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A B S T R A C T 

Gamma-ray bursts (GRBs) are ultra-relativistic collimated outflows, which emit synchrotron radiation throughout the entire 
electromagnetic spectrum when they interact with their environment. This afterglow emission enables us to probe the dynamics 
of relativistic blast waves, the microphysics of shock acceleration, and environments of GRBs. We perform Bayesian inference on 

a sample of GRB afterglow data sets consisting of 22 long GRBs and 4 short GRBs, using the afterglow model scalefit , which 

is based on 2D relativistic hydrodynamic simulations. We make use of Gaussian processes to account for systematic deviations 
in the data sets, which allows us to obtain robust estimates for the model parameters. We present the inferred parameters for the 
sample of GRBs and make comparisons between short and long GRBs in constant-density and stellar-wind-like environments. 
We find that in almost all respects such as energy and opening angle, short, and long GRBs are statistically the same. Short 
GRBs ho we v er hav e a markedly lower prompt gamma-ray emission efficiency than long GRBs. We also find that for long GRBs 
in ISM (interstellar medium)-like ambient media there is a significant anticorrelation between the fraction of thermal energy in 

the magnetic fields, εB , and the beaming corrected kinetic energy. Furthermore, we find no evidence that the mass-loss rates of 
the progenitor stars are lower than those of typical Wolf–Rayet stars. 

Key words: methods: data analysis – methods: statistical – gamma-ray burst: general. 

1

G  

U  

p  

b  

b  

o  

r  

p  

o  

e  

m  

S  

t  

1
 

i  

a  

s  

I  

p  

e  

M  

f  

�

a  

c  

d  

a  

N  

Y
 

(  

(  

i  

f  

o  

t  

2  

i  

t  

C  

E  

W  

M  

B  

e  

s  

d
 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2848/6517113 by guest on 12 M
arch 2023
 I N T RO D U C T I O N  

amma-ray bursts (GRBs) are the most powerful explosions in the
niv erse. The y are ultra-relativistic collimated outflows, which are
owered by a compact central object. GRBs are initially observed as
rief flashes of gamma-rays lasting about 0.1–1000 s. These initial
rief flashes of high-energy radiation are called the prompt emission
f the GRB. The exact emission mechanism of the prompt emission
emains elusive, despite decades of dedicated research. GRBs are
henomenologically categorized as short and long GRBs depending
n the observed duration of the prompt emission phase (Kouveliotou
t al. 1993 ). Short GRBs have been associated with compact object
ergers where at least one of the objects is a neutron star (Lattimer &
chramm 1976 ; Eichler et al. 1989 ), whereas long GRBs are thought

o be results of core-collapse supernovae of massive stars (Woosley
993 ). 
As the ejected ultra-relativistic outflow from a GRB starts to

nteract with the circumburst medium (CBM), a pair of shocks
re generated, one of which propagates into the ejecta (reverse
hock) and the other propagates into the CBM (forward shock).
n these shocks, tangled magnetic fields are amplified and charged
articles are accelerated, which results in long-lasting synchrotron
mission spanning the whole electromagnetic spectrum (Rees &
 ́esz ́aros 1992 ). This broad-band synchrotron emission is observable

or several months, even years in some cases, and is called the
 E-mail: m.d.aksulu@uva.nl 
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fterglow emission of the GRB. The afterglow emission provides
rucial insights on the energetics and environments of GRBs, the
ynamics of relativistic blast waves, and the microphysics of particle
cceleration in shocks (Wijers, Rees & M ́esz ́aros 1997 ; Sari, Piran &
arayan 1998 ; Wijers & Galama 1999 ; Panaitescu & Kumar 2002 ;
ost et al. 2003 ). 
Thanks to missions like the Neil Gehrels Swift Observatory

Gehrels et al. 2004 ) and Fermi Gamma-ray Space Telescope
Atwood et al. 2009 ), the number of detected/localized GRBs has
ncreased and allowed for rapid, ground/space based, broad-band
ollo w-up observ ations of the afterglow emission. Moreo v er, the start
f the multimessenger era has supplemented our understanding of
he physics of GRBs (Abbott et al. 2017 ; MAGIC Collaboration et al.
019 ). Besides advances in observational instruments, developments
n numerical hydrodynamics and radiative transfer have enabled us
o build models with increasing complexity and accuracy (e.g. De
olle et al. 2012 ; van Eerten, van der Horst & MacFadyen 2012 ; van
erten & MacFadyen 2013 ; Ryan et al. 2015 ; Duffell & Laskar 2018 ;
u & MacFadyen 2018 ; Jacovich, Beniamini & van der Horst 2021 ).
oreo v er, advances in statistical methods allow us to perform robust
ayesian inference and obtain reliable parameter estimates (Aksulu
t al. 2020 ). Due to all these developments, we can now model a
ample of GRB afterglow data sets, consistently, and investigate the
istribution of physical parameters in the GRB population. 
Previously, P anaitescu & K umar ( 2002 ) and Yost et al. ( 2003 )

ave performed broad-band afterglow modelling, and inferred burst
arameters for a sample of long GRBs. Furthermore, Fong et al.
 2015 ) have gathered data for a large number of short GRBs, and
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Table 1. The GRB sample for this study. The measured redshift ( z) and 
isotropic equi v alent prompt energetics ( E γ , iso) are presented. 

Burst name z E γ , iso/10 52 (erg) 

Short GRBs 051221A 0 .5465 0.15 
130603B 0 .3564 0.21 
140903A 0 .351 0.006 ± 0.0003 
200522A 0 .5536 0.0084 ± 0.0011 

Long GRBs 970508 0 .835 0.61 ± 0.13 
980703 0 .966 6.9 ± 0.8 
990510 1 .619 17.8 ± 2.6 
991208 0 .706 22.3 ± 0.8 
991216 1 .02 67.5 ± 8.1 

000301C 2 .04 4.6 
000418 1 .118 9.1 ± 1.7 
000926 2 .066 27. ± 5.8 
010222 1 .477 81. ± 1. 
030329 0 .1685 1.66 ± 0.2 

050820A 2 .615 97.5 ± 7.7 
050904 6 .29 124. ± 7.7 
060418 1 .49 12.8 ± 1 
090328 0 .7357 13. ± 3 
090423 8 .26 9.5 ± 2 

090902B 1 .8229 440 ± 30 
090926A 2 .1062 200 ± 5 
120521C 6 .0 8.25 ± 2 
130427A 0 .3399 81 
130702A 0 .145 0.064 ± 0.01 
130907A 1 .238 330. ± 10. 
140304A 5 .283 12.24 ± 1.4 
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nferred their burst parameters based on their afterglow emission. 
hese studies utilized semi-analytic models to reproduce the ob- 
erved broad-band emission; in this study, we make use of a model
ased on 2D relativistic hydrodynamic (RHD) simulations. This 
llows us to capture the dynamics of these energetic events in a
ore realistic fashion. 
In Aksulu et al. ( 2020 ) (A20, from now on), we introduced a

ew method for Bayesian parameter estimation, where we make 
se of Gaussian processes (GPs) in order to take into account some
ystematic effects in the data set and physics not included in the
odel. We showed in A20 that this approach allows us to obtain more

obust parameter estimates, whereas the more conventional method 
f sampling the χ2 likelihood leads to underestimated uncertainties 
n the parameters, especially in the presence of systematics. We 
ake use of a modified version of the GP model described in A20, in

rder to model a sample of 26 GRB afterglow data sets. In Section 2,
e describe the GRB sample, model, inference approach, and details 
f the regression process. In Section 3, we present our results and
he inferred physical parameters of the sample. Finally, we discuss 
ur findings in Section 4 and conclude in Section 5. Throughout this
ork, we assume the cosmology as described in Planck Collaboration 
III et al. ( 2016 ). 

 M E T H O D  

.1 Sample 

ur GRB afterglow sample consists of 26 GRBs with well-sampled, 
road-band data sets. We relied only on peer-re vie wed, published 
ata sets, and converted the reported measurements to mJy units. 
he main selection criterion for the sample of GRBs has been the
vailability of broadband afterglow data. Twenty-two out of the 
6 GRBs are long GRBs detected between 1997 and 2014, with 
ublished broad-band data sets; the time period is set to get a large
nough sample. For short GRBs, we found only four with detections 
n radio, optical and X-ray bands up to the present. We omitted GRBs
ith non-canonical features in their light curves and include the five 
RBs modelled in A20. When possible, we neglect epochs and/or 
ands for which there is evidence that the emission is dominated 
y processes that are not included in our model (e.g. early time
ptical and radio emission from GRB 130427A, which is dominated 
y reverse shock emission). This does not, of course, in any way
epresent a well-defined complete sample. We drew the boundary for 
aving enough data somewhat subjectively, and similarly selected 
ata sections in the early light curves suspected of unmodelled 
hysics by eye. 
We corrected the observed flux values for Galactic dust extinction 

sing the extinction curve given by Pei ( 1992 ). We subtract any
ersistent emission originating from the host galaxy when possible. 
e do not correct the data for the dust extinction due to the host

alaxy; instead we leave the rest-frame A V value for the host galaxy
s a free parameter (see Section 2.3). We present the GRB sample in
able 1 . 

.2 Gaussian process framework 

Ps are stochastic processes that can be used for regression and 
lassification problems for which the underlying physical model is 
nknown (e.g. Rasmussen & Williams 2006 ). Following A20 (also 
ee Gibson et al. 2012 ), we make use of GPs to take into account any
ystematic deviations from the afterglow model. In this section, we 
ighlight some impro v ements on the GP model introduced in A20.
or clarity we use the same notation as in A20. Vectors and matrices
re represented by bold symbols. 

The systematics are described by the GP model as 

 ( t, ν) ∼ GP ( μ( t, ν, φ) , � ( t, ν, θ ) ) , (1) 

here t and ν are the time and frequency coordinates in the observer
rame, φ represents the afterglow model parameters, and θ represents 
he hyperparameters of the GP. Since the observer time and frequency
hange o v er man y orders of magnitude, we work with the logarithm
f these coordinates when performing GP regression. The mean 
unction of the GP, μ, is the afterglow model, and � is the covariance
atrix that describes how the systematics are correlated o v er t and ν.
e adopt a 2D heterogeneous squared-exponential kernel function 

e.g. see Rasmussen & Williams 2006 ) to calculate the covariance 
atrix, 

 ij = k( X i , X j ) = A exp 

[ 

−1 

2 

2 ∑ 

k= 1 

( X ik − X jk ) 2 

l 2 k 

] 

+ δij σ
2 
h , (2) 

here X represents the 2D feature set (i.e. observer time and band).
he hyperparameters of the GP are defined as 

= ( A, l 1 , l 2 , σh ) 
T , (3) 

here A represents the amplitude of the correlations, l 1 and l 2 deter-
ine the length-scales of the correlations o v er time and frequency,

espectively, and σ h represents the amount of white noise in the 
ata set. In A20, the systematics in the data set were assumed to
e uncorrelated across different observational bands. Therefore, the 
yperparameter l 2 was fixed to be a small number. In this work, we
ake l 2 a free parameter, thereby allowing the GP model to capture

ystematics correlated o v er dif ferent observ ational bands. We refer
he reader to A20 for a more detailed explanation of the GP model. 
MNRAS 511, 2848–2867 (2022) 
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.3 Model 

e assume a collimated, ultra-relativistic blast wav e mo ving into
 circumburst medium, which need not be uniform; we assume a
ensity profile of the form 

 = n ref 

( r 

10 17 cm 

)−k 

. (4) 

he normalization is chosen at a radius that often falls within the
ange sampled by real afterglows. We will not treat k as a fully free
arameter, but only allow the ‘classic’ values of 2 and 0. For k = 2,
he interpretation of the environment is pretty unambiguous: the blast
ave is in the unshocked, freely expanding part of a massive stellar
ind. In that case a more common nomenclature of the parameters

s 

( r ) = 

A 

r 2 
, (5) 

here r is the distance from the star and A can be expressed as 

 = 

Ṁ 

4 πv wind 
. (6) 

ere, Ṁ is the mass-loss rate of the progenitor star and v wind is
he wind v elocity. F or a canonical Wolf–Rayet star with a mass-
oss rate of 10 −5 M � yr −1 and wind velocity of 1000 km s −1 , A ∼
 × 10 11 g cm 

−1 , which value is denoted by A ∗. We can simply scale
he inferred n ref values to units of A ∗ using 

A 

A ∗
= 

n ref 

30 cm 

−3 
. (7) 

or k = 0, the interpretation of the environment is much more
mbiguous. In this case, the actually observed afterglow typically
o v ers well under a factor of 10 in radius travelled by the blast wave,
o any environment in which the density does not change much o v er
 factor few in distance (and within the solid angle hit by the outflow)
ill do. This could definitely be canonical interstellar medium (ISM),
ut for A ∗ not too different from 1, a wind bubble around a massive
tar will contain many solar masses of material and thus the GRB
et will never emerge from it during the normal afterglow phase (the
last wave typically needs to sweep up less than (beamed equi v alent
f a spherical amount of) 0.1 M � of ambient matter to become non-
elati vistic). Ho we ver, the bulk of the wind bubble will contain wind
hat has been shocked against the ISM, and that is uniform enough
o fit the k = 0 case. Another possibility might be that the star has
 significant proper motion through a somewhat dense ISM. In that
ase most of the wind bubble is swept back, and in the forward
emisphere the blast wave may emerge from the wind into the ISM
n time. 

The initial Lorentz factor of the blast wave is assumed to be
niform within the opening angle of the jet, i.e. a top hat jet model.
e assume that charged particles are accelerated in the forward

hock and emit synchrotron emission (Sari et al. 1998 ; Wijers &
alama 1999 ; Granot & Sari 2002 ). In this work, we do not take into

ccount emission originating from the reverse shock and thus confine
urselves to fitting the later parts of the afterglow when the reverse
hock has passed through the ejecta and the deceleration phase is
 v er; in this limit, the value of the initial Lorentz factor of the jet
s no longer important and need not (indeed, cannot) be fit. For the
microphysical’ parameters, which describe the spectrum and energy
ontent of the electrons behind the blast wave and the magnetic field
n which they move, we use the customary notation: p is the power-
a w inde x of the energy distribution of the relativistic electrons, and εe 

nd εB are the fractions of post-shock energy density in relativistic
NRAS 511, 2848–2867 (2022) 
lectrons and magnetic field, respectively. Only a fraction of all
lectrons, ξN , may be accelerated. When p � 2, the total energy in
lectrons and the value of p become very correlated in the fit, because
he blast-wave emission depends on the combination ε̄e ≡ p−2 

p−1 εe .
herefore, we fit for that quantity and disentangle p and εe later
here possible. Similarly, the fraction of accelerated electrons, ξN ,

s degenerate with respect to ( E K, iso , n ref , εB , ̄εe ), where ( E K ,iso , n ref )
re proportional to 1/ ξN , and ( εB , ̄εe ) are proportional to ξN (Eichler &
axman 2005 ). Because of this de generac y, we cannot determine ξN 

ndependently from afterglow light curves and fix it to the canonical
alue of 1 (for ease of comparison with previous studies). 

We make use of the numerical model scalefit (Ryan et al.
n preparation; Aksulu et al. 2020 ; Ryan et al. 2015 ). scalefit
ses pre-calculated tables of spectral features (spectral breaks, peak
pectral flux) for a range of different time epochs, opening angles,
nd observing angles. These tables are generated separately for
SM and wind-like circumburst density profiles using boxfit
van Eerten et al. 2012 ). boxfit is a numerical code which
s able to output flux values for given observer time, frequency,
nd GRB parameters. The main advantage of boxfit is that the
ynamics rely on pre-calculated RHD simulations. Ho we ver, since
oxfit solves the radiative transfer equations during runtime, it

s computationally e xpensiv e. Therefore, it is not practical to use
oxfit when performing Bayesian inference. Moreo v er, boxfit
oes not take into account the effects of synchrotron cooling on the
elf-absorption break. This may lead to incorrect spectra in certain
egimes. scalefit , on the other hand, makes use of pre-calculated
pectral features, obtained from boxfit in a valid regime, and
tilizes scaling rules (van Eerten & MacFadyen 2012 ) to calculate
he spectra for various regimes (i.e. different orderings of the break
requencies). scalefit is valid for all spectral regimes, unlike
oxfit , and is computationally ine xpensiv e in comparison (Ryan
t al. in preparation). Ho we ver, scalefit makes assumptions
bout the sharpness of the spectra around break frequencies, whereas
oxfit generates smooth spectra in a self-consistent way. 
Additionally, we account for dust extinction due to the host galaxy

hen calculating the observed flux. For the majority of GRBs in our
ample, we adopt the Small Magellanic Cloud e xtinction curv e giv en
y Pei ( 1992 ). Ho we ver, for GRBs 000418 (Gorosabel et al. 2003 ),
10222 (Frail et al. 2002 ), and 090328 (McBreen et al. 2010 ), we
ssume a Starburst type extinction curve (Calzetti et al. 2000 ). We
nclude the dust extinction due to the host galaxy as a free parameter.

Summarizing, our model parameters are defined as 

= ( θ0 , E K, iso , n ref , θobs , p, εB , ̄εe , ξN , A V ) 
T , (8) 

here θ0 is the opening angle of the jet, E K ,iso is the isotropic-
qui v alent kinetic energy of the explosion, n ref is the normalization
actor for the circumburst density profile (see equation 4), θobs is
he observing angle, p is the power-la w inde x of the accelerated
lectron population, εB is the fraction of post-shock energy in the
agnetic fields, ε̄e ≡ p−2 

p−1 εe where εe is the fraction of post-shock
nergy in the accelerated electrons, ξN is the fraction of electrons
eing accelerated, and A V is the amount of dust extinction in the
est-frame due to the host galaxy. 

.4 Regression 

n order to obtain posterior distributions for the hyperparameters
nd model parameters, we make use of nested sampling (Skilling
004 ). Incorporating nested sampling allows us to calculate the
vidence with an associated numerical uncertainty, while producing
osterior samples as a by-product. Inferring the Bayesian evidence is
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Table 2. Assumed priors for the GP hyperparameters. 

Parameter range Prior distribution 

10 −10 < a < 10 10 log-uniform 

10 −6 < l 1 < 1 log-uniform 

10 −6 < l 2 < 1 log-uniform 

10 −3 < σ h < 10 3 log-uniform 

Table 3. Assumed priors for the physical parameters. 

Parameter range Prior distribution 

0.01 < θ0 < 1.6 Log-uniform 

10 50 < E K ,iso < 10 56 Log-uniform 

10 −3 < n ref < 1000 Log-uniform 

0 < θobs / θ0 < 2 Uniform 

1.0 < p < 3.0 Uniform 

10 −10 < εB < 1.0 Log-uniform 

10 −10 < ε̄e < 10 Log-uniform 

0 < A V < 10 Uniform 
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nstrumental in this study, because it gives us a measure to determine
hich model explains the data best: a blast wave moving into a
omogeneous ( k = 0) or wind-like ( k = 2) circumburst medium (see
ection 2.3). 
Following A20, we utilize PYMULTINEST (Buchner et al. 2014 ), 

hich is a PYTHON package based on the MultiNest nested sampling 
lgorithm (Feroz, Hobson & Bridges 2009 ). For all the presented 
esults, PYMULTINEST is used in the importance sampling mode 
Feroz et al. 2019 ) with mode separation disabled. We use 400 initial
ive points and use an evidence tolerance of 0.5 as our convergence
riterion. 

We assume wide priors for a and σ h , ho we ver, the length-scale
yperparameters (i.e. l 1 and l 2 ) are capped at 1 (see Table 2 ), since
e do not expect any systematics to be correlated over orders
f magnitude (the GP model operates in the log-space). This is
mportant, we found, because if one allows long correlation length- 
cales, the GP can take up features like constant offsets between 
odel and data, or slope differences, which the model should really 

e capable of fitting. We intend the Gaussian process mostly to take
p issues like calibration differences between instruments leading to 
xtra ‘noise’ within a band, and physical effects that are shorter in
ime and frequency scale than is included in the model, such as radio
cintillation, minor flares, etc. 

For all the model parameters, we assume uninformative prior 
istributions, which can be seen in Table 3 . 
Note that we do not take into account any reported upper limits

n the afterglow flux when inferring parameters, since upper limit 
eports typically do not contain enough information to include them 

n the fitting in a statistically sound way. 

 RESULTS  

n this section, we present the modelling results for our sample 
f 26 GRB afterglow data sets (see Table 1 ). We will not discuss
ndividual GRBs in detail, since the objective of our work is to
xamine the properties of a population of GRB afterglow sources 
nd systematics of how the properties are distributed and may 
iffer between subclasses. In so doing, we will examine correlations 
etween each pair of fit parameters and distributions of fit parameters 
etween each of a few subclasses. All in all, we make about 50
uch comparisons, and therefore we have a fair chance of finding 
ifferences or correlations at the few per cent probability level by
tatistical coincidence. To account for this, we will only regard 
orrelations or differences in distributions as firmly significant when 
he null hypothesis of no correlation or no difference can be excluded
t the single-trial p -value of 3 × 10 −4 or better, and tentative below
 = 1 × 10 −3 . Of course, since we do not have a statistically complete
ample, we should not only examine the statistical significances but 
lso the possible effect of biases. 

We find that in all cases the best-fitting values of the parameters
nd their 68 per cent credible intervals remain naturally contained 
ithin the range set by the priors, and in most cases, this is still true

or the 95 per cent credible interval. We also find that in individual
ases there can be strong correlations between parameter errors due 
o degeneracies in a specific fit, but we did not find any that were
ommon enough to induce correlations between parameters in the 
 v erall population. We also find that for all physical parameters the
ange of best-fit values is significantly larger than the error regions
f the better constrained afterglows. This implies that there are no
hysical parameters, specifically also not the shock microphysics 
arameters or the beaming-corrected energy, that prefer a universal 
alue. This is in agreement with previous studies (e.g. Starling et al.
008 ; Curran et al. 2009 ; Ryan et al. 2015 ), but now for a large and
niformly analysed sample of GRBs. 
For our further description of the results, we focus on groups

f physical parameters, from the outside in. We begin with the
mbient density, since this is the first distinction we make, and it
s made in a way somewhat different to the others, by comparing
wo different model fits. All others are simply free parameters 
t within a certain constrained but continuous range. Of these, 
e first discuss the energy and geometrical parameters (opening 

ngle and viewing angle), and after that the shock microphysics 
arameters. 

.1 GRB environment and ambient medium 

e do not assume a priori which model, homogeneous or wind-like
nvironment, should be chosen for a given data set. Instead, we model
very data set both for homogeneous and wind-like environment 
odels, and choose which one explains the data best. Model selection 

s performed by comparing the evidence values from both fits. We
resent the log-evidence values, along with the corresponding Bayes 
actors, for each modelling effort in Table 4 . The Bayes factor, i.e.
atio of the evidence values, allows us to quantify the likelihood of
he preferred model o v er the alternativ e model. A Bayes factor larger
han 20 (e.g. Kass & Raftery 1995 ) suggests a strong preference for
he selected model. Fifteen out 26 GRBs in our sample, all long, have
 Bayes factor larger than 20, and 8 out of these GRBs show evidence
or a constant density environment. Thus, if we only consider the
RBs with a strong preference, there is an approximately even split
etween homogeneous and wind-like environments. Starling et al. 
 2008 ) have analysed a sample of 10 GRBs and commented on their
BM density profile. They also find that both ISM-like and wind-

ike environments are required to explain the observed light curves 
or their sample of GRBs. Curran et al. ( 2009 ) have analysed the
ptical and X-ray light curves of 10 GRB afterglows, and arrived at
he same conclusion. Schulze et al. ( 2011 ) have compiled a sample
f 27 Swift detected GRBs (including one short GRB), and utilized
he observed X-ray and optical afterglow emission to comment on 
he density profiles of their environments. They are able to determine
hat 18 GRBs in their sample are consistent with homogeneous envi-
onments, and 6 GRBs are consistent with wind-like environments. 
f we do not restrict ourselves to high Bayes factors, a slightly higher
MNRAS 511, 2848–2867 (2022) 
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Table 4. Model selection for the GRB sample. Z represents the Bayesian evidence. Reported uncertainties 
represent 1–σ . We select the mode, either homogeneous (ISM) or wind-like environment, with higher inferred 
e vidence v alues. The e vidence v alues for the preferred model are written in bold numerals. 

Burst name ln Z [ISM] ln Z [Wind] Bayes factor 

short GRBs 051221A −22 . 79 ± 0 . 04 − 24.26 ± 0.12 4 .33 
130603B 

( a ) − 21.45 ± 0.05 − 21.42 ± 0.03 ∼1 . 
140903A −24 . 97 ± 0 . 05 − 25.73 ± 0.02 2 .15 
200522A −18 . 31 ± 0 . 03 − 19.30 ± 0.02 2 .68 

long GRBs 970508 − 99.21 ± 0.12 −92 . 68 ± 0 . 31 > 150 
980703 − 86.74 ± 0.02 −82 . 33 ± 0 . 06 82 .80 
990510 279 . 21 ± 0 . 02 278.45 ± 0.03 2 .15 
991208 −60 . 33 ± 0 . 04 − 67.63 ± 0.10 > 150 
991216 − 5.37 ± 0.04 −4 . 56 ± 0 . 03 2 .25 
000301C 37 . 45 ± 0 . 05 25.30 ± 0.12 > 150 
000418 − 55.09 ± 0.04 −49 . 81 ± 0 . 05 > 150 
000926 28.31 ± 0.08 34 . 48 ± 0 . 04 > 150 
010222 37 . 34 ± 0 . 04 31.01 ± 0.02 > 150 
030329 −29 . 23 ± 0 . 01 − 59.81 ± 0.05 > 150 
050820A − 40.26 ± 0.74 −33 . 88 ± 0 . 05 > 150 
050904 −31 . 20 ± 0 . 03 − 33.30 ± 0.07 8 .13 
060418 −11 . 55 ± 0 . 06 − 19.19 ± 0.02 > 150 
090328 −50 . 14 ± 0 . 03 − 51.69 ± 0.30 4 .71 
090423 −51 . 42 ± 0 . 06 − 55.97 ± 0.10 94 .59 
090902B − 49.39 ± 0.02 −39 . 78 ± 0 . 04 > 150 
090926A −9 . 68 ± 0 . 03 − 12.24 ± 0.02 12 .98 
120521C −54 . 96 ± 0 . 06 − 55.50 ± 0.09 1 .70 
130427A 324.52 ± 0.08 336 . 86 ± 0 . 03 > 150 
130702A 19 . 45 ± 0 . 18 8.55 ± 0.68 > 150 
130907A −135 . 85 ± 0 . 01 − 141.59 ± 0.02 > 150 
140304A − 60.46 ± 0.04 −57 . 90 ± 0 . 04 13 .00 

a For this data set, both homogeneous and wind-like models result in similar e vidence v alues. An ISM-type 
environment is preferred since this is a short GRB and no strong winds are expected due their progenitors. 
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raction of afterglows fa v ours an ISM solution (16 out of 25, i.e.
4 per cent). 
For the short GRB sample the evidence values for both models

re closer to each other. This is mainly due to the fact that short
RBs have fe wer observ ations av ailable, and therefore the data sets

re less constraining; importantly, none of the short GRBs fa v our
 wind environment, in agreement with the usual notion that they
ccur in less dense and near-uniform ISM. For short GRB 130603B,
he evidence values for homogeneous and wind-like environments
re consistent with each other considering the evidence uncertainty.
iven that an ISM environment is a priori fa v oured, we chose that

olution. 
The wider environment of the GRB is also probed by the host

xtinction, A V . This is of course biased to somewhat low values by
he fact that we want well-detected optical afterglows, and for short
RBs to somewhat higher values because we need them to lie in

egions of not too low density to produce a detectable afterglow. We
nd that more than half the afterglows have a non-zero A V with better

han 2 σ significance, with no significant differences between short
nd long GRBs or wind and uniform ambient media. 

Now that we have found the best ambient-density model for each
fterglow, we will look at the other parameters, for which we take
he values for the best-fitting ambient medium in each case. We
resent our modelling results for the GRB parameters (including
he rest-frame host extinction values, A V ) in Table 5 . In Figs A1 –
3 , we present the posterior distribution for each parameter (in

he form of a violin plot) together with their 68 per cent credible
ntervals. The complete set of light curves and posterior distributions
re available as online supplementary material, including results for
NRAS 511, 2848–2867 (2022) 
oth homogeneous and wind-like environments for each GRB in our
ample. 

.2 Energy, opening angle, and viewing angle 

n Figs 1 and 2 , we present the parameter values for the GRBs asso-
iated with homogeneous and wind-like environments, respectively,
n the form of a corner plot. These figures help us to identify any
orrelations between the burst parameters. The diagonal elements
n each figure contain the parameter distributions for the single fit
arameters, with different colours for the short (green), long-ISM
blue), and long-wind (red) GRBs. 

.2.1 Opening angle 

e do not find a notably different opening angle distribution for
hort and long GRBs. When a Kolmogoro v–Smirno v (KS) test is
erformed on the inferred opening angle of ISM-like long GRBs and
hort GRBs, we find a p -value of 0.48 for the hypothesis that the two
amples are drawn from the same distribution. A KS test checking
he consistency of the θ0 distribution between ISM- and wind-like
ong GRBs yields we find p = 0.012. On its own that might be
onsidered moderate evidence for a difference, but given the many
rials (distribution comparisons) in this paper, it is not (see abo v e). 

.2.2 Observer viewing angle 

he distribution of the observer viewing angle, θobs , does not follow
 simple form, since it is constrained to be within the jet opening
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Table 5. Inferred physical parameters for the GRB sample. The presented values correspond to the mode of the obtained posterior distribution. Reported 
uncertainties represent the 68 per cent credible interval. k represents the CBM density profile (see equation 4) and is either 0 for homogeneous or 2 for wind-like 
environments. 

Burst name log 10 θ0 (rad) log 10 E K ,iso (erg) log 10 n ref θobs / θ0 p log 10 εB log 10 ̄εe A V k 

Short GRBs 051221A −0 . 98 + 0 . 13 
−0 . 17 54 . 48 + 0 . 80 

−1 . 69 0 . 55 + 1 . 26 
−1 . 80 0 . 92 + 0 . 11 

−0 . 29 1 . 78 + 0 . 17 
−0 . 10 −2 . 40 + 0 . 91 

−2 . 17 −5 . 26 + 2 . 43 
−1 . 25 0 . 10 + 0 . 26 

−0 . 10 0 

130603B −0 . 97 + 0 . 28 
−0 . 54 53 . 89 + 0 . 82 

−1 . 17 −1 . 14 + 0 . 59 
−1 . 36 0 . 83 + 0 . 13 

−0 . 36 2 . 67 + 0 . 25 
−0 . 38 −4 . 71 + 1 . 72 

−3 . 85 −0 . 98 + 0 . 51 
−0 . 56 0 . 74 + 0 . 44 

−0 . 32 0 

140903A −1 . 15 + 0 . 35 
−0 . 22 54 . 58 + 0 . 57 

−1 . 20 −1 . 97 + 1 . 17 
−0 . 82 0 . 41 + 0 . 26 

−0 . 33 2 . 36 + 0 . 17 
−0 . 53 −7 . 21 + 3 . 58 

−1 . 82 −1 . 07 + 0 . 63 
−1 . 98 0 . 22 + 0 . 32 

−0 . 22 0 

200522A −0 . 22 + 0 . 39 
−0 . 31 53 . 54 + 1 . 08 

−0 . 78 1 . 94 + 0 . 51 
−1 . 48 0 . 51 + 0 . 35 

−0 . 20 1 . 84 + 0 . 06 
−0 . 06 −7 . 75 + 1 . 89 

−1 . 27 −3 . 39 + 1 . 32 
−1 . 33 5 . 29 + 2 . 79 

−3 . 33 0 

Long GRBs 970508 0 . 06 + 0 . 03 
−0 . 05 53 . 20 + 0 . 22 

−0 . 21 2 . 18 + 0 . 11 
−0 . 14 1 . 08 + 0 . 04 

−0 . 03 2 . 57 + 0 . 05 
−0 . 05 −4 . 39 + 0 . 38 

−0 . 27 −0 . 49 + 0 . 05 
−0 . 09 0 . 13 + 0 . 07 

−0 . 05 2 

980703 −0 . 34 + 0 . 26 
−0 . 20 52 . 28 + 0 . 36 

−0 . 19 0 . 50 + 0 . 25 
−0 . 30 0 . 89 + 0 . 16 

−0 . 55 2 . 07 + 0 . 05 
−0 . 10 −0 . 53 + 0 . 43 

−0 . 57 −1 . 89 + 0 . 20 
−0 . 17 1 . 01 + 0 . 16 

−0 . 12 2 

990510 −1 . 16 + 0 . 03 
−0 . 05 52 . 99 + 0 . 11 

−0 . 08 −0 . 95 + 0 . 15 
−0 . 35 0 . 31 + 0 . 13 

−0 . 07 1 . 93 + 0 . 06 
−0 . 05 −1 . 25 + 0 . 42 

−0 . 45 −1 . 54 + 0 . 09 
−0 . 12 0 . 01 + 0 . 02 

−0 . 01 0 

991208 −1 . 94 + 0 . 19 
−0 . 06 54 . 64 + 0 . 10 

−0 . 41 −0 . 60 + 0 . 19 
−0 . 11 1 . 05 + 0 . 41 

−0 . 82 1 . 61 + 0 . 08 
−0 . 06 −0 . 07 + 0 . 07 

−0 . 16 −1 . 33 + 0 . 12 
−0 . 11 0 . 44 + 0 . 09 

−0 . 08 0 

991216 −0 . 59 + 0 . 37 
−0 . 25 53 . 71 + 0 . 23 

−0 . 44 1 . 28 + 0 . 23 
−0 . 52 0 . 79 + 0 . 14 

−0 . 41 2 . 14 + 0 . 20 
−0 . 08 −3 . 61 + 0 . 54 

−0 . 82 −1 . 27 + 0 . 23 
−0 . 23 0 . 07 + 0 . 11 

−0 . 06 2 

000301C −0 . 69 + 0 . 03 
−0 . 03 52 . 42 + 0 . 16 

−0 . 08 0 . 33 + 0 . 47 
−0 . 11 0 . 07 + 0 . 04 

−0 . 07 1 . 88 + 0 . 10 
−0 . 06 −0 . 21 + 0 . 14 

−0 . 78 −1 . 52 + 0 . 19 
−0 . 07 0 . 03 + 0 . 08 

−0 . 02 0 

000418 −0 . 26 + 0 . 27 
−0 . 29 54 . 47 + 1 . 00 

−0 . 82 1 . 11 + 0 . 70 
−1 . 12 0 . 26 + 0 . 28 

−0 . 20 2 . 38 + 0 . 15 
−0 . 18 −1 . 91 + 0 . 52 

−4 . 22 −1 . 59 + 0 . 45 
−0 . 50 1 . 22 + 0 . 40 

−0 . 29 2 

000926 −0 . 24 + 0 . 31 
−0 . 28 55 . 13 + 0 . 63 

−0 . 46 1 . 99 + 0 . 79 
−0 . 39 0 . 34 + 0 . 20 

−0 . 33 2 . 96 + 0 . 04 
−0 . 04 −6 . 21 + 1 . 51 

−1 . 08 −0 . 95 + 0 . 34 
−0 . 28 0 . 20 + 0 . 05 

−0 . 04 2 

010222 −0 . 40 + 0 . 05 
−0 . 22 53 . 94 + 0 . 17 

−0 . 15 −2 . 32 + 0 . 19 
−0 . 17 0 . 13 + 0 . 29 

−0 . 09 2 . 62 + 0 . 03 
−0 . 04 −4 . 18 + 0 . 52 

−0 . 31 −0 . 47 + 0 . 06 
−0 . 08 0 . 54 + 0 . 05 

−0 . 05 0 

030329 0 . 20 + 0 . 01 
−0 . 07 53 . 04 + 0 . 10 

−0 . 10 2 . 59 + 0 . 20 
−0 . 18 0 . 73 + 0 . 05 

−0 . 05 2 . 62 + 0 . 02 
−0 . 06 −5 . 58 + 0 . 38 

−0 . 33 −0 . 76 + 0 . 08 
−0 . 06 0 . 01 + 0 . 02 

−0 . 01 0 

050820A −0 . 44 + 0 . 24 
−0 . 21 53 . 24 + 0 . 12 

−0 . 11 0 . 95 + 0 . 23 
−0 . 16 0 . 70 + 0 . 10 

−0 . 39 2 . 11 + 0 . 14 
−0 . 07 −1 . 95 + 0 . 19 

−0 . 49 −1 . 31 + 0 . 25 
−0 . 18 0 . 37 + 0 . 06 

−0 . 08 2 

050904 −1 . 02 + 0 . 12 
−0 . 04 53 . 31 + 0 . 28 

−0 . 17 1 . 05 + 0 . 25 
−0 . 87 0 . 54 + 0 . 21 

−0 . 13 2 . 11 + 0 . 08 
−0 . 08 −2 . 07 + 0 . 50 

−0 . 46 −1 . 54 + 0 . 13 
−0 . 40 0 . 07 + 0 . 05 

−0 . 03 0 

060418 −0 . 82 + 0 . 06 
−0 . 07 52 . 88 + 0 . 17 

−0 . 14 0 . 23 + 0 . 56 
−0 . 36 0 . 83 + 0 . 05 

−0 . 06 2 . 28 + 0 . 06 
−0 . 04 −2 . 81 + 0 . 32 

−0 . 65 −1 . 30 + 0 . 17 
−0 . 13 0 . 17 + 0 . 05 

−0 . 05 0 

090328 −0 . 68 + 0 . 20 
−0 . 13 53 . 17 + 0 . 51 

−0 . 86 1 . 66 + 0 . 70 
−0 . 79 0 . 94 + 0 . 23 

−0 . 33 2 . 28 + 0 . 10 
−0 . 18 −3 . 90 + 1 . 31 

−0 . 89 −1 . 39 + 0 . 48 
−0 . 37 0 . 07 + 0 . 11 

−0 . 06 0 

090423 −0 . 06 + 0 . 26 
−0 . 10 53 . 46 + 0 . 50 

−0 . 48 2 . 01 + 0 . 75 
−0 . 62 0 . 84 + 0 . 11 

−0 . 46 2 . 16 + 0 . 17 
−0 . 24 −4 . 81 + 1 . 48 

−0 . 97 −1 . 41 + 0 . 35 
−0 . 56 0 . 09 + 0 . 09 

−0 . 07 0 

090902B 0 . 04 + 0 . 11 
−0 . 34 53 . 43 + 0 . 23 

−0 . 37 0 . 50 + 0 . 58 
−0 . 31 0 . 24 + 0 . 19 

−0 . 22 2 . 23 + 0 . 04 
−0 . 09 −3 . 15 + 0 . 70 

−0 . 91 −1 . 57 + 0 . 29 
−0 . 23 0 . 07 + 0 . 06 

−0 . 06 2 

090926A −0 . 81 + 0 . 08 
−0 . 10 53 . 09 + 1 . 17 

−0 . 32 0 . 19 + 2 . 07 
−0 . 26 0 . 78 + 0 . 25 

−0 . 14 2 . 24 + 0 . 08 
−0 . 05 −1 . 57 + 0 . 41 

−2 . 14 −0 . 93 + 0 . 28 
−0 . 81 0 . 09 + 0 . 01 

−0 . 01 0 

120521C −0 . 91 + 0 . 11 
−0 . 11 52 . 98 + 0 . 23 

−0 . 16 −0 . 47 + 0 . 41 
−0 . 29 0 . 50 + 0 . 20 

−0 . 34 2 . 88 + 0 . 12 
−0 . 25 −1 . 10 + 0 . 37 

−0 . 51 −0 . 84 + 0 . 16 
−0 . 16 0 . 78 + 0 . 09 

−0 . 09 0 

130427A −0 . 23 + 0 . 25 
−0 . 15 52 . 58 + 0 . 64 

−0 . 17 0 . 17 + 0 . 33 
−0 . 53 0 . 20 + 0 . 34 

−0 . 20 2 . 16 + 0 . 04 
−0 . 05 −2 . 31 + 0 . 62 

−0 . 94 −1 . 13 + 0 . 20 
−0 . 25 0 . 03 + 0 . 03 

−0 . 03 2 

130702A −0 . 71 + 0 . 12 
−0 . 05 53 . 07 + 0 . 90 

−0 . 97 −0 . 90 + 1 . 42 
−0 . 45 0 . 04 + 0 . 11 

−0 . 04 1 . 46 + 0 . 08 
−0 . 04 −0 . 71 + 0 . 63 

−1 . 24 −7 . 65 + 2 . 05 
−1 . 89 0 . 26 + 0 . 18 

−0 . 12 0 

130907A −1 . 38 + 0 . 17 
−0 . 05 53 . 02 + 0 . 34 

−0 . 09 −1 . 26 + 0 . 12 
−0 . 11 0 . 88 + 0 . 23 

−0 . 21 1 . 87 + 0 . 09 
−0 . 09 −0 . 04 + 0 . 04 

−0 . 10 −1 . 03 + 0 . 14 
−0 . 18 1 . 60 + 0 . 15 

−0 . 16 0 

140304A −1 . 30 + 0 . 23 
−0 . 07 54 . 46 + 0 . 28 

−0 . 42 1 . 96 + 0 . 57 
−0 . 35 1 . 19 + 0 . 34 

−0 . 13 2 . 28 + 0 . 17 
−0 . 25 −3 . 73 + 0 . 76 

−0 . 72 −1 . 40 + 0 . 20 
−0 . 33 0 . 41 + 0 . 11 

−0 . 08 2 
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ngle (at least at early times), but that is different for each GRB as we
ave just seen. Ho we ver, the fractional observer angle distribution,
obs / θ0 , does have a simpler form under the top-hat jet assumption,
ecause in that case every direction within the opening angle has 
he same properties and thus the same brightness at early times: its
robability density is linear for θ0 � π /2 and a sine function for
0 = π /2. We show the distribution for the full sample in Fig. 3 ,
ith the two limiting theoretical cases. The observed distribution 

xtends a bit beyond 1, but no values are significantly larger than
. Even so, KS-comparison with the theoretical distributions gives 
 = 0.17 for accepting the null hypothesis of equality. We conclude
hat the data are consistent with the top-hat jet hypothesis and do
ot strongly indicate a structured, more centrally concentrated jet 
which would closely resemble a top-hat jet for observers close to 
he jet axis in any case, e.g. Dalal, Griest & Pruet 2002 ; Rossi,
azzati & Rees 2002 ; Granot & Kumar 2003 ; Kumar & Granot 2003 ;
 anaitescu & K umar 2003 ; Salmonson 2003 ; Rossi et al. 2004 ; Ryan
t al. 2020 ). Specifically, our viewing angle has to be within the
pening angle of the gamma-ray emission, which typically comes 
rom material with 
 > 100. If the early afterglow emission, of
hich we derive the opening angle in our fits, had a significantly
reater opening angle, then we would find the distribution of θobs / θ0 

iased towards small values. Since the afterglow represents all the 
aterial with 
 � 10, this means our result argues against jet
tructures in which the material with initial Lorentz factors abo v e
0 has a significantly wider opening angle than the material with
nitial Lorentz factors abo v e 100. This may argue against, or at
east significantly constrain so-called jet-cocoon models of GRBs, 
n which a core jet with quite high initial Lorentz factors ( 
 0 �
00) is surrounded by an energetic cocoon with Lorentz factors of
everal tens (e.g. Ramirez-Ruiz, Celotti & Rees 2002 ; Peng, K ̈onigl &
ranot 2005 ). The initial conditions of the simulations underlying 
ur model are already outside the progenitor object. We do not think
ur afterglow selection has biased us against jet-cocoon cases: if the
ocoon only decelerated after our afterglow data start, it would give
ise to a late-injection or plateau phase in the afterglow (Granot &
umar 2006 ; van Eerten 2014 ), and we have not excluded any

fterglows for obvious signs thereof. If the cocoon decelerated before 
ur afterglow data start, then the tendency to smaller observer angles
ecause of the gamma-ray selection would remain, and we do not see
his. 

The results on the GRB energy are more complex, and we defer
hem to the discussion section. 

.3 Shock physics parameters 

or the shock physics parameters, we have to be a bit careful (see
ection 2.3): in order to a v oid too strong degeneracies for p � 2,
MNRAS 511, 2848–2867 (2022) 
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Figure 1. Corner plot for the inferred physical parameters of the GRBs associated with constant density environments. Blue circles and green squares represent 
the inferred parameter value of long GRBs and short GRBs, respectively. The error bars represent the 68 per cent credible limit. 
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e fit for p and ε̄e , and indeed we do find some cases of p < 2.
he distribution of p , the power-la w inde x of the shock-accelerated
articles, can be seen in Fig. 4 . We find that the p -values are consistent
ith being drawn from the same distribution for long GRBs and short
RBs. We find a mean value of 2.21 and standard deviation σ p =
.36 for the inferred p values. Curran et al. ( 2010 ) have analysed a
arge sample of Swift detected GRBs to determine the distribution of
 . They utilized the reported spectral indices in X-rays to determine
he p -values of their sample, using closure relations. They find that
he distribution of p is consistent with a Gaussian distribution with

= 2.36 and σ = 0.59; given the errors in both methods, we
onsider the two results to be consistent. We find three cases where
NRAS 511, 2848–2867 (2022) 
 is significantly less than 2, and thus where a high-energy cut-
ff to the electron distribution is required to keep the total electron
nergy finite. In more than half the cases (15), p = 2 is included
ithin the 95 per cent confidence region of the fit result, implying

hat indeed using ε̄e is required to a v oid problems in the fitting
rocess. 
While the short GRBs all have εB values on the low side, their

mall number and large error bars prevent us from drawing any
trong conclusions in this respect: the KS test results in p = 0.10 for
he short/long GRB distributions of magnetic-field energy fractions
eing the same, and similarly, we find no evidence for a difference
etween the long GRBs in ISM and wind environments. What is

art/stac246_f1.eps
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Figure 2. Corner plot for the inferred physical parameters of the GRBs associated with wind-like environments. The error bars represent the 68 per cent credible 
limit. 
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uite striking though is that εB ranges o v er 5–6 decades in value, a
uch greater range than εe . 
Since εe is a physically more meaningful measure of the electron 

nergy density, we derive it from the nominal fit values in case p > 2.
he derived εe values can be seen in Table 6 . In Fig. 5 , we present the
e distribution of the GRB sample, only for GRBs with inferred mode 
alue of p > 2. We find that εe is never very low and al w ays above
.1, with some values (uncomfortably?) close to 1. The values for the
ifferent subsamples are in good agreement (mean values are 0.34 
or homogeneous environment and 0.28 for wind). Beniamini & van 
er Horst ( 2017 ) have demonstrated that it is possible to constrain
e by measuring the peak flux and peak time of the radio afterglow
ight curve. By applying this method to a sample of 36 long GRBs,
hey were able to put upper limits on the scatter of εe . They find that
log 10 εe 

< 0 . 31 for constant density environments and σlog 10 εe 
< 0 . 26

or wind-like environments. We find that the standard deviation of 
e for the long GRB sample is σlog 10 εe 

= 0 . 24 for homogeneous
nvironments and σlog 10 εe 

= 0 . 28 for wind-like environments. Note 
hat, although the standard deviations of the inferred εe distributions 
re consistent with Beniamini & van der Horst ( 2017 ), they find
o wer mean v alues of 0.15 and 0.13 for ISM-like and wind-like long
RBs, respectively. 
MNRAS 511, 2848–2867 (2022) 
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Figure 3. Histogram of the inferred θobs / θ0 for the GRB sample. The dotted 
line represents the analytically expected probability density function for 
large opening angles ( θ0 = π /2 rad), whereas the dashed line represents 
the probability density function for small opening angles ( θ0 � π /2 rad). 

Figure 4. Histogram of the inferred p for the GRB sample. 
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 DISCUSSION  

.1 GRB environment and ambient medium 

he inferred CBM densities for ISM-like long and short GRBs
xhibit a wide distribution. The mean value for the circumburst
ensities of ISM-like long and short GRBs are 1.26 and 0.39 cm 

−3 

ith standard log-deviations of σlog 10 n ref = (1 . 32 , 1 . 49), respectively,
.e. the y co v er about three decades in density. Giv en the wide variety
f possible massive-star and merger environments, this is not so
urprising. 

We do not find any pronounced differences between the density
istributions for short GRBs and ISM-like long GRBs. Canonically,
t is expected that short GRB progenitors should be in lower density
nvironments than long GRBs. Fong & Berger ( 2013 ) report that
hort GRBs are localized to lie at greater distances from their host
alaxy centres when compared to long GRBs. They find that, for
hort GRBs, the median value of the offset from their galaxian centre
s 4.5 kpc, and when compared to the size of their host galaxy the
edian value of the offset becomes r / r host = 1.5. Note that there is
 strong bias in our short-GRB sample because we require bright
fter glows, and after glow brightness goes up strongly with ambient
ensity. And indeed, if we check our four short GRBs we find that
NRAS 511, 2848–2867 (2022) 
heir environment is quite atypical for the short-GRB population:
tudies of the host galaxies of our four short GRBs show that they do
ot have a large offset from their host centre. GRB 051221A has been
dentified to lie in a star-forming galaxy with an estimated normalized
ffset of r / r host = 0.29 ± 0.04 (Soderberg et al. 2006 ). GRB 130603B
s associated with a spiral galaxy, and has been localized to a tidally
isrupted arm at a distance of 5.4 ± 0.3 kpc from the centre of
he galaxy (de Ugarte Postigo et al. 2014 ). Troja et al. ( 2016 ) find
hat GRB 140903A lies at a distance of 0.5 ± 0.2 kpc from the
entre of its host. Fong et al. ( 2021 ) estimate a normalized offset
f r / r host = 0.24 ± 0.04 for GRB 200522A (see also O’Connor
t al. 2021 ). This is quite unlike the full population: Fong et al.
 2015 ) have studied the afterglow emission from a sample of 38
hort GRBs and have found that they lie in low-density environments
ith median densities of (3-15) × 10 −3 cm 

−3 . They also state that
0–95 per cent of short GRBs in their sample have densities smaller
han 1 cm 

−3 , which is also true for 3 out of 4 GRBs in our short GRB
ample within the reported uncertainties. O’Connor, Beniamini &
ouv eliotou ( 2020 ) hav e utilized the X-ray light curv es of the Swift
opulation of short GRBs to constrain their circumburst environment
ensities. They assumed fiducial values for the GRB parameters and
ave found that � 16 per cent of the population have densities lower
han 10 −4 cm 

−3 , and that � 30 per cent of the population has densities
arger than 10 −2 cm 

−3 . In other words, our requirement of a well-
etected and well-sampled afterglow does seem to have biased our
hort GRBs to lie in regions similar to those of long GRBs. This
eans they are not very representative of the whole population of

hort GRBs. There may be a silver lining to this cloud, in that when
iscussing their physical parameters in comparison to long GRBs,
e can eliminate strong fit-induced correlations with environmental
arameters as a potential cause for any differences we find. Also,
nder the most likely scenario that short GRBs are all mergers, born
rom a binary long before the merger time, there is no reason to
hink that the physical properties of the merger and GRB explosion
ould depend on the medium they happen to be in at the time of
erger. Hence, we do not think that this environmental bias makes

ur GRB sample biased relative to the whole short-GRB population
n intrinsic parameters. 

It would be good again to caution, now quantitatively, that for
 = 0, the radius of the blast wave scales with observer time as
 ∝ t 1/4 , which means observations do not co v er a wide range of radii.
he afterglow starts at the deceleration radius, r dec , where half the

nitial jet energy has been deposited, and transitions into a spherical
upernov a remnant-like e volution at the non-relati vistic radius r NR .
or typical values, these are just under 10 17 and 10 18 cm, respectively,
oth scaling as ( E / n ) 1/3 . Their ratio is r NR / n dec = 20( 
 0 /100) −2/3 ,
here 
 0 is the initial jet Lorentz factor. Given that we have

ew examples where we get close to either end of these regimes,
e see that indeed the typical uniform-like afterglow co v ers only
 small range of radii. Therefore, approximate uniformity of the
mbient medium is enough, which may apply to many plausible
nvironments. 

For long GRBs in wind-like environments, the distribution of n ref 

as a mean of 14 cm 

−3 , or a mean A value of 0.48 A ∗, with a standard
og-deviation of σlog 10 n ref = 0 . 69, rather narrower than the density
ange of the total sample. This indicates that the free-wind parameters
e find are indeed similar to canonical values expected of massive
olf–Rayet stars, the most likely progenitors. It might argue that the

ikeliest reason for seeing uniform media about equally often is that
he reverse shock in the stellar-wind bubble is close enough that in
any cases the main afterglow phase is in the shocked wind. For the

ree-wind case, r ∝ t 1/2 , so the afterglow samples a markedly larger
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Table 6. Derived parameters for the GRB sample. The presented values correspond to the mode of the obtained posterior distribution. Reported uncertainties 
represent the 68 per cent credible interval. We calculate εe values only for GRBs for which the inferred mode of p is larger than 2. Missing values are represented 
by -. k represents the CBM density profile (see equation 4) and is either 0 for homogeneous or 2 for wind-like environments. 

Burst name log 10 εe log 10 E K ,true (erg) log 10 E γ ,true (erg) log 10 E true (erg) log 10 εγ k 

Short GRBs 051221A – 51 . 33 + 1 . 45 
−1 . 00 48 . 93 + 0 . 28 

−0 . 35 51 . 34 + 1 . 44 
−0 . 99 −3 . 27 + 1 . 78 

−0 . 71 0 

130603B −0 . 44 + 0 . 35 
−0 . 39 51 . 70 + 1 . 31 

−1 . 31 49 . 05 + 0 . 58 
−1 . 03 51 . 70 + 1 . 31 

−1 . 30 −2 . 55 + 1 . 15 
−0 . 84 0 

140903A −0 . 41 + 0 . 29 
−0 . 31 51 . 94 + 0 . 64 

−1 . 20 47 . 19 + 0 . 72 
−0 . 42 51 . 94 + 0 . 64 

−1 . 20 −4 . 79 + 1 . 21 
−0 . 58 0 

200522A – 52 . 35 + 1 . 36 
−0 . 72 49 . 19 + 0 . 71 

−0 . 61 52 . 35 + 1 . 45 
−0 . 63 −3 . 69 + 0 . 93 

−0 . 95 0 

Long GRBs 970508 −0 . 04 + 0 . 04 
−0 . 08 52 . 98 + 0 . 15 

−0 . 18 51 . 55 + 0 . 06 
−0 . 10 52 . 99 + 0 . 14 

−0 . 18 −1 . 43 + 0 . 20 
−0 . 23 2 

980703 −0 . 68 + 0 . 23 
−0 . 29 51 . 57 + 0 . 22 

−0 . 43 51 . 86 + 0 . 50 
−0 . 40 51 . 80 + 0 . 65 

−0 . 13 −0 . 10 + 0 . 04 
−0 . 09 2 

990510 – 50 . 36 + 0 . 12 
−0 . 12 50 . 62 + 0 . 07 

−0 . 10 50 . 81 + 0 . 09 
−0 . 09 −0 . 19 + 0 . 03 

−0 . 04 0 

991208 – 50 . 44 + 0 . 05 
−0 . 04 49 . 16 + 0 . 37 

−0 . 11 50 . 49 + 0 . 04 
−0 . 04 −1 . 32 + 0 . 38 

−0 . 09 0 

991216 −0 . 52 + 0 . 29 
−0 . 16 52 . 02 + 0 . 79 

−0 . 61 52 . 30 + 0 . 78 
−0 . 47 52 . 48 + 0 . 72 

−0 . 54 −0 . 13 + 0 . 07 
−0 . 17 2 

000301C – 50 . 70 + 0 . 21 
−0 . 08 50 . 97 + 0 . 07 

−0 . 05 51 . 16 + 0 . 10 
−0 . 05 −0 . 20 + 0 . 04 

−0 . 05 0 

000418 −0 . 91 + 0 . 43 
−0 . 56 53 . 71 + 0 . 70 

−1 . 27 52 . 17 + 0 . 49 
−0 . 61 53 . 64 + 0 . 77 

−1 . 07 −1 . 60 + 1 . 05 
−0 . 66 2 

000926 −0 . 64 + 0 . 39 
−0 . 22 54 . 08 + 0 . 72 

−0 . 72 52 . 66 + 0 . 59 
−0 . 56 54 . 07 + 0 . 69 

−0 . 72 −1 . 66 + 0 . 40 
−0 . 66 2 

010222 −0 . 05 + 0 . 05 
−0 . 07 52 . 68 + 0 . 26 

−0 . 37 52 . 81 + 0 . 10 
−0 . 43 52 . 93 + 0 . 31 

−0 . 25 −0 . 31 + 0 . 08 
−0 . 09 0 

030329 −0 . 34 + 0 . 07 
−0 . 06 53 . 01 + 0 . 10 

−0 . 18 52 . 22 + 0 . 01 
−0 . 11 53 . 08 + 0 . 08 

−0 . 18 −0 . 88 + 0 . 10 
−0 . 07 0 

050820A −0 . 43 + 0 . 23 
−0 . 08 51 . 93 + 0 . 54 

−0 . 35 52 . 81 + 0 . 48 
−0 . 39 52 . 88 + 0 . 47 

−0 . 39 −0 . 07 + 0 . 02 
−0 . 02 2 

050904 −0 . 67 + 0 . 19 
−0 . 25 51 . 28 + 0 . 14 

−0 . 39 51 . 76 + 0 . 24 
−0 . 09 51 . 85 + 0 . 22 

−0 . 10 −0 . 06 + 0 . 02 
−0 . 05 0 

060418 −0 . 66 + 0 . 10 
−0 . 11 50 . 92 + 0 . 22 

−0 . 17 51 . 16 + 0 . 12 
−0 . 14 51 . 32 + 0 . 21 

−0 . 12 −0 . 20 + 0 . 05 
−0 . 07 0 

090328 −0 . 85 + 0 . 58 
−0 . 18 51 . 58 + 0 . 50 

−0 . 63 51 . 45 + 0 . 42 
−0 . 24 51 . 99 + 0 . 30 

−0 . 47 −0 . 11 + 0 . 10 
−0 . 36 0 

090423 −0 . 52 + 0 . 20 
−0 . 32 53 . 09 + 0 . 70 

−0 . 61 52 . 82 + 0 . 17 
−0 . 47 53 . 19 + 0 . 55 

−0 . 57 −0 . 50 + 0 . 27 
−0 . 43 0 

090902B −0 . 83 + 0 . 34 
−0 . 11 52 . 71 + 0 . 40 

−0 . 38 54 . 36 + 0 . 28 
−0 . 55 54 . 38 + 0 . 24 

−0 . 57 −0 . 01 + 0 . 01 
−0 . 02 2 

090926A −0 . 25 + 0 . 25 
−0 . 73 51 . 09 + 1 . 25 

−0 . 27 52 . 38 + 0 . 16 
−0 . 20 52 . 41 + 0 . 37 

−0 . 19 −0 . 05 + 0 . 04 
−0 . 19 0 

120521C −0 . 47 + 0 . 12 
−0 . 14 50 . 91 + 0 . 21 

−0 . 23 50 . 79 + 0 . 21 
−0 . 24 51 . 16 + 0 . 21 

−0 . 20 −0 . 32 + 0 . 09 
−0 . 12 0 

130427A −0 . 12 + 0 . 11 
−0 . 32 51 . 91 + 0 . 65 

−0 . 34 53 . 14 + 0 . 49 
−0 . 29 53 . 17 + 0 . 49 

−0 . 30 −0 . 03 + 0 . 02 
−0 . 04 2 

130702A – 51 . 08 + 1 . 03 
−0 . 84 49 . 08 + 0 . 23 

−0 . 12 51 . 07 + 1 . 03 
−0 . 79 −2 . 25 + 0 . 99 

−0 . 86 0 

130907A – 50 . 23 + 0 . 04 
−0 . 06 51 . 45 + 0 . 34 

−0 . 11 51 . 47 + 0 . 33 
−0 . 10 −0 . 01 + 0 . 00 

−0 . 01 0 

140304A −0 . 73 + 0 . 12 
−0 . 12 51 . 63 + 0 . 23 

−0 . 19 50 . 19 + 0 . 46 
−0 . 13 51 . 65 + 0 . 23 

−0 . 17 −1 . 39 + 0 . 38 
−0 . 28 2 

Notes . The mode of the distribution of E true is smaller than the mode of the E γ ,true for GRB 980703, and it is smaller than E K,true for GRBs 000418, 000926, and 
130702A. This is not due to an error in the analysis, but rather a combined effect due to addition in linear space whilst the distribution is in logarithmic space, 
and uncertainty in the Gaussian kernel estimator when determining the mode. In any case, the differences are well within the reported uncertainties and do not 
affect any results. 
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ange of radii. For canonical values ( Ṁ = 10 −5 M �/yr, E = 10 52 erg,
 0 = 100), we find r dec = 1.5 × 10 11 cm and r NR = 1.5 × 10 15 cm,
nd since they again scale the same with most parameters, r NR / r dec =
0 4 ( 
 0 /100) 2 , a large range indeed even if we see only part of it
ampled in the data. Note that for a canonical wind velocity of
000 km s −1 , the afterglow phase starts in the wind material that was
mitted less than one hour before the star explodes , and even in weak
inds typically still less than one day. It ends in wind material that
as emitted a fraction of a year to a few years before the explosion.
RB afterglows thus do not probe typical mean-life stellar wind 
arameters, and indicate that even very close to the end of the star’s
ife the wind is similar to that during an average moment in its
ife. We note that some, especially single-star, GRB scenarios prefer 
ow mass-loss rates of the progenitors, and it is known that in low-
etallicity environments massive stars do indeed have lower mass- 

oss rates (Vink, de Koter & Lamers 2001 ; Vink & de Koter 2005 );
ince we find that A / A ∗ = 0.48 on average, our fits do not provide
vidence for this. This may agree will with more recent findings that
RBs actually do not prefer low-metallicity environments, other 

han that they are suppressed in regions with metallicity above solar
Fynbo et al. 2009 ; Perley et al. 2016 ; and references therein).
his in turn may fa v our binary ev olution scenarios for the origin
f long GRBs (Perley et al. 2016 ; Chrimes, Stanway & Eldridge
020 ). 
These ambient-medium considerations ask for better investigation 

f scenarios in which the blast wave emerges from the free wind early,
ince in light of the abo v e this appears difficult, and yet we find half
r more of the afterglow fits prefer a uniform-medium solution. 

.2 Energy and opening angle 

he observed flux of GRB afterglow emission does not directly 
epend on the true energy of the b urst, b ut rather depends directly on
he energy per unit solid angle, or the isotropic equi v alent energy, E iso .
herefore, to measure the true energetics of these events by afterglow
odelling, we need to constrain both the isotropic equi v alent energy

nd the opening angle. The true energy can then be calculated 
sing 

 true = E iso (1 − cos θ0 ) . (9) 

his equation is valid for both the total energy and for the gamma-ray
nd afterglow kinetic energies separately, provided that the opening 
MNRAS 511, 2848–2867 (2022) 
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Figure 5. Histogram of the inferred εe for the GRB sample. 

Figure 6. Scatter plot of ( E K ,iso , E K ,true ) and ( E total ,iso , E total ,true ) w.r.t. the 
inferred opening angles for the GRB sample. The blue circles and red 
diamonds represent long GRBs in homogeneous and wind-like environments, 
respectively. Error bars represent the 68 per cent credible interval. 
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Figure 7. Histogram of the inferred energetics for the GRB sample. The 
upper and lower panels show the histograms for the E K ,true and E true 

distributions, respectively. 
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f both is the same; we have argued abo v e (Section 3.2) that this is
ndeed the case. 

In A20, we suggested the existence of a common kinetic energy
eservoir for long GRBs, based on a very small sample of only
v e GRBs. F or the larger sample in this work, where we have also
llowed both wind and ISM ambient media, this no longer holds:
n Fig. 6 , we present scatter plots of the isotropic-equi v alent and
eaming corrected kinetic/total energies with respect to the opening
ngles of our GRB sample. We perform a KS test on the mode of the
osterior distribution for each GRB to determine whether or not the
 K ,true values for homogeneous and wind-like GRBs are drawn from

he same distribution. We find that we can reject the null hypothesis
ith a p-value of 6.5 × 10 −3 , which according to our strict criteria is
ot significant enough. The histograms of the true kinetic and total
nergies of the three sub-samples are shown in Fig. 7 . While these
gain have the disadvantage of making use only of the mode of the
osterior distribution rather than all the information in the posterior
NRAS 511, 2848–2867 (2022) 
istribution, they do illustrate some difference between the wind-
nd ISM-like long GRBs. 

The E K ,true distributions for long and short GRBs are consistent
ith each other. This suggests that the kinetic energy of the explosion

s not significantly different between short and long GRBs. Ho we ver,
he measured prompt emission energies are orders of magnitudes
ower for short GRBs, which implies that it is the prompt emis-
ion efficiency of short GRBs that is lower. The prompt emission
fficiency can be defined as 

γ ≡ E γ, true 

E γ, true + E K, true 
. (10) 

We present the rele v ant deri ved parameters of the GRB sample in
able 6 . In Fig. 8 , it can be seen that short GRBs are systematically

ess efficient than long GRBs. The average value of the inferred
γ parameters for short and long GRBs are 2.7 × 10 −4 and 0.26,
espectively. Beniamini et al. ( 2015 ) have analysed the observed
ux from 10 long GRBs in X-rays and GeV energies to estimate

he energetics of these GRBs. They find that there is a discrepancy
etween the estimated energies using both bands, where the energy
stimated from the GeV flux is significantly larger. They state
hat this discrepancy can be explained within the forward shock
ramework by either assuming that the cooling break lies between
hese two bands or by taking into account Compton cooling effects.
s a result they find that the average prompt efficiency value
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Figure 8. Scatter plot of the reported t 90 and derived εγ parameters for the 
short and long GRB samples. The magenta circles and green squares represent 
long and short GRBs, respectively. Error bars represent the 68 per cent 
credible interval. 
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ecomes 0.87 for the X-ray estimated energies, and 0.14 for GeV 

stimated energies. They note that the GeV estimated energetics 
hould be more reliable, and these are consistent with our results.
e perform a KS test to determine if the εγ distribution for long

nd short GRBs originate from a common distribution. We find 
hat the null hypothesis can be significantly rejected, with p = 

.3 × 10 −4 , so short GRBs are indeed less efficient gamma-ray 
mitters. Ho we ver, this analysis does not account for the uncertainties
n the εγ parameter, and relies only on the mode of the posterior
istribution. 
It is not so clear what might cause this difference in efficiency, and

ur study does not speak much to this because we examine only the
hysics of the afterglow. We do note that in the afterglow, the short
RB blast waves have a lower (synchrotron) emission efficiency, 
ecause this scales as εe εB , which is lower on average for short GRBs
which have about the same εe and lower εB for a given true energy –
ee below). Whether we should expect that same difference to exist 
or the internal shocks that cause the prompt emission (or whether 
hose are even dominated by synchrotron emission) is unclear, 
o we ver. In Gottlieb, Le vinson & Nakar ( 2019 ), the authors find that
he main factor determining the radiative efficiency is the amount 
f baryon loading. Since our findings indicate that short GRBs are 
ess efficient, this could also mean that baryon loading in short GRB
ets is more prominent. Gottlieb et al. ( 2021a , see also Gottlieb,
evinson & Nakar 2020 ; Gottlieb, Nakar & Bromberg 2021b ) have
erformed relativistic magnetohydrodynamic (RMHD) simulations 
o investigate how the prompt emission features (variability, spectrum 

nd ef ficiency) v ary for hydrodynamic and magnetized jets for both
ntermittent and continuous central engine activity scenarios. They 
ave found that magnetized + intermittent jets are the most likely 
andidate for GRBs, as they yield high prompt efficiencies and are 
onsistent with observed spectral and temporal features. They also 
ote that, for hydrodynamic + intermittent jets, the efficiency drops 
elow 1 per cent. As the degree of magnetization increases the mixing 
rocesses become less efficient and lead to higher εγ values. 
In Tables 5 and 6 , it can be seen that, in some cases, the derived
alues for the microphysical parameters are difficult to reconcile 
ith our theoretical understanding (i.e. εB + εe ∼ 1). Ho we ver, as
entioned previously, due to the ξN de generac y these values can

e scaled down to more reasonable values by assuming a smaller
alue for ξN . This is supported by particle-in-cell simulations which 
ndicate that ξN can be as small as 0.01 (Sironi & Spitko vsk y 2011 ).

e find that the derived values for the prompt efficiencies, εγ , is
pproaching unity in some cases, which can be resolved by once
gain assuming a lo wer v alue for ξN to scale down the values for
he prompt efficienc y. Moreo v er, ev en if we lower the ξN value,
ssuming that the εe value is the same for both the prompt and
fterglow phases, some of the modelling results suggest εγ > εe . 
uch high efficiencies are consistent with the proposed scenario by 
obayashi & Sari ( 2001 ). 
Wang et al. ( 2018 ) have analysed the optical and X-ray light curves

f a large sample of GRBs to determine any achromatic jet-breaks
resent in the data sets. They infer the energetics and the opening
ngle of the GRB sample by assuming fiducial values for the other
RB parameters and by making use of analytical prescriptions. They 
nd that the energetics are distributed as log 10 E K ,iso = 54.82 ± 0.56
nd log 10 E K ,true = 51.33 ± 0.58 for the long GRB population. In
ur analysis, we find log 10 E K ,iso = 53.38 ± 0.72 and log 10 E K ,true =
1.81 ± 1.08 for the long GRB population. We find that the energetics
xhibit a wider spread across the long GRB population. We also find
o wer v alues for the mean of the E K ,iso distribution. Since Wang et al.
 2018 ) only consider GRBs with an observed achromatic jet-break,
heir selection effects are different than our sample. 

In order to test whether or not the inferred energetics for the GRBs
re feasible, we make use of the total beaming corrected energies,
 true ≡ E K ,true + E γ ,true . Assuming that the jet is powered by the

otational energy of a Kerr black hole (e.g. Blandford & Znajek
977 ), it is possible to estimate the total jet energy from the mass
 BH and rotation parameter a of the black hole as 

 true = εjet E rot = εjet f ( a) M BH c 
2 , (11) 

here E rot is the rotational energy of the central black hole. Taking
ot too aggressive values a = 0.9 and εjet = 0.1 (e.g. Lee, Wijers &
rown 2000 ; McKinney 2005 ), we get E true � 0.015 M BH c 2 . The

hort and long GRBs with the highest inferred beaming corrected 
nergies are GRBs 200522A and 090902B, respectively, with best- 
tting values of 2.2 × 10 52 and 2.4 × 10 54 erg. Using equation (11),

he implied mass of the central black hole can be inferred as
 0.19 and > 23.73 M � for GRBs 200522A and 090902B, neither

f which presents a significant difficulty for the fa v ourite source
odels. 

.3 εB –E K ,true , θ0 –εB anticorrelations 

e find that θ0 and E K ,true are strongly correlated with each other for
oth wind-like and ISM-like long GRBs; this does not, ho we v er, hav e
ny new meaning. It is simply the result of the fact that E true is derived
rom E iso via the opening angle, and that the distribution of E iso is
airly narrow, whereas that of θ0 is wider. Hence, this correlation is
argely due to the fact that we are correlating θ0 with itself. 

We do ho we ver find a strong and significant anticorrelation
etween εB and E K ,true for the sample of long GRBs. In Fig. 9 , we
emonstrate this anticorrelation. We find that the fraction of energy 
ost to amplifying magnetic fields systematically decreases as the 
easured beaming corrected kinetic energy gets larger. When we 

erform a Pearson r correlation test we find a p -value of 10 −5 ,
trongly rejecting the null hypothesis that they are uncorrelated. 
MNRAS 511, 2848–2867 (2022) 
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Figure 9. Scatter plot of εB and E K ,true parameters for the GRB sample. The 
blue circles, red diamonds, and green squares represent ISM-like long GRBs, 
wind-like long GRBs and short GRBs, respectively. Error bars represent the 
68 per cent credible interval. 
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lternatively, we can of course regard this correlation as due to an
B −θ0 relation. We also checked for a possible correlation between
B and E K ,iso ; it is not significant. This may be somewhat surprising,
ince we think of the energy fractions in electrons and magnetic field
o be set very locally at the shock, and thus correlate better with
 K ,iso , which scales with the local energy per unit area at the shock. 
Since the number of GRBs in either sample is small, we use a

ackknife resampling test to check the robustness of these correla-
ions due to outliers. The results can be seen in Table 7 , and show that
he significant correlations are robust. Ho we v er, the y also rev eal are
ather strong difference between the two subclasses: the correlations
re not significant in the wind-like GRBs and very strongly significant
n the ISM-likes. The significance of the result for the total population
s therefore entirely due to that of the ISM-like GRBs. This is
uzzling, since it unclear how the correlation between these two
last wave parameters would come to depend on the shape of the
mbient density distribution. 
Table 7. Correlation significance results for the Jackknife re-
the whole long GRB sample, the middle panel takes into accoun
bottom panel is for the long GRBs in wind-like environments. 

Anti-/correlation 
Mini

Long GRBs εB - E K ,true 1.22 ×
θ0 - εB 6.85 ×
εB - E K ,iso 0.0

ISM-like εB - E K ,true 4.74 ×
θ0 - εB 1.71 ×
εB - E K ,iso 0.

Wind-like εB - E K ,true 0.0
θ0 - εB 0.
εB - E K ,iso 9.03 ×
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.4 Caveats 

irst of all, it is not straightforward to infer population distributions
rom uncertain measurements. When creating histograms we only
onsidered the point estimate (i.e. mode of the posterior distribution)
f the inferred parameter values. This approach does not take into
ccount the full information contained in the obtained parameter dis-
ributions. It would be valuable to combine the posterior distributions
rom individual modelling efforts to estimate how the parameters
re distributed across the GRB population in a statistically correct
anner (e.g. Mandel 2010 ; Hogg, Myers & Bovy 2010 ); ho we ver,

his is out of the scope of this work. 
Secondly, it is not possible to compile an unbiased sample of

ell-sampled afterglows, because a variety of instrumental biases
nd observer choices enter into the determination of which GRBs
o follow up e xtensiv ely and for which such follow-up is successful.
herefore, the inferred GRB population will likely not co v er all of the
hysical parameter space. We have commented above on whether we
stimate this has a significant influence on our conclusions. While
e accounted for the small sample size of especially short GRBs
hen stating significances, it is still good to bear in mind that our

hort GRBs are especially unrepresentative of the total population of
hort GRBs (though, as we noted, there is no clear expectation that
his this would bias the intrinsic properties of this subset of short
RBs, for which we draw the most marked conclusions). 

 C O N C L U S I O N  

e have studied a sample of 26 GRB afterglows (as well as the total
rompt gamma-ray energy emitted), which was biased to enabling
etailed afterglow physics studies, i.e. towards having well-sampled
adio, optical, and X-ray light curves. While this largely excludes the
ost obscured GRBs (due to optical extinction) and GRBs in low-

ensity regions (i.e. most short GRBs), we argue that there are quite
 few conclusions about GRB physics that are not strongly affected
y those biases: 

(i) All physical parameters have intrinsic distributions of signifi-
ant width, i.e. none have a ‘standard’ value that is almost the same
or all GRBs, or even within a subsample (short, long-ISM, or long-
ind; Section 3). 
(ii) Short GRBs prefer uniform ambient densities, in agreement

ith theoretical expectations and previous studies (Section 3.1). 
(iii) Long GRBs have about equal likelihood of wind-like and

niform ambient media. A massive star progenitor is expected to
sampling. The upper panel shows p -value estimates for 
t only the long GRBs in ISM-like environments, and the 

p -value 
mum Maximum Average 

10 −7 2.28 × 10 −4 4.65 × 10 −5 

10 −4 0.010 4.18 × 10 −3 

11 0.48 0.12 

10 −6 1.28 × 10 −4 3.66 × 10 −5 

10 −4 6.12 × 10 −3 1.60 × 10 −3 

10 0.99 0.82 

11 0.68 0.21 
55 0.99 0.87 

10 −3 0.37 0.12 
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mpact the environment of the burst, suggesting a wind-like medium 

o be more likely. We note that even a massive star wind environment
an be close to homogeneous at scales probed by the afterglow 

bservations, but that this is not the most natural outcome for typical
arameters (Section 4.1). 
(iv) The wind strengths for the wind-like long GRBs fa v our 

anonical mass-loss parameters of massive Wolf–Rayet stars, the 
ost likely progenitors, and specifically do not indicate a bias 

o wards lo w mass-loss rates, as required by some GRB models
Section 4.1). 

(v) We do not find evidence for different jet opening angles 
etween long and short GRBs (Section 3.2). 

(vi) The observer viewing angles are consistent with top-hat jets, 
nd with the opening angles of the prompt gamma-ray emission and 
arly afterglow emission being the same. 

(vii) We find a distribution of slopes of the energy distribution of
ccelerated electrons, p , that is consistent with previous studies; it
ontains only a few examples where p < 2 significantly, but many
here it is close enough to 2 to warrant caution in fitting p and εe 

Section 3.3). 
(viii) The values of εe are all in the range of 0.1 – 1, with no

ignificant differences between short/long or wind/uniform samples 
Section 3.3). 

(ix) The true total energies of long and short GRBs are similar,
mplying that the relative faintness of short GRBs in gamma-rays is
ue to their lower gamma-ray emission efficiency (Section 4.2). 
(x) Some required gamma-ray efficiencies of GRBs are close to 

, which is a challenging value for current prompt emission theories 
Section 4.2). 

(xi) There is a strong and significant correlation for ISM-like long 
RBs between the magnetic field energy at the shock and the true

otal kinetic energy of the blast wave. It is surprising that this same
orrelation does not exist for the wind-like GRBs (Section 4.3). 
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igure S1. Modelling results for GRB 970508 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S2. Modelling results for GRB 970508 assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S3. Modelling results for GRB 980703 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S4. Modelling results for GRB 980703 assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S5. Modelling results for GRB 990510 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S6. Modelling results for GRB 990510 assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S7. Modelling results for GRB 991208 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
NRAS 511, 2848–2867 (2022) 
igure S8. Modelling results for GRB 991208 assuming wind-
ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S9. Modelling results for GRB 991216 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S10. Modelling results for GRB 991216 assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S11. Modelling results for GRB 000301C assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S12. Modelling results for GRB 000301C assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S13. Modelling results for GRB 000418 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S14. Modelling results for GRB 000418 assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S15. Modelling results for GRB 000926 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S16. Modelling results for GRB 000926 assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S17. Modelling results for GRB 010222 assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S18. Modelling results for GRB 010222 assuming wind-

ike circumburst density profile. The plot on the left represents the
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osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S19. Modelling results for GRB 030329 assuming homoge- 
eous circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S20. Modelling results for GRB 030329 assuming wind- 

ike circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S21. Modelling results for GRB 050820A assuming homoge- 
eous circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S22. Modelling results for GRB 050820A assuming wind- 

ike circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S23. Modelling results for GRB 050904 assuming homoge- 
eous circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S24. Modelling results for GRB 050904 assuming wind- 

ike circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S25. Modelling results for GRB 051221A assuming homoge- 
eous circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S26. Modelling results for GRB 051221A assuming wind- 

ike circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S27. Modelling results for GRB 060418 assuming homoge- 
eous circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S28. Modelling results for GRB 060418 assuming wind- 

ike circumburst density profile. The plot on the left represents the 
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S29. Modelling results for GRB 090328 assuming homoge- 
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S30. Modelling results for GRB 090328 assuming wind- 

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S31. Modelling results for GRB 090423 assuming homoge- 
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S32. Modelling results for GRB 090423 assuming wind- 

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S33. Modelling results for GRB 090902B assuming homoge- 
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S34. Modelling results for GRB 090902B assuming wind- 

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S35. Modelling results for GRB 090926A assuming homoge- 
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S36. Modelling results for GRB 090926A assuming wind- 

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S37. Modelling results for GRB 120521C assuming homoge- 
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
igure S38. Modelling results for GRB 120521C assuming wind- 

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from 

he Bayesian inference. 
MNRAS 511, 2848–2867 (2022) 
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igure S39. Modelling results for GRB 130427A assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S40. Modelling results for GRB 130427A assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S41. Modelling results for GRB 130603B assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S42. Modelling results for GRB 130603B assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S43. Modelling results for GRB 130702A assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S44. Modelling results for GRB 130702A assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S45. Modelling results for GRB 130907A assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S46. Modelling results for GRB 130907A assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
NRAS 511, 2848–2867 (2022) 
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S47. Modelling results for GRB 140304A assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S48. Modelling results for GRB 140304A assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S49. Modelling results for GRB 140903A assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S50. Modelling results for GRB 140903A assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S51. Modelling results for GRB 200522A assuming homoge-
eous circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
igure S52. Modelling results for GRB 200522A assuming wind-

ike circumburst density profile. The plot on the left represents the
osterior predictive light curves for 100 randomly sampled parameter
ets from the posterior parameter distribution. The plot on the right
epresents the corner plot for the obtained posterior distribution from
he Bayesian inference. 
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Figure A1. Violin plots representing the obtained posterior distributions of the free physical parameters for the long GRB sample associated with a constant 
density environment. The shaded areas represent the density of the posterior samples and circles represent the mean value. Error bars represent the 68 per cent 
credible interval. 
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Figure A2. Violin plots representing the obtained posterior distributions of the free physical parameters for the long GRB sample associated with a wind-like 
environment. The shaded areas represent the density of the posterior samples and diamonds represent the mean value. Error bars represent the 68 per cent 
credible interval. 
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Figure A3. Violin plots representing the obtained posterior distributions of 
the free physical parameters for the short GRB sample. The shaded areas 
represent the density of the posterior samples and squares represent the mean 
value. Error bars represent the 68 per cent credible interval. 
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