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PREFACE

This book presents an account of the NATO Advanced Study Institute
on "Energy Transfer Processes in Condensed Matter", held in Erice,
Italy, from June 16 to June 30, 1983. This meeting was organized
by the International School of Atomic and Molecular Spectroscopy
of the "Ettore Majorana" Centre for Scientific Culture.

The objective of the Institute was to present a comprehensive
treatment of the basic mechanisms by which electronic excitation
energy, initially localized in a particular constituent or region
of a condensed material, transfers itself to the other parts of the
system. Energy transfer processes are important to such varied
fields as spectroscopy, lasers, phosphor technology, artificial
solar energy conversion, and photobiology. This meeting was the
first encounter of this sort entirely dedicated to this important
topic.

A total of 65 participants came from 47 laboratories and 16
nations (Belgium, Czechoslovakia, F.R. of Germany, France, Greece,
India, Ireland, Israel, Italy, The Netherlands, Poland, Portugal,
Switzerland, Turkey, United Kingdom, and the United States of A
America). The secretaries of the course were: Ms. Aliki Karipidou
for the scientific aspects and Mr. Massimo Minella for the admini-
atrative aspects of the meeting.

The Institute opened with an overview of energy transfer pro-
cesses in various condensed matter systems. This task was the
responsibility of the first lecturer. The next two lecturers
presented the framework necessary to describe the physical pro-
cesses resulting in energy deposition and transfer in condensed
matter and the methods used to observe transfer phenomena. Once
the basic principles were established, specific treatments of energy
transfer in various systems were presented. A lecturer covered
the case of energy transfer in nonconducting materials, another
lecturer the case of energy transfer in solid rare gases etc. The
subjects of energy transfer in ruby crystals, energy localization,
energy transfer in glasses, laser systems, and organic crystals

vii



viii PREFACE

and solar energy conversion were also treated. Specific aspects
of the theory were presented in seminar form together with several
applications to various areas of current interest. This book in-
cludes also the contributions sent by Professors Ern, Duval and
Powell who,unfortunately were not able to come,

I would like to thank for their help Dr. A. Gabriele, Ms. P.
Savalli, and all the personnel of the "Ettore Majorana" organization
in Erice, Prof. R. Uritam, Chairman of the Department of Physics
at Boston College, Prof. V. Adragna, Dr. G. Denaro, Rag. M. Strazzera,
and Avv. G. Luppino.

I would like to thank the members of the organizing committee
(Professors Williams, Knox and Scharmann) and Prof. Kenkre for their
valuable help and advice.

I am grateful to the secretaries of the course Ms. Karipidou
and Mr. Minella whose collaboration during the course was especially
valuable. I wish to acknowledge also Ms. Karipidou's work as
patient and intelligent assistant editor of this book.

It is difficult to describe the spirit of true collaboration
and the interest with which everybody participated in this Institute.
It was a privilege to direct this meeting and to meet so many fine
people who came from so different and various places and worked
together in the congenial atmosphere of the town of Erice. I am
already looking forward to the next 1985 meeting of the International
School of Spectroscopy; I am sure I will see again many of you, my
friends. Arrivederci a presto!

B. Di Bartolo
Editor and Director of
the Institute

Erice, June 1983
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INTRODUCTION TO ENERGY TRANSFER AND RELEVANT SOLID-STATE CONCEPTS

J.E. Bernard, D.E. Berry and F. Williams

Physics Department
University of Delaware
Newark, Delaware 19711, U.S.A.

ABSTRACT

In order to describe energy transfer involving electronic
states of condensed matter the many-body problem is first
separated inte electronic and nuclear problems, and then the
many-electron problem is approximated by one-electron band struc-
ture. These analyses are reviewed. Because several mechanisms
for electronic energy transfer depend on coupling with nuclear
motion, lattice dynamics and electron-phonon interaction are also
reviewed. Energy transfer is then considered rather broadly, and
resonant and non-resonant transfer, excitonic transfer, Auger
transitions, and charge transport by thermal or hot electrons
leading to energy transfer, respectively, by capture or col-
lisional excitation are introduced. A glossary of terms relevant
to electronic energy transfer completes this introductory chapter.

I. INTRODUCTION

A well-known mechanism for the transfer of energy from one
site to another in crystals, amorphous materials, solutions and
biological systems is resonant energy transfer. This mechanism
was explained quantum mechanically by Forster [1] in the dipole
approximation for transfer between organic molecules. Dexter [2]
generalized the theory to higher order interactions, including
exchange interaction, and applied the theory to energy transfer
between dopant ions in inorganic solids. In resonant transfer the
energy donor in its excited electronic state equilibrates with the
lattice modes before transfer occurs to the energy acceptor. The
theory was developed for donor and acceptor which are weakly

1
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coupled to each other but each, separately, strongly coupled to
the lattice. As a consequence of this strong electron-phonon
interaction, energy can be conserved during the transfer. The
transfer probability is found to depend on the overlap of the
emission spectrum of the energy donor and the absorption spectrum
of the energy acceptor. The basic interaction which drives the
transfer is the electromagnetic coupling between the donor and
acceptor. In the dipole approximation it is essentially the same
as the Van der Waals interaction between gas molecules.

For dopants which are weakly coupled to the lattice the
energy mismatch between donor and acceptor obviates transfer of
electronic energy alone. Phonon creation and/or annihilation can
take care of energy conservation during transfer. Single phonon,
two phonon and multiphonon processes occur. Even for transfer
between identical dopants weakly coupled to the lattice, thus with
small or no energy mismatch, phonon assistance can be effective in
transfer, as shown by Orbach [3] for quadrupole-quadrupole trans-
fer in cases for which that multipole transfer is forbidden.

A well-known mechanism for electronic energy transfer in
crystals is the exciton. This elementary excitation is an
eigenstate of a periodic Hamiltonian, and thus its motion is
distinguishable in most cases from resonant energy transfer. The
exciton consists of a coupled electron and positive hole and
therefore transfers no charge, only energy. Excitons divide into
two types depending on the strength of the electron-hole coupling:
Wannier [4] which are weakly coupled; Frenkel [5] which are
strongly coupled. In principle their motion can be wave-like
(coherent), however, diffusive motion is commonly observed for
excitons. Even the tightly coupled Frenkel excitons move from
site to site fast enough so that lattice relaxation around the
excitation does not destroy the lattice periodicity. Otherwise
the exciton is said to be self trapped, and pure excitonic
transfer is less probable, though a hopping mechanism involving
coordinated lattice and electronic dynamics can continue. It
should be noted that in general the concept of energy transfer
implies a subdivision of the total system, which is only clearly
valid for weakly coupled donor and acceptor, though for strongly
coupled components, as for some excitonic transport, the concept
retains some validity.

In some cases the separation of resonant energy transfer and
excitonic transport becomes difficult. If we have an exciton
which moves carrying lattice polarization with it, then the
exciton together with the polarization can be considered as a
quasi-particle whose eigenstates are those of a periodic Hamil-
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tonian. Transport of energy to dopants or defects can thus occur
by motion of this quasi-particle but also by resonant transfer
from the relaxed excitonic state. The range of the resonant
transfer interaction can of course be included in the cross
section for capture of excitons.

Energy transfer, interpreted broadly, includes many other
mechanisms as well. The conduction electron and the valence band
positive hole separately carry useful energy equal to the energy
of the eigenstate in which each moves, measured from the Fermi
level of the material. If these electronic particles are
thermalized with the lattice at their respective band edges then
they carry potential energy which can be transferred to dopants on
their capture; if these electronic particles are not thermalized
with the lattice, that is, are hot carriers, then they carry
kinetic energy which can be transferred to dopants or deep centers
by collisional excitation. Interchanges between kinetic and
potential energy occur spatially at semiconductor heterojunctions,
and even at semiconductor/liquid electrolyte junctions. Mobile
electrons and positive holes which carry lattice polarization with
them are polarons.

The mechanisms of energy transfer discussed so far are for
transfer in position coordinate space. There are other mechanisms
which involve energy transfer in momentum space. These include
Auger mechanisms, as noted by Landsberg [6]. Transfer of hot
electrons into the minima of higher conduction bands involves
transfer of kinetic energy into potential energy in which there is
transfer in wave vector (quasi-momentum) space.

The mechanisms can be subdivided in several ways: (1) by the
continuous or discrete nature of the initial and final electronic
states for the transfer; (2) by the vehicle for transfer being a
charged particle or an uncharged elementary excitation; or (3) by
the intrinsic or extrinsic character of the states and tran-
sitions, that is, characteristic of the perfect crystal or of
dopants. In Table 1 we categorize various mechanisms of energy
transfer based on (1) and (2).

Radiative and radiationless de-excitation are the dominant
processes which compete with energy transfer. These were the
subjects of two previous courses in this school [7], [8]and will
not be discussed further.

Applications of energy transfer in condensed matter are
technologically important. Fluorescent lamps utilize resonant



J. E. BERNARD ET AL

Table 1. Energy Transfer Mechanisms in Condensed Matter
Charged Excitation Ch .
Electronic States Particle Transfer arged Particle
Transfer Only plus Excitation
continuous +> electrons intraband heterojunction
continuous and posi- (subband) tunneling
tive holes-| transitions;
thermalized | excitons
and hot
discrete < hopping; resonant charge transfer
discrete polaron energy
transfer;
phonon-
assisted
transfer
continuous <> tunneling Auger collisional
discrete excitation

transfer between dopants in phosphors. Cathode ray tubes and
radiation detectors operate with excitonic intermediate states.
Sensitization of the photographic process is basically energy
transfer. Dyes and pigments are stabilized by de-excitation
channels which depend on energy transfer. Photovoltaic and
photoconversion solar devices utilize electronic charge or ex-
citonic transport. Photosynthesis itself depends on energy
transfer. Phenomena relevant to applications will be discussed in
subsequent chapters.

In Section II we present analyses which provide some basic
concepts prerequisite for developing these mechanisms. The
separation of the many-body problem of condensed matter into a
many-electron problem and a lattice or molecular dynamics problem
is basic to crystals, amorphous materials, solutions and biologi-
cal systems. The one-electron approximation to the many-electron
problem is equally basic. Electronic band structure and lattice
dynamics have largely developed for crystals utilizing the trans-
lational invariance of ordered lattices. Electron-phonon inter-
action plays a key role in several energy transfer mechanisms and
is analyzed in the final subsection of Section II. 1In Section III
the mechanisms just introduced and some others noted in Table 1
are treated in some detail. Finally, a glossary of terms used in
analyses of energy transfer completes the chapter.
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IT. BASIC CONCEPTS UNDERLYING ENERGY TRANSFER IN SOLIDS

II. A. Separation of Electronic and Nuclear Motion

It is useful, when dealing with many-body problems in which
the particles fall into two or more subgroups in which the motion
occurs on widely different time scales, to try to separate the
problem of determining the motion (or states) of one subgroup from
that of the other(s). For example, in molecules and solids it is
common for the electrons to be moving at much higher speeds than
the nuclei, due to the large difference in their masses. It is
reasonable to assume then that the electrons are to a large extent
able to follow smoothly the motion of the nuclei without under-
going abrupt transitions between states.

Indeed, the electronic sub-system can be viewed as having a
Hamiltonian which is slowly varying in time, and the adiabatic
theorem of quantum mechanics assures that in the limit of
infinitely slow time dependence, transitions among non-degenerate
states do not occur. A discussion of this theorem can be found in
any quantum mechanics text; the original proof, under the assump-
tions of discreteness of the spectrum and non-degeneracy except at
crossing points, is due to Born and Fock [9 ], and a more general
proof avoiding these assumptions has been given by Kato [10]. It
‘'is this theorem which underlies the adiabatic approximation, a
commonly used technique for separating electronic and nuclear
motions. A closely related method known as the Born-Oppenheimer
[111,012] approximation can be used to accomplish the same thing via
a perturbation expansion without explicit reference to the notion
of adiabaticity. Variations on these can be used to obtain more
accurate (or less accurate) solutions based on separation of the
electronic and nuclear motions. We should also like to point out
that these techniques are by no means limited to separation into
two sub-systems. It is possible to effect separation into more
sub-systems, such as is sometimes done in the case of solids with
local modes due to impurities, which may have characteristic time
constants intermediate between those of the electrons and the
lattice modes

The derivation we present here is due to Born [13], and is
readily accessible in a number of other works [12],[14].

The Hamiltonian for a molecule or solid can be written as the
sum of contributions due to the electrons and the nuclei (or, more
practically, ions consisting of the nuclei plus core electrons)

H = TN + VN + Tel + Vel + VN—el’ &)
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where Ty is the nuclear (ionic) kinetic energy operator, VN the
nuclear potential energy, Te1 and Ve] the corresponding electronic
quantities, and Vy_.j the interaction energy between the electrons
and the nuclei. It is common to group the electronic kinetic
energy and all the potential energy into the electronic Hamil-
tionian

H,=T_ +YV

el el T (2)

where

V., =V

T el +V \Y (3)

+
N-el N
is the total potential energy of the system. This defines the
problem of determining the states of the electrons in the field of
static nuclei, where the nuclear positions serve as parameters

Hel(r;R)wa(r;R) = Ea(R)wa(r;R) (4)

where r = (rj,...,ry) denotes the 3n electron coordinates,

R = (R1,...,Ry) the 3N nuclear coordinates, and a the complete set
of quantum numbers for the electronic problem. We should point
out that spin-dependent interactions, such as the spin-orbit
interaction are sometimes included in Hp] when they are expected
to be significant. It is assumed that the solutions of (&)

are known for each set of values of the nuclear coordinates. If
in fact the motion of the nuclei were infinitely slow, the adia-
batic theorem would guarantee that (neglecting perturbations due
to external influences and approximations made in solving the
electronic problem) there would be no transitions between the
electronic states characterized by different values of the quantum
number o, and the motion of the nuclei could be described
classically.

It is, however, important to assess the degree to which the
finite speed of the nuclei affects the electronic state (causing
transitions), and to determine the actual state of the nuclei,
which move in a potential in part determined by the electronic
state. To do this, we write down an expression for the wave
function of the entire system in the form of an expansion in terms
of the electronic wave functions taken as a complete set where the
expansion coefficients xy(R) are (in the adiabatic limit) the
nuclear wave functions.

¥(r,R) = ) X o R)Y (3R). (5)
o

Then the Schrodinger equation for the complete system is
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[H-E 1¥(r,R) = [H_;(r,R) + T (R) - E

total

total ] Z XG(R)wa(r;R)

= 0. (6)

*
Taking account of equation (4), multiplying by yB(r;R), and
integrating over the electronic coordinates results in a set of
coupled equations for the coefficients Xa (R).

[TN + EB - Etotal]XB(R) * g CBaXa(R) =0 @)
where
CBu: = ABa + BBa
N 2
- 7S . .
Agot = .2 M, J Vg (r3R)Vg ¥, (x3R)dreVp
i=1 i i i
-— * .
BBQ. = wB(r,R)TNwa(r,R)dr. (8)

Now let us consider the Cgy in more detail. Differentiation
of the orthonormality condition for electronic wave functions
gives

R,
i

v I w;(r;R)wa(r;R)dr

* *
J wB(r;R)VRiwa(r;R)dr + J wa(r;R)VRin(r;R)dr

= vRidaB = 0, for all i and all B,a. 9)

This is a statement of the conservation of particle number for
small variations in the Ri. In particular, for 8 = a

Re[ J wZ(r;R)VR ¥, (r;R)dr] = 0, for all i. (10)
i

In the absence of a magnetic field, it is always possible to write
the yo as real functions, so that the diagonal elements of A
vanish in that case. The off-diagonal elements of C can be taken
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as a measure of the electron-phonon coupling and can be neglected
in a first approximation if they are small compared to the
separation between the electronic energy levels. This is a rela-
tively good approximation in the case of many molecules and
insulating and non-degenerate semiconducting crystals, but not in
the case of metals and degenerate semiconductors, where there are
continuous bands of accessible levels. In Section IIE below we
consider various means of dealing with these neglected terms in
the cases where they are not negligible.

It is common to keep the diagonal elements of B as part of
the effective potential in which the nuclei move., It is, in fact,
possible to retain the off-diagonal elements of B in the elec-
tronic Hamiltonian as well, since they, unlike the matrix elements
of A, are not operators. Then, only the off-diagonal elements of
A serve to effect transitions among the electronic states. It is,
however, more usual in the literature to find the off-diagonal
elements of B neglected entirely, with those of A being treated as
the electron-phonon coupling. The term "adiabatic approximation"
is most often applied to the approximation in which the diagonal
elements of B are included in the electronic Hamiltonian,and all
other elements of C are neglected rather than the one in which all
matrix elements of C are neglected. Either form of the approxima-
tion can be obtained by starting with the assumption that the
total wave function is a simple product of an electronic function
and a nuclear function, so it is common simply to begin any
treatment involving an adiabatic approximation by writing the wave-
function as a simple product

¥(r,R) = x(R)Y(r;R). (11)
It is perhaps worth stressing that there is considerable
variation in the literature in the meaning of the term "adiabatic

approximation". We have tried to point out several of the varia-
tions, but there are surely more,

II.B. One-electron Approximation

In this section we outline the approximations and assumptions
made in going from the full many-electron problem to the one-
electron approximation to this problem, the latter of which is the
starting point in the calculation of the electronic energies and
wavefunctions for condensed materials. We assume that the adia-
batic approximation has been made and we are now interested in the
solutions of the electronic problem of the adiabatic approximation.

We consider the problem in which the ions are located at their
equilibrium positions and in which there are N ions and n electrons.
Then the electronic problem is the many-electron problem defined
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by the following Schrodinger equation:

Helwu(r;R) = Ea(R)lPa(r;R) (12)
where 9
DA T—— I —rez
+
j ém i<j i_RJ

where r = (rl,...,rJ,...,r ) rj is a three vector locating the
Jth electron, R = (Ry,.. RJ,...,RN), Ry is a three vector
locating the Jth jon, a = (@15+0450y,.0.,0,1)3 a is the complete
set of quantum numbers indexing the different eigenstates of the
many-electron problem which has been subdivided into sets of
quantum numbers o, where v indexes the different subsets of quan-
tum numbers, and Pj is the momentum of the jth electron.

The formal problem described by equation (12) for the case
of a crystal or other condensed phase of matter, including large
molecules, is not in a tractable form and, therefore, we must make
some approximations to the many-electron problem. We begin by
using the Hartree-Fock approximation, in which y,(r;R) is
represented by a Slater determinant wavefunction composed of the
one-electron wave functions

b, (13RS ().

\Y \

Here, ¢av(rj;R) represents the space portion of the wavefunction
of the jth electron which is in an eigenstate indexed by the set
of quantum numbers ay. The spin portion of the wavefunction of
this electron is ng(;.) which is indexed by the quantum number
Oy. In what follows we will assume, as we have implictly done

in equation (12), that there are no spin-spin nor spin-orbit
interactions. Therefore, the spin portion of the wavefunction
will not enter into the final equations of the one-electron approx-
imation and the quantum number sets o, for the space portion of
the electronic states will be doubly degenerate. Note that the
particular one-electron wavefunctions to be used in the Slater
determinant wavefunction depend on the state of electronic excita-
tion of the material being described.

We begin by subdividing the electrons into two subgroups
designated as the core electrons for which j=n'+l,...,n and non-
core electrons for which j=1,...,n'. The conditions met by the
core and non-core electrons which define this division will be
specified later. 1If, for the many-electron wavefunction in
equation (12), we substitute the approximate wavefunction given
by the Slater determinant and if we keep track of the core and
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non-core electrons, we then get:

For the non-core one-electron states:
2

T
¢ (r.) - X ¢ (r.)
2m Yo "] J=1 |rj-RJ a3
*
RN ¢au(ro)¢au(ro)
+ ) e Jd r o (r.)
p=n'+1 © |rj-r0] % J
*
o, (x )¢, (r)
3 o, 0 a0 (13)
- [ d’r, |r,-r | % (rj)
J o H

*
n' o, 3 ¢au(ro)¢au(ro)

+ d .
El € J o |rj-f;T7 ¢av(r3)
#

"
u#Fv
*(r)e (x)
3 ¢(1‘J 1'0 ¢(X\) rO
e, T | = e g,
j o u VIRV
for 1 <v <n'.
For the core one—electron states:
Py y e
¢ (r,) - —T ¢ (r.)
2m a j J=1 Irj RJ a," ]
*
n 2 3 ¢U (rO)q)d. (rO)
+ z e Jd ro u]r_r I ¢Cl (r)
u=n'+1 o v o~
u#v
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*
0, (x)8, (r)

nt ol (s
+ e Jd r i i
uzl ° Irj-rol ¢a (rj) (14)

*
¢a (ro)¢a (ro)

forn' +1<wv <.

Here we have suppressed the parametric dependence of the wave-
functions and eigenvalues on the nuclear coordinates R and gy
€4, (R) are the one-electron energy eigenvalues. We can define
the following quantity:

3 3 * *
J d I J d r d, (rj)¢a (ro)

!
n
€ = 2 e2
vcore
= vV H

=1

(rj)

N (ro)<1>mv(rj)—q>m\)(r0)<1>0‘u 5

u

|rj-r0|
forn' + 1 <v <n.

s s . . th
This is just the energy of interaction between the v core elec-
tron and all the non-core electrons. We then define the division

between core and non-core one-electron states by the condition
that

€ << g
vcore ¢

forn' + 1 <v <n.

This condition is just the condition that the interaction of the
non-core electrons with a core electron is small compared to the
energy of the given core electron. We usually make a single
division into core/non-core one-electron states by using the sub-
division made for the ground state problem for the excited states
as well.

We can decouple the problem of finding the core one-electron
states from the problem of finding the non-core states by
neglecting the terms corresponding to €yqore in equation (14).
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We then can assume in what follows that we have found a solution
to equation (14). Usually it is assumed that a good approxima-
tion for one of these one-electron states is just a linear comb-
bination of the corresponding one-electron atomic orbitals. These
linear combinations are chosen so that the translational symmetry
is satisfied. For further details on this point see the discus-
sion on linear combinations of atomic orbitals done in connection
with the tight binding approximation discussed later in this sub-
section. In connection with this approximation, the core elec-
trons are then assumed to be the non-valence electrons of the
atoms. Since these electrons are so localized they do not over-
lap with one another very much in the condensed phase and,
therefore, do not perturb one another in this phase. We can now
rewrite equation (13) for the non-core one-electron states as:

2
p.
1
m % (rj) + Vo(rj)% (rj)
Vv v
*
Do Jd3 oy ", 7 (r.)
- e r - ¢ r (16)
u=n'+1 ° Irj ro[ au
*
' ) 5 ¢ (r0)¢a (ro)
+ Z e Jd r K ¢ (r.)
= o |rJ-r | o
U#V
*
3 ¢du(r0)¢a\)(r0)
+ I d7r IrJ‘r | ¢“u(rj) = eav¢av(rj)

for 1 <v<n',

where

vV (r,) = - ? e’ + E e? [ d’r 2 2 .
o =1 15578y 41 o Iryr]

u=n j o

1

We then make the additional approximation that we can neglect the
exchange interaction between the core electrons and the non-core
electrons, that is, that we can neglect the third term on the
left hand side of equation (16). Finally, we also neglect, in
the -one-electron approximation, all correlation between the non-
core electrons. That is, the last two terms on the left hand side
of equation (16) are neglected. With these assumptions we then
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get to the one-electron approximation for equation (12) which
is
p2
1 = 17
o ¢av(rj) + Vo(rj)¢u (rj) e, ¢ (rj) (17)

o
\% v Vv

for 1 <v <n'.

Here Vo(r.), the one-electron potential, can be approximated by
the sum of the potentials of the ions forming the solid. That is,
by:

ionJ(rj"RJ)

v, (x)) = Y v
J
where Vi, 7(r,) is the electrostatic potential of the Jth jon
formed from the J'™ atom by removal of its valence electrons.
Equation (17) is a set of simple decoupled potential equations
to solve for the one-electron states in the one-electron approxi-
mation. Note that the one-electron states are introduced into the

calculation by the Hartree-Fock approximation but the one-electron
approximation makes additional assumptions

We can improve on the one-electron approximation by making a
slightly different set of approximations in equation (16). First
we replace the two exhange terms, that is, the third and last
terms on the left hand side of equation (16), by an approximation
having the form of a self-consistent potential, instead of neglect-
ing these terms as we did in the one-electron approximation. Slater
[15] has shown that we can approximate equation (16).

2
P,
i
m % (rj) + Vo(rj)% (rj)
\Y \%
T 1/3
- By u=er'+1¢>%(».~3.><r>0tu(rj)] 0 (1)
*
'L, ¢au(ro)¢a (r)
+ Z e Jd 5w —rJ| oy (rj) +  (18)

\Y
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1

* 1/3 )
. ¢au(rj)¢au(rj) ¢“v(rj) E“v¢“v(rj)

Y

“Bex
u

u

S e f=)

for 1 <v <n'

i
where Slater [15] has determined that Bex = e2(81/8n)2. Kohn and
Sham [16] have disagreed on the value of Bpx, contending that it
should depend on the details of which states are occupied. In
equation (18) we have also kept the self-consistent coulomb correla-
tion term from the non-core electrons. These are coupled one-
electron equations and are, therefore, not as easily solved as
equation (17). A first approximation to the solution of equation
(18) can be gotten from equation (17).

Finally, we note that the total energy of the non-core elec-
trons in the one-electron approximation is given by

n n'
E = 2 € z e2 J d3r J d3r
0. o 1
=1 v V,U
v<u

*
or (£ )0 (x )b (2o, (x)) (19)
U U v v
Irl-rol

n n

+8 z J d3ro Z ¢: (ro)¢u (ro) 3
=1 U=l "y u

v

X

*
¢y (ro)¢a (ro).

v \Y

II.C. Electronic Band Structure

In this subsection we consider properties of the solutions to
the equations of the one-electron approximation for a three
dimensional periodic array of ions. 1In particular, we want to
determine some of the general properties of the one-electron
eigenvalues and eigenfunctions for the set of equations
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2

p
Hyqby (1) = 3p 8, () +V(x)Do, (r) =e ¢ (x) (20
\% \% v Y

for 1 < v < n = number of valence electrons,

where V(r,) is the algebraic sum of the electrostatic potentials
due to the ions forming the three dimensional array.

In order to investigate the properties of €ay and ¢q (ry), we
must first develop some notation to describe the array and the
space of eigenvalues {a,l}].;. The properties of the array can be
described in terms of the primitive basis vectors a;, i =1,2,3
and the concept of a unit cell of an array. The unit cell must
satisfy the condition that it is a subdivision of the array such
that the space occupied by the array can be completely filled by
identical, non-overlapping unit cells. By identical unit cells,
is meant that if we did the gedanken experiment of cutting the
array into the non-overlapping unit cells then, by translations
only, the different unit cells could be moved to a common place
and that all the ions and/or parts of ions in each of the unit
cells would be at the same place after the translation. We define
the unit cell of an array as the smallest unit of the array which
meets the above condition. We define the three primitive basis
vectors as follows: We choose a point in one of the unit cells
and then we consider all the vectors connecting this point to all
the equivalent points in all of the other unit cells composing the
array. From this set of vectors is chosen a set of vectors which
are the shortest non-pairwise collinear vectors.

We then define the direct Bravais lattice as the lattice
composed of the points given by

2
=

+ n,a

= 3 - * _—
X =né& + n,a, 383> 7 o, <5 .

n 171 (21)
Here nj and N;j are integers. The number of unit cells, N, in the
array is given in terms of the Nj as N = NjN)N3 and the number of
ions in the array is N times the number of ions per unit cell.
The X, designate the lattice vectors. Note there is one point in
the direct Bravais lattice for each unit cell in the array;
however, since the unit cells can contain more than one ion, the
number of points in the direct Bravais lattice is not in general
equal to the number of ions in the array. In addition, every
vector X, corresponds to the directed distance between equivalent
points for a given pair of unit cells of the array. And the
directed distance between equivalent points of any two unit cells
is equal to an X;.
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If we define a set of vectors YY; y=1,2,..., = number of
ions in a unit cell; which locate the ions in the unit cell
relative to one of the ions of the unit cell, then the potential
V(r,) of equation (20) is defined in terms of the ionic potentials
V( ), as

NERY

v(r) = g Vo1 (T,X) (22)
Nysfyslig

where

Vee11To 2 v, (Y. (23)

This definition of V(ry) is in accordance with the general
philosophy of the division into core and non-core states of the
one-electron approximation, in that we assumed that the core
states, which in this case we take to be the states of the
electrons of each ion, are not affected significantly by the
formation of the crystal.

In order to make this study of the properties of the wave-
functions and eigenvalues a tractable problem, we must have some
convenient way of handling the boundary conditions met by the wave
functions at the crystal surfaces, We will assume that the
array is large enough so that only a few of the one-electron
states are affected to any significant degree by the boundaries
and that these states are localized near the surfaces of the
array, and therefore, for these few states a perturbation-like
calculation can be used to determine their properties. The per-
turbation is the boundary conditions at the surfaces of the
array. We therefore idealize the array either as: (A) an array
which is infinite in all directions so that there are no surfaces
for the array or (B) we identify each pair of surfaces perpen-
dicular to each of the directions defined by the three primitive
basis vectors, 51. This latter idealization forms a cyclic finite
array containing N unit cells such that a translation by XN
Nlal, i=1,2,3, returns us to the same point in the array. This
way of deallng with the problem of the boundary conditions is
known as the Born-von Karman boundary conditions. We will use
both idealizations in our discussion of the solutions to equation

(20)

Using either of the given idealizations and the form of V(rg)
given in equations (22) and (23), we see that

V(ro) V(ro + Xn) (24)

where X, is given by equation (21).
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We can define a second Bravais lattice called the reciprocal

Bravais lattice as follows: 1Its primitive basis vectors are de-
fined as

b, = 27 g, —‘—‘l—lf—'
t i3k a +a xa (25)
172773
from which it is found that ai'bj = 2n8;5. Note that within the
definition of the primitive basis vectors of the reciprocal
lattice given here there is an additional factor of 27 as com-—
pared to the definition used in scattering theory and that which
we will use in connection with our discussion of phonons. The
reciprocal Bravais lattice is composed of the points given by the
vectors

=z
=

) ~o_ i
Ky, = Viby #vgby +vgby, =57 < v, <5

(26)

where the v's are integers. We define the Brillouin zone boundary
in the reciprocal lattice space as the planes defined by the
condition

2
. L =
ko K\) + ZK\) 0.

There is a Brillouin zone boundary defined for each K,, given above.
The first Brillouin zone is the portion of the reciprocal lattice
space such that the line joining the origin and any point in the
first Brillouin zone does not intersect any of the zone boun-
daries.

We begin the considerations of the solutions to equation (20)
with the translational symmetry of the Hamiltonian,

‘ Given any
lattice vector Xn, then

11}

- +
Hel(ro) - Hel(ro + Xn) TXnHel(ro)TXn (27)

where we have defined the unitary operators, Tyx_, as the transla-
tion operators corresponding to the translations through distances
X,. First note that the operators corresponding to any two
translations commute with one another. Since the operators Ty
commute with each other and with the Hamiltonian of equation (EO)
then there exists a set of solutions which are simultaneous
solutions to equation (20) and the following set of equations:

Ty 9, (ro) = 4, (ro + xn) =1, (xn)¢a (ro). (28)
n v \YJ \YJ V
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Note there is one equation for each X,. We begin by finding the
form of all the solutions to the equation set (28). By using
the normalization condition and equation set (28) plus the
unitarity of the TX operators we have
n
3 2 3% +
J ar lo, (x )] = I dr o (r )Ty Ty ¢, (r) =
v \ n n v

3 2
J d r0[¢av(ro + x|

2 3 2
ITu (Xn)| [ d r0|¢a (ro)[ .
v v

This gives

2
|7, ®D1° = 1. (29)
v
From the group properties of the TX , that is, that
n
Tx Tx = Tx 4x 2
n n .m
it follows that
Tuv(xn)Tav(Xm) = rav(xrl +X). (30)

Then from equation (29), it is found that 14 (X ) =
exp[ity,,(X,) ] where tq,(Xp) is a real functi%n Bf the Xn, and from
equation (30) that

£, (Xn) + ta (Xm) = ta (Xn + Xm).
AV} \Y] \Y

This implies that t, (Xn) has the form
v

tav(xn) = kv.Xn

for some k,.

Therefore, we have that
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kX
94 (ro + Xn) =e ¢ (ro). (31)
V V

This can be satisfied for all X if ¢av(ro) is chosen to have the
form

ik -r
v

o g (ro) =e Ouk g (ro) (32)
VoV VoV

where uy B, (r,) has the periodicity of the lattice. We have taken
the set of quantum numbers, {a,}, for the vth electronic state to
be {k ,B,}. Equations (31) or (32) are just two ways of stating
Blochys Theorem for the solutions of equation (20) when V(ro) is
periodic. We can choose the kv's to be contained in the reciporcal
lattice space. If we do so, then the kv's have the form

where the kVi are not necessarily integers.

All of the representations of the translation group are one
dimensional and given by exp[ik,*X,]. Therefore, two solutions of
the set of equations (28) are the same if exp [ikv'Xn] has the
same value for all X;'s. Consider two solutions indexed by k, and
kg, if

kv-Xn = kT)'Xn + zmn (33)

for all Xn where n are integers, then

ik <X ik-X
vV 'n V n
e = e

for all X .
n

Now if

kv kv + KL
where Kj is a reciprocali lattice vector, then equation (33) is
satisfied. If we choose the set of k,'s that index the indepen-
dent representations of the translation group to be those k,'s
nearest the origin of the reciprocal space, then all of the
independent representations will be indexed by ky's in the first
Brillouin zone. And every k,, in the first Brillouin zone indexes
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an independent representation. Finally, it is noted that any
solution of equation (20) must be a solution of the equation
set (28).

If the Born-von Karman boundary conditions are used, then we
must satisfy the additional condition,

ik +Xy
e l:l’ XN = N.a,

which implies that
kv.XN. B 2ﬂvi
i
where the v, are integers, which gives
kv.XN, = Zﬂkv,ﬂi = 2ﬂvi.
i i

From which it is found that the k,'s for the independent repre-
sentations are

<
<
Z
=z

A | - 34
b3, PRI (34)

ZIFF
o>
+

k =
v

H
'_I
I\lel\)
N
wzlu

We now turn to the properties of the solutions of equation
(20). We will consider two limiting cases: case I for nearly
free electrons and case II for tightly bound electrons. For more
details on each of these cases see, for example, the book by J. D.
Patterson [17].

1. CaseI: Nearly Free Electrons. In this case, we assume
that the non-core electrons are loosely bound to the array. The
equations to be solved are

2
he 2 B
-5V, * V(ro)]d>k 8 (r) = €q (k) o, 8 (r) (35)
Vv v Y
where
% 8 (ro) = eXP[ikv°rO]uk 8 (ro) . (36)
VoV VoV
Recall that
uk\)BV(ro * Xn) B ukvﬁv(ro)'
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Kittel [18] has given a proof of the theorem which states that any
function f(r) which has the periodicity of the array can be
expanded in a Fourier series of the reciprocal lattice vectors,

Ky. That is, if
f(r +X) = f(r)
o n o

then

f(ro) = 2 f(Km)exp[iKm-ro].
m

Since both uy g (r,) and V(ry) have the periodicity of the array,
we can expand both in Fourier series as follows:

U g (ro) = ZU(Km)exp[iKm'ro] (37)
VoV m
V(r) = Zl V(K Jexp[iK -r 1, (38)

where

A ~ A

Km = mlbl + m2b2 + m3b3

The m,'s are integers. Substitution of equations (36),(37)
and f58) into equation (35) gives the following set of coupled
equations

2
h 2 -
[ 5m [k |17 = (k) + VO Juk) = - mioV(Km>”(Kn'Km’ (39)

where K = 0.
o

By nearly-free electrons is meant electrons in a potential meeting
the condition that

V(K ) << V(0) when K # K .
m m 0

We begin solving equation (39) by considering those kv such
that u(Km) << u(0), then equation (39) for K.n = 0 is

ht 2

[ 5ok - e(k) + V(©O)]u(0) = - mgov(Km>u(—Km). (40)

The right hand side of this equation is small, since both V(Kp)
and u(-K;) for K, # K, are assumed to be small. Since, at least
one of the u's must be large, we assume that u(0) is not small.
Therefore, we must have
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h2k2

el)) = V(0) + —— 1)

Now looking at equation (39) for K # 0, then we have, using
equation (41)
2

ol 2
[ m (Zkv'Kn + Kn)]u(Kn) + V(Kn)u(O)

= - mgo nV(Km)u(Kn-Km)- (42)

By assumption, the right hand side of this equation is second
order in small quantities, whereas the left hand side is first
order in small quantities if 2k,°K, + Kn is not a small quantity.
Since the points of the Brlllou1n zone boundaries are defined by
the condition that 2kg-K, + Kg = 0, then the above condition means
that we are far from the Brillouin zone boundaries. In that case,
the right hand side of equation (42) can be neglected. We
then have .
V(K )u(0)
N n
u(hn) =- (43)

A 2
— . +
2m [Zkv Kn Kn]

which satisfies the condition that the u(Kn)<<u(0) as was assumed.
On the other hand, if 2k,,- K + K% is a small quantity for a given
ky, and for some K, that 1s, we are considering a k, near the
Brillouin zone boundary defined by the reciprocal lattice vector
K,, then the corresponding u(K,) for the given ky, is not small.

If this is the case, we cannot neglect all the terms involving
u(Kp) on the right hand side of equation (39) in comparison to
those on the left hand side. We then must assume that u(0) and
u(K,) for the given K, are of the same order of magnitude and that
u(Kp)<<u(0) for Ky, # Ky,K,. Then equation (39) gives

22 9
[ m kv - e(kv) + V(0) Ju(0) + V(-Kn)u(Kn)
=- 7 V(K Ju(k )
m#0 ,n (44)
[/Ez—k2 +’§—2— (2k_*K_+K 2) - e(k ) + V(0)]Ju(K )
2m v 2m V n n € v u n

+ V(K )u(0) = - mzo nv(Km)u(Kn—Km) , (45)
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where the right hand sides of these last two equations do not
involve either u(0) or u(K,),and therefore are of second order in
small quantities, whereas the left hand sides are first order in
small quantities. Therefore, the right hand sides of these equa-
tions can be neglected. In order for there to be solutions for :
which u(0) and u(X,) are not both zero, we must satisfy the follow-
ing secular equation:

24
[ —m V(0) - e(k )] V(-Kn)
=0
hzk\z) 1’ 2
V(Kn) [ o +—25 (2kv-1<n+1<n)+v(o)—e(kv)]

*
If V(r) is a real potential, then V(-K ) =V (K ). Solving for
e(kv) gives n n

XK 2 K2

n _ h n 2
e( 5 + Gkv) = V(0) + Ea-[ % + (ékv) ]
s VKD + £ [(sk )k 1212 (46
- n 2 v ‘n (46)
4m
where we have written k = —Kn/2 + 8k with 6k a small quantity.

Turning to the problem of determining the form of the allowed
energy values, it is seen that equation (41) gives the value
of e(k,) far from the Brillouin zone boundaries. If k, is
replaced by -K,/2 + &k, in this equation then it takes on the
following form:

K 2 K ﬁz(ékv) K
e( —E—'+ Skv) = V(0) + Ea‘[ Z— + (5kv) ] - ———75;——*—* 47)

and if the square root in equation (46) is expanded then its
form is:

-K ﬁZ K2 2
e( —2—‘1+ 8k ) = V(0) + 5 Zfl+ (8k )]
2 2
2 2m~ | V(K )
+ % |8k )oK | - L (48)

A
4 I(ék\))» Knl
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so that whenfﬁzdkv'Kn/m >>V(Kn), then equation (46) is to a

good approximation the same as equation (41). The plus sign

in equation (46) corresponds to negative values of 6k - K in
equation (47) and the minus sign to positive Sk » K . VIn"order

to picture the results given in equations (47) ¥nd®(48) we
consider one direction in the reciprocal lattice space defined by
k = kbj.

In Figure 1 the darkened circles on the k-axis represent
the reciprocal Bravais lattice points. The vertical dashed lines
represent the Brillouin zone boundaries. The dashed curve repre-
sents the allowed energies versus k when V(K,) = 0 for all K, # 0.
The solid curves represent the allowed energies versus k as given
by equations (47) and (48).
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Fig. 1. Extended zone diagram of allowed energies vs

k-values for nearly free-electron approximation.
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The vectors k=kj and k=ky correspond to identical representations
of the translation group and therefore are indistinguishable
reciprocal lattice vectors. However, since the energy is different
for these two k-vectors, the energy must depend on an additional
quantum number which can be taken to be the Brillouin zone number
indicated across the top of Figure 1. Therefore, the set of
quantum numbers B,,, indexing the one-electron states and energies
in equation (34) can be subdivided into {n ,k } where n

corresponds to the number of the Brillouin zone to whicg the ky
vector of the electron would belong when all of the V(K,) are zero.
The values of n,, for the energy states corresponding to ki and kp
are 5 and 6. The independent k, are all in the first Brillouin
zone as indicated by equation (34). In Figure 1, k, is the corres-
ponding k-vector for both k; and ky in the first Brillouin Zone.

In Figure 2, we have enlarged the first two Brillouin
zones. Since the onl independent k-values are contained in the
first Brillouin zone, we have redrawn Figure 1 for the allowed
energy values versus k in the reduced zone picture. The solid
curve gives the allowed energies versus k for V(K,) # 0 and the
dashed curves for V(Kn) = 0. Note that the allowed energies are
periodic with the periodicity of the reciprocal Bravais lattice.
See Kittel's Theorem 8 pages 185 [18]. Also indicated in Figure 2
are the location of the energy eigenvalues corresponding to the
kq and the k2 vectors on Figure 1. On the right hand side of Figure
2 is indicated the ranges of allowed energies, the shaded regions
usually designated as the allowed bands, and the unallowed energies
designated as the forbidden bands.

So far, we have surpressed any consideration of the spin
degree of freedom of the electrons. If the spin quantum number is
to be explicitly indicated, then the notation used for the one-
electron energies will be €nys, (k ), where n, indexes the allowed
energy bands, sve{+ v} 1ndexes the spin state of the electron,
ky€{first Brillouin zonel} indexes the translational representation
of the energy state and Y, are any additional quantum numbers
needed to uniquely specify the state of the electron, for example,
quantum numbers connected with the rotational symmetry of the
array.

If there are no external magnetic fields present then it can
be shown [18].

1. From time reversal symmetry that

v (kv) = E“v”v(k ). (49)

Y
\Y



26 J. E. BERNARD ET AL.
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2. TFrom space inversion symmetry; that is, there is a center of
symmetry; that

Y

EnV+YV(kv) - Env v(-kv)' (50)

3. From translational symmetry that

€ (k) =c¢ (k +K ).
nv+yv v nv+yv vV n (51)

2. Case II: Tightly Bound Electrons. We have just consider-
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ed the case of a weak potential and found that there are allowed
and forbidden energy bands. This particular result is, however,
not a consequency of the potential being weak. In order to show
this, we will consider the opposite limiting case, that of a
tightly bound electron. Here it is assumed that the non-core
electrons are tightly bound to the ions, although not as tightly
bound as the core electrons. The energy eigenvalues and states
can be found by using perturbative techniques on equation (20)
where the zero order approximate wavefunctions are linear com-
binations of atomic orbitals. For simplicity, we will assume
that there is but one ion per unit cell. The ionic potentials
of all the ions of the array are the same and are designated by
\ (ro) as was done in equation (23) The atomic orbitals for

the non-core electrons for a single ion satisfy the equation

Hat(ro)¢2(ro) = E2¢2(ro) s (52)
where 2
- _9
H t(ro) 5 +V (r)

Here & is a set of quantum numbers indexing the one-electron
states of the ion.

The zero order approximate wavefunctions ¢av(r ) are given in
terms of the ¢ (r ) by

¢2kav(ro) =1 eXP[ikv.Xn]$2(ro-Xn) ’ (53)

n

where there exists one¢gk By (r ) for each k,, in the first Brillouin
zone and one for each atomlc ofbital of the non-core electrons of
the ions. Note that this choice of the ¢1kw8v(r ) satisfies
Bloch's theorem as given by equation (31) or (32), for all

X,. Substitution of equation (53) into equation (20) gives

ik X
i ~ ~ _ vV 'n
rI¢2k\)Yv(ro) B E[Hat(ro-xn)¢2(ro-xn)+uxrfro)¢2(ro Xn)]e
. ikv'Xn
= rzl slyv(kv)%(ro-xn)e (54)

where Yy x (ry) = V(ry) - Vo (ro - Xy). Multiplication of equation
(54) by $Q (r - Xn) and integration over the r, - space yields
(when equation (52) is used)
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3 - 5 ik X
[EQYv(kv)_EQ] g Jd ro¢2'(ro_xp)¢2(ro_xn)e
n#p
kX ik X (4 N
+ 622,e = E e ! d ro¢£'(ro_xp)uxn(ro)¢l(ro_xn)'

(55)

By tightly bound electrons is meant that the electrons on one ion
do not overlap the electrons on any of the other ions in the array
to a good approximation. Therefore, we can assume that

3 Y (v o—x ) '
Z Id ro%,(ro Xp)¢2(r0 Xn) ~ 0 for all 2,8",
n#p

and then equation (IIC-36) gives

A 3 -% N
elY\)(k\)) = E£+ %' gl exp[lkv Rm] J d ro(pﬂ,'(ro+Xm)UXéro)¢SL(ro)'

(56)

In addition, in the tight binding approximation being considered
here it is assumed that the integrals in equation (56) are all
small and decrease rapidly as the magnitude of X increases. This
means that only the first few terms in the sum over "m' need to be
kept to get a good approximation to Elyv(kv)- Let 0y (Xp) be
defined as

Sy (&g ;
0,5 = 11, [ a LR RINCRIRCR P E

where OQ(Xn) will be designated as the generalized overlap integral,
and

azYv(kv) =E, + g} exp[ik\)'Xm]@R(Xm). (58)

Here n is the number of non-core electrons per ion. Note that sums
over &' in equations (56) and (57) are over the occupied non-core
electron states. Equation (58) can be written out explicitly for
some simple arrays. See, for example, Patterson [17].
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1. Simple cubic array
ngv(kV)= E2+91(0)+262(Xl)[coskxa+coskya+coskza]

where X; = a(1,0,0).

2. Body-centered cubic array

kxa Eli kza
ele(kV) = E2+el(0) + SGZ(Xl)cos( — )cos( 2 ) cos ( 5 )

where X, =

1 (1,1,1).

N

Here, we have used k,= (k_,k ,k ) and 4, = (a,0,0), &4, = (0,a,0)
and ag = (0,0,a). v *y oz L 2 s

We turn to the interpretation of the form of the allowed
energies in the tight binding approximation as derived here. The
perturbation expansion can be viewed as being in terms of the over-
lap of the electronic wavefunctions for the non-core electrons
centered on different ionic sites where the expansion is in terms
of nearest neighbors, second nearest neighbors, etc. with the zero
order approximation being the situation when there is no overlap
For infinitely large lattice spacing, we have N atoms each with
the same discrete energy levels. Therefore, in the zero order
approximation of the electronic energy eigenvalues for the array
are discrete and degenerate. The degeneracy of the ith level is N,
the number of ions forming the array, times vi, the degeneracy of
ith atomic level. When the energy eigenvalues for the array are
considered using degenerate perturbation theory as done in equa-
tions (52) through (58), then the degeneracy is broken and we get
bands of allowed energy values separated by forbidden energy
values. The width of the allowed energy bands increases with
decreasing lattice spacing, since the perturbation increases
with decreasing lattice spacing. The centroid of each band is
equal to the non-interacting energy value of the degenerate states
from which the bands are formed. Finally, each band contains v{N
discrete levels., See Figure 3. For a macroscopic crystal and
taking account of the zero point motion of the ions, we have
broadening, so that each band becomes a continuum. However, each
band can only have viN electrons in it. In addition, the width of
the allowed bands is independent of the number of ions forming the
array, and, therefore, when an array is formed containing of the
order of 100 ions, the states remain discrete. When an array has
more than one ion per unit cell, then the N used above is taken to
be the number of unit cells in the array, and the zero order approx-
imate wavefunctions could be taken as linear combinations of
molecular orbitials of the molecule formed from the ions contained
in a unit cell.
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Both the tight binding and the nearly free-electron models
have given rise to more realistic methods of calculating the
energy levels of real materials. We will mention here but one
arising from each simple model.

From the nearly free-electron model arises the orthogonalized
plane wave method in which the zero order approximate wavefunctions
for the non~-core electrons are taken as Schmidt's orthogonalized
plane waves where the orthogonalization is to the core electron
states. These orthogonalized plane waves replace the plane waves
used in the simple model and are given by

a1
~
1]

ikv-ro § [ 3 ikv°ro
n e - d’r e ¢ (r)}
voy  © kav p=n'+1 ° ey ©

<=

for 1 <v <n', (59)

where V is the volume of the array. By the use of these as
starting wavefunctions for the band calculation inclusion of the
matching of the non-core electron states to the core electron
states in each unit has been partially accomplished, and there-
fore ,convergence of the perturbation calculation is helped. See,
for example, Callaway [19].

From the tight binding model, the concept of the Wannier
functions arises, The problem with the simple tight binding approx-
imation is that the atomic orbitals used are non-orthogonal for
orbitals located on different ions in the array. In principle
this problem can be circumvented by using the Wannier functions
which are defined as
z —ikv'Xn )

e [0 r
kv kvsv o ? (60)

Asv(ro - Xn) =

2 |

where the summation is over the first Brillouin zone. If we define
the following matrix elements
H, X) == o (k) J &Sr AY (x4 -X)HA, (r -X)
== e € = r r - r - .
Bv n N kv Bv v o Bv o n m Bv o m
(61)

then equation (20) takes the form

HA, (rg - X)) = Y Hy (X, = XA, (r) - X). (62)
\Y] m \YJ A"



INTRODUCTION TO ENERGY TRANSFER 31

H is the one-electron Hamiltonian used in equation (20). From
either equation (61) or (62) it follows that

-ik-X
e, (k) = JH, (X)e ",
B, Vv B.''n
v n v
When we are interested in differences between electronic eigen-
values for a given ionic configuration of the lattice and not the
energy changes due to changes in the ionic configuration, we can
neglect the last two terms in equation (19) as a first approxi-
mation. These energy changes can be calculated by keeping track
of the one-electron states whose occupancies change with excitation.
To do this it is sufficient to keep track of the occupied electron
states above the Fermi level and the unoccupied states below the
Fermi level, the latter designated as being occupied by positive
holes. The energy difference between two many-electron states in
a first approximation is taken equal to the energy differences of
the sum of the energies of all of the electrons above and all the
holes below the Fermi level. This approximation is a good one, if
there is a low density of uncorrelated electrons and holes. 1If
this condition is not met, then account must be taken of the
interaction between the holes and electronms.

The question of the mass of these electrons and holes when
they are in an allowed energy band state must be considered, so
that we can describe their reaction to external forces. If
particles are strongly interacting it is usually incorrect to
assign individual masses to each of them independently because
their reaction to an applied force is as a unit not as individual
particles. For example, in the case of an electron in a crystal
lattice, if you pull on it you also pull on the lattice indirectly,
and therefore the mass assigned to this electron must describe the
reaction of this unit of electron plus lattice to an applied force.
From the relationship between momentum, kinetic energy and mass for
a free particle, the following generalized definition of the mass,
designated as the effective mass for the ijth component of motion
of an electron in the nth band can be made

-1

*
b3 T 3k 9k (63)
V., v
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where k, is the ith component of the three vector ky. For posi-
tive holes the sign of (63) changes because hole motion is equi-
valent to electron motion in the opposite direction.

The effective mass at the Brillouin zone boundary defined by
(8ky) *K, = 0 for the nearly-free electron model is

k2 £
1 1 n;
R ) 3 (64)
m+ i 4m |V(Kn)[

where "m'"' is the free electron mass.

The effective mass at ky = 0 for the tight binding case for
the simple cubic and the body-centered cubic arrays ig

2
n = j‘— (65)
2a Gz(Xl)

IT,D, Lattice Dynamics and Phonons

As shown in equation (7) the ions of a many-ions system move,
to a good approximation in most cases, in the adiabatic potential
which is the electronic energy eigenvalue with its parametric
dependence on the ionic coordinates. With the ions at equilibrium
with each other the force on any ion is zero. The dynamics of
small displacements from the equilibrium position can therefore
be treated by a Taylor expansion around the equilibrium coordinate
positions, retaining only the harmonic terms, choosing propagating
wave solutions for the equations of motion, to obtain the dis-
persion relations between the energy and the wave vector; and
finally identifying the phonons after quantization. We consider
a linear chain of ions, all of the same type, then a linear chain
with links of two types of ions of different masses, and finally
a three dimensional lattice with arbitrary number of ions of
different types in the unit cell.

For a linear chain of ions with equilibrium positions, X, the
expansion of the adiabatic potential for small displacements,
u = R-X is

WE L,y 2V

53X S S

V(R) = V(X) +
(66)

In general, at the equilibrium position X, we have
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W -

X 0.

The following notation has been used above:

BV(X) _  AV(X+u)
3X 3u |u=0 .

th , .
In the harmonic approximation, the force on the L -ion from inter-
action with all the other ions is

2
V()
F. = .(u -u )o (67)
L g 3(XS+L-XL)3XO stL L

We will define the force constant KS as

A a1 9
s a(xs+L_XL)aXo

For the case of identical ions and in the approximation of
only nearest neighbor interactions, the equations of motion are:

Mo = F sl ta g - 20 (68

where M is the mass of the ions. Note, from inversion symmetry at
the Lth lattice site, it can be shown that Kg = K_g. The propaga-
ting wave solutions have the form

w = exp[ i(qLa-wt) ], (69)

where q is the wave vector, "a" the unit cell distance and w the

orbital frequency of the motion. Substitution of equation (69)
into (68) yields the dispersion relation:

“1
w(q) = 2 n sin(-%é ). (70)

For additional details see Kittel [20],

For the linear chain with alternate ions with one type of ion
located at the positions indexed by the odd integers and the other
type of ion located at the positions indexed by even integers
having masses Mj and My we can again consider the motion of small
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oscillations of the ions about their equilibrium positions. Let
k25(00) be the force constant between two ions of type one
separated by an equilibrium distance sa; k2g(EE) be the force
constant between two ions of type two separated by an equilibrium
distance sa and K23+1(E0) be the force constant between unlike
ions separated by an equilibrium distance (s+%3)a. If there is
inversion symmetry, as there must be in a linear chain, at each
ionic equilibrium position, then it can be shown that

KZS(EE) = K_ZS(EE)
KZS(OO) = K_ZS(OO)
“2s+1(E0) = K_pq_1 (EO) (71)
In the harmonic approximation:
The force on the 2Lth ion is
For = 2 g BB [0y 4™ Uar K 941 (B0 [¥gp g4y ~Up 1} (72)
th | .
and the force on the 2L+1 ion is
For41 = g g1 B0 Uy 414064179141
* K 0 (U 41 hps 411} (73)
The equations of motion for the ions are:
2
d"u
21+1 1
7 = i L URogyy O LUy o=ty ]
dt 1ls
T kg 00 [0y ooty 1)} (74)
and
2
d"u
2L 1 z
== {x,_(EE) [u -u,_]
dt2 M2 c 2s 21+2s 2L
T a1 (O LUy ey~ 13 (75)

Again, the propagating solutions are assumed of the form:
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Uy iq = uoexp{i[(L+%)qa‘wt]} (76)

and

u upexp{i[Lqa-wt]}. (77

2L -

When equations (76) and (77) are substituted into equations (74)
and (75) and equation (71) is used, then it is found that Ho
and pgp must satisfy

§ ZO{KZ 41 (E0)cos[(s¥s)qaluy + [k, (00)(cos sqa-1)
2 —-—
Kzs+l(E0)]uo} + uo =0
2
ﬁz SZO [KZS(EE)(COS sqa-1) - KZS+1(E0)]UE (78)

2
+ K25+1(E0)cos[(s+%)qa]u }+ow Hp = 0.
From the secular equation for these coupled equations we can
determine the dispersion relations between w2 and q. The secular
equation is
2
A-w Bl

-2
32 C-w

=0, (79)

where A, B; and C are real functions of q and are given by

_ 2
A= ﬁ Z (00)[l—cos sqal] + K23+1(E0)}
B, 2-2 ] {x, , (E0)cos[(s+¥qal} (80)
i s>0
C = % ) {KZS(EE)[l-cos sqal + Kzs+l(E0)}.

2 s>0

We now investigate some of the properties of the solutions of
equations (78), which can be written in matrix form as

A B M U
1 0 2 0
‘ =W (81)
<Bz C><”E> (“E) A
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Note that each unit cell contains an ion of mass M] and one of
mass My. We will choose the Lth unit cell so that the 2Lth and
2L+1th"ions are in it. For polar materials the two different ions
would have opposite charge. If the ions within a unit cell move
in the same direction, then the net change in the local polariza-
tion would be very small. On the other hand, if the ions within a
cell move in the opposite direction, then the net change in the
local polarization would be large in comparison to the first case.
That is, for the first case the two sublattices, where the two
sublattices are defined as the lattices composed of ions of a
single type, move in the same direction and for the second case
they move in opposite directions. It is of interest to keep

track of whether or not there is a large varying polarization
created for a given motion. We therefore define a new set of basis
vectors i, and ypp where up corresponds to a large polarization
and Upp to a small polarization. The transformation from uo, UE
to Unp, Hp is defined by

exp ( _1%3) 1

1
V2 exp( E%E ) -1

u
np "
Up UE .

We can transform equation (81) to

i Tr 1Jnp 9 unp
r r = 20 ’ (82)
21 22 /\"p Mo

U =

where

where P zAtCH Bleiqa/2 + Bze-iqa/z
Ty 2 A+C- Bleiqa/z _ Bze—iqa/Z
r,=A-c- nleiqa/z + Bze-iqa/z
r,,=A-C+ Bleiqa/z - Bze-iqa/Z _

The coupled equations given in equation (78), (81) or (82) define
two modes of vibration for each g-value in the first Brillouin
zone, where the first Brillouin zone is defined as those g-values
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such that -m/a < q < w/a. The q's are analogous to the reciprocal
lattice vectors k_  for the electronic dynamics. Note that the q's
have been definedaglightly differently from the k's in that the 2w
factor has not been incorporated into the q's. Since the w(q)'s
vary slowly with q it is natural to group the vibrational modes

for various q's into sets designated as branches. Each branch con-
tains one mode from each set of modes for a given q-value.

The conditions that the Fij's must satisfy in order that the
modes corresponding to the two branches separate into ones which
are primarily nonpolarizing and ones which are primarily polariz-
ing is that the off-diagonal elements of equation (88) must be
small in comparison to the diagonal elements. If only the T'12
element meets this requirement for a given gq-value, then one mode
for that q-value is primarily of type up, that is, a polarizing
mode; while the other is of mixed type,up and upp. On the other
hand, if only the I'y] element meets this requirement then one mode
is primarily of type Unp and the other is of mixed type.

We now consider the solution to equation (81) and/or (82) for
some special cases. The following notation is used

<Kn(EE)> = SZO snKzs(EE)
<«_(00)> = SZO 5"k, (00) (83)
<Kn(Eo)> = z snK25+l(E0).

s>0

1. Case 1: The case of Small gq-Values. First it is noted that
T12's leading term in q is 4<K_ (E0)>Xx (1/M, -1/M.) and that T.,'s
leading term is -i<K, (E0)>X (T/Ml + 1/Mp)qa. Therefore, for small
enough gq-values we have modes of type U , designated as the
acoustical branch, and the other set ofP modes is of mixed type,
Hp and |, which are designated as the optical branch. The
corresponging dispersion relations are:

Optical Branch
<k,(00)> <x,(EE)>
1 1 2 2
= = = + -
9o 2( N, + M, )< (E0)> + {M,[ M M, ]

2

2 2
1 a
= 2[<k,(E0)> + <« (EO)> + 7 <k (E0)>]} 9—(M1+M2 84)
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Acoustical Branch

wic ) {Ml[ <K2;00)> ) <K2;EE)> |
1 2
1 ofa’
+ 2[<K2(E0)> + <K1(E0)> + Z'<KO(E0)>]} M. (85)

Note from the definitions of the <K,> given in equation
(83) (that the larger the value of n the more important are the
long range interaction terms in determining the values of the <Kj>.

2. Case II: The Case of q = m/a. In this case, we are consider
ing the gq-value corresponding to the Brillouin zone boundary. It
is easily seen that B; = B2 = 0 and

2 4 2
A= = <« (BO)>+= ) «, ,.(00) = w

M1 0 My s50 bs+2 o

2 4 2
C= = <« (BO)>+— ) « (EE) = w.

M2 o M2 §>0 4s+2 E

where the mode corresponding to wg is given by the solution Ug=H
and ug'= 0 which implies that Mnp = Wp = iy, while the mode corres-
ponding to wf is given by u,= 0 and ug = u which implies that

Mpp = ~Hp = H. Therefore, both branches at the zone boundary are
equal mixtures of polarizing and non-polarizing vibrational motions.
In between the small gq-values and the zone boundary, the mixture of
polarizing and non-polarizing components for the acoustical branch
varies from 0-100 to 50-50. The larger of the two w2's above cor-
responds to the optical branch.

The analysis of the general three dimensional lattice is
analogous to the analysis of the one dimensional alternating ions
situation. Equation (66) becomes in this general situation

9
V(R) = V(X) + | a;ﬂ "up
3,1 °%u1
2
1 V()
+ = v Uil ol
2 iy getpe g Xy T

(86)

where Xj; and ujy are three dimensional vectors with J indexing
the unit cell in which the corresponding ion is located and I
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indexing the location within the cell. The three degrees of
freedom for each ion lead to one longitudinal and two transverse
modes per ion in the unit cell. From equation (86) the equations
of motion are found to be

d"u
JI 1 Z .
=== k(JL,J'I)eu_y.y,

at2 M prop J'L (87)

where
2
JI g1

is the general force tensor. In equation (87), I,I' =1,2,...,

I' = number of ions per unit cell. Substitution of the propagating
plane wave solutions of the form

up = ueIexp{l[XJI°q-wt]}
into equation (87)
KUJI,J'TY) e N2 )
X { M exp[1(XJ,I, XJI) ql-w 5JJ'GII'}eI' 0.

Jj'r I
(88)

Note that equation (88) is a set of 3T coupled equations and
that q is a three dimensional vector in this case, The solutions
to equation (88) give the 3T dispersion relations wy (q); vy =
1,2,...,3T; of the 3T branches and the corresponding eI(Y,q). In
equation (88) u = u(y,q) is the amplitude of the Yy, q mode of
vibration and the eI(Y,q)'s are normalized three dimensional
polarization vectors.

For the case of alterndting ions in one dimension for q=m/a,
the eI(Y,q)'s and wz(y,q) are

wz(l,n/a) = wz w2(2,ﬂ/a) = w2
o] E

eo(l,n/a) =1 eO(Z,w/a) =0

eE(l,ﬂ/a) =0 eE(Z,ﬂ/a) =1 .

In general, the e (v,q) satisfy
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*
; eI(Y,q)°eI(Y',q) = SYY' orthornormality (89)
and

*
% te(Y,q)eI,j,(y,q) = GII'ij' completeness , (90)

where j,j' index the vector components.

For each mode specified by {y,q} quantization leads to
harmonic oscillator states for the u(y,q) with energies given by

En(y,q) ='ﬁwY(q)(n+%), (91)

where n specifies the phonon occupancy.

It will be convenient in what follows to use a second quanti-
tization notation for the phonon which is defined in terms of the
creation and annihilation operators b+Y and bqY for the phonon
eigenstate having wy(q) and vibrational form

up = eI(Y,Q)exp{i[XJI-q—wY(q)t]}, (92)

+ . .
In particular the operator b,. operating on a state of the lattice
vibration creates a state for which the lattice vibration is

increased by one phonon belonging to the Yth branch having wave
vector q. These operators satisfy the commutation relations

b b+

QY’bQ'Y'] 8

= 8
qq' yy' (93)

The displacement and momentum operators for the Ith ion in the Jth

unit cell can be given in terms of the creation and annihilation
operators as

A % + )
u_ =771 1% (y,q){b_ exp[iq-X..]
JI a5 ZNMIwY(q) I qy JI
+b__exp[-iq*X .1} 94
and qy JI (94)
M w (q) ,
I 3 + ,
PJI =i 2 2 [ _—Eﬁl—__ ]2eI(Y,q){blexp[1q-XJI] +

qQy
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- b expl-ia-X 1}, (95)
where
) )
P = -ik = -ih
JI 3uJI aRJI

For further details see Jones and March[21],

II.E. The Electron-Phonon Interaction

As shown in subsection IIA the electron-phonon interaction is
given by the off-diagonal elements of the A matrix given in equa-
tion (8) which has the form

aﬁz 3n_ *
Aeas k'8 = § % EJ A7y, (rRIVE (r3sR) v, , (96)

12%
I k'8 JI

J
where Ypq(r;R) is the many-electron electronic wavefunction of the
adiabatic approximation. The Bloch theorem applies to the many-

electron wavefunction as well as to the one-electron wavefunction
and has the form

ik'Xn
wka(r+Xn;R) =e wku(r;R), (97)
where
k=]k, ,
v

with kv's corresponding to the wavevectors of the occupied one-
electron states when that approximation is used. Since P.. =
-ihVpj1 where Pjr is the momentum operator for the JIth ion,
equation (96) can be written as

equation
fw (@)
Y 3n *
Arask'g =2 YLLLI —ZFYM_ %e;(v,q) f dry, (£3R) (98)
yqJI I
iq-X -iq+X
+ JI JI
x Vlewk,B(r,R) [ble -ble 1,

where equation (95) has been used to represent PJI'

We consider the formal evaluation of the integral in equation
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(97) when the magnitude of the oscillations of each ion is

small. Equation (4) specifies the wavefunction Vo (T3R).

Vr(r,R) can be approximated using the expansion given in equation
(66) keeping only the first two terms. In this approximation
equation (4) has the form

[Tel+VT(r,X) + Z uJI'VX

VT(r,X
J,1 JI

JI)]wka(r;X+u) (99)

= Eka(X+u)wku(r;X+u) .

Let the last term on the left hand side of this equation be
handled perturbatively since it is assumed that the ujp's are
small, then Yi,(r;X+u) is to first order terms in the ujr's

3n_, *
¢ka(r;x+u) = wka(r;X) + z I d nr ¢k18(r';x)[JquJI

k'8
k'#k
B#a
wk.a(r;X)
Ty Vp( 0] 4, @0 T GOE(TOT - (100

Since the {yy(r;X)} are an orthonormal set, then from equation
(100) we have, to the approximation used in the equation,

3n_ * . oy 3n_ % )
J d rwka(r,R)VRJIwk,B(r,R) = [ d rwka(r,R)VuJIwk,s(r,R)
3n %
Jd rwka(r;X)[VXJIVT(r,X)]lPk,B(r;X)
B [E g - E  (X]
Wy Gegsk’ €)
= TE ,.OE_®] (101)
k'B ka :

The conservation of energy, which must hold because of the
time translational symmetry of the Hamiltonian in equation (1).
implies that for real transitions

Ek.B(X) - Eko‘(X) = ith(q) (102)
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for some y and q. The plus sign corresponds to the creation of a
phonon of energy hwy(q) and the minus sign to the annihilation of
a phonon. In addition, by space translational symmetry of the
Hamiltonian for translation through a distance of a lattice vector,
Xp, conservation of quasi-momentum must hold, that is

k'-k = +q + Kv’ (103)

where K, is a reciprocal lattice vector. From equations (98)
(101),(102) and (103) it is found that

Aka;k'g = % 2 ; % [ Eﬁﬁ“‘?&y ]ZWJI(ka;k'B)-eI(Y,q)

iq X
+ JI ' k—-q-
oo T (0B (0-he (@)8(K'k-aK))
~iq Xy

+ e G(Ek'B(X)—Eka(X)+th(q))G(k'-k+q-Kv)}-(104)

We again look at equation (4) for an arbitrary u, but
this time write it as

{Tel + VT(r,X)+[VT(r,X+u)-VT(r,X)]}¢ka(r;X+u)

=B (X+ W, (r3Xtu). (105)

The term in square brackets is treated perturbatively. In the zero
order approximation the ionic motion is separated from the elec-
tronic motion completely. This zero order approximation is known
as the Crude Adiabatic Approximation. See for example, the review
of Williams, Berry and Bernard [22]. The states, in this
approximation, have well defined numbers of phonons and electronic
energy, and the perturbation causes transitions between these
states. The transition matrix elements, which will be designated

by Aka;k'B’ are
- 3n_ % | .
Ak(l;k's = [ d rlPka(l‘,X) [VT(r,X+u)-VT(r,X) ]‘kas(r,x). (106)

From equations (66) and (94) to first order in u, we have
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1
%
] eI(Y,q) x VT(r,XJI)

V. (r,%+u)-V_ (r,X) =) )
T T Y q JI

)
J

; [ ZNM W (q)

iqX -iq-X
« {b+ e JI +b JI}.

qy qy 107)

Equations (106) and (107) together with conservation of
energy and momentum give

ka k' B Aku 3k'B

within the approximation used, Bloch [23], [24] first used Ap,;k'B
as the electron-phonon coupling matrix. For additional

details of the connection between the Bloch matrix and the electron-
phonon adiabatic interaction matrix, see Sham and Ziman [25],

Note that going from the adiabatic electron-phonon inter-
action to the Bloch form depends critically on the use of pertur-—
bation theory. Since the correct form of the electron-phonon
interaction is that given by the adiabatic approximation, whenever
the Bloch form is used in a situation where the perturbation cal-
culation is invalid the results could be in error. Sham and Ziman
[25] point out that calculations involving virtual transitions
would be in error if the Bloch form is used. In what follows we
will use the Bloch formulation, as is usually done.

When the array is deformed there are two possible
effects on the electrons due to the deformation. First, for all
arrays there is a local change in the potential near each lattice
site of a displaced ion, but the combined displacements of all ions
are such that there is no long range electric field established in
the array. Second, if there are ions in the array having different
charges, then there can be a long range interaction between the
phonons and the electrons which arises due to the phonons inducing
changes in the dipole moments within the unit cell. Usually, this
second interaction is the larger, and thus, the first can be
neglected. The short range interaction is treated by the theory
of the deformation potential, and long range interaction is in-
cluded in the Frohlich Hamiltonian formulation,

1. Deformation Potential Theory. Bardeen and Shockley [26]
introduced deformation potential theory, in which the changes in
the energy due to a uniform strain are related to the Block form
of the electron-phonon interaction. Here, we will follow the
presentation of Jones and March [27].
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Consider a uniform strain €;j defined as follows: Given any
distortion of a periodic array where the Jth jon is displaced by
an amount uj where we are considering an array having one ion per
unit cell, we define a vector function u(ry), r, being the
vector coordinate of a single electron, such that it is the
smoothest function having the property

u(XJ) = uJ. (108)
Then € .. is
H du,(r )
€. = i o
ij Broj ’

where i and j index the vector components of the vector function
u(r,) and r,, respectively.

Begin by finding the change in eg(k), the one-electron energy,
given by equation (20) due to a uniform strain e.,. Note that
for a uniform strain the periodic array is distorted into another
periodic array with changed lattice constant. Therefore, there
exist Bloch states for both arrays, but they are not the same
states. Since the distortion can be represented mathematically by
the transformation of the r, space of equation (20) where the
transformation is given by

= n .
Co—ro-U(ro) vr o-€eros

we can find the energies of the distorted Bloch waves in terms of
the energies of the undistorted Bloch waves by solving the trans-

form of equation (20) perturbatively. The result,to the first
order in the strain,is

aB(k;strained) = eB(k;unstrained) + Z ei

‘ .Dij(k,B), (109)
1,]

J
where

- 3_ %
Dij(k’B) = J d roka(ro)Dijka(ro) s

with
BV(rO,X) Ak,

1
0X_. 3 Fo
nj

=-1p
ij m

+) (X .-r )

oi oj n ni oi

Here i,j index the components of vectors and tensors,and the
ka(ro) are the unstrained wavefunctions.
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On the other hand, for non-uniform strains where u(ro) is
given by

u(ro) = pe(y,q)exp[iq-r ], (110)
(o)
then
aui(ro)
€37 Ty TN (1L

If equation (110) is substituted into the Bloch form of the
electron-phonon interaction matrix given by equation (106) and
calculated in the same approximation used to get equation (109)
then

- 3%
Akoc;k'B = g.j J d rowka(ro)éij(ro)hij (ro)wk,s(ro), (112)

where
v(r ,X) ihw (q)q.P .
PP+ (X -r )t L 1O
q

oi oj s ni ol Ban

g |~

hij(ro)

(113)

The upper sign is for creation of a phonon and the lower for
annihilation. The deformation potential is defined as

V(r)) = | THCRLINCOR (114)
1,]
The last term in hj4(r,) can be approximated by +ifiC;(y,q)Poj for
longitudinal acoustical modes with wY(q) approximate% by

% Cj(Y,q)qj,

where C(Y,q) is the phase velocity of the phonon mode indexed by
{v,q}. By comparing equations (109) and (119) it is seen that
in this approximation the deformation potential matrix elements
are

Agsc's = izj Jd rowks(ro)fij(ro)[Pij(kB)
Ak,

1 .
- Pyt thj(Y,q)Poi] herg(ry) e (115)

The last two terms in the integrand are zero at the band extrema.
Therefore, the electron-phonon interaction is
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3 *
kB K'g " 2 D, (k,B) J d roxpkB(ro)eij(ro)wk.B(ro), (116)

i,

where Dij(k,B) is determined from static uniform strain measure-
ments. Note first that we are using a diagonal matrix element of
Dl to determine the above off-diagonal matrix elements. If
DlJ(k B) depends strongly on k then some type of average of

Dj :(k,B) and Dj j (k',B) would have to be used. Second, if we take
the limit of the ionic potential going to zero, the "empty lattice
test'", then the matrix elements for the deformation potential are
not zero. On the other hand the matrix elements for the electron-
phonon interaction are zero, as are those in equation (112)

2. Frohlich Hamiltonian. Frdohlich developed the polaron
interaction given below [28]. In this case, we are interested in
an electron interacting with phonons which cause lattice polari-
zation. For these phonons, there will be both a deformation inter-
action and an additional interaction due to the electric field
produced by the polarization. The Frohlich Hamiltonian is usually
developed for longitudinal optical phonons and has the form

+ o .
By (7o) = 2 Vgybgyexpliarryl = Vo b expl=ia-r Il a7

where

!
—
—~

|

[}

qQy
Here €, and €, are the low and high frequency dielectric constants,
and the values of y correspond to any longitudinal polarizing mode.

The essential steps in deriving equation (117) are:

(a) to use equation (94) for ujp to define the relative
displacement in each unit cell as

1
ugre ) (x) = ; ug- (118)

(b) to use the long wavelength limit for the phonons, that is,
assume small gq-values.

(c) to assume that a continuous approximation is valid, so
that X ir equation (118) is replaced by r,.
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(d) to write the polarization in terms of the relative dis—
placment
u(rel)

' (119)

(1’0) = Iu

I JI

Note that the motion of the polarizing phonons can be described
either in terms of the motion of the ions or in terms of the
dynamical polarization produced by them.

(e) to use the dynamical equations for the ions and the
connection between the ions and the polarization to develop the
dynamical equations of the polarization in terms of microscopic
quantities.

(f) to note that e, includes the polarization induced by ionic
motion and due to electronic motion whereas €« includes the
polarization due to the electronic motion only. Since we are
interested in the polarization induced by the ionic motion only,
the appropriate polarization to be related to the phonons is the
difference between the low and high frequency polarizations.

(g) once having the above inter-relation between the macro-
scopic polarization and the ionic motion, then a connection
between the microscopic quantities and macroscopic quantities can
be made which givesyrige to equation (119) as the interaction of
the long wavelength longitudinal polarizing phonons and the elec-
trons. For further details of this derivation see Kubo and Nagamiya
[29].
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tightly bound electron case.
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III. GENERAL METHODS OF ENERGY TRANSFER

ITI.A. Resonant Energy Transfer

This process is important for energy transfer between dopants
or defects in both semiconductors and insulators. It arises from
a weak electromagnetic coupling between the electrons on the
energy donors and those on the acceptors, which are not to be
confused with charged donors and acceptors in semiconductors;
these energy donors and acceptors undergo only changes in their
state of excitation not in their state of ionization. A key
concept in the analysis of resonant energy transfer is that the
transfer occurs between the excited donor, which has relaxed with
respect to the nuclear coordinates, and the ground state of the
acceptor, which is also relaxed with respect to the nuclear
coordinates. When this is not the case, as for nearest neighbors,
departures from the Forster predictions are not unexpected. Each
relaxed nuclear configuration in a unique way is characteristic of
its specific electronic state. The transfer takes place in a time
of the same order as radiative transitions, and therefore the
nuclear coordinates cannot change during the transition. 1In
addition, no real photons or phonons are involved in this process.
It is common to distinguish between radiative transfer, exciton
motion, non-resonant transfer and resonant transfer as follows:

In radiative transfer a real photon is created by the energy donor
and is then absorbed by the energy acceptor; For pure excitonic
motion the nuclear configuration remains unrelaxed, however,
motion of the excitonic polaron involves at least partial relaxa-
tion; For non-resonant transfer phonons are created or annihilated
as part of the transfer process, whereas for resonant transfer
phonons are neither created nor destroyed.

r
d
9%&

Donor Acceptor

Fig. 4. Relative locations of the electrons and ion cores
of the energy donor and acceptor.

The essentials of the process of resonant energy transfer are
evident from an analysis of the transfer between an energy donor
and acceptor each having a single electron changing its state, as
illustrated in Figure L4. Here we assume that all electronic
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states involved are singlets. The adiabatic approximation and a
simple Hartree product wavefunction are assumed for the two-
electron system of the donor and acceptor. The second assumption
is possible if we neglect exchange, which is a good approximation
when the distance between the donor and acceptor is large. The
initial and final states for the transfer are thus:

65 (Tt 3RR) = dpa(x 3R DG, (r 3R ) (120)

and

¢f(rd,ra;Rd,Ra) = ¢D(rd;Rd)¢A*(ra;Ra) ’ (121)

where ¢D* and ¢p are the excited and ground states of the donor,
having energies €p* and €p, and ¢p* and ¢, are the excited and
ground states of the acceptor, having energies ep* and e€j. The
transfer probability per unit time between given initial and final
states, ¢; and ¢¢, is given by Fermi's golden rule in terms of the
matrix element of the electromagnetic interaction, Hpp» @s

27 2
Pey =5 |<tgltpule| "o (B S(ELE), (122)

where p(Ef) is the density of final states, and the Dirac brackets
denote integration over all electronic coordinates. Due to Hpp
being small the density of final states takes the form of a
product, p(Eg)=pp(ep)rp(ep*), and the initial and final state
energies are Ej=ep+ep* and Ep=ep¥*+ep. The transition energy for
the donor is AE:ED*—GD, and the delta function in equation

(122) implies that EA*'EAfAE as well.

In order to compute the transfer rate it is, of course,
necessary to take a weighted average over all initial states and
sum over all final states which contribute to the process. With
the assumption of no electronic degeneracy, the only remaining
summation needed over initial and final states is then due to the
phonon broadening of the levels. It is convenient, in the
weighted average over initial states, to employ probability dis-
tributions Wp*(€p*) and Wp(€,) which are normalized to unity.
Then the transfer rate is given by
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P = I deD*dsAdeDdeA*PfiwD*(sD*)WA(eA). (123)
Substitution of equation (122) into this expression gives

2T 2
5 J d(AE)deD*deA|<¢f;sA+AE,e *-AE|HDA|¢i;eA,eD*>|

oD(eD*—AE)oA(€A+AE)WD*(eD*)WA(eA), (12h)

where l¢;eA,eD> is the state ¢ in which the acceptor has energy ep
and the donor has energy ep. The interaction Hamiltonian, Hp,, is

_ & 1 _ 1 o1 +
DA € |L+ra—rd[ |L+ra| 1L+r;T

1 (125)
L

which can be seen from Figure L. Here € is the appropriate die-
lectric constant for the material. Note the last three terms in
equation (125) cannot couple initial and final states in which
both the donor and acceptor have made a transition, and therefore,
do not contribute to the transfer rate. When only the first

term is retained, and the result is expanded in powers of L

e2
H, = — [r

2
DA eLS -raL - 3(rd-L)(ra-L)]. (126)

d
From (126) and (12L4), we find

4
4re 2
P = m[ d(AE) !dSA[I<€A+AEIra|€A>‘ pA(EA+AE)WA(€A)] (127)

2
f de x| <epx=BE|r |eps>] “op (epambE)W i (e )] 0,

where averaging over all possible orientations of L has been
employed.

We now write equation (127) in terms of the transition
probabilities for the emission and absorption of a real photon in
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the dipole approximation. Note that since the interaction in-
volved in (127) is the coulomb interaction, the coupling in-
volves virtual longitudinal photons, whereas real photon processes
involve transverse photons., However, in the non-relativistic
dipole approximation these two interactions are proportional to
one another.

The dipole transition rate for emission at an energy donor is

2 3
4Le” (AE) 2
PD*(ED*) = _—%4(:3 I <ED*-AE | rd| ED*> | DD(ED*-AE)

and for absorption (per incident photon) at an energy acceptor is

im2e? (AE)

2
PA(EA) = o |<EA+AE|ra|sA>| pA(eA+AE),

where AE is the energy of the photon emitted or absorbed. We can
define the normalized line shape functions for the emission and
absorption as

Eyx(QE) = n o I deD*WD(eD*)PD*(eD) (128)
and
fA(AE) = nab J dEAWA(EA)PA(eA) (129)

where ney and ngp are normalization constants. They are related
to the mean radiative life time, Tp*, of the donor state ¢p* and
the total absorption, op, of the acceptor from the state ¢ to the
state ¢p* as follows: nep=Tp* and op=1/ng,. We can now use equa-
tions (128) and (129) in equation (127) to find that

44
3¢t £ L (AE)E (AE)
p= — A J d(AE) —51————755—-—— : (130)

4n62L6TD* (AE)
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This equation gives the probability of resonant energy transfer
between dopants and defects, with broad band optical spectra where
the broadening is due to electron-phonon interaction, in terms of
the overlap of the emission spectrum of the donor and the absorp-
tion spectrum of the acceptor, as illustrated in Figure 5.

a (AE)
A &« F o x (OE)

OE

Fig. 5. Emission and absorption spectra of the energy donor and
acceptor, respectively, used in the calculation of the
resonant energy transfer process.

If the leading non-zero coupling term is a dipole-quadrupole
or quadrupole-quadrupole term in equation (126) the the trans-
fer probability is proportional to L-8 or L'10, respectively.
These are important when the L-6 dipole-dipole term vanishes due
to symmetry. If determinantal Hartree-Fock two-electron functions
are used in place of equation (120) and (121) exchange terms
result giving an exponential dependence on L. The exchange terms
are important for energy donor and acceptor systems for which the
separation distance is small.

Resonant energy transfer provides an additional decay
mechanism for the excited donor, and therefore, the lifetime of
the donor as measured by the decay of its characteristic fluores-
cence is decreased. This clearly distinguishes this process from
radiative transfer by sequential donor emission and acceptor ab-
sorption, which would not change the lifetime of the donor excited
state. Note that the dependencies on donor and acceptor con-
centrations of the transfer probability can be used to extract the
multipole character of the transfer. The dependence on the over-
lap of the donor emission and acceptor absorption contains
evidence of the lattice relaxation before transfer, in contrast to
exciton motion. Conservation of electronic energy during the
transfer distinguishes resonant transfer from non-resonant trans-
fer.
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If we consider the theory outlined above from the point of
view of electromagnetic field theory, the essentials of the
calculation connecting the energy transfer probability to the
emission spectrum of the energy donor and the absorption spectrum
of the acceptor are: (1) that the electromagnetic interaction is a
vector interaction, and therefore, there are really three parts to
the interaction; (2) that in free space, these three parts
correspond to transfer of either a transverse photon, with two
independent polarization components, or a longitudinal photon; (3)
that the longitudinal pheton interaction is a pure coulomb
interaction and that theQ¥ransverse photon interaction involves
emission or absorption of radiation; (4) that the energy transfer
calculation involves the coulomb interaction whereas the radiative
transitions involve the transverse photon interaction; and (5)
that in the calculation considered above, we expressed the
longitudinal photon interaction in terms of the transverse photon
interaction. This latter is done by expanding each interaction as
a power series of the coordinates of the electronic charges and
then eliminating these coordinates.

Included in both the energy transfer process and the emission
and absorption processes are the variations of the electronic
charge distributions due to the motion of the ions of the lattice.
The important changes in the charge distributions for the energy
donor and acceptor for this problem are summed up in the
probability functions Wp*(ec.*) and Wp(ep). The explicit forms of
these functions are not needed, since they can be eliminated from the
energy transfer calculation by using the measured results for the
emission spectrum of the donor and the absorption spectrum of the
acceptor, in which they are included. This is only possible if
the initial state of the lattice plus electronic particles of
interest is the same for the energy transfer process and for the
radiative transition process. That is, that the lattice motion is
the same in both cases. 1In particular, that for both processes
the initial state is the relaxed lattice state, which is only
possible for the transfer process if the transfer rates are slow
compared to the relaxation process.

IITI.B. Nonresonant Energy Transfer

For dopants with weak electron-phonon interactions, for
example, trivalent rare earth dopants (RE3+*), the optical spectra
consist of zero-phonon (ZP) lines and their phonon replicas.
Energy transfer between these types of dopants may not be possible
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by the resonant transfer mechanism due to a lack of overlap of the
spectra of the donor and acceptor. However, phonon-assisted
transfer is possible. This may involve, for moderately small
energy mismatch, creation and/or annihilation of a phonon at the
sites of either, or both, the donor and the acceptor, and for
large energy mismatch, many-phonon processes. For very small
mismatch, the creation of one phonon and annihilation of another
of a slightly different energy may be required. The latter, two-
phonon process can have a higher probability than a single-phonon
process involving a low energy phonon because of the low density
of states of these latter phonons. In addition to phonon-assisted
processes which create or annihilate real phonons, there are also
phonon-assisted transfer processes involving virtual phonon
exchange, in which a phonon is first annihilated/created at one
site and then created/annihilated at the second site. Orbach [3 ]
first showed the importance of the phonon-assisted processes in
connection with the transfer between isolated Cr3+ ions in ruby,
which leads to capture of the excitation at Ccr3+ pairs. Imbusch
[30] had suggested earlier that phonon-assisted transfer could be
responsible for this since the calculated resonant transfer
process was too small to account for the observed transfer rate.
In these situations the calculated resonant transfer rate is small
because of the large separation of the emission and absorption
bands of the energy donor and acceptor in comparison to the
homogeneous line widths.

The simplest non-resonant transfer is the single-phonon
creation or annihilation process. The corresponding energy
transferred to the acceptor is Ezpp#hwg, where Ezpp is the zero
phonon transition energy of the donor, fw, is the phonon energy
and the plus and minus signs go with the annihilation and creation
of the phonon, respectively. The Stokes process, in which a
phonon is created, is the more probable. The phonon involved may
correspond to either a local or normal mode depending on the
dopant and the crystal. For the situation in which there are many
phonons involved, that is, |Ezpp-Ezpa| is greater than any of the
phonon energies available for energy conservation, where Ezpp is
the zero phonon transition energy of the acceptor; the probability
of a sequential phonon creation or annihilation of n phonons all
having the same energy, ﬁmq, is proportional to exp[-BAe], where
fiyg=4e/n and Ae :!EZPD-EZpAl. This process is observed for RE3*
doped crystals and glasses [ 31].

The actual calculation of the phonon-assisted energy transfer
is more complex than for resonant transfer; however, the basic
ideas are the same. 1In a lattice at any temperature there is a
given magnitude and form of the lattice vibration. If we view
this lattice vibration in terms of phonons, then there exists a
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corresponding equilibrium distribution of phonons. It is this
equilibrium distribution and its effects on the energies and
charge distributions of the energy donors and acceptors which are
represented in the resonant energy transfer calculation by
Wp*(ep*) and Wp(ep), and which are also present in the calculation
of the non-resonant energy transfer process probability. In the
non-resonant energy transfer calculation, we use the radiative
transition spectra of the donor and acceptor to evaluate the
integrals of these functions times the electronic transition
matrix elements involved in the transfer process,as was done in
the resonant energy transfer calculation. However, the difference
between the resonant and the non-resonant transfer calculations is
that the latter also involves the creation or annihilation of a
real phonon, that is, an extra or missing phonon with respect to
the equilibrium phonon distribution. The perturbation used in the
non-resonant transfer calculation is the sum of the electromag-
netic interaction term used in the treatment of the resonant
transfer problem and the electron-phonon interaction terms
discussed in subsection IIE. In first order perturbation theory,
the electromagnetic interaction corresponds to the resonant
transfer process, radiative transitions, etc., and the
electron-phonon interaction to phonon creation and annihilation
plus the interaction between the virtual phonons and the energy
donors and acceptors, which causes the broadening of their levels.
In higher order perturbation theory, there are terms which cause
changes in the number of phonons only, terms which cause pure
electronic transitions that can give rise to additional effects in
the resonant energy transfer and in the radiative transitions, and
finally terms which involve both the electron-phonon interaction
and the electromagnetic interaction that describe, in part, the
non-resonant energy transfer process. For a single-phonon
creation or annihilation transfer process we can use the mixed
terms of the second order perturbation calculation.

In this case the matrix element to be used in Fermi's golden
rule for the calculation of the transfer probability per unit time
between the initial and final states is

ff -
<¢F[H§A |¢I> =} qu!{;<¢D,¢A*,{néi§qq,}|HDA|¢D*,¢A,{nqi§qq!}>

* <Opuotpatn kS HE G [0pe0,s (n 1>/

<ops0pxsin I, [0)4,6,,(n 1>

* <¢D!¢A*5{nqj:6qql} 'Hel_phl¢D’¢A* 9{nq}>/ﬁqu}’ (131)
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where the summation is over terms with the upper or lower signs.
The state |¢p,pp,{ngl> is a state of the donor, acceptor and
phonons where ¢p ang ¢p indicate the states of the donor and
acceptor, in accordance with the notation of equations (120) and
(121) and {n. }indicates the state of the phonons, where the n,'s
are the phonon occupation numbers. Note that we must keep track
of whether the phonon was created or destroyed at the donor or
the acceptor. Note also that involved in equation (131) is the
same matrix element of Hpp as was used in equations (122) and (12k),
except that the energy of the donor or acceptor has been shifted
by A¥g. The matrix element given in equation (131) is used with
Fermi's golden rule which is then multiplied by Wp*W,, and inte-
grated over eD*, €p» eA* and ey to give the non-resonant transfer
probability. The result of this calculation can be related to
the radiative spectra of the donor and acceptor, from which it is
seen that the non-resonant transfer rate contains terms which are
proportional to

f x(AE)f, (AE + Aw )
phethd(AE)D T
phd (4E) " (AE + 4w )

where oph(ﬁwq) is the density of states of the phonons and
AE=ep*-ep which is equal to Ezpp for non-resonant zero phonon
transitions. For details of this type of calculation for the
non-resonant transfer rate see Orbach [3 ]. Note that due to the
factor pph(ﬁwq) the transfer rate will increase as the energy
mismatch increases so long as A€ is less than the maximum energy
of any phonon that is available for the non-resonant process.

Finally, we note the effect designated as energy localization
which is due to the spectra of the donor and/or the acceptor being
inhomogeneously broadened. The inhomogeneous contribution to band
widths can be distinguished and arises because dopants are located
at sites with different crystal or ligand fields. The results for
resonant and non-resonant transfer rates calculated above use the
homogeneous line shape functions. It is found that the transfer
rate, in general, decreases rapidly with increasing average
separation between the donors and acceptors, the latter of which
can be determined from the concentrations. Inhomogeneous
broadening reduces the number of donors that can participate in
transfer with a particular set of acceptors and vice versa, so
that the rate will be smaller than that suggested by a calculation
of the average separation which is based solely on the
concentrations. A system in which this occurs is referred to as
having energy localization. This effect is particularly important
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in disordered materials, such as glasses, but also exists for
randomly distributed dopants in crystals, especially for higher
dopant concentrations. This effect is significant for resonant
energy transfer if the inhomogeneous broadening is large compared

to the homogeneous broadening due to the electron-phonon interaction.

III.C. Electronic Charge Transport and Energy Transfer

In this subsection the transfer of energy associated with
charge transport is discussed. We begin with some observations
and discussion of terminology to be used. The energy associated
with a charge is equal to the difference between its energy and
the Fermi energy. In most systems either the mobile electrons or
the mobile holes predominate in the equilibrium state. Since the
characteristics of the charge transport depend more on whether or
not it is the predominant carriers that are involved in the
transport than the sign of the carriers, we differentiate the
carriers as majority or minority. The term majority carriers
designates those carriers predominant in number in the equilibrium
state and the term minority carriers those which are not. When the
electrons are the majority carriers the Fermi level is closer to
the conduction band whereas the Fermi level would be closer to the
valence band when the holes are the majority carriers. Although
all charges which are transported through a material and have
non-zero energy relative to the Fermi level can transfer energy,
the only useable energy is that which the carriers as a whole have
in excess of what they would have in the equilibrium state. This
excess energy can exist either because there are excess electrons
and/or holes as compared to the number in the equilibrium
situation or because the carriers have additional kinetic energy.
Note that here we are using the terms electron and hole to
indicate an electron in a state above the Fermi level and an
electron state below the Fermi level which is empty, respectively.
It is only the excess energy that is useable since at equilibrium
the lattice and charges have the same temperature. If energy
could be extracted from the charges when they are in the
equilibrium state, then their temperature would be decreased below
that of the lattice, and this is only possible thermodynamically
if there is a reservoir colder than the lattice available to the
electrons.

Because of the electron-phonon interaction, carriers that are
out of equilibrium with the lattice because they have excess
kinetic energy usually return to equilibrium rapidly by creating
phonons. Non-equilibrium can be maintained, however, if energy is
supplied to the carriers at a rate equal to or greater than this



INTRODUCTION TO ENERGY TRANSFER 59

rate of loss. On the other hand, when the non-equilibrium in a
semiconductor or insulator is due to an excess of electrons and/or
holes equilibrium can only be re-established by the recombination
of carriers of opposite type or by charge transport. Recombina-
tion can be with either free or bound carriers and can be done
either by multi-phonon or radiative recombination. The rate of
recombination of electrons and holes from different bands by
multi-phonon emission can be small if there are few states in the
middle of the forbidden gap, which is the case for many semiconduc-
ting and insulating materials. If there are few charged donors

and acceptors which can bind holes and electrons, and the radia-
tive recombination rate is small, then the excess carriers can exist
for a long enough time so that they can transfer energy while being
transported through the material.

The question of supplying energy to the carriers in order to
maintain them in a state in which they have an excess kinetic
energy must be considered. Energy can be supplied by an electric
field, F, to an electronic garticle at the rate e2F2T/m*, where e
is the electronic charge, m" the effective mass and T the momentum
relaxation time. In metals the fields that can be generated by
external means are usually small, and therefore, the kinetic
energy gained per unit time is usually smaller than the energy
lost to the phonons. For this reason the carriers in metals are
rarely far out of equilibrium with the lattice for any significant
length of time, and therefore, the useable energy transferred when
charges are transported is small.

On the other hand, for semiconductors and insulators there
can be significant amounts of energy transferred via charge
transport. There are two reasons for this. First, if there are
excess minority carriers, then their associated energies are
large, since these carriers are far from the Fermi level. Their
energies are at least equal to half the width of the forbidden
gap. This is the case whether or not they have large kinetic
energies. Second, any of the carriers can have large excess
energy because large electric fields can be developed in these
materials, which can maintain the carriers in a state having
excess kinetic energy. The large fields are possible because
there are fewer mobile carriers in these materials as compared to
metals. However, for this same reason there is less transport of
charge in these materials even though there is large transport of
energy per charge. It must also be noted that although the fields
that can be maintained in these materials can be quite large, the
distribution of the carriers which can be maintained or reached
with these fields cannot have an arbitrarily large excess kinetic
energy since most of the electron-phonon interaction matrix
elements increase with the momentum of the phonon created, which
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in turn increases with the initial energy of the carriers being
scattered. The one exception is the electron-optical phonon
interaction in polar materials. Note that the minority carriers
have a large potential energy in addition to their kinetic energy,
whereas the majority carriers' energy is primarily kinetic. It is
usual to distinguish carrier distributions having excess energy by
whether or not they have large excess kinetic energy. The usual
designation for carrier distributions with a large excess kinetic
energy is to call them "hot" carriers. However, this terminology
has some problems associated with it. First, it implies that
there is only one way in which the carrier distribution can be out
of equilibrium when there is an excess kinetic energy, which is
not true. Second, it implies that all non-equilibrium
distributions can be characterized by a temperature, that is, that
they are either Maxwellian- or Fermi-Dirac-like distributions
which are defined by a temperature, and this temperature is
greater than the lattice temperature. However, there are
distributions for which there is no characteristic temperature
that can be defined. For example, there are distributions which
contain ballistic and/or streaming electrons, which are not
characterized by a temperature. Ballistic electrons are electrons
for which the electron-phonon interaction is negligible, and
therefore, do not lose any significant amount of energy to the
lattice during transport. Streaming electrons are electrons for
which there is only a weak coupling to the optical phonons, which
can happen when they have a substantial amount of kinetic energy.
This is possible in polar materials, since for large kinetic
energy the electron-optical phonon interaction decreases with the
energy of the electrons. If either ballistic or streaming
electrons are present in a given situation, the distribution would
have peaks narrow in comparison to the width of the Fermi-Dirac or
Maxwellian peak for the same situation.

To study the transport properties we use either the Boltzmann
equation or the master equation and/or its generalization. 1In the
rest of this subsection we discuss the Boltzmann equation and the
master equation. The generalized master equation will be
discussed in the subsection on excitons. For a detailed
discussion of the Boltzmann equation see the proceedings of the
conference on the "Physics of Nonlinear Transport in
Semiconductors" [32], and for the master equation see the works of
Dresden [ 33] and Chester [ 34].

The Boltzmann equation has the form
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of s
S + — Vr f(ro,po,t)

t
n ° Bf(ro,po,t)
+ eF-vp F(r ,p »t) = 3t/ o1’ (132)

o

where f=f(ry,po,t) is the carrier distribution function and F the
electric field. rgy and p, are the position and momentum of a
single carrier and (3f/9t)q,p11 gives the change in the
distribution due to collisions. ‘It is this latter term which is
the most difficult to determine, and it is this term in which the
properties of the particular system are contained. We can rewrite
the collision term as follows:

of 3 4 ' ' !
<éﬁ?) - f dp £ (p!>p )= £(p Jw(p p)) (133)
coll

where w(pt>pp) is the probability per unit time of a carrier being
scattered from the state in which it has momentum pq to the state

with momentum p,. 1In the case of scattering by phonons, w(p1>p2)

is given by

)

A oo g
o B Py@iPq

A 1D 1B is given by equation (96). It should be noted that
tggxterms in equation (132) containing V,,f and pof are
usually designated as the streaming terms.

The master equation has the form

9P (t)
Q = -
i g [P ()0 . - p (D0, ], (134)
B#a

where P,(t) is the probability at time t that the quantum
mechanical system is in a group of states indexed by o where
u={a1,u2,...,av,...}. The P, (t) are designated as the many-
particle probability functions. The a,'s are subsets of the
quantum number set o indexing the states of the individual
particles of the many-particle system. Note that the grouping of
the states into groups indexed by the a's is usually done by
having some of the particles' quantum numbers specified, with the



62 J. E. BERNARD ET AL.

rest of the particles having their quantum numbers varying over
all possible values. For example, the electronic particles might
belong to the first set of particles and the phonons to the second
set. Note that the quantum numbers for the phonons would be their
occupation numbers. The matrix elements Qug of the operator @ are
the transition probabilities per unit time from the group of
states indexed by B to those indexed by o. The properties of the
particular system being described are incorporated in the Qupg.
Note that one of the assumptions made in deriving the master
equation from the dynamical equation for the quantum mechanical
density function is that the states indexed by the a's are weakly
interacting and therefore the matrix elements of the operator

Q2 should be small.

We can define the one-, two-, etc. particle probability
functions by summing the many-particle probability functions over
all but one, two, etc. of the particle indexes. Dresden [33] has
shown that under appropriate assumptions and with the use of the
one-particle probability functions that the Boltzmann equation can
be derived from the master equation. However, the streaming terms
are missing because there are no corresponding terms in the master
equation from which he started.

Note that the Boltzmann equation is a semiclassical equation
in that the collision term is usually found quantum mechanically
whereas the streaming terms imply a classical specification. 1In
addition we should note that it is implicit in the Boltzmann
equation that only infinitesimal changes are described. On the
other hand, the master equation is more suited to systems in which
discrete quantum jumps are important. Also note that once we have
either f or P,(t) then any prediction of experimental results that
can be made can be found by taking weighted averages of the
appropriate quantity weighted by f or Pa(t)'

When solving the Boltzmann equation for real systems, since
the collision term is usually complicated, it is usual to look
for approximate solutions. We assume that the carriers are
characterized by a temperature, which will be the case if the
electron-electron scattering rate is large in comparison to the
rate of change of the energy of the carriers as a whole. If this
is the situation, a commonly used approximation is the displaced
Maxwellian given by

P 2

o
f(Po) = A exp{ - ;;; - vd~PO /kBTe s (135)
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where vq and T are parameters to be determined, kg the Boltzmann
constant and A a normalization constant. The parameter T, gives
the elevated temperature of the carriers caused by the applied
electric field. Note the analogy between the assumption made in
this approximation for the Boltzmann equation and the assumption
of the adiabatic approximation. 1In both, because of an internal
fast rate of adjustment in a subsystem as compared to the energy
supplied to or lost from the subsystem, a partial separation can
be made between the internal subsystem, in this case the
electrons, and the external subsystem, in this case the lattice
and electric field, by including the effects of the external
system on the internal system parametrically. Although it seems
reasonable to assume this form as an approximation to the solution
of the Boltzmann equation when the above conditions are satisfied,
it is probably better to think of this solution as a particular
two-parameter fit to the solution. The displaced Maxwellian is
appropriate for situations in which the carriers are
non-degenerate., If the carriers were degenerate then a displaced
Fermi-Dirac distribution would be more appropriate.

The values of vq and T can be determined in terms of the
field, F, and the parameters describing the scattering mechanisms
by making use of the balance equations for the energy and
momentum. These equations are derived from the Boltzmann equation
by first multiplying the Boltzmann equation by either the energy
or the momentum and then integrating over the momentum space. The
results are:

Momentum Balance Equation

3 3 (] ] ] 1
eF = [ d’p, [ d po(po-po)w(po+Po)f(Po) (136)

Energy Balance Equation

' 2 > 2
o 3 3 o __o '
V4 = J 4 Po J d pé * * w(po+po)f(pé). (137)
2m 2m

Equations (136) and (137) can be solved for vq and Te with

which f(py) is then given. Note that the displaced Maxwellian
solution is appropriate for situations in which there is spatial
homogeneity. If an improved parametric solution is wanted, a ten
parameter solution could be used since there are ten independent
conserved quantities, in general, for any three dimensional
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problem to which there correspond ten balance equations. These
ten balance equations could be used therefore to specify the ten
parameters. In essence we have chosen arbitrarily six of these
parameters when we use the displaced Maxwellian approximation.

The reason for doing this is that in most situations it is
difficult to specify the form of the additional balance equations.
If we have found the f(py) for the displaced Maxwellian
distribution then we can determined the momentum and energy
relaxation times, which are defined as follows:

d|<p_>|

= (138)
Tm d(elF|)
and
2 %
d<p0 /2m >
g © d(eF.vd) > (139)

where <¢> =/dpy f(py)9(py), which is the average value of ¢(py).
The two parameters tp and tg can be used to define an approximate
parametric solution of equation (132) which is more general

than the displaced Maxwellian approximation. In most cases 1 is
much longer than tp, which allows for some interesting effects.
For example, the approach to equilibrium does not have to be
monotonic, That is, there can be an overshoot for a short length
of time [35]. 1In the above discussion of the displaced Maxwellian
distribution it was implicitly assumed that the energy bands were
parabolic. We can take care of the explicit band shape by using
the actual energy-momentum relationship in the displaced
Maxwellian and in the energy balance equation. The simplest way
to do this is by assuming that the effective mass is momentum
dependent.

If we consider a transport problem for which there is a
fundamental quantum discreteness then it would be more appropriate
to use either the master equation or a generalization of it. An
example of this type of problem is the transport of carriers
across an interface where the quantum discreteness involved is
that the carriers are either on one side of the interface or the
other. 1In this situation a possible subdivision of the states is
into states for which the particle is on one or the other side of
the interface. Equation (134) then takes the form
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9P(i,e,t) ' . ' . '
—_—3 ) 7 -
3t J de'[P(],e ,t)Qij(e,e ) P(1,€,t)jS(s ,€)1,

(1k0)

where i#j, i,j=1,2 index the states for the two sides of the
interface and € is the energy of the particle. Once the Q's and
P(i,e,0) are given, then we have a set of coupled linear
integro-differential equations to solve for P(i,e,t). Note that
the linearity of the master equation is in contradistinction to
the Boltzmann equation which is nonlinear in f.

When there is transport of charge the energy of the carriers
can be transferred to charged donors or acceptors by capture of
cool carriers. The kinetic energy of the "hot" carriers can be
transferred to localized centers by collision excitation or by
Auger processes. The latter two processes will be discussed later
in this section.

III.D. Energy Transfer by Excitons

1. Exciton Structure. As introduced in Section I, excited
states of crystals in which the electron and positive hole are
correlated and propagate as a neutral particle, the exciton,
constitute and important mechanism of energy transfer in semi-
conductors and insulators. The exciton is an elementary excita-
tion, a boson, and an eigenstate of a periodic Hamiltonian, how-
ever, its description goes beyond the one-electron approximation
of subsection II.B and the electronic band structure of subsection
II.C. Nevertheless, the analyses of the properties of excitons
depend on the concepts developed in these subsections. As noted
in Section I, excitons can be divided into two classes: Wannier
(effective mass) and excitons and Frenkel (tight binding) excitons.
In the following we shall outline the formulation of these, then
consider generalized excitons as elementary excitations, and then
analyze their energy transport properties.

A simplified treatment of the Wannier exciton can be done
using effective mass theory. A derivation of the effective mass
approximation is presented in the appendix. Here we use a general-
ization of two-particle states. The zero-order Hamiltonian is now
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Ho = Te + Th + Ve_L + vh-L’ (141D

where the potentials are the interactions between the particles of
interest and the lattice, and Te and Th are the kinetic energy
operators. In the approximation of a continuous dielectric
background the interaction between the electron and hole is

] e2
H'(rg,ry) = - ITe - n |’ (142)

where ro is the electron coordinate, rp is the hole coordinate and
¢ is the dielectric constant. H' is assumed weak compared to the
crystal potential; equivalently the average separation is assumed
large compared to unit cell dimensions in order for the continuum
approximation of equation (142) to be valid. The zero-order
wavefunctions are simple products of Bloch functions since the
particles are distinguishable. The exciton wavefunction is then
represented as an expansion in these functions

Pex = n%m [ an(ke'kh)wn(ke're)¢m(kh'rh)d3ked3kh'(143)

where the sum is over bands, and the integrations are over a
Brillouin zone. The Schrbdinger equation for the exciton
wavefunction is then

[Hy + H'logy = Edey- (144)

From here, the procedure is essentially the same as that shown in
the appendix, except that the basis states are the two-particle
products used in equation (143). The resulting equation is

[Ep (Ko oky) = EIF (kg ky)

+ Y ) JF,,(k',k')C (k. kLK )C (kK LK,)
n'im' gig n'm'*"e**h’“nn'*"e*"e’ o’ “mm' *"h*"h*'"g

x H'(q)d3kd3ky = 0. (145)

Here q = Kke-k&-K,+kn+kp+Kz, H'(q) is the Fourier transform of the
H' given in equation (142), and E is the eigenvalue in equation
(144). The approximations made here will be the same as those
made in the appendix, namely that a single band is important for
each particle (a conduction band for the electron and a valence
band for the hole); the bands are isotropic, with extrema at k=0;
the F functions are localized about k=0; and all the C's are
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approximately equal to 1. Then the following momentum-space
Schrodinger equation results:

n%k2  hokl
Em—*—— + -ﬁ{- + H'(q) + Eg - E F(ke,kh) = 0, (1)46)
e
where E;, the energy gap, merely sets the position of the energy
scale. In order to transform this equation to real space, we
define the double Fourier transform of F(ke,kh) by

Flkg ky) = J F(rg,ry)expl-iky r -iky oryJd3k d3k,.  (147)

Then the effective mass equation is

*'e
2me 2mh

G H2
|:- 22 - — v}21+ H'(rg.ry) + Eg - E]F(re,rh) = 0. (1L8)
This is, of course, just the Schrodinger equation for the hydrogen
atom. The internal and center of mass motion can be separated by

making the coordinate definitions

r':!'e—l"h,
* *
mir my.r
e e h"h
R = ——_T_I——?——' (149)
mg + my

Then the effective mass function F can be written as a product

F(re,rh) = f(r)G(R) ’

(150)
and f and g satisfy
72 > e2
[“ -Z—-EVr. "é—r}f(f') = (E - Eg -é’)f(r), (151)
and
——62——\72@0‘) = &a(r) (152)
2(m;+mﬁ) R B ’
respectively, where
m*m¥*
e (153)
me+mh
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The eigenvalues of equation (151) are just those of the hydrogen
atom in the center of mass frame, and the eigenvalue of equation
(152) is Just the total kinetic energy of the exciton. Note that
contrary to the usual practive in solving the hydrogen atom problem,
we do not assume that the total momentum of the electron and hole
system is zero. Thus, the energy of the exciton (E in equation
(1Lk) is

12K Jret

E = E - .
& " 2(n¥emf) T 242n2

(154)

This approach is rather limited in its applicability to real
systems but is of interest nevertheless due to the clear physical
picture it affords. Unfortunately, it is somewhat difficult to
generalize this calculation, so for accurate calculations it is
best to use an approach which is more general from the start. We
refer the reader to the review by Knox [36] for a more general
treatment.

The Frenkel exciton includes excitons which can be ap-
proximated in terms of intramolecular excitation and those ap-
proximated by charge transfer transitions. Excitonic states of
alkali halides were early investigated by von Hippel [37] and
their energies approximated from charge transfer between nearest-
neighbor anion and cation

(24 - 1)

Eex = x— 1+ R, *+ Epo1r (155)
where y is the electron affinity of the anion, I is the first
ionization energy of the cation, A is Madelung's constant, Ry is
nearest-neighbor anion-cation distance in the crystal and Epol is
the polarization energy.

Intramolecular excitons have been investigated more recently
by more sophisticated methods. For these a tight binding approach
using approximations to the Wannier functions is useful. For
crystals, such as rare gas solids and some organic crystals, the
interactions between the molecules are weak, i.e. van der Waals
interaction only, and excitonic wavefunctions can be described as
follows:

¢ ex(K) = ; Ay(r-R;) T A(r-Ri)eiK'(r'Rj), (156)

i#j
where Ag(r - Rj) describes an excited molecule at the jth site;

A(r - Ry), ground state molecules at the ith site; and the sum
over sites including the exponential factor makes ¢ox(K) an
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eigenstate of the periodic Hamiltonian of the crystal. . Frenkel
excitons in aromatic organic crystals such as anthracene have been
extensively investigated by Pope and collaborators [38]; excitons
in rare gas crystals by Zimmerer [39] and Hahn and Schwentner
[40]. Intracore excitons have been investigated for some
materials, including alkali halides [41].

Excitons can be generalized as elementary excitations and
formulated as follows:

iK*Rj
§ og(K) = i.Zj £(R;-Ry)e K Rict e 4, (157)
where ¢, is the electronic wave function and is usually taken to
be of the Hartree-Fock form, cjy is the annihilition operator for
a valence electron at the ith site, e, is the creation operator
for a conduction electron at the j'I site, and f(R{ - R3) is a
correlation function for the two operators. Some limiting cases
are:

f(Ri - Rj) = 6ij intrasite exciton,
e.g. core exciton

f(Ry - Rj) = 81,11 charge transfer exciton,
e.g. alkali halide

f(Ri - Rj) = F(re,rh) effective mass exciton,

e.g. III-V semiconductors.

2. Exciton Transport. Now we shall briefly examine the pro-
blem of exciton transport. It has been pointed out [42] that the
study of exciton transport can be viewed an encompassing all forms
of spatial energy transfer in which mass and charge are not trans-
ported. Here the point of view is that any quantum of electronic
excitation whether localized at a lattice site or impurity, or de-
localized, regardless of the state of relaxation of the lattice is
an exciton. In this view, the resonant and non-resonant energy
transfer problems can be seen as a part of the somewhat more generall
topic of exciton motion. Thus, the study of the motion of excitons
is of considerable importance in the process of sensitized lumines-
cence, whether in organic or inorganic crystals. It is also fund-
amental to many other processes. For example, it is known that in
photosynthesis the initial excitation must migrate to particular
sites where trapping occurs and the chemistry of sugar synthesis
takes place.




70 J.E. BERNARD ET AL.

The microscopic interactions responsible for the motion of
excitons have been discussed earlier in the sections on resonant
and non-resonant energy transfer, so we will deal in this section
only with the macroscopic, or statistical, treatment of the
transport problem. It is instructive to consider first the two
limiting cases for the type of motion undergone by excitons as
this is one of the principal issues involved in modern theories of
exciton transport. In one limit the motion can be characterized
as wave like, that is, an exciton wave characterized by a wave
vector ko propagates through the crystal with little scattering by
phonons. This type of motion is generally termed "coherent", and
it is well described by the microscopic equation governing the
system, the Schrodinger equation. 1In the opposite limit, the
motion is that of a random walk through the lattice, that is, a
diffusion process. This type of motion is called "incoherent" or
"diffusive" and is best described by a master equation. The
latter type of motion is clearly an irreversible process, whereas
the former is reversible. The source of the irreversibility is
the interaction between the excitons and phonons.

In general, the situation in real crystals lies somewhere
between these two limits, and in order to relate the microscopic
interactions responsible for exciton motion to macroscopic observ-
ables it is necessary to develop statistical procedures which
include aspects of both. Previous techniques, such as the
diffusion equation approach and the master equation approach,
dealt only with incoherent motion. A great deal of work on this
problem has appeared recently, principally dealing with the motion
of Frenkel excitons in molecular crystals. Since the classic
review of Knox [36], several new approaches have been developed to
treat both the coherent and incoherent aspects of exciton motion.
Among these are: 1) a polaron-like treatment, due to Grover and
Silbey [L3], [44], 2) a stochastic Liouville equation approach,
initiated by Haken and Strobl [45], and 3) a generalized master equa-
tion approach, originated by Kenkre and Knox [L2], [L6]. Reviews
of the latter two, together with extensive lists of references,
have been published recently by Kenkre [47] and Reineker [48].

Our discussion is based primarily on these reviews.

The application of generalized master equations (GME's) to
exciton transport is the most recent of the methods to appear. It
was developed in order to unify the treatment of coherent and
incoherent exciton motion in a very general way within a single
framework. The appropriate GME is
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dp_(t) t
m P - t dt! ]
= J z [Wmn(t—t') n(t') wnm(t t')Pm( "] ' ( 58)

0
where Pp(t) is the probability of occupancy of site m, and the
Wpn(t - £') are "memory functions", that is, functions which serve
to include an appropriate amount of dependence on "past history"
in the equation. This non-locality in time means that the GME is
non-Markovian. In the limit of infinitely rapidly decaying
memory, Wpn(t - t') = @p,8(t - t'), the GME becomes the ordinary
Merkovian master equation and yields

dP_(t)
m
at  ~ g (pnPp () = SppPp(e) 1, (159)

and is appropriate to the description of completely incoherent
motion. The cause of the decay in the memory functions is the
interaction of the excitons with the reservoir of phonons. In the
limit of no interaction with the phonon reservoir (infinitely long
memory), the GME becomes the microscopic equation for the diagonal
elements of the density matrix, and is then a description of
completely coherent motion. Thus, the fundamental problem of the
GME approach is now that of determining the memory functions from
the microscopic dynamics. In some cases this can be done exactly.
It is quite interesting that in some cases in which an exact
calculation is not possible, the memory functions can be related
directly to measurements of spectra. For more details on the
calculation of memory functions in specific cases, the reader is
referred to the review of Kenkre [47].

The actual memory functions appropriate for a given system
are, in general, somewhere between the limits of infinitely short
and infinitely long memory, and thus, their effects may or may not
be apparent on comparison with particular experiments. The
solutions of the GME show coherent behavior only for times short
in comparison to a parameter called the "coherence time", On this
basis, one would expect the effects of the coherence to be
observable only in experiments with temporal resolution finer than
the coherence time for the system being observed. However, even
in steady-state sensitized luminescence experiments coherence can
be observed if the radiative lifetime of the excitons is com-
parable to, or shorter than the coherence time. 1In this case, the
excitons move coherently during most of their existence, and
transfer rates are affected. At high temperatures, the increased
phonon density causes the motion of excitons to be less coherent
than at low temperatures. Therefore, in this regime, as well as
in those steady-state experiments where the exciton radiative
lifetime is larger than the coherence time, the memory functions
would be close to those appropriate for incoherent motion, and an
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ordinary Markovian master equation serves to describe the trans-
port properties adequately.

Whereas the GME approach unifies the treatment of coherent
and incoherent motion in a very general way through the use of
memory functions, the stochastic Liouville equation (SLE) approach
treats the two types of motion in a more specific way as the sum
of two contributions. The method was developed by Haken and Strobl
[45], and has undergone considerable development since then by
Haken, Reineker, Strobl and others [49], [50]. Kenkre [47], [51] has
pointed out that the method developed by Grover and Silbey [44]
results in a transport equation which is formally identical to the
SLE. For this reason, we will not discuss the Grover and Silbey
method separately. The form of the SLE is

dopn(t) y
mn .
—at ° 1 Hoeelpy - 26, K Y|m-n|(pmm - Ppp) (160)

-2(1 -8 +2(1 -8

mn) T Pnn mn)Y|m-n|pnm’
where the pp, are the density matrix elements, [+,+] denotes the
commutator, H, is the non-core electronic Hamiltonian,

T = g Y|m_nl

and the various y's are rates which we discuss briefly below. The
first term on the right-hand side represents the coherent motion
of excitons. Note that it, together with the left-hand side, is
formally identical to the von Neumann equation for the density
matrix. The second term on the right-hand side represents
incoherent motion with rates given by 2y, _pn| for sites Tm - n|
apart. The diagonal matrix elements present in this term
represent the probability of occupancy of particular lattice sites
by the exciton. Note that if only this term is kept on the
right-hand side, the master equation results. The remaining
terms, involving only off-diagonal elements, represent inter-
actions with the phonons. The first of these describes the decay
of phase relations between the lattice sites, the decay constant
2T being independent of site.

Kenkre [47] has shown that the SLE with its last term
neglected can be put into the form of a GME with memory functions
given by

Won(8) = e=2TEuC (6) 4 o2y s(v), (161)
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where wﬁn(t) is the memory function appropriate to completely
coherent motion, i.e. with no interaction with the phonons. The
second term clearly represents incoherent motion, due to its
infinitely rapid decay in time. We can see from this comparison
that the SLE method appears to contain somewhat less generality in
the type of coherence it can describe. However, this is offset by
the fact that it is an equation which gives off-diagonal as well
as diagonal elements of the density matrix, whereas, the GME only
gives the diagonal matrix elements.

TIIT.E. Auger Processes as Energy Transfer

Auger processes involve the transfer of energy between
electronic particles in such a way that one of the particles in
the final state lies in a continuum. 1In solids this can be viewed
as a three-particle process in which two carriers collide, causing
one of them to recombine with a carrier of opposite type, the
binding energy being given up to the remaining collision partner.
The recombining particles may be intrinsic carriers, or one or
both may be bound to dopants or defects, or they may be bound
together as an exciton, either free or trapped. The concept of
Auger transitions in solids has been appliad to metals as well as
semiconductors; but it is of greatest utility in the latter, and
the bulk of research has been concentrated there.

While Auger transitions do not themselves involve spatial
energy transfer over significant distances, they do involve
transfer of energy from one particle to another, and the final
state always involves having at least one particle in a continuum
state, usually with non-zero kinetic energy, so that energy is
then available to be transferred by particle transport. For this
reason, we take the view that Auger processes constitute a form of
energy transfer, but in themselves, only in momentum space (the
latter remark is due to Landsberg [ 61), that is, there is
transfer of energy from one state or group of states localized in
momentum space to another. It is worth emphasizing that Auger
decay of an exciton or excited impurity is a competitive process
to both spatial energy transfer (i.e. resonant or non-resonant
transfer, or exciton transport) and radiative decay.

It is possible to envision a wide variety of different types
of Auger processes in semiconductors. Generally it is convenient
to classify them into four distinct groups according to whether
they are intrinsic (occur in a pure material) or extrinsic
(involve impurity or defect states), and whether they are phonon-
less or phonon assisted. Distinctions are also often made between
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processes occurring in direct-gap materials (direct processes) and
those occurring in indirect-gap materials (indirect processes).

We shall follow the convention of denoting those processes
involving collision between two electrons with one of them
receiving the energy from the recombination of the other with a
hole as eeh processes, and the corresponding collisions of two
holes as ehh processes.

The simplest of the Auger processes is the phononless
band-band Auger process in direct-gap materials, which was inves-
tigated in detail by Beattie and Landsberg [52]. The eeh version
of this process is shown in Figure 6. Here the lack of phonon
assistance means that energy and momentum conservation must
be satisfied by the two colliding particles (electrons or holes).
As a result, it is not possible for either of the particles to
undergo a band edge-to-band edge transition (AEzE;, Ak=0). Thus,
there must be an activation energy associated wit% the process,
and it is related to the size of the energy gap. For direct-gap
materials with large gaps, the activation energy is large, so that
the probability of this type of transition is expected to be
small.

B L ¢ 1 |

Fig. 6. Direct, Phononless band-band Auger process (een),
showing conservation of energy and momentum.

In their treatment of this process, Beattie and Landsberg
used perturbation theory, starting from zero-order states which
were taken to be Bloch states, with the perturbation being the
screened electron-electron interaction
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H' = — e . (162)

where ¢ is the dielectric constant and 1/) is a screening length.
The dielectric constant takes account of screening by inner
electrons, and 1/) takes account of screening by conduction
electrons.

In order to obtain the net recombination probability, it is
necessary to take the difference between the probabilities for the
forward (Auger) process and the reverse (impact ionization)
process. If energy is conserved, the net probability is zero
unless the electrons in the bands of interest are not in
equilibrium. Beattie and Landsberg considered the electrons
within each band to be in equilibrium among themselves but not
with those of the other band. They defined quasi-Fermi levels for
each band, and it was the difference in these quasi-Fermi levels
that was responsible for the existence of a net non-zero Auger
transition probability. They calculated carrier lifetimes (under
the assumption that the Auger process was the only available
recombination process) and compared them with experimental results
in InSb. Above about 250K they found reasonable (order of
magnitude) agreement, suggesting that Auger transitions form the
dominant recombination process in InSb at high temperatures.

It can be shown that the dependence of the band-band Auger
transition rate on carrier density depends on n2p (eeh process) or
np2 (ehh process), where, as usual, n denotes the negative carrier
concentration and p the positive carrier concentration. Following
Haug [ 53] we write the Auger recombination probability for the eeh
process in the form

W= A f|M|295(E1+Eé-51-32)6(k§+ké-k1-kz)d3k1d3k2d3k;d3ké, (163)

where A is a constant factor, M is a matrix element of H', and the
particle indices are shown in Figure 6. P consists of the
appropriate occupation probabilities and contains two terms, the
first for the forward process and the second for the reverse
process:

P = fo(K)fq(kp)fy (K1 1-Fg(kD)] (164)
- D14 (k) I 1=£4 (k) I 1-£p (k1) 1£4 (kD)

Here f, and fy refer to Fermi-Dirac distributions involving
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appropriate quasi-Fermi levels Fe and Fh for the electrons and
holes, respectively:

1
e © 7 4+ exp[(E-F,)/kpT]

1
Th = T+ expl(F,E)/kgI]" (165)

where kg is Boltzmann's constant. Taking energy conservation into
account we can rewrite P in the form

P = {1 - expl(Fy-Fg)/KgT1}f (K)o (Ky) fp (K [1-Fo (kD) 1. (166)

Now if the Fermi-Dirac distributions are approximated by Boltzmann
distributions

% e(FeE)/kpT

£, N e(E-Fh)/kBT’ (167)

where 1-fo & 1, 1-f & 1. fo and fy are proportional to n and p,
respectively [54]. Thus, the forward rate goes as n2p, and the
inverse rate as nngp,, where the subscript indicates the equi-
librium densities. Thus, the net Auger recombination rate depends
on n2p. This is a faster increase with carrier concentration than
that for radiative rates by a factor of n (or p in the case of the
ehh processes). Note that the analysis on which this is based
breaks down for degenerate semiconductors, since it requires the
approximation of the Fermi-Dirac distribution function by a
Boltzmann distribution.

While in direct-gap semiconductors phononless Auger tran-
sitions require an activation energy, it is theoretically possible
that a phononless Auger transition could occur in an indirect-gap
material with no threshold energy. Such a material would have to
have a rather special band structure. However, it turns out that
the band structure of germanium is a reasonably close approxima-
tion to that required for phononless ehh processes without
activation energy. The band structure of silicon, on the other
hand, does not favor this process. Both materials have band
structures that would seem to favor the corresponding eeh process,
but Pilkuhn [55] has pointed out that it appears to be improbable
because of a small matrix element and a small region of k space
for the transition.
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Phonon-assisted Auger recombination was studied by Eagles

[52] for direct-gap materials, and by Huldt [53] for indirect-gap
materials. These are second-order processes, and as such, would
generally be expected to be less probable than the phononless
processes. However, phonon assistance makes possible the satis-
faction of the momentum conservation condition more easily, and
this may compensate for the decreased probability due to the
higher order. Indeed it is often observed experimentally that
Auger transition rates have only weak temperature dependence,
which is consistent with phonon participation because the activa-
tion energy is thus obviated. This suggests that the phonon
assisted process may be of considerable importance in many common
semiconductors.

Phononless Auger processes in indirect-gap materials were
investigated by Huldt [54] and by Hill and Landsberg [551, with
the result that the recombination coefficients were lower than
those determined experimentally.

The case of degenerate semiconductors has been considered by
Haug [56], [57] for both direct and indirect-gap semiconductors. He
showed that phononless Auger recombination is highly improbable in
degenerate materials, so both papers concentrate on phonon-
assisted processes. In the later paper he applies the theory to
the phenomenon of electron-hole drops and finds fairly good
agreement with experiment.

Other types of Auger processes include those involving
localized centers, or traps. These are known as band-trap Auger
transitions. Here a conduction electron recombines with a trapped
hole, or a valence hole with a trapped electron, the recombination
energy being given to a free carrier. Auger transitions involving
two trapped particles are also possible, as in electron transfer
between a donor and an acceptor with the energy again given up to
a free carrier. Annihilation of free or bound excitons in which
an electronic particle receives the recombination energy are yet
another type of Auger process. Pilkuhn [58] has remarked that
Auger transitions involving bound excitons are important in
silicon.

III.F. 1Inelastic Collisions: Hot Electron Excitation

Impact excitation in solids involves the transfer of energy
from an energetic charge carrier to a localized state, which may
be an impurity ion (localized in real space), or some quantum of
excitation of the crystal, such as an exciton or plasmon
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(localized in either real or momentum space). The projectile may
be quite energetic, as in cathode ray bombardment, or it may have
only a few eV of energy, as in electroluminescence. This
inelastic scattering process is just the inverse of a particular
type of Auger process in which the recombination occurs between
bound charges on a single site. As such, it can be considered to
be a form of energy transfer.

We shall be concerned here only with the field of
electroluminescence, where the excitation energy is of the order
of two or three electron volts, much greater than thermal
energies. As a consequence, the carriers which participate must
be more energetic than those which are equilibrated with the
lattice, and so they are dubbed "hot carriers", even though it may
not be correct to assume that they can be characterized by a
temperature.

There remains some controversy in the literature as to
whether the mechanism of excitation is direct impact excitation or
impact ionization of the lattice followed by energy transfer to
the luminescent center [59, 60]. However, it appears that the
bulk of experimental work supports the impact excitation mode at
least in the case of ZnS:Mn and ZnS doped with various rare earths

[611, [62], [63], [6L4], [60].

Tanaka et al. [60] have performed experiments involving
ZnS:Mn in both photoluminescence (PL) and electroluminescence
(EL). In the former case, time resolved spectroscopy showed
recombination luminescence followed by a build-up of emission from
the manganese, clearly revealing lattice ionization followed by
energy transfer as the mechanism of excitation. However, in the
case of EL, no recombination luminescence was observed, suggesting
that energy transfer was not the excitation mechanism. This
suggests further that the carrier energy distribution tails off
quite sharply in the region between the manganese excitation
energy (about 2.2 eV) and the band gap (about 3.7 eV). This last
conclusion is also supported by a result of Zhong and Bryant [65]
which can be used to estimate the temperature of the hot carriers
as about 1800K, assuming that it is reasonable to characterize the
distribution by a temperature. For a Maxwellian distribution at
that temperature less than one percent of the carriers have
sufficient energy to excite the manganese.

Evidence against direct impact excitation has been published
by Walentynowicz et al. [59]. Their experiment, also using ZnS:Mn
as the active layer, showed the Mn2+ emission peaking about 200 us
after excitation in both PL and EL. Also, only one peak was
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observed in both cases, with no change in the intensity distribu-
tion. Thus, they claim that non-radiative transfer is the
excitation mechanism. They also measured the delay in the
emission peak vs concentration of Mn2* and found a substantial
decrease above one percent by weight. They claim that this is
consistent with the dependence of non-radiative transfer on
activator-sensitizer separation. It should be pointed out,
however, that it is also consistent with the dependence of
resonant transfer among Mn2+ centers on the separation between the
Mn2+ ions. This would cause concentration quenching, but no
mention was made of this phenomenon. Having noted this con-
troversy, we shall be concerned below only with the process of
direct impact excitation of the luminescent centers.

Allen [66], [67], [68] has presented a simple model describing
the impact excitation process. In the case considered, the device
is a reverse-biased Schottky diode, in which the acceleration of
the energetic carriers takes place in the same region in which the
excitation occurs. If N and N} represent the concentration of
luminescent centers and the concentration of excited centers,
respectively, in the region of interest, then
J N
SMNL - N = —W, (168)

where W is the width of the region, J the current density, q the
charge, T the lifetime of the excited state, and

«

1

0= o3 [v(E)q(E)f(E)dE (169)

is a sort of average cross g%ction. g¢(E) is the cross section for
the excitation process, f(E) is the carrier energy distribution, v
is the carrier velocity, and <v> is the velocity averaged over the
distribution function. From (168) the fraction of excited

centers is obtained:

Nl’j N
L _ )
N, T J o+ —q—m (170)

Now, the number of centers excited by an electron in crossing
the region is given by a(Nj - Nf)w, so the quantum efficiency is

*

Ng

q/1q
GNLwnI"ad J + q/1q’ (171)
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where Nppq is the radiative quantum efficiency. Unfortunately,
there is no clear physical interpretation available for o0 as
defined in (169). In most situations of interest there will be
significant variations in carrier velocity across the region
containing the luminescent centers, so that the variation of

0 across the region must be taken into account. In Allen's case,
there are high fields within the active region which are respon-
sible for acceleration of the carriers. The variation of the
field within the region and of 0 with the strength of the field
are thus important. Allen has taken these into account by simply
assuming particular functional forms. He is then able to
determine an expression for the dependence of the quantum ef-
ficiency on applied voltage. The expression agrees reasonably
well with experimental values when the voltage is not too high.
We do not present the expression or its derivation here, as it may
not be directly applicable to more general situations.

The problem of calculating the cross sections for the
excitation process has not been extensively investigated. There
are probably a number of reasons for this. Among them are the
difficulty of the problem. At the relatively low energies
involved the Born approximation is known to represent the cross
sections poorly, and more precise methods, such as the close-
coupling methods, are quite unwieldy when dealing with the large
numbers of electrons present in the typical luminescent center
(transition metal ions and rare earth ions are common). 1In
addition, there are unknown effects due to the presence of the
crystal lattice, the states involved in the transitions arising
from degenerate states split by both the crystal field and
spin-orbit interaction. As a result it is difficult to obtain
reliable wave functions for the states involved.

For these reasons Bernard, Martens and Williams [69], ap-
proached the problem from a semi-classical point of view, using a
very simple calculation. It was based on an adiabatic picture of
the scattering process, in which the incoming hot electron was
viewed as perturbing the energy levels of the center via the
interaction between itself and the induced dipole moment of the
center. The levels have different polarizabilities (with the
excited states having the greater polarizabilities), so that the
separation of the levels varies with the distance between the
projectile and the target. In particular, the level separation
decreases as the distance decreases. It was assumed that the two
levels of interest could be considered in isolation and that at
some distance the two levels would become degenerate (cross), the
probability of occurrence of the transition being greatest at that
distance. This separation was then considered to be the effective
geometric radius for the cross section for that transition. In
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addition, it was assumed that the interaction could be described
as that between a point charge and a polarizable center at large
distance. Under these assumptions, the interaction energy is

2
ae

AE S =TT (172)
n 2r‘)'l

where an is the polarizability of the nth level and r is the
distance between the incoming electron and the target. If ry is
the separation distance at which crossing occurs, the cross
section is then given by

5 - (ae - ag) _1/2
o = Trg = ﬂeL'ETE;—:—EEY J ’ (173)

where Eg and E, are the unperturbed ground and excited state
energies, respectively.

Some of the effects of the host lattice were taken into
account by using the energy levels (with respect to the vacuum) as
measured in the crystal in the determination of the polarizability
difference between the levels, as well as in the denominator of
equation (173). The final expression for the cross section was

from (174), [69], [TO]

_ _Tme -Kk k
o= -IE—I— é_Ei b + E éE ’ (17)"‘)
g 1+ E g 1 + 3
g g

where k, K, and b are constants for a given center and are
determined by the mean square radii of the electron orbits, the
polarizability of the ground state, and the binding energy (in the
free ion) of one of the electrons occupying the level in which the
transition is said to occur. AE is the separation of the energy
levels when the projectile is an infinite distance from the
target. In the usual case AE/E; is small compared to unity and
k/Eg is small compared to b, so that ¢ is approximately inversely
proportional to |E,|. Thus, deeper centers should be expected to
have smaller cross sections.

Comparisons of the results obtained from (174) [69],[70]
showed reasonably good agreement with experimental information
currently available in the case of ZnS:Mn [T1] and ZnF,:Mn [T2],
[73], [7T4]. In all these cases the cross section was estimated
to be about the same as the geometric cross section of the free
ion, about 10-16 cm2, Support was also provided in the case of
ZnS:Mn by Tornqvist [75] who indicated that an early estimate by
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Allen [67] was too low, and by a more recent comment by Allen

[68], who stated that the cross section for ZnS:Mn may be as high
as the geometric cross section. However, there was relatively
poor agreement with a cross section inferred [70] from results of
Suyama et al. [76] in the case of Y,03:Eu3*. 1In the latter case,
however, the inferred experimental cross section is in con-
siderable doubt. We are aware of no other available experimental
information on cross sections for rare earth dopants.

It was pointed out in [70] that the theoretical calculation
described above is a semi-classical approximation to a physical
process which can only be properly treated by a completely quantum
mechanical calculation. This is particularly true for the
manganese and the trivalent rare earth ions, in which the
transition involves a spin flip of an electron within a particular
configuration, 3d5 in the case of Mn2+ and U4fN in the case of the
trivalent rare earths. This can occur by an electron exchange
process which can be fully described only via the formalism of
quantum mechanics.

IV. CLOSING REMARKS

Condensed matter is a many-body system, and the concept of
electronic energy transfer is based on two separate subdivisions
of the system. On the one hand, into the energy donor and energy
acceptor; on the other hand, into the electronic energy and the
energy associated with lattice dynamics. Both separations are
approximations: the separation into electronic and vibrational
energies is based on the quantum mechanical adiabatic approxima-
tion; the separation into energy donor and energy acceptor is
handled differently depending on the strength of the coupling
between these two subsystems.

The many-electron subsystem of condensed matter is usually
further approximated in terms of one-electron states. These allow
determination of the electronic band structure, which has been
well developed for crystals, that is, condensed matter whose
structure has translational invariance. From the lattice dynamics
for these structures phonon dispersion has been similarly
developed. The electronic bands and phonon states of crystals,
plus the effects of electron-phonon interaction provide the
background for theoretical analyses of the mechanisms of
electronic energy transfer in condensed matter. However, trans-
lational periodicity is not essential for treatment of some
similar mechanisms which occur in amorphous solids and in liquids.
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The conventional definition of electronic energy transfer
encompasses transport of energy in position-coordinate space. The
classic mechanism is resonant transfer between inequivalent and
weakly-coupled dopants which are separately equilibrated with the
lattice in their respective electronic states before transfer.
Non-resonant and excitonic transfer are also included within the
scope of this definition. These mechanisms do not depend on
translational invariance of the structure.

Excitons were conceived originally as electronic eigenstates
of a periodic potential with correlation of an electron and a
positive hole so that the coupled electron and hole moved
together, transporting no charge. The concept is now applied more
widely, including any excited, non-conducting states of condensed
matter, amorphous and liquid as well as crystalline, and thus
includes many extrinsic as well as intrinsic mechanisms for the
transfer of electronic energy in position-coordinate space.

Electronic transfer in which net charge is transferred may
also transport energy. This is most evident in semiconductors for
which the minority charges carry potential energy almost equal to
the band gap. Hot electrons in insulators, semiconductors or
metals carry kinetic energy. In general, electrons or positive
holes may transport energy equal to their eigenenergies as
measured from the Fermi energy of the material.

A general definition of electronic energy transfer includes
the transport of electronic energy in momentum-coordinate, as well
as in position-coordinate, space. That is, transfer between sets
of states having their probability densities localized in momentum
space or between a set localized in position space and another
localized in momentum space is now included. Thus, Auger
transitions and charge transfer between subbands now fit within
the category of energy transfer processes. The possibility is
suggested, of course, of applying the techniques of energy
transfer in position space to transfer in momentum space, and vice
versa. It will be of some interest to see whether, in the future,
attempts to do this prove fruitful.

APPENDIX: EFFECTIVE MASS APPROXIMATION FOR DOPANTS WITH COULOMB
FIELDS

Our derivation follows closely that given by Pantelides [77].
We consider a system consisting of an electron in a crystal, under
the influence of the lattice potential and an impurity potential,
the latter assumed to be hydrogenic. The Hamiltonian is
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H = Ho + H', (A-1)
where
Ho =T +V, (A=2)
and
e2
' - o —— -
H'(r) = e (A=3)

Here T is the electron kinetic energy, V the interaction with the
lattice, and € the dielectric constant. The wavefunction for the
electron is expanded in terms of eigenfunctions of H, (Bloch
functions):

6= ) JFn(k)wn(k,r)cﬁk, (A-4)

n

where the integration is over a Brillouin zoné, and the sum is
over bands. Now take the inner product

I Uk, H(rd3r = FOOE, (k) + Z J Fpyo (kDHL (k) a3k
n

EFn(k), (A-5)
where
Hppt (k,k') = J w;(k,r)H'(r)wny(k',r)d3r. (A-6)
Here we have made use of the fact that
Hdpn(k,r) = En(k)wn(k,r). (A-T)
The Bloch functions have the form
ko) = KTy (k,r), (A-8)

where uy, is a function having the periodicity of the lattice (see
the glossary entry for Bloch's theorem), so equation (A-6) can be
rewritten as
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The product ugunv can be expanded in terms of plane waves

uf (e, rug (k') = ) G (kok! K etkaT, (A-10)
Q

where the sum is taken over reciprocal lattice vectors. Thus,
(A-9) becomes

HioGk') = ) Coi(k,k! KR! (kek'K), (A-11)
o

where H'(q) is the Fourier transform of H'(r)

. 3 e2
H'(q) = J H'(r)e 19:Tgdr = - =—. (A-12)
€q

Thus, equation (A-5) can now be put into the form

(E-E,, (K)IF, (k) + J Foo (K')Cpp e (kKK O (kek 'K )3k

1
2 I

=

n
[}

(A-13)

Now we introduce a number of approximations. First, it is
assumed that the sum over bands can be reduced to a single band.
This is expected to be valid if the state of the electron is not
too different from that of an electron in a particular band (a
shallow state). Also, it is assumed that the band is isotropic
and has a non-degenerate extremum at k=0. In this case, it is
expected that F(k) will be fairly well localized about the
extremum, so that the contributions to the integral will only come
from the region with k and k' small compared to the non-zero K
From equation (A-12) we can see that f'(q) falls off fairly
rapidly with q. This, together with the fact that we need only
consider small values of k and k' (and, hence, |k-k'|), motivates
the omission of all terms in the sum on o for which Kafo.

The constants C(k,k') are given by
Clk,k',Ky) = Ju*(k,r)u(k'.r‘)e'iK“'rd3r. (A-14)

Note that the band index has been dropped. The orthonormality of
the Bloch functions then gives C(k,k,0)=1, and we assume this is



86 J.E. BERNARD ET AL.

approximately true for k#k' as well. The energy E(k) for an
isotropic band with extremum at k=0 can be expanded to give

h2x2

E(k) = EO + F'

(A-15)

*

where m* is the effective mass.

Then, after making these approximations, the integrations on
k are extended to all of k space, and equation (A-13) becomes

2,2 -
[Eo -E + gmf JF(k) + J ' (k-k")F(k")d3k' = o0, (A-16)

which is just a momentum-space Schrodinger equation. Using the
Fourier transform

F(r) = J F(k)eik'rd3k. (A-17)
we obtain the effective-mass equation:

- 52 5 -
L—'Z-;;V + H'(r‘)_lF(r) = (Eg-E)F(r). (A-18)

GLOSSARY

Adiabatic approximation: For a system composed of two interacting
subsystems which have greatly differing inertia an adiabatic
approximation to the dynamics of the system can be made. In
this approximation the wavefunction is assumed to be a product
of coupled wavefunctions for the individual subsystems. The
wavefunction for the small inertia subsystem (usually referred
to as the fast subsystem) depends only on the static
properties of the large inertia subsystem (usually referred to
as the slow subsystem), not on the rate change of the latter.
This assumption can be made because we assume that the motion
of the large inertia subsystem is slow compared to that of the
small inertia subsystem, so that the latter, to a good
approximation, never lags behind in its adjustment to the
former. On the other hand, the small inertia subsystem is
viewed as producing a force on the large inertia subsystem via
an average potential. With these assumptions about the
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interactions between the parts of the system, the product
wavefunction can be taken to have the form ¢ g(r;R)xi5(R),
where ¢5(r;R) is the wavefunction for the small inertia
subsystem, whose coordinates are r, and X;g(R) is the
wavefunction for the large inertia subsystem, whose coor-
dinates are R. Note that X depends on the state of the small
inertia subsystem, whereas ¢ depends on the configuration of
the large inertia subsystem. Here we have differentiated the
subsystems in terms of their inertia, since it is their
relative ability to adjust to each other's changes that is
important.

Adiabatic theorem of quantum mechanics: In general, there are no
stationary solutions to the time-dependent Schrodinger equa-
tion for a time-dependent Hamiltonian H(t). However, for any
fixed value of t stationary solutions do exist. The theorem
asserts that in the limit of infinitely slow variation of H(t)
with time the stationary states for a particular value of t
change smootnly into those for adjacent values of t.

Allowed and forbidden energy bands: The energy eigenvalues of the
one-electron states for crystalline materials group into sets
of closely spaced energy levels, that is, sets of quasi-
continuous levels. The range of energies corresponding to
each set is designhated as an allowed energy band. The
intervening energy ranges in which there are no closely spaced
energy eigenvalues are designated forbidden bands.

Auger process: In atoms, an autoionization, in which an atom in
an excited state of energy greater than the first ionization
energy decays into an ion and a free electron. In solids, a
collision process between two electronic particles in which
one recombines with a third electronic particle of opposite
type, with the energy released by the recombination being
given to the other particle participating in the collision.
The latter always lies in a continuum of energy levels in the
final state, though it may not in the initial state.

Bloch's theorem: states that the solutions to Schrodinger's
equation for a periodic potential have the form

¢k8 (r) = eik‘ruk a(r),

where uy.(r) has the same periodicity as the potential. Here
k and r are 3n-vectors.

Born-von Karman boundary condition: The Born-von Karman boundary
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condition is defined by the identification of the surfaces of
an array in pairs which are perpendicular to any given
primitive basis vector. This identification removes the
effects of the surfaces on the consideration of the form of
the wavefunction for the particles of the system. With this
identification the array is considered to be periodic, with
periods Njaj, i=1,2,3.

Brillouin zone/Brillouin zone boundaries: The Brillouin zone
boundaries are those planes in the reciprocal Bravais lattice
space whose points correspond to those wave vectors k which
satisfy the equations 2k-Kv+KV2=O, where K,, is any reciprocal
Bravais lattice vector. These planes are the perpendicular
bisectors of the reciprocal lattice vectors. The Brillouin
zones are defined as the connected subregions of the recipro-
cal lattice space when this space is subdivided along the
Brillouin zone broundaries.

Charge transport energy transfer: When charge is transported
through a lattice, energy that can be extracted from the
charge distribution is also transferred through the system.
The energy transferred is the energy of the charge-carrier
distribution in excess of that of the equilibrium distribu-
tion, in other words, the energy of excess carriers with
reference to the Fermi level.

Core electron and non-core electron: The electrons in any system
can be subdivided into two groups designated as the core and
non-core electrons. This subdivision is made in the following
way: For a core electron the one-electron energy is large
compared to its total interaction energy with all the non-core
electrons, whereas for a non-core electron the one-electron
energy is small or of the same order as its interaction energy
with all of the core electrons. It is usual to assume that in
a condensed system the non-core electrons are the outer shell
electrons of the atoms, which can be easily removed by
interaction with other atoms, and the core electrons are the
electrons left on the positive ion of the atom. Both
conduction and valence band electrons are non-core electrons.

Crude adiabatic approximation: is the approximation within the
framework of the adiabatic approximation in which the
wavefunctions of the small inertia subsystem are assumed to be
independent of the coordinates of the large inertia subsystem
as well as independent of the rate of change of the configura-
tion of the large inertia subsystem. See entry for the
Adiabatic approximation.
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Deformation potential: The deformation potential is a short range
interaction between phonons and electronic particles which
arises because of the local deformation of the lattice. This
local deformation alters the potential seen by the electronic
particles in the region and causes scattering. The potential
describing this interaction can be approximated by that for a
static uniform deformation. This is designated as the
deformation potential. A further approximation can be made
wherein the deformation potential is approximated as a con-
stant, E,, the deformation potential parameter, times the
local strain. The deformation potential parameter for the
electronic particles in the n th band is given hy

E, = 8e,(0)/A, where A = 8V is the static uniform volume
dilatation.

Direct Bravais lattice/lattice vectors: The direct Bravais
lattice is the lattice composed of the points given by the
d1rect Bravals 1att1ce vectors, which are defined by
Xn-n1a1+n2a2+n3a3, where nj is an integer between iN;/2. Here
Nj is the number of unit cells in the direction deflned by aj
in the array.

Effective mass: Electronic particles in crystals react to an
applied force as if they had an inertial mass which is
different from the free-electron inertial mass. This mass is
designated as the effective mass. The difference between the
effective mass and the free-electron mass is due to the
interaction between the electronic particles and the periodic
potential. The effective mass, m¥;(k), for the n®h allowed
band in the ith direction is defined as

- (k)

where the plus sign is for electrons and the minus sign is for
holes.

Electronic energy transfer: A restrictive definition of
electronic energy transfer can be inferred from the original
energy transfer processes studied by Forster [1], Dexter [2]
and Orbach [3]. These authors considered the transfer of
electronic energy localized in one region of the lattice to a
second localized region which did not overlap the first, for
example, the transfer of the electronic excitation from an
isolated Cr3* ion to a pair of Cr3* ions or another isolated
cr3+ ion. More generally, we consider any transfer of energy
from one set of electronic states to a second set of states,
in which the two sets of electronic states differ from one
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another in a specifible way, to be energy transfer.

In the case of the more restrictive definition the
characteristic which differentiates the two sets of states is
that their probability densities are localized to different
regions of position space. In the more general case energy
transfer takes place between sets of states which are distin-
guished by having their probability densities localized to
different regions of either position or momentum space. In
addition, we can consider energy transfer between sets of
states which are differentiated by one set having its prob-
ability densty localized in momentum space, while the other is
localized in position space.

Energy acceptor: The subsystem responsible for the set of states
to which electronic energy is transferred.

Energy band structure: 1is the designation for the relationship
between the one-electron energy eigenvalues and the quasi-
momentum, k, that is, the relationship €,(k). The term also
refers to the energy ranges of the allowed and forbidden
energy bands.

Energy donor: The subsystem responsible for the set of states
from which electronic energy is transferred.

Exciton: Any excited electronic state of a lattice, involving
correlation of the electron and positive hole. Thus, it may
be viewed as a bound electron-hole pair. If the separation
between the electron and hole is small enough that they can be
considered to occupy the same unit cell, the name Frenkel
exciton is applied. The term Wannier exciton is used if the
separation is large compared to the size of a unit cell. Note
that motion of an exciton involves no transport of charge or
real mass. The term "exciton" is also often applied to
electronic excitations in disordered solids and other systems.

Excitonic energy transfer: Energy is transferred during exciton
motion. In this energy transfer process the sets of states
are localized in position space, but not so localized as not
to be localized in quasi-momentum space as well. The initial
configuration distribution for excitonic energy transfer is an
unrelaxed distribution.

Fermi energy: The Fermi energy is that energy for which the
occupation probability is one-half. The Fermi energy is also
referred to as the Fermi level.
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Fermi's golden rule: gives the transition probability per unit

time, Ppj, from initial state ¢; to all final states ¢ ¢ having
energy Ef as

Pey = %J'J ¢?(ro)HI¢i(ro)pf(Ef)§(Ef-Ei)d3r0,

where p ¢(Ef) is the density of the final states having energy
Ef and Hy is the interaction causing the transition.

Frohlich Hamiltonian: describes the long-range interaction of the
polaron theory. This arises in polar materials because of the
interaction between electronic particles and the electric
field produced by the polarization of the lattice by those
phonons which are associated with large polarization. The
form of the Frohlich Hamiltonian is given by equation
(IIE-22).

Hartree-Fock approximation: In the Hartree-Fock approximation the
many-electron wavefunction, ¢y (r;R), for the n-electron system
with electronic coordinates rz=(rq,rp,...,rp), where rj is the
three-vector coordinate of the ith electron, is approximated

by
¢°‘1(r1) ¢a2(r1) s ¢qn(r1)
¢a1(r2) '
d»a(r;R) = . .

e A

oy (rn) .. . ¢a (rn)
1 n

Here the ¢a.(rj)'s are one-electron wavefunctions, and the
aj's are thé sets of quantum number indexing these one-
electron states. The right-hand side of this equation is
known as a Slater determinant wavefunction.

Intraband energy transfer: Intraband energy transfer takes place
between subbands of a given band. When the subbands' minima
have different energy values the process involves conversion
of kinetic energy to potential energy or vice versa. The sets
of states between which this transfer process takes place are
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localized in momentum space, and the configuration distribu-
tion is the relaxed distribution.

Markov process: Any dynamical process in which transitions among
regions of space or states or groups of states are completely
chaotic, that is, have no dependence on past history. A
classic example is Brownian motion. The transition
probabilities for a Markov process satisfy the Chapman-
Kolmogorov equation [78]:

1
Qlx,tix',t") = ] J Qx,tix",tma(x",t";x',t")dx"dt", (1)

t
where Q(x,t;x',t') is the probability that the system
originally at x at time t will be at x' at time t'. In terms
of transitions among states or groups of states, equation
(1) is written

Qg = angas . (2)
Y

Nearly free electron approximation: 1In the nearly free electron
approximation we assume that all Fourier coefficients for
non-zero K-values of the potential of the non-core electrons
are small compared to the zero K-value coefficient.

Non-resonant energy transfer: Non-resonant energy transfer, like
resonant transfer, takes place between two sets of multi-
electronic-particle states whose charge distributions are
localized in position space. The initial and final states of
the system are products of two multi-electronic-particle
wavefunctions, one from each of the sets of states between
which the energy is transferred. The initial configuration
distribution is that corresponding to the relaxed initial
state. That is, the ions about the energy donor are in the
vibrational state that corresponds to the excited electronic
state of the donor and the temperature of the lattice, while
the ions about the energy acceptor are in the vibrational
state that corresponds to the ground electronc state of the
acceptor and the temperature of the lattice. In the non-
resonant transfer process there are real phonons created
and/or annihilated.

One-electron approximation: In the one-electron approximation for
the non-core electrons, we approximate the many-electron
wavefunction by a Slater determinant of one-electron functions
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and assume that the interaction among the non-core electrons
is zero and that there is no exchange interaction between the
core and non-core electrons. The equations determining the
one-electron functions for the non-core electrons are:

s

E;ﬁ¢uo(ro) + V(ro)¢ao(ro) = suo¢ao(ro),
where V(ry) is the sum of the ionic potentials.

Phonon branch: The energy function of the phonons, hu(q), is a
quasi-continuous, multi-valued function of q, where q indexes
the different allowed propagating wave solutions of the array.
Here the function w(q) is defined for q between #7/a. The
nulti-valued function w(q) is equivalent to a set of single-
valued quasi-continuous functions of q designated by w,(q).
Each wY(q) defines a phonon branch. Note that each {q,y} set
of values corresponds to a normal mode of the lattice
vibration.

Phonons: are the quanta of the vibrations of a crystal. For each
normal mode of vibration of an ordered array there is a
corresponding phonon. The term is sometimes applied to
quantized vibrations of disordered solids and even to those of
molecules.

Polaron: Longitudinal optical (LO) vibrational modes in ionic
crystals cause relatively large polarization of a crystal
lattice. The resulting dipole fields couple strongly with
mobile electrons. Thus, moving charges tend to carry along
with them a localized lattice polarization, which can be
thought of as a "cloud" of phonons. The coupled system of an
electron and LO phonons is called a polaron.

Primitive basis vectors: We defined the primitive basis vectors
of any periodic array as the set of vectors that are the
shortest non-pairwise collinear vectors that can be chosen
from the set of all vectors which connect the origin of one
unit cell with the origins of all the other unit cells in the
periodic array. In a three dimensional lattice the three
primitive basis vectors are denoted by Si, i=1,2,3.

Quasi-momentum: The quasi-momenta are the eigenvalues of the
translation symmetry group of a lattice.

Reciprocal Bravais lattice/lattice vector/primitive basis vectors:
The reciprocal Bravais lattice is the set of points given by
the vectors K =vqb1+vobo+v3b3, where vi is an integer between




94 J. E. BERNARD ET AL.

tN;/2. The primitive basis vectors, bj, are defined by
equation (25). An important property is that each of the
primitive reciprocal lattice vectors is orthogonal to two of
the primitive lattice vectors of the direct lattice.

Resonant energy transfer: Resonant energy transfer, like non-
resonant transfer, takes place between two sets of multi-
electronic-particle states whose charge distributions are
localized in position space. The initial and final states of
the system are products of two multi-electronic-particle
wavefunctions, one from each of the sets of states between
which the energy is transferred. The initial configuration
distribution is that corresponding to the relaxed initial
state. That is, the ions about the energy donor are in the
vibrational state that corresponds to the excited electronic
state of the donor and the temperature of the lattice, while
the ions about the energy acceptor are in the vibrational
state that corresponds to the ground electronc state of the
acceptor and the temperature of the lattice. In the resonant
transfer process no real phonons are created or annihilated.

Tight binding approximation: In the tight binding approximation
we assume that all the overlaps between Wannier functions for
the non-core electrons centered in different unit cells are,
to a good approximation, zero.

Unit cell: is a subdivision of a periodic array such that the
complete space occupied by the array can be filled by
identical, non-overlapping unit cells. By identical unit
cells is meant cells which can, by translation only, be
located at a common place in space such that each ion in each
unit cell lies at the same place as the corresponding ions in
all the other unit cells of the array. The unit cell is the
smallest repeatable unit of a periodic array.

Wannier functions: are defined as a complete set of localized
states which are the Fourier transforms of the Bloch func-
tions. In terms of the Bloch functions the Wannier functions
are defined as

1 =ik X
A =X = — n
B(ro n) Jﬁge ¢kB(ro)’

where the summation is over the first Brillouin zone and X, is
a direct Bravais lattice vector. The Wannier functions are
localized about a unit cell of the periodic array located by
the vector X,.
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ENERGY TRANSFER AMONG IONS IN SOLIDS

B. Di Bartolo

Department of Physics
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Chestnut Hill, Massachusetts 02167

ABSTRACT

The subject of interactions among atoms is introduced by con-
sidering first the static and then the dynamic effects of these
interactions in a two-atom system and in a linear chain of atoms.
Subsequently the different types of interactions (multipolar, ex-
change and electromagnetic) are examined. After reviewing the
different modes of excitation of a solid containing both donors and
acceptors, a "statistical" treatment of energy transfer is presented
by considering first the case of energy transfer without migration
among donors, and then the case of energy transfer when such migra-
tion occurs., Finally the concept of collective excitations in
solids is introduced and a general theory of these excitations is
presented.

I. INTERACTION AMONG ATOMS

I.A. Two-Atom System

Let us consider for simplicity two atoms of hydrogen with the
two nuclei located at positions a and b and the two electrons at
positions (xy, y1, 2z1) and (X9, yp, 2z3) as in Figure 1. Let the
internuclear distance R be such that

R >> xl’ yl, zl’ X2, Yz, 22 (1)

so that the overlap between the wavefunctions of the two atoms may

103
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Fig. 1. System consisting of two hydrogen atoms.

be neglected. The wavefunction of the system, neglecting the
interatomic interaction is given by [1]

¥(1,2) = ¥ (D) ¥, (2) (2)

where Y;(1) and Yy, (2) are the wavefunctions of the individual atoms;
1 and 2 stand for the coordinates of the two electrons. The inter-
action Hamiltonian is given by

H':ez(?‘.!'_.l.;.l___r_l_._%) (3)
ab 12 a2 bl
where
rab =R
_ _ 2 _ 2 _ _ o2
r12—\/(x1 x)"+ (g = y))" + (2 - 2y - R)
_ 2 2 2
T o —‘/x2 + Yy + (R + z2)
2 2 2
rbl—\/l+yl+(zl+R) (4)

The correction to the energy eigenvalue to first order in H' is
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E' = < (1) ¥, (D) |8 |y, (1) gy (2)> (5)

We use the expansion

1
1+c¢

_ €,3_.2 153
=1- 5 + g € -8 e+ ... (6)

and retain only the first two powers of the electrons' coordinates.
The result is

2
H' = (x

3 % T yyY, - 2292)) (7

and

E'

Y, (1) ¥, ) [H' v, (1) ¥ (2)>

o2
53 <, @) Y @) (xyx, + 3y, - 2202,) [b (1) Y (2)> =0

R
(8)

because H' is an odd operator and ¥, and w have definite parity.
The correction to the ground state energy to first order in H' is
zero. But to second order

<0|H'|k><k|H'|0>
— (9
k#0 o k

EH =

where |0> and |k> are ground and excited states of the two-atom
system, respectively. The energy levels of the hydrogen atom are
given by

(10)

where ag = ﬁ2/me The ground state energy E, is equal to -(e2/a°)
The states |k> that contribute to the sum in (9) are made up of
products of odd wavefunctlons of the two atoms; the energy of the

lowest such state is -(e /4ao) and the energy of the highest such
state is zero. Therefore (E, - Ey) lies in the interval

e2 . e2
a2
(o] (o]

(-

~lw

e
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we shall approximate this quantity with the value -(e2/a0) for all
k's.

Going back to (9) we find

B - - ] <olr' oo
e“/a k#0
o
o 2l [} <O|H'|k><k|H'|0> + <0|H'|0<0|H"[0>]
e"/a_ k#0
0
= - 21 ) <0|B' [k><k|H'|0> = - + «o@H*o>  (10)
e /ao k e"/a

where we have used the relation (8) reexpresséed as

<0|H'|0> = 0 (12)
and also
J <0|H' [k><k|n'|0> = <0|@")?|0> (13)
k
We have

4
2 2
<] @205 = S < (1) U () |55 + yiys + 427z, [V (D) Y (2>
R
- G2 + 3Py 4 4ok (14)
6 12T I T MR

In the ground state of the hydrogen atom

X =y =2z =-% r (15)
and
r° = 330 (16)

Then
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4 _ —_— —_
W2 e _ € 17272 1 22 4 22
<0|(u")“|o> = R6 ( g 1Tyt g Tt T 5T, )
b — 4
2 e 2 2 be 4
=Z—rr, =—a a7
3 R6 172 R6 )
, and
1 2 6e2 a5
E" = - —— <0|(H")"|0> = - = (18)
2/a 6
e o R

If we extend the expansion of H' and include higher power of the
electrons' coordinates the result is [2]
6e2 ag 135e2 aZ 1416e2 az
"=_ - -
E 6 3 (19)

R R R10

This energy, intrinsically negative, is called the van der Waals'
energy. Note that this energy goes to zero ash =+ 0.

For many electron atoms the perturbation Hamiltonian is repre-
sented by a sum of terms of type (7) with one term for each pair
of electrons [3].

The van der Waals Hamiltonian is responsible for lowering the
ground state enerqy of the two-atom system. The van der Waals
bonding is an effect of this interaction., We shall see later that
the van der Waals interaction is also responsible for the time
evolution of a two-atom excited system, i.e., it leads to energy
transfer from one excited atom to the other atom. This is one of
several examples of interactions that produce both static and
dynamical effects.

I.B. Dynamical Effects of the Interaction

Consider a system with a time-independent Hamiltonian H,. The
time-dependent Schrodinger equation is

oY
HOW = ih 5t (20)

If the system is in a stationary state labeled i
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-i(Ei/ﬁ)t
Y(t) = Wi(t) = e Wi(O) (21)

where the energy values are given by
Ho Wi(O) = Ei Wi(O) (22)
We shall assume that the wavefunctions ¥{(t) are orthonormal.

Let us now suppose that the system is subjected to a time-
dependent perturbation represented by H'(t). The system will be
represented by a wavefunction ¥Y(t) such that

HY(t) = (H +H') ¥(t) = i 2%%51 (23)
We can expand ¥(t) in terms of the complete set Wi(t)

Y(t) =) c; (1) ¥, (v) (24)
i

If H' = 0, the coefficients cy's are time-independent. Replacing
Eq. (24) in Eq. (23)

3 (t) 3c, (t)
(H_+H') % c, (t) ¥, (t) = iﬁ[g e, (8) ——+ % T Wi(tﬂ
(25)
Then
. 3c, (t)
g c (t) B' ¥ (t) = i g 5 ¥, () (26)

where we have taken advantage of Eqs. (21) and (22). Multiplying
by Wﬁ(t) and integrating over all space we obtain

Bck(t)
ih e = § c, (t) <wk(t)|n'|wi(t)>

iw, .t
- ' ki
= § ¢, (t) <wk(0)|n |wi(0)> e 27

where
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Yt T TR (28)

1. Coherent Energy Transfer in a Two-Atom System. We shall
now make the following assumptions:

(a) The system has only two energy states, say 1 and 2; and

(b) the perturbation H' is constant, but is turned on at
time t = 0,

In a two-atom A and B system, state 1(2) consists of atom A(B)
excited and B(A) deexcited.

The coupled equations (27) become

if & (8) = e (t) <\y1(0)|H'|\y1(0)>
. iwlzt
+ ¢y (1) <w1(0)lu [¥,(0)> e
iwzlt
th &,(t) = c,(t) <¥,(0)[H'[¥,(0)> e
+ ¢y (1) <Y, (0) [H'|¥,(0)> (29)
Set
<‘i’i(0)|H'l‘i’i(0)> =V,
<wi(0)]H']wk(0)> =M, (30)
Then
. * -im21t
ih cl(t) = cl(t) Vl + cz(t) M21 e
iw21t
if éz(t) = cz(t) M21 e + cz(t) V2 (31)

If at time t = 0, the system is in state 1:

cl(O) =1 , c2(0) =0 (32)

the time evolution of the system is given by the equations
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cl(t) = cos at + —2-:'—(5— [(E2 + V2) - (El + Vl)] sin at

vV, +V w

1 2 . 21
B TR
‘e e
V, +V w
M (A2 12
c,(t) = 2L sin at e zh e 2 (33)
2 ifla
where
2 9 1/2
i lell [(E, + V) - (B + V)] 1
a = + sec (34)
2 4
1
It is
e (012 + [ey(0)|* = 1 (35)
at all times. Assume now
E, = E s v, =V, (36)
In this case
|cl(t) |2 = cos® at
]cz(t)l2 = sin2 at (37)
where
M|
Y
a=—g (38)

and the time evolution of the system is represented in Figure 2.

At time t = 0

le,@>=1 ,  Je,@|*=0 (39)

_

. S L
At time t = %2 2 M12
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/—.-\

C0=l  —=— (000

2

ic, @)

i i 2T s
a4 °

2a a a

Fig. 2. Coherent time evolution of a two-atom system.

T2 o2
e, (g7 =0 le, (55017 =1 (40)
This time evolution is called coherent.

2. Incoherent Energy Transfer in a Two-Atom System. If at
time t = T (small) the phase of the wavefunction is interrupted,
the change in [cz(t) |% in time T is

Aey(e)]? = a® 1° (41)

and in time t >> T
2 2 t 2 _t 2.2 2
|c2(t)| :TAICZ(t)l =ga T8 =a"Tt (42)

The probability ]cz(t) |2 is now proportional to t and a probability
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per unit time can be defined

2
e 1* My |
Vi, = =a"T=—2—T (43)
A
But
=
T=75 (44)
where AE = width of the transition. Then
IM21|2 h o om 2
= e——————— e I — 1
Vi, 2 A | <¥,(0) [H' [¥, (0)>]% g(E) (45)

where g(E) = density of final states. If both state 1 and state 2
are smeared

gl(El) dEl = probability that state 1 has energy in
(El, E1 + dEl)

gZ(EZ) dE2 probability that state 2 has energy in

(E,, E, + dE,)

and g(E) in (45) is replaced by

= fgl(E) gZ(E) dE (46)

The question now is: If at time t = 0, the system is in
state 1, how will it evolve? And the answer is: Since probabili-

ties per unit time are appropriate, a master equation treatment
must be used. Let

_ 2
P, (t) = |c,(t)]? (47)
2 2
Then, since Wig =Wy =W
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dPl(t)

T w[P,(t) - Pl(t)]
sz(t)
T W[Pl(t) - Pz(t)]

Given the initial conditions

Pl(O) =1 s PZ(O) =0

the solutions of (48) are

_ 1 -2wt
Pl(t) =3 (1+e )
P,(t) = 5 (1= e

and are represented in Figure 3.

t

113

(48)

(49)

(50)

Fig. 3. Incoherent time evolution of a two-atom system.
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This time evolution is called incoherent.

We want at this point to associate some key words and ex-
pressions to coherent and incoherent evolutions.

Coherent evolution

Reversibility
Oscillations
X , 1
Characteristic time « =
M
Transfer rate « M

Ineoherent evolution

Irreversibility
Approach to equilibriuni
Characteristic time « -

Transfer rate « M2 M

3. Coherent Energy Transfer in a Linear Chain. Consider a
linear chain of equal interacting atoms. Let state ¥, be that
corresponding to atom m being excited. From (27) we have

iw .t
if & (t) = E () M, e m (51)
where
Moo= <qu(0)|H' |wi(0)> (52)

Since the atoms are all equal wpj = 0. If we assume only nearest
neighbor interaction and take the matrix element M as real for
simplicity, Eqs. (51) become

e () =(  +c )M (53)

£
m-i mn m+1

Fig. 4. A linear chain of interacting atoms.
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If the excitation is localized on atom m at time t = O:

cm(O) =1 |, cn#m(o) =0 (54)
Let
=1t (Ho =i (55)
where
2M
X = —ﬁ_ t
Then
NP b G TR T
m dx dt A dx
_ s~ (m-1) _ o mml
cm_l(t) =i fm_l(x) =1 fm_l(x)
_ .~m-1
cmﬂ(t) =1
It is
af_(x) df (%)
i _ ,~m2M m _ ,-mtl m
ih cm(t) =ifh i T = -t 2M Ix
Therefore
df (%)
,—~mtl m _ oyl -m-1
i 2M Frante Mi fm_l(x) + Mi fm+1(x)
dfm(x)
2=t ® -, (56)

The solutions of the above equation are Bessel functions:

£ =J () (57)

Then

e () = 1" ( % £) (58)
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and the probability of finding atom m excited at time t is

_ 2 _ .2, M
P (t) = lcm(t)l =3 (x D (59)

4. Incoherent Energy Transfer in a Linear Chain. Let us
consider again a linear chain of interacting equal atoms and let
us again assume only nearest neighbor interactions. This time,
however, we assume an incoherent time evolution with w being the
transition probability per unit time that the excitation moves
from, say, atom m to atom (m - 1) or (m + 1). The equation to
solve is a master equation

() -2 (1) - 22 ()] (60)

Pm(t) = w[Pm+1

where Pm(t) = Icm(t)lz. Let, as before, the initial conditions be

Pm(O) =1 |, Pn#m(o) =0 (61)
Set
-2wt -
P(t) =e g (2t) = e X g (%) (62)
where
X = 2wt
Then
dg_(x)
_ 9 . -x _ _.—X -x _°m
P (t) = 2w PP [e gm(x)] = 2w[-e gm(x) + e = ]
dg_(x)
_ -Xx _°m
= =2w Pm(t) + 2w e ix
The master equation then gives us
dg_(x)
2—g =g ® tg (63)

gm(x) are modified Bessel functions:

g (¥ =1 (x) , g, (2wt) = I (2wt)

Then
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P_(t) = o2t I_(2ut) (64)

where

(]

Im(x) modified Bessel functions

I.C. The Relevant Energy Transfer Hamiltonian

Let us now consider again a two-atom system as in Figure 5.
Let Hp and Hg be the Hamiltonian of atom A and B, respectively. The
Hamiltonian of the two-atom system is then given by

H=H +H +Hgy (65)
where
Z e2 2 Z e2 Z e2
H =—-§—————-+_e____._a__._ b
AB R r12 ra2 rbl
Zz 2 e2 2 Z e2 e2
__a'b e a b
= + - - (66)
R 12 R+t |-R+r.]
b2 al

Let |a> and Ia'> be the ground state and excited state wavefunctions
of atom A, respectively and |b> and |b'> the ground state and ex-
cited state wavefunctions of atom B, respectively. We shall con-
sider a transition from an initial state |1> to a final state |2> of
the two-atom system, where

(67)

a

U:u

2 /
bz
l\-
3o

A B
Fig. 5. Two-atom system.
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|1> = |ab> |2> = |ab'> (67)
The relevant matrix element is given by

<a'(1) b(2)[H,ya(1) b'(2)>

2
z, 2, & <a'(D]a(D)>b(2) [b"(D)>

2
e

12

+

<a'(1) b(2) a(l) b'(2)>

1

>

|§ +r |
b2

z, e? <a' (1) |a(1)><b(2) b1 (2)>

-7 e2 <a'(1l)

b a(1)><b(2) |b'(2)>

> > l
|—R + ral

2
e

T12

<a'(1) b(2) a(l) b'(2)> (68)

Taking into account the overlap of the wavefunctions we replace
the relevant product wavefunctions as follows:

la"(1) b(2)> > —]a' (1) b(2) - b(1) a'(2)>
V2

la@) b'(2)> > —2]a(l) b'(2) - b'(1) a(2)> (69)
V2

Then

<a'(1) b(2)|HAB]a(1) b'(2)>

> 1 <a'() b(2) [H,5la(1) b'(2)>
+ % <b(1) a'(2) [H,,[b" (1) a(2)>

- 2 <D a' @], ]a) b'(2)>
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1
- 5 <a'(1) b(2)|HAB|b'(l) a(2)>
= <a'(1) b(2)lHAB|a(l) b'(2)>

- <a'(1) b(2) |HAB|b'(l) a(2)> (70)

and

<a'(1) b(2)]HABlb'(l) a(2)>

2

e \
=2, 2, = <a' (1) b (1)><Dp(2) la(2)>

2
e

+ <a'(1) b(2) =
12

b'(1) a(2)>

-z, &b <a' () b (1)><b(2) |

> >

R + rbZ‘

a(2)>

1

> >

-R + ra1|

2 <b(2) |a(2)><a’ (1) b'(1)>

Zy

2
e

= <a'(1) b(2) -
12

b'(1) a(2)> (71)

The relevant matrix element is then given by

<Ju g l> = <a' () b(2) [ Z=la(D) b'(2)>

- <a'(1) b(2) |—|b' (1) a(2)> (72)

where the first term is called the direct term and the second term
the exchange term.

I.D. Interaction Between Two Atoms in Solids

Let A and B be two atoms in fixed position in a solid; Figure
6 reports the relevant coordinates. It is
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Fig., 6. Two-atom system.

K2R 0,0 , R>»r

> -15 + > >
Tst = Bt T Tas

The relevant energy transfer Hamiltonian is

e2 e2
Hyp = 2 r_ z > - > ' (73)
s,t st s,t |R + Tpe = Tag

where the sum is over the electrons of the two atoms.

Carlson and Rushbrooke [4] have carried out the expansion of
Hpg in spherical harmonics taking into account the fact that
R >> rpg, rpt. The result of their calculation is

2000022,1
Hp=e 1L 11 g

£l=0 22=O ml=-2 m2=—2 R

L.+2 L L

172 x M1 2
* G, C ©, ¢) D _"(A) D _"(B) (74)
12 “mtm, m m

where
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L [ F 2, F D! /% % g4
G12 = (‘l) 1/ (;2 )'(22 1 < 1 2 172 ) (75)
BHENE )

m o, ~m, -m

(6, ¢.) (76)

2 _ / 4m
Cm(m TJ2e+1 YZm(Q) (77

3j symbols

C <y mp 3, mliy 3y 3y - my

N, —

Clebsch-Gordan coefficients
3j symbols = 0 unless

A(jlj2j3) : m, +m, +m, =0

Example

v < /3 - |3z
Y10 =/am s 8= Jar s

+ iy
- [3 +id - [3 XX

Y = —_ _—

1,41 +/81Te sin 6 = + r—

Then

1 _ [ar _fem [3z2_2
¢ /73 Y10 3 /4mrr T
Ao fm, L fm[EEEB] o xil
+1° /3 T3 8T r 7

[a}
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and
1 _ 1 _
DO = rCt =z
D]l';rCi=—'—l— (x + iy)
V2
ol = xoly = s (- i)
/2
Then the direct term of <|HAB|> is
' %
2 L+L,
' S = e~ 172
<a'blHyglab’> = ] R €12 le+m2
172 R
mm,
!Ll 2,2
+ <a'|p_"|a> + <b|D “|b'> (78)
™ m

The relevant quantity that enters the transition probability is

2 _ e
|<a'blH,,ab'>|? = 222 o b TR E,E G2 G

1°2 “3°4 R
e R R
TS Y
12 3
" C +m, C +m
myTRy My,
% %
. <a'|D 1|a><a']D 3!
o M3

*
a>

g )
- <b|D_2[b'><b|D *[b'>" (79)
) "

We average over O, ¢:
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. ) +22* Rt

-— [/ sin® dO d¢ C C

41 ml+m2 m3+m4
1

/(2!@1 + 2%2 + 1)(25L3 + 224 + 1)

S §
B s 8gt, motm, matmy

and use the following approximations
(1) Neglect cross terms: Zl # 23, 12 # 14, my # mg, m, # m,
|<IH !>|2= Z e2 2G2 1
AB L +22+1 12 221 + 222 +1

i

mmy

2 ')
. |<a'|p_Y|a>|2|<b|D 2|p' >|?
oy b}

where
' 2
2 . (22l + 20, + 1)! (zl 22 zl+£2 >
[ ] - -
12 (221).(222). my m, my m,
(2) Take average of Giz:
2 1 2
G T I D@D L S
1 2 m, ,m
1°72
L
. 1 (221 + 2£2 + 1)!
= | 1
(22,l + 1)(22,2 + 1) o (221).(222).

1°™

2
' 21 22 21+22
m, m, -m

1 M ™™



124 B. DIBARTOLO

2
1
i (22, + 28, + 1)! . <’“1 S, L%, )
= [] 1 - -
(22,1 + l).(22.2 + 1! o ,m m, m, -m-m,
1’72
1
]
i (221 + 20, + 1!
= 1 1
(22,1 + l).(22,2 + 1!
Therefore
2
2 _ e 2
|<lBygl>1" = ol ( TR )
172 R
b )
1
(20 + 20, + 1)! 1

(221 + 1)!(212 + 1)! 221 + 222 +1
2 L

|<a'|D 1|a>|2|<b|D 2|1>'>|2
o m

]
2 (22l + 222).

c 1 O @ DT O
1122 R 172 1 ¢ 2 *
2 2
|3 l<atn tja>|?f| T [<|p 2|p'>|2 (80)
m m
m1 1 m2 2

II. DIFFERENT TYPES OF INTERACTIONS

ITI.A. Multipolar Electric Interactions

S An electric multipole of a charge distribution p(;) with
x = (r, 6, ¢) is defined as follows:

s [ 4t o) Y, (6, 9) 81)
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If we set

p(x) = ] es(x - X)) (82)
S

we obtain

2,m

_ 4m > > L
D ‘/2z+ 1,/’ dt g ef(x - x) r Y, (6, ¢)

_ 4m L

=e E T e YonBsr 05 (83)
These multipoles are, apart e, the same quantities Dﬁ; defined in
(76).

The square of the matrix element of the multipolar interaction
can be written as

c® (& 10

2
l<|H,|>]" = + + + ... (84)
AB R6 R8 R10
where
C(6) = dipole-dipole term
4 ., 1 1
=.e_6%[ ) |<a'ID;Ia>|2][ ) I<leilb'>|2] (85)
R™ 77" Lp=-1 m=-
(8) e4 6!
C = dipole-quadrupole term = =3 ﬁi‘
g8 3'5¢
1 2
AL terzor][ 1 iebzeor]
m=-1 n =-2
2 1
#| 1 I<ar[p2la]?]| T |w|ni[b'>|? (86)
m=-2 m =-1 "



126 B. DIBARTOLO

e

C<10) = quadrupole-quadrupole term = 3%6-—2%7
R 5!
2 2
|1 |<a'uD2|a>|2][ L |[oZ[br>|? (87)
m=-2 n m=-2 n

The quantities |<a'|D£|a>]2, |<b'|DfI'l|b>|2 can in principle be
derived from spectroscopic data.

Example: dipole-dipole term

In classical electrodynamics the power irradiated by an
oscillating electric dipole M cos wt is given by

4

P=—3M
3c

2 (88)

A classical oscillator of amplitude M has two Fourier components

iwt +.l -iwt

M cos wt = l-Me Me (89)

2 2

with frequency w and -w. Classically we do not distinguish
frequency w from frequency -w, namely photons absorbed from
photons emitted. Quantum mechanics, however, allows only one of
the two components to enter the relevant matrix element

Mclassical M ZIMQMI (90)
and
4 4
PQM=‘”—3 | 21| =4—‘“3- || 2 (91)
3c 3c
Therefore
A = rate of decay = energy emitted per unit time

energy of a photon

1 _ 4w4|ML2 - 87rw3 |M|2 (92)

To 3c3ﬁw 3hc3

where To = radiative lifetime. Then
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3
o2 2l<a'|D1|a>|2 IMlZ 3hc3‘£; (93)
n 8mw™ o

The f number, a quantity usually derived from absorption data,
is defined as follows:

£ = 22 | (94)
Jhe

We can then write

2
e? ] |<olotfpr>]? = fu]? = T ¢ (95)
m

If we use (93) and (95) in (85) we obtain

3 2
(6) 1 4! 3he” 1 3he
¢ = |<u, |>]dd = = e ( —= ( £)
AB R6 313! 8nw3 TQA 2mw B
3.6
=—lg—'—3e Zl TL_-B-S (96)
R 4mE A

where E = fw

__probability of radiative decay
probability of radiative decay + probability of
nonradiative decay

€ =

l/ToA

l/TA

= quantum efficiency (97)

where T,y = radiative lifetime of atom A and Tp = effective lifetime
of atom A.

The transfer rate is then given by
2T 2
v, = [<IHgI>]7 T gy (B) gy(E) dE

am 1 3ecor® fp g5 (E) g5(E)
Il B A B g
R A E



128 B. DIBARTOLO
_ 3e caﬁ gA(E) gB(E) 1 Ro 6
2mR A E A
3e 235, gA(E) gB(E)
R =c¢€f ( dE
o} B 2m 4
E
= radius at which the transfer rate is equal

to the decay rate (99)

Let wdd, wg and wig be the energy transfer rates by dipole-

dipole, dipole-quadrupole and quadrupole-quadrupole mechanisms,

respectively. We can compare the magnitudes of wgg and WAE:
dd e4 2 1,2, .12
V.= ¢3 |<p™>|“|<D™>| (100)
d e4 11214212
wid = = |™>|%|<D%>| (101)
AB 8
R
wdq 2.2 a4 a
AB 13 |<D >| 1 “o o ,2
—_— = — - 2—————(——') (102)
wdd R2 2 |<Dl>|2 RZ a2 R
AB o
If the electric dipOdle transition in atom B is not allowed, then
|<D1>|2 < a, and it is possible that
R (103)
Note that
qq
YAB 1 |<D >|2|<D >[2 8 4
i —4 2 5= (gx) (104)
VB |<D >| |<D >|
II.B. Exchange Interactions

We shall now examine more closely the matrix element (72).

The direct term can be written as follows:
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2 . 2
<a'(1) b(2) |2—la(1) b'(2)> = [f a' (%) a(r.) 2—
r12 1 1 rl2

-b(?z)* b'(¥2) dt, dt, (105)

and represents the Coulomb ingsractioq+between the charge distri-
butions ea'(?l)* a(?l) and eb(rz)* b'(r2) at distance R from each
other. The exchange term can be written

<a'(1) b(2) ! (1) a(2)> = [f a'E) b'E,) e’
-<a — a = a —_—
12 1 1" Ty,

. a('r*z) b(?z)* gt dt, (106)

and represents the Coulomb interaction between the charge distri-
butions ea'(¥1)* b'(%]) and ea(¥;) b(F))* at distance R from each
other; these two charge distributions are very small if R is large.
Therefore the exchange term is small if R is not small.

The exchange term can also be written

2
<a'(1) b(2)|[==|b'(1) a(2)> = =<a'(1) b(2)|=— P, la(1) b'(2)>
Y 12
12 12
(107)
where P, is an operator that interchanges the two electron
coordinates, For many electron atoms
e2
<a'b|H, |ab'> (exchange term) = <a'b —izj ;;; Pis ab'> (108)

The overlap of the electron charges makes the condition R > rpg, rpg
invalid. However, if the overlap is small the multipolar part can
be treated as previously. As for the exchange part,

2

., r,, 1j
i,j i3 ]

it can be replaced by an equivalent operator [5]:
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exch mm'
X7 7 7 ™ (e, 9
AB s,t 2,2' m,m' 2!

L 9! 1 > >
) Cm(es’ ¢s) Cm'(et’q)t)(_i + ZSs ) St)
_ 1 > . >
=-) I (F+ 28, 5) (109)
s,t
where
,mm' 2 Q!
Jee = L L 390000, 9 (B, 00 C (B, 6 (110)
2," m,m

This equivalent operator operates only on the ?ngular and spin
part of the wavefunctions. The quantities jg%, contain the radial
integrals.

We can make the following observations:

(1) The sum ) is over all the electrons of the unfilled 3d
s,t
(transition metal ions) or 4f (rare earth ions) shells. For
each couple of electrons we have a parameter

<J_,> = matrix element of J , taken between angular parts of
the orbital wavefunctions

(2) The number of independent <Jg¢> parameters is reduced if the
symmetry is high.

(3) <Jg¢> depends exponentially on R, for large R.

(4) 1f 711 the arbitals have the same asymptotic radial dependence
e~T/Yo (r, = effective Bohr radius), then <HeXch> o ¢=2R/To ip
the limit of large R.

(5) For rare earth ioms ry < 0.3 A [6] and the separation of even
the nearest ions may be large compared to r,, so that the ex-
change interaction is small. For transition metal ions
r, < 0.6 & [7]. For both types of ions superexchange is
important; the form of the equivalent operator in this case is
the same as for the simple exchange case. However, the values
of the parameters <Jg¢> are more difficult to estimate.
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(6) Magnetic order in solids is a "static" effect of the exchange
interactions.

IT.C. Electro-Magnetic Interactions

Let us consider two atoms A and B at distance R from each
other, as in Figure 7. Let H be the magnetic field at B, due to
currents in A. It is

Ex;; RxV
H =2 3A=-i§—2 3A (111)
R R
since
N 147,
R (112)

On the other hand

Ve |10 > = <y [ix - Bly> = (B - B)<y|x|y,>

Fw<pe | x[v,>
where w = —— ., It is
x = 2 [H,x]

. _ . _im
p, = mk = ¢ [H,x]

Then

im s
Py = g B [x[Y> = ime

Fig. 7. A system consisting of two atoms.
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<-1KV> = imw<r>

<§> = - DE <> (113)
ﬁz
and
<H> = Ii% R/ eﬁz 25 <y = =y <o (114)
R mcR™ A cfR

This magnetic field will interact with the magnetic dipole moment
of B, giving an interaction energy

Hdd(em) = <H> =,§§% eEZ <> = eE<§r;
chR 2mc R

(115)

In order to compare the magnitude of this interaction with the
dipole-dipole electrostatic interaction we evaluate the ratio

<Hdd(em)> =eE<er>/(2mc2R2)= ER - ER
<Hdd(e1)> <er><er>/R3 2mc2<r> 2mc2(ﬁ2/me2)
_ ERe2 . E(eZ/ﬁc)2
= = 3 (116)
ZCZﬁ e“/R
Note that
e2 -3
e fine structure constant = 7.3 x 10
We have
-27 10
E = ¥§.= 6.625 x 10 x-g x 100" s x 10-12
5000 x 10
2 -10,2
%{ . (4.8 % 10-3 )T . 4.6 x 10 12
5 x 10
2

(32 . (7.3x10H2=5.3%x107°
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and

<a®em> | 4 x 1071% x 5.3 x 107

<Hdd(el)> 4,6 x 10—12

= 4.6 x 107°

|<Hdd(el)>|2

dd 2
J<_H_£m)_>|_ ~ 2 x 10-9 (117)

The electromagnetic interactions are then negligible.

It can also be shown that the effects of the interactions
among magnetic multipoles are negligible.

II.D. Phonon-Assisted Energy Transfer

The probability for energy transfer between two ions in solids
is proportional to the overlap integral

I gA(E) gB(E) dE =4 [ gA(w) gB(w) dw (118)

where gp(w) and gg(w) are the line shape functions for ions A and
B, respectively. If we consider the case of two Lorentzian lines
of width Awp and Awg, centered at wy and wg, respectively, we find

[ gy @) gy du =3 — . (119)

Ww? + (@, - up)

where Aw = Awp + Awp. For sharp and well-separated lines the value
of the integral (119) and the probability for energy transfer
become negligible. At low temperatures, where the lines in solids
tend generally to be Gaussian, the value of the integral may be
even smaller. In these circumstances the energy transfer process
may be favored by the emission or absorption of a phonon whose
energy compensates for the energy mismatch between the two
transitions and ensures the conservation of energy in the process.
The transition probability per unit time of the energy transfer
process accompanied by the production of a phonon, if AE=Ej - Eg >0
as in Figure 8, is given by [8]

g = % |<a'b}HAB}ab'>|2 S[n(w) + 1] J g,(E) g, (E - fiw) dE
(120)

where S = ion-vibrations coupling parameter and iw = AE. If AE < 0
then the energy transfer process is accompanied by the annihilation
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’

=77
__& I’y

«/l 3‘/
a
A B

Fig. 8. Two-atom system requiring phonon assistance for energy
transfer.

of a phonon and
v =20 l<a'b|H,_|ab'>|% S[n@)] [ g, (B) g, (E + 4w) dE
AB A AB A B

(121)

If the transfer rates in both A >~ B and B + A directions are much
greater than the intrinsic decay rates of A and B, phonon-assisted
energy transfer processes may establish a Boltzmann distribution
of populations between the excited states of A and B [9].

If AE >> fiwy where Wy is the maximum phonon frequency, energy
transfer is assisted by the creation of many phonons and the
probability per unit time of the process is given by [10, 11]:

W, (AE) = v, _(0) e BA (122)

where B = temperature-dependent parameter related to similar
parameter for multiphonon decay rate.

ITI. STATISTICAL TREATMENT OF ENERGY TRANSFER. MODES OF
EXCITATION

IIT1.A. Introduction

A typical sequence of events that includes the transfer of
energy from one atom or ion called sensitizer or energy donor (D),
to an atom or ion called activator or energy acceptor (A) consists of:

i) absorption of a photon by D,
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ii) energy transfer from D to A, and
iii) emission of a photon by A.

In the present treatment we shall assume that D and A are weakly
interacting, so that the energy level shifts due to the inter-
action are smaller than the width of the D and A levels. This means
that the absorption bands of D and A are identifiable.

Also, the present treatment will not consider the process of
radiative transfer which consists of the emission of a photon by D
and the absorption of the same photon by A. When such a process
occurs the lifetime of D is in general not affected by the presence
of A, If only one ion, say D, is present in the sample and if its
concentration is high, the D - D radiative transfer may lead to
trapping of the radiation and to an increase of the measured life-
time. In such case this lifetime may depend on the size and shape
of the sample.

The process we will be considering consists of the nonradiative
transfer of energy from D to A (step ii above).

IIT.B. Pulsed Excitation

Assume that we have a number Np of donors and Np of acceptors
and call wpy the probability of D + A energy transfer per unit time.
Assume also that wpp the probability of D + D energy transfer is
negligible.

The question we shall try to answer is the following: If we
excite a number of donors with a light pulse, how will the system
respond? Let the pulse of light begin at time t = -T and end at

time t = 0, and let T be much smaller than wﬁi:
T << wod (123)
DA
Let
Nd,(O) = number of excited donors at time t = 0

Na,(O) = number of excited acceptors at time t = 0
We shall put

N_,(0) =0 (124)
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because during the short interval of time (-T, 0) no relevant
D +- A transfer takes place. If

Nd(O) = number of donors in the ground state at time t = 0

Na(O) = number of acceptors in the ground state at time t = 0
it will be

Nd(O) =N - Nd,(O) (125)

Na(O) =N, (126)

We shall also call T the lifetime of the donor, in the absence of
the activator:

thop . (127)
where
P = probability of spontaneous emission per unit time
W = probability of nonradiative decay per unit time

We shall define

pi(t) = probability that the donor at position ﬁi is excited
at time t

and

o(t) = statistical average of pi(t)

The number of excited donors at time t is given by Ng1(0) p(t) and
the probability of finding a donor excited at time t by

Nt (@ Ny (0)

o(t) — (128)
Y w0 M

The number of quanta emitted as luminescence by the donors per
unit time is

P N4, (0) p(t) (129)
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The total number of quanta emitted as luminescence by the donors
is

N'= P Ny, (0) o) de (130)
(o]

The total number of quanta emitted by the donors, in the absence
of activators, is

N =2 N, (0) f” /D 4 2 p Ny (0) T (131)

The quantum yield of luminescence is

Al

7#— Z o) de (132)
o o

III.C. Continuous Excitation

If we excite the donors with a light pulse beginning at ty, - T
and ending at t,, p(t - ty) is the response of the donor system.

The response of this system to N short pulses of equal amplitude
will be

N
o) = ] ot - ) (133)
k=1

The luminescence signal due to this excitation is
N

S(t) = const Z o(t - t
k=1

k) ~— > const f+w-5(t— t') dt!
(tq17 8?0 -

(134)

where the constant depends on the intensity of light and the donor
absorption transition probability. By making the interval between
pulses go to zero we are essentially exciting the donor system
continuously. If we replace +® with zero in the integral we get

S(t) = const r° o(t - t") dt' = const fmla(t') dt!' (135)

—00 t

and
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S(0) = const fwla(t) dt (136)
)

The quantity S(0) is proportional to the number of excited donors
at the time of observation under continuous excitation.

In order to find the value of the constant let us consider
the donor system with the same type of excitation, in the absence
of acceptors, as in Figure 9. w is the absorption transition
probability per unit time; it depends on the intensity of light and
on the d - d' absorption cross section. In steady state

1 -
W Ng - T Ny =0 (137)
But
Ny = Np - Ny (138)
Then
Nd,=w Nd1=vlviid v TN (139)
w +-¥ Twe< 1

On the other hand, using the result (136)

~Ip
>

P Py

Fig. 9. Donor system in the absence of activators.
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Nd' = const [ p(t) dt = const I e_(t/T) dt = const T
0 o
(140)
Therefore the value of the constant is WND and in general
00 ——
Njo = v N, J p(t) dt (141)
o
The quantum yield of luminescence is given by
N, S p(e) d
Nd' in presence of activators “p o p(t) dt
Nd' in absence of activators wND T
1l (o —
=;f p(t) dt (142)
o

Comparing this result with (132) we can conclude that quantum
yields can be measured by either the pulsed excitation method or
the continuous excitation method.

IV. STATISTICAL TREATMENT OF ENERGY TRANSFER, CASE WITH NO
MIGRATION AMONG DONORS

IV.A. Basic Equation

Following the pulsed excitatign of the donor system, the proba-
bility that the donor at position Ry is excited at time t is given
by the function p;(t) whose time evolution is described by the
equation [12]

N
A >
é% pi(t) = [— % - jzl wDA([Ri - ﬁj])] pi(t) (143)

where R; = position of acceptor j. In the equation above we
assume that only a small number of acceptors is excited at all
times, so that it is always Ny(t) = Nj.

The solution of the equation above, if the initial condition
is :

p;(0) =1 (144)
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is given by

Ny
p, () = EXP["-% t jgl WDA(IR1 RJI)]
Ny
-(t/7) > 3
= I - - 145
e n exp[thA(|Ri le)] (145)

The mode of decay described by pj(t) depends on the particular
environment of donor i.

Let p(t) be the average of p;(t) over a large number of donors.
Let also w(R) be the probability distribution of D - A distances R
in the volume of the solid V; if this probability is uniform
within the solid, as we assume, w will be given by 1/V:

(R) N

A

-tw
o) = e /D gy [f e DA

w(R) d3§1
\'

-tw,., (R) Ny
-t/ g0 [4” IRV e DATT g2 dR]
0

=D 1 1) A (146)

where V = (4/3)NR3 and Ry = radius of the largest spherical volume,
and

—tw_ (R)
I(t) = -“V—” fRV e DAY g2 (147)
0

Note that the limit in (146) is taken for a large solid, but in
such a way that the concentration of activators Np/V remains
constant.

In order to evaluate I(t) and then p(t) we need to know the
function wDA(R).
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IV.B. Simple Models

1. Perrin Model. 1In this model [13]

© R < R
apa® = ° (148)
0 R > R0
Then
3 3 3
I(t) =41 fRV " ® RZ 4R = & Yo% =1- %
N 0 3 \ RS
c
= 1- - p;q (149)
o A
where
NA NA
¢, = concentration of acceptors = — = (150)
A v 4'rrR\3,/3
-1 4t _3 ] m . "
¢, =3 R0 = volume of donor's "sphere of influence (151)
‘A
T = number of acceptors in the sphere of influence of donor
o)

(152)

We have then

— - N c N
o) = e /D 4in (1014 2 1im /D (g oA A
Ny Ny ¢ M
Voo V-0

-(c,/c)
ot/ AT (153)

Note that if Ry = @, ¢, = 0 and E(t) = 0 (immediate transfer). If
R, = 0, ¢, = @ and p(t) = e~ t/T) (no transfer).

1]

The quantum yield of the donor luminescence is given by
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w — w —(t/T)=(c,/c) -(c,/c)
—NN"=% O(t)dt=%fe Aodt:e Ao
(o] (o] (o}
(154)
The transfer yield is
-(c,/c)
1-Nl=1-e Ao (155)
(o]

2. Stern-Volmer Model. In this model [14] VDA has the form

wDA(R) = w = const (156)

Then
s By Tt R, 4T ~t RS - tw
I(t) =— [ " e ROdR=—¢e W T =¢ (157)
\ 0 \ 3

and

_ _ -N,wt = (1+N,wT) (t/T)

p(t) = e (t/7) e AT e A (158)
where purposely we have not taken the limit NA -+ o,

The quantum yield of the donor luminescence is

N _ 1 o— _ 1

N—Tf p(t)dt—l+Nw (159)

o o A
The transfer yield is

N . wT
N A
L= " TFmwr (160)
o A

IV.C. Multipolar Interactions

For multipolar interactions

C(6) C(8) C(10)
wpa(R) = ==+~ + "5+ ... (161)

R R R
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Assume a prevalent multipolar interaction

C(n)
wDA(R) = (162)
R
We define a radius Ro as follows
(n) R
~C ~_1,0oyn
WDA(R) = o =7 ( = ) (163)

R, is the distance at which the energy transfer rate is equal to
the decay rate of the donor.

We set
i Ry, (/DR

I(t) ==/ R e drR (164)
n \

R

m

where

R = smallest possible D - A distance

radius of largest spherical volume

&

Also
R
x= (2L (165)
= ( EE )n_E (166)
xm - Rm T
Ro nt
Xy = (-§; ) p (167)
Then
X
(6 =2 O gy (168)
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X

fu O x ey L
*y *y
P, x(___r_:;_x3/n)] m_%fxm I TL R N
Xy
--12 Xr—n3/n m, D -3/n 7V _ 2 gw S3m x
+3 ixv IR E gy +3 £°° T3 E g (169)

where IP indicates integration by parts. Note that

oo X g st - 3, (170)
(o]

We shall consider the limiting situation where

RO nt

W ) TR (7
m
R0 nt

v (g ) TR (172)

Note the following asymptotic expansions of incomplete I' functions

X

foo x—3/n e-X dx - _)oo; xr-n3/n e m a - % Xr—nl + ..
X m
-X -X
g3 w3 -GMm-1  Tm (173)
m n m
Xy -3/n -x 1-(3/n) n
P T e O - () )

G/ a2 )
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We have
X
In(t) =-§ xg/n I x-l_(B/n) e ¥ dx
XV
_3 . 3] n n -3/n) . n -3/n) X n 3
-nxv['ae % t3xY e -3TfA-7)
X -x
+_% x;(3/n) o M _ xI-n(3/n)-l o m +.% x’I\L’-(3/n)
n n 2-(3/n)
"3m-3% ]
Y _ _3/n 3, _3.3n -(3/n)-1 "*n
ce txy Ao -uN .
+Xv‘2nn-3xszlxv+o’l'xg/nr(l"r3i) (173)
xm-)oo
Then
_ 3/n 3 Rt 3/n 3
In(t)—l I'(1 )—l—[('i'v)j[‘] I‘(l-;)
R3
=1--2(E)yrra -3y (176)
n
RV
But
N N
CA=—{,4=-—L——3 177
(4m/3) Ry
LS S
c = (178)
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3
R c
0o A
_° _ (179)
Rg Co NA
Then
c
- A t\3/n 3
In(t) =1- NA ( T ) (L - a ) (180)
Also
Cc
lin I (t) = exp[— E”éﬁ‘ ( % Y3/ pq - % )] (181) .
Np>© o A
Voo
and finally
_ _ N c
oty = P (14 - exp[- Toora-og )3/“]
(182)
(xm e 3 %, > 0)

This result was first derived by Forster [15]. We want to discuss
the conditions under which this formula has been derived. Xp > 1
means

R0 nt
(~§— ) E >> 1
m
and
R
t m . n
—_ >> —_
T ( R )
o

Take R = 3A, R = 10A and n = 6
m o)

=7x10%

t > 7 x 10-4T

This shows that the approximation xp >> 1 may be good even for
very short times.
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xV << 1 means

RO n
()

RV
t % n

— << ( )
o

£-<< 1
T

T

Take RV = lcm, Ro = 10A and n = 6

8
t 10° \6 42
T << ( 10 = 10

£ << 10%2¢

which is indeed always the case.

147

Figure 10 reports a plot of the function p(t) given in (182)

for the case n = 6 (dipole-dipole interaction).

103

o 1 2 3

Fig. 10. The average probability of donor excitation in the case

of dipole-dipole interaction.
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The following observations can be made regarding Figure 10:

(1) At the beginning the decay is faster, because the donors close
to the acceptors decay first.

(2) After a while other donors, which are farther away from ac-
ceptors, and remained excited, start transferring energy.

(3) At very long times donors that are very far from acceptors
will finally decay with their own lifetime.

(4) The greater is cp/cy, = number of acceptors in donor's sphere
of influence, the longer one has to wait for the p(t) curve
to become parallel to the ome for cp/c, = 0.

In Figure 11 a comparison is made of the p(t) curves for the
various processes: n = 6 (dipole-dipole), n = 8 (dipole-quadrupole)
and n = 10 (quadrupole-quadrupole).

1 L 1 1 1 1
O 02 03 04 05 O0s6
T

Fig, 11, The average probability of donor excitation for n = 6
(dipole-dipole interaction), n = 8 (dipole-quadrupole
interaction), and n = 10 (quadrupole-quadrupole inter-
action). The ratio cp/c, is equal to 5. (Reproduced from
[12] by courtesy of R. K. Watts and permission from
Plenum Press.)
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We have seen that the conditions xy << 1 and x; >> 1 are in
accord with the practical cases of interest., However, we want to
consider the limits of very short times by making

+~0 or V> o (as before) (183)
Xy
X >0 (184)

One should expect p(t) to decay exponentially, since at very short
times only donors with acceptors as nearest neighbors transfer
their energy.

The relevant integral in this case is still

fxm X—l—(3/n) ¥ dx = fxm X—l—(3/n)(l

- x) dx
Xy Xy
n -(3/n) _n —(3/n) n_ 1-(3/n) , _n _1-(3/n)
3% 3 n-3’nm n - 3V
(185)
Then
3 3/n ~1-(3/m)
In(t) ey XV f dx
XV
1o (Y, 3 .3/n _1-(3/n) 3
=1- ;; e L taoaxy (189
But
Ro nt
Xy = ( i; ) E (187)
RO nt
x = ( X ) T (188)
m
Xy 3/n Rm 3
( ) = (=) (189)
Y =
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Then
R R R R
17 _ (. my3 3 0,3 o3t 3 “ont
In(t)—l (RV) rl_3(RV)(Rm) T+n-3(RV) -
Cc C c
- LA, 3 Ay m @)1t
=1 NA [ Cm + n-3 ( <, ) Co ) T
e S LAk Te 190
n-3"'c¢c T _(n/3)-1 (190)
o N
A
-1 _4__3
(Cm =3 Rm)
For very large NA
. 1 [, 3 ., o (a/3)-1t
In(t)—l-ﬁZ[E—+n—3(Z—)(E—) < (191)
m o o
and
N c c c N
Al L (A, 3 Ay m @31 |lA
N [Cm+n_3(c0)(C0) T]
‘A 3 A °m | (n/3)-1 t
__+exp|:——c—‘n—_‘°§(c—')(z—) T (192)
NA_>°° m o o
Finally
N -(c /e ) '
o = 0 (1t ae AT LY (193)
where
c c
i'=%[1+nf3215(2@)(11/3)-1] (194)
T o )

Therefore at very short time the function o(t) decays exponentially
as expected.

We wish to consider now the quantum yield of donor luminescence.
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If n = 6 (dipole-dipole interaction)

c c
— t A 1 t (1/2 t A 1/2
p(t)=exp[—?——c—-l’(7)(?)/]=exp[—?--c—ﬁ(%)/]
) o
(195)
Then
N 1 . ¢ O et 1/2
___=_f exp__t___A_/,E(_E)l/z dt"’f et2qt at
N T T ¢ T
) ) o o
2 1/2,2 2 2
=l s e_(q+t ) dt=l-2qeq e* ax (196)
o q
where
c
2q=/——.é.
T
But
- 00 --x2 2 .q —x2
erfq=1--=/ e dx =— [T e dx (197)
T q /T o
Then [15]-[17]
N 2
W—=1—qeq /(1 - erf q) (198)
)

We shall examine the following two limiting cases:

q ~> 0: CA->O », erf q~>0
N T ‘A
[
(e] (o]
q *> cA->°°orc;l—>°° , erfq-~>1

o
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IV.D. Exchaunge Interactions

We refer back to the result (72) and in particular to the
second term, called the exchange term. The transition probability
due to this term in the interaction Hamiltonian is given by

2
v, =2 <t () SCDEw RS 4(>]% 1 gy(E) g,(E) dE
(199)

where the symbol z indicates the sum over the electrons. We can
make the following observations:

i) The exchange term is strongly dependent on the D - A distance.

ii) In contrast to the case of the multipolar interaction, the
matrix element of the interaction is not proportional to the
oscillator strengths of D or A, and cannot be related to any
spectroscopic characteristic of D or A.

We shall assume that [18]

2
[<a'(D) a@ | 2= [a'@ a@>]? =22 = &2 VD (500)
12
where
K = const with dimension of energy
L = const, called "effective Bohr radius"
Then
_2m 2 -(2R/L)
va® = F K e I gy (E) g,(E) dE (201)
Set
2R /L
21 2 e °
7 K S gy(E) g, (B) dE = (202)
ZRO
== (203)

Then
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ZRO/L 2(R0/L)(1-R/Ro>

-(2R/1) _

1 1
pa®) =7 e Te

=l

Y[1-(R/R ) ]
e (204)

Note that if R = Ry, wpy = T-L. We have from (147) and (204)

s Xy Tpa® i Ry ~(e/myeY (/R 2
I(t) ==/ e RO"dR=— [ " e R” dR
Vo Vo
(205)
Let
2R /L
Z=eY£=e ° E
T T
-Y(R/R )
y=e
Then
_ _ y[1-(R/R )]
R AN (t/1) o o
It is
-Y(R/R)
= - X ° =- X
dy R dR R y dR
(o] [o]
R
dR=__°_‘_iX
Y ¥
R
1 = oy
ny YR
(o]
R
R=——olny
and
2 3
R R R 2
2 . __o __ody "o (In y)
R"dR =— (n 97— 5) 3Ty W
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Also
Gmo_ 4w _ 3
MENCE SYER
Then
M2 g3 (o3 anpt,
v Y3 Ry y
and
_ y[1-(R/R )]
I(t) = %? fRV o (t/1) e " g2 @
0
Yy 3 Ro 3 (In )2 -z
=/ oS (2R T g
1 y3 RV y
3 Ro 3 le_zy(ln )2
=S (g ey (206)
S TR
-Y(R,/R )
where y, = e /% . For small y, (R, > ©)

—zy 2 -
e —an oo il iy’ ¥y

3
Yy Yy
R ECE NS PGPl
\ Yy
-zy -
=-1 e Vv (Iny )3 +-l z fl e (In Y)3 dy
3 v 3%

Yy _
-V T (g3 dy]
0

1

¥

--% (1n yv)3 -‘% [-z J

e-zy(ln y)3 dy]
0
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=2 (ayp? -3 =377 % 3 -3s@ QoD
where
g(z) = -z fl e ?(In y)3 dy (208)
0
Then
_ _ R -zy 2 N
o(t) = lim e (tm[% (2)3te —Uny) dY] A
Ny Y Ry Yy y
Vo
R 3 N
= 1lim e_(t/T){% ( =< )3[%‘ (;V_ )3 -3 g(z)]% A
NA->°° Y RV o
Vo
R N
= 1im & (t/D [1 -2y’ g(z)] A (209)
N, Y RV
V-0
Taking (179) into account we obtain
c N
2(t) = lim e (t/D [1 R . g(z)] A
NA->co Y oA
Vo
= exp - = - '15 & g(eYt/T)] (210)
T3
2R
where Y = —39 .

We note, in regard to g(z) [18]:

(2) g(z) is positive and monotonically increasing for z > 0.
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(3) Expansion of the exponential e 27 and integration term by term
gives the series

T ()"

— 7 (211)
m=0 m!(m + 1)

g(z) = 62z

For small values of z this series converges rapidly.

(4) TFor z > 10 g(z) can be approximated by the expression

g(z) = (In z)° + 1.7316 (n 2)% + 5.934 In z + 5.445

(212)

V. STATISTICAL TREATMENT OF ENERGY TRANSFER. CASE WITH MIGRATION
AMONG DONORS

V.A. Migration

The case treated in the previous part IV deals with direct
transfer from donor to acceptor, with no migration among donors
and is exemplified in Figure 12(a). We shall now consider the
case in which Wpp # 0, and energy transfer processes can take place
among donors, so that the energy of excitation may reach an acceptor
after hopping resonantly among donors as in Figure 12(b).

Since migration among donors can be viewed as a diffusion

D—>s A D*ﬂp

D D A<——[l7 D

\ A D

a) A b)

Fig. 12(a). Direct transfer; (b) Transfer with migration.
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process we shall review some elementary considerations regarding
the phenomenon of diffusion.

V.B. Diffusion

Consider a system consisting of N similar molecules in a
volume V, and let n be the density N/V. Let nj be the density of
especially labelled molecules, for example, of radioactive molecules.
Assume n] = nj(x), i.e. a non-equilibrium situation, but assume also
n = const, so that no net motion of whole substance occurs during
diffusion.

The mean number of molecules of type 1 crossing the unit area

of a plane perpendicular to the x direction in the x direction in
the unit time is given by

J =-D— [ecm = sec 7] (213)
where

D = coefficient of self diffusion [cm2 sec_l]

The above formula (213) is valid for gases, liquids and isotropic
solids [19]. 1If Bnl/Bx > 0, Jy < 0 and the flow takes place in the
-x direction.

Let us consider now the crossing by molecules of type 1 of an
area A perpendicular to the x direction, as in Figure 13. It is

3 -

3t (nl Adx) = A Jx(x) - A Jx(x + dx) (214)
and

on 3J_(x) 3J_(x)

1 _ _ X - _ X

—gf-dx = Jx(x) [Jx(x) + . dx] N
or, because of (213)

Bnl(x,t) anl(x,t)

—S—— =D ——5— (215)

ox

The above equation is called diffusion equation.

We shall consider the initial condition of N1 molecules
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Fig. 13.

Fig. 14.

dx
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Ty (x+4x)

—_— X

Crossing of plane by especially labelled molecules.

Evolution of the density function of especially labelled

molecules.
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introduced at the time t = O near the plane x = O:

nl(x,O) = Nl §(x) (216)

The solution of the diffusion equation under this condition is

N 2 2 N 2
nl(x,t) =-—f%: e“(X /2067) = 1 e-(X /4Dt) (217)
av2m /4 Dt

The shape of the nj(x,t) curve is always gaussian (see Figure 14)
with the standard deviation

o = /2Dt (218)
It is also
<x2> = ﬁL-f+w x2 nl(x,t) dx = 02 = 2Dt (219)
] ~o

In three dimensions the diffusion equation is

3 > _ 2 >

Ye nl(r,t) =DV nl(r,t) (220)
If the initial condition is

nl(¥, £) =N 8 (1) (221)

the solution is given by

N 2
Dl(;.'), t) = ————1—3—/—5 e-(r /4Dt) (222)
(4m Dt)
Also
> =L a3, a%F = et (223)
N1 1

V.C. Migration as Diffusion Process

We shall be ¢ ncerneg with a function p(ﬁ,t) which we define
by stating that, p(R,t) d3R is the probability that the donor with
goordinate in (R, R+ dﬁ) is excited at time t. We shall now con-
sider the following cases.
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1. Diffusion Only. In this simplest case the diffusion
equation gives us

9 > 2 >
3¢ P(R,t) = D V" p(R,t) (224)
If the excitation is initially localized at R = 0, then

1 e—(R2/4Dt)
Y4 Dt

o(®,t) = (225)
with

<% = 6Dt (226)

2. Diffusion and Relaxation. In this case a term has to be
added to the relevant equation

= o@t) =07 p®0) - Lok, 0) (227)
If we set

0@, t) = p(&, 1) e (/D (228)
we obtain for W(ﬁ,t)

0 ., _ 2 3

E w(R’ t) =D v ‘P(R, t) (229)

>
If, again, the excitation is initially localized at R = 0, we
obtain

(/) 1 e—(R2/4Dt)

(R, t) =
(41 pr) 72

(230)

It is

F 3@, 0 a% = (/D (231)

3. Diffusion, Relaxation and Transfer. In this case the
relevant equation is

N
A
2 o0&, = [D vEodo )R- ﬁjl)] p(R, 1) (232)
3=1
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where the first term in the [ ] parentheses deals with diffusion
among donor, the second with the self-decay of donors, and the
third with donor-acceptor energy transfer.

Equation (232) is analogous to (143), but differs from it in
two respects. First, the diffus1on term 1s included in (232) and,
also, the equivalent of pJ(t) is p(R t) d3 R. The form of p (t)
given the initial condition pj (0) = 1, is given by (145);

average of ps (t) over a 1arge number of donors is given by (146)
and finally

c
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