

Decarbonizing university campuses through the production of biogas from food waste: an LCA analysis

Hewen Zhou^{a,b}, Qing Yang^{a,b}, Eid Gul^c, Mengmeng Shi^d, Jiashuo Li^e, Minjiao Yang^{a,b},

Haiping Yang^{a,b}, Bin Chen^f, Haibo Zhao^{a,b}, Yunjun Yan^g, Güneş Erdoğan^h, Pietro

Bartocciⁱ*, Francesco Fantozziⁱ

^aState Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China

^bDepartment of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China

^cBiomass Research Center University of Perugia, Strada Santa Lucia Canetola, 06125 Perugia

^dChina-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, PR China

^eInstitute of Blue and Green Development, Shandong University, Weihai, 264209, China

^fState Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China

^gKey Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,

430074, China

^hSchool of Management, University of Bath, Bath, BA1 7AY, United Kingdom

ⁱDepartment of Engineering, University of Perugia, Via G. Duranti 67, 06125 Perugia,

Italy

*Corresponding author. E-mail address: bartocci@crbnet.it (P. Bartocci)

Abstract: The amount of food waste production in China's catering industry is approximately 17 to 18 Mt per year. This sector accounts for about 20% of the total food losses in China. China's National Development and Reform commission has ratified 100 pilot cities in five batches to implement food waste treatment projects. Almost the 80% of these projects is based on anaerobic digestion. So, it is very important to understand clearly which is the environmental impact of these new bioenergy, or waste to energy, chains (especially at a small scale). For this reason, a Life Cycle Assessment case study is presented in this work, based on an anaerobic digestion plant, fed with the non edible food waste produced by 29 canteens, which operate inside the campus of the Huazhong University of Science and Technology (HUST). The analyzed impacts are: Climate Change, Acidification, Eutrophication, and Photochemical Oxidation. The functional unit is represented by 1 kWh of produced electricity. This work demonstrates that small scale biogas plants can be realized inside big Chinese University campuses and can efficiently reduce the environmental impact of food waste management, especially if the pyrolysis process is coupled to dispose the digestate.

xx

zo **Keywords:** LCA, logistics, food waste, GHG, biogas, CHP

z1

zv Nomenclature

AD	Anaerobic Digestion	-
aLCA	Attributional LCA	-
CFW	Canteen Food Waste	-
CML	Impact Assessment Method developed by the CML (Institute of Environmental Sciences) of Leiden University	-
cLCA	Consequential LCA	-
EEF	Expired Food Energy Chains	-
FW	Food Waste	-
GWP	Global Warming Potential	-
HORECA	Hotel Restaurants and Catering (or Café)	-
ICE	Internal Combustion Engine	-
kWhe	Kilowatt-hour of electricity produced	kWh
LCA	Life Cycle Assessment	-
LCI	Life Cycle Inventory	-
N	Students and teachers number	-
ND	Number of days	d

NMVOC	Non Methane Volatile Organic Carbon	mg
OFMW	Organic Fraction of Municipal Wastes	-
PCR	Product Category Rule	-
REF	Reduction of Expired Food chains	-
RMB	Chinese	RMB
Q	Average procapita production of FW	t
QR	Heat of pyrolysis reaction	kJ
RECIPE	Impact assessment method developed from the collaboration between RIVM, Radboud University Nijmegen, Leiden University and PRé Sustainability.	-
VRP	Vehicle Routing Problem	-
WH	Working Hours	h

ξΛ

ξ 1 1. Introduction

◦ China accounts for almost 20% of the world's population, while its arable land is
 ◦ reduced (see Larson [1]). Meanwhile, a large amount of food is not consumed along the
 ◦ food value chain. Currently, China has nearly 250 million small farmers and the
 ◦ agricultural sector is based on small-scale production (see Zhao et al. [2]). This system
 ◦ often causes low efficiency in postharvest handling and postharvest food losses, due to
 ◦ inadequate infrastructure, lack of adequate storage facilities, knowledge and technology
 ◦ (see Parfit [3] and UNEP [4]). To address this great concern (see Li et al. [5]), the research

⑤ team from the Institute of Geographic Sciences and Natural Resources Research (Beijing, ⑥ China) has collected the Food Waste production during 2011 to 2015. Their work ⑦ demonstrated that the amount of food waste in China's catering industry is approximately ⑧ 17 to 18 Mt per year (about 20% of total food losses), which is equivalent to 30 million ⑨ to 50 million person-year rations. In this framework is inserted also the Chinese "Clean ⑩ Plate" campaign, which was launched in 2020 (see BBC [6]). It is also important to ⑪ consider that the total consumption of catering industry in China has reached 1 trillion ⑫ Yuan, which is equivalent to about 10% of GDP (Cheng et al. [7]). Since ten years ago, ⑬ China has implemented a number of policies and laws, promoting the comprehensive ⑭ utilization of food waste (De Clerq et al. [8]). In May 2010, the National Development ⑮ and Reform Commission, the Ministry of Housing, the Ministry of Environmental ⑯ Protection and the Ministry of Agriculture jointly issued the "Organized Development of ⑰ Municipal Food Waste Resource Utilization and Safe Disposal Pilot Project" work notice. ⑱ As a result, China's National Development and Reform commission has currently ratified ⑲ 100 pilot cities in five batches over 2011 to 2015, to implement food waste treatment ⑳ projects. According to the 12th five-year plan, by 2015 there will be 242 food waste ㉑ treatment facilities in the country, and cities will achieve a 50% waste separate collection ㉒ rate. Due to dedicated project investment funds of 10.9 billion RMB, the total food waste ㉓ treatment capacity in China should reach 30,000 t per day (Song et al. [9]).

㉔ Anaerobic digestion appears to be the most successful technology to convert non ㉕ edible food waste into a resource. About 80% of the food waste treatment projects in the ㉖ aforementioned pilot cities will integrate some forms of AD technology, whether as a

79 stand-alone treatment method or connected with other waste-to-resource processes such
80 as composting and biodiesel production. More recently China is developing a new law on
81 the prevention of food waste (see the Guardian [10]). On the other hand universities
82 appear still at a global level not efficient in food waste reduction and valorization, see
83 recent publications (Leal Filho et al. [11]).

84 For the above said reasons, it is very important to understand clearly which is the
85 environmental impact of these new bioenergy chains (especially in the small scale). Xu
86 et al. [12] performed a Life Cycle Assessment with the ReCiPe method, to evaluate the
87 environmental effects of three FW-based biogas generation scenarios in China. The
88 functional unit in this study is the management of 1 t volatile solid (VS). The work studies
89 three scenarios: the anaerobic digestion of FW and sludge; the anaerobic digestion of only
90 FW and FW disposal to landfill. Jin et al. [13] performed an LCA study using the data of
91 an already existing biogas plant, located in Suzhou, Jiangsu Province, in Eastern China.
92 They used the CML method to evaluate: Global Warming Potential, Acidification,
93 Eutrophication and Toxicity for humans and ecosystem. Woon et al. [14] performed a
94 consequential LCA comparing different uses of biogas obtained from food waste
95 anaerobic digestion in Hong Kong. The production of electricity and heat, city gas and
96 biomethane is taken into account.

97 To the best of the authors' knowledge few works are focused on the use of food waste
98 in university campuses to produce biogas. On the other hand, university campuses
99 represent a particularly favorable location to implement the collection of a highly
100 concentrated waste and its valorization. These activities assume particular interest also in

1.1 the light of the i-REXFO LIFE16 project managed by the University of Perugia in Italy
1.2 on food waste reduction. The project deals with the development of two types of chains:
1.3 Expired Food Reduction chains (which aim at the reduction of the production of food
1.4 waste through communication and awareness campaigns and initiatives promoted at the
1.5 level of the organized distribution) and Expired Food Energy chains (which aim at the
1.6 production of energy with the food waste which is not edible). The i-REXFO project
1.7 wants to promote a business model in which the REF chains are partially or totally co-
1.8 funded from the income generated by the EFE chains. This has brought already to the
1.9 development of some studies on the LCA of food waste tailored to the Italian situation
1.10 (as reported in the publications of the Sustainable Energy Systems (SES) lab at the
1.11 department of Engineering of the University of Perugia [15-17]). The i-REXFO project
1.12 has demonstrated that the feasibility of the EFE chains is linked with the possibility of
1.13 using the digestate obtained from the anaerobic digestion of the food waste as a fertilizer
1.14 but this is not always allowed by the law. For this reason, in this study the possibility to
1.15 treat digestate with pyrolysis is tested to find more promising ways to use the digestate.
1.16 Before spreading it into the soil the digestate should be anyway pretreated with
1.17 pasteurization, to avoid proliferation of unwanted microbes in the soil. Other possible
1.18 digestate treatments, which are alternative to pyrolysis are represented by composting,
1.19 but this has been already analyzed on a previous paper [18], in which it was demonstrated
1.20 that the aerobic treatment of digestate has an unfavorable energy balance. Besides this the
1.21 University of Bath, School of Management has developed logistic tools to solve the
1.22 Vehicle Routing Problem, which can be favorably applied to the case of food waste

123 collection in the university campus area (Erdoğan [19]). In fact, this represents a novelty
124 of this study: the VRP solver is firstly applied to food waste collection.

125 The aim of this study is to assess the technical and environmental feasibility of
126 producing energy from non-edible food waste, through LCA. Two technical scenarios
127 will be compared: anaerobic digestion coupled with the use of the digestate in the soil and
128 anaerobic digestion coupled with pyrolysis of the digestate, to produce a further amount
129 of energy and biochar.

130 For the above-mentioned reasons, this paper is organized as follows:

131 - description of materials and methods of the LCA study, comprising the goal and
132 scope of the study and the inventory analysis with detailed calculations of the
133 optimized food waste collection path and also of the optimized heat integration
134 in the biogas CHP plant. Two layouts of the anaerobic digestion plant are
135 proposed: one is only based on biogas production and conversion in an engine;
136 the other contains also a pyrolysis plat coupled to the anaerobic digestor, to avoid
137 the problem of digestate disposal. The methodology for the Life Cycle Impact
138 Assessment (LCIA) is also explained in section 2 of this paper;
139 - in the section number three the main results are explained. The impact of the two
140 plants layouts are compared referring to the impact categories: Climate Change;
141 Eutrophication; Photochemical Oxidation; Acidification.

142 The importance of the work is given by the fact that it demonstrates that small scale
143 biogas plants tailored to big Chinese University campuses can efficiently reduce the

144 environmental impact of food waste management. These results can be extended to all

145 the universitycampuses in the world.

147

148 **2. Materials and methods**

149 In this section the main assumptions of the LCA analysis will be illustrated, starting from

150 the goal and scope of the study; then describing the inventory analysis and finishing with

151 the Life Cycle Impact Assessment (LCIA).

152 In the paragraph on the inventory analysis the following aspects are taken into

153 consideration: the Canteen Food Waste (CFW) availability; the biogas plant mass and

154 energy balances; the coupled anaerobic digestion and pyrolysis plant mass and energy

155 balances; the scenario on the reuse of the digestate through soil application and the

156 scenario on the pyrolysis of the digestate.

157

158 **2.1 Goal and scope**

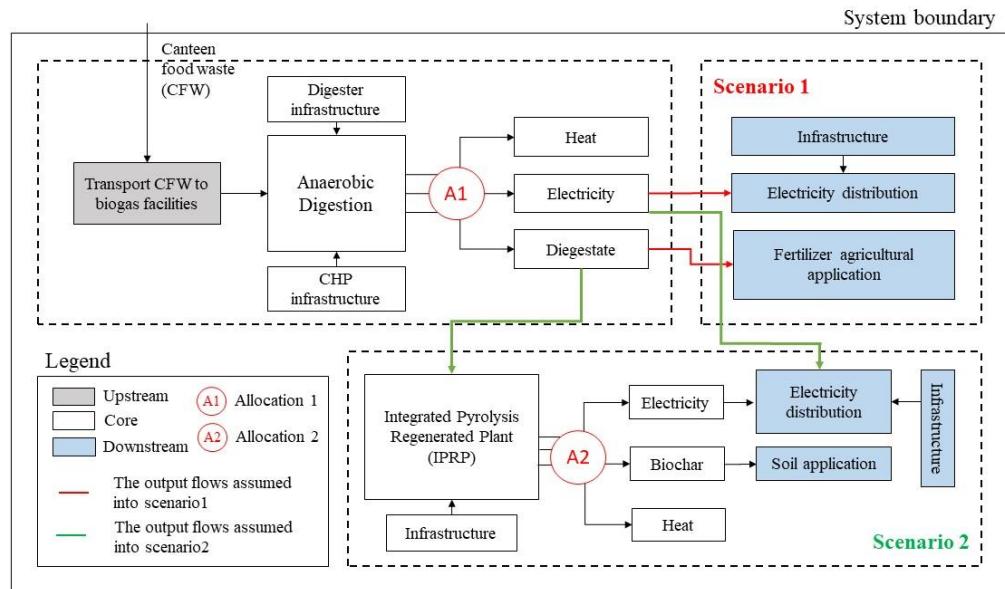
159 The study is based on the LCA methodology, as defined in the norms: ISO 14044

160 and the ISO 14040. In particular for this study, the PCR “Electricity, steam and hot/cold

161 water generation, UN-CPC groups 171 and 173” has been considered. It is available in

162 the website of the International EPD System (Environdec).

163 To perform the study the OpenLCA software was used. The scope of the LCA


164 includes system boundaries and functional unit determination. As above said the goal of

165 the work is to calculate the environmental impact of producing 1 kWh of electricity (i.e

166 the functional unit), reusing food waste in an anaerobic digestion pant by means of an

166 LCA analysis. The system boundaries illustrated in [Figure 1](#) determine which unit
167 processes shall be included within the LCA. In the specific case the processes contained
168 inside the system boundaries can be classified in three main categories: upstream, core
169 and downstream. The upstream processes are represented by the collection of the food
170 waste from each of the 29 canteens. A logistics optimization tool was used to calculate a
171 minimum cost collection route. Core processes are represented by the small-scale
172 anaerobic digestion plant operation. Assuming an average composition of the food waste
173 the mass and energy balances of the plant were calculated and modeled. Then the
174 downstream processes are represented by: digestate application in soil for nutrient
175 release; transport of dismantled construction material to recycling facilities, and
176 electricity distribution. It is assumed that the digestate will be used as fertilizer in
177 gardening operations inside the University campus. Some studies (see [Lijó \[20\]](#)) assume
178 that the digestate can substitute the use of other commonly used fertilizers (nitrogen
179 nitrate for example).

180

181
182 Figure 1: LCA of biogas produced from canteen food waste (FU=1kWhe)
183

184 From Figure 1 it can be seen that 2 cases of allocation are encountered:

185 1. the first in correspondence of the Combined Heat and Power production from biogas;
186 2. the second in correspondence of the Combined Heat and Power production from
187 pyrogas.

188 For this reason, two approaches are adopted for allocation and lately compared in a
189 sensitivity analysis: economic allocation and allocation performed with system expansion.

190
191 2.2 Inventory analysis

192 2.2.1 Canteen food waste availability

193 This paper uses HUST (Huazhong University of Science and Technology), as an
194 example of university campus in China. HUST is situated in Wuhan, a city with 9 million
195 inhabitants located between Beijing and Shanghai. HUST is a national key university

196 directly under the administration of the Ministry of Education of P.R. China. The campus
197 covers an area of over 1,153 acres and has 72% greenery coverage.

198 HUST has a number of students equal to 61,700 and over 3000 teachers (of which
199 900 are professors). The canteens are frequently used by the students and professors (three
200 times per day: breakfast, lunch and dinner). There are altogether 29 canteens in the HUST
201 campus. The coordinates of the canteens used in this study are listed in **Table S1 of the**
202 **supplementary material**. The estimate of Canteen Food Waste production is based on the
203 equation:

$$CFW = Q \times n \quad (1)$$

204 Where CFW denotes the total quantity of canteen food waste. Q represents the
205 average per capita production of food waste in Chinese canteens (expressed in
206 kg/d/person), while n is the number of students and teachers. According to De Clercq et
207 al. 2016 [8], Q is 51 kg /year/person and n is 64,700, so the total available CFW equals
208 to about 3,300 t.

209 To solve the VRP (Vehicle Route Problem) associated with the CFW collection, the
210 VRP Spreadsheet Solver developed by prof. Erdogan at Bath University (UK) [19] was
211 used, and the shortest route is shown in **Figure 2**. It is assumed to start the collection from
212 the Depot (or the biogas plant installation), which in this case is coincident with canteen
213 number 11.

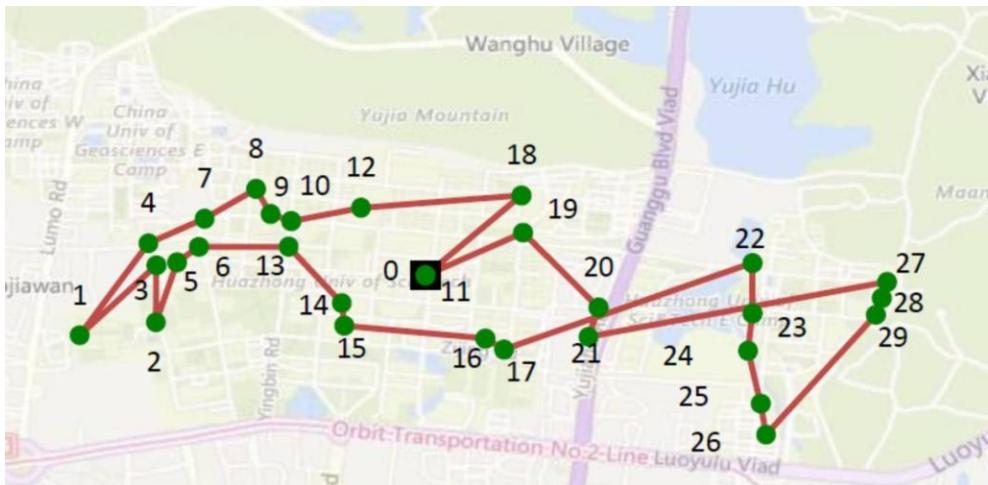


Figure 2: Optimized food waste collection path

The length of the optimized route is shown in [Table 1](#), where the path is divided step by step, indicating the distance from one canteen to another.

According to the [Table 1](#), the total transport distance is 17.37 km. The route is repeated daily. If we consider that the total quantity to be transported is equal to 3300 t per year, we can infer that the total transport quantity is 109,725 t*km (on an annual basis, considering that on holidays the collection is not performed). The process to simulate the impact of the transport phase is “Market for transport, freight lorry 16-32 metric tons, EURO 4 GLO” taken from the database Ecoinvent 3.5.

[Table 1](#): Results of the calculation of the shortest path between the 29 canteens

Location name	Distance travelled (km)
Depot	0
C19	0.63
C20	1.68
C21	1.86
C27	4.64

C28	4.74
C29	4.83
C26	6.29
C25	6.50
C24	7.08
C23	7.21
C22	7.48
C17	9.00
C16	9.19
C15	9.86
C14	10.15
C13	10.60
C6	11.05
C5	11.22
C2	11.63
C3	11.95
C1	13.40
C4	14.34
C7	14.85
C8	15.16
C9	15.38
C10	15.47
C12	15.87
C18	16.60
C11	17.37
Depot	17.37

۲۲۸

۲۲۹ In HUST the daily availability of food waste is about 11 tons and it is concentrated
 ۲۳۰ on a limited area; considering that during the holidays there is no production, it is assumed
 ۲۳۱ that the collection will take place only during 300 days per year. So, it has been assumed
 ۲۳۲ that the food waste will be collected daily by a truck of a maximum capacity of 20 t.

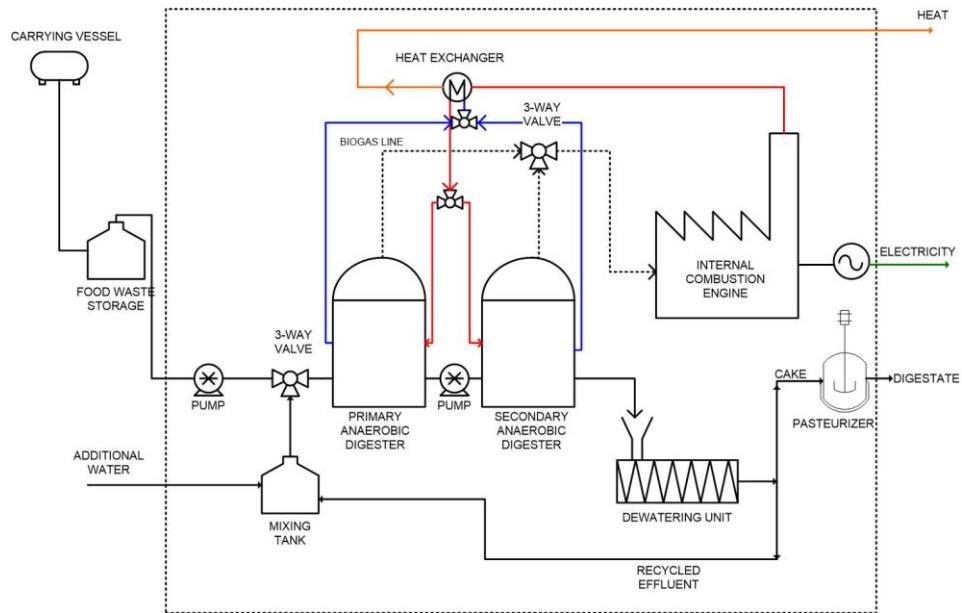
۲۳۳

224 2.2.2 Biogas plant mass and energy balances

225 As stated above, the annual quantity collected in HUST campus canteens is equal to
226 3,300 t. The composition of this quantity is taken from Liu [21]. Each component has
227 been cooked separately and then mixed in the proportions reported by Liu [21], the
228 mixture has been analyzed at the laboratories of the Biomass Research Center at the
229 University of Perugia, obtaining the data reported in **Table S2 of the supplementary**
230 **material**. Data about the working conditions of the plant have been derived using the
231 modeling software BioWin, released by Envirosim Canada, as reported in [16].

232 The mass of the digestate is obtained by multiplying the daily production calculated
233 by the software BioWin for the total number of days obtained from the following
234 equation:

$$235 \quad ND = WH/24 \quad (2)$$


236

237 Where ND represents the number of days; WH represents the working hours (assumed to
238 be 7,000 hours).

239 The Anaerobic digestion plant layout is shown in **figure 3** and derives from a
240 previous study realized by Huiru et al. [16]. The study was done in collaboration between
241 the University of Perugia and ICARE (Institute for Clean and Renewable Energy) located
242 in Huazhong University of Science and Technology (HUST) in Wuhan. The results have
243 shown that the project has an interesting economic performance and so a deeper analysis
244 was needed on the environmental performance of the whole chain. That layout is based

200 on the information which was provided by a Chinese company producing anaerobic
201 digestion plants, named Puxin Technology Co. Ltd.

202

204 Figure 3: Scenario 1, layout of the anaerobic digestion plant with digestate

205
206 pasteurization to use it into the soil, adapted from [16]

207

208 Each of the two digesters (primary and secondary) has a volume of 1,260 m³. The
209 digesters are two Continuously Stirred Reactors (CSTR), which are operated in fed-batch
210 mode. Wet anaerobic digestion (with an average substrate moisture content of 69%) is
211 performed at 35°C. Total available volume is about 2,500 m³. The digester is modeled
212 using the process: "Anaerobic digestion plant, agricultural |RoW| construction| Alloc Rec,
213 U" taken from the Ecoinvent 3.3 Database. This process is referred to a volume of the
214 digester which is equal to 500 m³. So the impact should be multiplied for 5 times, given
215 that the total volume of the digesters in this case study is about 2500 m³. The life cycle of

the plant is assumed to be about 20 years, according to Gebrezgabher [22], hence the annual coefficient to assess the impact of the anaerobic digestion infrastructure is about 0.25. Details on the anaerobic digestion infrastructure are listed in [Table 2](#). The electrical consumption of the biogas plant is reported in table S12 in the supplementary material.

¶

[Table 2: Anaerobic digestion plant infrastructure](#)

Materials/fuels	Unit	Values
Concrete, normal {RoW} market for Alloc Rec, U	m^3	120
Polyethylene, high density, granulate {GLO} market for Alloc Rec, U	kg	170
Reinforcing steel {GLO} market for Alloc Rec, U	kg	10800
Glued laminated timber, for outdoor use {GLO} market for Alloc Rec, U	m^3	80
Polystyrene, high impact {GLO} market for Alloc Rec, U	kg	570
Polyvinylidenechloride, granulate {GLO} market for Alloc Rec, U	kg	330
Copper {GLO} market for Alloc Rec, U	kg	250
Synthetic rubber {GLO} market for Alloc Rec, U	kg	1200
Steel, chromium steel 18/8 {GLO} market for Alloc Rec, U	kg	1300
Heat and power co-generation unit, 160kW electrical, common components for heat+electricity {GLO} market for Alloc Def, U	Items	0.046
Heat and power co-generation unit, 160kW electrical, components for heat only {GLO} market for Alloc Def, U	Items	0.046
Heat and power co-generation unit, 160kW electrical, components for electricity only {GLO} market for Alloc Def, U	Items	0.046

¶

The disposal of the waste construction material was not considered, assuming that it was recycled. Only the transport to the recycling facility was considered.

For each kWh of electricity produced an amount of 3,91E-8 of CHP plant facility is required, assuming a life cycle of the plant of about 20 years (see [Gebrezgabher \[22\]](#)).

The processes that are used to simulate the impact of the CHP plant belong to the

282 Ecoinvent 3.3 Database. They are indicated in the unit of measure “items”, which implies
283 that we allocate the CHP facility based on time and we consider 1 year out of 20 years of
284 total life of the plant, calculating also the maintenance hours during which the plant is
285 stopped (the same unit is used for the anaerobic digestion facility which is based on 2
286 digesters).

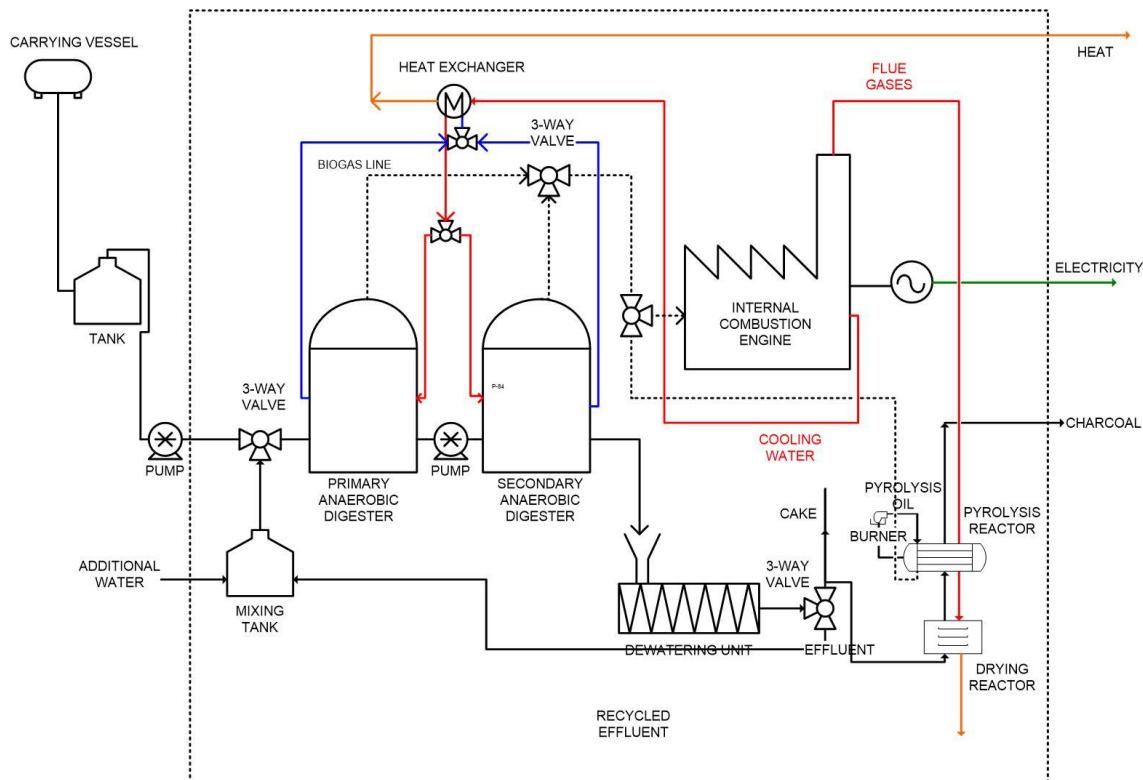
Electricity production and distribution are calculated by multiplying the net power capacity for the working hours. Table 3 reports the mass and energy balances, as they have been calculated and then inserted in the OpenLCA software. The details of the calculations are reported in the supplementary materials.

Table 3: Final mass and energy balance of the biogas plant

Items	Amount	Unit
<u>Inputs</u>		
Digester	0.092	Items
Electricity distribution	1.23E+6	kWh/year
Flue gases	9.465E+6	kg/year
Heat and power co-generation unit,	0.046	Items
Food Waste	3,300	t/year
Electricity consumption for pasteurizer	75,000	kWh/year
<u>Output</u>		
Electricity biogas plant	1.23E+6	kWh/year
Heat	0.343E+6	kWh/year
Digestate	3,300	t/year

194 It can be seen from table 3 that the digestate produced is equal to only 3300 t/year given

that after the solid-liquid separation only the cake is used in the soil, while the liquid fraction (equal to about 12,140 t/year of effluent) is recirculated inside the digester to dilute the food waste. The digestate characteristics are reported in table S3 of the supplementary material. From the plant the following quantities of biogas are produced:


- 7.71 m³/h biogas (64% concentration of CH₄) in the second digester;
- 84.13 m³/h biogas (62% concentration of CH₄) in the first digester.

2.2.3 Coupled Anaerobic Digestion and Pyrolysis Plant mass and energy balances

According to what has been presented in [Figure 1](#), the paper assumes that two scenarios can be adopted for the treatment of digestate:

1. pasteurization of digestate and its use in the soil;
2. drying of the digestate and its pyrolysis.

In this last case the layout of the plant will be modified into that shown in [Figure 4](#).

٢١٠ Figure 4: Scenario 2, layout of the coupled anaerobic digestion and pyrolysis plant

٢١١

٢١٢ From Figure 1S of the Supplementary material it can be seen that the following yields
٢١٣ have been obtained from the pyrolysis tests performed on digestate (at the final
٢١٤ temperature of 600°C):

٢١٥ - charcoal mass yield: 36 wt%;
٢١٦ - pyrolysis oil mass yield: 18 wt%;
٢١٧ - pyrogas mass yield: 46 wt%.

٢١٨ These yields have been obtained performing slow pyrolysis tests at the facility of the
٢١٩ Biomass Research Centre of the University of Perugia, see [23, 24]. The tests have been
٢٢٠ performed with a heating rate of about 5°C/min and a final pyrolysis temperature of
٢٢١ 550°C. The temperature and pressure trends inside the batch reactor are reported in Figure
٢٢٢ 2S of the supplementary material. The characterization of the digestate and the charcoal,
٢٢٣ obtained after pyrolysis, are reported respectively on tables 3S and 4S of the
٢٢٤ supplementary material. Syngas composition is reported in Figures S.3 and S.4. The LHV
٢٢٥ at 550°C can be approximated to 16.6 MJ/kg. the average LHV of pyrolysis oils is 21
٢٢٦ MJ/kg, given that they contain also about 40% water.

٢٢٧

٢٢٨ Table 4: Final mass and energy balance of the biogas plant when coupled with the
٢٢٩ pyrolysis plant

Items	Amount	Unit
<u>Inputs</u>		
Digester	0.25	Items
Pyrolysis unit	676,168*	kWh/year
Electricity distribution	1.906E+6	kWh/year
Flue gases	16.069E+6	kg/year

Heat and power co-generation unit	0.046	Items
Food Waste	3,300	t/year
Electricity consumption for drying the digestate	324,219	kWh/year
<u>Output</u>		
Electricity biogas plant	1.906E+6	kWh/year
Heat	0.419E+6	kWh/year
Charcoal	383	t/year

*the pyrolysis plant, which is an input of the analysis is considered as an infrastructure, its amount is expressed in kWh because it is the reference unit reported also in [25].

۳۳۱

۳۳۲ As it can be seen from [Table 4](#), the pyrolysis plant impact is estimated through the values
 ۳۳۳ reported in Bartocci et al. [\[25\]](#). These represent the impact of the materials used to
 ۳۳۴ construct the plant, which are referred to 1 kWh_e produced by the plant. For this reason,
 ۳۳۵ the impact of the plant is expressed referring it to the electrical production capacity.
 ۳۳۶ Considering that about 85 kWh_e can be produced using the pyrogas generated through
 ۳۳۷ pyrolysis a total electricity production of 676,168 kWh_e/year can be obtained (this will
 ۳۳۸ be added to the electricity produced from the biogas plant, see [table 3](#), giving the total
 ۳۳۹ sum of 1,906,128 kWh_e). It is assumed that the pyrogas obtained from the plant will be
 ۴۰ mixed together with biogas and converted in the same engine used for the anaerobic
 ۴۱ digestion plant. So only the materials used to build the pyrolysis reactor are considered.

۴۲

۴۳ Table 5: Composition of cake and effluent (derived from BioWin simulation)

Parameter	Amount	Unit
<u>Cake</u>		
TSS	32.2	%

VSS as % of TSS	67.00	%
N as % of TSS	4.38	%
P as % of TSS	0.45	%
pH	7.31	-
TSS	967.08	kg/d
VSS	647.91	kg/d
<u>Effluent</u>		
Flow	37.04	m ³ /d
Ammonia N	3882.88	mgN/L
Filtered TKN	3978.38	mgN/L
Total N	3999.42	mgN/L
Total P	140.17	mgP/L
TS	669.52	mg/L
COD	6125.41	mg/L
Total carbonaceous BOD	30.28	mg/L
pH	7.31	-

۳۴۴

۳۴۵ The mass of charcoal is calculated considering the product yields of the pyrolysis process
 ۳۴۶ reported in [Figure S1 of the Supplementary material](#) and the composition of the digestate
 ۳۴۷ (in particular moisture content) reported in [Table 5](#). This has been calculated using the
 ۳۴۸ software BioWin.

۳۴۹

۳۵۰ 2.2.4 Reuse of digestate: soil application versus pyrolysis
 ۳۵۱ Dealing with the reuse of the digestate, it is assumed that this will be used as compost
 ۳۵۲ and soil amendment in gardening operations inside the campus. The distribution into the
 ۳۵۳ soil is assumed to be manual for the cake. Spreaders will be used for the liquid effluent.
 ۳۵۴ Once the digestate is inside the soil, the nitrogen contained in it will be transformed by
 ۳۵۵ soil microbia, generating air emissions (eg. dinitrogen oxide). When the digestate is
 ۳۵۶ mineralized into nitrates and nitrites, it will also undergo leaching. These phenomena are

۳۰۷ simulated using the PCR (Product Category Rules) of arable crops, available in the
۳۰۸ Environdec website (i.e. the website of the International EPD® System). The
۳۰۹ International EPD® System is a global programme for type III environmental
۳۱۰ declarations operating in accordance with ISO 14025. The PCR contained in the
۳۱۱ Environdec website are very useful to standardize the LCA results. The methods used for
۳۱۲ the calculation of air and water emissions are shown in **Table 6**.

۳۱۳

۳۱۴ Table 6: Methods used for the calculation of air and water emissions, based on the PCR
۳۱۵ on Arable Crops

۳۱۶

	Emission	Paragraph	Source
Emission in air	Ammonia	8.4.1	[26-28]
	N_2O , NO- direct emission	8.4.2	[29]
	N_2O , -indirect emission	8.4.2	[27]
Emission in water	Nitrates	8.4.4	[28]
	Phosphorus	8.4.5	[30]

۳۱۷

۳۱۸ Instead of using the cake and part of the effluent as a soil amendment, the residue of the
۳۱۹ anaerobic digestion can be dried and then pyrolysed. This treatment has the following
۳۲۰ advantages:

۳۲۱ - the emissions to air and water, released by the degradation of the nitrogen and
۳۲۲ phosphorus contained in the digestate are avoided. This is true also when the solid product
۳۲۳ of pyrolysis (charcoal) is applied into the soil, because nitrogen and phosphorus in that
۳۲۴ case are contained in more stable forms (see Liu et al. [31] and Case et al. [32]);

۳۷۰ - the carbon fraction of charcoal (see Fang et al. [33]) is also more stable than that of
۳۷۱ digestate (see Monlau et al. [34]), once it is inserted in the soil. In fact, the carbon fraction
۳۷۷ of charcoal can remain stable for more than 100 years (see Singh et al. [35]) and represents
۳۷۸ for this reason a storage of carbon ;
۳۷۹ - charcoal can have benefits on the soil, decreasing the leaching of pollutants (see Si et al.
۳۸۰ [36]) and increasing elements absorption in crops (see Namgay et al. [37] and Yao et al.
۳۸۱ [38]), as well as water retention in the soil (see Baiamonte et al.[39] and Hussain et al.
۳۸۲ [40])
۳۸۳ - from the volatile part of the digestate pyrogas and pyrolysis oil (see Bartocci et al. [23])
۳۸۴ can be produced. Those products can be used to produce electricity and also heat, to
۳۸۵ complete the drying of the digestate.
۳۸۶ The advantage on soil of using charcoal or biochar are not considered in this study,
۳۸۷ because they could not be assessed experimentally.

۳۸۸

۳۸۹ 2.3 Life cycle impact assessment

۳۹۰ Dealing with the Impact Assessment phase, the CML method has been used. Among
۳۹۱ the CML impact categories, the following were chosen: Climate Change, Freshwater
۳۹۲ eutrophication, Photochemical oxidant formation and acidification.

۳۹۳ The software used in the analysis is OpenLCA. Dealing with allocation two
۳۹۴ approaches are chosen:

۳۹۵ 1. allocation based on economic values of electricity, heat and digestate;

2. allocation based on system expansion, considering as avoided products: the electricity produced by the Chinese electricity mix; the heat produced inside the campus using heat pumps; urea (which is substituted by digestate on the basis of the nitrogen concentration).

Dealing with the economic allocation, the coefficients shown in Table 7 have been used. They have been calculated according to the following equation:

$$EAC = \frac{PrSb_i * QSb_i}{\sum_i^n PrSb_i * QSb_i} \quad (3)$$

Where $PrSb_i$ is the price of the subproduct I; QSb_i is the quantity of the subproduct i. The quantitative data reported in [table 7](#) are the outputs reported in tables 4 and 5.

Table 7: Economic allocation factors

SCENARIO 1				
	Quantity	Unit	Income (RMB)	Coefficient
Heat	343,000	kWh	64,313	0.06
Electricity	1,230,000	kWh	738,000	0.69
Digestate	3,300	t	261,130	0.25
SCENARIO 2				
	Quantity	Unit	Income (RMB)	Coefficient
Heat	419,000	kWh	78,563	0.04
Electricity	1,906,000	kWh	1,608,600	0.91
Charcoal	383	t	84,000	0.05

Calculations of the allocation factors for the scenario number 1 are based on the following assumptions:

- price of electricity in China: 0.6 RMB/kWh (according to CEIC [41] and CEIC [41]);

· - price of heat (if heat is produced through electricity is the same of the electricity, the efficiency of the heat pump is estimated to be about 3.2);

· - price of urea is about 1820 RMB/kg, according to CEIC [42] data.

Calculations of the allocation factors for the second scenario are based on the following assumptions:

- the digestate which is pyrolyzed has a total dry matter equal to 1063 t;
- the product yields are those reported in figure **S1 of the supplementary material**;
- gas LHV is correspondent to what reported in **figure S4 of the supplementary material**;
- gross electric power of the plant is about 85 kWe;
- price of electricity in China: 0.6 RMB/kWh (according to CEIC [41] web site);
- price of heat (if heat is produced through electricity is the same of electricity, the efficiency of the heat pump is estimated to be about 3.2).

The input data for the allocation based on system expansion are reported in **tables 8 and 9**. **Table 8** shows for each of the multiple products obtained by the process “Combined Power and Heat generation” in both cases of the anaerobic digester and of the combined anaerobic digester and pyrolysis plant, the corresponding avoided products. **Table 9** for each avoided product identifies which are the most important impacts in the considered impact categories.

Table 8: Impacts of the avoided products, according to CML impact method (data taken from SimaPro database and OpenLCA database)

Impact category	Reference unit	Urea /kg	Phosphate fertilizer /kg	Electricity /kWh
Climate change	g CO ₂ eq	3287.42	1863.59	1126.29
Eutrophication	g P ₂ O ₅ eq	0.00406	0.00862	0.00085
Photochemical Oxidation	gC ₂ H ₂	0.00091	0.00093	0.00023
Acidification	gSO ₂ eq	0.02197	0.02183	0.00579

431

432 Table 9: Avoided products

Product	Value	Unit	Alternative	Value	Unit
Digestate	1	t	Urea	30,76	kg
			Phosphate fertilizer	3,16	kg
Heat	3.2	kWh	Electricity	1	kWh
Electricity	1	kWh	Electricity	1	kWh
Biochar	1	t	Urea	73,91	kg

433

434 To calculate the rate of substitution shown in [table 9](#) the following input data have

435 been considered:

436 - the composition of digestate shown in [table S3](#);

437 - the composition of biochar reported in [table S4](#);

438 - the COP of the heating plants used in Huazhong University of Science and

439 Technology campus (retrieved by the students and based on the heating apparatus

440 datasheets).

441 Allocation is not used when the impact is expressed based on the tons of canteen

442 food waste which are disposed. In that case the final impact is calculated based on the

443 following equation:

$$444 I_{CFW} = I_{El} * EP / EAC \quad (4)$$

440 Where I_{CFW} identifies the impact referred to the ton of Canteen Food Waste (CFW)

441 which is produced; I_{EI} represents the impact referred to the production of 1 kWh, EP

442 is the total electricity production for the scenario and EAC is the allocation factor for the

443 electricity.

444

445 3. Results

446 3.1 Impact analysis: comparison between the first and the second scenario

447 The results for every impact category have been listed in **Table 10**. It can be seen

448 that the coupling of pyrolysis and anaerobic digestion has in general a lower impact

449 compared to the scenario 1 in which only anaerobic digestion is performed. Scenario 2 has

450 lower impact in the categories: Climate Change, Eutrophication and Acidification; which

451 are the most important. On the other hand, the scenario 2 has a higher impact in the

452 category Photochemical oxidation, this is due to the increased production of electricity,

453 which implies higher emissions of C_2H_2 from the CHP plant.

454

455 Table 10: LCA analysis results for scenario 1 and 2 – Economic allocation

Impact category	Reference unit	Results-scenario 1	Results-scenario 2
Climate change	g CO_2 -eq/kWh	62.17 ± 1.12	27.07 ± 0.75
Eutrophication	g PO_4^{3-} -eq/kWh	1.10 ± 0.05	0.24 ± 0.01
Photochemical oxidation	g C_2H_2 -eq/kWh	$0.01 \pm 2.51E-3$	$0.06 \pm 1.96E-3$
Acidification	g SO_2 -eq/kWh	3.00 ± 0.27	0.88 ± 0.41

456

457 3.2 Sensitivity analysis on allocation

¶¶¶ The results of the LCA analysis based on allocation on system expansion are proposed in **table 11**.

¶¶¶ Table 11: Sensitivity analysis on allocation, results of the system expansion approach

	Climate change (gCO ₂ eq/kWh)	Freshwater eutrophication (gPO ₄ ³⁻ eq/kWh)	Photochemical oxidation (gC ₂ H ₂ /kWh)	Terrestrial acidification (gSO ₂ eq/kWh)
Scenario 1	-367.52	1.5795	0.0926	4.33
Scenario 2	-189.27	0.240	0.06	0.0004

¶¶¶ If we compare the results shown in **Table 11** with those shown in **Table 10**, we see that the value of the impact in the category Climate Change passes from positive to negative. This is due to the fact that the avoided products prevail. Avoided heat, electricity and fertilizers have big impacts, that bring the total results to a negative value. This is a typical result, which can be achieved also with a consequential approach. In particular the final results has been calculated with the following equation:

$$El_I = I_EA/EAC - AI_Heat - AI_Fert \quad (5)$$

¶¶¶ Where El_I is the impact of electricity production; I_EA is the impact obtained with economic allocation (which is shown in table 10); EAC is the economic allocation coefficient (which is reported in equation 3); AI_Heat is the avoided impact of heat production (obtained by multiplying the mass of avoided natural gas for the impact of its production and combustion); AI_Fert is the avoided impact of fertilizer production

§82 (obtained by multiplying the quantity of avoided fertilizer for the impact of its production).
§83 From equation 5 it can be seen that the avoided fertilizer explains the difference between
§84 the impacts of Scenario 1 and 2. In this case the results obtained from the economic
§85 allocation scenarios are inverted. In our opinion the economic allocation is preferable in
§86 this case because they are closer to reality (if we consider in fact the total quantity of food
§87 waste which is treated, as shown in table 12, the second scenario appears to be more
§88 convenient). We have also to consider that the use of digestate as a fertilizer is not always
§89 possible and could lead to pollution of the soil, when it is derived from food waste (eg.
§90 by spreading microplastics in the soil).

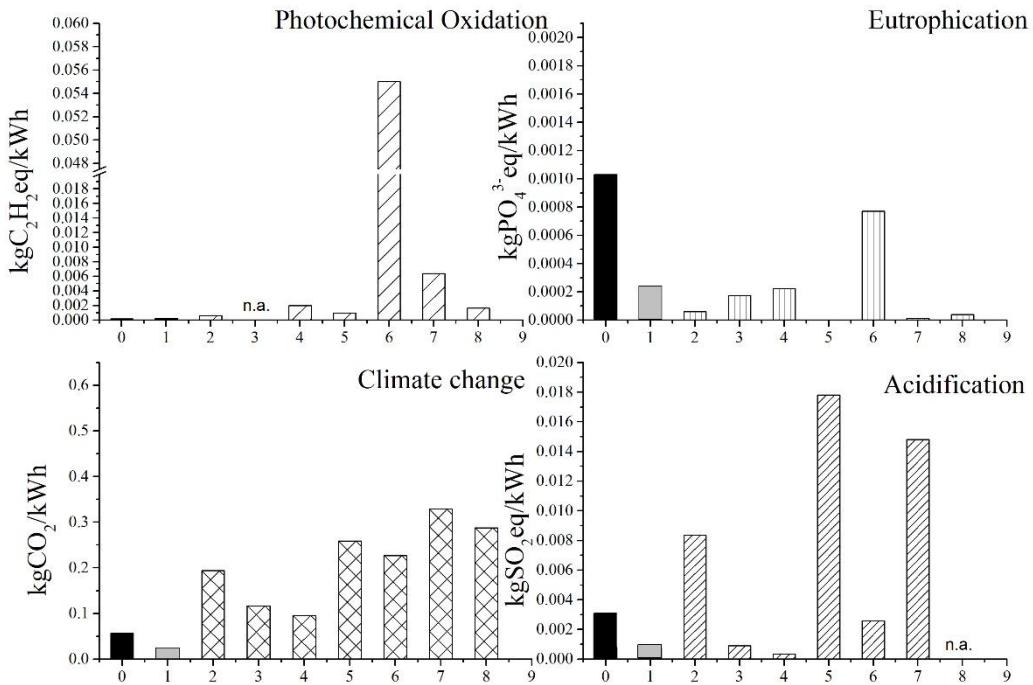
§91 The second scenario in this case has an impact which is always lower than the first
§92 scenario, given that biochar reduces much of the negative impact of digestate, when
§93 applied in the soil. On the other hand, biochar substitutes a quite irrelevant amount of
§94 fertilizer, on the contrary of digestate, this explains why the performance on the Climate
§95 Change category is better for the digestate.

§96
§97
§98 3.3 Results expressed on the ton of treated food waste
§99 If we multiply the final results shown in table 10 for the total produced electricity and we
§100 divide for the total amount of treated food waste we can express the final impact on the
§101 ton of treated food waste (see table 12). This is equal to: 20.04 kgCO₂eq/t CFW for the
§102 first scenario and 14.53kgCO₂eq/t CFW in the second scenario. These values are in
§103 agreement with that presented in Jin et al. [13] and even lower. We see here that if
§104 allocation is completely avoided the most promising scenario becomes the second one.

o.4 The other impacts in the categories of Photochemical Oxidation, Eutrophication and
o.5 Acidification are: 2.01E-3 kgC₂H₂eq/t CFW and 0.03kgC₂H₂eq/t CFW; 0.35gPO₄³⁻eq/t
o.6 CFW and 0.13gPO₄³⁻eq/t CFW; 0.97kgSO₂eq/t CFW and 0.47kg SO₂eq/t CWF,
o.7 respectively for the Scenario 1 and the Scenario 2 (see table 12).

o.8

o.9 Table 12: Results expressed on the ton of treated food waste


Impact category	Reference unit	Results-scenario 1	Results-scenario 2
Climate change	kgCO ₂ -eq/tCFW	20.04±2.71	14.53±0.98
Eutrophication	kgPO ₄ ³⁻ -eq/tCFW	0.35±0.11	0.13±0.08
Photochemical oxidation	kgC ₂ H ₂ -eq/tCFW	2.01E-3±5.41E-4	0.03±0.01
Acidification	kgSO ₂ -eq/tCFW	0.97±0.22	0.47±0.08

o.10

o.11 4. Discussion

o.12 4.1 Comparison with other works

o.13

o14

o15 Figure 5: Comparison of the results for the two scenarios with literature. Scenario 1 is
o16 indicated with the number 0 (it corresponds to the analysis of anaerobic digestion and use
o17 of digestate as a fertilizer, performed in this study) and it is colored in black, scenario 2
o18 is indicated with the number 1 (which corresponds to the analysis of anaerobic digestion
o19 followed by pyrolysis, performed in this study) and it is colored in grey, literature scenario
o20 number 2 refers to the analysis presented in Lijó et al. [20] the substrate in this case is
o21 represented by maize, pig slurry Organic Fraction of Municipal Wastes (OFMW) and
o22 food waste (food waste contributes to 41% of the mass input), literature scenario 3 refers
o23 to the analysis presented in Boulamanti et al. [43] the substrate is manure it is assumed
o24 that the digestate is stored on a closed storage, literature scenario 4 refers to the analysis
o25 presented in Fantin et al. [44] the plant is fed with a mixed feedstock which is composed
o26 by: maize silage, sorghum, triticale, cow slurry, pressed sugar beet pulps, winery waste,

027 literature scenario 5 refers to the analysis of Fusi et al. [45] in which the feedstock is
028 mainly represented by maize silage, literature scenario 6 refers to the analysis presented
029 in Iordan et al. [46] in which the feedstock is represented by sewage sludge, fats from
030 food industry, sludge from septic tanks and other biological wastes, which are pretreated
031 with thermal hydrolysis, literature scenario 7 refers to the analysis presented in Kompogas
032 [47] where the feedstock is represented by green and organic waste, literature scenario 8
033 refers to the analysis presented in Van Stappen et al. [48] where the feedstock is
034 represented by: beet tails, downgraded potatoes, cereal middlings, mown lawn grass and
035 starch from fries cleaning; in this case the consequential LCA analysis is adopted, instead
036 of attributional LCA

037

038

039

040 To understand fully the results reported in **table 10** these have to be compared with other
041 LCA studies on biogas plants, which are available in the literature. Regarding the
042 literature data reported in **figure 5**, it has to be taken into account that in the study of Lijó
043 et al. [20], two scenarios are compared: a biogas plant fed with cultivated maize (scenario
044 A) and a biogas plant in which part of the maize is substituted by food waste (scenario
045 B). The data reported in **Figure 5** are referred to scenario B. In Lijó et al. [20] it is
046 demonstrated that substituting energy crops with food waste basically can reduce the
047 impact of biogas production. Our study demonstrates that if biogas is produced only using
048 food waste the impact can be further reduced. This study in fact has impacts which are

always lower than those obtained by Lijó et al. [20]. The only exception is the eutrophication impact. This is due to the used of digestate and the fact that in the study of Lijó et al. [20] the substituted inorganic fertilizer is considered inside the boundaries of the LCA.

The work of Boulamanti et al. [43] proposes an LCA study on different scenarios for producing biogas. The case study reported in Figure 6 represents a biogas plant fed with animal manure when the digestate is stored in a closed environment. Also in this case the literature study has a lower value of eutrophication, while the other impacts are definitely higher. In the work of Fantin et al. [44] an LCA of a biogas plant fed with energy crops, cow slurry and agro-industrial residues, in co-digestion. The impact of acidification cannot be compared with that of our study because it was calculated with another method.

The impact for the eutrophication category also in this case is lower than in our study.

In the work of Fusi et al. [45] the feedstock which is used in the anaerobic digestion plant is represented by maize and so the impact is generally always higher than this study, which uses food waste. The impact assessment methods which are used are similar to those used in this study. The work of Iordan et al. [46] deals with the LCA of biogas production from sewage sludge, fats, sludge from septic tanks and other biological substrates. Since the heat and the digestate are not sold the impact is assigned only to electricity production and no avoided products are taken into account. It can be seen that for the impact categories of acidification, climate change and photochemical oxidation the case study when the obtained digestate is applied to the soil. In the study of the Komogas [47] facility, which has been downloaded in the Environdec website the

o71 impacts are always higher, except for the categories of acidification and eutrophication.

o72 In this EPD the methodologies used to calculate emissions during digestate use are not

o73 explained in detail. Besides these emissions depend on the composition of the waste

o74 which is digested. The Kompogas plant works with OFMW, which can have slightly

o75 lower content of nitrogen and phosphorus. The impact on Photochemical Oxidation is

o76 missing in the **Kompogas** [47] LCA analysis.

o77 The study of Van Stappen et al. [48] is clearly a consequential LCA. So this reference

o78 was considered to see which is the difference between the results of an attributional LCA

o79 and a cLCA. The lower impact of cLCA is generally due to the fact that several avoided

o80 products are inserted in the boundaries of the system. This choice often is not easy to

o81 justify and to standardize. In particular in Van Stappen et al. [48] different scenarios are

o82 examined, which differ for the final use of the produced biogas. In **Figure 5** it is reported

o83 the scenario which displaces electricity produced with natural gas.

o84

o85 We can conclude that the higher impact on eutrophication is quite significant, but we have

o86 to take into consideration also that in many literature case-studies (see 2,3,4,8,9) the

o87 eutrophication is divided in two subcategories: terrestrial and maritime and the units of

o88 measure are slightly different respect to the one adopted in CML, so this can explain the

o89 difference, at least partially. The literature case study 7 has values of eutrophication which

o90 are quite comparable and this makes the results of this study quite significant because this

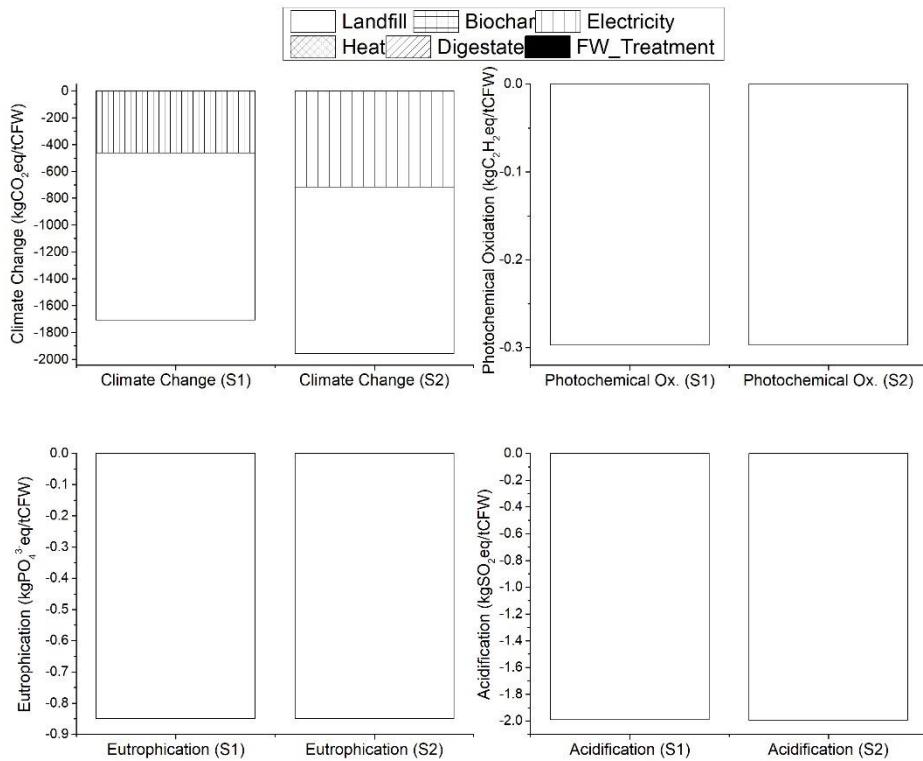
o91 case study is the only which has been certified and is based on a Product Category Rule.

o92 Product Category Rules are useful to standardize LCA methodology and the presentation

and communication of results, they are mainly used for Environmental Products Declarations (EPD) in which the main considered impacts are: acidification, eutrophication, photochemical oxidation and climate change. For this reason, these were chosen also in this study.

097

098


099 4.2 Scale up of the results of the analysis to a global level: the potential reduction of GHG
100 emissions

101 Starting from the data shown in **table 12**, which show the impact of treating 1 t of CFW,
102 we can consider that the final impact of the proposed technology should be evaluated also
103 considering the following aspects:

104 - the negative impacts deriving from the avoided products, which are considered
105 to be: the fertilizer (avoided by the digestate and the biochar use in the soil); the
106 heat (avoided by the heat produced from the CHP plant); the electricity (avoided
107 by the electricity produced by the CHP plant) and the landfill disposal (avoided
108 by the anaerobic digestion plant).

109 - the avoided impacts due to landfill disposal are estimated based on what reported
110 in [49].

111 In this way in **Figure 6** we can see the total impacts referred to 1 ton of CFW treated
112 with anaerobic digestion coupled with pyrolysis and also how much is the reduction
113 of the impact, due to the treatment of the above-mentioned food waste.

714

715 Figure 6: Total impact reduction due to CFW treatment with anaerobic digestion followed
 716 by pyrolysis, considering also the avoided impact of landfill disposal

717

718 The final impacts reduction is the following (if we consider the treatment with biogas plus
 719 pyrolysis):

720 - Climate Change: 2.0E+03 kgCO₂eq/t CFW;
 721 - Photochemical Oxidation: 3.0E-01 kgC₂H₂eq/t CFW;
 722 - Eutrophication: 8.5E-01 kgPO₄³⁻ eq/tCFW;
 723 - Acidification: 2.0E+00 kgSO₂eq/tCFW.

724

620 If we scale up the results shown in [table 11](#) to the quantity of treated food waste, we can
 621 obtain a total reduction of GHG emissions equal to: 2.0E+03 kgCO₂eq/t CFW. If we
 622 consider that the technology tested in this study (especially anaerobic digestion coupled
 623 with pyrolysis) is applied to University canteens at a global level, we can achieve the
 624 potential reduction of GHG emission indicated in [figure 7](#). The detail of the calculations
 625 shown in [figure 7](#) are reported in [Table 13](#), where the University student population is
 626 reported in the biggest countries in the world and together with this also the food waste
 627 produced per capita, according to [50]. The total number of the university students
 628 population has been evaluated recently by the UNESCO to be more than 200 million [51]
 629 and it is forecasted to grow to 262 million in 2025 [52]. The total amount of GHG which
 630 could be reduced by properly treating the CFW generated in all the world amounts at
 631 more than 20MtCO₂/year.

MtCO₂eq reduction potential

Potential GHG mitigation through
The treatment of CFW:

- Arab States: 2.16 MtCO₂
- Central and Eastern EU: 3.40 MtCO₂
- Central Asia: 2.84 MtCO₂
- East Asia & Pacific: 3.54 MtCO₂
- Latin America: 2.10 MtCO₂
- North America and
Wester Europe: 8.25 MtCO₂
- South & West Asia: 2.11 MtCO₂
- Africa: 0.22 MtCO₂

632
 633
 634
 635
 636
 637
 638 Figure 7: Potential reduction of GHG emissions at continent level
 639

140 If we consider the sum of the data reported in figure 7. This value is equal to about 0.7%
 141 of the total emissions released by the food waste generated in the world. Inf fact, as it is
 142 reported in [53], the estimated emissions released by the food wastes worldwide amount
 143 to 3.3 GtCO₂eq. If we consider that in the i-REXFO LIFE16 project it has been
 144 demonstrated that with the earnings coming from biogas activity communication and
 145 awareness campaigns can be founded and that the students will lead the future generation
 146 given the training and the education they have received, it can be assumed that this
 147 reduction can almost double due to the increase awareness and knowledge on the benefits
 148 of avoiding food waste.

149

150

151 Table 13: Food waste generated by students in the main countries in the world

	Students (millions)	kg FW/ capita	CFW (t)	CO2 avoided (t)	Source
India	34.6	25	865000	1,730,000	[54]
China	30.3	70	2,121,000	4,242,000	[55]
South America	20	40	800,000	1,600,000	[56]
USA	19.6	110	215,6000	4,312,000	[57]
EU-27	17.5	110	1,925,000	3,850,000	[58]
Middle East	13	100	1,300,000	2,600,000	[59]
Africa sub-Saharan	5.3	15	79,500	159,000	[60]
Russian Confederation	5.2	25	130,000	260,000	[61]
Indonesia	4.4	25	110,000	220,000	[62]
Phylippines	3.2	25	80,000	160,000	[63]
Japan	2.91	110	320,100	640,200	[64]
Canada	2.12	110	233,200	466,400	[65]
Thailand	2	25	50,000	100,000	[66]
South Korea	2	70	140,000	280,000	[67]
Vietnam	1.77	25	44,250	88,500	[68]
Australia	1.5	110	165,000	330,000	[69]

Malaysia	1.3	25	32,500	65,000	[70]
Northern Africa	1.28	15	19,200	38,400	[71]
Bangladesh	1	25	25,000	50,000	[72]

٦٥٢

٦٥٣ The data shown in table 13 cover about 169 millions of students equal to about 85% of
 ٦٥٤ the total world university students population.

٦٥٥

٦٥٦

٦٥٧ **5. Conclusions**

٦٥٨ This work has presented a detailed impact analysis of the production of biogas using food
 ٦٥٩ waste collected in a University campus. The study has been performed based on ISO
 ٦٦٠ 14040 and ISO 14044 norms. It was also based on a Product Category Rule: “Electricity,
 ٦٦١ steam and hot/cold water generation”. This was made to grant high reliability to the results.
 ٦٦٢ The open-source software OpenLCA was used to perform the LCA analysis, integrating
 ٦٦٣ the available databases with Ecoinvent 3.5 processes. This study has shown that the
 ٦٦٤ integration of pyrolysis and anaerobic digestion, if compared with anaerobic digestion only, can
 ٦٦٥ bring to a decrease of the impact on Climate Change of 27%. The impact on eutrophication can
 ٦٦٦ be reduced of 64% and the impact on acidification can be reduced of 51%, referring to the unit of
 ٦٦٧ disposed food waste. The integration of pyrolysis has advantages on the final use of digestate
 ٦٦٨ which is transformed into biochar (i.e. a more stable soil amendment) and also on the final energy
 ٦٦٩ production, which increases from 224 kWh/t of food waste treated to 487 kWh/t of food waste

770 treated. Pyrolysis can be also a good solution for the countries, like Italy, in which the use of
771 digestate produced from food waste as a soil fertilizer is not currently allowed.

772

773 6. Acknowledgments

774 Huazhong University of Science and Technology (HUST) funds for internships
775 should be acknowledged. This work was also partly supported by the Foundation of State
776 Key Laboratory of Coal Combustion (No. FSKLCCA1902). Also, this work has partly
777 collaborated with the LIFE 16 ENV/IT/000547 project I-REXFO LIFE
778 (<https://www.irexfo.eu/>).

779

780 6. Bibliography

- 781 1. Larson, C., *Losing Arable Land, China Faces Stark Choice: Adapt or Go Hungry*. Science, 2013.
782 **339**(6120): p. 644.
- 783 2. Zhao, Q. and J. Huang, *Outlook of Agricultural Development to 2050 and the Demand for Science*
784 *and Technology*, in *Agricultural Science & Technology in China: A Roadmap to 2050*, Q. Zhao and
785 J. Huang, Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 7-28.
- 786 3. Parfitt, J., M. Barthel, and S. Macnaughton, *Food waste within food supply chains: quantification*
787 *and potential for change to 2050*. Philosophical Transactions of the Royal Society B: Biological
788 Sciences, 2010. **365**(1554): p. 3065-3081.
- 789 4. UNEP, *Avoiding Future Famines: Strengthening the Ecological Basis of Food Security through*
790 *Sustainable Food Systems*. 2012.
- 791 5. Li, Y., et al., *Current status of food waste generation and management in China*. Bioresource
792 Technology, 2019. **273**: p. 654-665.
- 793 6. BBC, *China launches 'Clean Plate' campaign against food waste*. 2020.
- 794 7. Cheng, S.K., Bai J.W, Jin, Z.H, Wang, D.Y, Liu, G., Gao,S., Bao, J.L., Li, X.T., Li, R., Jiang, N.Q., Yan,
795 W.J., Zhang,S.G, *Reducing Food Loss and Food Waste: Some Personal Reflections (in Chinese)*.
796 Journal of Natural Resources, 2017. **32**: p. 529-538.
- 797 8. De Clercq, D., et al., *Biomethane production potential from restaurant food waste in megacities*
798 *and project level-bottlenecks: A case study in Beijing*. Renewable and Sustainable Energy Reviews,
799 2016. **59**: p. 1676-1685.
- 800 9. Song, L., Bi, Z., Tai, J., Chen, S., *Status and suggestion of food waste treatment in china. (in*
801 *Chinese)*. Environ Sanit Eng. , 2014. **22**.
- 802 10. Guardian, T., *China to bring in law against food waste with fines for promoting overeating*.
803 [https://www.theguardian.com/world/2020/dec/23/china-to-bring-in-law-against-food-waste-
with-fines-for-promoting-overeating](https://www.theguardian.com/world/2020/dec/23/china-to-bring-in-law-against-food-waste-with-fines-for-promoting-overeating), 2021. (accessed 26/2/2021).
- 804 11. Leal Filho, W., et al., *Higher education and food waste: assessing current trends*. International
805 Journal of Sustainable Development & World Ecology, 2021: p. 1-11.
- 806 12. Xu, C., et al., *Life cycle assessment of food waste-based biogas generation*. Renewable and
807 Sustainable Energy Reviews, 2015. **49**: p. 169-177.

Y₁ 9 13. Jin, Y., et al., *Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant*. Applied Energy, 2015. **151**: p. 227-236.

Y₁ 10 14. Woon, K.S., et al., *Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach*. Waste Management, 2016. **50**: p. 290-299.

Y₁ 11 15. Bartocci, P., et al., *LCA analysis of food waste co-digestion*. Science of The Total Environment, 2020. **709**: p. 136187.

Y₁ 12 16. Huiru, Z., et al., *Technical and economic feasibility analysis of an anaerobic digestion plant fed with canteen food waste*. Energy Conversion and Management, 2019. **180**: p. 938-948.

Y₁ 13 17. Liberti, F., et al., *i-REXFO LIFE: an innovative business model to reduce food waste*. Energy Procedia, 2018. **148**: p. 439-446.

Y₁ 14 18. Bartocci, P., et al. *Food waste anaerobic digestion in Umbria region (Italy): scenario analysis on the use of digestate through LCA*. in *E3S Web of Conferences*. 2020. EDP Sciences.

Y₁ 15 19. Erdo^gan, G., *An open source Spreadsheet Solver for Vehicle Routing Problems*. Computers & Operations Research, 2017. **84**: p. 62-72.

Y₁ 16 20. Lij^o, L., et al., *The environmental effect of substituting energy crops for food waste as feedstock for biogas production*. Energy, 2017. **137**: p. 1130-1143.

Y₁ 17 21. Liu, G., *Food Losses and Food Waste in China: A First Estimate*, *OECD Food, Agriculture and Fisheries Papers*. 2014///Apr. **66**.

Y₁ 18 22. Gebrezgabher, S.A., et al., *Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands*. NJAS - Wageningen Journal of Life Sciences, 2010. **57**(2): p. 109-115.

Y₁ 19 23. Bartocci, P., et al., *Kinetic Analysis of Digestate Slow Pyrolysis with the Application of the Master-Plots Method and Independent Parallel Reactions Scheme*. Molecules (Basel, Switzerland), 2019. **24**(9): p. 1657.

Y₁ 20 24. Riva, L., et al., *Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke*. Applied Energy, 2019. **256**: p. 113933.

Y₁ 21 25. Bartocci P., B.G., Saputo P., Fantozzi F., *Biochar Pellet Carbon Footprint*. Chemical Engineering Transactions, 2016. **50**: p. 217-222.

Y₁ 22 26. EMEP/EEA, *Air pollutant emission inventory guidebook*. 2013.

Y₁ 23 27. IPCC, *Guidelines for National Greenhouse Gas Inventories*. 2006.

Y₁ 24 28. IPCC, *Indirect N₂O emissions from agriculture*. 2006.

Y₁ 25 29. Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes, *Modeling global annual N₂O and NO emissions from fertilized fields*. Global Biogeochemical Cycles, 2002. **16**(4): p. 28-1-28-9.

Y₁ 26 30. V., P., *Erfassung der PO₄-Austrage fur die Okobilanzierung SALCA Phosphor. Agroscope Reckenholz – Tanikon ART*. 2006: p. 20 p.

Y₁ 27 31. Liu, L., et al., *Effect of biochar on nitrous oxide emission and its potential mechanisms*. Journal of the Air & Waste Management Association, 2014. **64**(8): p. 894-902.

Y₁ 28 32. Case, S.D., et al., *The effect of biochar addition on N₂O and CO₂ emissions from a sandy loam soil—the role of soil aeration*. Soil Biology and Biochemistry, 2012. **51**: p. 125-134.

Y₁ 29 33. Fang, Y., et al., *Biochar carbon stability in four contrasting soils*. European Journal of Soil Science, 2014. **65**(1): p. 60-71.

Y₁ 30 34. Monlau, F., et al., *Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment*. Applied Energy, 2016. **169**: p. 652-662.

Y₁ 31 35. Singh, B.P., A.L. Cowie, and R.J. Smernik, *Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature*. Environmental science & technology, 2012. **46**(21): p. 11770-11778.

Y₁ 32 36. Si, Y., et al., *Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils*. Journal of contaminant hydrology, 2011. **123**(1-2): p. 75-81.

Y₁ 33 37. Namgay, T., B. Singh, and B.P. Singh, *Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.)*. Soil Research, 2010. **48**(7): p. 638-647.

Y₁ 34 38. Yao, Y., et al., *Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil*. Chemosphere, 2012. **89**(11): p. 1467-1471.

Y₁ 35 39. Baiamonte, G., et al., *Effect of biochar on the physical and structural properties of a sandy soil*. Catena, 2019. **175**: p. 294-303.

٧٦٤ 40. Hussain, R., K. Ravi, and A. Garg, *Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures*. Soil and Tillage Research, 2020. **204**: p. 104713.

٧٦٥ 41. CEIC, source: <https://www.ceicdata.com/en/china/electricity-price> (accessed 5/1/2020).

٧٦٦ 42. CEICb, <https://www.ceicdata.com/en/china/china-petroleum-chemical-industry-association-petrochemical-price-fertilizer/cn-market-price-monthly-avg-fertilizer-urea-46-or-above> (accessed 5/1/2020).

٧٦٧ 43. Boulamanti, A.K., et al., *Influence of different practices on biogas sustainability*. Biomass and Bioenergy, 2013. **53**: p. 149-161.

٧٦٨ 44. Fantin, V., et al., *Environmental assessment of electricity generation from an Italian anaerobic digestion plant*. Biomass and Bioenergy, 2015. **83**: p. 422-435.

٧٦٩ 45. Fusi, A., et al., *Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion*. Frontiers in Bioengineering and Biotechnology, 2016. **4**(26).

٧٧٠ 46. Iordan, C., C. Lausselet, and F. Cherubini, *Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers*. Journal of Environmental Management, 2016. **184**: p. 517-527.

٧٧١ 47. Kompogas,
https://gryphon4.environdec.com/system/data/files/6/11125/epd176_Axpo_Otelfingen_Kompogas_Facility_2015.pdf. 2015.

٧٧٢ 48. Van Stappen, F., et al., *Consequential environmental life cycle assessment of a farm-scale biogas plant*. Journal of Environmental Management, 2016. **175**: p. 20-32.

٧٧٣ 49. Mondello, G., et al., *Comparative LCA of Alternative Scenarios for Waste Treatment: The Case of Food Waste Production by the Mass-Retail Sector*. Sustainability, 2017. **9**: p. 827.

٧٧٤ 50. FAO, *Global food losses and food waste – Extent, causes and prevention*. Rome. 2011.

٧٧٥ 51. UNESCO, *Six ways to ensure higher education leaves no one behind*. 2017.

٧٧٦ 52. News, U.w., <https://www.universityworldnews.com/post.php?story=20120216105739999>.

٧٧٧ 53. FAO, *Food wastage footprint & Climate Change*. 2015.

٧٧٨ 54. Development, M.o.H.R., *All India Survey on Higher Education*. https://www.education.gov.in/sites/upload_files/mhrd/files/statistics-new/AISHE2015-16.pdf.

٧٧٩ 55. Statista, <https://www.statista.com/statistics/226982/number-of-universities-in-china/>.

٧٧١٠ 56. Bank, W., *At a Crossroads Higher Education in Latin America and the Caribbean*. <http://documents1.worldbank.org/curated/en/271781495774058113/pdf/114771-PUB-PUBLIC-PUBDATE5-2-17.pdf>, 2017.

٧٧١١ 57. Statista, <https://www.statista.com/statistics/183995/us-college-enrollment-and-projections-in-public-and-private-institutions/>.

٧٧١٢ 58. Eurostat, https://ec.europa.eu/eurostat/statistics-explained/index.php/Tertiary_education_statistics.

٨٠١ 59. Abu-Orabi, S.T., *HIGHER EDUCATION & SCIENTIFIC RESEARCH IN THE ARAB WORLD*. 15thIAU General Conference HIGHER EDUCATION : a Catalyst for Innovative and Sustainable Societies, 2016. **November 13th-16th, 2016 Chulalongkorn University, Thailand**.

٨٠٢ 60. Institute, T.A.-A., *State of Education in Africa Report 2015*. <http://greatsocieties.com/AAI-2015.pdf>, 2015.

٨٠٣ 61. Reviews, W.E.N., <https://wenr.wes.org/2017/06/education-in-the-russian-federation>.

٨٠٤ 62. Statista, <https://www.statista.com/statistics/704780/number-of-private-university-students-in-indonesia/>.

٨٠٥ 63. news, O., <https://www.onenews.ph/college-enrollment-may-plunge-by-up-to-70-percent-officials-warn>.

٨٠٦ 64. Statista, <https://www.statista.com/statistics/647929/japan-number-university-students/>.

٨٠٧ 65. Statista, <https://www.statista.com/statistics/447739/enrollment-of-postsecondary-students-in-canada/>.

٨٠٨ 66. News, U.W., <https://www.universityworldnews.com/post.php?story=20080731152558319>. 2008.

٨٠٩ 67. Statista, <https://www.statista.com/statistics/710612/south-korea-enrolled-university-students-number/>.

٨٠١٠ 68. Statista, <https://www.statista.com/statistics/815091/number-of-university-students-in-vietnam/>.

۸۲۰ 69. Australia, U., <https://www.universitiesaustralia.edu.au/wp-content/uploads/2019/06/Data-snapshot-2019-FINAL.pdf>.

۸۲۱ 70. Times, N.S., <https://www.nst.com.my/opinion/columnists/2019/05/488452/harmonising-public-and-private-higher-education>.

۸۲۲ 71. News, U.W., <https://www.universityworldnews.com/post.php?story=20180328162530835>.
۸۲۳ 2018.

۸۲۴ 72. Adnan, A.M., *Universities in Bangladesh*. https://rstudio-pubs-static.s3.amazonaws.com/169329_95ad57e86a74439d8a2e18b0636ac2de.html, 2016.

۸۲۵