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ABSTRACT

Gamma-ray bursts (GRBs) are ultra-relativistic collimated outflows, which emit synchrotron radiation throughout the entire
electromagnetic spectrum when they interact with their environment. This afterglow emission enables us to probe the dynamics
of relativistic blast waves, the microphysics of shock acceleration, and environments of GRBs. We perform Bayesian inference on
a sample of GRB afterglow data sets consisting of 22 long GRBs and 4 short GRBs, using the afterglow model scalefit, which
is based on 2D relativistic hydrodynamic simulations. We make use of Gaussian processes to account for systematic deviations
in the data sets, which allows us to obtain robust estimates for the model parameters. We present the inferred parameters for the
sample of GRBs and make comparisons between short and long GRBs in constant-density and stellar-wind-like environments.
We find that in almost all respects such as energy and opening angle, short, and long GRBs are statistically the same. Short
GRBs however have a markedly lower prompt gamma-ray emission efficiency than long GRBs. We also find that for long GRBs
in ISM (interstellar medium)-like ambient media there is a significant anticorrelation between the fraction of thermal energy in
the magnetic fields, €, and the beaming corrected kinetic energy. Furthermore, we find no evidence that the mass-loss rates of

the progenitor stars are lower than those of typical Wolf—Rayet stars.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are the most powerful explosions in the
Universe. They are ultra-relativistic collimated outflows, which are
powered by a compact central object. GRBs are initially observed as
brief flashes of gamma-rays lasting about 0.1-1000 s. These initial
brief flashes of high-energy radiation are called the prompt emission
of the GRB. The exact emission mechanism of the prompt emission
remains elusive, despite decades of dedicated research. GRBs are
phenomenologically categorized as short and long GRBs depending
on the observed duration of the prompt emission phase (Kouveliotou
et al. 1993). Short GRBs have been associated with compact object
mergers where at least one of the objects is a neutron star (Lattimer &
Schramm 1976; Eichler et al. 1989), whereas long GRBs are thought
to be results of core-collapse supernovae of massive stars (Woosley
1993).

As the ejected ultra-relativistic outflow from a GRB starts to
interact with the circumburst medium (CBM), a pair of shocks
are generated, one of which propagates into the ejecta (reverse
shock) and the other propagates into the CBM (forward shock).
In these shocks, tangled magnetic fields are amplified and charged
particles are accelerated, which results in long-lasting synchrotron
emission spanning the whole electromagnetic spectrum (Rees &
Mészaros 1992). This broad-band synchrotron emission is observable
for several months, even years in some cases, and is called the
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afterglow emission of the GRB. The afterglow emission provides
crucial insights on the energetics and environments of GRBs, the
dynamics of relativistic blast waves, and the microphysics of particle
acceleration in shocks (Wijers, Rees & Mészaros 1997; Sari, Piran &
Narayan 1998; Wijers & Galama 1999; Panaitescu & Kumar 2002;
Yost et al. 2003).

Thanks to missions like the Neil Gehrels Swift Observatory
(Gehrels et al. 2004) and Fermi Gamma-ray Space Telescope
(Atwood et al. 2009), the number of detected/localized GRBs has
increased and allowed for rapid, ground/space based, broad-band
follow-up observations of the afterglow emission. Moreover, the start
of the multimessenger era has supplemented our understanding of
the physics of GRBs (Abbott et al. 2017; MAGIC Collaboration et al.
2019). Besides advances in observational instruments, developments
in numerical hydrodynamics and radiative transfer have enabled us
to build models with increasing complexity and accuracy (e.g. De
Colle et al. 2012; van Eerten, van der Horst & MacFadyen 2012; van
Eerten & MacFadyen 2013; Ryan et al. 2015; Duffell & Laskar 2018;
Wu & MacFadyen 2018; Jacovich, Beniamini & van der Horst 2021).
Moreover, advances in statistical methods allow us to perform robust
Bayesian inference and obtain reliable parameter estimates (Aksulu
et al. 2020). Due to all these developments, we can now model a
sample of GRB afterglow data sets, consistently, and investigate the
distribution of physical parameters in the GRB population.

Previously, Panaitescu & Kumar (2002) and Yost et al. (2003)
have performed broad-band afterglow modelling, and inferred burst
parameters for a sample of long GRBs. Furthermore, Fong et al.
(2015) have gathered data for a large number of short GRBs, and
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inferred their burst parameters based on their afterglow emission.
These studies utilized semi-analytic models to reproduce the ob-
served broad-band emission; in this study, we make use of a model
based on 2D relativistic hydrodynamic (RHD) simulations. This
allows us to capture the dynamics of these energetic events in a
more realistic fashion.

In Aksulu et al. (2020) (A20, from now on), we introduced a
new method for Bayesian parameter estimation, where we make
use of Gaussian processes (GPs) in order to take into account some
systematic effects in the data set and physics not included in the
model. We showed in A20 that this approach allows us to obtain more
robust parameter estimates, whereas the more conventional method
of sampling the x? likelihood leads to underestimated uncertainties
on the parameters, especially in the presence of systematics. We
make use of a modified version of the GP model described in A20, in
order to model a sample of 26 GRB afterglow data sets. In Section 2,
we describe the GRB sample, model, inference approach, and details
of the regression process. In Section 3, we present our results and
the inferred physical parameters of the sample. Finally, we discuss
our findings in Section 4 and conclude in Section 5. Throughout this
work, we assume the cosmology as described in Planck Collaboration
XIII et al. (2016).

2 METHOD

2.1 Sample

Our GRB afterglow sample consists of 26 GRBs with well-sampled,
broad-band data sets. We relied only on peer-reviewed, published
data sets, and converted the reported measurements to mJy units.
The main selection criterion for the sample of GRBs has been the
availability of broadband afterglow data. Twenty-two out of the
26 GRBs are long GRBs detected between 1997 and 2014, with
published broad-band data sets; the time period is set to get a large
enough sample. For short GRBs, we found only four with detections
inradio, optical and X-ray bands up to the present. We omitted GRBs
with non-canonical features in their light curves and include the five
GRBs modelled in A20. When possible, we neglect epochs and/or
bands for which there is evidence that the emission is dominated
by processes that are not included in our model (e.g. early time
optical and radio emission from GRB 130427A, which is dominated
by reverse shock emission). This does not, of course, in any way
represent a well-defined complete sample. We drew the boundary for
having enough data somewhat subjectively, and similarly selected
data sections in the early light curves suspected of unmodelled
physics by eye.

We corrected the observed flux values for Galactic dust extinction
using the extinction curve given by Pei (1992). We subtract any
persistent emission originating from the host galaxy when possible.
We do not correct the data for the dust extinction due to the host
galaxy; instead we leave the rest-frame Ay value for the host galaxy
as a free parameter (see Section 2.3). We present the GRB sample in
Table 1.

2.2 Gaussian process framework

GPs are stochastic processes that can be used for regression and
classification problems for which the underlying physical model is
unknown (e.g. Rasmussen & Williams 2006). Following A20 (also
see Gibson et al. 2012), we make use of GPs to take into account any
systematic deviations from the afterglow model. In this section, we
highlight some improvements on the GP model introduced in A20.

Exploring the GRB population ~ 2849

Table 1. The GRB sample for this study. The measured redshift (z) and
isotropic equivalent prompt energetics (Ey, iso) are presented.

Burst name z Ey, is0/10°% (erg)
Short GRBs 051221A 0.5465 0.15
130603B 0.3564 0.21
140903A 0.351 0.006 + 0.0003
200522A 0.5536 0.0084 + 0.0011
Long GRBs 970508 0.835 0.61 £ 0.13
980703 0.966 6.9 + 0.8
990510 1.619 17.8 + 2.6
991208 0.706 22.3 +£ 0.8
991216 1.02 67.5 + 8.1
000301C 2.04 4.6
000418 1.118 9.1 £ 1.7
000926 2.066 27. £ 5.8
010222 1.477 81. £ 1.
030329 0.1685 1.66 = 0.2
050820A 2.615 97.5 £ 7.7
050904 6.29 124. £ 7.7
060418 1.49 128 £ 1
090328 0.7357 13. £ 3
090423 8.26 9.5 + 2
090902B 1.8229 440 + 30
090926A 2.1062 200 + 5
120521C 6.0 825 £ 2
130427A 0.3399 81
130702A 0.145 0.064 + 0.01
130907A 1.238 330. £ 10.
140304A 5.283 1224 + 1.4

For clarity we use the same notation as in A20. Vectors and matrices
are represented by bold symbols.
The systematics are described by the GP model as

Jf @, v) ~GP(u@, v, ¢), L(1,v,0)), (€]

where 7 and v are the time and frequency coordinates in the observer
frame, ¢ represents the afterglow model parameters, and 6 represents
the hyperparameters of the GP. Since the observer time and frequency
change over many orders of magnitude, we work with the logarithm
of these coordinates when performing GP regression. The mean
function of the GP, ., is the afterglow model, and X is the covariance
matrix that describes how the systematics are correlated over 7 and v.
We adopt a 2D heterogeneous squared-exponential kernel function
(e.g. see Rasmussen & Williams 2006) to calculate the covariance
matrix,
12

% = k(X;, X;) = Aexp [—2 >

k=1

Xix — Xj)°

7 + 807, 2)
k

where X represents the 2D feature set (i.e. observer time and band).
The hyperparameters of the GP are defined as

0= (A1, L, o), (3)

where A represents the amplitude of the correlations, /; and /, deter-
mine the length-scales of the correlations over time and frequency,
respectively, and o, represents the amount of white noise in the
data set. In A20, the systematics in the data set were assumed to
be uncorrelated across different observational bands. Therefore, the
hyperparameter /, was fixed to be a small number. In this work, we
make /, a free parameter, thereby allowing the GP model to capture
systematics correlated over different observational bands. We refer
the reader to A20 for a more detailed explanation of the GP model.
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2.3 Model

We assume a collimated, ultra-relativistic blast wave moving into
a circumburst medium, which need not be uniform; we assume a
density profile of the form

T ) )

107 cm

The normalization is chosen at a radius that often falls within the
range sampled by real afterglows. We will not treat k as a fully free
parameter, but only allow the ‘classic’ values of 2 and 0. For k = 2,
the interpretation of the environment is pretty unambiguous: the blast
wave is in the unshocked, freely expanding part of a massive stellar
wind. In that case a more common nomenclature of the parameters
is

n = Nref (

A
Io(r) = BN (5)
r
where r is the distance from the star and A can be expressed as
M
A= : (6)
47vaind

Here, M is the mass-loss rate of the progenitor star and Vyjng 1S
the wind velocity. For a canonical Wolf-Rayet star with a mass-
loss rate of 107> Mg yr~! and wind velocity of 1000kms~!, A ~
5 x 10" gcm™!, which value is denoted by A,. We can simply scale
the inferred n,.¢ values to units of A, using
A Nyef

A, 30cm™3’ ™
For k = 0, the interpretation of the environment is much more
ambiguous. In this case, the actually observed afterglow typically
covers well under a factor of 10 in radius travelled by the blast wave,
so any environment in which the density does not change much over
a factor few in distance (and within the solid angle hit by the outflow)
will do. This could definitely be canonical interstellar medium (ISM),
but for A, not too different from 1, a wind bubble around a massive
star will contain many solar masses of material and thus the GRB
jet will never emerge from it during the normal afterglow phase (the
blast wave typically needs to sweep up less than (beamed equivalent
of a spherical amount of) 0.1 Mg of ambient matter to become non-
relativistic). However, the bulk of the wind bubble will contain wind
that has been shocked against the ISM, and that is uniform enough
to fit the kK = 0 case. Another possibility might be that the star has
a significant proper motion through a somewhat dense ISM. In that
case most of the wind bubble is swept back, and in the forward
hemisphere the blast wave may emerge from the wind into the ISM
in time.

The initial Lorentz factor of the blast wave is assumed to be
uniform within the opening angle of the jet, i.e. a top hat jet model.
We assume that charged particles are accelerated in the forward
shock and emit synchrotron emission (Sari et al. 1998; Wijers &
Galama 1999; Granot & Sari 2002). In this work, we do not take into
account emission originating from the reverse shock and thus confine
ourselves to fitting the later parts of the afterglow when the reverse
shock has passed through the ejecta and the deceleration phase is
over; in this limit, the value of the initial Lorentz factor of the jet
is no longer important and need not (indeed, cannot) be fit. For the
‘microphysical’ parameters, which describe the spectrum and energy
content of the electrons behind the blast wave and the magnetic field
in which they move, we use the customary notation: p is the power-
law index of the energy distribution of the relativistic electrons, and €,
and ep are the fractions of post-shock energy density in relativistic
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electrons and magnetic field, respectively. Only a fraction of all
electrons, &y, may be accelerated. When p =~ 2, the total energy in
electrons and the value of p become very correlated in the fit, because

.. . . _ —2
the blast-wave emission depends on the combination &, = Zfee.

Therefore, we fit for that quantity and disentangle p and €, 1;:1ter
where possible. Similarly, the fraction of accelerated electrons, &y,
is degenerate with respect to (Ex iso, Mref, €5, €c), Where (Ex iso, Mref)
are proportional to 1/€ y, and (e, €,) are proportional to & y (Eichler &
Waxman 2005). Because of this degeneracy, we cannot determine & y
independently from afterglow light curves and fix it to the canonical
value of 1 (for ease of comparison with previous studies).

We make use of the numerical model scalefit (Ryan et al.
in preparation; Aksulu et al. 2020; Ryan et al. 2015). scalefit
uses pre-calculated tables of spectral features (spectral breaks, peak
spectral flux) for a range of different time epochs, opening angles,
and observing angles. These tables are generated separately for
ISM and wind-like circumburst density profiles using boxfit
(van Eerten et al. 2012). boxfit is a numerical code which
is able to output flux values for given observer time, frequency,
and GRB parameters. The main advantage of boxfit is that the
dynamics rely on pre-calculated RHD simulations. However, since
boxfit solves the radiative transfer equations during runtime, it
is computationally expensive. Therefore, it is not practical to use
boxfit when performing Bayesian inference. Moreover, boxfit
does not take into account the effects of synchrotron cooling on the
self-absorption break. This may lead to incorrect spectra in certain
regimes. scalefit, on the other hand, makes use of pre-calculated
spectral features, obtained from boxfit in a valid regime, and
utilizes scaling rules (van Eerten & MacFadyen 2012) to calculate
the spectra for various regimes (i.e. different orderings of the break
frequencies). scalefit is valid for all spectral regimes, unlike
boxfit, and is computationally inexpensive in comparison (Ryan
et al. in preparation). However, scalefit makes assumptions
about the sharpness of the spectra around break frequencies, whereas
boxfit generates smooth spectra in a self-consistent way.

Additionally, we account for dust extinction due to the host galaxy
when calculating the observed flux. For the majority of GRBs in our
sample, we adopt the Small Magellanic Cloud extinction curve given
by Pei (1992). However, for GRBs 000418 (Gorosabel et al. 2003),
010222 (Frail et al. 2002), and 090328 (McBreen et al. 2010), we
assume a Starburst type extinction curve (Calzetti et al. 2000). We
include the dust extinction due to the host galaxy as a free parameter.

Summarizing, our model parameters are defined as

¢: (007EK$isoanrcf700bs, P €B, Ee’gNaAV)Ta (8)

where 0 is the opening angle of the jet, Ekjs, is the isotropic-
equivalent kinetic energy of the explosion, n, is the normalization
factor for the circumburst density profile (see equation 4), Ops is
the observing angle, p is the power-law index of the accelerated
electron population, €5 is the fraction of post-shock energy in the
magnetic fields, €, = z—jeg where €, is the fraction of post-shock
energy in the accelerated electrons, &y is the fraction of electrons
being accelerated, and Ay is the amount of dust extinction in the
rest-frame due to the host galaxy.

2.4 Regression

In order to obtain posterior distributions for the hyperparameters
and model parameters, we make use of nested sampling (Skilling
2004). Incorporating nested sampling allows us to calculate the
evidence with an associated numerical uncertainty, while producing
posterior samples as a by-product. Inferring the Bayesian evidence is
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Table 2. Assumed priors for the GP hyperparameters.

Parameter range Prior distribution
10710 < ¢ < 1010 log-uniform
1070 < <1 log-uniform
10°%<h <1 log-uniform

1073 <o < 10 log-uniform

Table 3. Assumed priors for the physical parameters.

Parameter range Prior distribution

0.01 <0y < 1.6
100 < Egjso < 10%°
1073 < nger < 1000
0 < Oops/Op < 2
1.0<p<3.0

10710 <e5 < 1.0
10719 < ¢ < 10
0<Ay <10

Log-uniform
Log-uniform
Log-uniform
Uniform
Uniform
Log-uniform
Log-uniform
Uniform

instrumental in this study, because it gives us a measure to determine
which model explains the data best: a blast wave moving into a
homogeneous (k = 0) or wind-like (k = 2) circumburst medium (see
Section 2.3).

Following A20, we utilize pyMuLTINEST (Buchner et al. 2014),
which is a pyTHON package based on the MultiNest nested sampling
algorithm (Feroz, Hobson & Bridges 2009). For all the presented
results, PYMULTINEST is used in the importance sampling mode
(Feroz et al. 2019) with mode separation disabled. We use 400 initial
live points and use an evidence tolerance of 0.5 as our convergence
criterion.

We assume wide priors for a and o, however, the length-scale
hyperparameters (i.e. /; and [,) are capped at 1 (see Table 2), since
we do not expect any systematics to be correlated over orders
of magnitude (the GP model operates in the log-space). This is
important, we found, because if one allows long correlation length-
scales, the GP can take up features like constant offsets between
model and data, or slope differences, which the model should really
be capable of fitting. We intend the Gaussian process mostly to take
up issues like calibration differences between instruments leading to
extra ‘noise’ within a band, and physical effects that are shorter in
time and frequency scale than is included in the model, such as radio
scintillation, minor flares, etc.

For all the model parameters, we assume uninformative prior
distributions, which can be seen in Table 3.

Note that we do not take into account any reported upper limits
on the afterglow flux when inferring parameters, since upper limit
reports typically do not contain enough information to include them
in the fitting in a statistically sound way.

3 RESULTS

In this section, we present the modelling results for our sample
of 26 GRB afterglow data sets (see Table 1). We will not discuss
individual GRBs in detail, since the objective of our work is to
examine the properties of a population of GRB afterglow sources
and systematics of how the properties are distributed and may
differ between subclasses. In so doing, we will examine correlations
between each pair of fit parameters and distributions of fit parameters
between each of a few subclasses. All in all, we make about 50
such comparisons, and therefore we have a fair chance of finding

Exploring the GRB population ~ 2851

differences or correlations at the few per cent probability level by
statistical coincidence. To account for this, we will only regard
correlations or differences in distributions as firmly significant when
the null hypothesis of no correlation or no difference can be excluded
at the single-trial p-value of 3 x 10~ or better, and tentative below
p=1x 1073, Of course, since we do not have a statistically complete
sample, we should not only examine the statistical significances but
also the possible effect of biases.

We find that in all cases the best-fitting values of the parameters
and their 68 percent credible intervals remain naturally contained
within the range set by the priors, and in most cases, this is still true
for the 95 per cent credible interval. We also find that in individual
cases there can be strong correlations between parameter errors due
to degeneracies in a specific fit, but we did not find any that were
common enough to induce correlations between parameters in the
overall population. We also find that for all physical parameters the
range of best-fit values is significantly larger than the error regions
of the better constrained afterglows. This implies that there are no
physical parameters, specifically also not the shock microphysics
parameters or the beaming-corrected energy, that prefer a universal
value. This is in agreement with previous studies (e.g. Starling et al.
2008; Curran et al. 2009; Ryan et al. 2015), but now for a large and
uniformly analysed sample of GRBs.

For our further description of the results, we focus on groups
of physical parameters, from the outside in. We begin with the
ambient density, since this is the first distinction we make, and it
is made in a way somewhat different to the others, by comparing
two different model fits. All others are simply free parameters
fit within a certain constrained but continuous range. Of these,
we first discuss the energy and geometrical parameters (opening
angle and viewing angle), and after that the shock microphysics
parameters.

3.1 GRB environment and ambient medium

We do not assume a priori which model, homogeneous or wind-like
environment, should be chosen for a given data set. Instead, we model
every data set both for homogeneous and wind-like environment
models, and choose which one explains the data best. Model selection
is performed by comparing the evidence values from both fits. We
present the log-evidence values, along with the corresponding Bayes
factors, for each modelling effort in Table 4. The Bayes factor, i.e.
ratio of the evidence values, allows us to quantify the likelihood of
the preferred model over the alternative model. A Bayes factor larger
than 20 (e.g. Kass & Raftery 1995) suggests a strong preference for
the selected model. Fifteen out 26 GRBs in our sample, all long, have
a Bayes factor larger than 20, and 8 out of these GRBs show evidence
for a constant density environment. Thus, if we only consider the
GRBs with a strong preference, there is an approximately even split
between homogeneous and wind-like environments. Starling et al.
(2008) have analysed a sample of 10 GRBs and commented on their
CBM density profile. They also find that both ISM-like and wind-
like environments are required to explain the observed light curves
for their sample of GRBs. Curran et al. (2009) have analysed the
optical and X-ray light curves of 10 GRB afterglows, and arrived at
the same conclusion. Schulze et al. (2011) have compiled a sample
of 27 Swift detected GRBs (including one short GRB), and utilized
the observed X-ray and optical afterglow emission to comment on
the density profiles of their environments. They are able to determine
that 18 GRBs in their sample are consistent with homogeneous envi-
ronments, and 6 GRBs are consistent with wind-like environments.
If we do not restrict ourselves to high Bayes factors, a slightly higher
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Table 4. Model selection for the GRB sample. Z represents the Bayesian evidence. Reported uncertainties
represent 1-o. We select the mode, either homogeneous (ISM) or wind-like environment, with higher inferred
evidence values. The evidence values for the preferred model are written in bold numerals.

Burst name In Z [ISM] In Z [Wind] Bayes factor
short GRBs 051221A —22.79 +0.04 —24.26 + 0.12 4.33
130603B(@ —21.45 £ 0.05 —21.42 £+ 0.03 ~I.
140903A —24.97 +0.05 —25.73 £ 0.02 2.15
200522A —18.31 +:0.03 —19.30 £+ 0.02 2.68
long GRBs 970508 —99.21 £ 0.12 —92.68 + 0.31 >150
980703 —86.74 £+ 0.02 —82.33 +0.06 82.80
990510 279.21 +0.02 278.45 + 0.03 2.15
991208 —60.33 +0.04 —67.63 £ 0.10 >150
991216 —5.37 £ 0.04 —4.56 +0.03 2.25
000301C 37.45 £ 0.05 25.30 + 0.12 >150
000418 —55.09 £ 0.04 —49.81 +0.05 >150
000926 28.31 + 0.08 34.48 + 0.04 >150
010222 37.34 £0.04 31.01 + 0.02 >150
030329 —29.23 +0.01 —59.81 £+ 0.05 >150
050820A —40.26 £ 0.74 —33.88 +0.05 >150
050904 —31.20 +0.03 —33.30 £ 0.07 8.13
060418 —11.55 +0.06 —19.19 £ 0.02 >150
090328 —50.14 +0.03 —51.69 £+ 0.30 471
090423 —51.42+0.06 —55.97 £ 0.10 94.59
090902B —49.39 + 0.02 —39.78 +0.04 >150
090926A —9.68 +0.03 —12.24 £ 0.02 12.98
120521C —54.96 +0.06 —55.50 £+ 0.09 1.70
130427A 324.52 + 0.08 336.86 +0.03 >150
130702A 19.45 +0.18 8.55 + 0.68 >150
130907A —135.85+0.01 —141.59 £ 0.02 >150
140304A —60.46 £+ 0.04 —57.90 +0.04 13.00

“For this data set, both homogeneous and wind-like models result in similar evidence values. An ISM-type
environment is preferred since this is a short GRB and no strong winds are expected due their progenitors.

fraction of afterglows favours an ISM solution (16 out of 25, i.e.
64 per cent).

For the short GRB sample the evidence values for both models
are closer to each other. This is mainly due to the fact that short
GRBs have fewer observations available, and therefore the data sets
are less constraining; importantly, none of the short GRBs favour
a wind environment, in agreement with the usual notion that they
occur in less dense and near-uniform ISM. For short GRB 130603B,
the evidence values for homogeneous and wind-like environments
are consistent with each other considering the evidence uncertainty.
Given that an ISM environment is a priori favoured, we chose that
solution.

The wider environment of the GRB is also probed by the host
extinction, Ay. This is of course biased to somewhat low values by
the fact that we want well-detected optical afterglows, and for short
GRBs to somewhat higher values because we need them to lie in
regions of not too low density to produce a detectable afterglow. We
find that more than half the afterglows have a non-zero Ay with better
than 20 significance, with no significant differences between short
and long GRBs or wind and uniform ambient media.

Now that we have found the best ambient-density model for each
afterglow, we will look at the other parameters, for which we take
the values for the best-fitting ambient medium in each case. We
present our modelling results for the GRB parameters (including
the rest-frame host extinction values, Ay) in Table 5. In Figs Al-
A3, we present the posterior distribution for each parameter (in
the form of a violin plot) together with their 68 percent credible
intervals. The complete set of light curves and posterior distributions
are available as online supplementary material, including results for
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both homogeneous and wind-like environments for each GRB in our
sample.

3.2 Energy, opening angle, and viewing angle

In Figs 1 and 2, we present the parameter values for the GRBs asso-
ciated with homogeneous and wind-like environments, respectively,
in the form of a corner plot. These figures help us to identify any
correlations between the burst parameters. The diagonal elements
in each figure contain the parameter distributions for the single fit
parameters, with different colours for the short (green), long-ISM
(blue), and long-wind (red) GRBs.

3.2.1 Opening angle

We do not find a notably different opening angle distribution for
short and long GRBs. When a Kolmogorov—Smirnov (KS) test is
performed on the inferred opening angle of ISM-like long GRBs and
short GRBs, we find a p-value of 0.48 for the hypothesis that the two
samples are drawn from the same distribution. A KS test checking
the consistency of the 0 distribution between ISM- and wind-like
long GRBs yields we find p = 0.012. On its own that might be
considered moderate evidence for a difference, but given the many
trials (distribution comparisons) in this paper, it is not (see above).

3.2.2 Observer viewing angle

The distribution of the observer viewing angle, 6, does not follow
a simple form, since it is constrained to be within the jet opening
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Table 5. Inferred physical parameters for the GRB sample. The presented values correspond to the mode of the obtained posterior distribution. Reported
uncertainties represent the 68 per cent credible interval. k represents the CBM density profile (see equation 4) and is either 0 for homogeneous or 2 for wind-like

environments.

Burst name log1060 (rad) log10Ek iso (erg) log1onyef Bobs/O0 p logioen log € Ay k
Short GRBs 051221A —0.9810-13 54.487950 0.551138 092705 1781 —2.40790%  —5.26%29F 0107025 0
0.28 0.82 0.59 0.13 0.25 1.72 0.51 0.44
130603B —0.97*)3% 53.8910%2 —1.14%030 0.83%05 26770 —47175k —0.98%)2 074703 0
140903A ~ 1157933 54.581057 —1.97H0 8 041792 236101 721138 1077083 0224032 0
200522A -0.227037 53.54159% 194193 0517035 1840 —7.75T18 —3.39%13% 520730 0
Long GRBs 970508 0.067903 53.207932 2187010 L08T0T 2577005 —4.397038  —0.497005  0.131007 2
+0.26 +0.36 —+0.25 +0.16 +0.05 +0.43 +0.20 +0.16
980703 —0.347036 52.287038 0.50703  0.89701¢ 207709 053708 18970 1017015 2
990510 ~1.167593 52,9904 —0.95T033 0317053 1937008 1257047 —1.547099 0.01700r 0
991208 —1.947000 5464701 —0.607017  L0sTHE  LelTOy  —0.0770% —1.33T007 0447000 0
991216 ~0.597937 5371702 128708 079T00r 2147020 3617085 —1.27703 0.07T05 2
000301C —0.6910:03 52.427046 0.337017 007700y 1887000 021700 —1.527000 0.037058 0
000418 —0.26%03) 54.4770% Lt 0267028 238700 —1.917932 159708 1227090 2
000926 —0.24703¢ 55.1310% L9900 0347030 296700 —6.21T 58 —0.95T03¢ 020700 2
010222 —0.40+0:93 53.9410.17 —2327019 0 013793 2.621003  —418703F  —0.477008 0547093 0
030329 0.201001 53.0470:10 2.59707 073700 2.627008  —5.58T03%  —0.767008  0.017007 0
050820A —0.44702 53.247012 0.957933 070704 2117508 —1.957018 —1.3170% 0371008 2
050904 —1.02*542 53.317038 105402 05410 201708 2077930 —1.54%0 3 0077003 0
060418 —0.8270:06 52.887017 0.23%03°  0.83T00  228700¢  —2.817032 —1.30%07] 0177003 0
090328 —0.68+020 53.177038 1667070 0941023 2287010 3907030 —1.39%08 007100 0
090423 —0.06102¢ 53.467039 201705 084700 216700 —4.81T58s  —1.4170E 009700 0
090902B 0.04701% 53.437033 0.507903% 024700 223700 3157000 157702 0.0710%8 2
090926A -0.81709% 53.0914 0.19%357 078707 2247008 —1.57790 —0.93%03 0.09T001 0
120521C —0.91+011 52.981033 —0477035 0507039 2.88%012  —1.10703 —0.84701¢ 078100 0
130427A —0.231023 52.5870% 0177933 0207038 2167008 231708 113702 0.031007 2
130702A —0.717542 53.077990 —0.907092  0.04700%  L46TOy  —07170% —7.65T3% 026705 0
130907A —1.387047 53.027034 —1.26%012 088707 1.877005  —0.0470% 103701 160751 0
0.23 0.28 0.57 0.34 0.17 0.76 0.20 0.11
140304A —1.307 5 54.461035 196%)3l 1199y 228%)00 3737078 —1.40%03 041t 2

angle (at least at early times), but that is different for each GRB as we
have just seen. However, the fractional observer angle distribution,
Oobs/00, does have a simpler form under the top-hat jet assumption,
because in that case every direction within the opening angle has
the same properties and thus the same brightness at early times: its
probability density is linear for 6y < 7/2 and a sine function for
0o = /2. We show the distribution for the full sample in Fig. 3,
with the two limiting theoretical cases. The observed distribution
extends a bit beyond 1, but no values are significantly larger than
1. Even so, KS-comparison with the theoretical distributions gives
p = 0.17 for accepting the null hypothesis of equality. We conclude
that the data are consistent with the top-hat jet hypothesis and do
not strongly indicate a structured, more centrally concentrated jet
(which would closely resemble a top-hat jet for observers close to
the jet axis in any case, e.g. Dalal, Griest & Pruet 2002; Rossi,
Lazzati & Rees 2002; Granot & Kumar 2003; Kumar & Granot 2003;
Panaitescu & Kumar 2003; Salmonson 2003; Rossi et al. 2004; Ryan
et al. 2020). Specifically, our viewing angle has to be within the
opening angle of the gamma-ray emission, which typically comes
from material with I' > 100. If the early afterglow emission, of
which we derive the opening angle in our fits, had a significantly
greater opening angle, then we would find the distribution of 6 ,ps/0¢
biased towards small values. Since the afterglow represents all the
material with ' 2 10, this means our result argues against jet

structures in which the material with initial Lorentz factors above
10 has a significantly wider opening angle than the material with
initial Lorentz factors above 100. This may argue against, or at
least significantly constrain so-called jet-cocoon models of GRBs,
in which a core jet with quite high initial Lorentz factors (I'g 2
100) is surrounded by an energetic cocoon with Lorentz factors of
several tens (e.g. Ramirez-Ruiz, Celotti & Rees 2002; Peng, Konigl &
Granot 2005). The initial conditions of the simulations underlying
our model are already outside the progenitor object. We do not think
our afterglow selection has biased us against jet-cocoon cases: if the
cocoon only decelerated after our afterglow data start, it would give
rise to a late-injection or plateau phase in the afterglow (Granot &
Kumar 2006; van Eerten 2014), and we have not excluded any
afterglows for obvious signs thereof. If the cocoon decelerated before
our afterglow data start, then the tendency to smaller observer angles
because of the gamma-ray selection would remain, and we do not see
this.

The results on the GRB energy are more complex, and we defer
them to the discussion section.

3.3 Shock physics parameters

For the shock physics parameters, we have to be a bit careful (see
Section 2.3): in order to avoid too strong degeneracies for p =~ 2,
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Figure 1. Corner plot for the inferred physical parameters of the GRBs associated with constant density environments. Blue circles and green squares represent
the inferred parameter value of long GRBs and short GRBs, respectively. The error bars represent the 68 per cent credible limit.

we fit for p and €,, and indeed we do find some cases of p < 2.
The distribution of p, the power-law index of the shock-accelerated
particles, can be seen in Fig. 4. We find that the p-values are consistent
with being drawn from the same distribution for long GRBs and short
GRBs. We find a mean value of 2.21 and standard deviation o, =
0.36 for the inferred p values. Curran et al. (2010) have analysed a
large sample of Swift detected GRBs to determine the distribution of
p. They utilized the reported spectral indices in X-rays to determine
the p-values of their sample, using closure relations. They find that
the distribution of p is consistent with a Gaussian distribution with
= 2.36 and o = 0.59; given the errors in both methods, we
consider the two results to be consistent. We find three cases where

MNRAS 511, 2848-2867 (2022)

p is significantly less than 2, and thus where a high-energy cut-
off to the electron distribution is required to keep the total electron
energy finite. In more than half the cases (15), p = 2 is included
within the 95 per cent confidence region of the fit result, implying
that indeed using €, is required to avoid problems in the fitting
process.

While the short GRBs all have €z values on the low side, their
small number and large error bars prevent us from drawing any
strong conclusions in this respect: the KS test results in p = 0.10 for
the short/long GRB distributions of magnetic-field energy fractions
being the same, and similarly, we find no evidence for a difference
between the long GRBs in ISM and wind environments. What is
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limit.

quite striking though is that €z ranges over 5-6 decades in value, a
much greater range than €,.

Since €, is a physically more meaningful measure of the electron
energy density, we derive it from the nominal fit values in case p > 2.
The derived €, values can be seen in Table 6. In Fig. 5, we present the
€, distribution of the GRB sample, only for GRBs with inferred mode
value of p > 2. We find that €, is never very low and always above
0.1, with some values (uncomfortably?) close to 1. The values for the
different subsamples are in good agreement (mean values are 0.34
for homogeneous environment and 0.28 for wind). Beniamini & van
der Horst (2017) have demonstrated that it is possible to constrain

€, by measuring the peak flux and peak time of the radio afterglow
light curve. By applying this method to a sample of 36 long GRBs,
they were able to put upper limits on the scatter of €,. They find that
Ologjge. < 0.31 for constant density environments and 0jog,, ¢, < 0.26
for wind-like environments. We find that the standard deviation of
€, for the long GRB sample is 0jog, ¢, = 0.24 for homogeneous
environments and ojog,, ¢, = 0.28 for wind-like environments. Note
that, although the standard deviations of the inferred €, distributions
are consistent with Beniamini & van der Horst (2017), they find
lower mean values of 0.15 and 0.13 for ISM-like and wind-like long
GRBs, respectively.
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Figure 4. Histogram of the inferred p for the GRB sample.
4 DISCUSSION

4.1 GRB environment and ambient medium

The inferred CBM densities for ISM-like long and short GRBs
exhibit a wide distribution. The mean value for the circumburst
densities of ISM-like long and short GRBs are 1.26 and 0.39 cm~3
with standard log-deviations of 0jog,, n,; = (1.32, 1.49), respectively,
i.e. they cover about three decades in density. Given the wide variety
of possible massive-star and merger environments, this is not so
surprising.

We do not find any pronounced differences between the density
distributions for short GRBs and ISM-like long GRBs. Canonically,
it is expected that short GRB progenitors should be in lower density
environments than long GRBs. Fong & Berger (2013) report that
short GRBs are localized to lie at greater distances from their host
galaxy centres when compared to long GRBs. They find that, for
short GRBs, the median value of the offset from their galaxian centre
is 4.5 kpc, and when compared to the size of their host galaxy the
median value of the offset becomes 7/r,oc = 1.5. Note that there is
a strong bias in our short-GRB sample because we require bright
afterglows, and afterglow brightness goes up strongly with ambient
density. And indeed, if we check our four short GRBs we find that
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their environment is quite atypical for the short-GRB population:
studies of the host galaxies of our four short GRBs show that they do
not have a large offset from their host centre. GRB 051221A has been
identified to lie in a star-forming galaxy with an estimated normalized
offset of 7/ryost = 0.29 £ 0.04 (Soderberg et al. 2006). GRB 130603B
is associated with a spiral galaxy, and has been localized to a tidally
disrupted arm at a distance of 5.4 4+ 0.3kpc from the centre of
the galaxy (de Ugarte Postigo et al. 2014). Troja et al. (2016) find
that GRB 140903A lies at a distance of 0.5 £ 0.2kpc from the
centre of its host. Fong et al. (2021) estimate a normalized offset
of rlrpese = 0.24 £ 0.04 for GRB 200522A (see also O’Connor
et al. 2021). This is quite unlike the full population: Fong et al.
(2015) have studied the afterglow emission from a sample of 38
short GRBs and have found that they lie in low-density environments
with median densities of (3-15) x 1073 cm™3. They also state that
80-95 per cent of short GRBs in their sample have densities smaller
than 1 cm™3, which is also true for 3 out of 4 GRBs in our short GRB
sample within the reported uncertainties. O’Connor, Beniamini &
Kouveliotou (2020) have utilized the X-ray light curves of the Swift
population of short GRBs to constrain their circumburst environment
densities. They assumed fiducial values for the GRB parameters and
have found that <16 per cent of the population have densities lower
than 10~* cm—2, and that =30 per cent of the population has densities
larger than 1072 cm™3. In other words, our requirement of a well-
detected and well-sampled afterglow does seem to have biased our
short GRBs to lie in regions similar to those of long GRBs. This
means they are not very representative of the whole population of
short GRBs. There may be a silver lining to this cloud, in that when
discussing their physical parameters in comparison to long GRBs,
we can eliminate strong fit-induced correlations with environmental
parameters as a potential cause for any differences we find. Also,
under the most likely scenario that short GRBs are all mergers, born
from a binary long before the merger time, there is no reason to
think that the physical properties of the merger and GRB explosion
would depend on the medium they happen to be in at the time of
merger. Hence, we do not think that this environmental bias makes
our GRB sample biased relative to the whole short-GRB population
in intrinsic parameters.

It would be good again to caution, now quantitatively, that for
k = 0, the radius of the blast wave scales with observer time as
roc tY4, which means observations do not cover a wide range of radii.
The afterglow starts at the deceleration radius, rq4.., Where half the
initial jet energy has been deposited, and transitions into a spherical
supernova remnant-like evolution at the non-relativistic radius ryg.
For typical values, these are just under 10'7 and 10'® cm, respectively,
both scaling as (E/n)'. Their ratio is ryg/ngec = 20(I'o/100)~3,
where 'y is the initial jet Lorentz factor. Given that we have
few examples where we get close to either end of these regimes,
we see that indeed the typical uniform-like afterglow covers only
a small range of radii. Therefore, approximate uniformity of the
ambient medium is enough, which may apply to many plausible
environments.

For long GRBs in wind-like environments, the distribution of 7¢
has a mean of 14 cm ™3, or a mean A value of 0.48 A,., with a standard
log-deviation of 0jog,, n,; = 0.69, rather narrower than the density
range of the total sample. This indicates that the free-wind parameters
we find are indeed similar to canonical values expected of massive
Wolf-Rayet stars, the most likely progenitors. It might argue that the
likeliest reason for seeing uniform media about equally often is that
the reverse shock in the stellar-wind bubble is close enough that in
many cases the main afterglow phase is in the shocked wind. For the
free-wind case, r o t'2, so the afterglow samples a markedly larger
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Table 6. Derived parameters for the GRB sample. The presented values correspond to the mode of the obtained posterior distribution. Reported uncertainties
represent the 68 per cent credible interval. We calculate €, values only for GRBs for which the inferred mode of p is larger than 2. Missing values are represented
by -. k represents the CBM density profile (see equation 4) and is either 0 for homogeneous or 2 for wind-like environments.

Burst name logio€e log10Ek true (erg) 1og10Ey true (e1g) log10Ee (erg) logio€y k
Short GRBs 051221A - 51.33%15 48.937038 51.34% 059 327478 0
130603B —0.447035 51.707}3] 49.057908 51707130 —2.55%048 0
+0.29 +0.64 +0.72 +0.64 +1.21
140903A —0.4110% 51941054 47.19+0-72 51941084 —4.79% )2 0
200522A - 52.35%53¢ 49.197071 5235004 ~3.697093 0
Long GRBs 970508 —0.047004 52,9810 51.5510:0¢ 52.997014 —1.43%020 2
+0.23 +0.22 +0.50 —+0.65 —+0.04
980703 —-0.6870% 51.571522 51867539 51807543 —0.1075:9 2
+0.12 +0.07 +0.09 +0.03
990510 - 50.3675-12 50.6259 50.8175:09 —0.1975:9 0
991208 - 50.4410:03 49.167037 50.4910:04 —1.32+0:38 0
+0.29 +0.79 —+0.78 +0.72 +0.07
991216 ~0.5270% 5202507 52307078 5248072 —0.13%047 2
000301C - 50.701034 50.97107 51.167049 —0.201004 0
000418 —-0.91108 53.717079 5217154 53.6470-77 —1.607% 2
000926 —0.6470:3 54.081072 52.667530 54.0710% —1.6610-40 2
010222 —0.05+005 52.68102¢ 52.8110:19 52.931031 —0.31+0:08 0
030329 —0.341007 53.017012 52.22790 53.0810:08 —0.8810:9 0
050820A —0.43%033 51.93%032 52.8170% 52.8810% —0.071003 2
050904 —0.677922 51.2810:18 51761023 51.851022 -0.0675:02 0
060418 —-0.66+01¢ 50.92+022 51.161012 51.32402) —0.20+0:05 0
090328 —0.85707% 51.5810-39 51.457092 51.9910-3 —0.1170:42 0
090423 -0.52%9% 53.097070 52.82407 53.19103 —0.50%0%7 0
090902B —0.8370-3 52711040 54367028 5438704 —0.01+0:0) 2
090926A 025702 51.097)% 52381028 52417537 —0.05759% 0
120521C —0.471012 50.91+021 50.79+02} 51.16102) —0.32+009 0
130427A —0.12%01) 51.9170% 53.14703% 53177049 —0.031002 2
130702A - 51.0875% 49.087933 51.07%55% 2251022 0
130907A - 50.2370:04 51.4570 51.47708 —0.01700° 0
+0.12 +0.23 +0.46 +0.23 +0.38
140304A 0734012 51.6310%3 50.19154¢ 51.6515%3 —1.391938 2

Notes. The mode of the distribution of Eyyye is smaller than the mode of the Ey, e for GRB 980703, and it is smaller than Ex (e for GRBs 000418, 000926, and
130702A. This is not due to an error in the analysis, but rather a combined effect due to addition in linear space whilst the distribution is in logarithmic space,
and uncertainty in the Gaussian kernel estimator when determining the mode. In any case, the differences are well within the reported uncertainties and do not

affect any results.

range of radii. For canonical values (M = 107> Mg/yr, E = 10 erg,
Iy = 100), we find rgec = 1.5 x 10" cm and g = 1.5 x 10" cm,
and since they again scale the same with most parameters, rNg/7gec =
10%(I"¢/100)?, a large range indeed even if we see only part of it
sampled in the data. Note that for a canonical wind velocity of
1000km s~!, the afterglow phase starts in the wind material that was
emitted less than one hour before the star explodes, and even in weak
winds typically still less than one day. It ends in wind material that
was emitted a fraction of a year to a few years before the explosion.
GRB afterglows thus do not probe typical mean-life stellar wind
parameters, and indicate that even very close to the end of the star’s
life the wind is similar to that during an average moment in its
life. We note that some, especially single-star, GRB scenarios prefer
low mass-loss rates of the progenitors, and it is known that in low-
metallicity environments massive stars do indeed have lower mass-
loss rates (Vink, de Koter & Lamers 2001; Vink & de Koter 2005);
since we find that A/A, = 0.48 on average, our fits do not provide
evidence for this. This may agree will with more recent findings that
GRBs actually do not prefer low-metallicity environments, other
than that they are suppressed in regions with metallicity above solar
(Fynbo et al. 2009; Perley et al. 2016; and references therein).

This in turn may favour binary evolution scenarios for the origin
of long GRBs (Perley et al. 2016; Chrimes, Stanway & Eldridge
2020).

These ambient-medium considerations ask for better investigation
of scenarios in which the blast wave emerges from the free wind early,
since in light of the above this appears difficult, and yet we find half
or more of the afterglow fits prefer a uniform-medium solution.

4.2 Energy and opening angle

The observed flux of GRB afterglow emission does not directly
depend on the true energy of the burst, but rather depends directly on
the energy per unit solid angle, or the isotropic equivalent energy, Ejs,.
Therefore, to measure the true energetics of these events by afterglow
modelling, we need to constrain both the isotropic equivalent energy
and the opening angle. The true energy can then be calculated
using

Eie = Eiso(] — COoS 90) (9)

This equation is valid for both the total energy and for the gamma-ray
and afterglow kinetic energies separately, provided that the opening
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Figure 6. Scatter plot of (Ex.iso, Ex.rue) and (Eipratisos Etotaltrue) W.I.t. the
inferred opening angles for the GRB sample. The blue circles and red
diamonds represent long GRBs in homogeneous and wind-like environments,
respectively. Error bars represent the 68 per cent credible interval.

of both is the same; we have argued above (Section 3.2) that this is
indeed the case.

In A20, we suggested the existence of a common kinetic energy
reservoir for long GRBs, based on a very small sample of only
five GRBs. For the larger sample in this work, where we have also
allowed both wind and ISM ambient media, this no longer holds:
in Fig. 6, we present scatter plots of the isotropic-equivalent and
beaming corrected kinetic/total energies with respect to the opening
angles of our GRB sample. We perform a KS test on the mode of the
posterior distribution for each GRB to determine whether or not the
Ek e Values for homogeneous and wind-like GRBs are drawn from
the same distribution. We find that we can reject the null hypothesis
with a p-value of 6.5 x 1073, which according to our strict criteria is
not significant enough. The histograms of the true kinetic and total
energies of the three sub-samples are shown in Fig. 7. While these
again have the disadvantage of making use only of the mode of the
posterior distribution rather than all the information in the posterior
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Figure 7. Histogram of the inferred energetics for the GRB sample. The
upper and lower panels show the histograms for the Ekye and Eye
distributions, respectively.

distribution, they do illustrate some difference between the wind-
and ISM-like long GRBs.

The Eg e distributions for long and short GRBs are consistent
with each other. This suggests that the kinetic energy of the explosion
is not significantly different between short and long GRBs. However,
the measured prompt emission energies are orders of magnitudes
lower for short GRBs, which implies that it is the prompt emis-
sion efficiency of short GRBs that is lower. The prompt emission
efficiency can be defined as

E rue
v (10)

€ = 0.
Ey,true + EK,true

We present the relevant derived parameters of the GRB sample in
Table 6. In Fig. 8, it can be seen that short GRBs are systematically
less efficient than long GRBs. The average value of the inferred
€, parameters for short and long GRBs are 2.7 x 107* and 0.26,
respectively. Beniamini et al. (2015) have analysed the observed
flux from 10 long GRBs in X-rays and GeV energies to estimate
the energetics of these GRBs. They find that there is a discrepancy
between the estimated energies using both bands, where the energy
estimated from the GeV flux is significantly larger. They state
that this discrepancy can be explained within the forward shock
framework by either assuming that the cooling break lies between
these two bands or by taking into account Compton cooling effects.
As a result they find that the average prompt efficiency value
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Figure 8. Scatter plot of the reported f9o and derived €, parameters for the
short and long GRB samples. The magenta circles and green squares represent
long and short GRBs, respectively. Error bars represent the 68 percent
credible interval.

becomes 0.87 for the X-ray estimated energies, and 0.14 for GeV
estimated energies. They note that the GeV estimated energetics
should be more reliable, and these are consistent with our results.
We perform a KS test to determine if the €, distribution for long
and short GRBs originate from a common distribution. We find
that the null hypothesis can be significantly rejected, with p =
1.3 x 107, so short GRBs are indeed less efficient gamma-ray
emitters. However, this analysis does not account for the uncertainties
in the €, parameter, and relies only on the mode of the posterior
distribution.

It is not so clear what might cause this difference in efficiency, and
our study does not speak much to this because we examine only the
physics of the afterglow. We do note that in the afterglow, the short
GRB blast waves have a lower (synchrotron) emission efficiency,
because this scales as €€, which is lower on average for short GRBs
(which have about the same €, and lower € for a given true energy —
see below). Whether we should expect that same difference to exist
for the internal shocks that cause the prompt emission (or whether
those are even dominated by synchrotron emission) is unclear,
however. In Gottlieb, Levinson & Nakar (2019), the authors find that
the main factor determining the radiative efficiency is the amount
of baryon loading. Since our findings indicate that short GRBs are
less efficient, this could also mean that baryon loading in short GRB
jets is more prominent. Gottlieb et al. (2021a, see also Gottlieb,
Levinson & Nakar 2020; Gottlieb, Nakar & Bromberg 2021b) have
performed relativistic magnetohydrodynamic (RMHD) simulations
to investigate how the prompt emission features (variability, spectrum
and efficiency) vary for hydrodynamic and magnetized jets for both
intermittent and continuous central engine activity scenarios. They
have found that magnetized + intermittent jets are the most likely
candidate for GRBs, as they yield high prompt efficiencies and are
consistent with observed spectral and temporal features. They also
note that, for hydrodynamic -+ intermittent jets, the efficiency drops
below 1 per cent. As the degree of magnetization increases the mixing
processes become less efficient and lead to higher €, values.

Exploring the GRB population ~ 2859

In Tables 5 and 6, it can be seen that, in some cases, the derived
values for the microphysical parameters are difficult to reconcile
with our theoretical understanding (i.e. €z + €, ~ 1). However, as
mentioned previously, due to the £y degeneracy these values can
be scaled down to more reasonable values by assuming a smaller
value for & . This is supported by particle-in-cell simulations which
indicate that &y can be as small as 0.01 (Sironi & Spitkovsky 2011).
We find that the derived values for the prompt efficiencies, €,,, is
approaching unity in some cases, which can be resolved by once
again assuming a lower value for £y to scale down the values for
the prompt efficiency. Moreover, even if we lower the &y value,
assuming that the €, value is the same for both the prompt and
afterglow phases, some of the modelling results suggest €, > €,.
Such high efficiencies are consistent with the proposed scenario by
Kobayashi & Sari (2001).

Wang et al. (2018) have analysed the optical and X-ray light curves
of a large sample of GRBs to determine any achromatic jet-breaks
present in the data sets. They infer the energetics and the opening
angle of the GRB sample by assuming fiducial values for the other
GRB parameters and by making use of analytical prescriptions. They
find that the energetics are distributed as logjoEx iso = 54.82 £ 0.56
and logoEk e = 51.33 £+ 0.58 for the long GRB population. In
our analysis, we find logjoEk s, = 53.38 £ 0.72 and logoEk true =
51.81 4 1.08 for the long GRB population. We find that the energetics
exhibit a wider spread across the long GRB population. We also find
lower values for the mean of the Ex s, distribution. Since Wang et al.
(2018) only consider GRBs with an observed achromatic jet-break,
their selection effects are different than our sample.

In order to test whether or not the inferred energetics for the GRBs
are feasible, we make use of the total beaming corrected energies,
Ee = Eggue + Ey jrue- Assuming that the jet is powered by the
rotational energy of a Kerr black hole (e.g. Blandford & Znajek
1977), it is possible to estimate the total jet energy from the mass
Mgy and rotation parameter a of the black hole as

Eye = ejetEmt = Ejet.f(a)luBHCz7 (11)

where E, is the rotational energy of the central black hole. Taking
not too aggressive values a = 0.9 and €, = 0.1 (e.g. Lee, Wijers &
Brown 2000; McKinney 2005), we get Ey =~ 0.015Mgyc?. The
short and long GRBs with the highest inferred beaming corrected
energies are GRBs 200522A and 090902B, respectively, with best-
fitting values of 2.2 x 10°? and 2.4 x 103 erg. Using equation (11),
the implied mass of the central black hole can be inferred as
>0.19 and >23.73 M for GRBs 200522A and 090902B, neither
of which presents a significant difficulty for the favourite source
models.

4.3 €p—Ek rue, 0—€p anticorrelations

We find that 6 and Ek e are strongly correlated with each other for
both wind-like and ISM-like long GRBs; this does not, however, have
any new meaning. It is simply the result of the fact that E\,. is derived
from Ej, via the opening angle, and that the distribution of Ej, is
fairly narrow, whereas that of 6 is wider. Hence, this correlation is
largely due to the fact that we are correlating 6 with itself.

We do however find a strong and significant anticorrelation
between €p and Eg e for the sample of long GRBs. In Fig. 9, we
demonstrate this anticorrelation. We find that the fraction of energy
lost to amplifying magnetic fields systematically decreases as the
measured beaming corrected kinetic energy gets larger. When we
perform a Pearson r correlation test we find a p-value of 1073,
strongly rejecting the null hypothesis that they are uncorrelated.
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Figure 9. Scatter plot of €p and Ek e parameters for the GRB sample. The
blue circles, red diamonds, and green squares represent ISM-like long GRBs,
wind-like long GRBs and short GRBs, respectively. Error bars represent the
68 per cent credible interval.

Alternatively, we can of course regard this correlation as due to an
eg—0 relation. We also checked for a possible correlation between
€ and Ek so; it is not significant. This may be somewhat surprising,
since we think of the energy fractions in electrons and magnetic field
to be set very locally at the shock, and thus correlate better with
Ekso, which scales with the local energy per unit area at the shock.

Since the number of GRBs in either sample is small, we use a
Jackknife resampling test to check the robustness of these correla-
tions due to outliers. The results can be seen in Table 7, and show that
the significant correlations are robust. However, they also reveal are
rather strong difference between the two subclasses: the correlations
are not significant in the wind-like GRBs and very strongly significant
in the ISM-likes. The significance of the result for the total population
is therefore entirely due to that of the ISM-like GRBs. This is
puzzling, since it unclear how the correlation between these two
blast wave parameters would come to depend on the shape of the
ambient density distribution.

4.4 Caveats

First of all, it is not straightforward to infer population distributions
from uncertain measurements. When creating histograms we only
considered the point estimate (i.e. mode of the posterior distribution)
of the inferred parameter values. This approach does not take into
account the full information contained in the obtained parameter dis-
tributions. It would be valuable to combine the posterior distributions
from individual modelling efforts to estimate how the parameters
are distributed across the GRB population in a statistically correct
manner (e.g. Mandel 2010; Hogg, Myers & Bovy 2010); however,
this is out of the scope of this work.

Secondly, it is not possible to compile an unbiased sample of
well-sampled afterglows, because a variety of instrumental biases
and observer choices enter into the determination of which GRBs
to follow up extensively and for which such follow-up is successful.
Therefore, the inferred GRB population will likely not cover all of the
physical parameter space. We have commented above on whether we
estimate this has a significant influence on our conclusions. While
we accounted for the small sample size of especially short GRBs
when stating significances, it is still good to bear in mind that our
short GRBs are especially unrepresentative of the total population of
short GRBs (though, as we noted, there is no clear expectation that
this this would bias the intrinsic properties of this subset of short
GRBs, for which we draw the most marked conclusions).

5 CONCLUSION

We have studied a sample of 26 GRB afterglows (as well as the total
prompt gamma-ray energy emitted), which was biased to enabling
detailed afterglow physics studies, i.e. towards having well-sampled
radio, optical, and X-ray light curves. While this largely excludes the
most obscured GRBs (due to optical extinction) and GRBs in low-
density regions (i.e. most short GRBs), we argue that there are quite
a few conclusions about GRB physics that are not strongly affected
by those biases:

(1) All physical parameters have intrinsic distributions of signifi-
cant width, i.e. none have a ‘standard’ value that is almost the same
for all GRBs, or even within a subsample (short, long-ISM, or long-
wind; Section 3).

(i1) Short GRBs prefer uniform ambient densities, in agreement
with theoretical expectations and previous studies (Section 3.1).

(iii) Long GRBs have about equal likelihood of wind-like and
uniform ambient media. A massive star progenitor is expected to

Table 7. Correlation significance results for the Jackknife re-sampling. The upper panel shows p-value estimates for
the whole long GRB sample, the middle panel takes into account only the long GRBs in ISM-like environments, and the
bottom panel is for the long GRBs in wind-like environments.

Anti-/correlation p-value
Minimum Maximum Average

Long GRBs €8-Ek rue 1.22 x 1077 228 x 1074 4.65 x 107

Oo-€p 6.85 x 107* 0.010 4.18 x 1073

eB‘EI(,iso 0.011 0.48 0.12
ISM-like €5-Ex true 474 x 107° 1.28 x 1074 3.66 x 1073

Bo-€p 1.71 x 1074 6.12 x 1073 1.60 x 1073

ep-Exiso 0.10 0.99 0.82
Wind-like €5-Ex true 0.011 0.68 0.21

Oo-€p 0.55 0.99 0.87

ep-Exiso 9.03 x 1073 0.37 0.12
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impact the environment of the burst, suggesting a wind-like medium
to be more likely. We note that even a massive star wind environment
can be close to homogeneous at scales probed by the afterglow
observations, but that this is not the most natural outcome for typical
parameters (Section 4.1).

(iv) The wind strengths for the wind-like long GRBs favour
canonical mass-loss parameters of massive Wolf—Rayet stars, the
most likely progenitors, and specifically do not indicate a bias
towards low mass-loss rates, as required by some GRB models
(Section 4.1).

(v) We do not find evidence for different jet opening angles
between long and short GRBs (Section 3.2).

(vi) The observer viewing angles are consistent with top-hat jets,
and with the opening angles of the prompt gamma-ray emission and
early afterglow emission being the same.

(vii) We find a distribution of slopes of the energy distribution of
accelerated electrons, p, that is consistent with previous studies; it
contains only a few examples where p < 2 significantly, but many
where it is close enough to 2 to warrant caution in fitting p and €,
(Section 3.3).

(viii) The values of €, are all in the range of 0.1-1, with no
significant differences between short/long or wind/uniform samples
(Section 3.3).

(ix) The true total energies of long and short GRBs are similar,
implying that the relative faintness of short GRBs in gamma-rays is
due to their lower gamma-ray emission efficiency (Section 4.2).

(x) Some required gamma-ray efficiencies of GRBs are close to
1, which is a challenging value for current prompt emission theories
(Section 4.2).

(xi) There is a strong and significant correlation for ISM-like long
GRBs between the magnetic field energy at the shock and the true
total kinetic energy of the blast wave. It is surprising that this same
correlation does not exist for the wind-like GRBs (Section 4.3).
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SUPPORTING INFORMATION
Supplementary data are available at MNRAS online.

Figure S1. Modelling results for GRB 970508 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S2. Modelling results for GRB 970508 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S3. Modelling results for GRB 980703 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S4. Modelling results for GRB 980703 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S5. Modelling results for GRB 990510 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S6. Modelling results for GRB 990510 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S7. Modelling results for GRB 991208 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.
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Figure S8. Modelling results for GRB 991208 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S9. Modelling results for GRB 991216 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S10. Modelling results for GRB 991216 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S11. Modelling results for GRB 000301C assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S12. Modelling results for GRB 000301C assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S13. Modelling results for GRB 000418 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S14. Modelling results for GRB 000418 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S15. Modelling results for GRB 000926 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S16. Modelling results for GRB 000926 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S17. Modelling results for GRB 010222 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S18. Modelling results for GRB 010222 assuming wind-
like circumburst density profile. The plot on the left represents the
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posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S19. Modelling results for GRB 030329 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S20. Modelling results for GRB 030329 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S21. Modelling results for GRB 050820A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S22. Modelling results for GRB 050820A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S23. Modelling results for GRB 050904 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S24. Modelling results for GRB 050904 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S25. Modelling results for GRB 051221A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S26. Modelling results for GRB 051221A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S27. Modelling results for GRB 060418 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S28. Modelling results for GRB 060418 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
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represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S29. Modelling results for GRB 090328 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S30. Modelling results for GRB 090328 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S31. Modelling results for GRB 090423 assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S32. Modelling results for GRB 090423 assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S33. Modelling results for GRB 090902B assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S34. Modelling results for GRB 090902B assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S35. Modelling results for GRB 090926 A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S36. Modelling results for GRB 090926A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S37. Modelling results for GRB 120521C assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S38. Modelling results for GRB 120521C assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.
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Figure S39. Modelling results for GRB 130427A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S40. Modelling results for GRB 130427A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S41. Modelling results for GRB 130603B assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S42. Modelling results for GRB 130603B assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S43. Modelling results for GRB 130702A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S44. Modelling results for GRB 130702A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S45. Modelling results for GRB 130907A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S46. Modelling results for GRB 130907A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter

MNRAS 511, 2848-2867 (2022)

sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S47. Modelling results for GRB 140304 A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S48. Modelling results for GRB 140304A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S49. Modelling results for GRB 140903 A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S50. Modelling results for GRB 140903A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S51. Modelling results for GRB 200522 A assuming homoge-
neous circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Figure S52. Modelling results for GRB 200522A assuming wind-
like circumburst density profile. The plot on the left represents the
posterior predictive light curves for 100 randomly sampled parameter
sets from the posterior parameter distribution. The plot on the right
represents the corner plot for the obtained posterior distribution from
the Bayesian inference.

Please note: Oxford University Press is not responsible for the content
or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.

APPENDIX: POSTERIOR DISTRIBUTIONS FOR
THE FREE PHYSICAL PARAMETERS
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Posterior samples for long GRBs in constant density CBM
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Figure Al. Violin plots representing the obtained posterior distributions of the free physical parameters for the long GRB sample associated with a constant
density environment. The shaded areas represent the density of the posterior samples and circles represent the mean value. Error bars represent the 68 per cent
credible interval.
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Posterior samples for long GRBs in wind-like CBM
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Figure A2. Violin plots representing the obtained posterior distributions of the free physical parameters for the long GRB sample associated with a wind-like
environment. The shaded areas represent the density of the posterior samples and diamonds represent the mean value. Error bars represent the 68 per cent
credible interval.
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Posterior samples for short GRBs
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Figure A3. Violin plots representing the obtained posterior distributions of
the free physical parameters for the short GRB sample. The shaded areas
represent the density of the posterior samples and squares represent the mean
value. Error bars represent the 68 per cent credible interval.
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