following repulsive 
excimer potential curves (Fig. 9) and converted again to free 
excitons. With this speculation we leave the free excitons and come 
to energy transfer by localized states. 

The spectrum of donors for energy transfer by localized states 
consists of localized matrix excitons and of excited dopands. In 
the simplest case of excited singlet states energy transfer origi­
nates from the dipol-dipol interaction between donor and acceptor 
states [49], [50]. The transitions probability W(r) from the donor (D) 
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to the acceptor (A) with separation r is given by this Forster­
Dexter mechanism. 

1 R 6 
W(r) = T (_9) 

r 
(24) 

The transfer radius R represents the D-A separation where the 
probability lIT for d~cay of the donor state (in the absence of 
the acceptor) equals the probability for energy transfer. R can be 
expressed by the electronic transition moments ~(A) for acc~ptor 
absorption and ~(D) for donor emission, a spectral overlap function 
F and a numerical constant a. 

R 
q 

F 

(a ~ (A)2 ~ (D)2 F·T)1/6 

J fAa (E) f De (E) dE 

(25) 

(26) 

fA (E) and fD (E) are normalized acceptor absorbtion and donor 
em!~sion lineeshapes. These equations describe the interaction of 
one D-A pair. It is necessary to average for the different D-A 
separations. Forsters results [49] are a good approximation for a 
statistical distribution and for concentrations low enough to 
inhibit migration within the donors or migration within acceptors 
and backtransfer. The time evolution of the donor emission intensi­
ty n (t) represents the donor quenching after pulsed excitation 

o 

(27) 

Transfer to the acceptor is contained in the 2b ~term which in­
cludes the concentration NA of acceptors and Rq• 

4 I 3 i 3 
2 b = '3 -( 'If IT Rq NA (28) 

Time integration yields the total quenching given by the ratio of 
the doped donor totalemission yield n to the pure donor yield n • 

o 

nln o 
2 q=-
3 

1 - r-:;' q • exp(q2) 

r:;;r' Rq 3 N A 

[1 - erf (q)] (29) 

(30) 

The many interesting aspects involved in the spatial averaging 
are discussed elsewhere in this book. We want to mention an additio­
nal transfer process for liquids. Diffusion of an excited center 
through the liquid to an acceptor has to be taken into account 
because of the high mobility of the constituents of the liquid. 
This mass diffusion can be described by a bilinear reaction rate. 
In the case of a combined process including mass diffusion and 
dipol-dipol energy transfer an approximate treatment [51] yields 
a rate constant ~T for energy transfer which contains R and the 
relative mass diffusion coefficient D *. q 
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KET = 0.51 4n (R:/T) 1/4 D~ 3/4 (31) 
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The physical conseq.uences of energy transfer by free excitons or by 
localized states can be classified in two types of transitions: 
(a) Bound-bound transitions where the energy acceptor is produced 

in a bound excited state which is located below the ionization 
energy of the acceptor. The excited state of the acceptor can 
subsequently decay either radiatively or nonradiatively. 

(b) Bound continuum transitions. When the energy of the donor ex­
ceeds the solid state ionization potential of the energy accep­
tor, the energy transfer process will result in the ionization 
of the acceptor. Such ionization processes bear a close analogy 
to Penning ionization in the gas phase. From the foregoing 
classification it is apparent that two general techniques can 
be utilized to interrogate the dynamics of energy transfer. 
The consequences of transfer resulting in bound-bound 
transitions can be explored by the techniques of luminescence 
spectroscopy. On the other hand energy transfer resulting in 
ionization can be investigated by photoelectron emission 
studies monitoring the photoelectron yield and the photoelec­
tron energy distribution. 

V.B. Migration of Free Excitons 

1. Transfer to Guests. To explore electronic energy transfer 
by "free" excitons one has to utilize sensitive interrogation 
methods in order to probe processes occuring on the 10-12 s time 
scale. Photoelectron emission yield and energy distribution 
measurements provide an6adequate tool. The electron emission pro­
cess is prompt ( ~ 10-1 s) on the time scale of nuclear motion. 
The kinetic energy of an electron which has been released in an 
ionizing energy transfer process contains therefore the informa­
tion on the initially transferEgd energy. Light emission from an 
acceptor in contrasts needs 10 s or longer. The memory on the 
initially transferred energy can be destroyed within this time by 
electronic and lattice relaxation at the acceptor. Fig. lOa 
shows an energy level scheme for Xe atoms doped into an Ar matrix. 
The energy even of the lowest free matrix exciton is sufficient 
to ionize a Xe guest atom. Fig. lOb illustrates the expected 
differences in the kinetic energy distributions of electrons 
emitted from the Xe guests I) when the energy of free n=2 matrix 
excitons is transferred, II) when n=2 excitons relaxe to n=l 
excitons before transfer, III) when the free n=2 exciton becomes 
localized before transfer and IV) when an n'=l exciton (j=1/2 hole 
state) relaxes to an n=l exciton (j=3/2 hole state) before trans­
fer [52]. Evidently the kinetic energies of the emitted electrons 
immediately reflect the status of the matrix exciton at the 
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Fig. 10. (a) Energy level scheme for Xe in Ar 
(b) Scheme for energy transfer and relaxation 
I: Transfer by free excitons to guest; 

II: relaxation of free n=2 to free n=l exciton states and 
subsequent transfer, 

III: localization of n=2 and n=l and subsequent transfer; 
IV: relaxation of j=1/2 hole to j=3/2 hole (n'=1-- n=l) 

and subsequent transfer [52]. 
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moment of transfer. Only electrons located above the vacuum level 
which is marked by V are able to leave the sample. The signal is 
not masked by electr8ns from the matrix itself because the matrix 
excitons lie below the vacuum level (Fig. 10). Electron energy 
distribution curves (EDC's) from thin films of solid Ar doped with 
1 % Xe are shown in Fig. 11. The samples have been excited with 
photon energies covering the range of n=l up to n'=2 matrix excitons. 
The counting rate is plotted versus kinetic energy. The spectra are 
shifted upwards proportional to the increase in the exciting photon 
energy. The maxima Band C are due to the two spin orbit splitted 
Xe 5p states in the band gap of Ar (Fig. 10) . Inspection of Fig. 11 
shows that the energies of the maxima Band C are the same as if 
the Xe atoms would have been excited directly by photons. This is 

14 

n' : 2 

n=2 

13 13.00 eV 
r--. 

>- !l 
Go '2 

=> 
>-

>- 1152 eV ..... 
CD "' 12.40 eV 

..... 
co::: .~ 
LLJ ..c> 
:z: nl :l 12.25pV ..... 
LLJ "' 
:z: n :1 12.07eV LLJ = -:;;;12 

c( 
co::: 

= a... = :z: -:z: = 
11.50 eV = <-> 

1% Xe in Ar 

11 
0 2 3 

Fig. 11. Electron energy distribution curves for 1 % Xe in solid 
Ar. The base lines are shifted proportional to the ex­
exciting photon energies Ifrom 521. 
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easily seen by comparison with the diagonal lines which correspond 
to the predicted positions of maxima Band C for transfer of the 
total energy of each matrix exciton, i.e. before any relaxation 
process. A contribution due to direct absorption of light by Xe 
atoms is negligible « 0.1 %) for photon energies in the matrix 
exciton region because of the low Xe concentration and the high 
matrix absorption coefficient. The measured kinetic energies for 
the population of matrix n=l excitons prove that the total energy 
of free n=l excitons is transferred. For localized n=l excitons the 
transferred energy would be 2 eV lower and the final state would 
even be located below the vacuum level. The difference in kinetic 
energy for the spectra for n=l' and n=l excitons also excludes re­
laxation from n=l' to n=l before energy transfer. For the n=2 and 
n=2' excitons of the Ar matrix again the maxima of the Xe 5p states 
appear in the EDC's at kinetic energies indicating energy transfer 
from unrelaxed n=2 and n=2' excitons. There is an additional maxi­
mum near the vacuum level which is attributed to energy transfer 
from self trapped n=2 excitons. This maximum cannot be explained by 
transfer after relaxation to n=l and n'=l excitons. 

The situation is quite different for Xe in Ne. The EDC's in 
Fig. 12 are taken for photon energies corresponding to population 
of Ne n=2, n=l excitons and at a somewhat lower energy for direct 
excitation of the Xe guest atoms (hv = 16 eV). In the latter spec­
trum emission from the two spin orbit split Xe 5p states situated 

21 
n:2 
20.4eV 

-1125CV I-
1% Xe/Ne 

3.6 cV------1 

~ 
~~ / 
W / 
z .// 
Wl9 " 
z / 
o n:1 ' 
~IB~I7.~.5~e~v ____ ~-.~~~,~"~ 
a.. 17 

16~~~~~~~~--7--=--~~--~ 
012345678910 

ELEcrRON KINETIC ENERGY reV) 

Fig. 12. Electron energy distribution curves for 1 % Xe in solid 
Ne. 
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in the band gap of Ne. is observed. The Xe 5p states are well re­
produced when the energy is transferred from the Ne n=l exciton 
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(hv = 17.5 eV) to the Xe atoms. However, there is a shift of ~ 0.7 
eV of the total spectrum to lower kinetic energies indicating-some 
relaxation either to the one center self trapped exciton or to the 
high vibrational levels of the two center self trapped exciton 
before energy transfer. The striking observation is that in the EDC 
obtained by exciting the Ne n=2 excitons more than 3 eV are miss­
ing. The electrons have the same energy distribution as for excita­
tion of the n=l excitions. This observation indicates a complete 
relaxation of the n=2 excitons to n=l excitons and dissipation of 
an energy of more than 3 eV before transfer. 

These data illustrate the power of EDC measurements yielding direct 
information about the state of relaxation before transfer. A time 
scale derived from these experiments for the competition of relaxa­
tion and transfer processes is given in Table 5. Similar experiments 
have been reported for C6 H6 guest molecules in solid rare gas 
matrices [53J. 

These experiments demonstrate that energy transfer can be fast 
enough to compete with electronic relaxation and with exciton local­
ization. To derive the range of energy transfer it is necessary to 
vary the separation between exciton and acceptor. The concentration 
dependence of exciton induced impurity ionization is one possibility. 
Photoelectron yield spectra for Xe atoms in Ar matrix are shown in 
Fig. 13 for Xe concentrations decreasing from 1 % down to 0.005 % 
[38J. The yield corresponds to the total amount of emitted electrons 
and represents for each photon energy the area of an energy distri­
bution curve (for example Fig. 11). The immediate information on 
the transferred energies is lost in the yield spectra but there is 
still a threshold energy E~. The transferred energy has to be 
sufficient for ionization or the guest atoms and for exciting the 
electrons also above the vacuum level. 

i _ {E~ 
ETh - . 

E1 
G 

for V > 0 
o 

V for V < 0 
o 0 

(32) 

For Xe in Ar the free excitons but not the localized excitons ful­
fill this condition and only energy transfer events by free excitons 
contribute to the yield. At photon energies below 12 eV the matrix 
is transparent and electrons in Fig. 13 originate from the Au sub­
strate and from the Xe guests. Both contributions are small at all 
Xe concentrations up to 1 %. At photon energies between 12 eV and 
13.9 eV light is absorbed by excitons of the Ar matrix. Hence the 
yield from the Au substrate and from direct absorption by Xe guest 
atoms is reduced. Nevertheless the yield increases. The observed 
large yield in this range originates from the creation of host 



T
a
b

le
 
5

. 
T

im
e 

h
ie

ra
rc

h
y

 
fo

r 
th

e
 

c
o

m
p

e
ti

ti
o

n
 
o

f 
e
n

e
rg

y
 
tr

a
n

s
fe

r 
a
n

d
 
re

la
x

a
ti

o
n

. 
T

h
e 

ti
m

e
 
c
o

n
s
ta

n
ts

 
, 

(i
n

 
s)

 
h

a
v

e
 

th
e
 

fo
ll

o
w

in
g

 m
e
a
n

in
g

: 
'1

: 
ra

d
ia

ti
v

e
 

d
e
c
a
y

 
o

f 
R~

 
o

r 
R

* 
c
e
n

te
rs

 
o

f 
th

e
 

m
a
tr

ix
: 

'2
; 

v
ib

ra
ti

o
n

a
l 

re
la

x
a
ti

o
n

 
o

f 
R

2*
 
c
e
n

te
rs

; 
'3

 l
o

c
a
li

z
a
ti

o
n

 o
f 

e
x

c
it

o
n

s
; 

'R
 

(
i 

+
 
j)

; 
e
le

c
tr

o
n

ic
 

re
la

x
a
ti

o
n

 o
f 

e
x

c
it

o
n

 
i 

to
 
e
x

c
it

o
n

 
j;

 
'T

: 
e
n

e
rg

y
 
tr

a
n

s
fe

r.
 

(A
ft

e
r 

R
e
f.

 [
5

2
])

. 

T
~
e
 

H
ie

ra
c
h

y
 f

ro
m

 

1%
 

X
e 

in
 A

r 
E

le
c
tr

o
n

 E
m

is
si

o
n

 
E
x
p
e
r
~
e
n
t
s
 

n 
'1

 
>

'2
 

>
'T

 

n 
1 

' 
'R

 
(1

' 
+

 
1

) 
>

 
'T

 

n 
2 

'1
 

>
 
'R

(2
 

+
 

1»
 

'T
 ~
 '

3
 

1%
 

X
e 

in
 

N
e 

n 
'2

 
>

 
'R

 >
 
'T

 
>

 
'3

 

n 
2 

'2
 

>
 
'1

 
>

{
'R

<
2

 
+

 
1

) 

'3
 

T
im

e 
H

ie
ra

rc
h

y
 
In

c
lu

d
in

g
 

L
if

e
ti

m
e
 M

ea
su

re
m

en
ts

 

-5
 

-9
 

-9
 

'1
 
~
 

1
0

 
-

1
0

 
>

 
'2

 ~
 

1
0

 
>

 '
T

 

-5
 

-9
 

-1
2

 
'1

 
~
 

1
0

 
-

1
0

 
>

 
'R

 
(2

 
-....

 
1»

 
T
T
~
T
~
 

1
0

 
3 

-5
 

-6
 

-8
 

-1
2

 
, 

~
 

1
0

 
>

,
 
~
 

10
 

1
0

 
>

 
'T

 
>

 
'
3
~
 

1
0

 
2 

1 
-5

 
-6

 
-8

 
{

'R
(
2

+
1

)
 

'2
 
~
 

1
0

 
>

 
'1

 
~
 

1
0

 
1

0
 

>
 
'T

 
>

 
-1

2
 

'
3
~
1
0
 

~
 
~
 

0
)
 :z C

J)
 

("
') J
: :E
 

m
 

Z
 

-i
 

Z
 

m
 

::x
J 

m
 

-i
 

» r-



ENERGY TRANSFER IN SOLID RARE GASES 447 

Fig. 13. Electron yield of Xe doped Ar films versus the exciting 
photon energy. Parameter is the Xe concentration. Ar and 
Au indicate pure Ar and Au substrate yields from DB]. 

excitons (n=l, 1',2 ••• ) and energy transfer of free Ar excitons 
to the guest atoms. The small maxima in pure Ar are due to energy 
transfer of Ar excitons to the Au substrate. Above hv = 13.9 eV 
direct photoemission of the Ar matrix causes a further steep in­
crease of the yield. In Table 6 the matrix exciton energies and the 
energy of the emission bands are c9mpared for various systems to­
gether with the threshold energy E~h necessary for electron emission 
from the guest levels. The occurrence of energy transfer is marked. 
The essential result from these experiments is that in all solid 
rare gases matrices electron emission starts when the energy of 
primarily excited excitons just exceeds the threshold for photo­
emission of the guest atom. For Ar and Kr matrices the luminescence 
emission bands lie below the threshold and only transfer by free 
excitons leads to electron emission. The high yield for Xe in Ar 
(Fig. 13) proves that at high concentrations this is the dominant 
transfer process. 

The range of energy transfer has been determined by modelling 
the dependence of the yield on concentration, photon energy and 
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Table 6. Comparison of energies which are transferable by the 
matrix either in the self trapped exciton states (ER *) or 
in the free exciton states n=l (En=l) and n=l' . 2 
(En=l') with the lowe$t excitation energies (E~=l) and 
ionisation energies E~h of guest atom. ETh: ionisation 
energy of the matrix. + and - means observation or 
absence of energy transfer in electron emission spectra 
(energies in eV). 

Matrix Guest ETh e Ei 
Th 

Ei 
n=l 

f E * 
R2 

E n=l E n=l ' 

Ne 20.3 16.80 17.36 17.50 
Xe 11.60 9.10 + + + c,d 
Kr 13.48 10.60 + + c 
Ar 15.05 12.48 + + c 

Ar 13.8 9.80+0.44 12.06 12.24 
Xe 10.2 9.22 + + b,d 
Kr 12.2 10.79 + b 

Kr 11.9 8.45+0.32 10.17 10.86 
Xe 10.3 9.01 + a,b 

a Ref. [64 ] d Ref. [52 ] 

b Ref. [38 ] e Ref. [7] 

c Ref. [39] f Tab. 4 

sample thickness by a diffusion equation for the density of free 
excitons [38]. The diffusion equation has been solved with appropri­
ate boundary conditions which lead to a dead layer, i.e. an exciton 
free region at the surface. Thus the transfer has to compete with 
localization and also with quenching near the surface. The influence 
of surface quenching is very sensitive to the film thickness and to 
the spectral dependence of the matrix absorption coefficient. A 
consistent fit of all spectra allows a determination of the diffu­
sion length and provides a test for the boundary conditions which 
have been used. These boundary conditions are an interesting problem 
in itself. The diffusion length for Ar of 1 = 120 ~ exceeds the 
lattice constant considerably. Also for the other rare gases diffu­
sion length of the order of 100 ~ up to several thousand ~ (Ne) have 
been found (Table 7). 
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Table 7. Diffusion lengths for energy transfer to guest atoms 
and to boundaries (in R). 
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Photoelectron Emission Luninescence 

Excitons Guest Atom Boundary Guest 
Boundary Atom 

Ne n = 1,1',2 2500+500 a observed a 

Ar n = 1 , 1 ' 120 b observed b 50 
n = 2,2' ,3 

g 

n = 10-150 200-250f 
Kr n = 1 ' observed b 150-250 d 300 f g,h 

n = 2 250-350 200 

Xe n 1,2 170 c 300 e 25- 500 f 
260 f 

e Ref. [57] 

f Re£. [65] 

aRef • [39] 

bReL [38] 

cRef • [64] 

dRef. [42] 

gCh. Ackermann, R. Brodmann, G. Zimmerer and 
U. Hahn, J. Luminesc. 12/13, 315 (1976) 

hRef • [54] 

2. Transfer to Boundaries. The guest atoms can be replaced by 
boundaries as acceptors for energy transfer. Even in the doped 
samples the surface played a role, but a passive role in acting 
as a sink for excitons. Several experiments have been reported 
where luminescence of rare gas solids has been quenched by 
energy transfer to surfaces which have been contaminated by 
residual gas [54],[55],[56]. The quenching efficiency is large 
for a small penetration depth of the exciting photons. There­
fore minima are observed in the luminescence yield for regions 
of high absorption coefficients, i.e. in the centers of exciton 
absorption bands. The interpretation is complicated by the 
fact that free and localized excitons can contribute to the trans­
fer. The experimental results can be explained in terms of diffu­
sion of free excitons as well as by FBrster Dexter type transfer 
(Tables 7,8). 
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Table 8. Energy transfer radii Rq (in R) for electronic energy 
transfer to guest atoms and boundaries in solid and 
liquid (1) rare gas matrices. 

Host Temperature 

Ar 

Kr 

(1) 

Xe 

a)Ref. [62] 

b)Ref. [63] 

K 

6-20 

60 
110 
120 

5 

5-15 

Species 

Xe 
Kr 

Xe 
Xe 
Xe 

C6 H6 

C6H6 

c) Ref. [65] 

d)Ref. [54] 

G u e s t 

Rq(exp.) 

18a) 
6b) 

17a ) 
25a) 
24a) 
21-22c ) 

24-29c) 

Boundary 

Rq(cal.) Rq(exp.) 

lOa) 
15a) 
21 a) 

25-29c) 
22d) 

40c) 

Detailed information can be obtained when the boundary plays an 
active role and delivers a signal proportional to the transfer 
efficiency. Excitons in rare gas films on a metal substrate can 
migrate to the substrate and ionize the substrate. The ejected 
electrons can be detected [4~j, [571, [58]. The incident light in the 
scheme of Fig. 14 is represented by a wavy beam I • Part of it is 
reflected (I R), part of it creates excitons in ~he film, which 
move to the ~ubstrate (hatched beam), eject electrons (straight 
beam) some of which penetrate the film and are detected as Y T [42] . 
The transmitted light causes a background of photoelectrons ¥rom 
the substrate (YA ). The thickness dependence of this yield has 
been used to den\}e diffusion lengths for Xe [57] , Kr [42} and Ne 
t58]. Kr delivers a very pronounced signal and is therefore 
treated as an example. 

Yield spectra for the films on an Au substrate are shown in 
Fig. 15 for a number of film thicknesses d. The Kr films are trans­
parent up to photon energies of 9.8 eV. The small photoelectron 
yield below 9.8 eV represents the escape probability for electrons 
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VACUUM Kr FILM Au SUBSTRATE 

~----------~~--x 

Fig. 14. Cont:ibution of YAu and YET to the electron yield of a 
Kr f~lm on an Au substrate. The crosshatched beam indi­
cates energy transfer by excitons, the straight beams 
escape of electrons and the wavy beams the light pass 

Fig. 15. 

[ 42]. 

l1J 
> 
I­
« 

4 

" ,\ . \ , '. 
I \ 

,\1 , 

: 'J \ 
\ 

...J Au YIELD 
l1Jl 
0:: d.SS'!' :'\, .. / 

Electron yield 
thicknesses d 
The absorption 
[42]. 

PHOTON ENERGY (eV) 

versus photon energy for several Kr film 
normalized to the Au substrate yield. 

coefficient k of Kr is shown in the inset 
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from the Au substrate. The strong increase of Y for photon energies 
in the Kr exciton region above 10 eV is due to the energy transfer 
to the substrate. The yield YET in this region depends on the diffu­
sion length 1, the thickness a, the absorption coefficient k and 
the escape length L of the electrons. Land k have been determined 
independently. The absolute value of the yield indicates an effi­
ciency for electron emission due to energy transfer of 0.3 - 0.5 
electrons per exciton compared with the Au direct photo yield 
efficiency of 0.03 - 0.05 electrons per photon. A similar high 
efficiency is observed in the Penning ionization of metal surfaces 
by metastable rare gas atoms. The interaction of the exciton with 
the metal substrate is a surface effect yielding the electron at 
the metal surface. This explains the high efficiency compared to 
the ordinary photoeffect where the penetration dept of the light 
into the metal reduces the efficiency. The most important result 
concerning exciton migration is a pronounced dependence of the 
diffusion length on the energy of the initally prepared exciton 
(Fig. 16). The diffusion length increases from about 30 g in the 
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Fig. 16. Bottom: diffusion length versus the excitation energy 
of the excitons for solid Kr. Dashed lines indicate the 
trend. 
Top: absorption coefficient showning n=1, n'=1 and n=2 
exciton peaks. 
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low energy tail of the n=l exciton to I = 300 g for the n=2 exciton. 
The value I ~ 30 g can be explained by the interaction of a metal 
surface with~a dipole, i.e. a localized exciton in front of it [42]. 
The monotonic increase of I with the exciton energy is due to a 
memory of the transfer process on the primarily excited exciton 
state. This increase reflects the diffusion of free excitons while 
they are scattered down within the original exciton band, scattered 
to lower exciton bands and become thermalized and finally localized 
(Fig. 9). The larger diffusion length of higher exciton states can 
be ascribed to a longer lifetime as a free exciton because more 
cumulative scattering events for thermalizations are necessary and 
to an increase in the diffusion coefficient. A theoretical inter­
pretation of the monotonic increase of I within each exciton band 
and also for switching to higher exciton states (Fig. 16) would be 
very interesting. 

Finally for extreme thin films with thicknesses d of only 
15 R ener~y transfer of surface excitons to the substrate has been 
observed (~2]. This transfer died out already at d = 55 R. The 
surface excitons are restricted to the surface plane due to the 
lower energy compared to bulk excitons (Table 2). Therefore they 
cannot penetrate into the bulk and diffusion is impossible for these 
states. The energy transfer is mediated by a dipole interaction of 
the exciton with the metal which yields a transfer range of the 
order of 30 R. 

Another type of experiments is closely related to energy trans­
fer to surfaces. For solid rare gases extremely high erosion yields 
Y of the order of Y ~ 10 ejected atoms per electron for keV 
ei~ctrons [59] and upefo~Y ~ 103 for MeV charged particles [60] 
have been reported. One moa~l vexplains the high erosion yield by a 
thermal spike in the vicinity of the track of the penetrating high 
energy particle because about 2 eV of the kinetic energy of elec­
trons produced by the stopping of the particle are converted to 
nuclear motion in the dissociative recombination of localized holes 
with these electrons (Fig. 9). Many atoms are evaporated at the 
crossing point of the particle track with the surface due to this 
thermal spike [60]. An alternative model [59) explains the yield by 
an efficient transport of energy, which has been deposited in form 
of excitons along the track of the particle, to the sample surface. 
The transport is attributed to the diffusion of free exciton thus 
involving the diffusion length. The excitons are trapped as excimer 
centers at the surface. They decay radiatively to the repulsive 
ground state (Fig. 9) and one atom for each excimer is ejected with 
a large energy. The kinetic energy of the ejected atom is given by 
the repulsive energy of the ground state of about 1 eV. 
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V.C. Energy Transfer Between Localized Centers 

1. Electronic Energy Transfer of Self-Tapped Excitons to Guest 
Centers. In luminescence experiments the threshold criteria which 
have been discussed for photoelectron spectra are not relevant and 
energy transfer by free or localized excitons will lead to light emis­
sion from the acceptor. In the past energy transfer observed in 
luminescence experiments has been attributed mainly to transfer from 
localized excimer centers. This assumption will be more valid for 
low acceptor concentrations because the time scale for energy trans­
fer will exceed the lifetime of free excitons due to the larger 
mean donor-acceptor separation. The Forster-Dexter mechanism is * 
responsible for energy transfer between matrix excimer centers R2 
and guest centers. The efficiency depends mainly on the spectral 
overlap of the excimer emission band and the guest absorption spec­
trum (24-26). The spectral overlap is large for Xe guest atoms in 
solid Kr and Ar matrices [61]. 

The transfer radius [61],[62],[63] is derived fromtheconcen­
tration dependence of the donor yield n (29). A typical plot of n 
for the Xe in Kr system is portrayed in Fig. 17. The position and 
width of the Rydberg type impurity bands of Xe atoms in the Kr 
matrix change with temperature (15). This variation is reflected in 
the experimental and calculated Rq values (Table 8) because of its 
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Fig. 17. Ratio of Kr donor emission yield to Xe acceptor emission 
yield versus acceptor concentration. Crosses: experiment; 
solid line: fit with Forster theory [62]. 
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influcence on the spectral overlap (26). 

Electronic energy transfer to molecular impurities in RGS was stud­
ied utilizing the benzene molecule as a prototype [64], [53] , [65] , [66] , 
The luminescence intensity of the benzene acceptor (66] is much 
higher for excitation of host excitons than for direct excitation 
of benzene molecules in the transparent region of the host. Evident­
ly, energy transfer from the host to guest molecules takes place, 
an observation, made for all rare gas matrices. The surface competes 
with the acceptor centers in quenching the donor centers especially 
for excitation processes with a small penetration depth. Ackermann 

[65l established that the ratio of host emission intensity to 
guest emission intensity (Fig. 18) is quite insensitive to changes 
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in the surface quenching rate. A careful study of the concentration 
and thickness dependence of host and guest emission efficiencies in 
the excitonic region of the rare gas host indicated that for benzene 
in Xe and Kr matrices there is an important contribution of self­
trapped excitons to the energy transfer for all host exciton states 
yielding a critical Forster Dexter radius of 28-29 R in a Xe matrix 
and 21-22 R in a Kr matrix !Table 81. 

2. E1etctronic Energy Transfer Between Guest Centers. For 
matrix to guest energy transfer it is difficult to sort out the 
contribution of electronic energy transfer from free exciton 
states of the host and that from trapped excitons. Energy trans­
fer from a localized donor to a molecular acceptor in solid rare 
gases was explored in the study of energy transfer from Xe atoms 
to benzene molecules when both partners had been embedded in an 
Ar matrix [65]. Both centers are fixed in the Ar lattice and 
exciton diffusion is excluded. The transfer mechanism is ex­
clusively of the Forster Dexter type. Again the intensity in 
the emission bands of both Xe and C6H6 has been measured after 
the excitation of Xe exciton states. More details of the line 
shape show up in the excitation spectra of the three emission 
bands at 1640 ~. 1460 R excitation spectra of the three emission 
bands at 1640 R, 1460 ~ and 1250 R of Xe atoms in Ar matrix. The 
analysis results in a FBrster Dexter radius of 24 R. 

By exciting selectively different electronic states of a donor 
guest atom it is possible to compare the relaxation rate of higher 
excited donor states with the transfer efficiency to acceptors. The 
Rydberg character of the n=l and n'=l excited states of Kr guest 
atoms in a Ne matrix causes a large line width and a Stokes shift 
of about 0.5 eV of the transitions to the ground state. The n'=l 
state in emission is accidently resonant with the n=l state in 
absorption due to this Stokes shift. Therefore a Forster Dexter 
type energy transfer between a n'=l Kr excited state in a relaxed 
Ne configuration and another Kr atom in the ground state will be 
very efficient. The time evolution of the n'=l Kr emission and the 
n=l Kr emission after population of n'=l states can be nicely fitted 
with the Forster Dexter equations (27,28) yielding a value of R 
21R[41]. q 

3. Vibrational Energy Transfer Between Guest Molecules. 
Migration of vibrational energy in doped rare gas solids has 
been discussed in recent review [45]. A spectacular example is 
the upconversion of v=l vibrational levels of CO in Ar up to 
v=7 which has been reported by Dubost and Charneau [47] and which 
has been analyzed in many theoretical papers [45]. 

CO molecules have been trapped in solid Ne and Ar matrices at 
~ 8 K with concentrations of typically 1:1000. The first vibrational 
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12 16 
state in the electronic ground state of C 0 has been populated 
from the vibrational ground state by excitation with a Q-switched 
frequency doubled CO2 laser pulse. The emission spectra consist of 
several lines which can be attributed to transitions between vi­
brational levels v = 0 up to v = 7 with ~v = 1. The transitions are 
separated due to unharmonicity in the CO potential curve. The sur­
prising observation is this energy upconversion from v =1 up to 
v = 7. The complication of additional fine structure due to energy 
transfer to 13C160 and 12C 180 isotopes will not be discussed here 
[47J. Firstfor an interpretation of this energy upconversion the 
lifetime of the v = 1 state is essential. Because of the small 
matrix phonon energies and the large vibrational energies of the 
CO molecule radiationless transitions are unimportant (18). The 
lifetime is determined by the radiative lifetime which is long and 
lies in the order of msec. During this lifetime the vibrational 
energy migrates with a high rate constant due to a Forster Dexter-­
like energy transfer through the crystal from one CO molecule to 
another. In this way several vibrational v = 1 energy packets can 
reach one CO molecule simultaneously and form a higher excited vi­
brational state v' > 1. The very small energy mismatch for example 
of 2 (E (v=l) - E (v=O)) > E (v=2) - E (v=O) due to the small an­
harmonicity of the potential can be overcome by emission of a lat­
tice phonon. At the low temperatures of the experiment (4 K) phonon 
emission is some orders of magntidude more probable than phonon ab­
sorption. As a consequence the opposite process of decay of a higher 
excited vibrational level into two lower vibrational states is much 
less probable. Therefore, a transient population of higher vibra­
tiona] levels occurs and even a population inversion between popula­
tion of v = 2 and v =1 is observed. From the measured rise times 
and decay times of all the emission bands any population of higher 
vibrational states by two photon absorption or radiative energy 
transfer has been excluded. Based on the available potential curves 
a quantitative description of the population rates of different vi­
brational states and also of the time dependence of the population 
has been given [45], [47]. 

Vibrational energy transfer plays also an important role in 
electronically excited states of guest molecules. Electronic and 
vibrational relaxation in excited states of a guest molecule can be 
accelerated by a distribution of the excess energy into ground state 
vibrational quanta of neighbouring guest molecules as has been ob­
served for N2 molecules in solid rare gas matrices [46]. N2 in rare 
gas matrices is an exceptional example because vibrational relaxa­
tion in its first excited state A3 L+ is extreme slow. Therefore, 
despite the long radiative lifetime gf its dipole forbidden transi­
tion to the ground state luminescence also from vibrationally ex­
cited A3 L+ states is observed t67]. One of the reasons is the weak 
coupling o¥ the excited singlet (68] and triplet [46] states to the 
matrix phonons which has been derived from the line shape of absorp­
tion and emission spectra (13-15). The second reason is the large 
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vibrational spacing of 165 meV in the A3 L+ state which requires 
for nonradiative relaxation a dissipation gf about 33 matrix 
phonons. This multiphonon process is inefficient according to the 
energy gap law (18). Each histogram in Fig. 19 represents the popu­
lation distribution in the vibrational levels v' = 0, .•. ,7 of the 
A3 L+ state of N2 in Xe matrix for excitation of that vibrational 
leveY which has oeen marked by a horizontal arrow. The left hand 
distribution for 0.5 % NZ/Xe (Fig. 19) corresponds to the case of 
essentially isolated NZ molecules. For v' = 0, •.. 6 most (> 50 %) 
of the intensity is em~tted from the initially populated level and 
only a small fraction relaxes down to the next lower levels, illu­
strating the slow multiphonon relaxation rate. The distribution 
for excitation energies exceeding v' = 6 is given by the radiative 
transition B3 IT (VI = 0) ~ A3 L+ (v") with its Franck Gonden 
distribution. Af Z % N2 in Xe th~ statistical probability that two 
NZ molecules occupy ne~_ghbouring lattices sites reaches 30 %. 
Evidently the initially excited vibrational levels are depopulated 
much more effectively. Furthermore relaxation steps corresponding 
to a dissipation of two vibrational quanta dominate the distribu­
tion. The ground state vibrational energy of NZ is Z87 meV. Thus 
two quanta of the A3 L+ state (Z x 165 meV) can be converted into a 
ground state vibrationuand the remaining excess energy of 43 meV 
has to be dissipated in 8 matrix phonons. This energy transfer to a 
neighbouring NZ molecule reduces the number of emitted matrix 
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phonons from 33 to 8. The exponential terms in the energy gap law 
(18) favour a low number of phonons e~Zn for a very weak coupling 
between the two molecules with S < 10 . 

V.D. Energy and Mass Transport in Liquid Rare Gases 

Electronic excitation of liquid rare gases leads to the for­
mation of atomic and excimer bubble centers. These centers can 
migrate in the liquid by mass diffusion due to the high mobility of 
the atoms in the liquid. The two lowest long living excited states 
in liuqid He are the atomic 2s 3S and the excimer a3~ + state 
( • ) • U F1g. 5 • These two states"are most 1mportant for energy transport 
by mass diffusion. Transport of energy over distances of 1 cm 
without appreciable attenuation has been observed in superfluid He 
between 0.3 and 0.6 K [69]. At higher temperatures the range 
is reduced. The transport range by these centers increases with 
the lifetime of these triplet states. The lifetimes have been 
probed b3 delayed absorption spectra of 2s 3S + 2p 3p and a 
3Lt + b ITg transitions after pulsed excitation [70]. The life­
time of a 3LU+ is mainly limited by the collision betwe~n two 
a 3~u+ excimers and decomposition into two ground state He atoms 
and one higher excited excimer. 

The time dependent concentration M of metastable states is 
described by second order kinetics 

l/M = l/M + aCT) • t 
o 

(33) 

with the steady state concentration M and the bilinear reaction 
rate aCT). M is given by the number ~ of inicially produced 
metastable mglecules M = (I /a(T»1/2~ To ~rovide a quantitative 
estimate we note that ~he li~etime of the a ~t state due to the 
bilinear quenching is about 1 nsec at a beam current of 1 ~A and 
the lower limit of the radiative lifetime is at least as long as 
0.1 sec. A most important experimental observation is that the 
bilinear reaction rate aCT) increases with decreasing temperature. 
aeT) is inversely proportional over the higher part of the tempe­
rature range to the number density of rotons given by e-~/T with 
~ = 8.6 K [70].This interesting temperature dependence reveals 
that the reaction rate is diffusion limited and determined by 
scattering with rotons. The energy gap of rotons is pressure 
dependent. The change of aCT, p) with external perssure P has been 
measured [70]. The observed decrease of aCT, P) with pressure 
agrees with the predictions based on the pressure dependence of ~. 

Some direct implications of the annihilation process were 
recorded. The afterglow observed inLthe VUV emission of the 
Al ~u + (Fig. 5) is due to repopulation of this state in the annihi-



460 N. SCHWENTNER ET AL. 

3 + 
tion process of two metastable a Eu states as follows from the 
similarity in the rate constants for annihilation a(T, p) and for 
repopulation. The destruction of metastable molecules feeds the 
A1Eu+ channel as well as higher lying states. 

Similar results for triplet-triplet annihilation have been 
obtained for s~lid He [71]. In solid He the molecular absorption 
band for the a Et + b3rr8 transition is similar to that in the 
liquid phase. Also the time dependence of the A1E+ afterglow, i.e. 
the bilinear reaction rate a(T) is the same. The gommon reaction 
rate is surprising, because a is determined by diffusion of 
metastable molecules and the transport properties for other 
species like positive and negative ions are about four orders of 
magnitude smaller in the solid than in the liquid phase. Thus, 
mass transport in the solid is excluded. Short range electron ex­
change interaction provides an attractive mechanism for triplet 
migration in solid He. If this is indeed the excitation transport 
mechanism, the triplet-triplet annihilation in solid He bears a 
close analogy to triplet-triplet annihilation in aromatic crystals. 

Finally, we mention briefly electronic energy transfer in 
doped liquid rare gases. Elelctronic energy transfer between Ar~ 
and KrZ'donorsand Xe acceptor in liquid rare gases was studied oy 
Chesnowsky et al. [72) . The donor emission yield n of Kr * for 
the liquid Xe/Kr system exhibits a linear dependence on t5e Xe 
impurity concentration. This behaviour is different from that of 
the Xe/Kr solid alloys and can be accounted for in terms of a 
simple kinetic scheme with a rate constant kETTo = 6 x 10-19 cm3 
which, with the value TO % 10-6 s-l for t~e radiative decay of the 
Kr2* state, results in kET = 6 x 10- 13 cm s-l (see equ. (31)). This 
rate includes mass diffusion and Forster Dexter type of transfer. 
W~th the date To = 10-6 s-l,and the r:lati~e diffusion coeffi:ient 
D of the donor acceptor pa~r D* = 10 6 cm s-l and the exper~mental 
value for kETa transfer radius Rq = 24 ~ in the liquid was 
calculated with (31). This value is in agreement with the Rq values 
in Table 8. Thus the energy transfer process between localized 
states in the liquid involves a long range electronic energy trans­
fer process coupled with diffusive motion. 

VI. HIGH EXCITATION DENSITIES 

VI.A Laser Applications 

The broad bandwidth emission continua from noble gas excimers, 
extending from 60 nm in the case of He to 172 nm for Xe favour 
these gases for short wavelength lasers. The bound excimer states 
decay radiatively to the strongly repulsive part of the ground 
state potential curve. The repulsive ground state ensures an 
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extremely fast depopulation by dissociation (10-13 s ) thus facili­
tating inversion. It is responsible for the large width of the 
emission bands which should allow a broad tunability region. The 
particular problems encountered in the construction of short 
wave length laser follow from an A-5 scaling law for the pumping 
power per unit volume which is required to produce a gain coeffi­
cient of unity per unit length. In 1965 it ahs been recognized that 
noble gases emit essentially the same excimer bands in the solid, 
liquid and gaseous phase [25]. The idea to exploite the higher 
density in the condensed phases for obtaining a sufficient high 
density of excimers lead to the first successful operation of an 
excimer laser by the Basov group [73] in 1970. Amplified stimula­
ted emission from electron beam excited liquid Xe at 178 nm has 
been observed. This project has not been continued because of the 
low effic~ency which has been attributed mainly to reabsorption 
of the light. The gas phase excimer lasers made their way [44]. 
Despite of the progress in gas phase excimer lasers and in fre­
quency multiplication it is still difficult to cover the region 
of wavelengths shorter than about 180 nm by lasers. Any additional 
way should be pursued. Since two years we try to obtain stimulated 
emission in the region below 180 nm from Ar, Kr and Xe crystals. 
Most of our emphasis has been concentrated on Ar crystals which 
radiate around 126 nm. Several experimental observations indicate 
that we succeeded in obtaining stimulated emission from Ar cry­
stals. The expenses in pumping power and in equipment for achieving 
a comparable radiation power seem to be lower than for the Ar 
gas phase laser. Considering this success and the relatively 
little efforts devoted up to now to solid phase lasers it seems to 
be promising to continue also this way [74J. 

The emission bands (Fig. 7) are very similar in the gaseous, 
liuqid and solid phase. The short living component (Fig. 7) is 
due to an dipole allowed transition of a 1LuT excimer state to the 
ground state. This allowed transition is the only laser active 
band because the cross section for stimulated emission of the 
dipole forbidden radiative decay of the close lying 3Iu+ state 
is two orders of magnitude smaller. The cross section 0 for stimu-
lated emission follows from s 

o 
s 

(34) 

with the index of refraction n , the lifetime Lr and the linewi~r? 
6V2 The optical data yield a v~lue for solid Ar of £17 o.~ x 10 
cm which is close to the gasephase value of 1 x 10 em. 

The light flux from spontaneous emission in an strongly exci­
ted crystal will induce also stimulated emission. The intensity 
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I (t) due to spontaneous emission. and due to amplified spontaneous 
emission within the cone dn into the amplifying direction is given 
by 

I( t) d h 
a T 

s r 
(exp(n(t) a L)-1) dn 

s 
(35) 

with the excimer density n(t), the penetration depth d, the length 
L and the height h of the crystal. The gain a due to amplification 
is given by 

a = n(t) a L 
s 

(36) 

This gain is obtained for a single pass through the excited 
crystal. If mirrors are used than this gain increases by' the num­
ber of passes. This number is limited by the mirror reflectinity 
and the decay time of the centers compared to the transit time of 
the light in the resonator. In order to obtain a gain of ~1 in single 
pass for a crystal with a length of 1 cm it is necessary to create 
a density of about n=1017excimers/cm3. 

The growth even of single crystals from noble gases is well 
known. The demands for laser crystals are less severe since only 
opti§ally clear but free standing crystals with a volume of about 
1 cm and a front surface of 2 x 1 cm2 are necessary. A pyrex box 
is mounted below a copper block which can be cooled down to 10 K 
by a closed cycle refrigerator. 

With the copperblock pressed versus the box and gas flowing 
through the pipe at the bottom we grow a crystal within about 
30 minutes. By shifting the refrigerator and the crystal upwards 
with a bellow sealed translation stage we bring the free standing 
crystal into the optical path of the ultrahigh vacuum sample 
chamber. 

The crystals are excited by an electron gun delivering elec­
tron pulses of up to 10 J (600 keV, 5 kA, 3 ns) through a 0.025 mm 
thick Ti foil into the sample chamber. The penetration depths of 
the electrons are about 0.24,0.12 and 0.08 mm in solid Ar, Kr 
and Xe respectively. 

The electron beam cross section is larger than the crystal 
surface, therefore only about 0.22 J are really deposited in the 
crystal. Nevertheless this energy is enough to 97eate the nec3ssa­
ry density for amplification of the order of 10· excimers/cm. 
Amplification has been proved by the following observations. 
a) A first indication for amplification is a decrease by 10% of the 
fwhm of the lr band for an increase of the deposited energy from 
0.09 J to 0.22 J yielding a = 0.7 for the highest excitation 
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power. This interpretation is confirmed by the fact that the 3E 
line shape rema+ns unchanged. 
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b) Most of the E contribution is emitted synchronously with the 
exciting Febetron pulse and much faster than a convolution of 
the exciting pulse with T would predict. This part contains 
an essential part of amplified emission on a background of sponta­
neous emission. From the enhancement of the intensity a gain coeffi­
cient a = 1 is estimated. 
c) The intensity in the 1E contribution increases progressively in 
contrast to the 3E contribution which increases linear or even 
slightly sublinear with deposited energy. The enhancement of the 
1E component is caused by an increasing collimation of the 1E radia­
tion into the amplifying direction. The 3E radiation is emitted 
isotropically because of the much smaller cross section for stimu­
lated emission. This experiment yields a gain which increases from 
a = 0.4 to a = 1.3 for enlarging the deposited energy from 0.09 J 
to 0.22 J. 
d) The measured absolute photon fluxes for a deposited power of 
0.22 J corres~ond to maximal intentsities of 8 x 1020 photons/s 
into dQ = 10- sterad. From equation (36) with the known value for 
a we can derive at least a density n = 5 x 10 16 cm-3 of 1 E excimers 
a~d a gain a = 0.3. The total number of 1E excimers Ntot = 4 x 1015 
in the crystal follows from the time sourse and the excited volume. 
A peak power of 1300 watts due to amplified spontaneous emissioy 
has been detected in 10-2 sterad. Furthermore a total of 4 x 10 5 
photons due to 1E exgimers is emitted yielding a peak power into all 
directions of 1 x 10 ~atts. Finally the long component yields a 
density of 8 x 1016/cm 3E excimers. 
e) With a laser resonator consisting of a focusing Al mirror 
coated with MgF2 and a MgF 2 plate a divergence of the amplified 
radiation of ~ 1 mrad and an additional amplification by 
a factor of 3 has been obtained. Fig. 20 shows a comparison of the 
efficiencies for an Ar gas laser [75] and a solid state laser 
starting with the electron gun. Evidently the crystal can be 
more efficient concerning the conversion of deposited energy into 
photons. The measured efficiency in solid Ar is about 12% corres­
ponding to 6% 1L photons and 6% 3L photons. In this context losses 
and energy transfer come into play. 

VI.B. Loss Processes and Electron Plasma 

A typical Ar gas excimer laser [44],[75] requires gas pressures 
between 10 - 100 bars in a stainless steel tube and excitation by 
a Pulserad electron source (2 MeV, 15 KA, 20 ns, 500 J). A delicate 
compromise is necessary between the gas pressure, the thickness of 
the tube wall and the penetration depth given by the energy of the 
electrons. The conversion of the energy deposited in the gas into 
light is limited mainly due to reabsorption of the VUV light by 
excimers and by collisions between two excimers. The collison 
of two excimers leads to one ionised excimer and two ground state 
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Fig. 20. Approximate conversion efficiencies for Ar gas [75] 
and Ar crystals [74]. 

atoms i.e. annihilation of one excimer. The higher efficiency of 
the Ar crystals at excitation densities of about 1017 excimers/cm3 
has to be attributed to different conditions concerning excimer­
excimer annihilation. 

In part V it has been explained that the excimers in the 
crystal are spatially localized due to the lattice distortions and 
the energy relaxation involved in the self trapping process. There­
fore collisions between the excimers in the crystal do not take 
place and the only process leading to excimer-excimer annihilation 
would be Forster Dexter type of energy transfer. The mean separa­
tion between two excimers at a density of 1017 excimers/cm3 is 
about 100 g which is larger than the expected Forster Dexter radii 
(Table 8) and quenching due to this process is not important on 
the time scale of the pulsed stimulated emission of 10-9s . 

But severe annihilation processes can be expected from the 
precursor states of the excimers. The high energetic primary elec­
trons are converted to many pairs of free electrons and holes accor-
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ding to a mean energy for electron hole pair creation of 19.3 eV. 
for Ar. Recombination of slow electrons with free and localized 

holes will populate the whole manifold of free and localized exci­
tons. The free exciton can travel distances of the order 100 R 
and more before localisation (Table 7). Thus collison processes 
between free excitons and between free excitons and excimer cen­
ters will reduce the efficiency. Therefore fast localisation which 
suppresses the migration of excitonswill enhance the light output 
of rare gas crystals at high excitation densities. 

In addition the dense cloud of free electrons can cause 
succesive ionisation processes of excitons and excimer centers and 
electron-electron collisions. In Kr and Xe crystais a flat conti­
nuum emission is observed extending from the infrared, through the 
visible and down to the ultraviolet spectral region [74]. This emis­
sion is only present during the excitation time of 3 x 10-9 s. In 
Ar crystals it is absent or at least one order of magnitude 
smaller than in Kr. This emission is due to free-free Bremsstrah­
lung and free-bound recombination radiation. rhe emission coeffi­
cient Sv for this radiation does not depend on the photon energy 
and is given by [76]. 

(W s. sr 
-1 -3 

5.44 x 10-52 Ne·Ni (37) S m ) 
\i IT 

with the electron and ion densities N e' 
N. in (m-3) and the tempe-

rature T (K) . 1 
in 

The measured absolute fluxes pro~9 that in Xe and Kr crystals 
during the excitation pulse of 3 x 10 s3a dense plasma of elec­
trons with a density of 1018 electron/em and a distribution of kine­
tic energies corresponding to a temperature of 7000-8000 K is 
maintained. The crystal lattice remains at its low temperature of 
10-60 K. This radiation is similar to the plasma radiation obser­
ved in high pressure arcs. The black spot and the the arrows Fig. 
21) illustrate the characteristics of this plasma in rare gas 
crystalsin comparison with other plasma sources [77]. This plasma 
in rare gas crystals presents an extraordinary case of an electron 
temperature of several thousand K and an electron density compara­
ble to general plasma sources but with the ions fixed a lattice 
sites at very low temperatures. The scattering properties of these 
hot electrons and the interaction with the free excitons and exci­
mers which are also present at high densities will be an intere­
sting field in the future. 

This work has been partly supported by the Bundesministerium fur 
Forschung und Technologie. 
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ENERGY TRANSFER AND LOCALIZATION IN RUBY 

ABSTRACT 

G.F. Imbusch 

Department of Physics 
University College 
Galway, Ireland 

The efficiency of energy transfer between donor ions and acceptor 
ions in a solid may be strongly affected by whether or not the 
excitation on the donor ions can transfer rapidly among the donors, 
that is, whether the excited donor state is a delocalized or a local­
ized state. According to a theorem of Anderson if the interaction 
between donors is sufficiently short range the donor excitation will 
be localized below a critical concentration of donors and will be de­
localized above this concentration. Whether or not this Anderson 
transition occurs in ruby has been hotly debated. In this article 
we review the experiments which have attempted to elucidate the nature 
of the energy transfer in ruby and to decide whether an Anderson 
transition occurs there. 

I. THE LOCALIZATION OF OPTICAL EXCITATION IN A SOLID 

When an ion is excited to an energy state of optical excitation 
it may decay radiatively by emission of a photon, or it may decay 
nonradiatively either by multi-phonon emission or by transferring all 
or part of its excitation to a nearby ion. The decay may occur by a 
combination of some or all of these processes. We can visualize a 
situation where a solid contains two types of dopant ion (A and B) 
each with distinct absorption and fluorescent transitions. In a 
typical experiment we would selectively excite a fraction of the A 
ions. If these were the only dopant ions they would decay 
radiatively. Now because of the presence of the B ions the excit­
ation on the A ions may also decay by nonradiative energy transfer 
to B ions. We call the A ions the "donors" and the B ions the 
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"acceptors". The occurrence of this energy transfer would be 
noticed as a reduction in the donor fluorescence and a concomitant 
appearance of acceptor fluorescence. The decay rate of the excited 
A ions may also be affected by the transfer. 

The transfer mechanisms which can cause transfer between two 
adjacent ions have been described by many authors [1], [2J, [3]. 
To relate these microscopic transfer mechanisms to experimentally 
observed effects one must apply sophisticated statistical analyses. 
An additional complication is that donor ~ donor transfer may be 
occurring at the same time as donor ~ acceptor transfer and this may 
greatly affect the efficiency of the observed donor ~ acceptor 
transfer. Indeed, it may be felt that since donor ~ donor transfer 
is a "resonant" process it would tend to occur more efficiently than 
donor ~ acceptor transfer where there is invariably an energy mis­
match. One must invoke a phonon-assisted transfer mechanism for 
donor ~ acceptor transfer and the energy difference between the donor 
and acceptor states is released in the form of a phonon or phonons. 
Hence to analyze a particular experiment in which an energy transfer 
occurs between two dissimilar types of ions, one must consider whether 
a resonant transfer is occurring also among similar ions. 

On further analysis, however, the conditions for a true resonant 
process may be difficult to achieve. Strains in the material can 
shift the positions of the energy levels of ions, and random micro­
scopic strains may mean that the energy levels of two adjacent donor 
ions may be shifted in energy relative to each other. Whether or not 
this strain-induced energy shift is greater than the homogeneous 1ine­
width of the levels then becomes of paramount importance; if there 
is no overlap within the homogeneous 1inewidth there is no resonant 
transfer. 

We see that the nature of the strains in the material is an 
important consideration. Random microscopic strains are much more 
disruptive than macroscopic strains where the strain regions are large 
and the difference in strain between adjacent sites is small. In 
our problem we are concerned with the strains in the crystal in the 
vicinity of the dopant ion. If another dopant ion is nearby, close 
enough for transfer to occur, it is likely that the presence of this 
nearby dopant ion causes a local strain in the host crystal. Thus 
the introduction of random microscopic strains may be an inherent 
part of the doping process. Whereas true resonant donor ~ donor 
transfer could be orders of magnitude faster than the phonon-assisted 
donor ~ acceptor transfer which might involve the emission of a 
100 cm-1 phonon, an energy mismatch among adjacent donor ions greater 
than the homogeneous 1inewidth would mean that the donor ~ donor 
transfer, too, would be a phonon-assisted process. And since in this 
case we are dealing with phonons of energy 1 em-lor smaller, the 
donor ~ donor transfer rate could be orders of magnitude smaller 
than the donor ~ acceptor transfer rate. 
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So far we have looked at the situation from the single ion point 
of view. But if a similar dopant ion is nearby, close enough for a 
strong near-resonant interaction to occur between the ions, then it 
is more correct to look at the coupled ions as constituting a single 
quantum system. We can include other nearby similar ions in this 
analysis, eventually ending up with a single extended quantum system. 
The excited state of this extended quantum system is an "extended 
state", and donor ~ acceptor transfer would be visualized as a 
transfer of the excitation of this extended state to an acceptor ion 
within the region of the extended state. 

The question of whether the donor excitation stays localized on 
single donor ions or becomes delocalized and exists in the form of an 
extended state is extremely interesting and should greatly affect the 
process of donor ~ acceptor transfer. Conversely, the experimental 
study of donor ~ acceptor transfer may shed light on the question of 
whether the excitation on the donor ion system is localized or de­
localized. 

To return to the donor ~ donor case, a theoretical problem 
involving the transport of excitation in a lattice of random centres 
was considered by Anderson in an important paper I4J. He considered 
a three-dimensional lattice in which the active centres could be 
randomly distributed and the energy of a centre varies randomly from 
site to site. This randomness in energy gives an inhomogeneous width 
to the observed energy level, and this inhomogeneous width, ~E, is one 
of the parameters of the model. The interaction between centres j 
and k which can transfer excitation between the centres is written 
Vjk(rjk)' The probability that excitation resides on centre j at 
tLme t is written aj(t). It is assumed that aj(O) = 1 for a 
particular centre j, that is, that this centre LS excited at t = 0, 
and the value of aj(t) at a later time is calculated. If 
<Jaj(oo)J2>AV f 0 the excitation is said to be localized. If 
<Jaj(oo) J2>AV = 0 the excitation is said to be delocalized. Anderson's 
conclusion is that if Vjk(r) falls off faster than l/r3 then there is 
a critical concentration of centres below which transport cannot take 
place and the excitation stays localized. The criterion for 
localization is 

t.E 
V 

(1) 

where V is the average interaction between adjacent centres. V will 
increase as the average separation between adjacent centres decreases, 
that is, as the concentration of centres increases until it reaches 
the critical concentration above which the criterion no longer holds 
and the excitation is delocalized. As the concentration increases 
through the critical concentration there should be an abrupt 
transition from a localized to a delocalized state. An unambiguous 
demonstration of this Anderson transition has not been easy to find, 
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as it is difficult to find a system which satisfies the basic 
assumptions of Anderson's theory. 

Anderson's ideas were extended by Mott [51 and others [6],[7] in 
the case where the concentration is above the critical value. Con­
sider the distribution of centres which makes up the inhomogeneous 
line. Above the critical concentration fast transfer of excitation 
should occur among centres whose energies are at or near the centre 
of the inhomogeneous line but excitation may stay localized on the 
centres whose energies occur far out in the wings of the line. The 
states which make up the inhomogeneous line will then consist of 
de10calized states in the centre and localized states in the wings, 
and the boundaries between these states are called "mobility edges". 
This situation is sketched schematically in Fig. 5 and will be 
discussed in greater detail later. The demonstration of mobility 
edges would be indicative of an Anderson transition. 

In order for Anderson localization to occur the interaction 
between ions must be of shorter range than dipole-dipole (which 
varies as 1/r3) and must be much less than the inhomogeneous width. 
Hsu and Powell [8] claim that such is the case for CaW04 : Sm3+ where 
the interaction between Sm3+ ions is electric quadrupole-quadrupole, 
and their data suggest an absence of transfer at low temperatures 
where the interaction strength is much less than the inhomogeneous 
1inewidth. Likewise it has been claimed [9] that the excitation on 
Cr3+ ions in ruby undergoes a transition from a localized state to a 
de10ca1ized state at a concentration around 0.3 at.%. The 
possibility that an Anderson transition might be occurring in ruby 
has led to an intense reexamination of the ruby system by a variety 
of experimental and theoretical techniques. These studies have been 
fruitful in deepening our understanding of the excitation transfer 
process in inorganic insulating materials and in clarifying theoret­
ical aspects of the Anderson localization problem. 

II. ENERGY TRANSFER IN RUBY - EARLY EXPERIMENTS 

Ruby consists of A1203 in which some Cr3+ ions are substituted 
for A13+ ions. These Cr3+ ions have broad and strong absorption 
bands in the visible, and all Cr3+ ions excited by optical pumping 
end up on the metastable 2E state from which the ions decay 
radiative1y; the quantum efficiency is close to unity (Fig.1). 
The lifetime of this metastable state is about 4 ms and the transition 
between 2E and the ground state consists mainly of two sharp lines, 
R1 and R2, of which only the R1 line is observed in emission at liquid 
helium temperatures. The R1 and R2 lines also appear in absorption 
As a result R1 photons emitted from some excited Cr3+ ions can be 
reabsorbed by other unexcited Cr 3+ ions ("trapping"), leading to a 
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resonant radiative transfer of optical excitation which is pronounced 
at low temperatures in heavily doped single crystals of mm or larger 
dimensions [lOJ. This reabsorption of luminescence causes a 
lengthening of the observed luminescence decay time of ruby crystals. 

As the concentration of Cr3+ ions increases the likelihood 
increases that two Cr3+ ions will enter sites near enough to each 
other to interact strongly and form a distinct luminescence centre -
an exchange coupled pair. A rich spectrum of such pairs has been 
found in ruby [11}-[15]. Much attention has focussed on third nearest 
neighbour pairs and fourth nearest neighbour pairs as these have 
particularly strong luminescence features. The Nl line at 7041 A 
comes from the third nearest neighbour pairs,and the N2 line at 7009 A 
comes from the fourth nearest neighbour pairs. 

Because the intensities of the Nl and N2 lines seemed more 
intense than was expected on the basis of statistical probabilities 
of the occurrence of exchange coupled pairs, Schawlow et ale [llJ 
were led to suggest that these pairs could be excited by energy 
transfer from excited single ions as well as by optical excitation 
by broadband light sources. This energy transfer was studied, 
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mainly at 17K, by Imbusch [16). Two possibly energy transfer mech­
anisms are (i) radiative transfer, in which the pairs would absorb 
the single ion luminescence before it leaves the crystal, and (ii) 
nonradiative transfer from excited single ions to pairs. The non­
radiative transfer process, which acts as an additional decay mech­
anism for the single ions, should result in a decrease in the 
observed lifetime of the single ion emission. Radiative transfer 
to pairs, on the other hand, should not affect the decay time of the 
single ions. The observed R1 decay time as a function of concen­
tration is seen in Fig.2. As the chromium concentration is increased 
the density of exchange-coupled pairs increases and transfer from 
single ions to pairs should become more probable. In the rom size 
single crystal samples trapping by unexcited single ions causes an 
initial increase in the measured lifetime, but at concentrations above 
0.3 at.% there is a rapid drop in lifetime. By using tiny amounts 
of microcrystalline ruby (powdered samples) the trapping is elimin­
ated and the lifetime stays constant until around 0.3% where it 
begins to show a sharp decrease, confirming the nonradiative energy 
transfer from single ions to pairs. 

Additional evidence of transfer is seen by studying the decay 
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Fig. 2. Experimental values of R1 decay time at 77 K as a function 
of concentration. The solid circles are for rom-size 
samples in which trapping occurs. The open circles are 
for powdered samples free from trapping. 
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Fig. 3. Fluorescence decay patterns of the Rl and N2 lines of ruby 
(0.15 at .%) at 77K. 

patterns of the single ion and pair luminescence. Fig.3 shows the 
decay patterns after pulsed excitation of the Rl and N2 lines at 77K 
in a rom-size ruby crystal of ~ 0.2% concentration of chromium [16J. 
The Rl decay is single exponential with a decay time of 10.0 ms -
lengthened because of trapping. The N2 decay is a double exponential 
with an initial fast decay time of 1.1 ms and a later component with 
the slower time of 10.1 ms, and this later component has, within 
experimental error, exactly the same decay time as the single ions. 
The intrinsic decay time of the excited fourth nearest neighbour pair 
centre is 1.1 ms, hence the 1.1 ms component of the decay is emitted 
by pairs pumped directly by the broadband flash lamp. The 10.1 ms 
decay is emitted by pairs excited by energy transfer from single 
ions. Now the fact that the later component of the N2 decay has 
exactly the same decay rate as the RI line suggested that at liquid 
nitrogen temperatures where these measurements were made the pairs 
were being excited by energy transfer not just by nearly single ions 
but by the main body of single ions. This could occur if there were 
a fast resonant transfer among the single ions so that they acted 
collectively. That becomes clear if the rate equations are examined. 
The situation is sketched in Fig.4. The single ions act collectively 
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donors acceptors 

Fig. 4. Representation of the donor (single ion) to acceptor (ion 
pair) nonradiative energy transfer where the single ions 
act collectively. There is no back transfer from pairs 
to single ions at low temperatures. 

as a donor system, the ion pairs are the acceptors. The donors have 
a collective radiative decay rate, Wn, and a collective nonradiative 
transfer rate to the acceptors, WnA' The intrinsic decay rate of the 
acceptors is WA. At liquid nitrogen temperatures and below there is 
no back transfer. Let Nn and NA be the numbers of excited donors 
and excited acceptors, respectively. Then 

dNn 
dt 

The solution of Eq.2 is 

= Nn(O) exp [-(Wn + WnA)t] 

(2) 

(3) 

(4) 

where Nn(O) is the number of excited donors at t = 0, immediately 
after pulsed excitation. Inserting expression (4) into expression 
(3) and solving for NA we obtain 
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where NA(O) is the number of excited acceptors at t = 0 immediately 
after pulsed excitation. We assume that WA > Wn + WDA, as is the case 
for the ruby system where the intrinsic pair decay time is shorter 
than the observed single ion decay time. The first term of Eq. 5 
gives the decay, by radiation, of these initially excited acceptors. 
The second term gives the number of acceptors excited by transfer 
from the donors. This number rises from zero at t = 0, peaks at 
some later time, and then decays at exactly the same decay rate as 
the donor system. 

Since the intensity of luminescence (I) from a centre varies as 
the number of such excited centres, the donor intensity decays as a 
single exponential rate (WD+WDA) and the acceptor intensity should 
decay with a double exponential character, an initial fast decay at 
WA and a slower decay at (Wn + WDA)' This is exactly the behaviour 
seen in Fig.3. 

The occurrence of trapping is a complicating factor here since 
trapping could act as a resonant transfer mechanism and cause the 
single ions to act collectively. However, measurements on powdered 
samples (which were essentially free from trapping) by 1mbusch showed 
that in all cases at liquid nitrogen temperatures the slow component 
of the N2 decay has the same decay time as the main body of single 
Cr3+ ions. Further, this same behaviour was later reported in 
powdered samples at liquid helium temperatures [17],[18]. 

With increasing concentration one expects WDA to increase and 
one expects to find a decrease in the lifetime of the single ions. 

T = (WD + WnA)-l. This is found in the ruby lifetime data above 
=0.3 at.% as Fig.2 shows. The decrease in observed single ion life­
time confirms that the single -+ pair transfer is a nonradiative 
process, since radiative transfer would not affect the observed 
lifetime of the single ions. 

Assuming that the single ion system acts collectively 
1mbusch [16] concluded that a fast (~microsecond transfer time) 
resonant nonradiative transfer occurred among the single ions. The 
mechanism for this transfer had to be faster than dipo1e-di~ole and 
was possibly a quadrupole-quadrupole mechanism. Birgeneau l19] made 
accurate calculations of the quadrupole-quadrupole matrix elements 
and showed that they were much too small to cause a microsecond 
transfer. He suggested that an exchange interaction could provide 
the mechanism for such fast resonant transfer. Now the exchange 
interaction is of very short range and this is one of the require­
ments for Anderson localization to occur below some critical concen­
tration. Lyo [9J, using reasonable values for the exchange inter­
action and using Anderson's analysis, estimated that the critical 
concentration below which localization would occur should be 
0.3 - 0.4 at.% 
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Not all workers were willing to accept this picture of the energy 
transfer in ruby. Gerlovin I20] reported that his decay measurements 
made on thin polycrystalline ruby samples showed departures from a 
single exponential Rl line and he concluded that fast resonant 
transfer was not occurring among the single ions. Heber and 
Murmann [211 performed heat pulse measurements on ruby samples at 
low temperatures and also concluded that single ion ~ single ion 
transfer is much slower than single ion ~ pair transfer. Siebold 
and Heber [22J also failed to find evidence of fast resonance 
transfer among the single Cr3+ ions in LaAl03: Cr 3+. 

The early experimental work on energy transfer in ruby was 
carried out using broadband optical pumping sources and was mainly 
done at liquid nitrogen temperatures. From 1970 onwards more 
sophisticated experimental techniques using narrowband laser pump 
sources were used, and the theoretical analysis focussed on the 
question of the nature of the single ion -. single ion transfer at 
liquid helium temperatures where the complication due to thermal 
effects are minimized and the homogeneous broadening is much smaller 
than the inhomogeneous broadening. 

III. THE SEARCH FOR MOBILITY EDGES IN THE RUBY Rl LINE 

An ingeneous experiment to look for the o-currence of Anderson 
transition in ruby at liquid helium temperatures was carried out 
by Koo et al. [23J. Their idea was to use a tunable narrow band 
laser to excite ions in distinct regions of the inhomogeneous Rl 
line so as to discriminate between localized and delocalized states 
and detect a mobility edge (Fig.S(a)). A cw ruby laser whose output 
bandwidth was much narrower than the Rl linewidth was tuned by a 
combination of magnetic field and temperature and pumped by an argon 
ion laser. This was used to excite ions in different regions of the 
Rl linewidth. The ruby laser output could be chopped by means of a 
mechanical shutter. 

In the centre of the line where the excitation is expected to 
be de localized fast resonant transfer among the single ions should 
lead to an efficient pumping of the exchange coupled pairs and 
consequently to an enhanced fluorescence from the pairs. Exciting 
the localized states, on the other hand, should not enhance transfer 
to pairs. In their experiment Koo et al. tuned the narrow band 
laser from the centre of the Rl line out to the wings on the low 
energy side of the Rl line and they monitored the ratio of N2 
emission to Rl emission (N2!Rl). The N2!Rl value should stay 
constant over the region of delocalized states but should drop 
abruptly at the mobility edge, as is shown schematically in Fig.S(b). 
Their data, taken with great care and using many precautions showed 
evidence of an abrupt break which, they felt, indicated the existence 
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Fig. 5. (a) Schematic representation of the division of the Rl 
states into localized and delocalized states separately 
a mobility edge. (b) The expected NZ/Rl ratio as the 
exciting laser beam is tuned through the Rl line. 

of a mobility edge and was consi~tent with an onset of localization 
at a critical concentration of around 0.8%. 

Doubts were expressed [17} at whether the results of the 
Koo et al. experiment could only be interpreted as evidence for a 
mobility edge between localized and delocalized states; other 
explanations were considered possible. It was felt that a search 
for the appearance of a symmetrical NZ/Rl pattern on either side of 
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the RI line should be made, Koo et al. had only looked at the low 
energy side. Because of the significance of this experiment it was 
repeated again by Chu et al. [24] using a cw dye laser which could 
be tuned across the entire RI line. Their N2/RI patterns were not 
identical on the high and low energy sides of line centre and did 
not exhibit clearly the abrupt break found by Koo et al. So the 
question as to whether a transition between localized and de localized 
states occurs in ruby at low temperatures remained in doubt. 

IV •. FLUORESCENCE LINE NARROWING AND HOLE BURNING EXPERIMENTS 
IN RUBY 

-1 
The RI line has an observed width of around 1 cm at helium 

temperatures. This is inhomogeneous broadening due to random 
strains in the crystal. The homogeneous width (~Ehqmo) of the line 
is much narrower than this, being around 0.003 cm-l ~e:< 100 MHz). 
The observed lineshape is a profile made up of very many narrow 
emissions (or absorptions) from ions in different strain environments. 
This is shown schematically in Fig. 6. If a very narrow band laser 
with bandwidth ~Elaser is used as a pumping source it can excite the 
ions in a particular strain environment. When the pumping source 

inhomogeneous 

energy 

homogeneous width 
/' ~E _ ..- homo 

Fig. 6. The homogeneously broadened line is a profile of very 
narrow emissions (or absorptions) each from ions in 
sites of identical strain. 
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is turned off one expects to see fluorescence only from those ions 
excited by the laser, and the observed 1inewidth is 

6E + 2 6E laser homo (6) 

Such a fluorescence signal can be much narrower than the Rl band­
width. This is the phenomenon of fluorescence line narrowing (FLN). 

Fluorescence line narrowing in ruby was first demonstrated by 
Szabo [25] who demonstrated directly the homogeneous bandwidth of 
the R1 line [26J. Szabo also demonstrated optical hole burning in 
the ruby Rl line [27]. He used these techniques to gain information 
on broadening mechanisms affecting the ruby line. Szabo and Kroll 
also demonstrated [28J that information about homogeneous broadening 
could be obtained from measurements on the ruby Rl line in the time 
domain such as photon echoes and optical free induction decay. 

Because of the 0.38 cm-l ground state splitting in the ruby Rl 
line the FLN signal appears as a double line of 0.38 cm-l separation 
as Fig.7. shows. Sometimes additional lines may appear. 

FLN in the ruby Rl line was used by Selzer et al. to study 
energy transfer. The narrow band laser excites ions in a particular 
strain field. If a mechanism exists for transferring excitation 
from this excited set of ions to ions in different strain regions 
(and hence with different excited state energy) and if the transfer 
can, occur within the radiative decay time of the excited ions one 
should see a gradual broadening of the FLN si~al. Such spectral 
diffusion was observed by Selzer et a1. [29J, [17] in the FLN signal 
in ruby. Some of their experimental results are shown in Fig.8. 
What is interesting is that the spectral diffusion does not appear 
as a gradual broadening of the narrow FLN lines but appears as a 
gradual rise of the entire inhomogeneous emission line. 

Spectral diffusion is a phonon-assisted transfer mechanism and 
the diffusion rate is seen to be independent of the energy mismatch -
since the entire inhomogeneous line grows. Further,the observed 
spectral transfer rate shows a linear dependence on temperature [29J 
up to around 50 K. This linear dependence on temperature of the 
transfer rate and its independence of energy mismatch are consistent 
with a direct one-phonon assisted process, as the calculations of 
Holstein et a1. have shown [30}. The appearance of the full inhomo­
geneous emission line can also be considered as evidence for the 
occurrence of microscopic strains in ruby. 

The slow non-resonant single ion -. single ion transfer 
demonstrated in these experiments is quite different from the 
resonant ion ~ ion transfer discussed previously. 
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Fig. 7. The excited states of ions in different strain fields have 
different energies. The narrow band laser pulse excites 
one set of ions in identical strain fields (upward solid 
arrow) which emit two sharp fluorescence lines as shown 
(FLN signal). The laser beam may also excite a separate 
set of ions - as shown by the broken upward arrow. These 
ions will contribute a third narrow fluorescence line at 
lower wavelength. 

In this same series of experiments Selzer et al. demonstrated 
the existence of single ion ~ pair energy transfer in a very clear 
way. When the narrowband laser pulse ( ~10 ns duration) was tuned 
to the centre of the RI line and the RI fluorescence monitored a 
single exponential decay was always obtained. When the laser was 
kept tuned to the RI line centre but the N2 line was monitored the 
fluorescence consisted of a rise followed by an exponential decay, 
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Fig. 8. FLN signals from a 0.9 at.% ruby at 10 K. The laser 
excitation is on the high energy side of line centre. 
The delay indicates the time after the pulsed laser 
excitation. 

and this decay had the same decay time as the Rl line. This is 
consistent with the transfer of excitation from the main body of 
Cr3+ ions to the pairs, and was taken by Selzer et al. as supporting 
the idea of a fast resonant transfer among the single ions. 

By shifting the laser energy by about 2 cm-l so as to coincide 
with an excited pair level in near coincidence with the Rl level 
Selzer et al. were able to pump the pairs directly and by monitoring 
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the N2 fluorescence they obtained the expected fast intrinsic decay 
pattern of the pairs. These N2 decay patterns are shown in Fig. 9. 

>, 
.\.J 
'r-! 
C/l 

~ 
~ vL = 14416 em-1 
'r-! 

N 
Z 

o 

= 14418 cm-1 

2 4 

time (ms) 

Fig. 9. Decay patterns of the N2 line in a 0.51 at.% sample at 5 K. 
In the upper trace the laser was tuned to a pair obsorption. 
In the lower trace the laser was tuned to the centre of the 
R1 line. 

Whereas Selzer et a1. interpreted their FLN experiments as 
fovouring the occurrence of fast resonant transfer among single Cr 
ions, Szabo, on the other hand, interpreted his experimental results 
as militating against the notion of such fast resonance transfer. 
Some more direct methods of examining transfer were needed to resolve 
the question of the existence of an efficient resonant ion -. ion 
transfer in ruby. 

V. DEGENERATE FOUR WAVE MIXING EXPERIMENTS IN RUBY: 
AN ATTEMPT TO DIRECTLY MEASURE THE ENERGY MIGRATION DISTANCE 

Attempts wer made by Eichler et al. [31], Liao et al. [32], 
and Hamilton et al. [33] to obtain a direct experimental measure­
ment of the single ion ~ single ion energy migration distance 
in ruby usin~ the technique of degenerate four wave mixing. In 
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these experiments two laser beams (derived from the same laser) are 
focussed onto a thin ruby sample where they produce a spatial periodic 
variation in the density of excited Cr3+ ions. This produces a 
spatial periodic modulation of the refractive index of the material 
which acts as a diffraction grating and can cause diffraction of a 
third laser beam. When the two laser beams which create the grating 
are switched off the grating decays with a time constant which 
depends on the radiative decay time of the excited Cr3+ ions and on 
the diffusion of excitation among the Cr3+ ions. In principle this 
affords a direct method of measuring the diffusion of excitation 
among the ions. 

In the experiments of Liao et al. two laser beams derived from 
-+ -+ 

the same laser of wavevectors kl and k2 are exactly counter-
propagating (k2 = -kl) while the third laser beam, also derived from 
the same la~er, of wavevector kJ. makes a small angle (6 '" 30 ) with 
laser beam kl. (Fig. 10). If K2 is switched off and kl and k3 
focussed on the sample then a grating is formed, as shown 
schematically in Fig. 10. The spatial periodicity of the grating is 

Fig. 10. 
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Repr~sentation of the grating formed by laser beams kl 
and k3' Beam k2 is diffracted by the grating r~sulting 
in a beam coherently scattered in the direction k4 
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where A is the laser wavelength and 9 is the angle between the two 
laser beams forming the grating (=- 30 in this case). 

If kl and k3 are now switched off and k2 focussed on the crystal 
it will be diffracted by the grating and according to the Bragg law 
we expect the first diffracted beam to be along the k4 direction, i.e. 
exactly backwards along thek3 direction, as shown in the figure. 
The gradual fading of the grating means that the backward diffracted 
beam decreases in intensity as 

where the decay time T is given by 

lIT = 2D (41T S· 9)2 T 1n'2 

(8) 

(9) 

where TR is the fluorescence lifetime of the Cr3+ ions and D is the 
diffusion constant describing the transfer of excitation among the 
Cr3+ ions. 

d • ~ d -+ • In a secon exper1ment ~2 an k3 are used to create a grat1ng 
whose spatial periodicity is given by expre~sion (7) with 9 =- 1770 • 

These beams are then switched off and beam kl is fo~ussed on the 
crystal. The diffra~ted beam is once again along k4' The decrease 
in intensity of beam K4 is again monitored, and this is expected to 
decay as described by expressions (8) and (9) with 9 = 1770 • By 
comparing the backward diffracted lifetimes obtained with the two 
different gratings (9 = 30 and 9 = 1770 ) a value of D should be 
obtained. Very little difference was found between the two life­
times and only an upper limit for D could be obtained. For a 
chromium concentration of 1.55 at.% the upper limit for'D is 
1.7 x 10-9 cm2 s-l. 

One can attempt to relate this diffusion constant to an average 
transfer rate by the following very simple approach. We relate the 
diffusion constant to the average separation between adjacent 
resonant ions, i, and the average transfer time between adjacent 
resonant ions, To by the equation 

= (10) 

The average separation between adjacent ions in the 1.55 at.% sample 
is about IDA but the transfer takes place between resonant ions 
(i.e. those whose energies are within the same homogeneous width) 



ENERGY TRANSFER AND LOCALIZATION IN RUBY 489 

and two such adjacent resonant ions should be considerably farther 
apart than lOA. If the homogeneous width is taken as 100 MHz while 
the inhomogeneous width is taken as 1 cm-l one estimates an average 
separation between adjacent resonant ions at around 60A for the 
1.55 at.% sample. Taking this as t we calculate the transfer time 
as l/to ~ 3 x 104 s-l. No more than about 100 transfers would 
occur in this material within the radiative lifetime, indicating a 
diffusion distance of less than 600 A. From their experiments on 
many samples Liao et al. feel that the upper limit for the diffusion 
distance is 300 A. Hence there is no detectable smearing out of the 
grating because of energy transfer within the fluorescence decay time 
of the ions. This is also the conclusion of Hamilton et al. It 
should be noted, however, that the upper limit for the diffusion 
distance is greater than the average separation between pair centres 
in the 1.55 at.% sample, which is around 60 A. 

It is clear that a finer probe than that supplied by these 
experiments is necessary to elucidate the nature of the energy 
transfer in ruby at the atomic level. 

VI. ELECTRIC FIELD EXPERIMENTS IN RUBY 

A very ingeneous experiment was devised and carried out by 
Chu et al. [341 to study Cr3+ ~ Cr3+ transfer at the level of 
individual Cr ions. This experiment takes advantage of the fact 
that individual Cr3+ ions in the sapphire lattice occupy one of two 
inequivalent sites, A and B sites, as shown in Fig.ll. At each site 
there is an odd component of electric field due to the surrounding 
ions, this internal field acts along the crystallographic axis, but 
acts in opposite directions at the A and B sites. If an external 
field, Eo is applied along the axis it adds to the internal field 
at one site but subtracts from the internal field at the other site. 
Because of the different resultant fields acting at the two sites 
Cr3+ ions in the A and B sites have their energies shifted relative 
to each other when an external electric field is applied. The 
resultant "pseudo Stark splitting" [3sJ of the Rl line is quite 
large; the Rl lines from the A and B site ions can be separated 
by around 1 cm-l , enough to move ions out of resonance with each 
other. 

The experiment of Chu et ale can be visualized with the aid of 
Fig. 12. (a): Without the external field the Rl lineshapes of the 
A and B ions are superimposed upon each other. (b): When the 
external field is applied the A and B transitions are separated. 
A subset of the A ions is resonantly excited by a fast pulse from a 
narrow bandwidth dye laser. A FLN signal is seen immediately 
after the excitation. This is shown in the figure as a single 
shaded narrow line, whereas in practice it consists of three or four 
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Fig. 11. 
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Position of the Ai203 crystal structure showing the A 
and B sites of the Ai ions. The optic axis is 
perpendicular to the planes of oxygen ions in the figure. 

separate lines because of the ground state splitting. The B ions 
are unexcited by the laser. (c): The external field is switched 
off for a specific time, t. This brings the A and B ions back into 
resonance and allows the excited A ions to transfer energy to the 
unexcited B ions which are now in resonance with them. If there is 
a fast resonant transfer between single ions this mechanism should 
transfer a sizeable portion of the A ion excitation to B ions. 
(d): The field is switched on again separating the A and B ions, and 
one looks for a FLN signal from the B ions - indicated by the second 
narrow shaded line in the figure. The efficiency of the transfer 
is related to the relative intensities of the FLN signals from the 
A and B ions. The experiments were conducted at helium temperature. 

By varying the time, t, during which the field is switched off, 
during which time the A -. B transfer takes place, one can study 
the time dependence of the tr~nsfer. For the weakly doped crystals 
the transfer rate varies as t~, indicative of dipole-dipole coupling 
between the ions. The conclusion of Chu et al. is that there is 
nonradiative resonant transfer between single Cr3+ ions in ruby, but 
that it is slow - less than half the excited Cr3+ ions making one 
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Fig. 12. An external electric field separated the A and B ions (b). 
A subset of the A ions is excited by the laser and a FLN 
signal is observed. The A and B ions are brought into 
resonance (c) and if transfer occurs a separate FLN 
signal is observed from the B ions as soon as the A and B 
ions are again separated by the external field (d). 

transfer during the fluorescent lifetime in a 0.25 at.% sample. This 
millisecond transfer time is much slower than the microsecond trans­
fer times initially posulated 

Jessop and Szabo [36] conducted very similar experiments on 
ruby independently of Chu et al. By skillful experimental techniques 
Jessop and Szabo were able to separate radiative and nonradiative 
transfer processes, and they, too, concluded that the resonant 
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transfer is slow, of millisecond transfer time in 0.8% ruby, and 
the transfer could be proceeding by a dipole-dipole interaction. 

Gibbs et al. [181 made a careful c~lculation of the dipole­
dipole transfer from A to B ions using the experimentally known 
dipole matrix elements and using a reasonable value for the homo­
geneous width of the Rl line. Their calculated transfer rate is 
close enough to the rate measured in the electric field experiments 
of Chu et al. to confirm that a dipole-dipole mechanism can account 
quantitatively for the transfer observed in the electric field 
experiments. 

Now the evidence that led originally to the idea of a fast 
resonant nonradiative transfer between single Cr3+ ions followed by 
a slower transfer to pairs was the observation, confirmed by many 
workers, of a single exponential RI decay and of a pair line decay 
in which the slow component decayed at the RI decay rate. If the 
single ions were not acting collectively, it was argued, the RI 
decay and the slow component of the pair line decay would not be 
identical. Instead both decays would be non-exponential. Gibbs 
argues that if one makes a theoretical calculation of the pair 
decay pattern assuming that single ion -. pair transfer occurs by 
dipole-dipole interaction and that no single ion ~ single ion decay 
occurs (the electric field experiments indicate that it is weak) one 
finds that the deviation of the slow component of the pair decay 
from a single exponential form is small and difficult to detect. 
Consequently, he argues, a slow nonradiative resonant transfer by 
dipole-dipole interaction is not inconsistent with the experimental 
measurements of Imbusch, Gerlovin, Selzer et al., Chu et al. These 
electric field experiments would seem to offer convincing arguments 
against the notion of a fast nonradiative resonant transfer of 
energy among single ions. 

An argument has been made that whereas these electric field 
experiments would seem to rule out the possibility of fast nonrad­
iative resonant transfer between A and B ions, they do not rule out 
the possibility that a fast transfer may be oc~urring among the A 
ions or among the B ions. Monteil and Duval [371 have carried out 
uniaxial stress experiments to separate the ions into two sublattices, 
and these sublattices are distinct from the A and B sublattices 
which are differentiated by the electric field, and they have 
examined the transfer between ions in these stress-separated 
lattices. They find that in contrast to the slow transfer between 
A and B sublattices, the transfer within each of these sublattices 
may be fast. In addition, recent magneto-optical studies of ruby 
luminescence by Viliani [38] have been interpreted by him as sup­
porting the notion of a fast migration of excitation through the 
single chromium in system before transfer to pairs. The experiments 
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of Monteil and Duval and of Viliani are described elsewhere in this 
book. 

So far in the discussion on Anderson localization attention 
has focussed on the randomness in the energies of the centres (the 
diagonal interaction terms) and the localization is attributed to 
this randomness in the diagonal interaction terms. However, locali­
zation may occur because of randomness in the off-diagonal inter~ 
action terms which arises because of the random distribution of 
centres and the consequent random distribution of separations 
between adjacent centres. This problem has been considered by Huber 
and Ching (39)J40). In the case where the interaetion between 
centres is V exp(-ar.). The numerical studies of Huber and Ching 
indicate tha~ an Ande~~on localization occurs below a critical 
concentration, nc ' where 

a '" 2.7 (11) 
113 

n 
c 

Applying this to ruby, where an exchange interaction is assumed to 
act, and taking a = 1 R-l one finds that for ruby with 0.4 at % 
chromium the disorder parameter a/n 113 has the value 17, indicating 
localization at this concentration. These workers predict that an 
Anderson transition should occur only at a concentration of around 
10 at. %. 

At present the results of the elective field experiment (34) 
are regarded as strong evidence that fast migration does not occur 
between A and B rather, the transfer is slow and proceeds by a 
dipole-dipole process. Sublattice ions The nature of the trans-
fer within a sublattice would still seem to be uncertain, some 
experimental res~ts being cited as evidence for a very slow trans­
fer among all Cr ions indicating fast transfer. If the transfer 
is weak then the ruby system does not satisfy the conditions of 
the Anderson theory and one must look elsewhere for a system which 
will exhibit unambiguously the elusive transition between localiza­
tion and delocalization. 
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ABSTRACT 

F. Auzel 

Centre National d'Etudes des Telecommunications 
196 rue de Paris 
92220 BAGNEUX (France) 

A few years only after the demonstration of the first Neodymium 
laser, energy transfer was considered as a means to improve the 
coupling of broad optical pumping sources with narrow absorption 
lines in active ions. A number of schemes were then proposed. 

Somewhat later, however, it was realized that multiple energy 
transfer or cooperative effects could play either a useful or a 
detrimental role according to the energy levels positions in a 
given matrix. In a material research approach, compromises have to 
be found between useful fast decay and self-quenching. 

Both aspects of energy transfers are considered in this article 
with references to experimental examples and to some of the theo­
retical aspects developed in companion articles in this book. 

I. INTRODUCTION 

Since the beginning of the laser era, Cr3+ [1] and Nd3+ [2] 
have been the most used ionic systems. This fact can be explained 
by two special interesting features of their own: 

3+ - Cr presents broad and strong absorbing bands in the visible 
region where powerful flash lamp are available though it is a three 
levels laser system. 

- Nd3+ presents an ideal four levels system though its absorp­
tion bands in the visible are rather narrow. 
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Then it is no wonder that the first attempt to deliberately 
apply energy transfer to laser materials has been in a combined 
Cr3+-Nd3+ system [3] with a hope to combine advantages and not 
drawbacks. Since then, many other pumping schemes with energy 
transfer have been proposed. However, with a better understanding 
of energy transfer processes, other positive aspects such as de­
activation and cascade schemes have been considered. 

On the other hand, negative aspects have also been found to 
be introduced by energy transfer such as reabsorption by APTE 
effect (up-conversion by sequential energy transfer) [4] and self­
quencying of inverted population levels. Assuming the knowledge 
of the different energy transfer mechanisms, the aim of this 
article is to present a picture of the different roles played by 
energy transfer in ionic laser solid state materials. 

II. ENERGY TRANSFER SCHEME FOR PUMPING EFFICIENCY IMPROVEMENT 

II.A. Stokes Processes 

In this chapter, energy transfer mechanisms which are con­
sidered lead to photon emissions at smaller energy than the input 
pumping photons. 

1. Energy Transfer Towards Pumping Levels. One of the most 
severe limitations on the efficiency of optically pumped ionic 
solid lasers is the lack of suitable absorption band to match the 
generally wide spectral output of commercially available pumping 
lamps. 

This is particularly true for trivalent rare-earths lasers 
which have only relatively weak 4f-4f parity forbidden absorptions. 
Of course, the use of lasers as pumping sources may partially solve 
this problem which still exists for the primary laser. The first 
approach was then to consider sensitizers with stronger absorption 
transitions expecting the absorbed energy to be transferred to the 
weaker transitions of the laser ions. 

In order to understand what kind of improvements energy 
transfer can bring to pumping, basic processes developed at large 
in other articles in this book have to be briefly recalled in 
Table 1. 

As shown, two aspects have to be considered: microscopic and 
macroscopic. Staying at the microscopic level, one can understand 
that no spectral improvement can be expected from a resonant 
transfer alone; whereas a non-resonant transfer allows extension 
of the absorption range at the sensitizer. However, each sensitizer 
can usually excite at most one activator at a rate which is the 
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product of transitions probability within a sensitizer and an 
activator (Forster-Dexter relation); so only a reduction in 
probability has to be expected at this level. 
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Then, besides extension in pumping spectral range, improvement 
by energy transfer is due essentially to the macroscopic process 
of diffusion among sensitizers: excitation energy on the sensitizer 
is made available to any activator in the crystal even when acti­
vator is at a diluted level. Further, it should be noted that 
diffusion is obtained through resonant transfer which, because of 
the self-quenching process to be discussed later, is usually of the 
non-radiative type. 

Figure 1 presents the first example of such improved pumping 
between 3d to 4f electrons in YAG (YJA1501Z) codoped with Cr3+ and 
ND3+ [3]. Gain in pumping efficiency due to 1% Cr3+ was as high 
as a factor of 4 when a Hg lamp with discrete spectrum is used as 
pumping source. 

Lanthanides ions (Ln3+) have also been used as sensitizing 
ions. Sometimes sensitizing ions belong to the crystalling matrix 
itself [5] or are color centers [6]. 

Figure 1. 

4T2 

~==2'E~...., __ 4F9/2 

~~-i~7/2 
4 9/2 

- ....... - F3/2 

laser at 
1.06~ 

- .... _41 11/2 

-,---41912 

Nd3+ laser with energy transfer improved pumping from 
Cr3+ in YAG:Nd3+, Cr3+ [3]. 
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Table 1. Summary of Energy Transfer Cases. 

A. Microscopic Studies Followed by Macroscopic Statistics 

Microscopic Case 
(theoretical one sensitizer-one 

activator case). 

Macroscopic Case 
(Experimental all sensitizers-all 

activator case). 

- Non Radiative 
s 

(R)_ (VR) 
PSA - ---

TS 

with 

(s = 6,8,10). Intel'l!1ediate 
Statistics : 
Average pro­
babi 1 ity for 
one sensiti­
zer .. all 
acceptors 

----------~--.• 
- Non Resonant : 

Non Radht i ve : 

(R) (R/R)s 
P (s = 6,8,10) 

SA 

with : 

WSA = 

2 
NA fPSA(R)4.R d~ 

strictly 
valid for 

gA(v) and gB(v) 

homogeneous 

- ~ithout diffusion among 
sensitizers : 

non exponential decay 

l(t) = exp[-t -r(12) ~ (!. 0 3/s 
TS s ~o TSIJ 

- With di ffusion among 
sensitizers : 

(long time approximation) 

:;::n:n::: l(~:C:y ~) 
. TS TO 

"Diffusion limited" : T O-1=VNSNA 

"Fast diffusion" : T O-1 = UNA 

(rate equation case). 

B. Direct Microscopic Quantum Statistics: 

-1 - rate equation case (Grant) .. TO = UNA 

- inhomogeneous brodenning case (Anderson's localization) 

.. no diffusion for <HSA >< ~Einhomogeneous 
(without thermal effects) 

-s/2 and < HSA >e(R for S >6 
-. diffus i on if therma 1 effects (one and two-phonons). 
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All known energy transfer improved pumping schemes for dif­
ferent hosts have been recently exhaustively reviewed in [7]. Then 
in Table 2 are shown only the complete sets of ions systems which 
have been investigated but not all matrices in which they have been 
included. 

2. Deactivation by Energy Transfer of Levels in Se1f­
saturating and Cascade Lasers. When the lifetime of the laser 
emitting level is shorter than the lifetime of the laser terminating 
level, then self-saturation may take place: the laser starts in a 
"four levels" scheme and quickly ends in a "three levels" scheme, 
because of the bottleneck of population in the terminating level. 

Effective lifetime of a given level is usually reduced by 
mu1tiphonon transitions according to the following equation: 

T = T /[1 + T W R(O)exp(-a6E)] o 0 n 

where To is the radiative lifetime of the considered level and 
exp(-a6E) the exponential gap law for mu1tiphonon decay [8] from a 
level with energy separAtion ~E to next lower level. Considering 
the Ln3+ energy schemes, one finds that in the heavier half, Ln3-!­
have larger separation for first excited levels than the lighter 
half. Consequently, self-saturating lasers are rather to be found 
among the heavier half. Effectively, self-saturating trgnsitions 
have been found up to now in Ho3+ and Er3+ with 517 and l13/2' 
respectively, as terminating levels ]7]. 

Energy transfer was suggested long ago [9] as a means to avoid 
self-saturation in lasers through reduction of terminating level 
lifetime. This prinCiple has been effectively used for the 
Er3+ 4l11/2 + 4l13/ 2 transition at 2.69 vm in LUJA15012:Er3+,Tm3+. 
Here, the lasing ion (Er3+) acts as a sensitizer and Tm3+ as a de­
activator [10]. See Figure 2. 

Closely linked with self-saturating lasers are cascade lasers. 
The self-saturating level in one ion is emptied either by a second 
laser effect in the same ion or by energy transfer and laser action 
in the deactivator as shown in Figure 3 for Er3+ - Tm3+, Er3+ - Ho3+ 
and Er3+ - Tm3+ - Ho3+, in doped oxyde and fluoride crystals [11], 
[12]. Such systems appear to be the most efficient to obtain C.W. 
lasers in the mid-l.R. region around 3-5 vm. Of course, when laser 
action is obtained in the second ion (deactivator) self-saturation 
in the first ion (sensitizer) is precluded which greatly improves 
the laser efficiency in the first ion. For instance~.introduction 
of Ho3+ in an Er3+ system gives an efficiency for Er~ in excess of 
30% at 2.69 vm [12]. 
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Table 2. Ionic Systems for Improved Pumping of Solid State 
Lasers (Stokes Processes). 

Type 

~ 
0 

'1"1 til 
~...-I 
'1"1 <1l 
til ~ 
~ Q) 
C\I~ 
H 
H 

Sensitizers 

Ion 

Cr3+ 

Fe3+ 

Mn2+ 

Nd3+ + Cr3+ 

Nd3+ 

Ce3+ 

Gd3+ 

Er3+ 

E 3+ T 3+ r + m 

Er3+ + Tm3+ + Yb3+ 

Er3+ + Yb3+ 

Ho3+ 

Yb3+ 

Color Center 
in CaF2 

Activators 
Ion (Laser Transitions) 

3+ 4 4 
Nd (F3/ 2 + 111 / 2) 

H03+ (SI7 + SIS) 

Tm3+ (3F 4 + 3HS ; 3H4 + 3H6) 

Ho3+(SI7 + SIS) 

Ni 2+ (3T2 + 3A2) 

3+ 4 4 
Er (1 13 / 2 + I 1S / 2) 
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Figure 2. 

Figure 3. 

__ 3F2 

--3F3 
--3F4 

~ ~ ~ ~ Er laser with Tm as deactivator in La3A1S03:Er ,Tm 
[10] • 

S 4--
52- 53/2 

SFs­

S1 4 -

Sis --

S1 6 - loser~ 

S ~ ~ ~ 

I, E at 11~ 1::";1 186~ -';:::'01 11~ 
SIs 41'S/2-- £ 3H6 Ls1s 

Ho3. Er3• Tm3• Ho3. 

Cascaded laser by non-radiative transfer between 
Er~ - Tm~, Er~ - Ho~ and Er~ - Tm~ - Ho~ systems 
[11],[12]. 
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II.B. Anti-Stokes Proc~sses and Up-conversion Pumped Lasers 

There exists several up-conversion processes providing one­
photon out of the energy of several incoming photons. However, 
their intrinsic efficiencies are quite different as can be seen 
from Table 3 which summarizes efficiencies for two-photon processes. 

Table 3. Comparison Between Different Multiphonon Up-converting 
Processes [8]. 

Mechanisms 

TWo successive transfer 

TWo-step absorption 

Cooperative sensitization 

Second harmonic generation 

TWo-photon absorption 

Efficiency II 
2 (cm /W) 

'" 10-3 

'" 10-5 

'" 10-6 

'" 10-11 

'" 10-13 

Material 

YF3:Yb:Er 

SrE2:Er 

YF3:Yb:Tb 

KPD 

The intrinsically most efficient of them is the APTE effect 
(addition de photons par transferts d'energie) [13],[14] which, to 
the difference with all previous transfer mechanisms, involves at 
least one energy transfer towards an activator already in an ex­
cited state [13]. The basic reason for highest efficiency is that 
real levels are involved at each step which allows a longer inter­
action time between photons and matter. This effect is so efficient 
that it has been used [15] to obtain up-conversion pumped lasers in 
which the pumping photons are at smaller energy than the laser 
photon. Such lasers were developed from the first Yb3+ - Er3+ and 
Yb3+ - Ho3+ schemes [13J, [16] as shown in Figure 4. I would like to 
point out here that such up-conversion pumping schemes could provide 
a way to obtain compact visible solid state lsers with the efficient 
IR semiconductor lasers recently developed as pumps. 

III. DRAWBACKS INTRODUCED BY ENERGY TRANSFER 

Besides the positive aspects of energy transfer which have 
been deliberately looked for in laser materials, there are a number 
of inherent drawbacks which have to be compromised with. 
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,L 
' F7I2 

55 2,5 F, ' 5 3/2 

I 'F9/2 

F"'f [O""at I- 51 6 

0.97~ laser at 
0.67~ 0.55\1-

2F712 '115/2 51s 
Vb3• Er3• VbJ• H0 3. 

Figure 4. APTE effect in Yb3+ - Er3+ [13] and in Yb3+ - Ho3+ [16] 
couples with up-conversion pumped lasers (double 
arrows) in Ba(Y,Yb)2F8 doped with Er3+ and Ho3+ [15]. 

III.A. Stokes Processes 

Again, unwanted energy transfer can be classified according 
to the relative energy of photons in and out of the system. 

1. Self-quenching by Energy Diffusion and Cross-relaxation. 
When it is desired to increase the energy density inside a laser 
material, the active ion density has to be increased. Unfortunately, 
however, for any luminescent system, a high activator concentration 
generally leads to poor quantum efficiencies for emissions. This 
is the pervading effect of self-quenching due to usually the 
combination of two types of energy transfer between identical 
activators: resonant diffusion through identical pairs of levels 
or transfer to unwanted impurities. Figure 5 gives the energy 
scheme for such processes in Nd3+. In some cases [7] materials 
with rather small self-quenching may be found such as the so-called 
stoichiometric laser materials already discussed in a previous 
publication [8]. NdP50l4 (NdUP) is the archetype of such 
materials [17]. 

This effect can be characterized by defining a quenching rate 

W = lIT - lIT ° 0 

where T is the radiative lifetime and T the measured lifetime at 
o 
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Figure 5. Self-quenching in Nd3+ by diffusion and cross-relaxation 
transfers. 

high activator concentration (>1021 cm- 3 for Ln3+). 

2. Role of Crystal Field Strength. Comparing for example in 
Table 4 the behavior of Nd3+(4F3/2) and Tb3+(5D3) we have recently 
demonstrated [18] that self-quenching of a given level and ion 
cannot be generalized to other ions in a given crystal. 

Cross-relaxatio~, which is the basic loss, is not inhibited 
by large shortest Lnfr - Ln3+ distances, as sometimes believed, but 
by a poor energy overlap. 

For a given ion, crystal field strength is found to mediate 
the energy overlap [19] (see Figure 6) through the maximum Stark 
splitting suffered by the free ion in the crystal. In order to 
study such effects I have defined a scalar crystal field strength 
parameter: 

N [ L (Bk) 2 ( 4M ) ]1/2 
vc k,q q 2k + 1 

k the usual crystal field strength parameter: where Bare 
q 
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Table 4. Comparison of Se1f-Quenching Rate (WQ) of Nd3+(4F3/2) and 

Tb3+(5n3) at N = 4 x 1021 cm- 3 in TWo Stoichiometric 

Materials. 

Materials 

NaLn(W04)2 

LnPSOl4 

d . Nd3+(4F ) Tb3+(5n ) 
m3~ 3+ 3/2 3 

Ln - Ln 

WQ Slope WQ 

0 

3x105s-1 4x104s-1 3.9 A 2 
0 

5.2 A 5x103s- 1 5 -1 
1.3x10 s 

4~512 I 
I 
I I 
I I 
I I e, 

4~ 
19/2~ 

I I I 
I I I 
I ~ ~ , ~ Nv ..... __ ..Ji_ilillaiilrilrillli"-... Nv o N 0 Nv 

~ c 

Slope 

2 

Figure 6. Role of crystal field in resonance condition for S + A 
cross-relaxation transfer; critical field is given by 
E2 - E1 ~ O. 
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v = E 
i,h,q 

F. AUZEL 

The maximum Stark splitting (~EJ) of a given J-level of Ln3+ found 
to be proportional to Nvc [20] 

where S is a statistical coefficient depending on the degeneracy 
removal of the J-level and <JI ICfi) I IJ> the reduced matrix elements 
of the operator Cfi) for spherical harmonics. 

This pr~erty which was first experimentally verified on a 
number of Nd materials, provides a way to obtain the resonance 
conditions on field strength for Nd3+ cross-relaxation as: 
Nvc ~ 2800 cm- l Stronger crystal fields material show cross­
relaxation, smaller one much less. 

III.B. Anti-Stokes Processes Up-conversion and Reabsorption 

APTE effect was found while working on Er3+ glass laser 
sensitized with Yb3+ [13]. The resulting up-conversion process 
giving a green photon at 0.54 ~m out of two IR ones at 0.97 ~m 
(see Figure 4) was the first proof that energy transfer could 
efficiently happen between excited states and in that example at 
the expense of the population inversion in Er3+ [4]. This effect 
shows that it is not sufficient to consider only the intended 
transfer but also all the undesired ones which shall spontaneously 
happen provided there exists a populated metastable level involved 
in a pair of ions in approximate resonance. Multiphonon assisted 
transfer (see Table 1) with practically energy mismatch up to 
four-phonons should not be neglected in investigating this type of 
loss. 

Losses in lasers due to single ion reabsorption have been 
considered since the ruby laser time [21]. When transfer is in­
volved such effect can be unwillingly increased in parallel with 
pumping spectral range. However, very little consideration has 
been given to such drawbacks up to now becuase not so many systems 
simultaneously involve high concentrations and high enough pumping 
intensity. Yet, in stoichiometric materials Nd3+- Nd 3+ up­
conversion losses accorded to scheme of Figure 7 become noticeable 
when only 10% of the active ions are pumped in the 4F3/2 state [22]. 

Clearly, in a material research approach, compromises have to 
be found between desired pumping improvement and undesired up­
conversion losses. 
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Figure 7. Nd3+ - Nd3+ self-quenching due to reabsorption by APTE 
effect (up-conversion). 

IV. CONCLUSION 

A general picture of the role of energy transfer in ionic 
solid state lasers has been drawn. The role of diffusion through 
non-radiative resonant transfer has been stressed in the process of 
pumping spectral range enlargement for laser active ions. The 
recent use of deactivators ions decaying spontaneously or by cascade 
laser has been described. However, up-conversion processes by APTE 
effects which may have either positive or negative aspects have 
not yet been given the full interest they deserve. I believe that 
with the advent of lasers as pumping sources, one of the basic 
limitations in future ionic state laser shall be through up­
conversion enhanced reabsorption leading to gain saturation. 

In order to be complete before ending, I have to mention the 
special role of transfer between identical ions in inhomogeneous 
sites giving rise or not to spectral diffusion: a problem other­
wise well-documented in this school. Their role becomes important 
when considering finer aspects in the laser functioning such as 
longitudinal mode structure, spatial and spectral hole burning. 
However, such aspects were out of our scope in this article. 
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A SCALAR CRYSTAL FIELD STRENGTH PARAMETER FOR RARE-EARTH IONS: 

MEANING AND APPLICATION TO ENERGY TRANSFER 

F. Auzel 
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196 rue de Paris 
92220 Bagneux, France 

ABSTRACT 

A scalar crystal field parameter is first introduced e~perimen­
tally and shown to rule a special energy transfer between Nd + ions. 
Its general theoretical meaning is then discussed demonstrating its 
extension for any ions and j-terms as well as its limitations. 

1. INTRODUCTION 

Decrease in quantum yield at high concentration (self-quen­
ching) in Nd3+ doped materials can be explained by the following 
crystal field enhanced cross-relaxation (I] : 

4 4 4 
Nd( F3/ 2) + Nd( 19/ Z) + ZNd( 115/ 2) 

As shown on Fig.l, this cross-relaxation can take place only 
if the energy released at ion S(Nd3+) is about equal to the energy 
which can be accepted at ion A(Nd3+). For two near by "free ions" 
the energy difference (e2-el) being negative,such transfer could not 
take place. For ions in crystal the Stark effect can provide a 
resonance condition : E2M - EbB = 0 which for phonon assisted 
transfers can be extendea to EZM - Elm~ O. 

about 
For a "free" Nd3+ ion,(e2-el) is found to be experimentally 
a constant (from gravity centers in different materials) : 

(e - e ) ~ - 430 cm- I 
Z I 

The resonant condition for cross-relaxation is then 

511 
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--- free ion 
- ion in crystal 

4 
~/2 

Fig. 1. Energy levels involved in self-quenching for Nd3+ in 
crystals and for "free ions." 

~El M3 
6E2 - --2-- + --2-- = 430 (I) 

where 6E1, ~E2' 6E3 are respectively the maximum splitting of 

4 4 4 
19/2' 1 15/ 2, 13/2" 

Stark splittings are usually well described by potential V at 
ion sites : 

V = ~ 

k,q, i 
Bk k 
q (C ). 

q 1. 

where ck are the well known spherical tensorial operators 
q 

J consider V as an Hilbert space function the norm of which 
is taken as a scalar crystal field parameter 

with 2J ~ k 

~ 

k,q 

1/2 
~ N = 

v 

1/2 
(2) 
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Good linear relationship are experimentally found for maximum 
splitting whatever sites symmetry [1] : 

6E ~ 0.23 N 
1 v 

6E2 ~ 0.27 Nv 

6E3 ~ 0.026 Nv 
The resonance conditions (eq.l) can simply be written as 

liE = 470 em-I 
I -I (3) 

or N - 1800 cm v 

6EI can easily be obtained directly by an absorption 

f 4 •• d' 1 state rom ra /2 at room temperature glvlng lrect y 

spllttlng of 19/ 2• 

2 spectra of PV2 
the Stark 

Relations (3) indicate simply that weak self-quenching mate­
rials will be thoses with 

6E I < 470 cm- 1 or Nv < 1800 cm- 1 

Examples of such. result is presented on Fig. 2 which in the 
same time demonstrate experimentally the good linearity between 
6E I and NV. All materials for which simultaneously ~El and B~ 
are available whatever their sites symmetry are presented by round 
points. 

The purposes of this lecture are to answer the following : 
- why N describes linearly LlE ? 

"V max 
- Is it general ? In other words, can it be used tor other ions 
than Nd3+ ? Can it be used for other J-terms than 19/2' 11/2, 15/2? 

- What is the theoretical value of the proportionality coefficient ? 

II. THEORETICAL INVESTIGATION OF MAXIMUM STARK SPLITTINGS [2]. 

Assuming small J-mixing we consider the degeneracy removal of 
a g-fold degenerate J-term in a field potential V (see Fig.3 for 
meaning of symboles). g levels are obtained. g equal g if J is a a 
integer and equal g/2 if J is half-integer. 

Considering the root-mean-square deviation of n Stark levels 
n 

(E.)2 
1 
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0 1000 2000 3000 
NV(cm-1) 

I NdPs014, 2 LiNd(P03)4, 3 CLAP, 4 NdsNd(W04)4, 5 Na(La,Nd) (W04)Z, 

6 K3Nd(W04)4, 7 KsNd(Mo04)4, 8 (NAB) NdA13(B04)3, 9 NalSNd(B03)7, 

IONdC13, II (Nd,La)Ta7019, 12 LiNdNb04, 13 tellurite glass, 

14 LOS(Nd202S) , IS CaF2, 16 YAl03(La,Nd), 17 Y3Al s012(La,Nd), 

4000 

16 Ba2MgGe207, 10 NdNbS014, 20 Silicate flint glass, 21 Gd17Nd03(Mo04)3, 

22Li(Y,Nd)F4, 23 (Nd,La)F3, 24 Nd(C2HSZ04)3, 9H20, weak field 

quenched by H20, 25 Cas(P04)3F(FAP), 26 KY3FIO, 27 Nd zS2, 28 YV04 

29 PbMo04, 30 LiNb03, 31 phosphate glass KLi, 32 KY(Mo04) 2, 
3+ 

33CaA1407, 34 La203, 35 LaOF(Nd ),36 W04Ca, 37 C13Nd in ice. 

Fig. 2. Maximum Stark splitting of 419/2 (Nd3+) versus Nv for differ­
ent crystals with various site symmetry known in literature. 
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Fig. 3. Crystal field degeneracy removal for a J-term. 

from [3] we get: 

2 1 
(~£) = - tr (P VP V) goo 

where P = l: 
o IJM'><JM'I (projector operator). 

tr(P VP V) 
o 0 

M' 

l: <JMIVIJM'><JM'IVIJM> 
M,M' 

l: BkBk: <JM 1 (Ck ) . 1 JM' >< JM' 1 
M,M' q q i q 1 i 
k,q 
k' ,q' 

(Bk)2 

= kl: zfu- o(J,J,k) I<JII 
,q i 

On the other hand : 

(~£) 2 = _1 (~£) 2 ~ 
2 

+ a2 + ••• 
ga 2 

with 0 <a. <I 
1 

k' 
(C ,) .IJM> q 1 

2 
IJ a 2 + g-

a 
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Assuming an homogeneous distribution of a large number n of 
Stark levels : 

Then 

g /2 
8 

L 
nOlI 

2 2 
.. ('~E) (~) I 

2 g '6 a 
12 g 2 

(6E)2 _ a 
- g(g +2)(g +1) 

a a 
(4) 

Let us look at the sum in (4) as the equation of a quadric 
surface in the tridimensional k-space. It is an ellipsoid equation. 
The central approximation we perform at this point is to replace 
this ellipsoid by a sphere of same volume : 

(Bk) 2 (Bk)2 ~ 
L q I<JII (c(k».11 J~! L ~ [1T I<JII (c(k».11 J>12 7/3 

k (2k+I). 1 k 2k+1 k' . 1 
~q 1 ,q 1 

[ 12/3 2 
~ -41 1T<J II (C (k» . II J> I N* 

1T k i 1 V 

and : 

III. DISCUSSION OF THE APPROXIMATION 

The spherical approximation performed in (5) is so much the 
better that the ellipsoid is more sphere-like, which is the case 

when <~ I c (k) II J> 2 is s ta tionary in k. 

Since 2 2 2 
<JII C(k) 1\ J> =<f 1\ C(k) II f> < SLJ II U(k) II SLJ > 

and (k) 2 2 1 k 1 2 
<11\ C II 1> .. (21+1) (000) 

the value of which is almost constant for 1=f configuration 

<f 1\ c (2) I~ > .. - 1.36 

<f /I c (4) I~ > .. I. 13 

<fll C(6) II f> = - 1.27 

(5) 
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Fig. 4. 
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Then, variation in k arises essentially from <II U(k) II >2. Inspec 
tion of Carnall's table [4] plus the 2J > k condition indicates the 
most "spherical" terms which reciprocally can be used as crystal 
field probes 

Of course other J-terms, provided the J-mixing is small,could 
be used also, the sphere being an average of the ellipsoid conside­
red in (4). 

IV. APPLICATION TO MAXIMUM STARK SPLITTING CALCULATIONS 
WITH EXPERIMENTS 

COMPARISON 

IV.A. Given Ion (Nd3+) and crkstal (LaF3), Comparison of N: from 
Maximum Splitting to ~~ from Bq's for Different J-Terms 

Starting from_Bk's and maximum splitting given in (4) we can 
calculate N~ from lIE qby eq. (5) and from its definition (eq.2). The 
ratio of both ~ is given on Fig.4 versus ~E for varous J-terms of 
Nd3+. Horizontal line shows proportionality of ~E with N* according 
to eq.5. Terms such as 4G9/ 2, 4GII/ 2 which are away fromVthe hori­
zontal lines correspond to terms with high J-micing. 

IV.B. Given J-Term (419/2) of Given Ion (Nd3+), Study of Maximum 
Splitting for Different Crystals with Different Site Symmetry 

In order to compare theory with experiments such as those 
presented on Fig. 2, we calculate Nv from Bk's found in literature 
[4],[5],[6],[7],[8],[9] for crystals of dif~erent structures and plot 
by round points on Fig. 5, the experimental maximum splitting of 
419/2 of Nd3+ versus~. Theory as presented by eq. 5 gives the line 
obtained without any adjustable parameter. It shows that ~E is pro­
portional to N~ and that the theoretical slope discribes experiments 
reasonably well. 
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In order to make comparison between Fig.2 and 5 easier the 
values of Nt (complete) and NY (approximate) are given for diffe­
rent crystals in Table 1. On the average N*!N ~ 1.35. v v 

1V.C Given J-Term (4113/2) and Crystal (LaF3)' Study for 
Different Ions 

In the following we consider the 4113/2 term which has been 
fOl1nd aliove to be ratner "spherical" in a number of ions : Nd3+, 
Sm3+, Dy3+, Er3+. 

For eacf of these ions we compare the experimental maximum 
s~litting of 113/2 to the theoretical one as given by eq.5. The 
result is presented in Table 2 as the ratio 8E /8E h. The 
different values found arround 1 demonstrate th~Xiene~ality of N* 
for different ions. v 

Table 1. N; parameters obtained from B~ from literature for 
d~fferent crystals doped with Nd3+ 

Crystals LaCt3 LaF3 LaP5014 CaW04 LiYF4 YAG 

N* -I 
v (cm ) 1062 2356 2190 2691 3095 4739 

complete 

-1 N (em ) v 
approximate 4 928 1841 1406 1860 2194 3575 

Ref. [5] [41 (91 [81 [ 7 J [6 ] 

Table 2. N* parameters obtained from Bk [4] for different ions in 
L~F3 and ratio (~Eexp4~Eth) o¥ experimental to predicted 
maximum splitting of 113/2. 

Ions Nd3+ Sm3+ Dl+ Er 
3+ 

N* -1 2356 2098 1905 1638 
v (em ) 

liE 
~ 1.32 I. 01 1.13 I. II 
LlEth 
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V. CONCLUSION 

It has been shown that the scalar crystal field parameter ~ 
(Nv) describes linearly fiE ,the maximum Stark splitting of J-terms 

max ( 
wi th small J-mixing and for which < II U k) II >2 is "spherical." This 
last term meaning that its values do not differ by more than a fac­
tor ten for k=2,4,6. 

The theoretical proportionality coefficient gives fiE by a max 
factor to 1,3 from experiment for different ions, crystals and 
J-terms, provided the above conditions are respected. 

For the first time, strength of crystal fields of different 
symetry aan be compared in a quantitative way giving new interest 
in Bk's tables found in literature. 

q 

Another interest in this simple parameter is that lome J-terms 
can be used as simple crystal field probe. For instance as shown on 
Fig.2 the line given either by theory or experience can be used as 
a calibration line providing by a simple 6E measurement a quan­
titative value of crystal field. The pointsm~fi Fig.2,not given by 
large round points, give such values of crystal field for whole cate­
goriesof new materials for which crystal field analysis has not yet 
been performed. 

Finally, such N* parameter, as examplified by Fig.2, helps 
making prediction for Xnergy transfers in Rare-Earth ions doped 
crsytals. 
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ENERGY TRANSFER BETWEEN INORGANIC IONS IN GLASSES 

ABSTRACT 

R. Reisfeldl'; 

Department of Inorganic and Analytical Chemistry 
The Hebrew University of Jerusalem 
Jerusalem, Israel 

Results on energy transfer between uranyl or first transition 
metal ions to the rare earths Nd 3+, Ho 3+, Er3 + and Yb 3+ in 
inorganic glasses are discussed. The efficiency of the transfer 
and the transfer probabilities are presented. Suggestions are 
given for utilization of energy transfer in luminescent solar con­
centrators (LSC) and Neodymium and Erbium glass lasers. 

I. INTRODUCTION 

Energy transfer between two inorganic ions can occur either by 
multipolar interaction or exchange mechanism in dilute systems [1]-[4] 
or by multi-step migration in concentrated systems [5]. In addition 
to resonant transfer phonon-assisted transfer is quite a common 
phenomenon [4]. 

Usually energy transfer efficiencies and probabilities deter­
mined experimentally for macroscopic systems are applied to some 
average values and not to actual distances between donor and acceptor 
ions. The theories for resonant energy transfer were developed by 
Forster [6] and Dexter [7] for multipolar coupling, by Inokuti and 
Hirayama [8] for exchange coupling, and the theory for nonresonant 
energy transfer, where the energy mismatch between the energy levels 
of the donor and the acceptor ions is compensated by the emission 
or absorption of phonons, was developed by Miyakawa and Dexter [9]. 

l'; !!Enrique Berman!! Professor of Solar Energy. 
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The energy transfer mechanism in dilute systems has been summarized 
by Watts [10]. At high concentrations of donor and at elevated tem­
peratures the donor-donor transfer may be appreciable. The fluores­
cence decay curves of the donors behave differently in the two above­
mentioned cases. If we write the donor-acceptor transfe~ rate as 
aiRs and the donor-donor rate as b/Rs where R is the separation 
between the interacting ions and s equals 6, 8, 10, for dipole­
dipole, dipole-quadrupole and quadrupole-quadrupole interaction then 
two limiting cases can be considered for b/a = 0 where donor-donor 
interaction is absent and b/a» 1 where donor-donor interaction 
is predominant. In the former case the decay curve of the donor 
fluorescence is non-exponential being the sum of the decay of an 
isolated donor ion and energy transfer to various accepted ions 
characterized by the factor exp(-At 3 / S ). In the opposite limit 
which corresponds to rapid donor-donor transfer the decay is expo­
nential at all times with a rate equal to the total donor-acceptor 
transfer rate average over all donors. In most cases which fall 
between these two limits the donor-decay is initially non-exponential 
but becomes exponential in the long time limit. 

The theoretical approach to energy transfer is discussed in de­
tail by Williams, Di Bartolo, Kenkre and Blasse. I shall therefore 
present mostly experimental data which have recently been obtained 
in our laboratory dealing with energy transfer between a post-tran­
sition or transition metal ion as donor and a rate earth ion as 
acceptor. 

Contrary to energy transfer between a couple of rare earth ions 
where the transfer probabilities can be obtained from optical tran­
sition probabilities using the Judd-Ofelt approach [4], in the pre­
sent case the transfer probabilities cannot be predicted theoreti­
cally as the optical transitions in the donor ions depend strongly 
on the ligand field and our present theoretical techniques do not 
allow a priori calculation of these transitions in the condensed 
phase. 

Practical aspect of the energy transfer described here may be 
found in increasing the pumping efficiency of glass lasers or in 
recently studied luminescent solar concentrators [11]-[14]. 

Our discussion here will include energy transfer between 
and Nd 3+, Ho 3+ and Eu 3+ in oxide glasses, Bi 3+ and Nd 3+ 
Eu 3+ in oxide glasses, Cr 3+ and Nd 3+ and Yb 3+ in lithium 
lanthanum phosphate glasses (LiLaP) and Mn2+ and Er 3+ in 
fluoride and oxide glasses. 

uo2+ 
2 

and 

The formula for the determination of energy transfer probabi­
litiesand efficiencies are obtained from experimentally measured 
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lifetimes of the donor ion lifetime with and without addition of 
the acceptor ion. The decrease of the donor luminescence quantum 
yield in the presence of the acceptor ion, anq the increase of the 
acceptor emission when excited via the donor ion as compared to the 
acceptor emission when exciting the acceptor ion directly. This can 
be summarized in. the following Equations: 

The efficiency of energy transfer ntr for measured lifetimes 
is given by Equation (1) 

n(l) = 1 _ Ld (1) 
tr LO 

d 

where Ld is lifetime of the donor ion in singly doped glasses and 
Ld is the lifetime of the donor ion in presence of the acceptor ion. 

When 
lifetimes 

L av 

the lifetimes are not single exponentials the average 
are used. The average lifetime Lav is defined as 

()O 

oJ tI(t)dt 
= 

o (r<t)dt 

where I(t) is the emission intensity at a given time t. 

The transfer efficiencies ntr for the decrease of the donor 
luminescent efficiency in presence of the acceptor ion are obtained 
using Equation (2) 

n(2) = 1 
tr 

(2) 

where Id is the luminescence quantum efficiency of the donor ion 
in presence of the acceptor ion and Id is the efficiency of the 
donor ion in the singly doped glass. 

The transfer efficiency can also be calculated from the increase 
of the acceptor fluorescence using Equation (3) 

d 
(3) EaAa 

ntr = (3) 
EaA 

a d 

where Ed is the emission of the acceptor ion excited at the donor 
absorpti~n band, Ea is the emission of the acceptor ion excited a 
via the acceptor, A and Ad are the optical densities of the 
acceptor and donor ~t their absorption maxima. 

This last Equation provides the net transfer which is the for­
ward minus the backward transfer. 
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II. URANYL ION AND RARE EARTH IONS 

The Uranyl ion has been extensively studied in connection with 
its photophysics [15] and luminescence. It has been established 
that in glasses similarly to crystals the Uranyl ion forms a lingar 
molecule with u-o distances of about 1.75 K which is about 0.6 A 
shorter than the distances to 5 - 6 ligating Oxygen atoms from the 
glass in the equatorial plane. The excited states around 20 000 cm-1 
arise from electron transfer from the highest M.O. (of odd parity) 
of the 2p Oxygen orbitals to the empty orbitals of Uranium. 

The lowest excited state of the U:ranyl ion is the only long­
lived state. All the higher levels are nonradiatively de-excited 
to this level followed by emission in the yellow and green part of 
the spectrum [16]. The oscillator strengths to the lowest levels are 
about 10- 4 for the region between 20 000 - 25 000 cm-1 and represent 
at least 4 electronic transitions [17] from TIu or au orbitals of 
Oxygen 2p orbitals to the empty 5f shell. There are no parity 
allowed transitions below 30 000cm- 1 hence the relatively weak 
intensity of the electron transfer band of Uranyl as compared with 
transition metal complexes. 

In phosphate glasses 5 emission maxima peaking at 20 530, 19 710, 
18840, 17950 and 17070 cm-1 are obtained. The decay curve can be 
approximated by 2 exponential curves with lifetimes of 115 and 367 ~s 
[16]. The luminescence undergoes concentration quenching and the 
maximum efficiencies are obtained at about 0.1 molar concentrations. 
The best efficiencies at room temperature are observed in borosili­
cate glasses where the efficiencies are about 50% at 0.1 mole % [18]. 

Efficient energy transfer from the Uranyl group was observed 
for Eu 3+ [19], for Sm 3 + [20], Nd 3 + nnd H0 3 T [21] and for Er 3+ 
[22]. A comparative study in phosphate glasses on energy transfer 
for the Uranyl group to a number of rare earth ions showed the 
energy transfer is phonon-assisted and its probability decreases 
along the series Nd 3+, Sm3+, Eu3 +, Pr 3+, Tm 3+, Dy 3+ [11],[23]. 
efficiencies of transfer are summarized in Table 1. 

A practical consequence of energy transfer between UO~+ and 
Nd 3+ can be applied to LSC's since the existence of the 2 ions in 
a glass increases the absorption range of the spectrum [21]. 

The optical characteristics of Bi 3+ doped oxide glasses are 
summarized in Reference [24] and References therein. The absorption 
and excitation spectra of Bi 3+ peaking at 330 nm arise from the 
transition 18 0 ~ 3P1 and the fluorescence of Bi3+ arises from 
3P1 ~ lSo transition peaking at about 450 nm. Although this 
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Table l. Efficiency of Energy Transfer in Glasses 

Glass Donor ion Acceptor ion n(d 
tr 

n(2) 
tr 

n(3) 
tr Ref. 

Phosphate 1wt% U0 2+ 1wt% Sm3+ 0.22 0.25 [20 ] 2 
1wt% Eu3 + 0.17 0.36 [20 ] 
2wt% Nd 3+ 0.56 0.65 [21 ] 
2wt% Ho3+ 0.29 0.55 [21 ] 

Germanate 1wt% Bi~+ 0.05+0.6M% Nd3+ 0.2+1.0 [26 ] 

LiLaP 0.308M% Cr 3+ 0.5M% Nd 3+ 0.59 0.34 [32 ] 
1. OM% Nd 3+ 0.76 0.79 
2.0M% Nd 3+ 0.91 1.00 
3.0M% Nd 3+ 0.92 
0.5M% Yb 3+ 0.51 
1.0M% Yb 3 + 0.64 
2.0M% Yb 3+ 0.78 
3.0M% Yb 3+ 0.88 

Fluoride 24M% Mn2+ 2M% Er 3+ 0.77 [34 ] 

Calcium 2M% Mn2+ 2M% Er3+ 0.86 [35 ] 
phosphate 

transition is spin-forbidden it has a high oscillator strength of 
about 0.1 because of strong spin-orbit coupling. The quantum effi­
ciency of Bi 3+ of its fluorescence in germanate glass is about 2%. 

At room temperature energy transfer takes place from the 3P1 
level and the transfer probability from 0.1 wt% Bi 3+ to 1.0 wt% Nd 3+ 
is 10 6s-1. The same value was obtained for room temperature transfer 
between Bi 3+ and Eu3 + [25J. 

Concentration dependence of energy transfer between Bi 3 + and 
Nd 3+ reveals that at a concentration of 1.0 wt% Bi 3+ and 0.2 wt% 
Nd 3+ the pumping efficiency is increased by 175% [26J. The transfer 
efficiency is given in Table 1. 

The low temperature dependence of the above-mentioned bismuth­
europium germanate glass and the time-resolved-spectroscopy of these 
glasses has been studied with the Lyon group [27],[28J. The results 
of these studies will be discussed by Boulon. 

IV. Cr3+ AND Nd3+ AND Yb 3+ IN LANTHANUM PHOSPHATE GLASS 

Cr 3+ in glasses has been extensively studied [29J because of 
the predicted similarity between the celebrated ruby crystal 
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and glasses. References to these studies can be found in [30]. 

Absorption and emission of Cr 3 + arises from the parity for­
bidden electronic transitions in the 3d electronic shell. Crystal 
field split states of Cr 3+ in octahedral symmetry are illustrated 
in the Tanabe-Sugano diagrams. The relative positions of the excited 
4T2 and 2E states depend on the cr~stal field strength. In cases 
where Dq/B < 2.3 (low field cases) T2 is the low state, the 
emission arises from the 4T2 to 4A2 spin allowed transition. In 
the case of Dq/B > 2.3 (high field cases) the lowest state is 2E 
and the luminescence arises from the spin forbidden 2E to 4A2 
transition characteristic for the R-line emission of ruby. The spin 
allowed transitions are characterized by broad emission spectra and 
short lifetimes contrary to the spin forbidden emission from the 2E 
state (which sometimes is mixed with 2Tl levels) with narrow band 
and long lifetimes. 

All the known emissions of Cr 3 + in glasses arise from 4T 2. 
Reasons for this may be: 1. 4T2 lies below the 2E level; 2. The 
position of two levels may be of equal energy, however the weak 2E 
emission may be obscured by the broad emission from 4T2 . 

The quantum efficiency of the emission arising from 2E is 
usually about 100% because of the equal equilibria positions and 
shape of 4A2 and 2E levels in the configuration diagrams. The 
fluorescence efficiency from the 4T levels varies drastically in 
various media. Thus, contradictory to the high efficiency of Cr 3+ 
in crystalline fluoride materials (elpasolite) and probably crystal­
line aluminium metaphosphate, efficiency of Cr 3 + in glasses is low 
but it may be increased by tailoring the glass composition [31]. The 
best efficiencies for 4T2 + 4A of 23% are obtained for LiLaP 
glasses. The reason for the nonradiative transitions of Cr 3 + in 

0.5 8.4xlO l9 ions cm- 3 Cr in LiLaP 
>. -If) 
c 
Q) 

0 0.3 

c 
u -a. 
0 

0.1 

400 600 800 
A (nm) 

Fig. 1. Absorption spectrum of O.31M% Cr 3 + 
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glasses is still under investigation by the group of Dr. Lempicki 
of GTE Laboratories and our group. At this point it is absolutely 
clear that the theory of multiphonon relaxation which holds in the 
case of rare earth ions cannot be applied to Cr3+ 

Our present studies [32J show that in LiLaP glass the probabi­
lity of energy transfer from Cr 3+ to Nd 3+ may be higher than 
the nonradiative transfer within the Cr 3+ system. This is probably 
the reason for good laser performance of such glasses as reported 
recently by Harig [33J. 

The integrated lifetime is 24.6 ~s at room temperature which 
is indicative of the proximity of ~T and 2E states in the LiLaP 
glass [31J. 

Fig. 1 presents the absorption spectrum of 0.31 M% Cr203 in 
LiLaP glass. Fig. 2 presents the absorption spectra of 0.15 M% 
Cr203, 2 M% Nd203 and 0.15 M% Cr203 + 2 M% Nd203 in LiLaP glass. 
From this Figure it can be seen that the absorption is additive. 
The same is true in the case of LiLaP glass with Cr203 and Yb 203 • 

Fig. 3 shows the absorption spectra of 0.31 M% Cr203 and 3 M% Yb 203 • 

Fig. 4 presents the emission spectra of Cr 3 + in LiLaP glass, 
curve (a) for 0.05 M% Cr203 and curve (b) for 0.31 M% Cr203 arising 
from the ~T2 ~ ~A transition. Fig. 5 presents the emission spectra 
of Nd 3+ excited at 585 nm to Nd 3+ directly and at 647 nm via 
Cr 3+. This curve evidences energy transfer from Cr 3+ to Nd 3+. 
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b- 2MNd 

C - 0.15MCr 

a 

700 900 

Fig. 2. Absorption spectra of Cr 3+, Nd 3+ and Cr 3+ + Nd 3+ 
(4.2 X 1019 ions cm- 3 Cr, 5.44 x 10 20 ions cm- 3 Nd) 
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Fig. 3. Absorption spectrum of 0.31 M% Cr 3+ + 3.0 M% Yb~+ 

Fig. 6. presents the emission spectra of Yb 3+ excited directly at 
915 nm into the 7F7 / 2 + 2F5/2 transition (left-hand-side of diagram) 
and excited via Cr 3 + into 4T 2. This right-hand-side part of 
the dia~ram again provides evidence of energy transfer between Cr 3 + 
and Yb +. 

Examples of energy transfer efficiencies obtained fromEquations 
(1) and (3) between Cr 3+ and Nd 3+, and Cr 3+ and Yb 3+ are pre­
sented in Table 1. It is not surprising that energy transfer effi­
ciencies between Cr 3+ and Nd 3+ are higher than the corresponding 
transfer in Yb 3+ because of the much higher spectral overlap bet­
ween Cr 3 + and Nd 3+. 
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Fig. 4. Emission spectra of Cr 3 + 
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Fig. 5. Emission spectra of Nd 3+ 

V. ENERGY TRANSFER FROM Mn2+ TO Er3+ IN FLUORIDE GLASSES AND 
Mn2+ TO Nd3+, Ho3+ AND Er3+ IN OXIDE GLASSES 

V.A. Manganese 

529 

The absorption spectrum of Mn2+ doped fluoride glass [34] of 
the composition 35PbF2 , 24MnF2' 35GaFo, 5At(P0 3 )3' 2LaF 3 is 

Fig. 5. 
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640 

in 36PbF2, 24MnF2, 35GaF3 , 5At(P0 3 )3' 2LaF 3 

presented in Fig. 7. The two peaks arising from GAl to 4T1 at 
480 nm and 6A to 4A1 • 4E at 398 nm are similar to those obtained 
for Manganese in phosphate glasses [13] [35]. The additional peak , 
332 nm belonging to the higher ligand field levels coincides pro-
bably with the Pb2+ absorption. The excitation spectrum of the 
emission at 626 nm is presented in Fig. 8 where curve (a) belongs 
to the excitation of a glass containing Mn2+ only and curve (b) 
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is the excitation spectrum of a glass into which 2 mole% Er 3 + was 
added. Note that the sensitivity of curve (b) is increased by a 
factor of 3.3 thus indicating the decrease of the luminescence of 
Mn2+ in presence of Er 3 + as a result of energy transfer from 
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Mn 2+ to Er3+. The emission spectrum of Mn2+ under excitation 
of 395 nm is presented in Fig. 9 curve (a). This curve consists of 
a single peak at 626 nm arising from the transition qT l + GAl' This 
emission is similar to the emission of Mn 2+ in oxide glasses. The 
lifetime of this emission exhibits a nonexponential behavior which 
can be roughly described by two lifetimes 1.06 ms and 1.82 ms~ and 
an integrated lifetime of 1.45 ms for glasses consisting of Mn2+ 
only. Glasses containing 2 mole% of Er3+ have two decay times~ 
150 ~s and 430 ~s~ and an integrated lifetime of 340 ~s. 

V.B. Erbium 

The absorption spectrum of Er 3+ in the glass is shown in 
Fig. 10 in which curve (a) is due to the absorption in a ~lass con­
taining Mn2+ measured with a similar glass without Er3 and 
curve (b) is the absorption of Er3+ in which Mn2+ was replaced 
by Zn2+. There is no observable difference between the shape 
(half-band width) and position of bands in the two spectra. Such 
behavior was observed previously [36] in glasses of composition 
46PbF2~ 22MnF2~ 20GaF3~ 2LaF3 and 46PbF2~ 22ZnF2~ 30GaF3~ 2LaF3. 

The excitation spectrum of Er 3+ for the 543 nm emission due 
to qS3/2 + qI 15 / 2 is presented in Fig. 11 curve (a) and of the 
666 nmemission due to transition qF 9 / 2 + qI 15 / 2 in curve (b) in 
which the latter sensitivity is 20 times higher. This means that 
the 666 nm emission is negligible compared with the 543 nm emission 
in glasse~ doped by Er3+ alone. 
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Fig. 11. Excitation spectrum of Er3+ 
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The emissiou spectrum of Er3+ alone excited at 370 nm is 
presented in Fig. 9 curve (b). Here we see an emission at 525 nm 
of the transition 2H11/2 + 4115/2' a much stronger emission at 
543 nm of transition 4S3/2 + 4115/2 and almost a negligible 
emission at 666 nm of transition 4F9/2 + 41 15 / 2 corresponding to 
the very weak excitation shown in Fig. 11. 

V.C. Energy Transfer between Manganese and Erbium 

The emission spectrum of the composite glass containing 2 mole% 
Er 3+ is presented in Fig. 9 curve (c) excited at the Mn2+ excita­
tion level 395 nm. This curve consists of an emission band at 
626 nm of Mn2+ and at 666 nm of Er 3+. The emission of Er 3+ at 
543 nm is almost totally absent. Note that this curve (c) is quite 
different from curve (b) for the 666 nm emission where no Mn2+ is 
present. Curve (d) Fig. 9 shows the emission of the same glass 
excited at 370 nm (excitation level of Er 3+). We observe a much 
higher emission at 666 nm than at 543 nm and a small peak at 626 nm 
of Mn2+. This means that we have energy transfer from Er 3+ to 
Mn2+ as opposed to energy transfer from Mn2+ to Er 3+ in curve 
(c). The absence of the 543 nm emission of Er 3+ in curve (c) 
probably means that when Mn2+ is excited the energy is transferred 
from 626 nm to 4F9 / 2 of Er 3+. Energy transfer to the higher 
level 4S3 / 2 is impossible. On the other hand when Er3+ is 
excited [curve (d)] part of its energy is transferred to Mn2+ and 
additional energy is emitted at 666 nm. The energy transfer probabi­
lity was calculated from the lifetime by Equation (1). The probabi­
lity of energy transfer between Mn2+ and 2 mole% Er j + is 2.3 0 10 3 
s-l. The back transfer probability from the 4S 3/ 2 state of Er 3+ 
to Mn2+ can only be approximated from the decrease of the lifetime 
of Er3+ (97.8 ~s for 0.1 wt% Er 3+ only to 9.1 ~s in 2 mole% Er 3+ -1 
in the Mn-containing glass. Using Equation (1) we obtain ~ 9.104s 
for this transfer. The energy transfer efficiencies are presented 
in Table I. 

VI. CONCLUSIONS 

It should be noted that the transfer efficiencies as given in 
Table I are the average values when the averaging includes the 
inhomogeneous broadening due to a variety of emitting ion sites and 
the averaging over various transfer mechanisms. 

The line-narrowing technique for the donor ions discussed in 
this paper at low temperatures allows excitation of a smaller number 
of inhomogeneously broadened sites, however there is no possibility 
of exciting one type of site only [27]. From the experiments per­
formed so far it appears that the Europium ion is the only ion that 
can be selectively excited in glasses. For other ions different 
techniques must be used. We have recently suggested that the donor 
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ion be adsorbed onto porous glasses [37] followed by a successive 
adsorption of the acceptor ions. In such an arrangement the donor­
acceptor distances can be calculated due to the lower dimensionality 
of the system. 

The macroscopic transfer efficiencies are of value in predicting 
systems with good pumping efficiencies for lasers and for solar con­
centrators where the high absorption of the donor ion permits high 
efficiency of trapping of the exciting light. 
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NON-EQUILIBRIUM CONCEPTS IN SOLAR ENERGY CONVERSION 

ABSTRACT 

P. T. Landsberg* 

Department of Electrical Engineering 
University of Florida 
Gainesville, Florida 32611 

Among non-equilibrium concepts introduced here are first the 
uses of fluxes of energy (~) and entropy (~) which for black-body 
radiation leads to ~ = (3/4)~T = crT4 where cr is Stefan's constant. 
An application to planetary temperatures is noted. Secondly, 
diluted black-body radiation, which is a non-equilibrium form of 
radiation, is introduced and applied to the conversion of black­
body radiation. A thermodynamic and statistical mechanical study 
is made of an infinite stack of solar cells to determine optimum 
efficiencies. One finds here a chemical potential of non-equilib­
rium radiation if it is in interaction and in a steady state with 
electrons and holes, each governed by a quasi-Fermi level. 

I. GENERAL CONCEPTS FOR RADIATION 

I.A. Introduction 

There are many non-equilibrium concepts and ideas one could 
discuss in these lectures. However, in four lectures one can 
cover only some of the interesting topics properly, and so I had 
to omit a great deal of kinetics, problems of photosynthesis and 
non-equilibrium phase transitions which it was originally planned 
to include. What can be covered is, however, of importance and 
has been a focus of recent interests. 

*Permanent address: University, Southampton S09 5NH, England. 
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Black-body radiation has been extensively studied and one knows 
practically all about it; the Planck frequency distribution, the 
thermodynamic properties such as pressure and entropy as a function 
of temperature, etc. What is one to do if the radiation incident on 
a converter is not of the black-body type? It certainly happens: 
one need only think of the direct solar spectrum at sea level with 
its many dips due to optical absorption in the atmosphere. How is 
one to work out the entropy of the radiation in such more general 
situations? It is to be emphasized that such non-black-body distri­
butions are stable only in an enclosure with perfectly reflecting 
walls. If normal matter at some temperature T is present these 
distributions become unstable and go over into black-body radiation 
corresponding either to that temperature, or to an appropriate equi­
librium temperature resulting from averaging of the thermal energy 
in the matter and in the radiation. 

The basic difficulty is that one cannot find a distribution 
function in this case by maximizing the entropy--that would merely 
lead to an equilibrium distribution. One wants to amend this usual 
procedure by using an entropy expression which is valid also away 
from equilibrium. That such an expression should exist is not sur­
prising, for even maximization of the entropy for equilibrium pre­
sumes that the expression used is valid away from equilibrium. 

I.B. Photons in Discrete Quantum States 

In order to discuss the energy and entropy of a gas of bosons 
which are not necessarily in equilibrium, let P(N1,N2, ••• ) be the 
probability of finding N1 bosons in single-particle quantum state 
1, N2 in state 2, etc. This distribution enables one to infer the 
probability, to be denoted by Pj(Ni)' of finding Nj bosons in quantum 
state j, whatever the occupation of the other quantum states. We now 
assume: (i) the probabilities P1(N1), P2(N2), ••• are independent in 
the probability sense, so that 

(1) 

(ii) the probability of an additional particle occupying a state j is 
independent of the number already in this state. Thus P'(Nj)« qNj, 
w~ere qj is an undetermined positive number. NormalizatIon then j 
gl.ves 

Pj(Nj ) = (1- qj)q~j, (0 l!: qj l!: 1). (2) 

From this apparently flimsy base one can reach all results needed 
here, without having to assume equilibrium conditions by maximizing 
the entropy [1]. 
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The parameter qj, specific to state j, can be related to the 
mean occupation number nj of state j, by noting 

00 N q. 
nJ. = L Nq. (1 - q.) = 1 J 

N = 0 J J - qj 
(3) 

Hence one can express q. in terms of n.: 
J J 

(4) 

Next, the entropy of the system is 

00 00 

S = -k L 
N = 0 

1 

L ... P(N1 ,N2 ,···)ln P(N1 ,N2 ,···) 
N. = 0 

J 

This becomes, with (1) and (2), 

00 

S = -k L 
j = 1 

where we have used (2) in the form 

00 

L p. (N.) 1, 
N. = 0 J J 

J 

and also 

;.. Nj 
L.J N.q. 

N. = 0 J J 
J 

Hence 

2 (1 - q.) 
J 



540 P. T. LANDSBERG 

= k L [( 1 + n.) 1n (1 + nj ) - nj 1n n.] 
j J J 

(5) 

This result, usually obtained from equilibrium stastica1 mechanics, 
is therefore of wider significance and represents a non-equilibrium 
entropy. It is exact for non-equilibrium situations if (1) and 
(2) hold. The equilibrium Bose distribution can be derived from 
(5) by entropy maximization. The equilibrium distribution law 
for ensembles, Stirling's approximation, the grouping together of 
quantum states, the equiprobabi1ity of states in nonequi1ibrium 
situations are all unsuitable assumptions for nonequi1ibrium discus­
sions and have been jettisoned in the present approach. This is its 
chief merit. An unusual interpretation of qj will be given in Section 
II.C. 

I.C. Continuous Photon Spectrum 

We now pass to a continuous spectrum approximation by replacing 
the sum over quantum states by an integral. This requires an expres­
sion for the number of states of the radiation in a frequency interval 
(v,V + dV), when it crosses an element of a surface into a solid 
angle dn in a direction making an angle e with the normal to the 
element. For emission or absorption of radiation the surface is part 
of the surface bounding the volume v of the radiation enclosure, and 
the normal is drawn outwards. But the surface can also be a ficti­
tious surface drawn inside v. We shall normally consider only iso­
tropic radiation which may be polarized, specified by I = 1, or 
unpo1arized, specified by I = 2. In the latter case each transla­
tional mode can have one of two directions of polarization, so that 
the translational density of states is multiplied by £ in the general 
case. The required density of states can be written in various ways: 

where p, v, and e are, respectively, linear momentum, frequency, and 
energy of a photon in the range. In the isotropic unpo1arized case 
~dn can be replaced by 8n after integration over solid angles. The 
usual density of states used for black-body radiation is then obtained 
from (6). One finds from (5) and (6) 

= JJsv dv dn, 
s 
v 

Sv = ~2[(1 + nv) 1n(1 +~) - nv lnnv] , 
c 

(7) 

where nV is the mean occupation number of a translational state of 
frequency v. The internal energy per unit volume is 
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(8) 

The quantities uV' sv are energy and entropy of polarized or unpolar­
ized radiation in the cavity, expressed per unit volume, per unit 
frequency range, and per unit solid angle. For black-body radiation 
at temperature T 

nv = [exp(hv/kT) - 1]-1 

I.D. Photon Fluxes 

For efficiency analyses we need 
per unit time which passes through a 
or absorbed at a surface element), e 
tion and the normal to the surface. 
densities are 

(9) 

energy and entropy per unit area 
surface element (or is emitted 
being the angle between radia­
These energy and entropy flux 

(10) 

(11) ~ = ~~ Lv cose dv d~, 

lkV2 
Lv= cSv = ---2 [(1 + nv) In(1 + nv) - nv In nv] • 

c 

The factor cos8 projects unit area of the surface to be normal to 
the radiation. The extra factor c arises in (10) since the energy 
passing normally through a surface of area !::.A in time !::.t due to radia­
tion in frequency range dv and solid angle d~ is given by Kvdvd~!::.A!::.t 
= u\) dv d~!::.A(c!::.t), because the radiation lies in a cylinder whose 
axis has length c!::.t. A similar argument holds for the entropy. 
The quantities Kv, Lv are called, respectively, spectral energy radi­
ance and spectral entropy radiance. If Kv and Lv are independent of 
direction within the solid angle considered, then 

(12) 

where 

B == Jcose d~. (13) 

Suppose now that we have a source for which the spectral energy 
and entropy radiance Kv and Lv are independent of the angles e and ~ 
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specifying the direction of the emitted radiation. Let the cone 
subtended by the source at the receiver be of half-angle o. The 
angular integral in energy and entropy densities (7) and (8) 
is then 

21T 0 

f em = fo dej> 10 sine de = 21T(1 - coso). (14) 

Insertion of this result into (7) and (8) yields formulas already 
noted by Parrott[2]. For a correction to another part of that 
paper see Ref. [3]. 

Similarly the integral which occurs in the energy and entropy 
flux densities is 

B - fa 2~. fo6 cose sine de = ~sin 26 . (15) 

For small 0 one finds 1To2 in both (14) and (15). This is an ap­
proximation which is occasionally used. 

I.E. The Case of Black-Body Radiation 

First recall the standard black-body expression for the number of 
photons per unit volume in black-body radiation at temperature T and 
in frequency range dV 

2 -3 81TV c /[exp(hv/kT) - 1)] (16) 

To obtain uv, i.e. an energy per unit volume and solid angle, one 
must mUltiply by hv/41T so that 

u = 2hv3c-3 dv/[exp hv/kT - 1] 
V 

This result will be inserted into the theory of Section I.D. We have 
here used the fact that the energy of a photon of frequency V is e = 
hv. 

For black-body radiation at absolute temperature T one has 
from (10) and (12) that the energy flux is 

f f flhV3 dv 
~ = B Kv (T) dv = Bc Uv dv = B 7 -ex-p--:(::-h=V /';:k-::T~) ------::-1 

= Blk4T4f x 3 dx 
c2h3 exp x -1 

(17) 
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(for the integral, see Problem 3, 
below) 

543 

(18) 

as the integral has the value ~4/l5. For isotropic emission 0 = ~/2 
so that B = ~ in (15). Also l = 2 for unpolarized radiation. Hence 
finally 

crr4 (19) 

Stefan's constant a - 5.67 x 10-8 Wm-2 K-4 has thus been obtained 
from the general formalism, so acting as a check on it. Stefan's 
law (19) gives the energy emitted by a black-body at temperature T 
per unit area per unit time. If one wants simply to deduce (19) 
without the general formalism, a more direct procedure can be used, 
as shown in Problems 1 and 2. 

The entropy flux is by a similar, but slightly longer, argument 
[see Problem 2] 

'¥ = (4/3)(~/T) 

We thus have 

~ = ~T = ar4 
4 ' 

(21) 

a simple result to which we shall return in Section I.G. 

I.F. Simple Applications of the Energy Flux Concept [4] 

The two examples from the solar energy field to be presented are 
very simple. Both require only ~ the energy flux and not the entropy 
flux. Furthermore it is assumed that blackbodies are involved. More 
advanced applications will be given in Sections II.A to II.F. 

The first example leads to a value of the solar constant in 
terms of other data from the solar system. Let a star of radius RS 
radiate as a black-body at temperature TS. Then the energy emission 
rate can be equated to the reception rate on a larger sphere of 
radius RSp drawn so that a planet P lies on it. The energy per unit 
time emitted and received is 

4 R2 G 
~ SP SP 
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Here Gsp is the solar constant for planet P, Gsp being defined as the 
energy received per unit area at the planet P from the star S. Thus 

Gsp - [~.r aT!. (22) 

For the sun-earth system one has 

G = [6.95 x 108m ]2 (5.67 x 10-8 Wm-2k-4) (5760K)4 
SP 1.5. x 10Um 

= 1350 Wm-2 

This is a good estimate of the measured solar constant. The calcula­
tion assumes merely that the solar surface temperature is known at 
5760K and that RS and RSp are given from astronomical data. 

The second example serves to estimate the surface temperature of 
planets. The solar energy received will heat up the planet until it 
reaches the solar temperature unless an energy loss mechanism is pro­
vided. One can assume that the planet radiates as a black-body at 
absolute temperature Tp. Since the planet presents a disk to the 
radiating star S it absorbs energy at the rate nR~Gsp and it emits 
energy at the rate 4n~ OT~. Hence, using (22), 

4 _ GSp _ [~]2 4 
Tp - 40 - 2R TS 

SP 
(23) 

This suggests that when a star has several planets, the average sur­
face temperatures of the planets are such that 

(24) 

Such a simple result cannot be expected to be either new or 
accurate. It was obtained by the present writer in the 
presented in lectures at a summer school on solar energy at ICTP 
(Trieste) in 1977 [4]. The best reference he has found is the remark 
made by Arrhenius in 1908 who referred to Christiansen (no initial, 
no reference) as having made this type of calculation [5]. As to the 
accuracy of (23), this has been found by D. Wilkins (Oakland 
University, Rochester, Michigan 48063) [6] to be quite good as 
Table 1 shows. 
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Table 1. Some Planetary Temperatures 

Tp Predicted by (23) (K) Observed [7](K) 

Mercury .580 450 753 
Earth 1.50 280 295 
Mars 2.28 230 250 
Jupiter 7.80 120 134 
Saturn 14.31 91 97 
Uranus 28.8 64 60 
Neptune 45.2 51 57 
Pluto 50.1 45 43 

The greenhouse effect makes the calculation inapplicable to Venus. 

I.G. Fluxes Compared with Equilibrium Quantities 

The result (21) is simple and instructive. But is it basi­
cally the same as the known relation for energy U in black-body radi­
ation which has entropy S at temperature T, U = (3/4)T8? 

To answer this question it will be shown that the flux FQ of an 
extensive quantity Q, which is carried by particles in a gas, is 
related to the amount Q of that quantity in volume v by 

V 
F = - Q Q 4v 

(25) 

where V is the mean (scalar) speed of the particles in the gas. 

Assume that the distribution of molecules in equilibrium is iso­
tropic. Thus all particle velocity vectors of lengths V are uniformly 
distributed over angles. The probability of such vectors in a solid 
angle dQ is then dn/4~, since this yields unity when integrated over 
all distributions (Fig. 1): 

~/2 2~ J drl = 2 J sine def d<j> 

o 0 

~/2 
2[-cose]0 2~ = 4~. 

The probability of finding a velocity vector of length in the range 
(V,V + dV) be f(V)dV. The probability that a particle chosen at 
random has a velocity vector in that range as regards magnitude and 
in the range (Q,Q + dQ) as regards direction is 

f(V)dV dU/4~. (26) 
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Fig. 1. Integration over a solid angle. 

The number of particles dNh hitting a surface area dA in time 
dt is the product of three factors: (a) the volume originally occu­
pied by the particles, which is a cylinder of length Vdt and of cross 
section dA cos8, i.e. the area projected normally to the beam (Fig. 
2); (b) the equilibrium number of particles per unit volume N/v; 
and (c) the probability (26). This gives 

dNh = J Vdt dA cose (N/v) f(V) dV dn/41T. (27) 

The integral is over V and over a hemisphere. This leads to an 
integral 

1T/2 f cose 
o 

21T 

sine de f de/> = 
o 

2 1T/2 
[-1/2 cos e]o 21T = 1T. 

Hence the flux of particles is 
00 

dNh N l V F == -- = - Vf (V) dV = - N 
N dAdt 4v 0 4v 

This is (25) for Q = N. 

Fig. 2. Projection of area dA normal to beam. 

(28) 
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Similarly, the energy received by dA in time dt, dUh say, is 
given by (27) with N/v replaced by the equilibrium energy per unit 
volume U/v. Equation (28) is then replaced by 

dUh V 
IP=F =--=-U u dAdt 4v 

Similarly 

dSh V 
'¥ == F S = dAdt = 4v S 

On applying the result (25) to (4v/c) x (21) one finds 

U = 1 TS = 4v ar4' (29) 
4 c 

which is a correct result for black-body radiation. It is derived 
independently in Problem 3. 

II. DILUTED BLACK-BODY RADIATION 

II.A. DBR: Definition and Properties 

Consider now the effect of incident black-body radiation being 
scattered elastically either by atmospheric particles, as in a clear 
blue sky, or by water droplets as in a cloud. These processes reduce 
the occupation number of a mode in the incident radiation. If the 
incident radiation was black-body, the resulting radiation has been 
called diluted black-body radiation (DBR) [8a]. Its production may 
be envisaged as due to the elastic scattering of black-body radiation 
at temperature T from a smaller solid angle Wi into a larger solid 
angle ws' Since the scattering is elastic there is no redistribution 
of energy among the various spectral components of the radiation and 
so we shall consider for simplicity the effect of scattering on a 
typical narrow frequency width 6v of radiation. The incident and 
scattered energy flux densities are given by (10). 

2hV3 J 2hV3 J IPi = 7 6VnVb z dQ = IPs = 7 6v~s z dQ, (30) 

Wi Ws 

where nVb(=[ehV/ kT - 1]-1) and nvs are the mean occupation numbers of 
a mode in black-body radiation of temperature T and in the scattered 
radiation, respectively. The quantity z takes the value cosS or 
unity depending on whether the scatterer is Lambertian or whether it 
scatters energy evenly into each direction. On the right-hand side 
of (30) one integrates over a solid angle 2TI if the scatterer is 
of finite size, while a solid angle of 4TI can be envisaged for the 
rather academic case of a point scatterer. The four possible 
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Fig. 3. Increasing dilution (smaller e) leads to increase in 
X(e) and hence fall in the effective temperature T*. 
The curve is based on (37). 

"dilution factors" e = nvs/nVb obtainable by integrating (30) 
are recorded in Table 2, where 0 is the half-angle of the cone of 
incoming radiation. In applications to solar energy in Section II.D 
we assume the sun to be directly over the absorber and to subtend a 
solid angle wi = 1TsinZo where 0 is the half-engle of the cone with the 
sun as base and vertex at the earth's surface. Approximations for 
small 0 (i.e., also small wi) are also given. In the Lambertian case 
(z = cosS) the relation 

I ZdQ=2( zdQ 
~1T JZ1T 

is used since the total energy flux density leaving the scatter from 
either side of its surface is required. Diffuse solar radiation can 
be modeled as DBR by considering the scattering which takes place in 
the clouds to be nondirectional (z = 1) and into a solid angle 41T 
[8a] • 

The entries in the Table are obtained in Problem 5. For the 
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Table 2. The Dilution Factors E of DBR Produced as a Result of 
Scattering 

Dilution Factor of Scattered Radiation 
Type of Scatterer Solid Angle = 2n Solid Angle = 4n 

Lambertian (z = cose) 
Nondirectiona1 (z = 1) 

sin20 = wi/n 
Wi/ 2n 

mean occupation number of DBR we write 

(sin20)/2 wi/ 2n 
wi/4n 

(31) 

where TR is the absolute temperature of the undiluted radiation and 
E is now a parameter which is characteristic of it. For solar radia­
tion 

w. = 6.8 x 10-5 steradians, 0 = Iw./n = 4.65 x 10-3 (32) 
1 1 

II.B. Fluxes of DBR 

One can now calculate the energy and entropy flux densities 
of DBR by using (31) and (12). In the case of the energy flux, 
(10) and (31) show that one must obtain a multiple of the equilibrium 
black-body result. In fact, since 

00 3 f --y-- dy = 
o eY - 1 

n4 hv 
r(4)~(4) = 15 ' Y = kT 

R 

where ~ is the Riemann zeta function, 

Here Stefan's constant 

(33) 

(34) 

(35) 

has been used. A greater departure from the black body result is 
found in the case of the entropy flux density 

4 .t B 3 
'I' = "3 "2 :rrcr E X(f)TR ' (36) 

where (see Fig. 3) for Dv given by (31), 
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00 

45 It 2 X(E) = -4 i y [(1 + n) In(l + n) - nv In nv]dy 
4Tf 

(37) 

and nv is given by (31). It is immediately obvious that 

X(l) = 1 (38) 

since for E = 1 we must regain (20). One also regains (18) 
from (34) in that case. However the black-body result (21) 
~ = (3/4)~T is spoiled for DBR by the appearance of X(E); it can, 
however, be recovered in some sense, as will now be shown. 

The definition of an absolute thermodynamic temperature is 

~A = (~~t (39) 

In analogy an effective temperature T* for DBR may be defined by 

1 _ d~ X(E) 
T~ = d~ = r;- (40) 

As DBR is non-equilibrium radiation, T~ is not an absolute thermody­
namic temperature. We have from (34), (36) and (40) 

~ = 1 T* ~ = :ae. O*(T*)4 0* = OE [X'E)]4 4 R 2Tf R' - '\ 
(41) 

This is a result which is analogous to (21). 

We consider next the temperature Tbr of undiluted black-body 
radiation such that it contains the same energy density as a given 
DBR with undiluted temperature TR• From (34) we see that 

Tbr = El / 4TR· 

If one regards the entropy flux density of DBR as parameterized by E 
and TR then, by (36) 

3 3 1/4 
~(E,TR)/~(l,Tbr) = EX(E)TR/Tbr = E X(E). (42) 

On the left we have the ratio of two entropy flux densities corre­
sponding to the same energy flux density, one being for DBR the other 
being for black-body radiation. The latter must have the greater 
entropy [9]. Hence the inequality 

o :E E 1/4X(E) :E 1 (43) 

must hold. 

It should be possible to prove (43) directly from (37) 
as a purely mathematical exercise. This has not been done, and 
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(43) has the status of a thermodynamically derived inequality 
which has also been confirmed numerically. The inequality between 
the arithmetic and geometric mean, as well as related inequalities, 
can also be derived thermodynamically [10], but in this case purely 
mathematical arguments are of course available as well. 

II.C. DBR as Non-Equilibrium Radiation 

It is obvious from (37) that the non-equilibrium entropy 
expression (5) has been used. It must therefore be confirmed 
that a quantity qj' needed to derive this result in section I.B., 
actually exists for DBR. This is done in this section. 

For thermal equilibrium of bosons at temperature TR the grand 
canonical ensemble leads to the exact result 

_ 1 

(nj)eq -exp[(ej - ~)/kTR] - 1 ' (44) 

where ej is the single-particle energy of state j, and ~ is the chemi­
cal potential. Assume that there exists constants Ej such that 

E' 
(E') J 

nj J = exp[(ej - ~)/kTR - 1 • 

There then exists a qj(E j ) satisfying (3), namely 

Ej 
q/Ej ) = exp[(ej - ~)/kTR] + Ej - 1 • 

From (3) and (44) one finds 

(q,) = exp[(~ - ej)/kTR] 
J eq 

and therefore we see that 

n,(l) = (nj ) ,q,(l) = (q,) • 
J eq J J eq 

(45) 

(46) 

(47) 

(48) 

The factors E j < 1 are the "dilution factors" of the case E j = 1, 
~ = 0 which describes black-body radiation. If Ej > 1 they are , 
"intensifying factors". We here consider E independent of both fre­
quency and direction with E < 1 and term the radiation "diluted black­
body radiation". It represents a nonequi1ibrium situation, as it 
cannot be obtained from (5) by maximization. There will be of 
course many non-equilibrium situations when either or both of (1) 
and (2) fail. The temperature TR which occurs in n, for E < 1 
refers to the undiluted black-body radiation; it is not ~e be con­
sidered as the absolute thermodynamic temperature of the diluted radi­
ation. Thus using the continuous spectrum approximation the mean 
occupation number nv of a translational state of frequency V is, for 
DBR, from (45) 
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~(E) = exp(hV/kTR) - 1 • 
E 

(49) 

A factor E (~ 1) in (49) has two important consequences. 
While the photon number and the energy of the radiation are scaled 
down by a constant factor for all frequencies, this does not apply to 
all thermodynamic functions, as was explained by reference to the 
entropy in section II.B. Secondly the DBR is no longer equilibrium 
radiation. This can be seen by noting that the absolute temperature 
TA(V) of equivalent black-body radiation is different for each near­
monochromatic pencil making up the DBR: 

1 E 
-ex-p-,[",...h-V/..",k-T..::.A...,...(V....,.)-=-]--~l = -ex-p-=(h"""V-'I"""kT-R"""')---l ' 

i.e. , 

}-l + In[l - (1 - E) exp(-hv/kTR)] - lnE ). (50) 

Only for the special case E = 1 (undiluted black-body radiation) do 
we have a frequency-independent absolute temperature and hence equi­
librium between radiation of different frequencies. 

II.D. Application of DBR to Solar Energy Conversion 

It is desirable to derive first an expression for the maximum 
efficiency of converting incident radiation to work. Imagine we have 
a converter which absorbs fluxes ~P' ~p of energy and e~tropy from a 
pump and creates mechanical or chemical work at a rate W while deliv­
ering heat ~ to a sink, which will often be the surroundings at tem­
perature Ts. Here s stands for sink or surroundings, not for the sun, 
which might be the pump. Thus the fluxes to the sink are 

~ = Q. ~ = Q IT (51) s 's s s 

If Sg is the rate of entropy production in the converter, and ~c' ~c 
the fluxes emitted by the converter, then the balance equations for 
a steady state are, Sg being an irreversibly produced rate, 

~ = ~ - W - Q ~ = ~ - Q/T + S (52) c p 'c psg 

Eliminating Q, . 
w = ~ - T ~ - (~ - T ~ ) - T S (53) p sp c sc sg 

The conversion efficiency is 

W ~ 

[1 11w=~= 1 - T ~-s ~ 
p p 

(54) 
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Although this is a useful relation for later use (see section II.F), 
we shall derive an upper limit by neglecting the last two terms. 
Furthermore we shall assume two distinct pumps, in the form of DBR 
so that (41) can be used. Hence, writing Tl , T2 for TRl , TR2 , 

where 

4 n.._ ~ 1 - -T 
'W 3 s (55) 

and i refers to pump 1 or pump 2. Note that the Si are independent 
of temperature. 

In applying the inequality (55) four types of dilution are 
considered [8]: 

(i) Dilution due to the transmission of the radiation through the 
atmosphere. This can be measured by the atmospheric transmis­
sion coefficient 

Total photon density at absorber (Nd) E+t = ~~=-_~~~~~~L_~~~~~~~~ ______ ~ 
Photon density of solar radiation just outside 

the atmosphere (NS) 

For a clear day t is typically 0.65 while t - 0.2 for a cloudy 
day. 

(ii) , Confinement of attention to direct radiation is equivalent to 
a dilution factor which can be defined by 

Photon density at absorber due to direct part of 
the solar radiation (nd) 

E+d = ---------------------=-----------------------

(iii) Incomplete absorption by the converter is equivalent to a 
further dilution of the radiation in the converter. This can 
be measured by the absorption coefficient of the absorber: 

E-+a. 

(iv) Dilution due to elastic scattering from a solid angle wi to 
solid angle Ws 

E+n,,/n"b 

The direct part of the solar radiation is regarded as the first 
pump. It is subject to the dilutions (i) to (iii). For unpolarized 
radiation (l = 2) and B given by (15) one finds 
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131 = (sin 2 O)crex.td[X(ex.td)]4 (57) 

The second pump is the diffuse part of the solar radiation with l = 2. 
The half-angle ex. subtended by the source and the receiver is in this 
case 15 = n/2 as radiation comes from all directions. Hence Bt/2n =1. 
All four dilutions are effective in this case and 

(58) 

The factor wi/4n is the dilution due to scattering from a small solid 
angle Wi to the full solid angle 4n during the conversion from direct 
to diffuse radiation. Both 15 and wi were introduced formally in sec­
tion II.A. The factor 1 - d is a measure of the proportion of the 
incident radiation which is not direct, and can be regarded as dif­
fuse. 

If one assumes the originating temperature in both cases to be 
the solar temperature Te , then (40) tells us that 

T! Te/X(ex.td) (59) 

(60) 

The lowering of the effective temperature by wi/4n is of course an 
important effect. For a grey converter (ex. = 0.9) and little direct 
sun (t = 0.11) T~ - 1200K while for a clear day (t = 1) and a black 
converter (ex. = 1), Tt - Te = 5760K. These two cases are represented 
by curves B and A respectively in Fig. 4. 

II.E. Discussion 

It should be pointed out that by adding the fluxes for the two 
pumps in (55) the absorption areas presented by the converter to 
the two pumps have been assumed to be the same. Furthermore, the 
efficiency is calculated not with respect to the incident flux, but 
with respect to the flux actually absorbed. Lastly, it has been 
assumed here that the dilution due to scattering is frequency inde­
pendent. This is a good approximation for scattering in clouds but 
not for scattering producing sunlight, where there is a v4-dependence 
(Rayleigh scattering). This is not so important however since the 
proportion of energy in skylight is always relatively small. Even 
for sunlight, the DBR model still illustrates qualitatively the cor­
rect trends to be expected as the factors considered here are varied. 
The radiation from the ambient (a possible third pump) to the con­
verter and the emitted radiation (which is thermal radiation from the 
surface of the conversion device) are here neglected or, alterna­
tively, are assumed to be equal and to cancel each other out. 

Typical values for T* in (55) range from T~l = 5760K (the 
black-body temperature of the solar surface) for an ideal clear day 
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Fig. 4. 
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The maximum conversion efficiency (55) from solar 
radiation into work is plotted as a function of the pro­
portion d of the radiation which is direct. A. at = 1; 
B. at = 0.1; C. at = 0.01 (TR = 5760K, Ts = 300K, 0 = 
4.65 x 10-3). 

(t = 1) and a black converter (a = 1) to Ta2 = l200K for a typical 
cloudy day and a grey converter with absorptivity a = 0.9. Figure 
4 shows the upper limit of nW from (55) as a function of the 
energy proportion d of the solar radiation which is direct (the rest 
being diffuse). The three curves are for different dilutions due to 
transmission through the atmosphere and absorption by the converter. 
Curve A (at = 1) corresponds to the ideal case of a perfectly black 
converter (a = 1) receiving solar radiation which is undiluted by 
absorption in the atmosphere (t = 1). For a nonblack absorber (e.g. 
a = 0.9) and an illumination intensity corresponding to a typical day 
with little direct sun (e.g. t = 0.11), curve B represents a fair 
approximation. We see that in this case the thermodynamic limiting 
efficiency ~max) ranges from ax65.5% for completely diffuse sunlight 
to a~88.8% for completely direct sunlight. Note that the lower effec­
tive temperature of the diffuse radiation compared with direct radia­
tion results in lower conversion efficiencies, so that the curves have 
a positive slope. 

A further application of the results is to the conversion of 
radiation into plant free energy in photosynthesis, which is an 
equivalent form of energy to that described here as 'work'. One 
matte~made quantitive by Fig. 4, is that decreasing light inten­
sity (corresponding to decreasing t) reduces the free-energy conver­
sion efficiency, a point made by Duysens [11] and confirmed by 
Spanner [12]. 



556 P. T. LANDSBERG 

II.F. A More Rigorous Version of Section II.D 

The theory given in section II.D was somewhat simplified in 
that the last two terms in (54) were neglected. We now include 
them and suppose that there are n pumps for each of which 

(61) 

By virtue of (41) this may be interpreted to mean that each pump 
is DBR, but it is in fact more general, in that no assumption will be 
made about the aj 's except that they are temperature-independent con­
stants. Indeed, for n = 3 pumps, the third pump will be interpreted 
as the energy incident on the converter from the surroundings in so 
far as it is not solar direct and diffuse radiation. Thus the third 
pump can cover thermal radiation of various terrestial objects and it 
may not be possible to model this effect by DBR. In any case the main 
equation (53) now reads 

n 
W= L a T*4[1 - 4T /3T~] - a T*4 [1 - 4T /3T*] - T S 

ii s l. cc S C sg 
i = 1 

(62) 

Although non-black-body radiations cannot be in equilibrium one 
can get close to this situation in effective equilibrium defined by 

T*l = T*2 = ... = T* = T* , Q = S = O. n c g 
(63) 

This is a kind of equilibrium in the sense that no work can be ex­
tracted from the system. To prove that, note that if energy and 
momentum flux balance, equations (52) are 

[ tal T* 4 = a T* 4 + W 
i = 1 icc c 

(64) 

~[t a 1 T*3 = ~ a T*4 
3 i = 1 i c 3 c c 

(65) 

Hence from (65) and (64), used in that order, 

n 
L ai = a , W = 0, 

i = 1 c 
(66) ,.(67) 

as was to be proved. Note that for effective equilibrium to be possi­
ble fluxes of greater dilution must correspond to higher absolute tem-
peratures. 

Equation (66) is independent of temperature and is therefore 
valid also away from effective equilibrium. One can use (66) to 
eliminate Sn from (62) to find for n = 3 
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w = t S [T~ 4 (1 - ~ Ts ) - T*4 (1 - ~ Ts ) 1 
i = 1 i 1 3 Tt 3 3 T~ 

_ Q T*4[(1 4 Ts 4 4 Ts ) 
fJ - "3 T* ) - T~ (1 - -3 T* ) J - T S (68) c c c 3 s g 

To simplify this result it will be assumed that there is effective 
equilibrium between the ambient and the converter 

T* = T* 3 c 

Hence 

. t B T*\l - 4T /3T*) - [ t B.]T*4 (1 - 4T /3T*) • W = 
i = 1 i i s i i = 11 esc 

The efficiency is W divided by (Wpl + Wp2). Hence, omitting 

2 *3 [i ~ /il T~4 4T, 4 
L SiTi 

i = 1 
Tlw~ 1 --T 

2 SiT~4 
- 2 (1 - 3T*) 3 s 

L L S T~4 c 
i = 1 . 1 i 1 

1 = 

( 69) 

Sg' 

(70) 

This gives the correction term (to the earlier formula (55), but 
the correction is less than 1/4% in the case of solar radiation [8b]. 

The result (70) is symmetrical in the two pumps. If only one 
pump is present it simplifies to 

s c s _ (max) 
[T] [T*] 4 [T ] Tlwi ~ A T~ - T~ A T~ = llWi (i 1,2) (71) 

where the so-called Landsberg efficiency is 

4 1 4 
A(x) = 1 - ~ + ]X (72) 

As T - T* and 1.(1) = 0, the approximation 
s c 

n (~ax) - A (T /T~) 
W1 s 1 

(i = 1,2) 

is adequate where Tl is given by (59) with d = 1 and T~ by (60) 
with d = O. 

The A-function (see Fig. 7) lies below the corresponding 
Carnot efficiency nc(x) = 1 - x, except for the common points at 
x = 0 and x = 1: 
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n (x) - A(x) = (x/3)(1 - x3) 
c 

P. T. LANDSBERG 

It was first emphasized in [13], [14], [15], [9]. A fuller account of 
earlier work is given in [18J. 

II.G. An Argument from Availability 

The A-function involved in the efficiency as given in (72) 
can also be obtained by considering the availability (or 'exergy') 

A = U - T S - P v 
s s 

of a system with energy U, temperature T and volume v which is in 
surroundings at temperature Ts and pressure ps' Then the reduction 
of the initial system availability Ai to that of the surroundings, As, 
is the work which can maximally be done. 

Consider a system with U = avTn where n and a are constants. 
Then, as shown in Problem 6, 

n - 1 n U = (n - l)pv = --TS = avT • 
n 

It follows that if the volume is not changed 

A. 
1 

A 
s U. - U - T S + T S. 

1 S S S S 1 

( n TS) n ( n-l Tn) av T. - . - --1 av T. T s 1 1 n - s 1 S S 

~ T [T lJ n n s 1 s avT 1----+---
sin - 1 Ti n - 1 TiJ 

If the initial energy Ui is taken as the denominator of the efficiency 
one does indeed find 

This derivation has been noted before [8aJ, but for an efficiency cal­
culation it must be understood that other denominators may be more 
appropriate, for example the initial energy excess of the system over 
the surroundings at the same volume: 

n n 
U. - U = av (T. - T ). 

1 S S 1 S 

In that case the A-function would not be obtained, and some reserva­
tions must therefore be retained regarding the above argument. 
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III. STATISTICAL THERMODYNAMICS OF CASCADE CONVERTERS 

III.A. Some Thermodynamic Results 

In section II.D. the thermodynamic efficiency of a converter was 
obtained in terms of such parameters as energy and entropy fluxes 
emitted by both a pump and a converter, and also in terms of the tem­
perature Ts of the surroundings. The last two terms of equation 
(54) were discarded and the results were discussed in sections 
II.D and II.E. In the fuller t~eory of section II.F only the con­
verter entropy generation rate Sg' i.e. the last term of equation (54) 
was neglected and an improved theory led to the more accurate effi­
ciency formula (70) and it also led to the occurrence of the 
A-function (72) in the upper limit to the efficiency. A further 
advance in accuracy would be to identify Sg for a particular model, 
and this will be done in the present section III. 

A schematic representation of the general model underlying 
(54) is given in Fig. 5 and one has from (54) 

T [ T 1 <I> TS s s c ~ llw = 1 - TF - 1 - TF ~ - <I> 
pcp p 

where the flux temperature is by (41) 

C 3T. J 
[ 4X(~) (i = p,c) 

(73) 

(74) 

where the identification in square brackets refers to DBR, based on 
black-body radiation at temperature Ti. However, attention will be 
confined to ordinary black-body radiation (E = 1, X(E) = 1) when 

4 (1 _ i ~)b4 _ TsSg nW 1 - 3"a 3 b <I> (75) 

where 

a - T /T ,b = T /T s pcp 

p 

( 76) 

The pump temperature which occurs here is conceptually clear. 
The first appearance of Tc , however, calls for a remark concerning its 
relation to the temperature Ts of the surroundings. It must be possi­
ble in the case of a solid state device for the lattice to be in 
approximate equilibrium with the surroundings even if the current 
carriers which are excited by the pump are not. The interpretation 
of Tc must then be based on its defining expression <I>c/~c. It is then 
seen that the Tc governs the emission of black-body radiation by the 
converter. The model used thus assigns two temperatures to the con­
verter: Tc for emission and Ts for its lattice. 



560 

Fig. 5. 

Fig. 6. 
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A general model for energy conversion. It is treated by 
the use of balance equations and leads to the efficiency 
nWof (75) which is subject to inequalities (79) • 

. 
w 

<l>p .'1'; . 
I Carnot I Q 

R 
Tp Q' T s 

Tc 

A more specific interpretation of the converter of Fig. 
5. It leads to the efficiency n2 of (80). 

If one discards the Sg term then, since the entropy generation 
rate cannot be negative, one obtains an upper limit of nw: 

n(a,b) 443 
- 1 - b - ~(1 - b ) (0 :E a :E b :E 1) (77) 
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The inequality a ~ b is needed since the surroundings have a tempera­
ture which cannot exceed that of the converter emission temperature 
Tc. If one puts a = b in (77), one finds again the A-function 
(72) : 

n(a,a) - A(a) (78) 

In fact 

A(a) - n(a b) = b4 + ! a4 - i ab3 = (b - a)2(b2 + ~ ab + ! a2) , 3 3 3 3 

The last form of writing shows that A(a) ~ n(a,b), so that 

Tlw~n(a,b)~ A(a). (79) 

Leaving now the general "black box" kind of results appropriate 
to Fig. 5, let us give a special interpretation of the model based 
on Fig. 6. The entropy generation occurs now in a radiator R 
which absorbs the incident black-body radiation at absolute tempera­
ture Tp and re-radiates it at absolute temperature Tc' Heat flux Q' 
at the converter emissio~ temperature Tc falls on ~he Carnot engine 
which works at the rate Wand rejects a heat flux Q at Ts. The 
externally visible quantities Wp , ~P' Tp , W, Q, To are exactly the 
same her (fig. 6) as they were for the "black box" of Fig. 5. 
The new efficiency can be obtained exactly on the basis of this 
model as 

W Q' W n = - =--
2 W W~' 

P P 
so that 

4 n2 = (1 - b )(1 - a/b) (80) 

We have here used the fact that Wp and Wc are both of the black-body 
type and that the Carnot efficiency can be used. In the special case 
of Fig. 6 the model of Fig. 5 must still be valid so that (74) 
for Fig, 5 can be equated to (80) for Fig. 6. This yields [16] 

. 
as 4 4 3 
.-L = 1 - b - -;:;a(l - b ) 
or3 3 

[~3 +! _ i]a 
3 b 3 

p 

This is an essentially positive quantity, as may be seen by writing it 
as 

3bS 
--g = (1 - b)2(b2 + 2b + 3) 

or3 
p 

(81) 
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If converter and pump emission balance, one has b = 1 and both n2 and 
S vanish: neither work nor entropy is generated in this case. These 
tgermodynamic results will be discussed in the next section. 

The flux temperature TF = ~/~ of (74) is convenient for 
balance equations involving fluxes, and in the case of quasistatic 
conduction it can coincide with the absolute temperature (see section 
III.B). The effective temperature (40), on the other hand, is 

T* = d~/d~[= T/X(E)], 

where the term in square brackets gives the evaluation for DBR based 
on black-body radiation at temperature T. The effective temperature 
is somewhat more fundamental as it lends itself to a description of 
effective equilibrium (63). Furthermore in the case of black-
body radiation of temperature T, one has T* = T, but TF = (3/4)T. 

III.B. Discussion 

One obtains the Carnot efficiency from (73) if (i) the 
processes involved are reversible (Sg = 0) and (ii) if no fluxes are 
emitted by the converter (~c = ~c = 0); this means that the bracketed 
term disappears in this equation. In the normal deduction of Carnot's 
efficiency the working fluid is certainly not in a steady state; 
instead it is acting periodically and produces the same work in each 
cycle. This can be covered by the approach via fluxes, if one agrees 
to look at the working fluid only periodically, namely when it is some 
standard state. This "stroboscopic" method leads one to ~c = ~c = 0, 
as required. The hot reservoir has temperature TFp which is its 
actual thermodynamic temperature Tp, since for reversible or quasi­
static, i.e. very slow, withdrawals of heat Q, the pump entropy 
changes in time t by 

A~ t = Q/T = A~ tiT = AtTF ~ /T • 
P P P P pp P 

H:nce TF = Tp' Here A is the ~rea over_which the flux is measured. 
F1g. 7 shows nCarnot as a funct10n of a = Ts/Tp. 

The efficiencies n(a,b) and n2 are also shown in Fig. 7. 
For given b Tc/Tp both are falling straight lines which start to 
fall from n = 1 - b4 at a = O. The downward slopes are 

1 - b4 
- -b- for n2 

4 3 - }(l - b ) for n(a,b) 

so that the slopes are steeper for n2, provided 0 ~ b < 1. Thus n2 
gives a more severe constraint on permitted efficiencies provided the 
model of Fig. 6 is applicable. 

The n(a,b) curves are valid for a ~ b and they therefore termi­
nate at points a = b. These points generate the curve A(a) which 
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The six lines emerging in pairs 
a = 0 axis represent n(a,b) and 
different values of b = Tc/Tp. 
the marked points when a = b. 
locus of all such points. 

0.7 0.8 0.9 

from the points on the 
nZ in each case for 
The n(a,b)-lines end at 

The curve A(a) is the 

lies above the other efficiency curves. Thus we have 

n(a,b) ~ A(a) ~ n Carnot 

The efficiency A(a) is pulled down below the Carnot efficiency because 
of the black-body emission from the converter which does not contrib­
ute to the useful work output. Of all the efficiencies which take 
this effect into account A(a) is the highest. The reason is that it 
assumes converter emission at the ambient temperature Ts. As Tc 
floats above Ts the emission loss mechanism increases and the effi­
ciency is pulled down. 
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III.C. The Absorption Coefficient; the Photon Chemical Potential 

A quantum statistical interpretation of the above thermodynamic 
scheme is provided by solar cells which convert radiation into elec­
tricity. To study it one needs the statistics of radiation processes. 
These consist of spontaneous emission, stimulated emission and absorp­
tion. In the first two atoms or el:ectrons or other systems lose 
energy by the emission of radiation. The spontaneous emission rate 
uSP does not involve the photon occupation number nv, whereas the 
stimulated emission rate ust is proportional to it if the transition 
is between some quantum states I and J whose energies satisfy 
EI - EJ = hV. In absorption the system is excited from a state J of 
lower energy to one of higher energy, the energy being supplied by a 
photon. In addition the expressions for the three rates involve an 
appropriate transition probability per unit time per unit volume whose 
form is given here though it is not needed later. If Q denotes an 
energy-conserving delta function for the emitted photon, it is 

2 
_ 21Te h o( 0 _ 0 ) I I 2 

BIJ - 2 2 2 EI E] ± flw MIJ 
v m K E av 

The last term is an average of a square of a momentum matrix element 
and K is the refractive index of the medium. 

Let the states I and J belong respectively to groups i and j of 
quantum states, such as conduction and valence bands, which have 
quasi-Fermi levels kTsYi and kTsYj' where Ts is the lattice tempera­
ture of the converter. Further let PI be the probability that state 
I is in a condition in which it can give up an electron and let qI be 
the probability that the system is in a specific quantum state which 
can be converted into state I by the addition of an electron. These 
probabilities are easy to formulate for states in bands, but somewhat 
more complicated for trapping states [17]. The recombination rates 
per unit volume are 

u~j = BIJPlqJ (82) 

(83) 

where nv is the mean occupation number of a photon mode of given 
polarization and of frequency v, as in (9). The absorption 
coefficient is the net number rate of photon absorption divided by 
the photon flux. This is 

Kv ( hv - qV J =- exp -1 
c kTs 

(84) 
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Here K is the refractive index of the material. See Problem 
for the photon flux expression. The last step depends in the simpli­
fied case of non-localized electronic states on 

where 

Hence 

exp(nI - yi)/[exp(nI - Yi ) + 1] 

l/[exp(nI - Yi ) + 1] 

nI - (l/kTs) x energy of state I 

_ qI PJ 
X = - - = exp (n - Yi - nJ + yJ,) PI qJ I 

This gives the required result if 

nI - nJ = hV/kT , Y, - Y, = qV/kT s ~ J s 

(85) 

(86) 

Ts is the temperature of the surroundings. The Fermi levels will be 
assumed to be flat, so that the difference qV is independent of posi­
tion. Thus V is a voltage which represents the influence which causes 
the separation of the quasi-Fermi levels. This may be an applied 
voltage, incident radiation, injection of current carriers or other 
influences which bring about a departure from equilibrium. 

Write (84) as 

( ) () ( - K'V sp hv - qV _ 1) 
aIJ x = aog x, g = ~ uIJ ' aO - exp kT (87) 

s 

One sees that negative a means that stimulated emission dominates 
absorption and one has a laser amplifer. One finds as an incidental 
result the threshold condition for a laser amplifier 

qV ~ hv (88) 

This is also the condition for 
higher occupation probability: 

the more energetic state to have the 

1 > _--=-_-=l_'"7"""-:--=-
exp(nI - Yi ) + 1 exp(nJ - Yj ) + 1 

implies (88). This is the so-called condition for population 
inversion. 

If one has two sets of states i, j, each at a given energy, with 
transition between them and the occupation of each set specified by 
its quasi-Fermi level, then the photons have a simple distribution in 
a steady state. For the upward and downward transitions must then 
occur at an equal rate: 
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sp st abs 
uIJ + uIJ = uIJ • 

Eq. (89) applied to (84) yields 

( h V )-1 n = lexp V - q - 1 
V kTs 

In true thermal equilibrium V 
bution results. 

The thermodynamic relation 

dU = TdS - pdv + L 1l.dN. 
i 1. 1. 

P. T. LANDSBERG 

(89) 

(hv > qV) (90) 

o by (86) and the Planck distri-

shows that at constant entropy and volume a minimum energy (and hence 
chemical equilibrium) holds if 

Lll.dN. = 0 
1. 1. 

(91) 

Suppose electron-hole pairs are generated by photons and in turn 
generate photons by recombination. We treat the system as an intrin­
sic semiconductor with three variable concentrations: electrons in 
the conduction band (chemical potential lle)' holes in the valence 
band (chemical potential llh. We shall use llv as the chemical 
potential of electrons in the valence band) and photons (chemical 
potential llr). The conservation condition is that an electron and 
a hole are created when a photon disappears. Hence we have 

II dN + llhdNh + II dN = 0 e err 

dNe = -dNr , dNh = -dNr 
Since for two groups of levels in the electron description lle - llv 

qV it follows that 
llr = lle + llh = lle - llv = qV (i.e. llh = -llv) (92) 

thus furnishing an interpretation of qV in (90) as a chemical 
potential of radiation. This holds for thermal equilibrium. If, 
in addition, chemical equilibrium holds with a system for which 
II = 0 such as black-body radiation or phonons, then lle = llu and 
llr = O. 

III.D. Solar Cell Equation in Terms of Photon (Number) Fluxes 

The dependence of the photon mean occupation number nv(x) on 
position will be determined next. In an increment of length dx 
(the photon generation rate) x (time needed to cross dx) is dnv(x). 
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i.e. 
sp st abs 

dnv = v (u + u - u ) x (K/ c) dx (93) 
abs sp sp 

= (1 - u' lu)u (Kv/c)dx 

= (1 - ~Onv)g(x)dx (94) 

The solution is 

(95) 

where 

G(x) :: foXg(X')dX' 

It will be assumed that at the right-hand side of the converter (a 
semiconductor solar cell typically) the following approximation is 
adequate 

-~ 
-1 
o 

It follows that we must again use formula (90), but this time 
as an approximation: 

hv - qV -1 
nv(d) =[exp kTs - 1] (96) 

It is the x-dependence of the quantities involved and the finite 
thickness of the cell which forces one to make the approximation. 
The photon flux emitted by the cell is, using Problem 4, 

00 

1I.e (V) :: J 1I.e (V,V) dv 

where vG 

exp[(hv - qV)/kT ] - 1 
s 

(97) 

For a two-sided cell the emitted flux per unit area is 211.e (V). If the 
incident photon flux is Ai' and all photons are converted to carriers 
or even carrier pairs, the current density voltage characteristic of 
the cell is [20] 

(98) 

where q is the charge on the current carriers, and may be positive or 
negative. This assumes that all the incident photons are absorbed 
for frequencies V ~ vG and that non-radiative recombination can be 
neglected. For incident black-body radiation at absolute temperature 
Tp (the pump temperature) 
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A = [2'11V2 dy 
i 2 -exp~(h""';y:;.lJ/;""kT""""")--~l 

Yg c p 
(BBR) (99) 

Note for later use that any increment of current density due to an 
increment of frequency is -qd(Ai - Ae) for black-body radiation inci­
dent on one side of the cell: 

dly(V) = ~2 1 dY 2'11V2 [1 J 
c exp[(hY-qV)/kTs ] - 1 - exp(hY/kTp) - 1 

(100) 

ere emission from only one side of the cell has been assumed. It is 
written in an alternative notation below [see (108) and (l14)]. 

Treating (98) as a solar cell equation, let the open-circuit 
voltage be denoted by Voc. Then 

I(V )=OandAi =2A(V). (101) oc e oc 

The short-circuit current density is I = 1(0). 
sc 

I = -qAi + 2qA (0) = 2q[A (0) - A (V)] sc e eeoc 

Dividing (98) by (102) 

I(V) A (V )/A (0) - A (v)/A (0) e oc e e e 
--I -- = A (V )/A (0) - 1 

sc e oc e 

Then 

(102) 

(103) 

This shows clearly that 1(0) = lsc, and that I = 0 implies Ae(V) = 
Ae(Voc)' We shall return to this result in section III.G. 

III.E. The Maximum Efficiency of an Infinite Stack of Solar Cells 

Consider now a stack of solar cells of the simple type discussed 
in section III.D, whose energy gaps vary from zero at the back side 
of the stack to infinity at the illuminated side. This is the 
limiting case of an infinity of cells. Under these conditions the 
incident radiation loses progressively the more energetic photons, 
photons of each frequency range (hY, hY + d(hY» being absorbed by 
that component solar cell whose energy gap is correctly adapted to it: 
Ec = hY. Thus Ec is now to be considered as variable and integrations 
over Yare now integrations over contributions from all the solar 
cells in the stack. Such converters are said to be arranged in 
tandem. They are also said to form a cascade, the word tandem being 
restricted to two cells. 

The relation between Tc and Ts may be understood from the follow­
ing consideration. The absorption of a photon by the lattice of the 
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device, i.e. by the working medium, increases its entropy by (hv -
qV)/Ts ' The promotion of an electron to a higher level as part of 
the absorption process represents stored and recoverable energy, which 
yields work. Only the remaining energy is to be regarded as heat and 
so contributes to entropy. On the other hand that part of the cell 
which represents the emission of radiation at temperature Tc loses 
entropy hv/Tc upon emission of a photon. In a steady state the 
entropy of the whole system is constant and so is not changed by 
these processes. Hence V adjusts itself for a stack so that Tc is 
independent of v and V. Thus V is proportional to V as one passes 
from cell to cell: 

hv - qV = hv or 
T T 

~= 1 
hv (104) ,(105) 

s c 

The efficiency of the stack of solar cells will now be estimated. 
The denominator of such an expression is the total incoming photon 
energy flux. This is by (13) 

q, = BR,c -2 r~3n dv _ 2'ITc -2 r~3,\>dv _ 
JO V Jo 

co 

2'ITc -2 ( hv 3(exp hv/kT _ 1) -1 dv Jo p 
(106) 

The first arrow means that the usual assumption of isotropic (B = 'IT) 
and nonpolarized (R, = 2) radiation is made. The second arrow means 
that the assumption of incident black-body radiation at absolute 
temperature Tp is added, so 
nv. This yields as in (19) 

that one has a definite expression for 

4 
q,i = aTp • (107) 

If the stack is fully surrounded by the pumping radiation a factor 2 
must be added since flux would be incident on front and back faces. 
We suppose here that the photosensitive surface lies in the bounding 
disc of a hemisphere at temperature Tp. 

The numerator of the efficiency gives the useful power per unit 
area which is in this case 

V = co J Vdlv(V) 

V = 0 (108) 

The integral is over all the characteristic frequencies V of the 
individual cells, and (104) and (100) have been used, g 
assuming again black-body radiation. The integration yields 

(109) 
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On dividing (109) by (107) one recovers precisely the result (80) 
already found on thermodynamic grounds (see also [23]): 

n2 = (1 - T IT )(1 - T4/T4). s c c p 
(110) 

The stack of solar cells thus furnishes a quantum statistical reali­
zation of the thermodynamic model. The entropy generation rate 
(81) is therefore applicable also to the present problem. 

Using (108) the contribution of a typical cell of the stack 
to the total power can be maximized by evaluating 

d o. dV[Vdlv(V)] = (111) 

Thus 

dlv 
V dV + dIv 0 

i.e. 

sY- hv - qV hV - qV hv - qV [ J [ ]-2 [ ]-1 
kTs exp kTs exp kTs - 1 + exp kTs - 1 -

(exp ~~p - 1)-1 = 0 

This yields a transcendental equation for V in terms of V, Tp and 
Ts [24]: 

2 [exp{(hv-qV)/kT }-l] 
s 

exphv/kT -I 
p 

This formula gives the voltage across each cell specified by V = vG 
in the stack for optimum power conversion. Writing 

x = qV/kT , u = hv/kT , a = T /T as in (76) s ssp 

the equation is 

(1 + x)exp(u - x) - 1 
2 

[exp(u - x) - 1] 

1 
exp au - 1 

(112) 

(113) 

Figure 8 shows that there are two solutions Xs < u and Xt > u for 
x. The smaller one gives a maximum for n2. 

The output power is with Bv = 2nv2c- 2qA when A is the area of 
the cell, and using (100) 
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Fig. 9. 
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Fig. 8. Solutions of equation (113). 
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Comparison of various thermodynamic efficiencies. Curve 
A refers to one-sun illumination (f = 2.18 x 10-5) as 
obtained in Eq. (147), whereas n2max refers to maximum 
concentration (f = 1). For one sun a lower maximum ef­
ficiency is expected from Fig. 4, since there is a 
greater dilution of solar radiation in this case. 
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P = -JfVdIV(V) = JfBv([exp au - 1]-1 - [exp (u - x) - l]-llVdv. 

(114) 
Eliminating the term with ~ by (113) 

P = (00(1 + x) exp(u - x) - 1 -2exp (u - x) + 1 VB dV 
Jo [exp(u - x) - 1] v 

-1; exp(u - x) 

o [exp(u - x) - 1] 
2 VBvdV 

(kT )4[. 2 2 = 21TA __ s_ u x exp(u - x) du (115) 
c2 h3 0 [exp(u - x) _1]2 

For black-body radiation the input power is the area A multiplied by 
the energy flux (19) 

P = AOT4 (116) in . p 

The maximum efficiency is therefore [24] 

max =.L = 15 a4[u2x2 exp(u - x)du * 
n2 P 4 I 2' 

in 1T 0 [exp(u - x) - 1] 
(117) 

x being the smallersoultion of (113) for each u. This depend­
ence of x on u reflects the fact that for given Ts the optimum bias 
voltage of a cell depends on V, i.e. on its energy gap. 

Fig. 9 gives a comparison between nmax of de Vos and Pauwels 
[20], (117), A(a), (78) of [14] and the tarnot efficiency 

nCarnot = 1 - a. 
max It shows that the lowest upper efficiency bound n2 applies to the 

most specialized model. The thermodynamic efficiencies increase with 
the generality of the model. It would be expected that lack of 
specificity prevents thermodynamics from yielding the lowest upper 
bounds for specific models. 

The occurrence of exponents u - x = (hv - qV)/kTs is of interest 
and can be traced back to aO (87) and nv(d) (96). This 
shows that we have here non-equilibrium radiation which appears to 
have a non-zero chemical potential [25],[26] as already noted in 
section III. C. 

* Since the appropriate value of x from (113) must be inserted for 
each u, (117) does not imply n2max « a4 oc Tp-4 
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III.F. Additional Comments: Independent Derlvation of Sg for the 
Stack 

That the entropy generation rate is (81) in a stack of solar 
cells is due to the fact that (110) is identical with (80). 

S 
~ = ~3 + 1:. _ i 
aT3 3 b 3 

p 

T 
(b =~) - T 

p 
(118) 

It is desirable to obtain this result directly by calculations based 
on the solar cell model [20]. 

The converter receives by (12) and (17) an energy flux BKv(Tp) 
from the pump and emits a flux BKv(Tc)' using (104). This leads 
to an entropy generation rate per unit area for the whole system 
of B[Kv(Tp) - Kv(Tc)]~Tc' We eq~ate it to the entropy gain rate 
B[Lv(Tp ) - Lv(Tc)] + SgV, where Sgv is the irreversible entropy genera­
tion rate in the converter. Hence this latter rate, per unit frequency 
interval per unit area, is 

Sgv = (BIT ) [Kv(T ) - KV(T )] + B[Lv(T ) - Lv(T )]. (119) c p c c p 

Integration over v as in (17) and (21) leads to the entropy genera­
tion rate for the stack (per unit area): 

S f1¥ dV = ~(T4 - T4) + ~(T3 _ T3) 
g - cV Tc P c 3 c p' 

whence one does indeed find (81): 

S g = ![T c]3 + ~ _ i 
aT3 3 T T 3' 

p c 
p 

The corresponding result for the pump is 

S = (BIT )[K,(T ) - ~(T )] + B[Lv(T ) - Lv(Tc)]' (120) pgV pvC -"V P P 

The frequency-integrated entropy generation rate for the pump is given 
per unit area by 

. 
S 
--E.S. = 

aT3 
(121) 

p 

The total entropy generation rates are therefore (per unit frequency 
range and integrated over frequency respectively, both per unit area) 
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(122) 

(123) 

The result (123) can be studied graphically together with 
dIV(V)/dV of (100) and Tc(V) of (105), where 

and 

dI/V) 2m/ q [ hV -1 hV -1] 
dv = 2 [exp kT - 1] - [exp kT - 1] 

c c p 

~= 1 
hV 

T s 
T 

c 

This is done in Table 3 and Fig. 10. One sees that there is 
zero entropy generation rate in a particular cell when it is at open­
circuit, as one would expect since no current passes. Also on the 
present model one needs qV < hV as one would otherwise have diver­
gencies. 

Figure lOa shows a schematic current-voltage characteristic of 
a solar cell which is found also for cells which are not part of a 
stack, when the vertical axis is simply the current density. It is 
clear that the output power is zero at both short-circuit, because 
the voltage across the cell vanishes, and also at open-circuit, 
because the current vanishes. Between these two limits there is 
always a maximum power output pmax, which is also shown. The 
integral -!VdI(V) for maximum power never sweeps the entire shaded 
rectangle of area IscVoc' and so the term "fill-factor" (F) is used 
for 

F :: pmax/ I V (124) 
sc oc 

A simple theory of it is given in section III.G. Typical values 
range from 0.7 to 0.8. 
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Fig. 10. 
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Schematic diagrams illustrating for given incident radi­
ation the voltage dependence for a given cell, i. e. for 
given v, of the current, total entropy generation and 
cell temperature. Since the figure refers to maximum 
concentration C = 45900 suns, open-circuit conditions 
correspond to the stack radiating like the pump, i.e. 
it behaves like a mirror. The region V > Voc is not 
normally accessible for solar cell operation. 
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Table 3. The Effect of Three Special Values of qV/hv on Convert­
er Emission Temperature, Entropy Generation Rate per 
Unit Frequency Interval per Unit Area, and Current 
Density per Unit Frequency Range 

qV/hv 0 1 - T /T 
s P 

1 

T T T 
c s P 

00 

S B[~(Tp) - Kv(Ts)] (~s - ~ J 0 
TgV 

P 

00 

dlv(V)/dV 
2 -2 - n (T )] -21T\) qc [nv(Tp) 0 V s 

00 

III.G. Additional Comment: The Solar Cell Equation and Standard 
Approximations 

Returning to the solar cell equation (103) for an individual 
cell in the stack in terms of emitted photon fluxes Ae and incident 
photon fluxes Ai = 2Ae (Voc), note that it can be written 

I(V) woc - w 
-I--=w -I' 

sc oc 

where with x = qV/kT , u = hv/kT s s 

-f. u du I r u du 00 2 000 
2 

w = exp (u - x) - 1 lx exp u - 1 
xG G 

For woc one simply replaces x by xoc - qVoc/kTs' 
once, even without the interpretation (126), that 

I(V ) = 0 and 1(0) = I • oc sc 

This general form of (125) was noted in [27]. 

(125) 

(126) 

(125) shows at 

If one regards the denominators in (126) as resulting from 
sums of geometrical progressions, 

1 b 2 = ~ = b [1 + b + b + ... ], (127) 
b -1 - 1 

then, putting v = exp u, y _ exp x, and 
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00 

12 -r du J r = u v 
XG 

one sees that 

J u2[~ + (;)2 + .•. ] du yJl 
2 + Y J 2 + ... 

w = = (128) 

J u2[~ + (~)2 + ... ] du 
J l + J 2 + ... 

This assumes of course that y/v = exp(x - u) = exp[(qV - hV)/kTs )] 
< 1. This is just the reasonable ~roPosition qV < hV which is also 
obvious from Fig. 10. If yJl » y J2, J l » J2 etc., one finds 

.(129) 

which was the interpretation of wadopted in [22], and other papers. 
Notably, this choice of w was implicit in the pioneer paper [28]. 

The approximation (129) is consistent with other approxima­
tions to equations derived earlier, and they will be noted below 
because of their frequent occurrence in the literature. 

We shall work in analogy with sections III.n and E. However, 
instead of using (96), we shall argue within more standard p-n 
junction theory. This leads to an increment of current density due 
to an increment of incoming frequencies 

dI = 2rrv2q( exp x _ 1 JdV 
V 2 exp u - 1 exp au - 1 c 

(l30) 

Incident black-body radiation has been assumed and this is repre­
sented by the second term. This is the same pumping term qAi as in 
(100). However the term to account for the loss of photons due 
to radiative emission at bias voltage V is changed. The non­
equilibrium photon occupation number is now taken to be exp qV/kTs 
times its zero-voltage value. We interrupt our discussion of 
(130) to explain this point [29]. 

Let Q(EG,V,Tp) be the number of electron-hole pairs created by 
the incident radiation per unit time and multiplied by the electron 
charge divided by the area to yield a current density when the voltage 
across the cell is V. Although V is itself related to the incident 
radiation, this is a convenient notation. Q depends also on the 
surrounding temperature Ts ' but this is not shown explicitly. If 
the cell is in thermal equilibrium with the surroundings at the same 
temperature Tp = Ts , then one speaks of the cell "in .the dark" and 
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one has V = O. Therefore by detailed balance 

(generation current1J = ( recombination J = 
density 0 current density 0 Q(EG,Q,Ts)' 

The suffix 0 refers to thermal equilibrium. In this case recombina­
tion and generation are in balance with each other and with black­
body radiation at temperature Ts' 

The recombination current density in the dark (i.e. at tempera­
ture Ts) at voltage V across the cell, can be obtained by assuming 
the recombination rate at a plane x/in the active region to be pro­
portional to the product of the carrier concentrations. For non­
degenerate semiconductors assuming quasi-Fermi levels kTsYn(x) , 
kT§Yp(x) to exist, and denoting the intrinsic carrier density by ni, 
one has an integral over the region considered: 

where C is a recombination coefficient, and 

(131) 

If the Fermi levels have a constant separation eV in the transition 
region in the usual way, one finds the last expression in (131) 
provided recombination through traps or surface effects do not upset 
it. If the separation is not quite constant the contributions to 
Q(EG,V,Ts) which arise from different slabs of thickness dx are 
different, and an ideality factor a I 1 may be expected. Hence 

Le. 

Q(EG,V,Ts ) 

Q(EG,O,Ts ) 
eV 

exp akT 
s 

Now the current density in the dark is 

(recombination current density) _ (generation current densityl. 
leading to radiative emission weakly dependent on V 1 

As the carriers have to overcome the field on recombination [27,29], 
the first term is expected to depend strongly on V. It is in fact 
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as was explained in connection with (130). 

We continue the interuption by obtaining some basic results we 
now have at hand. The generation current is normally field-assisted 
so that changes in V do not greatly affect it [27,29]. Hence we have 
obtained the standard diode equation 

I(V) = I (exp x-I) 
r 

(x :: qV/kT ) 
s 

with the interpretation Ir = Q(EG,O,Ts)' The ideality factor will 
be omitted. For large reverse bias, x « -1, I(V) - Ir and this is 
therefore called the reverse saturation current density. 

If illumination, specified by the parameters Tp ' is applied, the 
generation current density is changed to Q(EG,V,Tp)' Here Tp can be 
regarded as a set of parameters which specifies the spectrum of the 
pumping radiation and which is the absolute temperature in the case 
of black-body radiation. One finds for the current 

eV 
I(EG,V,Ts,Tp) = Q(EG,O,Ts ) exp ~ - Q(EG,V,Tp) 

s 
eV = Q(EG,O,Ts ) [exp kT - 1]- [Q(EG,V,Tp) - Q(EG,O,Ts)] 

s 

Thus the solar cell equation 

I = Ir(exp x-I) - IL 

has been obtained with the interpretation 

(132) 

l(reverse saturation current) (133) 
Ir(EG, Ts) - Q(EG,O, Ts) d . . h d k ens1ty 1n tear 

IL(EG,Tp) :: Q(EG,V,Tp) - Q(E ° T ) = (light induced ) (134) 
G' , s current density 

A dependence of IL(EG,Tp) on voltage V, which (134) suggests, 
implies a correction to (132): one cannot just take the dark 
characteristic of I versus V and shift it by a voltage-independent 
quantity J L, though this so-called "shift theorem" is often a good 
approximation [30]. 

Return now to the question of an 
ing the contribution of an individual 
implies again d[VIv(V)]/dV = ° (Ill), 
This gives for a stack of cells since 

(1 + x) exp x __ -....::;l_~ 
exp u - 1 - exp au - 1 

optimum efficiency. Maximiz­
cell to the output power 
this time applied to (130). 

(130) has been used 

(135) 

in contrast with (113). The values of x determined by this 
equation as u is varied have to be inserted into the power output 
expression 
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p = -JVdI = 21TqA f kTsx [kTSJ 3 2 [_~l_--::-
V 2 q ~ u exp au - 1 

c 

) 
exp x lJdu 

exp u -

to give 

21T(kT )4AJ 2 2 
pmax = s x u exp x du 

c2h3 exp u - 1 

The efficiency is pmax divided by the power rec~ived from 
Regarding the pump as a black body, this is AOTp , whence 

max = 15 a4 x2 u exp x du fo oo 2 

n 1T4 0 exp u - 1 

(136) 

the pump. 

(137) 

This result is graphically indistinguishable from the curve of niax 
given in Fig. 9 [24]. For example for T = 6000 K, Ts = 300 K, 
(117) and (137) yield respectively 0.868~ and 0.8686. Additional 
consideration of maximum efficiencies of tandem cells are given 
in [31]- [34] . 

In conclusion, turn to the above "interruption" in order to 
obtain from it some other standard results for individual solar 
cells. From (132) 

I = -I1 and I exp x = I + I1 (138) sc r oc r 

give the short-circuit current density and the open-circuit voltage. 
If one puts w = exp x, Woc :: exp xoc , 

I(V) = 
Ir(w - 1) - I I w - I w w - w 1 r oc r oc 

I -I I w - I w - 1 sc 1 r oc r oc 

This shows that the present model is via (132) in agreement with 
(125) . 

Similarly a maximum power condition can be obtained from (132). 
Denoting x for maximum power by xm' d(VI)/dV = 0 gives 

(1 + x ) exp x = 1 + I1/I = exp x (139) m m r oc 

Hence 

~ pmax = x I (exp x - exp ) 
kT m r m xoc 

s 

The optimal fill factor (124) is 

x 
Fmax = ~ 

x oc 

exp xoc - exp xm 

exp xoc - 1 

(140) 

(141) 
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Fig. 11. The optimal fill factor Fm as a function of eVoc/kT 

for a solar cell satisfying equation (132). 

and is shown in Fig. 11. It is a universal function of xoc since 
Xm is determined by (139) [35]. 

III.H. The Finite Stack [36] 

Imagine a stack of cells arranged in a linear series so that 
the incident radiation encounters first the cell with the largest 
energy gap El = hVl, and finally the last, nth, cell with the 
smallest gap En = hvn , so that 

The photons with the smallest energy will survive unabsorbed longest, 
those with the higher energies are absorbed first, provided of course 
one has ideal semiconductors whose absorption thresholds lie at Ej 
(j = 1,2, ••• ,n). The simple p-n junction model (132) will be 
adopted: 

(142) 

Here Ij(Vj) is the current-voltage characteristic of the jth cell, 
Irj being the reverse saturation current density. This is determined 
by the radiative recombination on the assumptions (not normally 
correct) that non-radiative transitions can be neglected. Making 
this assumption following [28] and later workers, 
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I r21TV2 
Irj = 2.lv ~ njVdV (143) 

j c 

The factor 2 arises from the double-sided emission from the cell, 
and njVdV is the mean photon number of frequencies in the range 
(v,v + dv) in cell i. The light-generated current density ILj for 
the jth cell is 

ILj = I~j - Irj , (144) 

Radiative emission due to radiative recombination in the cell sub­
tracts carriers which would otherwise contribute to the current, and 
this accounts for the subtracted term. The term ILj is due to radia­
tion absorbed by cell j from the pump and the electroluminescent 
radiation from the neighboring cells. Thus 

I{j = +P32 
npv dv + 

Vj 

(145) 

Here f is a geometrical factor which takes account of the limited 
solid angle under which the pumping source may be seen. It is 
02 = wi/~ of (32) and has the approximate value 2.18 x 10-5. 
Also n vdV is the photon occupation number of modes lying in the 
range ~V,v + dv), and njVdV is the analogous photon number in cell 
j. For black-body radiation Ilov is the Bose occupation number for 
temperature Tp , while njv is the same expression with temperature Ts. 

The electric power output P of the stack is given by (142) 
and (144): 

n 
~ P = - rl- E V.Ij(Vj ) 

s sj=l J 
. f [XjI~. - xjIrj 
J = 1 J 

XjIrj (exp Xj - 1») 
where Xj = qVj/kTs. The optimal working point Ij(Vj ) of an individ­
ual cell i is obtained from ap/axi = O. This gives 
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x.I . exp x. = 0 
1 r1 1 

Assume that all cells are at the same temperature so that njV is inde­
pendent of j. The condition is for i = 1,2, .•• ,n 

x'fOO 
dv + qXi+l e 1 

2 -2 
2'ITV c nv dv = 

Xi 
(1 + xi) e Iri 

The obvious modifications for i = 1 (when the term in i-I does not 
arise) and for i = n (when the term in i + 1 does not arise) will not 
be made explicitly. Thus 

(146) 

The set of equations can be solved for the xi given f and the inci­
dent spectrum n • Since nv depends on hv/kTs ' Ts must also be 
given. From th~ information the optimal energy gaps and working 
point Ii(Vi) of the various cells and the efficiency of the stack is 
obtainable. The results [36] are given in Tables 4 and 5 for 
Ts = 300 K and incident black-body radiation at 6000 K, as an approx­
imation to the solar spectrum. The first case of unconcentrated sun­
light is for n = 00 represented by curve A in Fig. 9. The second 
case of maximum concentration corresponds to the stack being hemi­
spherically surrounded by solar radiation. 

Although the treatment here follows [36], related work should be 
noted [37], as well as references cited in these papers. 

Consider now the limit n ~ 00. 

theory leads back to section III.G. 
process is described below. 

We shall see that the above 
The somewhat tedious limiting 

The three terms in (145) have the following limits in an 
obvious notation: 

2 -2 
(i) --.qf 2'ITV c npv ~v 
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Table 4. The Optimal Set of Bandgaps EGi for n stacked cells 
in Unconcentrated Sunlight (f = 2.18 x 10-5) [36] 

n n(%) EGi(eV) EG2 (eV} EG3 (eV) EG4 (eV) 

1 30 1.3 
2 42 1.9 1.0 
3 49 2.3 1.4 0.8 
4 53 2.6 1.8 1.2 0.8 

00 68 E = 0.25 eV Gn 

Table 5. The Optimal Set of Bandgaps EGi for n stacked cells 

n 

1 
2 
3 
4 
00 

Hence 

in Sunlight Concentrated in the Ratio 45 900:1 (f=l) [36] 

n (%) EGl(eV} EG2 (eV) EG3 (eV) 

40 1.1 
55 1.7 0.8 
63 2.1 1.2 0.6 
68 2.5 1.6 1.0 

87 E = Gn 0 

x. -f:::.x. l J:1N2C -2 "v d" 

'\-1 

(ii) -- qe 
l. l. J 2-2 e - 27fV c ~ 

V. v. 
l. l. 

00 

x J 2-2 dv - 2 -2 x __ qe (1 + f:::.x) 21TV c nv 27fV c qe 

V 

00 

(iii) __ eXq(l - f:::.X}J 21Tic-2 nv dv 

V 

EG4 (eV) 

0.5 

d"l 

nv f:::.v 
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I' -2 
Lj -- 21TC q 

Also 

Hence 

go 

(fv2npv6V + 2eX~v2nvdV 
V 

The other two terms in (146) become 

x _xe 

2 
1 x V nvb.v 

- ~e go 

Jv2nvdV 

V 

Collecting terms, (1 + x)ex is seen to cancel in (146), and so 

585 

does the integral in the denominator of the remaining terms. Hence 
the condition (146) becomes simply 

(1 + x)ex = f n v/n = f(eu - l)/(eau - 1) (147) 
p V 

This is just (135) as section III.G presumed f = 1. The small­
est energy gap must be chosen so that x = 0, i.e. 

EGn 
f exp kT - 1 

s 

EGn 
= exp kT - 1 

p 

so that for f = lone has EGn = O. This consistency with section 
III.G is of course essential, although consistency with section 
III.E would be even better, but, as has been observed. the two 
approaches differ only slightly in the results to which they lead. 
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The maximum electrical power output is in the limiting case 
given by (136), with limits extending from EGn/kTs to infinity. 

Experimental studies on systems of two cells approaching the 
desirable energy gaps EGI = 1.9 eV, EG2 = 1.0 eV have been carried 
out on the AI Ga As Sb--Ga As Sb cell (1.8/1.2 eV) [38]. The 
theoretical maximum efficiency of Table 4 is reduced from 42% 
to about 33% for AMI and 1 sun conditions by more detailed computer 
modeling. AI Ga As--Ga As (1.9/1.4 eV) cells are also being studied 
and computer modeling suggests that they should ·attain 24% efficiency 
under AMI and 1 sun conditions [39]. For recent work, including 
cascade cells based on amorphous silicon, see [40]. 

The finite-cascade has here been worked out for the "standard" 
or "conventional" theory, based equivalently on (132) or (142). In 
the limit of an infinite number of cells, this leads therefore to 
the conventional efficiency (137). Furthermore, the theory for 
sections III.E,F,G has been given for a converter which is com­
pletely surrounded by the sun, i.e. the geometrical factor f of 
(145) has been put at unity. For this reason there is also no 
allowance for absorption from the ambient in these sections. 

The author is grateful to Professor J. Parrot, Dr. A. de Vos 
and Dr. P. Wurfel for comments on the manuscript. 

IV. PROBLEMS 

Problem 1 

Problem 2 

Problem 3 

r;(s + 1) 

s 

~(s + 1) 

Using the result of (26) and equation (16), give 
a simple direct derivation of Stefan's law (19). 

Find the entropy flux for (20) of black-body radia­
tion from the general relation (12). 

The Riemann zeta function is here defined for conven­
ience as an integral 

co 

1 ~ :: dx (s ~ 0) - f(s + 1) 
- 1 

0 1 2 3 10 

i 
1. 645 ••• 1.202 ••• 

1T 4 
1.082 ••• 1.001 co - = -= 

6 90 
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r(r) is the gamma function whose values are reo) = 00, r(l) = r(2) 
= 1. Assuming the result (16), establish that for black-body 
radiation in a volume v at temperature T 

3 4v 4 
U = -TS = - at = 3 pv 4 c 

which incorporates the result (29), now obtained by standard 
statistical mechanics. 

Problem 4 If the occupation number of photon modes in the 
frequency range (v, v + dv) is nv at the surface of a 
body, show that the photon number flux emitted in this 
frequency range is for a Lambertian surface 

2 -2 
211V c nvdv 

What is the expression for nv if the emitter is black? 

Problem 5 Obtain the entries in Table 2. 

Problem IS Establish the result for u in section II.G 

Problem 7 Equation (10) suggests the formula 

tc-2V2 nv dv cose d~ 

for the photon number flux for increments of frequency dv and of solid 

angle d~. Derive from this the formula (c/KV)nvdv used in (84) 
for the case of discrete states. 

Problem (8) Obtain (90) and related results in the context 
of a continuous density of states function, 
rather than assuming discrete states as in the 
text. 

V. MAIN SYMBOLS USED AND REFERENCES 

A area 
a Ts/Tp (76) 
B Einstein coefficient (III.C), f cose d~ (13) 
b Tc/Tp (76) 
C a recombination coefficient (III.G) 
c velocity of light 
d, nd/Nd. a dilution factor (II.D) 
e energy of a photon 
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EG band gap energy 
F fill factor 
FQ flux for a quantity Q 
f a geometrical factor (III.H) 
G solar constant 
g see (87) 
h Planck's constant 

I,J quantum states 
I current density 
Iv current density per unit frequency interval 
Isc short-circuit current density 
Ir reverse saturation current density 
11 light-induced current density 

i,j groups of quantum states 

KV spectral energy radiance 
k Boltzmann's constant 
Lv spectral entropy radiance 
£ 1 or 2 for polarization (6) 

Nd photon density at absorber 
Nj occupation number of state j 
nj mean occupation number of state j 
nd photon density at absorber due to direct radiation 
P output power 
P,p probabilities 
p momentum 

Q heat 
Q(EG,V,Tp ) current density expressing the number of electron hole 

pairs created by incident radiation 

T,TA 
T* 
Tc 
TF 
Tp 
TR 
Ts 
Te 

a parameter (2) 
a probability (82) 
distance 
entropy 
entropy generation rate 
entropy per unit frequency range 

absolute temperature 
effective temperature d~/d~ 
converter emission temperature 
flux temperature ~/~ 
temperature of a pump 
temperature of radiation 
temperature of surroundings or a sink 
sun's temperature 
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t 
t 
U 
Uv 
u = 
u 
u' 

V 
V 
Voc 
v 
W 
w 
X 
XCi) 
x = 

y 

8,8,cp 

K 

a 

VI. 

atmospheric transmission coefficient 
a dilution factor (II.D) 
mean internal energy 
internal energy per unit frequency range 
hV/kTs (112) 
recombination rate per unit volume 
(absorption rate minus stimulated emission rate) per unit 

volume 

a voltage 
velocity 
open-circuit voltage 
volume 
work 
see (126) 
product of probabilities 
see (37) 
qV/kTs (112) 

absorption coefficient 
see (87) 

see (55) 

(85) 

Fermi level /kTs or quasi-Fermi 1eve1/kTs 

angles 

dilution factor 
photon flux emitted by a solar cell 
photon flux incident on a solar cell 
see (72) 
chemical potential 
frequency 

efficiency 
(energy of quantum state I)/kTs 

refractive index of a material 

Stefan's constant 

APPENDIX 

We give here a more formal derivation of (105) for the cell 
temperature Tc, by using the balance equations. We chose the 
latter in the form (53): 

589 
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W = ¢ - ¢ - (~ - ~ ) T - T S pcp c ssg 
(148) 

In order to extract work qV, suppose that we require a net energy 
input f h V at temperature Tc to the carrier system and g h V at 
temperature Ts to the lattice system. Then 

(f + g) h V 

~ - ~ = f h V/T + g h v/T P c c s 

Substituting (149) into (148) 

i.e. 

qV = (f + g) h V - [f h V (T /T ) + g h v] - Ts S s c 

T T S 
~-l-~-~ 
fhv - T f h V 

c 

(149) 

This result is independent of the net energy input to the lattice 
and for f = 1 and S = 0 it is precisely (105). 

s 
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MAGNETO-OPTICAL STUDY OF ENERGY TRANSFER IN RUBY 

ABSTRACT 

M. Ferrari l L. Gonzo, M. Montagna, O. Pilla, 
and G. Viliani 

Eepartimento di Fisica 
Universita di Trento 
38050 Povo, Trento, Italy 

The ion-pair transfer mechanisms were studied under magnetic 
field. Both resonant and non-resonant contributions are found 
from the magnetic field dependence of the transferred intensities. 
For transfer to third neighbors, non-resonant, magnetic field 
independent transfer is found to dominate, while the contrary is 
observed for transfer to fourth neighbors. The effects of mag­
netic field were investigated at several temperatures and at 
different emission wavelengths. 

I. INTRODUCTION 

Since the pioneering work of Imbusch [1], the problem of 
energy transfer in ruby attracted much experimental and theoretical 
work. Several transfer mechanisms are conceivable, namely 
resonant and non-resonant exchange-induced transfer, radiative 
transfer, dipole-dipole interaction, etc. The experimental data 
lead to somewhat conflicting models, especially as regards the 
transfer rate among single ions (S-S), and from single ions to 
pairs (S-NI and S-N2 respectively) [2],[3]. 

Application of an external magnetic field will produce 
important effects on the transfer rate by bringing out of 
resonance degenerate energy levels, or by producing level-crossings; 
such experiments could thus help in understanding whether the S-N 
transfer is direct or it proceeds via some intermediate centers. 
At low magnetic fields (H < 6 KG) it has been found [4] that the 
S-S transfer rate is increased when there is a crossing among the 
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levels of the coupled "isolated" ions; this, in turn, is seen as 
an increase of the S-N rate. The observed resonance effect is 
only a few percent [4]. 

We have studied the magnetic field effect up to 60 KG; the 
results are reported and discussed in the present work. 

II. EXPERIMENTAL 

The sample was placed in the bore of a superconducting magnet 
with the field parallel to the C3 axis; emission and excitation 
spectra, and lifetime measurements were carried out at various 
temperatures as a function of the applied field. The lifetime 
measurements were performed by focussing an Ar-ion laser beam on 
a mechanical chopper and then by refocussing it on the sample; 
Rl-line and N2-line emission intensities were detected by a photon 
counting apparatus and recorded on a multichannel analyzer. The 
excitation spectra were taken by illuminating the sample by a 
tungsten lamp and a monochromator, plus photon counting detection, 
for the Rl, Nl, and N2 emissions. 

The effect of the magnetic field on the S-N transfer was 
directly observed by monitoring the Nl and N2 emission intensities 
as a function of the field. Since the N emissions show two dif­
ferent lifetimes, the faster one (less than 1 msec) deriving from 
direct excitation and the slower one (4-10 msec, depending on 
reabsorption) deriving from transfer, in order to discriminate 
between the two components phase-sensitive detection was employed. 
The phase of the lock-in amplifier was adjusted by zeroing the 
slow component of the N signals; in this way, in the counterphase 
output the (slow) transferred component was maximized, while in 
the in-phase output only the (fast) directly excited component was 
observed. 

Finally, excitation spectra of the N lines were taken by the 
phase-sensitive technique also, in order to discriminate "fast" 
from "slow" peaks in the spectra. 

It should be noted that since the magnetic field makes S-S 
radiative reabsorption weaker, the phases were slightly field­
dependent. We adjusted the phase at high field; in this way the 
spectra needed to be corrected only in the first few kilogauss. 

III. EXPERIMENTAL RESULTS 

III.A. Lifetime Measurements 

The results for N2 show that the transfer rate decreases 
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markedly (by a factor of about 2) in passing from zero-field to 
10 KG; after this field value it is roughly constant up to about 
35 KG and shows a marked and sharp peak centered at about 40 KG. 
This behavior shows the importance of the magnetic field for the 
transfer process, and we decided to study such effect in a more 
systematic way by directly monitoring both the Nl and N2 emission 
intensities as a function of the applied field. 

III.B. Transferred Intensities vs. Magnetic Field 

The counterphase emission intensities of N2 and Nl lines, 
after excitation at 19600 cm- l in the high-energy tail of 4T2, as 
a function of the magnetic field are reported in Figures 1 and 2 
respectively for three different temperatures; the band-pass of 
the detection monochromator was about 3 cm- l , larger than the full 
width of the observed emissions. The corresponding in~phase 
spectra are flat and are not reported here. In Figure 1 we note 
an initial decrease of the transferred signal to which some 
structures at about 10, 15, 25, and 30 KG are superimposed, and a 
sharp and intense peak at 40 KG. The effect of increasing tempera­
ture is that of washing out these features, and of increasing the 
continuous background, while new structures appear at higher fields 
(about 48 and 55 KG). At even higher temperatures (T > 170 K) the 
whole spectrum becomes flat, except for a slight continuous descent. 

A rather different behavior is observed in Figure 2 for the 
Nl emission: the spectrum is flat up to 30 KG, where an intense 
peak appears, followed by another one at 50 KG; here also, new 
weaker peaks appear at higher temperatures and all structures 
smooth out for T > 70 K. 

The same spectra as in Figures 1 and 2 were taken also under 
two different experimental conditions; (a) Excitation with a 
monochromator (band-pass 3-10 cm-l ) at different wavelengths 
ranging from the low-energy tail of 4Tl to the Rl-line; (b) Exci­
tation with the laser at 5145 A and revealing at higher resolution 
(0.5 cm-l ) in different parts of the emission lines. 

As regards N2, the experiments of type (a) showed the following 
effects: (1) By exciting in the R2 and (especially) Rl lines the 
40 KG peak looks weaker and broader; (2) The initial descent is 
slower by exciting in Rl and R2; (3) The weaker resonances at 10 
and 15 KG do not seem to be very affected by varying the excitation 
energy, except for a broadening by exciting in Rl and R2. 

Still regarding N2, the experiments of type (b) show the fol­
lowing effects: (1) By revealing at the center of the line, all 
peaks are intense and well-defined, comparable to Figure lea), 
while in the tails they become much weaker and broader; (2) The 
initial descent is much steeper in the tails and the zero-field 
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Figure 1. N2-1ine emission intensity as a function of the applied 
magnetic field. (A) T = 7 K; (b) T = 65 K; (c) T = 90 K. 

intensity is in this case several times as high as the one of the 
prominent 40 KG peak. 

Let is consider now N1. Type (b) measurements show the fol­
lowing features: (1) Here also, the intensity of the two main 
peaks decreases in passing from the line-center to the tails; 
(2) New structures appear (at low temperature) at approximately 
the same field values as the weaker structures of Figures 2(b) and 
2(c), but not when revealing in the low energy tail of the emission 
line. 

Type (a) measurements do not show any significant change with 
respect to Figure 2(a), with the exception of excitation in the 
R2 line; in this case: (1) There is a marked initial increase up 
to about 6 KG; after this field value there is a decreasing back­
ground upon which the two structures of Figure 2(a) are super­
imposed; (2) The high-field peak becomes weaker than the low-field 
one. Note that by exciting in R2 there is no direct excitation of 
third neighbor pairs and the observed intensity is due only to 
transfer. 
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Figure 2. Nl-line emission intensity as a function of the applied 
magnetic field. (a) T = 7 K; (b) T = 25 K; (c) T = 45 K. 

III.C. Excitation Spectra 

Since the spectra of Figures 1 and 2 are quite different from 
each other, we have investigated the possibility that the peaks 
arise from level-crossings between Zeeman sublevels belonging to 
the E multiplet (single ions), and excited states relative to 
pairs. We have recorded excitation spectra in the energy region 
near the RI and R2 lines for the three emissions at different 
fields. In the pair spectra several peaks appear besides the Rl 
and R2 lines, as shown in Figure 3 at zero-field. 

The origin of the peaks A, B, and C in Figure 3(b) is not 
completely known; the multiplet (A,B) was tentatively assigned to 
Rt centers (single-ions weakly coupled to the pairs) [2], but its 
behavior under magnetic field as observed by us suggests that it 
corresponds to an S = 2 excited state of the fourth neighbor pairs. 
The peaks in the low-energy side of the Rl-line, which also were 
attributed to Rt centers [2], behave under magnetic field like 
the 4G3 and 4H3 [5] excited states of fourth neighbor pairs. As 
regards third neighbor pairs, the origin of peaks D and E of 
Figure 3(a) is not completely understood either, although they 
could correspond to yet unobserved excited states of the pair; 
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Figure 3. Excitation spectra of single-ion and pair lines at zero 
magnetic field and T = 7 K. (a) Nl-line; (b) N2-line; 
(c) Sideband of Rl-line. Cr-concentration 1800 ppm. 

Selzer et al [2] showed that peak E is a rapid channel for excita­
tion of Nl luminescence. 

We would like to remark that the same excitation spectra 
taken by phase-sensitive detection show that all the features of 
Figures 3(a) and (b), other than Rl and R2 lines, are rapid chan­
nels for the excitation of pair emission. 

IV. DISCUSSION 

Since the longer lifetime of the N lines is the same, or very 
similar to the R-radiative lifetime, both in presence and in ab­
sence of reabsorption among single ions, it is reasonable to think 
that all of the single ions contribute to the S-N transfer, and 
not only those ions which are strongly coupled to the pairs (if 
any). This is further supported by our observation that the center 
of the R-line contributes to the S-N transfer more than the tails, 
in agreement with the measurements of Chu et al [6]. On the other 
hand, the difference between Figures 1 and 2 shows that the ob­
served magnetic field effects are not due to the S-S transfer. 
Moreover, it can be shown that by assuming the single ions to be 
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coupled by exchange interaction, the magnetic field splits 
initially degenerate levels, and this results in a marked decrease 
of the resonant transfer rate; a level crossing at 17 KG should 
give a peak at this field value [7]. These considerations seem to 
exclude a transfer mechanism consisting of fast S-S diffusion 
followed by excitation of the pair with unity-efficiency when the 
excitation is found within some "capture radius" of the pair. In 
fact, in this case the S-N transfer rate would be proportional to 
the diffusion coefficient [8], which in turn is proportional to the 
exchange interaction between single ions. In any case, whichever 
be the S-S interaction, if the above diffusion model were true the 
Nl and N2 spectra (Figures 1 and 2) should have some common 
features. 

From transient electric field measurements [9] it results 
that an upper limit for the non-radiative S-S transfer time is of 
the order of a fraction of a millisecond at our concentrations 
(see, however, [3]); the transfer time as deduced from our data 
is of the order of 1 second which implies that the last step in 
the S-N transfer is the slowest. Our data indicate that both 
resonant and non-resonant mechanisms are active in the S-N 
transfer process. In fact, non-resonant, phonon-assisted transfer 
is not expected to be affected by a magnetic field because the 
required phonon energies (roughly, 150 cm- l for S-N2 and 220 cm- l 
for S-Nl) are much greater than any Zeeman splitting. This seems 
to be the predominant mechanism for S-Nl transfer at any tempera­
ture, while it seems to be less important for S-N2 at low tempera­
ture. In the latter case, in fact, the residual transferred 
intensity at high field is of the order of 10% of the initial one 
in our samples. In any case, at high temperature the non-resonant 
contribution predominates and the field-dependence vanishes. 

The peaks observed for both N1 and N2 are by us assigned to 
resonant transfer due to level crossings between excited states 
of single ions and pairs. By taking excitation spectra at various 
magnetic fields, we have verified that the resonances of Figure 
lea) correspond to the S-N2 cross relaxations indicated in Table I. 
These resonances could correspond either to radiative reabsorption 
or to non-radiative transfer. The fact that the most intense 
resonances correspond to a+-a+ transitions would favor the former 
hypothesis, while the total fig is not conserved. On the other 
hand, no appreciable change is observed in the spectra by changing 
the excitation geometry. 

Let us now consider the prominent resonance at 40 KG; by 
using the g-values appropriate to the relative levels the width of 
the resonance (~3 KG) corresponds to a convoluted width of the two 
resonant levels of ~0.5 em-I. The widths of the involved lines are 
~Rl(hom) ~ 0, ~Rl(inh) ~ 1 em-I, while as regards the 4G transition 
it can be assumed that its inhomogeneous width is compar~le to that 
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Table I. Observed resonances for N2-line (Figure lea»~ and 
proposed cross-relaxation transitions between single 
ions and pairs. 

Resonance Single Ion Trans. Polar. GHI Pair Trans. Polar. 
(KG) m (E)-+m. (4A2) s s 

m (S=3)-+m. (S=2) s s 

10 1/2 3/2 + -2 -1 cl -+ 0" -+ 

15 -1/2 -1/2 + -2 -1 + -+ 0" -+ 0" 

32 -1/2 1/2 -3 -2 + 
-+ 7T -+ 0" 

40 1/2 3/2 + -3 -2 + 
-+ 0" -+ 0" 

of N2, that is ~l cm-l , but its homogeneous width can be appreciable 
because of the limited lifetime of the excited G level. In a radi­
ative reabsorption the full (homogeneous + inhomogeneous) width 
should contribute to the observed width, producing a much broader 
'resonance than observed. On the contrary, if the inhomogeneous 
width is mainly due to macroscopic strain and if the cross relaxa­
tion is non-radiative, the homogeneous width will give the main 
contribution. It is therefore possible that the observed width of 
0.5 cm-l corresponds mainly to the homogeneous broadening of the 
G state. 

Considering now the initial descent of N2 (Figure 1), it is 
more important by observing the tails of N2; no such effect is 
observed for Nl. Such different behavior can be understood by 
noting that the fourth neighbor pairs have excited levels (H,I) 
which are nearly degenerate (within 2 cm- l ) with the E single ion 
level, while this is not the case for third neighbor pairs. From 
the excitation spectra of Nl (Figure 3(a» it appears that the 
nearest peaks resonate with the Rl line at magnetic fields cor­
responding to the resonances of Figure 2. This suggests that the 
zero-field transfer in N2 is mainly due to a resonant mechanism. 
If we assume that the excited I and/or H states also have a 
homogeneous width of the order of 0.5 cm- l , and that they are 
nearly resonant with E, it can be understood why the tails of N2 
are more favored for resonant transfer than the line center. In 
fact, emission from ,the tails of N2 derives from slightly distorted 
pair~ whose excited I and/or H levels may be nearer in energy to 
the E levels of the single ions of their domains, if macroscopic 
strain is mainly active. Application of a magnetic field, by 
splitting both single-ion and pair levels, will reduce the number 
of resonant states, thereby decreasing the transferred intensity. 
In this way one can understand why the resonances, when monitored 
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on the tails of N2, are broader and less intense. 

In conclusion, our measurements show that different transfer 
mechanisms exist in our samples. The relative importance of such 
mechanisms may be concentration-dependent; such measurements are 
in progress. 
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We present some experimental results obtained in Lyon's Group 
about the energy transfer process between active ions in doped or 
stoichiometric fluorescent materials. We have chosen various exam­
ples illustrating the different types of energy transfer for which 
we give the useful data about their theoretical approaches. Fluores­
cent ions concerned are divalent (Eu2+) and trivalent ~Eu3+, Gd3+, 
Tb3+) rare-earth ions, Mn2+ transition ion and also Bi + heavy ion 
incorporated in some oxyde, fluoride and chloride crystals and also 
germanate glass. 

I. INTRODUCTION 

Energy transfer processes are widely studied in our laboratory 
since many years as well in doped crystals and glasses as stoichio­
metric materials. We would like to contribute to the understanding 
of the basic processes involving the dynamical properties of the 
condensed matter under optical pumping. In the first, part, we give 
the main theoretical results used on the energy transfer and migra­
tion processes field. In the second part, we give some examples for 
each type of energy transfer studied in our materials. These exam­
ples illustrate the resonant radiative energy transfer, the resonant 
non-radiative energy transfer either by direct energy transfer or by 
fast-diffusion and also the up-conversion mechanism like two-suc­
cessive transfers, for example, giving rise to additonal pumping 
to higher excited states above the absorption energy level. 

603 



604 G.BOULON 

II. MATERIALS AND EXPERIMENTAL EQUIPMENT 

The phosphors selected in this presentation are TbF3, GdCl3 
(6H20), LaCI3(Gd3+), KY3FIO(Eu2+), LU2Si207(Bi3+ Eu3+) and 
germanate glass doped by Bi3+ or Eu3+ or codoped by Bi3+ and Eu3+ 
and manganese compounds (CsMnF3' RbMnF3' RbMnCI3)' The most experi­
ments are done by using pulsed tunable dye-laser and lamp techni­
ques in the uv and visible range like site selection spectroscopy 
and time resolved spectroscopy. The pump laser is either a nitrogen 
laser (1 mJ per pulse ~ T = 4ns) or a YAG-Nd powerful laser with a 

• 0 
frequency doubler or tr1pler (300 mJ per pulse at A = 5320 A; 
130 mJ per pulse at A = 3550 A) followed by a three stage amplifier 
dye laser and others frequency doublers. So we may selectively 
excite from 2100 A to 8000 A (linewidth 0.1 cm- l - T = 15 ns). The 
fluorescence data are recording and processing over 256 channels 
with a maximum resolution of 2 ~s per channel by using an 
Intertechnique Model IN 90 multichannel analyser. The fluorescence 
decays at shorter times are recorded with a PAR boxcar integrator 
and the profile are fitted by using a Tektronix 4051 computer. 

III. USEFUL DATA ABOUT THEORETICAL APPROACHES OF THE ENERGY 
TRANSFER 

In this paper we distinguish between the resonant radiative 
energy transfer and the resonant non-radiative energy transfer. It 
is important to mention that the microscopic theoretical approache 
uses the interaction between two ions labelled S (sensitizer or 
donor ion) and A (activator or acceptor ion) whereas the experimen­
tal results reflect the average behaviour of a lot of sites in the 
host. So we have to choose some statistical analysis over all the 
macroscopic scale of the sample. The different cases of energy 
transfer processes have been treated by Auzel [1], Reisfeld [2] 
Riseberg and Weber [3], Watts [4] • In this part, we shall give 
both the transfer probabilities and physical parameters derived 
from the microscopic model and the intensity decay of the emission 
of S and A ions. 

III. A. Resonant Radiative Energy Transfer 

This mechanism depends on the geometric configuration of the 
crystal. In this case the normalized emission spectrum of S ion 
gs(v) and the absorption spectrum of A ion gA(v~ overlaps and, then, 
the structure of the S emission spectrum is A ion concentration 
dependent. More, the S decay time (TS) does not vary with A ion 
concentration because the spontaneous fluorescence of S ion is 
emitted in all directions. 

The probability of such transfer between two S and A ions at 
distance R is: 
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(1) 

aA is the absorption integrated cross-section of A ion. We will 
see an example with Bi3+ - Eu3+ co-doped germanate glass. 

III.B. Resonant Non-radiative Energy Transfer 

The coupling of S and A ions can arise via exchange interaction 
if the wave functions overlap or via electric or magnetic multi­
polar interactions. So the optical excitation absorbed by S ion 
may be transferred to A ion before S ion will be able to emit the 
fluorescence. 

The first process involving resonant non-radiative energy 
transfer between S and A ions has been treated by Forster and 
Dexter [5],[6] for a multipolar or an exchange interaction. Inokuti 
and Hirayama [7] have applied the statistical analysis in order to 
get the profile I(t) of the fluorescence decay rate of S ions. 

1. Without Diffusion Among S Ions. 
~(t) satisfies the equation: 

The S excitation density 

..:..a~,,-::(=RL.:' t:;..<.,.) = 
at 

1 - - ~(R, t) - L WSA (Ri ) • ~(R, t) . 
LS~ A 

(2) 

LSO: the intrinsic decay rate of S in absence of the A ion; WSA(Ri ) 
is the probability for energy transfer between S and A ions at 
position Ri' 

Inokuti and Hirayama [7] find the relation 

1 
~s(t) = ~s(o) exp{-[ ~ + yet)] • t 

SO 

~S(o): the intensity of S ions at t = 0; yet): function which 
depends on the interaction between S and I ions. 

- Exchange interaction 

(3) 

Dexter [6] has derived the following expression for WSA(Ri ): 

(4) 

and y(t) is predicted by Inokuti and Hirayama [7]: 
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4 • R3 • y-3 g( eY • t ) yet) = 3 ITCA 0 '[s 
(5) 

CA: A ions concentration; &0: transfer critical distance at which 
the probability for radiative and non-radiative transfers are equal; 
WSA(Ra) = l/'[SO; Co = 3/4ITR6: critical transfer concentration; 
y = 2Ro/L; L: the effective average Bohr radius; and 

g(Z) = 6Z ~ (_Z)m 
4 

m=o m! (m + 1) 

The non-exponential decay may be written: 

\Ho) 
t -3 =4> exp-[-+y 

o '[SO 
c . - . 
c 
o 

- Electric multipolar interaction 

The dependence of the transfer probability WSA on the S-A 
distance may be obtained from Dexter [6] on the following form: 

R 
1 0 )s W = - • (-

SA '[s R 

(6) 

(7) 

(8) 

s = 6, 8 or 10 for dipole-dipole, dipole-quadrupole and quadrupo1e­
quadrupole interactions respectively. The transfer critical 
distance is, for instance, for dipole-dipole interaction: 

6 3 1 (J A • nSO J 
RO = --5 2' -4 gS(V) • gA (v) dv 

64IT n V t t 
emission a~sorption 

nSO: the quantum~fficiency in the absence of A ions; n: the 
refractive index; V: the average wavenumber of the transition. 

Now we have a yet) function written as: 

yet) = ~ ITC R3 r(1 _ 1 )( _t_ )3/s 
3 A 0 S '[SO 

and the intensity of the S fluorescence decay is as follows: 

(9) 

(10) 
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r(l - 1): Euler's function (s = 6, 8 or 10). s 
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The decay is characterized by an initial non-exponential 
portion followed by an exponential decay with a time-constant LSO. 
The analysis of decay curves thus enables the various energy 
transfer processes to be distinguished. Such process has been seen 
with the Bi - Eu3+ codoped glass (and silicate crystal) and also 
with KY3FlO(Eu2+). 

2. With Diffusion Among S Ions. In the previous part we 
dealt with the direct transfer between S and A neighboring ions 
but in many doped or fully concentrated materials the transfer be­
tween S ions occurs. We distinguish two cases depending on the 
coupling strength between S-S and S-A ions respectively: 

- diffusion limited energy transfer for which both the radi­
ative emission probability of S ions, the diffusion processes 
probability among S ions and the direct energy transfer probability 
between S and A ions are comparable. 

Yokota and Tanimoto [8] showed that the S excitation density 
W(R,t) satisfies the diffusion equation by using the same notations: 

aW(R,t) = _ ~ W(R t) - E WSA(Ri ) • E(R,t) + nv2 W(R,t) (12) 
at TSO' A 

n: the diffusion constant. 

The main solution of the diffusion-limited energy transfer 
given for a dipole-dipol~ interaction takes a complicated form. 
But, under assumption of uniform distribution of S ions, at long 
time, Wet) decays exponentially with a time constant T: 

-1 -1 -1 -1 3/4 
L = LSO + Tn with TO a n (13) 

- Fast-diffusion energy transfer, for which the diffusion 
probability among S ions is higher than any other process. This 
case may be dominant when the S concentration is increasing as in 
the fully concentrated materials. At long time, the intensity 
Wet) decays exponentially such as: 

1 -a C 
Tn A 

The decays are exponential as when S ions are well-localized 
without A ions in the host. We shall see the evidence of such 
mechanism with TbF3 for which we have also a cross-relaxation 
process. 

(14) 
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III.C. Up-conversion Processes by Energy Transfer 

S and A ions are both in their excited states prior to energy 
transfer. These kinds of processes (two-successive transfers with 
two or three ions, the cooperative sensitization of luminescence, 
the cooperative energy transfer, the exciton-exciton annihilation) 
give rise to anti-Stokes spontaneous emission,. They have been re­
viewed b.y Auzel [1] and Watts [4]. The main physical criteria used 
to distinguish between multiple successive transfers are 1) the 
differences between the energy levels; 2) the pump intensity de­
pendence of the anti-Stokes fluorescence (for instance, a quadrati­
cally variation when 2 photons are involving); 3) the S and A ions 
concentration dependence of the anti-Stokes fluorescence (for 
instance, a quadratically variation with Cs if 2 S ions are involved 
and a linear variation with CA if only one A ion is concerned); 4) 
the presence of the rise-time of the decay intensity of the anti­
Stokes fluorescence and the numerical value of the time constant T. 
If the 2 S ions or the 2 S and A ions are identical it is easy to 
show that T is equal to half-value of the time-constant of the 
pumped excited state. More, the absence of the initial rise in the 
time scale usually experimentated above few nanoseconds characterizes 
a two-photon absorption on one ion. We shall meet these processes 
with TbF3, LaC13(Gd3+) and GdC13-6H20. 

III.D. Influence of the Traps in the Materials 

We shall point out that some spectroscopic properties mainly in 
the concentrated materials due to the presence of activator ions 
perturbated by impurities inside the host. They are assigned to 
defects or traps or still irregular or perturbated ions by opposite 
to regular or unperturbated or still intrinsic ions. So we can 
both of the intrinsic and trap fluorescence but it is clear that 
energy transfer may occur between the intrinsic and trap energy 
levels respectively. The model used is presented schematically in 
Figure 1 with two kinds of traps. The majority of the activator 
ions forms the exciton band (level 2) and the trap energy level 1 
is fed by energy transfer from the intrinsic exciton band. The 
transfer of excitation between the various levels is described in 
terms of transition rate Wij which are shown in Figure 1. Wr 
is the radiative transition probability practically the same for 
the perturbated and unperturbated ions because the perturbation 
remains weak. Wq is the transition rate from level 2 to other 
radiative and non-radiative traps deeper than level O. The inverse 
transitions from level 1 to level 2 and from level 0 to level 2 
require thermal phonons and their rates are proportional to exp 
(-~12/kT) and exp(-~02/kT) respectively. The transition probability 
W02 or W12 are temperature dependent so that they may be negligible 
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for a deep trap at low temperature (if T = 4K, kT = 2.8 cm- l ). We 
assume also that the excitation trapped by a quenching trap is 
irretrievably lost for the system. 

The temperature dependence of the relative intensity of the 
trap line emission II with respect to the intensity of the in­
trinsic line emission 12: 

From the total probability of deexcitation for trap levell, we 
have: 

K is a constant. 

(15) 

(16) 

Consequently, the energy gap ~12 (and ~02) is deduced from the 
temperature dependences both of the relative intensity and the 
inverse lifetime T-l of the trap fluorescence. It is also possible 
to establish the rate equations of each level and to assume that at 
t = 0 the initial populations are Nl(O) = 0, No(O) = 0 and N2(0) 
has a finite value just after the excitation pulse. We get the 
following expressions of the popUlations: (where A, B, C, D 
depend on Wij rate) 

N2 (0) ! 
N2(t) = --;:--1 A exp(m+t) 

o 

- exp(-W t) + 

- exp(-w:t) } 

m W21 + W12 + W2 + W + 2W 
0 o q r 

m -(W21 + W12 + W20 + Wq + W ) 
+ r 

W12 (W20 + Wq) W r 
m - -(W + --) 

r 
m m 

0 0 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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At short time, Nl(t) is increasing as {I - exp(m t)} whereas 
N2(t) is decreasing as exp(m t) so that we observe an initial rise 
time on the time dependence of the trap intensity. 

IV. ENERGY TRANSFER IN DOPED MATERIALS 

We present some examples with doped materials where although 
the weak concentration the energy transfer may be seen. The diffu­
sion between donor ions can be neglected and the exchange inter­
action is very weak so that the interaction has probably a multi­
polar nature . 

. 3+ 3+ . 1 IV.A. B~ -Eu Codoped Germanate Glass or LU2~2Q7 Crysta 

The excitation spectra of 0.8% Bi3+ germanate glass present 
two broad bands with maxima at 2780 A and 3190 A at T = 4.2 K and 
2860 A and 3250 A at room temperature. By pumping in the first 
band ISO + 3Pl with a nitrogen laser it is easy to observe the 
broad blue fluorescence band: 4490 i at 295 K due to 3Pl + ISO 
transition and 4650 A at 4 K due to 3PO + ISO transition. At 4.2 K 
we observe only the 3PO + ISO band unsplit by crystal field having 
a time constant long enough for accurate measurements (TO = 700 ~s) 
[9]. We have selected a subset of ions in the quasi-continuum of 
multisites in glass, so the fluorescence spectra and the decay 
curves were obtained for various concentrations of Eu3+ acceptor 
ions up to 5%. 

Transfer occurs by radiative mode because the dip in the 
maximum of the 3PO + ISO broad band corresponding to the 7FO + 5DZ 
forced electric dipolar transition (Figure Z). The radiative trans­
fer efficiency nR can be approximately calculated by comparing 
the area of the dip to the area of the emission band included in 
the spectral range of the 5D2 absorption: nR = 0.05 with 0.5% Eu3+ 
and nR = 0.3 with 5% Eu3+ in agreement with the Formula (1) 
of the previous section III.A.l and nR is temperature independent. 
Transfer occurs, too, by non-radiative mode: the integrated 
fluorescence of Bi3+ ion is decreasing when the Eu3+ concentration 
is increasing and, the other hand, when Eu3+ ions are added, the 
Bi3+ decays initially deviates from a single exponential dependence 
as can be seen in the Figure 3 where the Bi3+ decay intensity for 
different Eu3+ concentrations are plotted in a logarithmic scale. 
The final portion of all the decay curves tends to the same slope. 
These results have been interpreted by a resonant energy transfer 
process between Bi3+ and Eu3+ ions in the mUltipolar case treated 
by Inokuti and Hirayama (11) without diffusion among donor ions 
because Tnl (13) is negligible at any concentration. The absence 
of diffusion within the Bi3+ ions may be a result of the Stokes 
shift in the Bi3+ ion which means there is no resonance matching 
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between the donor ions. The best fittings of the experimental de­
cays by the relation (II) indicate a dipole-dipole and di~ole­
quadrupole couplings for high concentrations (3 to 5 % Eu +) 
whereas at lower concentration the distance between Bi3+ and Eu3+ 
are larger and the transfer is due to dipole-dipole coupling. 
The critical trans~er distance Ro of the Inokuti and Hirayama's 
formula is Ro = 9 A. This parameter has also been evaluated from 
the Dexter's formula (9) by taking account of n4 = 6, of the over­
lap integral and the oscillator strength of the 7FO + 5D2 
(2.76 • 10-7): we find Ro = 5,3 A. This result disagrees with the 
previous one but it seems not valuable because the presence of the 
random distribution of the multisites which does not participate 
to the energy transfer. So, the overlap integral will take a higher 
numerical value and R will increase. Ro = 9 A seem to be a valuable 

o result [10]. 

Some analogous results were obtained with Bi3+ - Eu3+ 
codoped 1u2Si207 crystal [11]. Inothis material the 3PO + ISO 
fluorescence band maximum is 3690 A in uv range and the excitation 
in the 3Pl level is 2880 A. The energy levels of the Eu3+ ion in­
volving in this energy transfer are 7Fo + 516 , 5G2 3 4 5,6, 517. We 

3+ ' , , 
found a dipole-dipole coupling for Eu low weight concentration o 
like the glassy phase with Ro = 9 A. Unfortunetely it was not 
possible to growth silicate crystals doped by concentrations 
higher than 2 % Eu3+ to test other interactions. 

')+ 
IV.B. KY?lO(Eu~ ) 

Another interesting case of energy transfer was studied with 
KY3FIO doped from 0.1 to 3 % Eu2+. Despite a selective doping on 
K+ sites, Eu2+ ions enter both K+ (weak field) and y3+ sites 
(strong field) in the fluoride. T~e fluorescence consists both of 
some narrow uv lines around 3583 X due to 6P7 + 8S 7/2 transition 
of the ~ site and a weak violet band ascribed to the 4f6 - 5d 
8S7/ 2 transition of the y3+ site. As the absorption spectrum of 
the emission band overlaps totally with these lines, energy trans­
fer between the two kinds of sites has a chance to occur. We find 

o 
it, under nitrogen laser 3371 A excitation above T = 150 K because 
the 4f6 - 5d absorption band shifts to higher energy if temperature 
decreases (Figures 4-a and 4-b). It appears that the decay curve of 
the principal Stark component of the uv line is non exponential. 
Concerning the fluorescence, the decay profile is exponential at 
4.2 K (T = 0.55 ~s) because we excite only 4f6 - 5d energy levels 
of the y3+ site but above 150 K, the decay becomes non-exponential: 
a fast one is observed as in the low temperature range and a longer 
one (a few ms) which seems surprising for such a Laporte rule 
allowed transition. This long time tail points out definitiv~ly the 
energy transfer between Eu2+ in K+ site (donor ion) and y3+ site 
(acceptor ion). 
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We have used Inokuti and Hirayama's formula (11) to fit the 
non-exponential decay of uv line by assuming a dipole-dipole 
coupling because the Eu2+ ions are very diluted inside the host. 
The best fitting is reached with Ro = 11 A, Tso = 2.03 ms and 
CA = 0.3 C where C is the Eu2+ initial concentration in good 
agreement, with experimental T at 4.2 K equal to 1.98 ms, with the 
reasonable assumption of the absence of a selective doping only in 
K+ site and also with the nature of the involved transitions [12]. 

IV. C. 
3+ LaC13 - Gd 

The spectroscopy study of Gd3+ ions doped materials as LaC13 
is particularly interesting due to the characteristics of this 
rare-earth activator: i) a high energy of Stark components of 
the first excited 6P7/2 level (3.114,4 A; 3112,8 A; 3111,6 A; 
3111,3 A in LaC13) excluding any non-radiative transitions to the 
8S 7/ 2 ground state, contrary to spectra of other rare-earths which 
exhibit numerous multiplets in the visible range. ii) the rela­
tively long time constant of 6P7/2 (a few ms) which may be used to 
probe the energy transfer by an accurate analysis. iii) the very 
weak splitting of the 8S7 / 2 ground state «0.2 cm- l ). So the 
observed fluorescence lines are related to the excited level 
structure and at low temperature the splitting of 6P7/2 level gives 
information about the environment of Gd3+ ions. In LaC13, we find 
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three unequivalent sites. They could correspond to perturbation on 
at least one of the Cl- ion of the three types of Cl- ions around 
Gd3+ [13]. Site selection spectroscopy and time resolved spectro­
scopy show clearly an energy transfer between these sites (site I: 
3114,4 A; site II: 3114,6 A; site III: 3114,9 A) with very near 
time constant values (site I: T = 5.4 ms; site II: T = 6.4 ms; 
site III: T = 4 ms). For instance, under the excitation in the 
site I (32100 cm- l ) the decay intensity of the site II exhibits an 
initial rise time maximum at 0.4 ms which may be analyzed with a 
three-level scheme like f, 1 and 2 levels of Figure 1, where the 
1 and 2 levels belong to different Gd3+ sites. Another fascinating 
experimental result was recorded: under pumping in the 6P7/ 2 level 
(site I), an intense anti-Stokes emission 617/ 2 + 8S7 / 2 has been 
pointed out at T = 4.2 K. The integrated fluorescence intensity 
depends quadratically on the excitation power of the laser beam 
confirming a two-photon mechanism either on the same ion or on 
two different ions (see section III.C) involving a high excited 
level at 2 x 32100 cm- l of the f-d configuration giving rise to a 
Laporte's rule allowed transition (6P7/2 + f-d). However, we can 
distinguish them by the time constant and the initial rise of the 
anti-Stokes emission from 617/ 2 level populated by the non-radiative 
relaxations (see section III.C). In our experiments, the decay of 
617/2 was measured in different parts of the fluorescence line 
under excitation on the site I. We observe an initial rise time 
(tmax = 0.55 ms) different from those found previously except for 
the higher energy wing and we add that the time constants are 
equal to 4.5 ms, thus higher than the half-time constant of 6P7 / 2• 
Accordingly, it is difficult to choose between the two models more 
specially as the intensity at t = 0 is far from zero. Probably, 
the two mechanisms act simultaneously giving a resulting decay and 
its complexity can also be increased by energy transfer processes 
between the three types of sites. 

V. ENERGY TRANSFER IN STOICHIOMETRIC MATERIALS 

Substantial efforts have been dedicated in our laboratory to 
the investigation of the luminescence properties of the fully 
concentrated solids. One generally observes a diminution of the 
radiative quantum yield when the active ion concentration increases, 
a very annoying effect which severely limits the number of materials 
which can be efficiently used for lighting or laser applications. 
From a fundamental point of view, various processes seem to be 
responsible for concentration quenching, most of them being 
related to the existence of very efficient energy transfer between 
the active ions themselves and between these active ions and un­
controlled centers acting as non-radiative sinks (crystallographic 
defects non-luminescent chemical impurities noted traps in the 
previous section III.D). The experience shows, however, that 
reality needs more information and the necessity appears more 
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crucial when one deals with some fully concentrated materials in 
which strong luminescence is observed. 

Our group started this investigation with a heavy ion concen­
trated crystal Bi4Ge30lZ (BGO) [14]. This now well-known crystal 
(new scintillator) presented some very particular optical proper­
ties difficult to interpret. The absor~ion bands of the crystal 
were at higher energies than a usual Bi doped compound and the 
fluorescence time constant increased asymptotically when one lowered 
the temperature below 10 K instead of remaining constant due to the 
influence of the 3PO metastable level. The absorbing centers could 
not be interpreted any longer in terms of isolated ions. We have 
to introduce bismuth germanate clusters in which the excitation is 
self-trapped at low temperature and delocalized in the crystal at 
the benefit of fluorescing traps when the temperature is high 
enough. Because we dealt with broad bands we could not distinguish 
clearly between the various spectral features; therefore no 
further proofs could have been added to our qualitative inter­
pretations. That is why we turned our attention to the fluorescence 
of fully concentrated solids made with transition or rare-earth 
ions such as MnZ+, Tb3+ or Gd3+ and we could work with well-defined 
sharp spectra. A full lecture has been presented by one of us at 
the last Erice's school about manganese compounds as CsMnF3, 
BaMnF4 and RbMnC13 [15] and we cannot present them again but we 
would like to comment. 

V.A. Manganese Compounds 

In antiferromagnetic manganese systems the energy transfer 
processes are exclusively allowed by short range magnetic inter­
actions, that is to say superexchange interactions between ferro­
magnetically coupled near neighbor MnZ+ ions. This has been 
proved in various cases by looking at the fluorescence properties 
of these systems when submitted or not to an external magnetic 
field. For example, in CsMnF3, a three-dimensional system where 
only third near neighbors are coupled by ferromagnetic exchange, 
the applied magnetic field changes the nearest neighbor interactions 
from antiferromagnetic to slightly ferromagnetic which removes the 
magnetic selection rule and extends the delocalization of the 
optical excitations to all these ions. As expected, this effect 
manifests in fluorescence by a reduction of the emission intensity 
and decay time of the donor system formed by the intrinsic MnZ+ 
ions at the benefit of the acceptor traps; quenching traps as well 
as fluorescing traps (see section III.n). These shallow traps are 
MnZ+ ions sites perturbated by first second and third nearest 
neighbor impurities such as MgZ+, zn2+, CaZ+ and the deeper traps 
are formed by impurities such as NiZ+ or Fe3+ ions in concentration 
of a few ppm. With RbMnC13, it has been shown that the entire 
fluorescence is now seen to be essentially intrinsic without trap 
emission and it was possible to conclude to exchange character of 
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the dominant interactions responsible for the energy transfers in 
concentrated Mn2+ systems. Moreover, the results indicate a 
complete inefficacy of the electric multipolar mechanisms which 
could compete when exchange type energy transfers are forbidden 
by the selection rules [16]. 

V.B. Rare-earth Compounds 

First, we have studied the energy transfer mechanisms in TbF3. 
The continuous (OW) and time-resolved spectra (TRS) of the blue 
fluorescence SD4 + 7F6 (20604 cm- l ; 48S2.l A) under selective dye 
laser excitation in the lowest Stark component of the SD4 manifold, 
show the presence of both intrinsic and impurity induced trap 
emission lines (see Figure 1 of section III.D). At 4.2 K most 
of the emission originates from traps while at 10 K the intrinsic 
fluorescence is stronger. The thermal behavior indicates the 
presence of an efficient transfer between unperturbed ions and 
perturbed Tb3+ ions. On the basis of the experimental results a 
fast diffusion model (see section III.D) including shallow traps 
(Nl of Figure 1) and deeper traps (No of Figure 1) is proposed. 
The analysis of temperature dependence of the exponential tail 
of the deeper trap fluorescence decay, from 4.4 to 7 K, we have 
deduced an energy gap ~02 = 3S cm- l (see formula (16» that may 
be compared favorably with the spectral energy separation of 40 cm- l • 
In the same way, we get ~12 ~ 10 cm- l • The whole fitting of the 
intrinsic fluorescence decay from two level with the formula (17), 
we obtain m_ = -SS86 s-l and m+ = -2S0 s-l. As a proof of the 
model, these values ffi+ and nL were used to describe the decay 
curve of the trap with the aid of Eq. (19). The initial rise time 
as well as the decay curve were very well-fitted indicating a 
quite satisfactory agreement. In the fast diffusion regime the 
donor exciton decay should be essentially exponential with a rate 
constant T given by formula (13) which applies here, T = 179 ~s. 
This allows us to estimate an isotropic diffusion coefficient 
D = 8.6.10-10 cm2 s-l at 4.4 K [17]. 

By exciting in the SD4 manifold, we observe a uv anti-Stokes 
fluorescence from the upper SD3 level (26386 cm-1; 3788.7 A). The 
whole excitation spectrum of the most intense uv fluorescence line 
compares very well with the excitation spectrum of the blue fluores­
cence originating from the SD4 level and its integrated emission 
intensit~ depends first quadratically on the excitation pump power 
for low D4 exciton densities, then, linearly. The model which is 
proposed to interpret the anti-Stokes fluorescence is based on both 
the exciton-exciton annihilation and the cross-relaxation process 
between 5D3 + SD4 (5725 ± 60 cm- l ) and 7F6 + 7Fl (S703 + 97 cm-l ) 
due to good energy matching. So, when the intrinsic Tb1+ ions are 
excited into the lower 5D4 Stark component, the SD4 exciton density 
may be sufficient to allow exciton-exciton interaction. The coupled 
SD4 excitons then annihilate to create a biexciton having twice 
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their energy (41208 cm-l ) which corresponds to the absorption tail 
of the excited configuration 4f7 - Sd. After a rapid relaxation to 
the S03 level the S03 level population is depleted both by cross­
relaxation process (Wcr) mentioned above and by radiative process 
to ground state. Taking into account the deexcitation probabilities 
W2 and W3 of the levels S04 and S03' one can write the following 
rate equations (see Figure S) [18],[19]. 

N2 - W • N3 • N - W3 N3 2 cr f 

In the low pumping regime and assuming W3 « Wcr the S03 population 
is: 

-W N • tl cr f exp 

This predicts at long times, an exponential decay with a time 
constant half that of the intrinsic blue fluorescence. We find 
LUV = 89 ~s which agrees fairly well with the half value of the 
S04 exciton Lblue = 179 ~s as predicted above. In addition, the 
time t max = O.S ~s at which the uv fluorescence intensity reaches 
its maximum nicely correlates with: 

Wcr Nf 
Log 2W 

2 

Here, the short rise time behavior is related to the fast cross­
relaxation process between 503 and 504 and the observed decay time 
of the 503 level is L = 70 ns. 

GdC13 - 6H20 is another concentrated material analyzed by the 
group. We have encountered some difficulties because the hygro­
scopic properties of this crystal but we were able to observe 
similar results with those presented previously. There are a lot 
of Gd3+ perturbed ions playing an efficient trapping effect below 
20 K. We see the perturbed ions sharp lines in the lower energy 
wing from 3118 A to 3130 A of the 6P7/2 + 8S7/ 2 intrinsic emission 
located at 3ll7.S A. Their decays show different initial rise 
times with a gap energy dependence (see Figure 1). An anti-Stokes 
fluorescence has also been pointed out from 617/2 levels under 
pumping in 6P7/2 levels of perturbed ions as unperturbed ions 
illustrating the easy way of the two-photon absorption mechanism. 
At last, we must add that the diffusion process seems weaker than 
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in TbF3 host. Actually, the studies of the spectroscopic properties 
of GdGl3 fully concentrated material are in progress in order to 
determine the nature of the interactions between the Gd3+ perturbed 
and unperturbed ions. 

VI. SUMMARY 

We have presented various results obtained in our laboratory 
on the energy transfer processes in doped and stoichiometric 
materials using the new laser spectroscopy techniques. Now, the 
mechanisms may be studied as well for the Stokes fluorescence as 
anti-Stokes fluorescence which is still not very well understood. 
Further works are needed to know the exact electronic interactions 
between active ions, then, to give a better description of the 
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dynamical properties as the energy transfer in the hosts. 
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DYNAMICAL MODELS OF ENERGY TRANSFER IN CONDENSED MATTER 
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We present a study of direct and of indirect energy transfer 
in disordered materials. In the direct case we focus on the 
ensemble averaged survival probability of an excited donor. The 
indirect transfer i& treated in the framework of the continuous 
time random walk (CTRW) for which we derive the distribution of 
stepping times from the survival probabilities of the direct 
transfer. This distribution of stepping times is used to mimic 
the random walk on a disordered system. Based on the CTRW, we 
obtain the diffusion coeffficient D(t) for a trap-free random 
system; furthermore we introduce trapping centers and establish 
the decay laws due to trapping. We find that trapping shows a 
rich time dependence and that the onset of the asymptotic behavior 
for diffusion and for trapping may occur on widely different time 
scales. 

I. INTRODUCTION 

Time dependent energy transfer among impurity molecules in 

621 
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condensed media has recently been of considerable interest both 
experimentally and theoretically [1]-[6], since time dependent 
studies provide valuable insight in understanding the various 
mechanisms of excitation transfer among the impurities. Although 
we refer throughout this paper only to energy transfer, the theory 
accounts well also for problems of charge transport and 
recombination in amorphous materials [7]-[12]. Important examples of 
energy transfer are the electronic [1]-[6], the vibrational energy 
transfer[13] and the spin migration[14]. 

The energy transfer exhibits two limiting cases: on the one 
hand the direct, and on the other hand the indirect, multistep, 
mechanism. In the direct transfer case an excited donor transfers 
its energy directly to randomly distributed acceptors. One is 
then interested in the ensemble averaged decay law of the excited 
donor [3],[15],[16],[17]. This decay law can be expressed exactly for 
acceptors randomly distributed on a lattice or in a liquid, if the 
back-transfer to the donor is unimportant[17]. The indirect 
transfer problem where the excitation randomly hops in many steps 
over active sites in a trap free system, (eventually until 
encountering a trap), is more complicated [3],[4],[8],[9],[18]. 

In this paper we will consider a random environment which 
arises from the substitutional occupancy by active centers of 
sites on an ordered lattice. The random walk will then take place 
over the active centers only. When treating trapping by impuri­
ties, these will be taken to replace active centers. The trapping 
problem will thus include two types of disorder: the randomness 
of the carrier medium (active centers) and the random distribution 
of traps. In the diffusion problem one, however, faces only the 
first type of disorder, namely that due to the random distribution 
of the active centers. This can be viewed as a problem of a 
random walk on random lattices. In this case the situation is 
considerably more complex than for regular lattices[18] and one is 
forced to make use of approximating schemes. 

An app,roach which has been shown to be powerful for the 
general problems of the multistep transport in disordered systems 
is the continuous time random walk (CTRW). The CTRW ideas were 
suggested by Montroll and Weiss[19] who introduced the distribu­
tion function W(t) into the usual random walk formalism to discuss 
a random walk with random stepping times. This approach was 
elaborated later by Scher and Lax [8], [9] who applied the CTRW to 
transport in disordered systems by generalizing the functions W(t) 
to forms w(r,t) which couple the spatial and temporal disorder 
aspects. Applications of a decoupled scheme (i.e. w(E,t) = 
f(E)W(t» was also proposed by Scher and Montrol1[lOj. The 
connection of the CTRW to the master equation, which is the basic 
equation to describe the transport of a particle in a random 



DYNAMIC MODELS OF ENERGY TRANSFER 

medium was discussed by Bedeaux, Lakatos-Lindenberg and Shuler 
[20] and the connection to the generalized master equation was 
pointed out by Kenkre, Montroll and Shlesinger[21]. This later 
connection was studied only in a decoupled scheme, which corres­
ponds to the above mentioned Scher-Montroll approximation 
[10]. Recently Klafter and Silbey [22],[23] proved that 
the original random walk problem on a random lattice can be 
rigorously reduced to a CTRW formulation of the Scher-Lax types. 
The derivation makes use of projection operator techniques, 
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and w(!,t) is related to a self-energy (or a memory) function. 
However, the calculation of the self-energy is difficult and one 
has to look for the best possible approximations. Our purpose 
here is to provide concise framework for the problems of energy 
diffusion and trapping in random sysems in terms of the CTRW by 
starting from a single site type of approximation. We focus on 
the ensemble averaged probability ~(t) that no transfer from an 
initially occupied active center occurs during the time t[17]. As 
we will show in Sec. II this quantity can be used to obtain forms 
for the stepping time distributions ~(t) and ~(!,t). These 
approximate forms were used quite successfully to mimic the random 
walk on a random system [8],[9] for which the exact ~(r,t) is not 
known. In Sec. III we will treat the transport in the absence of 
traps and will establish the diffusion coefficient D(t) which 
follows from ~(!,t) in the CTRW framework.ln Sec. IV we introduce 
the traps and calculate the CTRW decay law due to trapping showing 
that different behaviors for the decay obtain for different 
classes of stepping time distributions ~(t). 

II. DIRECT TRANSFER 

In this section we present the ensemble averaged transfer 
from a donor molecule to randomly distributed acceptor molecules. 
We start our considerations by assuming that the positions of the 
donor and of the acceptors are fixed, so that the acceptors form a 
certain configuration! around the donor. The probability ($;t) 
that the donor did not transfer its energy during time t to any of 
the acceptors is exponential 

'l!(!;t) = exp[-t I w(.!)] = IIexp[-tw(.!)] 
P:! p:$ 

In Eq. (1) w(~) denotes the transfer rate to the acceptor at 
position X and the sum and product extend over all acceptors. 
Often encountered forms for w(;-) are 

(1) 

1 dS 
w(r) = - - (2) 
~ T s 

r 

for multipolar interactions and 
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1 w(E) =:r exp [y(d - r)] (3) 

for exchange interactions. The parameter s in Eq. (2) equals 6 
for dipole-dipole, 8 for dipole-quadrupole and 10 for quadrupole­
quadrupole interactions. The quantity yd in Eq. (3) is a measure 
of the range of the exchange interaction and is larger for shorter 
range interactions. We have chosen to scale (2) and (3) in terms 

-1 
of the transfer rate L of the donor-acceptor pair at nearest 
distance d. Forms (2) and (3) are only approximations to 
realistic transfer rates which may have a considerably more 
complex structure. 

The quantity of interest experimentally is not ~(!,t), which 
is due to a particular acceptor configuration, but the ensemble 
average of ~ over all acceptor configurations 

~(t) =I p(!)~(!S,t) 
! 

where p(!) denotes the probability with which configuration! 
occurs. 

( 4) 

We now consider a system in which active molecules ocupy the 
lattice sites in a random, non-correlated way with probability 
p. Eq. (1) thus reads with the donor located at the origin: 

~ (!}.;t) = exp[ -t I l; (x)w(x)] ( 5) 

where l;(E) are random variables which take only the values 1 and 0 
with probability p and 1-p respectively, depending on whether the 
site at distance E is occupied or not. The configurational 
average of Eq. (5) is (see Ref. (24) for other derivations): 

= IT '(exp(-tl; (,E)w(,E)]> ( ) 
E l; E 

= IT' [1-p + pe -tw(,E) ] ( 6) 
r 
~ 

Here use was made of the fact that the l; (,E) are uncorrelated. In 
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Eq. (6) the product extends over all lattice sites (excluding the 
origin) and the final form depends only on p and not on the 
configurations $. Eq. (6) is exact[17]. It is valid for all 
times and all concentratins of active molecules and it explicitly 
includes the structure of the underlying lattice. It also holds 
regardless of the particular form of w(r) and of the detailed 
structure of the transfer law for each donor-acceptor pair, 
exp [ -twA; r) ] • 

Eq. (6) gives the time dependent survival probability. There 
are however situations where one is interested in the ensemble 
averaged radiative efficiency n [16]. For example, much interest 
has recently arisen in the problem of luminescence quenching due 
to non-radiative tunneling in amorphous semiconductors[25,26]. In 
these luminescence quenching studies the excitation is initially 
localized at a radiative center from which it can either 
radiatively decay with rate T~l (TO is the radiative lifetime) or 
tunnel to a non-radiative center. The problem is a direct 
transfer problem, but we have to add the radiative lifetime to our 
earlier considerations. using Eq. (1) the modified decay N(t) for 
a particular configuration $ of acceptors (or non-radiative 
centers) is 

N(t) = exp(-t/T )If(K;t) o ~ 
(7) 

The radiative efficiency n is the branching ratio 

n 

-1 
T 

o 

-1 I T + w(r) o ~ 

,!E~ 

We are now interested in the 
acceptor configurations. We 
through a Laplace transform. 

00 

(8) 

value of n averaged of all possible 
notice that n and If (!; t) are related 

The Laplace transform of 'i' ($; t) is 

If ($;u) = f dt exp (-ut) 'i' (~.;t) = [u + L w(!)]-l (9 ) 

and, therefore 
o ~! 

-1 u=r 
o 

(10) 

Since both the Laplace transform and the ensemble averaging are 
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linear operators, it follows that 

<n> = T:I [<L'l' <!; t»] -1 = T :I[ Ul' (t)] -1 
u=r u=r 

(11) 

o 0 

where L represents the Laplace transform. Eq. (11) directly 
relates the averaged quantities <n> and'l'(t). Thus, if 'l'(t) is 
known,<n> follows by a simple integration[27]. 

Under the assumption of a low acceptor concentration a number 
of approximate forms for the donor transfer law have been derived 
using different procedures [15],[16],[28],[29]. We retrieve now these 
forms from the exact equations by taking the logarithm of both 
sides of Eq. (6) and by expanding with respect to p. From Eq. (6) 
[24],[30]: 

In 'l' (t) = -l: In (1-p {I -exp [-tw~ r )]}) = 
,E 

... k k 
- l: l: L {I-exp [-tw<.!)]} 

,E k=I k 

(12) 

where the last line is valid for small p (p < 1). For a densely 
packed medium the sum in Eq. (12) may be replaced by an integral 
(continuum approximation), thus obtaining for very small p,p « 1 

'l'(t) = exp (-wf{l-exp [-tw(,E)]}d,E) (13) 

where p is the density of molecules in the medium. Thus W is the 
concentration of active molecules. Interestingly, the approximate 
expression (I3) occurs frequently in many fields [9],[10],[15]-[17], 
[28]- [30] • 

For isotropic interactions w<.!) we have, therefore,[I7] 

8-1 'l'(t) = exp{-llV8Ppf[I-exp(-tw(r»]r dr} (14) 

where 8 is the dimensionality of the lattice and V8 the volume of 
a unit sphere in 8-dimensions. We insert now the forms (2) and 
(3) into Eq. (14) and obtain for isotropic mUltipolar 
interactions [24] 

(15) 
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where rex) is Euler's gamma function, and for isotropic exchange 
interactions [31] 
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(16) 

where the function ga(z) is defined through 

[ a-I ga (z) = M {1-exp -zexp ( -y) ]} y dy (17) 

A list of the properties of the function ~(z) is given in the 
appendix of Ref. (31). Formula OS) for a=3 and s=6 was derived 
in the energy transfer field by Forster[IS], for a=3 and s arbi­
trary the result was found in Inokuti and Hirayama[16]. 

An interesting extension of the results in Eqs. (14) - (17) 
obtains for structures which are not regular but have a fractal 
behavior[32]. Fractal structures are characterized by non-integer 
dimensionalities. It has recently been suggested that many 
disordered materials appear to be fractals; for instance linear 
and branched polymers [33],[34], and epoxy resins [3S]. On fractal 
structures the density of sites is not constant but length 
dependent[32]. This means that we have to replace the constant 
density in Eq. (13) by per), where [32]-[34] 

6-1l per) ~ r (18) 

a is the fractal dimension[32]! and a is the space in which the 
fractal structure is embedded a (a. The survival probabilities 
for direct transfer to acceptors randomly distributed on fractals 
are then: 

'i'(t) 6/s exp(-pAt ) 

for multiple interactions, and 

(19) 

'i' (t) = exp( -pBg (Ct») (20) 
6 

for exchange interaction. A, B, and C are independent of 
time [36]. 

Another useful extension of Eq. (14)ff is the decay law of 
the donor due to transfer to moving acceptors. For acceptors 
moving along given paths £(t) the decay due to a particular 
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acceptor configuration is[37] 

t 
'¥(~;t) = IT exp[ - J w[r(t)]dt] 

E£! 0 

(21) 

The average over the different molecular distributions follows as 
above [37] : 

t 
'¥ (t) = IT I [(l-p) + P exp [- J w [r ( t ) ] d t 1] (22) 

o 

Eq. (6) is a special case of Eq. (22), obtained by keeping 
all !(t) fixed. Through ret) the exact decay law (22) is 
explicitly motion dependent. For acceptors diffusing in a liquid 
the decay law is given by Eq. (22) averaged over all paths 
!(t) accessible to the liquid molecules. If the energy transfer 
is rapid on the time scale of the particle motion, the decay law 
for small p (p « 1) is given through[37] 

where E(t,r) is the solution of the differential equation 

3E [2 ]­at = TN! - w(r) E 

(23) 

(24) 

with initial condition E(o,!) = 1. In Eq. (24) D is the sum of 
the diffusion coefficients of the donor and the acceptor and V2 is 

r 
the ~-dimensional Laplace operator. In the case of isotropic ~ 
multipolar interactions, Eq. (2), the decay law turns out to 
be [37] 

00 

'¥(t) = exp[ -v~wir( 1 - ~)(f)~/s + v~W L 
n=1 

The first term of Eq. (25) reproduces Eq. (15); the first three 
coefficients C1, C2, C3 are given explicitly in Ref. [37] as 
functions of ~ and s and reduce for ~=3 and s=6 to the expressions 
of Yokota and Tanimoto[38]. 

III. DIFFUSION IN THE FRAMEWORK OF THE CTRW 

We now consider the indirect multistep transfer over a dis­
ordered system in the CTRW framework. We follow the Scher-Lax 
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model[8],[9], namely the transport occurs on an ordered lattice, 
while the disorder is contained in the distribution of stepping 
times W(t). We will use the expression calculated in Sec. II for 
~(t) in order to derive the distribution of stepping times W(t). 
We will follow the approximation suggested by Scher and Lax [8],[9] 
to relate W (t) to ~ (t): 

Ht) = - :t ~(t) (26) 

From Eq. (6) follows, 

-tw<!) 
w (t) = L pw<!)e {li 

-tw(E' ) 
[1-p + pe ]} 

(27) 

- L 1/I(E,t) 
r 
~ 

In Eq. (27) W(!,t) is the probability of an excitation jumping a 
distance! with stepping time t. In the continuum approximation 
and for low p, p « 1, 

w <! , t) '" pw(!) exp [ -tw(! )] ~ ( t) (28) 

where we have replaced the product in Eq. (27) by its form (6). 
Interestingly, Eq. (28) represents an example for a coupled 
stepping time distribution [8],[9],[39],[40]. 

Within this model the probability P<!,t) of finding the 
walker at site! at time t is given in terms of its Fourier and 
Laplace transforms [8],[22]: 

p<.~,u) 
141 (u) 

u 
1 (29) 141 (~,u) 

where I/I(~,u) is the Fourier-Laplace transform of 1/1 (E,t) defined in 
Eq. (28). The Laplace transform of the mean squared displacement 
<r 2(t» of the walker is given by (L represents the Laplace 
transform) 
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<r2(u» = L <r2(t» = 1: r 2p(!,u) = - v~ pQ.,u)I~=o 
"" 

from which with (29) it follows 

2 1 \ 2 
<r (u» = u[ 1-+ (u) L r i/I (!' ,u) 

.! 

The time dependent diffusion coefficient D(t) is defined as 

So that 

D{u) = 2A[l~(U)] 1: r~(!',u) 
.! 

(30) 

(31) 

(32) 

(33) 

Thus, W(!"t) is sufficient to determine in the CTRW approach the 
diffusion coefficient D(t) uniquely. In the continuum approxima­
tion we obtain by using (28) 

1: r2w(!',t) = L ['l'(t)O(t)] (34) 

with 

(35) 

from which Eq. (33) can be evaluated as: 

D(u) = L ['l'(t)O(t)]1 [2Au'l'{u)] (36) 

'l'{t) was extensively studied in Sec. II. The form (36) for D(u) 
is the main result of this section and we now consider for example 
multipolar interactions in 3 dimensions. With Eq. (2) one has: 

with 

O{t) = C t 5/s- 1 
1 

4rr dS 5/s 
c1 = r (1-5/s) .-l£. (-) 

s 't 

(37) 

(38) 
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From Eq. (15) one has: 

(39) 

with 
s 

C2 = r (1-3/s) ~ w (~)3/s 
3 T 

(40) 

In order to obtain the diffusion coefficient one generally has to 
evaluate the inverse Laplace transform of Eq. (36). In our case 
for short and long times the behavior of D(t) can be found 
directly from net) and ~(t) using Tauberian theorems[41]. 

For short times ~(t) is a slowly varying function of t, so that 

~ (u) ~ ! 
u 

and, using Eq. (37) 

c r (5/s) 
1 [~(t)n(t)].... 1 5/s 

u 

From Eq. (36) it now follows: 

(41) 

(42) 

c1r (5/s) C s . 
D(t) ~ 1-1 [ 5/S] ~ f t 5/ s- 1 = r (1-5/s) 2Jr3~ (: ) 5/s t 5/ s- 1 

6u (43) 

This result concurs with the expression obtained by expanding the 
1 functions in powers of - by Godzik and Jortner[39]. 
u 

and 

with 

For long times (small u) one has 

~ (-u)j 
1[~ (t)] =.t- ~ T j+1 

J=O 

1[ (t) (t)] 
<XI (-u)j 

C1 . ~T j+5/s 
J=O 

(44) 

(45) 
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Tk :: J dttk- 1 'l'(t) = ~ r(ks/3) C;kS/3 (46) 

Since the moments T j of Eqs. (44) and (45) exist, one has from the 
Tauberian theorems for longer times[41] 

D(t) "' 
C T 

1 5/s + O(l/t) 
6T 1 

typical for time independent diffusion. 

(47) 

We now consider the case of the distribution of stepping 
times ~(r,t) being decoupled. For nearest neighbors one then 
gets from Eq. (33) 

D(u) = 1. 2/2A ~ (u) 
1-1/1 (u) 

(48) 

where 1. is the nearest neighbor distance on the regular lattice. 
Eq. (48) may also be derived from simple random walk arguments 
such as will be used in the next section for the trapping case. 
We let the walk take place on a regular lattice of unit length 
1.. Thus the mean squared distance <r2) travelled in n steps and 
averaged over all random-walk realiza~ions is <r2) = nR.~e set 

n 
~n(t) for the probability of having performed exactly n steps in 
time t; then: 

co 

<r2)cj> (t) = 1. 2 I 
n n 

n=O 
np (t) 

n 

The generalized diffusion coefficient in 6-dimensions is given 
through Eq. (32). 

For simplicity, we restrict ourselves to the three­
dimensional case, and have from Eq. (49): 

D(t) nP (t) 
n 

(49) 

(50) 

Furthermore, in our model, all steps occur with the common 
stepping-time distribution 1/I(t). Thus ~n(t) obtains from 1/I(t). 
Setting f(u) for the Laplace transform of f(t), one has for 
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~n(u)[42-45] : 

~ (u) = [1jI(u)]n [l-1ji(u)] lu , (51) 
n 

the result of a renewal process. The Laplace transform of ~ (t) 
is, therefore: 

IH (t)] = [Iji(u)]n [l-lji(u)] - 6 n n,O (52) 

since ~n(t=O) = 0n,O. Inserting Eq. (50) it follows that: 

00 

D(u) (R. 2/6 ) I n {[ Iji (u)] n _ [Iji (u)] n+l} 
n=l 

00 

(R. 2/6 ) I [1jJ(u)]n (53) 
n=l 

(R. 2/6 ) Iji (u)/[ l-lji (u)] 

IV. TRAPPING IN THE CTRW MODEL 

In this section we consider the trapping problem of an 
excitation which randomly hops over in a disordered system. Here 
we follow closely the procedures developed with Zumofen in Refs. 
[46]-[49]. The traps are taken to be randomly distributed on the 
lattice, with probability p, and the excitation is to be trapped 
instantaneously at the first encounter of a trap. Denoting by Ru 
the number of distinct sites visited in n steps one has for the 
probability ~ that the walker survived the first n steps [46]-[48]: 

n 
R -1 

~ = «l-p) n > (54) 
n 

where the average extends over all realizations of the walk. In 
Refs. [46] to [48] there is a discussion of the forms ~ for different 

n 
lattice types and dimensions, by using cumulant expansions of the 
distribution of Ru. For simplicity only the first cumulant Sn' 
the mean number of sites visited in n steps, Sn = <Ru> will be 
considered here. Furthermore, we approximate Sn by Sn = an, an 
expression which holds well in three dimensions for larger 
n[19],[48]. Then for a low trap concentration, p « 1, one obtains 
the decay law ~ ~ exp (-pan). This simplified form does not have 

n 
any explicit random-walk dependence. Following now the same 
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development as in Eq. (49), one obtains: 

00 00 

w (t) = L w ~ (t) L e -pan~ (t) 
n=O n n n=O n 

Using Eq. (52), the Laplace transform of wet) is readily 
summed [42]-[45]: 

00 

w (u) = 1-4 (u) L 
u n=O 

Equation (56) relates the decay law to ~(u). 

(55) 

(56) 

Concentrating on the diffusion coefficient and on the decay 
law, one is led to consider the role played by ~(u) in Eqs. (53) 
and (56). The simplest cas= obtains for an exponential steppiny 
time distribution~ ~(t) ='11 exp(-t/'l). Then~(u) = (l+ur1)­
and thus D(u) = R, 1(6ur 1) and 

[ -pa -1 ] -1 w (u) = (l-e ), 1 + u 

The inverse Laplace-transform is here straightforward: D(t) 
R, 2 I (6, 1) (a constant) and 

W (t) = exp [(e -pa_1)t/, 1] 

i.e an exponential decay for all times[42], less straightforward 
is the situation for general forms of ~(t). As discussed in 
Ref. [42 ],two cases of particu~r ~nterest are encountered: In the 
first case, all moments, j = J 0 t~ (t)dt are finite; then ~ (u) 
admits an expansion in powers of u: 

00 

1jJ(u) L 
j=O 

1-ur 1 + • • • 

In the second case, 1jJ (t) has a long-time tail, ~ (t) ~ t-1~ 

(O<e<l) so that already J~ op(t)dt diverges. Then 

(57) 

H u) = 1 - r (l ~ )u~ If> + • • • ( 58) 
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usiny W(u) given by Eqs. (57) and (58) one has, respectively, 
D(u) = u- F(u) and D(u) = u-6 F(u). Here we let F(u) denote a 
slowly varying function of u, for u'" 0 (49), [50) .. From Tauberain 
theorems we may now obtain some information about D(t), but the 
procedure required additional conditions. On physical grounds 
D(t) should be a positive, continuous and monotonous function of 
time. Then, from Theorem 3 on page 551 of Ref. [50], one concludes 
that[49], for long times: 

(59) 

if ~(u) is given by Eq. (57), whereas: 

(60) 

if ~ (u) is given by Eq. (58). 

Turning now to the case of the decay law, we remark that from 
Eq. (56) one has for ~ (t) ~ t- l -6 [43]: 

~(u) ~ [r0-6)/a]i-1F(u) 

where again F(u) denotes a slowly varying function of u. Again 
arguing that ~(t) is positive, continuous and monotonous we obtain 
as above (see also Ref s. [43] and [49]): 

~(t) ~ t-6/(paa) (61) 

for long time, and recalling that p is small, p «1. For ~(u) 
given by Eq. (57) one has: 

~ (u) ~ • 1[ l-e -pa+. lue -pal -1 ~ [u + pal. 1] -1 (62) 

Under the same physical conditions, one obtains from the same 
Tauberian theorem the rather disappointing result that for t ... m 

the integral J ~ ~ (1; )dt is of the order of [i + ::l -1 i. e. it has 

an upper bound of the order • / pa. As in Ref. [43], a form 
obviously compatible with Eq. (62) is the exponential decay: 

~ (t) 
-pat/. 1 

e (63) 
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This form is, however, by far not the only one that leads 
to ~(u) "" [u + pa/"rlrl. In Ref. [42] it was shown (for some 
stepping times in current use in the theory of energy transfer) 
that, after the short onset period, Eq. (63) provides a reasonable 
description of the decay for moderately long times. Also in Ref. 
49, by Zumofen, Klafter and Blumen the inverse Laplace-transform 
of Eq. (57) was analyzed numerically for several classes of ~(t), 
and it was demonstrated that in general, for very long times, 
behaviors very different from Eq. (63) may develop. 
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ENERGY TRANSFER AND ELECTRON TRANSFER IN PHOTOBIOLOGICAL, 

PHOTOCHEMICAL, AND PHOTOELECTROCHEMICAL PROCESSES 

(Abstract) 

A. Nozik 

S.E.R.I. 
1617 Cole Boulevard 
Golden, Colorado 80401, USA 

ABSTRACT 

The conversion of radiant energy into stored chemical potential 
is an extremely important process. It occurs in biological photo­
synthesis, as well as in the nonbiological approaches to the con­
version of solar energy into fuels and chemicals. All of these 
biological and nonbiological approaches to the photoconversion of 
light into energetic chemical bonds can be classified as either 
photobiological, photochemical, or photoelectrochemical processes. 
The former process depends upon natural photosynthesis, while the 
latter two processes depend on inorganic and/or organic photoactive 
materials, such as semiconductors or melecular chromophores. All 
of the processes rely on the efficient transfer of excitation energy 
from the light-absorbing site to another region of the system that 
consequently exhibits enhanced electrochemical potentials for 
oxidation and reduction reactions. The importance and role of 
energy transfer vis a vis charge transfer processes are widely 
different in photobiology, photochemistry, and photoelectrochemistry. 
These roles were described and compared for the three photoconver­
eion approaches to solar energy utilization. 
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AN EXAMPLE OF IDENTIFYING THE SPECIFIC MECHANISM OF 
RESONANT ENERGY TRANSFER: Sb3+ + Mn2+ IN FLUOROPHOSPHATE PHOSPHORS 
(Abstract) 

ABSTRACT 

R.L. Bateman 

General Electric Company 
Nela Park, Compo 1364 
Cleveland, Ohio 

The kinetics of energy transfer from antimony donor to man­
ganese acceptor in fluorophosphate phosphors has been studied for 
the purpose of identifying the specific mechanism of resonant 
energy transfer (1). By comparison of the manganese concentra­
tion dependence of the experimental donor quantum yield and of 
the emission decay curves with the theoretical calculations for 
dipole-dipole, dipole-quadrupole, and exchange mechanisms, the 
energy transfer was found to take place through the exchange 
mechanism. The probability per unit time for the energy trans­
fer by exchange is given by P=KR16e-2R/L sin2 e:Igs2~ where the 
empirical parameters were found to be K-4B.7A R ~ sec-l and 
L=O.55R. In the absence of manganese acceptors add for the low 
donor concentrations investigated, the antinomy emission decay 
curve was found to be exponential over more than two orders of 
Magnitude with a lifetime of 7.65 + O.05~ sec. 
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(1) T.F. Soulves, R.L. Bateman, R.A. Hewes, and E.R. Kreidler, 
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ENERGY TRANSFER AND ANDERSON LOCALIZATION IN RUBY ELECTRIC FIELD 

AND UNIAXIAL STRESS EFFECTS 

E. Duval and A. Monteil 

Spectroscopie des Solides - E.R.A. 1003 du CNRS 

69622 Villeurbanne - France 

ABSTRACT 

Measurements of the effects of an electric field and a 0xz 
uniaxial stress on the single to pair energy transfer, would 
suggest a new model for energy diffusion among single ions. The 
non radiative resonant energy transfer would be rapid inside 
E-sublattices made inequivalent by electric fields and slow between 
these E-sublattices. It is shown that earlier experimental results 
do not conflict with this model. 

I. INTRODUCTION 

Since the work of Imbusch [I] on energy transfer between 
single ions and pairs it has been generally believed that excited 
Cr 3+ ions in pink and red ruby resonantly transfer their energy to 
neighbouring ions rapidly. The exponential decay of RI line [2] 
would indicate that the diffusion among the single ions is rapid 
in comparison with the direct transfer from single ions to pairs. 
This situation favoured the existence of the Anderson transition 
from delocalization to localization of the optical energy. Effec­
tively Koo, Walker and Geschwind [3] revealed the Anderson locali­
zation and mobility edges in ruby by measuring the single to pair 
transfer rate. 

since 1980 most researchers think that the resonant 
energy transfer among Cr 3+ ion is slow. The conclusion is based 
on the electric field experiments performed by Jessop and Szabo [4], 
and by Chu et al [5] • The results of these experiments show that 
the resonant energy transfer is slow (close to 1 m sec- 1 for 
0.8 Cr % ruby from Jessop and Szabo) between Cr3+ ions which can 
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be differentiated by an electric field directed along the optical 
axis. They apparently agree with grating experiments via degenera·te 
four - wave mixing. Liao et al [8] found that the diffusion length 
for the optical energy is less than 20 nm. Recently Jessop and 
Szabo [9] did not obs~rve Anderson transition by measuring the 
coherence time T? by photon echoes technics: the transition from a 
localized to an ~xtended state would be followed by a change in TZ. 
Finally, theoretical study of the influence of off-diagonal disorder 
on the localization would confirm the absence of Anderson transition 
for chromium concentration less than 10 % [10] 

In spite of these results the evidence is not conclusive with 
regard to a slow resonant energy transfer among Cr3+ ions and to the 
absence of an Anderson transition in ruby. First of all if a slow 
resonant energy diffusion exists the energy transfer from an excited 
chromium to a pair must be direct, which conflicts with the exponen­
tial decay of the RI line. On the other hand a direct single to pair 
transfer without diffusion cannot explain the results of Koo et al. 

The experiments which are considered as decisive by most 
researchers and which agree with a slow resonant energy transfer 
are the Jessop and Szabo [/+] and Chu et al [5] transient electric 
field experiments. It is shown that the resonant energy transfer is 
slow between the two sub lattices (E-sublattices) differentiated by 
an electric field directed along the optical axis. But these expe­
riments do not exclude the possibility of a rapid energy diffusion 
in each E-sublattice. A uniaxial stress directed in a specific 
direction differentiates two sublattices (0 - sublattices) which 
are different from the E-sublattices. We have measured the effects 
of such a uniaxial stress and an electric field separately on the 
single to pair transfer. We found that the uniaxial stress effect 
is strong and that of an electric field negligible. 

In section II the two types of sublattices, E-sublattices and 
o -sublattices, are compared. In section III the experimental 
results are described. In section IV our experimental results are 
discussed in comparison with the numerous experimental results 
obtained by other researchers. It is shown that the hypothesis of 
a resonant energy transfer among Cr 3+ ions, which is rapid inside 

an E-sublattice and slow between the E-sublattices, can inter­
pret most experimental results. 

II. E-SUBLATTICES AND cr-SUBLATTICES 

In Figure I, the projection of the corrundum lattice on a 
(2 I I 0) plane is shown. The cation sites are not centrosymmetric, 
but the sites I and II are symmetric by inversion (i). Then an 
electric field orientated along the trigonal symmetry axis diffe­
rentiates the sites of type II from sites of type I or type II. 
It is easily seen that the cations of type I are arranged along 
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-0.73 +1.65 -0.92 +1.65 -0.73 
o 0 

-165 +O.9VJ~73 
Fig. 1. Projection of a .A1203 on (2 i i 0). The vertical distan­

ces (in R) from the oxygens to the plane of projection are 
given in parentheses. The metal ions lie at height zero 
[14] . • Aluminum ions, 0 oxygen ions. 

different lines where they are respectively situated in 4th N.N. 
positions like the cations I and III or II and IV. Due to the 
trigonal symmetry there are three equivalent lines which go through 
a same cation. Therefore in an E-sublattice of corundum the cations 
are situated in 4th N.N. positions and there are two different 
E-sublattice. 

Sites II and III are symmetric by a ~ -rotation around an axis 
parallel to the x-axis (Figure 1), and, as has already been noticed, 
sites II and III are symmetric by inversion. From the symmetry, if 
we apply a 0xy uniaxial stress, sites I and II are equivalent, 
sites II and III are not equivalent and therefore I and III are not 
equivalent. A 0xz uniaxial stress creates two 0-sublattices diffe­
rent from the two E-sublattices : it lifts the degeneracy of two 
Cr3+ ions in a same E-sublattice. The existance of the two differ­
ent cr-sublattices has been clearly indicated by the effect of 
a crxz stress on the 4Al + 4T2' 3Al (3T2) + 3T2 and lAl + lTl zero 
phonon lines of Cr3+ [11], V3+ [12], Co3+ [13] ions respectively. 

III. EXPERIMENTAL 

The aim of the experimental work was to compare the effect 
of an electric field and the effect of a 0 xz uniaxial stress effect 
on the single (Rl line) to 4th N.N. pair (N? line) transfer. From 
the Jessop and Szabo [4] and Chu et al [S]~ transient electric 
field experiments, we expect a negligible effect with an electric 
field, and a greater effect with a 0xz uniaxial stress, if the 
resonant transfer among single ions is rapid. 

The experimental results were presented by Monteil in his 
thesis [14] and by Monteil and Duval [15] . In Figure 2, the 
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Fig. 2. Normalized pair (N2line) to single ion emission 
(R line) in ruby as a function of a pressure applied 
al~ng an axis in the (xz) plane orientated at n/3 
with respect to the z trigonal axis. 

IN2/IRI ratio is represented as the function of a pressure applied 
along an axis in the xz plane orientated at 1T /3 with respect to 
the z trigonal axis : for this orientation the crystal is submitted 
to a axz stress. The measured intensity IN corresponds to the N2 
fluorescence excited by transfer from single ions. Figure 2 shows 
that, at very low temperature (T = 2K), IN2/IRl decreases rapidly 
with the applied pressure in a 0.1 Cr % crystal, and remains prac­
tically constant, at least with the lowest pressures, in more 
concentrated crystal (0.25 Cr %). The axz stress effect decreases 
with the temperature and it is equal to zero for temperatures 
higher than 77 K. As is expected, the electric field effect is 
negligible in agreement with the works of Jessop and Szabo [4] 
and Chu et al [5]. However we must point out that pressure applied 
along the y axis or along the z-axis has an effect on the single 
to pair transfer, but particularly at the lowest pressures this 
effect is not so great as at a pressure which induces a axz stress. 
This last result is surprising and must be explained. 

Unfortunately it is not possible to observe directly the 
splitting of the RI line due to the axz uniaxial stress which lifts 
the degeneracy of the two a-sublattices, because it is smaller 
than the inhomogeneous broadening. From the corresponding splitting 
measured on the 4A2 -+ 4T2 zero-phonon line [II] it is possible to 
estimate that the s?litting of RI line is close to O. I cm- I for 
the highest applied stress. 
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IV. DISCUSSION 

IV.A. Rapid or Slow Nonradiative Resonant Transfer? 

At present the experimental data obtained indicate two opposing 
viewpoints regarding the energy transfer. (I) The non radiative 
resonant energy transfer among the single Cr3+ ions is slow. T.his 
assumption involves a dipole-dipole interaction responsible for 
this transfer ; a microscopic inhomogeneous broadening ; the non­
existence of the Anderson transition from a localized state to an 
extended state; and a direct single to 4th N.N. pair energy transfer 
at very low temperature. (2) The resonant energy transfer among the 
single Cr3+ ions is rapid inside an E-sublattice and slow between 
E-sublattices : this rapid resonant energy transfer in relatively 
concentrated crystals proceeds from the super-exchange interaction 
a macroscopic inhomogeneous broadening is crucial to this rapid 
transfer ; the Anderson transition can exist in relatively small 
domains ; the single to pair transfer goes through the non-radiative 
resonant energy diffusion at very low temperature. 

In a recent publication entitled "Resonant energy transfer in 
ruby and Anderson localization" Gibbs et al [16] summarize the 
experimental results which lead to the first viewpoint ; (I) Grating 
experiment via degenerate fourwave mixing [6]-[8], (2) Transientelec­
tric fields [4] [5], (3) Fluorescence line narrowing [21, [17], [18]. We 
have already noticed that the grating experiments are not decisive 
for the first viewpoint. As is suggested by Liao et al [8] a rapid 
single ion diffusion can occur on distances smaller than the smal­
lest distances(~ 20 nm) which it is possible to qetermine for dif­
fusion by the transient grating experiments. On the other hand, 
the transient electric field experiments show only that the single­
single transfer is slow between E-sublattice but not inside an 
E-sublattice. 

The FLN experiments are interpreted by a microscopic inhomo­
geneous broadening if we assume a slow resonant non radiative 
transfer. On the other hand, they can be interpreted by a macrosco­
pic inhomogeneous broadening if we assume a rapid transfer. But 
they do not prove either point of view. Due to the ~(=0.38 cm- I ) 
splitting of the ground level and the inhomogeneous broadening, 
when the RI line is excited at the V energy, three lines at V -~, 

V and V + ~ are observed. If rapid resonant transfer exists 
between two Cr3+ ions submitted to different crystal fields so 
that the energy difference is ~ ,we would observe a fourth line 
at V + 2 ~. Selzer and Yen [17] found that this fourth line arises 
slowly by radiative resonant transfer but not by non-radiative 
resonant transfer. Assuming rapid non radiative resonant transfer 
between Cr3+ ions submitted to a same crystal field they conclude 
that there is a macroscopic inhomogeneous broadening. On the 
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contrary Gibbs et al [16],generalizing the slow resonant transfer 
observed by a transient electric field experiment,conclude that 
the experiment of Selzer and Yen [17] confirms that the resonant 
non radiative transfer is slow. Furthermore they claim that the 
non radiative spectral energy transfer which is independent of the 
energy mismatch as observed by Selzer et aI, is consistent with a 
microscopic inhomogeneous broadening. Their reason is that a gradual 
spreading of the narrow components until they fill the full inhomo­
geneous line is not observed as would be expected. But, it is easy 
to imagine that resonant Cr3+ ions in a same domain or in distinct 
domains are in contact with non-resonant Cr3+ ions in different 
domains. We will propose a model for such a situation. 

To sum up, these three types of experiments are not decisive 
for the non-existence of a rapid resonant non radiative transfer 
inside domains. The effect of the uniaxial 0xz stress and of the 
electric field on the single to pair transfer agrees with non 
radiative resonant single-single transfer which is rapid inside 
an E-sublattice and slow between E-sublattices. Furthermore these 
experiments are interpreted more easily by a super exchange inter­
action responsible for the rapid transfer than by a dipole-dipole 
interaction. When a 0xz is applied the concentration of resonant 
Cr3+ ions is halved. For a 0.1 Cr % ruby it is possible to find 
that the mean transfer probability is divided by a factor three, 
and by a factor two for a 0.2 Cr % ruby, if the superexchange 
interaction is effective. If the dipole-dipole interaction is 
responsible for the transfer, the transfer probability would be 
divided by a factor two at any concentration. Experimentally, 
at the strongest applied pressure (7.5 . 107 N/m2) and for a 
0.1 Cr % ruby the transfer probability would be divided by a factor 
greater than two. Therefore it is not possible to interpret these 
experimental results by a dipole-dipole interaction responsible for 
the rapid resonant transfer. 

The reduction of the 0 xz effect when the concentration is 
increased from 0.1 Cr % to 0.25 % is surprising and interesting. 
At first we should point out that for a super exchange interaction 
the effect of a oxz uniaxial stress on the transfer probability 
decreases with the Cr 3+ concentration, as described above. But 
this decrease with the concentration is not sufficient to explain 
the experimental data. Another explanation is the following. The 
splitting induced by a 0 uniaxial stress which lifts the degene­
racy of the two E-sublat£~ces is smaller than the inhomogeneous 
broadening. Then the effect of such a 0xz uniaxial stress is pos­
sible in our model if the broadening is macroscopic. However, the 
broadening increases with the concentration : it is multiplied by 
a factor 1.5 when the concentration is changed from 0.1 % to 0.25 %. 
One could argue that the microscopic broadening increases with the 
concentration with respect to the macroscopic broadening, which 
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would explain the reduction of the 0xz uniaxial stress effect with 
the Cr concentration. Another explanation will be discussed in the 
sequel : the splitting of the two E-sublattice would be smaller 
than the mobility edge Ec of Koo et al [3] in 0.25 Cr % crystal. 

It is also observed that the effect of the 0 xz stress 
decreases with the t'emperature. This experimental result can be 
interpreted easily. When the temperature increases the phonon 
assisted transfer becomes stronger than the resonant transfer. 

This model does not explain the effect of a 0 yy uniaxial 
stress. A trivial explanation could be an imperfect orientation 
of the crystal or an inhomogeneous applied uniaxial stress. We 
have verified that the orientation error is less than 3 degrees. 
Another explanation would be the following. If the cation sites 
are equivalent with respect to the Oyy stress in a pure corrundum 
crystal it is not necessarely true in a ruby crystal in which the 
summetry is broken by the ~resence of Cr3+ ions or other impurities. 
In an E-sublattice two Cr3 ions separated by an even number of 
AI-O bonds are non-equivalent and the effect of a Oyy stress can 
be different on the one and the other. Therefore the Oyy stress 
would have a qualitatively similar effect as the 0xz stress on the 
resonant diffusion. 

At the present time it is not possible to claim with certainty 
that the single to pair transfer goes through a rapid non radiative 
resonant transfer among single ions in E-sublattices. If the direct 
resonant transfer from singles ions to 4th N.N. pairs is accepted 
the effect of uniaxial stress effect can be interpreted by a shift 
of the RI line with respect to the 4th N.N. transitions which are 
very near to the RI lines, like 4KI and 4H3 and perhaps 4I3 transi­
tions [19] • Such a shift is observed with respect to 4KI and 4H3. 
It is approximately equal to 0.1 cm- I at 108 N/m2 [14] • It would 
decrease the resonance between RI line and pair lines. 

Several objections to this last interpretation can be raised : 
(I) we do not observe any difference in the shift of RI line with 
respect to pair lines when the applied pressure is along the y-axis 
or along an axis at ~/3 from z-axis in the (xz) plane. Now the 
effect for the second orientation when a 0xz uniaxial stress is 
present is larger ban for the y-orientation (Fig. 3 and 5). (2) 
The maximum of the single to pair transfer corresponds to the maxi­
mum of the RI line and it is not shifted towards the pair lines 

[14] .(3) The decrease of the uniaxial stress effect observed when 
the concentration is increased, is not explained easily by the 
direct transfer. When the concentration of chromium is changed from 
0.1 % to 0.25 % the width of the RI line is multiplied by 1.5. 
We would expect a reduction of the uniaxial stress effect by about 
the same factor. Experimentally this factor is stronger since the 
effect becomes negligible f~r a 0.25 Cr % ruby (Fig. 2). 
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IV.B. Anderson Transition 

The aim of the research on the energy transfer in ruby is the 
possible existence of an Anderson transition between localized and 
extended states. The experiment of Koo et al [3] which showed the 
presence of mobility edges was very exciting. Unfortunately new 
experiments performed to find the mobility edges again were unsuc­
cessful [9]-[20]. Certainly the observation of these mobility edges 
depends strongly on the nature on the samples and more precisely 
on the inhomogeneous broadening. 

According to Anderson [ZI] a critical concentration exists 
below which the excitation is localized if the variation as a func­
tion of the distance between the Cr3+ ions is faster than l/r3. The 
exchange or superexchange interaction which varies exponentially 
with r can give rise to an Anderson transition. Measurements of 
energy transfer time TZ from single ion to 4th N.N. pairs performed 
by Monteil and Duval [14],[2Z] as a function of the chromium concen­
tration are well interpreted by a diffusion among single ions due 
to a super exchange interaction. If C is the chromium concentration 
the experimental data at very low temperatures are fitted by the 
following equation : 

1 5 -1/3 -1 
-- = Z.3 x 10 C exp(- 0.69 C ) s 
TZ(O) 

(1) 

At temperatures lower than 50 K,I/Tz is linear with the tempe­
rature like the spectral diffusion among single ions [Z] • It is 
found [14] t [Z 3 ] : 

(2) 

Similar equations are determined for the transfer towards the 3rd 
N.N. pairs. This last result is an argument for a single to pair 
transfer through the single-single phonon assisted transfer. Fur­
thermore it is confirmed that the superexchange interaction is 
responsible of this transfer because the variation of AZ as a 
function of the chromium concentration C 1S identical with the 
variation of I/TZ(O) : 

3 -1/3 -1 -1 AZ =2.3xlO Cexp(-0.65C )s K (3) 

These experimental results would show that the Anderson transition 
is possible in ruby. However to observe mObility edges on the 
inhomogeneous broadened RI line the microscopic broadening must be 
larger than the macroscopic one. If the macroscopic inhomogeneous 
broadening is preponderant the Anderson transition can be effective 
in domains. From the transient grating experiments the dimensions 
of these domains would be smaller than 20 nm [8] . We can consider 
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that in the sample used by Koo et al [3] the inhomogeneous broade­
ning was rather microscopic while it was macroscopic in samples 
used by Chu et al [20] , and Jessop and Szabo [9], who did not 
observe mobility edges. 

In our experiments which show the effect of a 0xz uniaxial 
stress on the single to pair transfer, the quenching of this effect, 
which appears when the chromium concentration increases, could be 
interpreted by the presence of mobility edges. In fact the splitting 
induced by 0xz stress between two o-sublattices in one E-sublat­
tice where the transfer can be rapid, is a perfectly microscopic 
energy mismatch. Now in the 0.1 Cr % ruby this splitting would be 
larger than the mobility edge Ec, and smaller in the 0.25 Cr % 
ruby. 

In a recent paper Huber and Ching [10] found a mobility edge 
when the Cr concentration is equal to 10 at %. By their calculation 
the localization occurs at this high concentration because of the 
off-diagonal interaction. However, from Elyutin's [24] theoretical 
result concerning the influence of the off-diagonal disorder on the 
localization, a much weaker concentration would be found. Further­
more the result of Huber and Ching conflicts with the theoretical 
works of Antoniou and Economou [25] , and Klafter and Jortner [26] 
which show that a negligible effect of the off-diagonal disorder 
on the localization regarding the diagonal disorder exists. 

IV.C. Internal Electric Fields and Energy Transfer 

Several reasons can be found to explain the more rapid resonant 
transfer in a E-sublattice : the angles between AI-O bands are great, 
the lines of AI-O bonds are not broken. Therefore the super exchange 
would be strongest in these sublattices. However, a simple reason 
would be that the ionic impurities with a charge different from the 
ones of A13+ and 02- respectively, or defects, create random elec­
tric fields in the crystal which separate, like the applied electric 
fields, the Cr3+ ions into two E-sublattices. This assumption is 
very likely. For a concentration of an impurity such Mg2+ equal to 
10 ppm a Cr3+ ion would be submitted to a mean electric field equal 
to approximately 15 kV/cm. If this electric field is orientated 
parallel to the trigonal axes the corresponding splitting of the 
Rl line would be equal to 0.1 cm- 1• Furthermore Jessop and Szabo 

[27] suggested that the broadening of the Rl line in their dilute 
ruby crystals is characterized by a Holtsmark shape specific to 
random electric fields. 

with these internal electric fields the inhomogeneous broade­
ning between E-sublattices would be microscopic, and macroscopic 
in an E-sublattice where fast resonant transfer can occur. It is 
an additional fact which prevents the observation of mobility edges: 
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the inhomogeneous broadening between E-sublattice hides the 
inhomogeneous broadening in a E-sublattice. 

On the other hand, the inhomogeneous broadening due to internal 
electric fields would explain the two surprising characteristics 
of the spectral energy diffusion [2] : (1) independence of the 
energy mismatch, (2) one-phonon assisted transfer. The energy mis­
match can be relatively large even between two next neighbour Cr3+ 
ions in two different E-sublattices : the spectral diffusion would 
be governed by the microscopic inhomogeneous broadening between 
E-sublattices, and the resonant spatial energy diffusion by the 
macroscopic inhomogeneous broadening (see section 1 of this discus­
sion and the paper of Gibbs et al [16] ). 

The one-photon assisted energy transfer among single ions is 
surprising, principally because the wavelength of the phonons which 
have an energy equal to the energy mismatch is much longer than the 
distance between two Cr ions which transfer their energy [28J,[29]. 
If in the ruby crystal there are two E-sublattices split by inter­
nal electric fields, we can assume that the spectral transfer bet­
ween the two sublattices is induced by the interaction with optical 
phonons which are odd with respect to the cation site. The compo­
nent of the vibration parallel to the optical axis has an opposite 
effect on the two different sublattices, like the electric field. 
The modulation of the ep.ergy of two next neighbour Cr ions in two 
different E-sublattices is out of phase, and then the energy trans­
fer can occur between these two non-resonant next neighbour Cr 
ions. 

V. CONCLUSION 

The measurements of the effects of a 0xz uniaxial stress and 
of an electric field on the single to pair energy transfer are well 
interpreted if we assume a non radiative resonant transfer which 
is rapid inside the E-sublattices differentiated by an electric 
field, and slow between these two sublattices. Without an applied 
electric field these two E-sublattices would be still split by 
internal electric fields induced by impurities or defects : which 
explains the slow resonant transfer between E-sublattices. The 
rapid resonant transfer takes place in domains, the size of which 
is smaller than 20 nm and is determined by the distribution of 
impurities inducing electric fields. 

The inhomogeneous broadening due to internal electric fields 
is macroscopic inside one or other of the E-sublattices, and 
microscopic between the two E-sublattices. The presence of internal 
electric fields which lifts the degeneracy of the two E-sublattices 
would explain the one phonon assisted spectral transfer which is 
independent of the energy mismatch. 
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It is possible that Anderson transition exists in ruby inside 
domains. However mobility edges cannot be observed by sweeping the 
inhomogeneous Rl line when the inhomogeneous broadening due to 
internal electric fields is dominant or when the macroscopic inho­
mogeneous broadening is larger than the microscopic broadening. 
However, the quenching of the ax uniaxial effect on the single 
to pair transfer with the increas~d concentration could be due 
to the presence of mobility edges. 

The model which has been presented for the non radiative 
transfer agrees with all the crucial experiments. However it must 
be confirmed by experiments which enable direct observation of the 
rapid resonant transfer inside E-sublattices. Such experiments are 
in progress. 
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TIME-RESOLVED STUDIES OF ENERGY TRANSFER 

ABSTRACT 

R.C. Powell 

Department of Physics 
Oklahoma State University 
Stillwater, OK 74078, USA 

The dynamics involved in the transfer of excitation energy 
among impurity ions in solids is directly reflected in the time 
dependence of the energy transfer rate. In this lecture experi­
imental techniques are discussed which allow the determination of 
this time dependence. Special emphasis is given to the techniques 
of site-selection spectroscopy for studying spectral energy trans­
fer and four-wave mixing spectroscopy for studying spatial energy 
transfer. The fundamental physical properties of the system which 
can contribute to the observed time dependence of the energy 
transfer are summarized and the methods used to connect the exper­
imental results to these physical properties through theoretical 
interpretation of the data are discussed. Several examples are 
given of different types of projects involving time-resolved 
studies of energy transfer. 

I. INTRODUCTION 

In order to characterize the properties of energy transfer 
between ions (or molecules) in solids, the fluorescence spectra is 
monitored under specific static or dynamic conditions. The inform­
ation of interest is the mechanism of the ion-ion interaction 
responsible for the energy transfer, the strength of the inter­
action, whether it is a single or multi-step process, the role 
played by phonons in the transfer, and the influence of the sta­
tistical distribution of the ions. The most important experi­
mental parameters that can be varied in energy transfer experi­
ments are the concentration of active ions, temperature, and 
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time. The greatest amount of work has been done by measuring the 
changes in fluorescence intensities and lifetimes as a function of 
concentration. Although useful information concerning the 
efficiency of energy transfer can be obtained by this method, the 
results are generally not sensitive enough to distinguish between 
different mechanisms of energy transfer and the type of transfer 
taking place may be quite different at high and low concentrations. 
Temperature dependent studies are useful in distinguishing between 
phonon-assisted and resonant processes and in elucidating the 
effects of phonon scattering in multi-step processes. The 
development of pulsed laser experimental techniques have made 
time-resolved spectroscopy the most powerful method of 
characterizing energy transfer properties. The time dependence of 
the energy transfer rate is very sensitive to the mechanism and the 
dynamics of the transfer processes. In this lecture we will focus 
our attention on the physical origins of different time dependences 
which can be observed and the experimental techniques which have 
been developed for obtaining time dependent information. Examples 
are given of experimental results for several different cases. 

II. ORIGIN OF THE TIME DEPENDENCE 

A very general expression for the evolution of energy with 
time away from an initially excited ion is given by 

where Pi(t) is the probability of finding the excitation on sensi­
izer ion i at time t, 8 is the intrinsic fluorescence decay rate, 
Wij describes the transfer of energy from sensitizer i to activator 
ion j and Wji, is the rate of back transfer, and Win describes the 
migration of energy among sensitizer ions before transfer to an 
activator. The solution to this equation and its relationship to 
an experimental observable such as fluorescence intensity requires 
performing a configuration average over the distribution of all 
possible ion-ion interactions and inclusion of the initial 
excitation condition. 

The time evolution of the observed energy transfer is deter­
mined by four factors: the ion-ion interaction mechanism causing 
the transfer; the spatial distribution of ions involved in the 
transfer; the dynamics of the processes (i.e., single-step vs 
multistep, coherent vs incoherent, etc.); and the initial excit­
ation conditions. Figure 1 shows some examples of several common 
situations which occur. In part (A) a random distrubution of 
excited sensitizers is created and each one can transfer energy 
to an activator ion located at a specific distance away. This 
pairing of sensitizer and activator ions can occur due to problems 
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with charge compensation or lattice distortion. The consequence is 
a time independent energy transfer rate. Part (B) depicts a random 
distribution of initially excited sensitizers transferring to 
randomly distributed activators. This is the most common physical 
case. The energy transfer rate for the system decreases as a power 
law with time with the specific dependence determined by the ion­
ion interaction mechanism. 

Parts (C) and (D) both involve multistep energy migration 
among the sensitizer ions before trapping at an activator site 
occurs. It is important to note the observed energy tranfer rate 
in this case is made up of contributions from two distinct physical 
processes: the energy migraton among the sensitizers and the 
transfer of the energy to the activators. These may take place 
through different ion-ion interaction mechanisms. The time depend­
ence of the measured energy transfer depends on the types of both 
of these mechanisms and the relative importance of the two inter­
actions[I]. Another important aspect of the problem is whether the 
energy migration takes place on a uniform lattice of sensitizers 
as shown in Part (C) or a random distribution of sensitizers as 
shown in Part (D)[2]. Also the dimensionaligy of the migration 
(ie. I-dimension, 2-dimension, or 3-dimension) is important. In 
addition the distortion of the lattice by the activator impurity 
ions can bias the migration process[3],[4]. If back transfer from 
activator traps is present, trap modulated migration occurs[5]. 
All of these factors can contribute to the time dependence of the 
energy transfer. 

The final two parts of Fig. 1 show two important cases of 
special initial distributions. In Part (E) the sample consists of 
one region containing sensitizer ions with a specific part of the 
region being excited and another region containing the activator 
ions. In this type of experiment energy transfer occurs over 
controlled spatial distances. The observed time dependence of the 
transfer is determined by both the type of interaction mechanism 
and the transfer distance[41. In Part (F) the sample contains a 
ramdom mixture of sensitizer and activator ions but the region of 
initially excited sensitizer ions has a geometric pattern, in this 
case shown as a sine wave. Experimental measurements of the decay 
of this grating pattern indicate how efficiently energy transfers 
from sensitizers in the peak regons of the grating to activators in 
the valley regions. [6] The observed time dependence is related to 
the mechanism of energy transfer as well as the size and shape of 
the geometric pattern initially produced. 

III. METHODS OF THEORETICAL ANALYSIS 

The ideal way to theoretically interpret experimental results 
of energy transfer studies would be to find the exact solution to 
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Eq. (1) for the most general case which includes all possible 
physical situations such as those discussed in the previous para­
graphs. So far such a general analytical solution has proven to be 
impossible and all solutions which have been obtained starting from 
this master equation approach have involved highly restrictive 
assumptions. The most comprehensive theoretical treatment of this 
type is the work of Huber and coworkers[7]. They have employed the 
average T-matrix approximation (ATA) formalism to develop the 
solution of the master equation up to a certain point where 
assumptions specializing the solution to specific cases are 
required. The advantage of his approach is that one formalism can 
be used to treat a variety of special cases. 

A second way to approach the theoretical analysis of energy 
transfer data is using phonomenological rate equation models[S]. 
This appraoch is the inverse of the master equation approach 
described above which has as its starting point ion-ion interactons 
on a microscopic level and involves complex mathematical manipula­
tions to relate theoretical predictions to macroscopic observable 
parameters. On the other hand, the rate equation approach involves 
formulating a phenomenological model which describes the physical 
situation under investigation and solving the model equations for 
the experimentally observed parameter. Then by fitting the 
theoretical prediction to the experimental results the properties 
of the energy transfer rate parameter for the system are obtained. 
This energy transfer rate is the primary parameter obtained from 
this approach. Secondary parameters describing the microscopic 
physical details of the processes which are taking place (such as 
the ion-ion interaction strength, diffusion coefficient, etc.) are 
then determined from the properties of the transfer rate. This 
approach has the advantage of mathematical simplicity and is useful 
in cases where the general characteristics of energy transfer in 
the system are considered to be the most important result. The 
disadvantage with using this approach is that it is sometimes 
difficult to unambiguously identify the details of the physical 
processes giving rise to the energy transfer. 

One of the most difficult physical situations to treat theo­
retically is the case involving high concentrations of sensitizers 
so there is multistep migration amoung the sensitizers in addition 
to the transfer to activators. Several different phenomenological 
models have been developed to treat different limiting situations 
in this case, and it is important to test the limiting criterea to 
determine the validity of a given model for a specific case[2]. 
One important problem is how to describe the dynamics of the energy 
migration among the sensitizers. Usually this is done with a 
random walk or diffusion mathemtical formalism. For many 
situations this approach is valid and a variety of special cases 
have been treated in the initial work of Montroll et a1., [8]. 
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and the recent work of Blumen[9]. There are two situations where 
different theoretical approaches are required. The first is when 
the exciton moves with a long mean free path so that "coherence" 
becomes important. Although the quantum mechanical formalism for 
treating purely coherent motion exists, intermediate cases are 
still difficult to handle theoretically[lO]. The second situation 
where standard random walk or diffusion formalism can not be simply 
applied is when the migration occurs on a random distribution of 
sunsitizers. So far the only methods developed for treating the ef­
fectsofthis randomness are computer simulation techniques such as 
Monte Carlo [2], [11] or percolation theory approaches [1]. The former 
1s most appropriate for cases where the distribution is completely 
random and the most important Monte Carlo treatments have been 
developed by Lyo et al., [11]. Percolation theory is most 
appropriate at concentrations that are so high that the sensitizers 
are distributed in clumps with the transfer within a clump being 
much more efficient than transfer between clumps. This formalism 
has been developed by Kopelman and et al., L121. 

IV. EXPERIMENTAL TECHNIQUES 

The most important empitus for studying the time dependence of 
energy transfer has been the development of pulsed laser sources 
and boxcar integrators. Figure 2 shows the schematic of a standard 
time-resolved spectrosocpy experimental setup. The window on the 
boxcar integrator is triggered to look at the spectrum at a 
specific time after the laser pulse. By monitoring the time 
evolution of fluorescence spectrum the transfer of energy from 
sensitizers to activators can be followed in real time. With more 
elaborate detection techniques such as streak cameras or optical 
delay lines this type of investigation can be extended to the 
picosecond time regime. 

An additional important aspect of laser excitation is the high 
degree of spectral resolution which can be obtained. This has lead 
to the development of site-selection spectrosocpy in which the same 
type of ions located in nonequivalent crystal field sites play the 
role of sensitizers and activators. The narow laser line 
selectively excites ions in one type of site and energy transfer 
ocurs to ions in other types of sites. This type of investigation 
has the advantage of not having to use a second type of activator 
ion which may introduce lattice distortions in the host. The case 
where the laser excitation width is much less than the 
inhomogeneous width of the spectral transition under investigation 
is referred to as fluorescence line narrowing (FLN). These types 
of studies have been especially useful with disordered materials 
and glasses. It is important to note that both SSS and FLN 
techniques measure spectral transfer of energy. 
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Fig. 2. Experimental setup for time-resolved spectroscopy. 

Four-wave mixing spectroscopy is a powerful new technique that 
has been developed to measure spatial transfer of energy with or 
without spectral transfer. The schematic diagram of this 
experimental technique is shown in Fig. 3. The two pump beams are 
incident on the sample from one side and interfere to write a sine 
wave hologram. The weak probe beam enters the sample from the 
opposite side conjugate to one of the pump beams and Bragg 
diffracts off the sine wave grating. The diffracted signal beam is 
detected by a photomultiplier tube. By chopping the pump beams on 
and off the decay of the signal beam can be detected and this 
represents the decay of the grating which is related to the 
diffusion length of the excitons. The limitaton of this technique 
is that it can only detect energy transfer over distances at least 
the size of the peak to valley distance of the grating which is 
formed. This is approximately half of the wavelength of the light 
being used. Dispite this severe limitation, FWM has been useful in 
studying long range exciton migration in both organic and inorganic 
materials(6],[l3]. 
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Fig. 3. Experimental setup for four-wave mixing spectroscopy. 

There are numerous other types of experimental techniques 
which can give information on energy transfer rates. Two examples 
are the dephasing times measured by coherent transient spectrosocpy 
techniques [14] and the slope of the hysteresis curves in optical 
bystability measurements[15]. Although these methods are not 
commonly used by energy transfer studies at the present time, they 
have the potential for being powerful tools in future studies. 

V. EXAMPLES OF TIME-RESOLVED ENERGY TRANSFER STUDIES 

In this section we review examples of time resolved energy 
transfer studies which illustrate different important aspects of 
the problem. 

V.A. Energy Transfer Between Eu3+ Ions in EUxYl-xPSOl4 Crystals 

Time-resolved site-selection spectroscopy was used to 
characterize the transfer of energy between Eu3+ ions in non­
equivalent crystal field sites in EUxY1-xPS014 crystals[16]. One 
of the SDO ~ 7F2 transitions was chosen for monitoring the energy 
transfer because it is "hypersensitive" to the local environment of 
the ion. The spectral resolution of the experimental setup was 
less than O.S A and the temporal resolution was better than 10 ns. 
The laser excitation was in the SD1 level. 
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Fig. 4. Fluorescence spectra of EuxY1-xP5014 at two times after 
the laser pulse at 12 K. The solid line is for 0.05 ms 
after the excitation pulse and the broken line 1.6 ms 
delay. 

Figure 4 shows typical spectral results obtained at 12 K for 
samples containing 100% and 1% Eu3+. For both samples two 
different lines appear for this specific transition and their 
relative intensities vary with laser excitation wavelength. The 
fluorescence lifetimes associated with both lines are the same. 
These lines represent transitions from Eu3+ ions in two types of 
nonequivalent crystal field sites. The positions and relative 
splitting of these transitions are significantly different for the 
two samples. In the 100% sample the transition energy difference 
is ~Esa ~ 5 cm-1 and 0.5% of the Eu3+ ions are in activator sites 
while for the 1% sample ~Esa~26 cm-1 and about 36.3% of the Eu3+ 
ions are in activator sites. 
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Fig. 5. Time evolution of the ratios of the fluorescence inten-
sities of sensitizer and activator transitions for 
EUxYl-xPs014 at 12K. 

The time evoluton of the spectra can be used to ascertain the 
properties of energy transfer between ions in these two different 
types of sites. As seen from the figure, these properties are 
quite different for the two samples. In the case of the 100% 
sample the specific initial excited state distribution created by 
the laser excitation leads to energy transfer from ions in the 
sites giving rise to the lower energy transition to ions in sites 
associated with the higher energy transitions. In the 1% sample 
the energy transfer goes from the high energy to the low energy 
sites. The time dependence of the integrated fluorescence 
intensity ratios are shown in Fig. 5. Rate equation models were 
developed to obtain the best fits to these data. For the 100% 
sample the model giving the best fit to the data assumes single-step 
transfer, electric dipole-dipole interaction, no back transfer, and 
a random distribution of sensitizers and activators. This gives 
the solid line shown in the figure. For the 1% sample the model 
giving the solid line fit to the data assumes electric dipole-dipole 
interaction between sensitizer-activator pairs at fixed nearest 
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neighbor distances with similar values for transfer and back 
transfer rates. These results demonstrate how different the energy 
transfer characteristics can be for the same ions in similar hosts. 

V.B. Energy Transfer Among Nd3+Ions in Lightly Doped Solids 

Energy transfer among Nd3+ ions in various crystalline and 
solid hosts has been a problem of great interest because of the 
importance of these materials in laser applications[17). In many 
cases the transfer has been found to be a multitep migration 
process and time-resolved site-selection spectroscopy has been 
useful in characterizing the transfer of energy between Nd3+ ions 
in nonequivalent types of crystal field sites. The type of 
interactons causing the transfer has been identified a a two-phonon 
assisted processes involving a real intermediate state[18). The 
most important aspect of these results is that the energy transfer 
has been shown to play an important role in lowering the quantum 
efficiency of laser materials such as Nd-YAG[19) and this under­
standing has helped point the way for the development of new 
methods of heat treatment and crystal growth to enhance the quantum 
efficiency of this materials[20). 

One of the basic points raised in these studies is how 
different are the energy transfer characteristics if the sensitizer 
excitation migrates on a random lattice instead of a uniform 
lattice? One way to answer this question is to compare the results 
of analyzing time-resolved spectroscopy data using the usual 
methods which assume a uniform lattice with the results obtained 
using a Monte Carlo approach[2). In the latter approach, sensitizer 
excitons.are generated, allowed to hop from site to site, and 
disappear when they hop onto an activator. The observed 
fluorescence intensity is related to the number of excitons alive 
at a given time after the excitation pulse. The random nature of 
the lattice is accounted for by using the configuration-averaged 
distribution of hoping times. This is constructed by first 
generating a uniformly distributed set of random numbers and then 
weighting this according to the Hertzian distrubution which 
describes the occupancy of nearest neighbors in a random distribu­
tion of available sites in three dimensions. These numbers are then 
converted to a set of hopping times by a second weighting factor 
which reflects the variation of the energy transfer rate with 
distance r. For electric dipole-dipole interaction this is (Ro/r)6 
where Ro is the critical interactions distance. At each step in the 
random walk of each exciton a number from this double weighted set 
is randomly chosen as the hopping time for the next step. This 
method accounts for the possibility of transferring to any other 
sensitizer site in the lattice. After the hopping time is generated 
for a given step in the random walk, a test is performed to check to 
see if the exciton has decayed by fluorescence emission during that 
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time. This is done by comparing a number from uniformly distributed 
random set with the probability of fluorescence decay over the time 
interval given by the hopping time. Also after each step in the 
random walk, a test is performed to determine if the exciton has 
hopped onto an activator. This is done by calling a number from a 
uniformly generated random set and comparing it with the fractional 
occupancy of lattice sites by activators. 

Figure 6 shows experimental data obtained from time-resolved 
spectroscopy measurements on Nd3+ doped garnet and vanadate 
crystals. In both cases there is no back transfer and the 
fluoresence decay rates are the same for ions in the sensitizer and 
activator sites. In the Monte Carlo model these results can be 
described by 

I a!Is={[na(0)!ns(O)]+1}exp(-6a)!N(t)-1 (2) 

where N(t) is the normalized number of excitons alive at time t. 
The good fits in the data shown in the figure were obtained when 
5000 excitons where generated. These fits are extremely sensitive 
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Fig. 6. Time dependence of the ratios of the fluorescence inten­
sities of sensitizer and activator transitions at 100 K. 
Solid lines represent the data from Ref.[lB] and the 
circles represent the Monte Carlo fits to the data. 

to the choice of Ro. The fitting results are given in Table 1. 
Similar fits to the data are obtained with the standard model of a 
random walk on a unform lattice[21]. In this case the results are 
described by the expression 
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Ia/ls={[Ia(O)/Is(O)-I]exp(-8at)/Is(t)}-1 

where 

Is(t)=Is(O)os(t)exp(-t/to) 
-1 t _ 

- to Jols(t')ns(t-t')exp[-(t-t')/to]dt'. 

Here to is the average hopping time and 

This equation was solved by numerical iterative methods. The 
fitting results are again given in Table 1. 
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(3) 

(4) 

Comparing the results of the two approaches to fitting the 
time-resolved spectrosocpy data described above shows that it is 
possible to obtain a good description of the results by either 
assuming a uniform lattice of sensitizers or by explicitly 
acounting for the random nature of the sensitizer distribution. 
However, the values obtained for the critical interaction distance 
in the former approach are only half as large as those obtained 
using the latter approach. The theoretically calculated values for 
RO are very close to those obtained from the Monte Carlo fitting 
routine. This indicates that uniform lattice models significantly 
underestimate the values of the critical interaction distance 
needed to describe exciton migration on a random lattice. This may 
be due to the fact that on a random lattice an exciton can become 
"bottlenecked" in regions of well separated sensitizers and this 
never occurs on a uniform lattice. 

V.C. Exciton Diffusion in NdxLal_xP50l4 Crystals 

The two examples of time-resolved spectroscopy research 
discussed above involve site-selection techniques which elucidate 
the properties of spectral migration of energy. Applying similar 
methods to samples of NdxLal-xP5014 have shown little or no 
spectral energy migration[22]. Howevr long range spatial migration 
of energy can be observed directly through four-wave mixing 
transient grating techniques[6]. 

The equation describing the exciton population in a transient 
grating experiment is 

an(x,t)/dt=Da2n(x,t)/ax2-N(x,t)/T. (6) 

Solving this for the initial condition of a sine wave distribution 
gives 
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-tIT -16~2Dtsin2(9/2)/1 
n(x,t)=1/2e {He cos[4~sin(9/2)x/l]}. (7) 

Table 1. Monte Carlo Versus Uniform Lattice Fitting Parameters 

Uniform Theoretical 
Sample Parameter Monte Carlo Lattice Prediction 

Y3Ga5012 Ro(A) 21 11 20 
Nd(0.25%) toes) 1.6xlO-4 7.76xlO-3 

Ia(O)/Is(O) 0.059 0.05 

YV04 
Nd(3.0%) Ro(A) 14 7 12 

toes) 2.1x10-6 1.33x10-4 

Ia(O)/Is(O) 0.202 0.16 

The observed four-wave mixing signal intensity is proportional to 
the depth of the grating 

where 

K=(32~lD/12)sin2(e/2)= 2/T. 

Note that this pure exponential decay holds only for diffusive 
exciton motion. For nondiffusive motion the expression is more 
complicated[10]. 

(8) 

(9) 

Measurements of this type have been made on samples of 
NdxLa1-xP5014 as a function of concentration, temperature, laser 
power and excitation wave length[23]. Pure exponential decays of 
the signal beam intensity were observed showing that the excition 
migraton is diffusive. The grating decay constant was measured 
versus the pump beam crossing angle. The results are shown in Fig. 
7 for two of the samples at room temperature. The data is shown to 
vary linearly with sin2(9/2) and to extrapolate to 2/T at 9=00 as 
predicted by Eq. (9). The values of the exciton diffusion 
coefficients are found from the slopes of the curves in Fig. 7. 
These are 5.1 x 10-6 cm2sec-1 for the sample with x=1 and 5.2 x 
10-7cm2sec-1 for the sample with x=0.2. These values of Dimply 
diffusion lengths of the order of tenths of microns. 
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Fig. 7. Variation of the grating decay constant with the pump-beam 
crossing angle at room temperature in NdxLal-xPs014. The 
shaded points are twice the fluorescence decay rates. 

VI. CONCLUSIONS 

Time-resolved studies have developed into the most powerful 
techniques for characterizing the properties of energy transfer 
among ions and molecules in solids. Some of the most important 
areas to be developed in this field can be catagorized in terms of 
experimental techniques, materials, theory, and applications. 

Although there is still much information that can be gained 
from site-selection experiments, especially with regard to the 
effects of disorder and phonon-assistance, the two most exciting 
experimental possabilities are techniques to observe coherent 
exciton motion and techniques for ultrafast measurements. At the 
present time it appears that four-wave mixing transient grating 
spectr~socpy is the best method for observing coherent exciton 
migration since the difference in signal shape for diffusive and 
nondiffusive motion is possible to detect quite easily. Ultrafast 
techniques rely on the use of streak camers for detection and the 
development of femptosecond lasers as sources. Pushing measurement 
capabilty into this time regime allows the possability of studying 
aspects of energy transfer which could not previously be monitored. 
Two examples are following in real time the transfer of energy 
between strongly coupled pairs of ions or molecules and following 
the process of energy transfer before and during excited state 
relaxation. 
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A number of very interesting studies of energy tranfer in 
specially tailored mat,erials have been performed recently. One 
example is the use of radiation induced defects to increase the 
oscillator strengths of the impurity ions and thus greatly enhance 
energy transfer efficiency[24]. Another example is monitoring the 
changes in energy transfer characteristics in doped alkali halides 
when the impurity ions form aggregates and defect phases[25]. In 
this case the energy transfer can be used as a 'direct measurement 
of the defect substructure of the material. 

As greater detailed information becomes available from more 
sophisticated experimental techniques, there is an increased demand 
for better theoretical descriptions of energy transfer. The major 
theoretical problem which has still not been treated 
satisfactorally is performing the configuration average over the 
ensamble of sensitizer and activator ions in a way that accounts 
for spatial and spectral disorder. So far the models developed for 
doing this strictly apply only to special physical cases and not in 
general. Another interesting theoretical problem is explicitly 
accounting for the discrete structure of the lattice on the 
properties of energy transfer[16]. 

Finally, the field of energy transfer in solids has matured to 
the point where it should now be possible to start designing 
materials for solid state device applications which utilize energy 
transfer processes. There are already important examples of both 
gas lasers and liquid dye lasers which utalize energy transfer 
between pumping and emitting species to optimize laser device 
properties. Similar possabilities exhist for improving solid state 
lasers especially those being developed for broad band tunable 
applications. Energy transfer has been used in some commercial 
solid state scintillators for wave length shifting from the ultra­
violate to the visible spectral region[26]. It should also be 
possible to develope materials which work in the opposite direction 
to give infrared to visible unconversion through energy trans­
fer[27]. Demonstrating the relavance of energy transfer by 
developing important applications is crucial to justifying further 
research in this field. 
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TRENDS IN SCIENTIFIC COMPUTING 

ABSTRACT 

C.K. Landraitis 
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Chestnut Hill, MA 02167, U.S.A. 

The computing environment of the scientific user is changing 
rapidly. This paper surveys some of the coming changes and some 
underlying trends in computer hardware and software. 

1. THE PROBLEM-SOLVING CYCLE 

Figure 1 is a rough model of the steps involved in solving a 
problem by computer. The algorithm is the scientist's formulation 
of the method by which the problem is to be solved, while the 
program is the expression of that method in FORTRAN or another 
programming language. The broken lines lead to actions taken a 
second time when results indicate a need for changes in the algorithm 
or program. The remaining steps of the cycle are then repeated. 

So-called batch operating systems have predominated until re­
cently. Under a batch system, user's jobs are queued and do not 
begin running until previously submitted jobs are completed, 
sometimes many hours after submission. The user cannot communicate 
with the computer while entering or running his job. As a result, 
even the most trivial errors necessitate resubmission and another 
extensive delay in receiving results. The consequences of such 
delays are so undesirable that much effort is typically expended in 
preventing errors from reaching the machine. While this does promote 
careful preparation, it makes computer use a slow and frequently 
frustrating experience. One could say that men and computers are 
only able to communicate with great difficulty in a bach operating 
system environment. 

673 
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Figure 1 The Problem-Solving Cycle 

Today's interactive time-sharing operating systems permit 
man-machine communication during job preparation and execution and 
virtually immediate return of results. Facilities for error de­
tection and correction are much improved. The overall result is 
that of a real man-machine dialogue, faster return of output and 
greater user satisfaction. Even with these advances, the scientist 
can hope for an expect further improvements, as the next section in­
dicates. 

II. PROVIDING A BETTER ENVIRONMENT FOR SCIENTIFIC COMPUTING 

In spite of the progress alluded to in the previous section, 
there is much room for improvement in fulfilling the potential of 
the computer as an aid to the scientist. The following subsections 
address some of the areas where progress is both possible and likely 
to yield significant benefits. 

II.A. Computer-Based Local and Long-Distance Networks 

Some networks specifically for the use of the scientific community 
are in existence. They are expanding as others are being created. 
Along with the physical capability to communicate with remote scien­
tific installations, there is a need for cooperation between scien­
tists to make known and provide the means for use of locally-written 
software which may be useful at other sites. 

II.B. Hardware and Software Tools 

1. Video Display Technology. A drawback of the conventional 
video display terminal is that the user can view material related to 
only one task at a time. Display technology now permits the division 
of the screen into seversl "windows" whose size and location are con­
trolled by the user. Each window acts in effect as an independent 
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terminal, displaying the status of a different file or computation. 
For example, one window can be used for data entry while a second 
follows a running computation and a third disp~ays an electronic 
mail message just received. Parts of the display can be overlaid 
temporarily by a newly created window, then reappear. 

The capability to generate specialized scientific symbols qnd 
represent complex geometric objects has been available only on 
specialized graphics terminals, but is now being incorporated into 
high-volume products by manufacturers. 

2. Direct Input. Direct means of computer input such as voice 
and hand movements promise significance gains in convenience. Com­
puter recognition of speech, although progress has been relatively 
slow, is now feasible on a limited basis. It requires significant. 
expenditure of processing power and memory. Hand movements, by con­
trast, can be processed at very limited expense. One popular ap­
proach is to control the screen cursor via a hand-held "mouse". 
Moving the mouse on a flat surface induces corresponding movement of 
the cursor on the screen. 

3. Software. Programming languages close to standard scien­
tific prose could ease the programmer's task, but these may be long 
in coming, since progress in language development proceeds more slow­
ly than in computer hardware. FORTRAN, a language of the 1950's 
still predominates in scientific applications in the U.S.A. One con­
tributing factor is surely the cost of converting programmers to 
another language and making new programs in a new language compatible 
with older software. But, it may be argued that no newer language 
offers significant enough benefits to induce scientific users to 
make a change. 

Many computer scientists view the current state of computer 
languages as one of the several most significant obstacles to fur­
ther progress in computer applications. Some seek a link between 
languages and long-established patterns of computer design. Section 
IV of this paper returns to this matter. 

Operating environments, the system software which provides the 
user with access to files, editors, programming languages and the 
other resources of his computer, have improved notably in recent 
years. Both productivity and ease of use have been enhanced. 

III. ACHIEVING FASTER COMPUTATION 

III.A. The Need for Faster Computation 

While progress in computer hardware since the advent of 
the digital computer has been dramatic, scientific and engineering 
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users have an insatiable appetite for computing resources, especially 
instruction-processing speed and high-speed memory. Signal-process­
ing (including voice recognition), explosives research, computer­
assisted design and weather forecasting are among the applications 
demanding more computing power. Some applications, or their wide­
spread use, are only feasible when more speed at less expense be­
comes available. 

III.B. Historical Trends 

A standard measure of processor speed is the number of floa­
ting point arithemetic operations performed per second (FLOPS). 
Large computers of the early 1960's could perform about 10,000 FLOPS, 
while today's faster "super computers" perform in the range of 100 
million FLOPS. Although the improvement is dramatic, it has been 
achieved primarily by means which do not promise indefinite future 
improvements of the same magnitude: decreasing the switching speeds 
of circuit components and reducing the length of connections between 
them. Consequently, computer scientists are now seeking to comple­
ment progress at the micro-level with advances at the level of system 
design and programming languages. 

III.C Conventional Processor Designs 

Current digital computer designs are, for the most part des­
cended from designs of the 1940's for which John von Neumann, a 
mathematician of genius and broad interests, is given a major share 
of the credit. They feature common storage of instructions and data 
in memory, which is organized into strings of binary digits of uni­
form length, usually a power of 2:8, 16, 32 or 64. Each memory lo­
cation has an address that can be included as part of an instruction 
that reads from or writes the contents of the memory location. Pro­
gram instructions are stored in succeeding memory locations and 
fetched, one by one, by the CPU (central processing unit) for execu­
tion. This one-by-one execution of instructions is termed "serial" 
to distinguish it from simultaneous execution of two or more instruc­
tions, which is "parallel" or "concurrent". 

In the conventional von Neumann computer design or architecture 
a data pathway runs between the high-speed memory and the CPU, where 
instructions are interpreted and executed. This pathway carries heavy 
traffic. Instructions travel from memory to the CPU. The instruc­
tions typically operate on data which must also be fetched from mem­
ory to the CPU. Frequently, the instruction contains not the address 
of the data, but the address where the address of the data may be 
obtained (indirect addressing). Finally, the result of execution of 
an instruction must often be returned to memory. All parts of the 
computer system which are not involved in executing the current in­
struction remain idle long enough for its several data transfers to 
take place. This undesirable situation has led to efforts to find 
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computer architectures permitting more at one time than the execution 
of a single instruction in a single central processing unit. The 
next several sections survey the characteristics of some of these 
architectures. 

III.D. Concurrent Operation of Computer Subsystems 

One approach to improving upon the strictly sequential exe­
cution of instructions is to allow a variety of devices to operate 
concurrently by freeing the CPU from the necessity of continuous 
supervision of them. For example. specialized communications com­
puters often handle the routine aspects of communication between a 
large host computer and remote terminals. Another example is provided 
by "direct memory access". under which high-speed data transfer can 
take place between memory and peripheral devices. The CPU initiates 
the transfer and is notified of its completion. In between. it is 
free for other tasks. 

III.E. Pipelining 

In this approach to speeding computation. the execution of con­
secutive instructions is overlapping. A second, Third, or even fourth 
instruction may be initiated before the first is completely executed. 
Some large computers now utilize pipelining. 

III.F. The Potential for Exploiting Parallelism 

A still largely unexploited avenue for increasing pro-
cessing speed is based on the observation that parts of many compu­
tations may proceed independently, of, and simultaneously with other 
parts. A simple example is that of the addition of two n by n arrays 
[a"J and~, ,J of floating point numbers. Suppose that the result 

~J ~J 

is [c,,]. with each element c" equal to a" + b, ,. In principle, 
~J ~J ~J ~J 

all of these n 2 additions could be carried out simultaneously in an 
elapsed time independent of the value n. To accomplish this, n 2 

computing elements capable of addition would suffice. since no one 
of the additions requires the results of any other. In ordinary 
scientific discourse, we say "Let [c,,] = [a,,] + [b,,]." to indi-

~J ~J ~J 

cate this operation. thus making no explicit commitments to serial 
or parallel execution. However, most existing computers compute 
[c, ,J in serial fashion. Conventional programming languages, with 

~J 

some exceptions, typically reflect this operational characteristic 
by requiring the programmer to specify the serial order of the addi-
tions. as in for 1=1 to n do 

end 

for J=l ton do 
C(I,J):=A(I,J)+B(I,J) 

end 
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The difficulty with this approach is not only the under-
sirable complexity of the programmer's code as it compares with "Let 
[c .. ] = [a .. ] + [b .. ]." but also the slowness of serial as compared 

1J 1J 1J 
with parallel execution. There is now a trend toward the design of 
specialized "array processors or "vector processors" with multiple 
pathways for simultaneous execution of arithmetic instructions. The 
CRAY-l supercomputer is of this type. Some other array processors 
are smaller, modestly priced add-ons designed to enhance the perform­
ance of conventional computers. 

Array processors represent a relatively conservative depar-
ture from the conventional von Neumann design and fail to explo~t 
the full potential of parallelism, which involves the possible con­
current execution of many instructions of different types. It re­
mains to be seen what performance benefits can be realized in prac­
tice from this. If n instructions can be concurrently executed, then 
a list of size m<n can be sorted in time proportional to m. This 
compares with a theoretical best of m log2m for serial execution of 

a sorting algorithm. The parallel algorithm improves on the serial 
one by a factor proportional to log2m, a significant difference if 

it could be realized in practice. 

The next section gives a sketchy account of some approaches 
to building machines capable of fully exploiting the potential for 
parallelism. 

III.G. Radical Innovations in Processor Design 

The conventional computer employs an instruction counter, 
which contains a memory address, to determine the location of the 
next instruction to be executed. One innovative processor design, 
the "data flow computer"[l], determines which instructions will next 
be executed in a different way. As soon as the data for an instruc­
tion is made available, that instruction with its data is put in line 
for execution by any of the computer's network of processing elements 
which happens to be idle. The result is then routed to wherever it 
is needed. By this means, many processing elements can potentially 
be in simultaneous operation. 

Another innovative approach, known as the "reduction computer," 
executes an instruction only when its result is called for by 
another waiting to execute. This architecture may be well suited 
to the "functional" or "applicative" languages which may represent 
the next wave of progress in programming languages [2]. These lan­
guages are based on the twin concepts of function and recursion. 
They seem not to execute efficiently in conventional computers, even 
though related languages, such as LISP, are in widespread use. 
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IV. COMPUTATIONAL MODELLING AND SIMULATION 

The methods of classical analysis were developed long before 
the appearance of computers. They provide many methods for 
extracting approximate results without extensive computation. How­
ever, the need to avoid large scale computation is less and less 
compelling. Computation - intensive models for physical processes 
with more precision than conventional models based on classical 
methods are now feasible in many applications. 
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PHOTOCONDUCTIVITY OF INDIUM IN SILICON 

ABSTRACT 

R. Lindner 
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R. Lindner reported on the photoconductivity spectra obtained 
for the system Si:In in the near IR-region. The role of In as a 
shallow acceptor was investigated at a given concentration (1017/ cm3) 
and at various temperatures. The experimental technique was explain­
ed and a comparison was done between the photoconductivity-spectrum 
and the absorption of the Si:In. 
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NONLINEAR ENERGY TRANSFER IN SEMICONDUCTORS YIELDING OPTICAL BI­
STABILITY 

ABSTRACT 
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Nonlinear energy transfer from a high intensity photon field 
to the electronic system of a semiconductor resulting in an absorp­
tive optical bistability was investigated. The high intensity 
photon field creates a high density of free carriers forming an 
electron hole plasma. In the plasma density-dependent renormali­
sations occur: the band gap is strongly shifted to lower energies 
giving rise to excitation dependent indicies of refraction and 
absorption. K. Bohnert explained how these effects were applied 
for a realization of absorptive optical bistability. For this 
purpose high intensity nanosecond laser pulses in the spectral 
range below the excitonic resonances were transmitted through a 
thin CdS sample. During the temporal development of the pulse the 
band gap shifts from its original position to energies below the 
laser energy and back again to its original value. When it passes 
the laser energy there are transitions from two to one photon 
absorption and from one to two photon absorption when the gap goes 
downward and upward, respectively. These transitions show up as 
jumps of the transmitted intensity. Because they occur at ~ifferent 
intensities of the incident laser light, they give rise to an 
absorptive optical bistability. The switching times are in the 
subnanosecond range. The dependence of the bistability on photon 
energy was investigated and discussed. 
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ABSTRACT 
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Selective laser excitation was used by J. Mares for stu1+ing 
the visible and near IR luminescence of YAlG:Nd, Ceo The Nd lumi­
nescenj~ at 1.02 ~ can be excited by pumping select~~elY either into 
the Nd absorpt~~n bands or into the broad blue Ce absorpti~¥ 
band where no Nd absorption occurs. In add~~ion to this, Nd 
absorption structures were observed in the Ce luminescence spectrum 
in the region 480 to 700 nm. These observati~¥s Cj¥ be interpreted 
as evidence of a radiative energy transfer Ce +Nd . 1¥other pos­
sible energ3+tra~~fer3~echanism could be through the Ce excited 
states: Ce +Ce +Nd 
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ENERGY TRANSFER EFFECTS IN NaEuTi04 

ABSTRACT 
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Energy migration among Eu3+ ions has been observed in a lot of 
concentrated Eu systems. Transfer at low temperatures (-1.2K) has 
never been observed for non-glasses. This has always been explained 
by the fact that at low temper,tures resonant multipole-multipole 
transfer cou!d onl¥ occur via F ~ 5D transitions. In most com­
pounds that D + F transitionois st~ictly forbidden, so that 
energy migrati8n doe~ not occur. P. Berdowski investigated the 
snergy7transfer properties of a compound, NaEuTi04 , in which this 

D ~ F transition is no longer strictly f03~idden, due to the 
in~luencg of a linear crystal field at the Eu site. Both the 
concentration dependence of the intensity and decay-time measure­
ments show that in this system transfer occurs, even at the lowest 
temperatures. Best decay-fits can be made by assuming a 2-dimen­
sional diffusion process. This can be explained by the plane 
structure of NaEuTi04 . Diffusion increases rapidly in the tempera­
ture region between 1.2 and 40 K. This is probably due to the phonon 
assistance which is required for the migration. . 
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3+ Energy transfer has been investigated in pure and Er3+ and 
Nd doped crystals of CsMnBr3 Rb2~~C14' RbMnC11 and CsMnC13 . These 
compounds adopt different structures, ~n which the manganese ions 
are coupled one-, two-or three-dimensionally. Evidence of efficient 
energy transfer is given by the intense Lanthanide luminescence on 
excitation into the manganese absorption bands, the time dependence 
of the Lanthanide emission as well as the shorter decay times of the 
manganese emission in the doped samples. Quantitative information 
on transfer rates is obtained from the temperature and concentra­
tion dependence of the decay times. In all compounds the energy 
transfer within the manganese hosts is a thermally activated process. 
The activation energies however ditfer markedly and they are related 
to the splitting of the manganese Tl state due to an axial crystal 
field. It has not been possible to e§tablish the low dimensional 
character of the energy transfer in both compounds with strongly 
anisotropic crystal structures, CsMnBr3 and Rb 2MnC14 . 
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AUGER EFFECT DUE TO SHALLOW DONORS IN CdF2 :Mn LUMINESCENCE 

ABSTRACT 

A. Suchocki 

Institute of Physics, Polish Academy of Sciences 
AI. Lotnokow 32/46, PI-02-668, Warsaw, Poland 

In conducting crystals doped with emitting localized impuri­
ties the Auger effect is a dominant luminescence quenching mechanism. 
At low temperatures, only the Auger effect due to the weakly bound 
electrons is expected to be effective. This communication reports 
for the first time the analysis of a mechanism of such a process 
observed in CdF2:Mn, Y crystals. Due to a statistical distribution 
of distances between Mn emitters and occupied Y donors acting as 
quenchers, the luminescence kinetics is strongly nonexponential. 
The degree of nonexponentiality, as well as the relative luminescence 
yield depend on the donor concentration at the constant Mn doping 
level. Among the various mechanisms of energy transfer involved 
only the dipole-dipole /DD/ or exchange mechanisms /EX/ were found 
to be efficient. For the DD mechanism the characteristic parameter 
is the critical radius R. Its value estimated from the experiment 
was about 32~, while i2~oupper bound estimated value from the ab­
sorption spectra of Mn and shallow Y donors was only about 25 g 
yielding approximately an order of magnitude small quenching effi­
ciency as compared to the observed one. The alter2~tive mechanism 
is the exchange interaction between the excited Mn ions and shallow 
donors. Here the effect is exponentially dependent on the distance 
between Mn and donor impurities scaled by the effective Bohr radius 
L of the more extended wave-function in the interacting Rair. Its 
value estimated from the experiment was between 6 and IDA in accor­
dance with the known value of the shallow donor Bohr radius in CdF2 
equal to about 7~. This allows us to conclude that the dominant 
mechanism of the Auger effect due to shallow donors in CdF2 is 
the exchange mechanism. 
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ENERGY TRANSFER PROCESSES IN ZnSe:Ni, Fe 

ABSTRACT 

A. Karipidou 

Department of Physics 
Boston College 
Chestnut Hill, Massachusetts 02167 

A photoluminescence band exhibiting fine structure with no­
phonon line at 11178 cm-1 was recorded in ZnSe:Ni crystals. In 
view of the coincidence of this no-phonon line with the corres­
ponding no-phonon line of the absorption, this luminescence was 
interpreted as a 3T1 (P) + 3T1 (F) transition of the Ni2+ ions. 
Coincidence between absorption and emission exists also for the 
3T1 + 3T1 (F) transition, indicating that T2 is the lowest level 
of the 3T2 (F) term. Iron doped ZnSe shows a luminescence band 
with two no-phonon lines at 11154 and 11128 cm-1 . In analogy to 
similar results in ZnS:Ni (1) this band was interpreted as due to 
the 3T1 (H) + 5E(D) transition of the Fe2+ ions. In the case of 
the Fe doped ZnSe a quenching of the Ni2+ luminescence was observed 
even at very low Fe concentrations (Fe:6 ppm; Ni:25 ppm). Because 
of the frequency overlapping of the two transitions [3T1 (F) + 

3T1 (P) in Ni2+: 11178 cm-1; 3T1 (H) + 5E(D) in Fe2+: 11154 cm-1] 
at energy transfer mechanism was suggested as a possible explana­
tion for the quenching. Further investigations concerning selective 
excitation and lifetime measurements are goind to follow. 
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ON THE RO~¥ OF NONLOCALIZED EXCITATION MECHANISMS IN THE GENERATION 
OF RED Er EMISSION IN CdF2 :Er,Yb 

ABSTRACT 

A. Stapor 

Institute of Physics 
Polish Academy of Sciences 
AI. Lotnikow 32/46 
PL-02-668 Warsaw, Poland 

Severa~+models have been proposed to explain the origin of 
the red Er luminescence in the infrared to visible upconverting 
crystals doped with Er and Yb isns. AI~+but one postulate that 
population of the red ~mitting F9/2 Er state is due t04differe~~ 
nonradiative relaxation mechanisms of the green emitting S3/ Er 
state. To clarify this problem, the 4ed to gre~n emission lntensity 
ratio and temporal evolutions of the F9L2 and S3/2 states were 
investigated in CdF2:Er,Yb crystals at 77 K. The green 514.5 nm 
argon laser line was used as an excitation source. The rate equa­
tions were examined for each model and their solutions were com­
pared with the experimental results. It was shown that localized 
processes, such as multiphonon relaxation and cross-relaxation. 
p13+ an important role only for low excitation density or low 
Yb con3fntration. In the other cases the spatial energy diffusion 
among Yb ions should be considered3~nd nonlocalized mechanisms 
dominate, giving up to 98% of red Er emission intensity under 
certain conditions. Their relative probabilities were discussed. 
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THE GENERAL THREE-DIMENSIONAL HAKEN-STROBL MODEL 

ABSTRACT 

I. Rips 

Department of Chemistry 
Tel-Aviv University 
Ramat-Aviv, Tel-Aviv, Israel 

The general three-dimensional Haken Strobl model was presented 
by I. Rips. The second and fourth order moments of the displace­
ment were calculated as well as the memory functions in the generali­
zed master equation. It was shown that in the case of localized 
initial conditions the average energy of the particle is both time­
and momentum independent. A solution of the model under arbitrary 
initial conditions was derived. It was also shown that the system 
possesses the equilibrium state corresponding to completely locali­
zed particle. The time period during which the system reaches the 
equilibrium state was shown to coincide with the period of time 
after which the diffusion sets in. This time period is given by 
inverse of the phenomenological parameter l' describing the cor­
relative properties of the model. Finally, the basic physical 
assumptions of the model and the range of its applicability were 
discussed. 
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THE LUMINESCENCE SPECTRUM OF U02Mo04 

ABSTRACT 

W.M.A. Smit 

Rijksuniversiteit Utrecht 
Fysisch Laboratorium 
Princetonplein 5, Postbus 80.000 
3508 TA Utrecht, The Netherlands 

The luminescence spectrum of powdered U02Mo04 has been studied 
from 4.2 to 150 K. Using pulse excitation tne intrinsic lumines­
cence spectrum can be obtained at 4.2K at a very short time after 
the pulse. At longer time after the pulse trap emission is showing 
up, indicating energy transfer among the intrinsic uranium centers. 
By raising the temperature trap emission disappear one after the 
other. Above - 70K only intrinsic emission can be observed. Decay 
times of the traps range from 60 -90 ~s at 4.2 K, whereas the in­
trinsic decay shows a complicated behaviour, starting with decay 
times from 0.5-3 ~s and possibly ending with a linear part of 72 
~s. The trap depth obtained from the T vs T curves of the two most 
prominent traps is in full accordance with the trap depth obtained 
from the luminescence spectrum. The excitation spectrum at 4.2 K 
shows a fourfold splitting of the zero-phonon line due to correla­
tion field splitting. The intrinsic luminescence spectrum shows 
strong vibronic lines mainly representing progressions associated 
with the internal vibrations of the uranyl group. Also the dif­
ferent traps show vibronic lines: for the traps the ratio of the 
vibronic intensity to the zero phonon line intensity is smaller 
than for the intrinsic centers revealing the lower symmetry of 
the trap sites. 
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