مهندس/أحمد عيسى

الطرق الحسابية الختلفة لعرفة

قدرة المولد الكهربائي

(أمثلة عملية)

مقدمة عن المولد الكهربائي

المولد الكهربائي: -هو جهاز ميكانيكي يحول الطاقة الحركية إلى طاقة كهربائية بوجود مجال مغناطيسي. ويعمل المولد الكهربائي على مبدأ الحث الكهرومغناطيسي والذي هو الأساس في توليد التيار الحثي. وقد تطورت صناعة المولدات الكهربائية كثيراً من حيث إنتاج التيار الحثي المقوّم إلى درجة عالية جدًا، ويُوجه المولد الكهربائي التيار الكهربائي للتدفق خلال دائرة كهربائية خارجية، كما أن مصادر المولد الكهربائي عديدة منها ما هو محرك متردد ومنها التوربينات التي تستخدم المحركات البخارية في عملها، أو عن طريق تساقط المياه في التوربينات والتي تعرف بالطاقة المائية، أو بمحركات الاحتراق الداخلي، أو توربينات الرياح،أو الهواء المضغوط، أو أي مصدر آخر من مصادر الطاقة الميكانيكية.

المولدات الكهربائية تغذي جميع الشبكات الكهربائية تقريبًا

ويتم التحويل عكسيًا من الطاقة الكهربائية إلى الطاقة الميكانيكية عن طريق المحرك الكهربائي، والمولدات والمحركات الكهربائية لديها العديد من أوجه التشابه، كما أن العديد من المحركات الكهربائية يمكن أن تكون مدفوعة ميكانيكيًا لتوليد الكهرباء، وكثيرًا ما تجعل المحركات المولدات مقبولة عمليًا

أحد أهم الجوانب التي يجب التفكير فيها هو كيفية استخدام المولد مع توفر الكثير من المعلومات ، من السهل الخلط بين المصطلحات الفنية والحقائق والأرقام الموجودة على الإنترنت لذا ، فلنبدأ بتصنيفات الطاقة لمولدات الديزل.

المواصفة القياسية الدولية لمولدات الديزل بموجب ISO 8528 مجموعات توليد التيار المتردد المدفوعة بمحرك الاحتراق الداخلي ، هناك أربعة تصنيفات رئيسية للطاقة يمكن تصنيف مجموعات مولدات الديزل ضمنها:

- Prime Power (PRP)
- Emergency Standby Power (ESP)
- Limited-Time Running Power (LTP)
- Continuous Power (COP)

المكونات التي تشكل تصنيف الطاقة للمولد هي وقت التشغيل السنوي ، وتغير الحمل ومتوسط عامل التحميل من المهم أن تتذكر أنه يمكن استخدام مجموعة المولدات وفقًا لتصنيفات مختلفة ، ومع ذلك ، سيختلف أداء مجموعة المولدات.

1- Prime Power Generators

بموجبISO 8528 ، يكون وقت التشغيل السنوي المتوقع لمجموعة المولدات الأولية غير محدود بمتوسط عامل تحميل 70٪ + من التصنيف الرئيسي . يجب أن تكون المولدات الأولية موثوقة ودائمة .

2-Emergency Standby Generators

يوحي الاسم ، يتم استخدام المولدات الاحتياطية في حالات الطوارئ أو عند انقطاع التيار الكهربائي يتم استخدامها في العديد من الصناعات التي تحتاج إلى طاقة موثوقة مثل الرعاية الصحية والبناء وكذلك من قبل المنازل والشركات في المناطق الريفية والنائية على عكس مولد الطاقة الأساسي ، تم تصميم المولد الاحتياطي ليكون له استخدام محدود سنويًا (أقل من 200 ساعة تقريبًا في السنة بمتوسط عامل تحميل 70٪ + من التصنيف الاحتياطي) ولكن يمكنه دعم الأحمال المتغيرة ، مثل prime genset.

3-Limited Time Running Power Generators

يمكن للمولدات التي لديها تصنيف طاقة تشغيل محدود الوقت أن تعمل بتغير أحمال غير محدد لما يصل إلى وقت تشغيل سنوي متوقع يصل إلى 500 ساعة أو أقل لديهم أيضًا متوسط عامل تحميل بنسبة 100٪ + من التصنيف الرئيسي.

4-Continuous Power Generators

مولدات الطاقة المستمرة تشبه إلى حد بعيد مولدات Primeلديهم وقت تشغيل سنوي متوقع غير محدود مثل المولد ؛ ومع ذلك ، فهي تتطلب تقلبًا ثابتًا في الحمل ، ولديها متوسط عامل تحميل بنسبة 100 ٪ ولا يمكن تحميلها بشكل زائد على عكس المولد الأساسي . تُستخدم المولدات المستمرة في الغالب في المواقع النائية وهي حل مثالي لتطبيقات الحمل الأساسي ، مثل تشغيل المضخات في المزارع وأنظمة التهوية في المناجم تحت الأرض .

APPLICATION	Emergency Standby Power (ESP)	Limited Time Prime (LTP)	Prime Rated Power (PRP)	Continuous Operating Power (COP)		
Load type	Variable	Constant	Variable	Constant		
Annual operating hours	200	500	Unlimited	Unlimited		
Average load	70%	100%	70%	100%		
Overload	No	No	+10% (1 hour in 12)	No		
Alternator Rating Definitions						
APPLICATION	Stan	dby	Prime	/ Continuous		
NEMA MG1-32	Stan	dby	Co	Continuous		
ISO 8528-3	Peak Cor	ntinuous	Base Continuous			
Allowable Temperature rise	150	150 / 40		25 / 40		
Duty cycle (IEC 60034-1)		S10 or S1				
Load type		Variable or constant				

Emergency Standby Prime Continuous Data ISO 8528-1 Limited Operating Power Centre Rated Rating Time Prime Power Power Power Variable Load OR Variable Variable Constant Constant **Profile** Constant Max **Annual** 200 Unlimited 500 Unlimited Unlimited Run **Hours**

أنواع المولدات

Whole House Generator

Portable Generator

Inverter Generator

Gasoline Generator

Diesel Generator

Solar Generator

Natural Gas Generator

طرق حساب قدرة المولد للمشاريع

يتم حساب قدرة المولد للمشاريع بعدة طرق كالتالى :-

1- طريقة القياس Measurement Measurement

وتستخدم للمبانى القائمة بالفعل وهي عن طريق استخدام relamp-on Amp meter لقياس مستويات الاستخدام القصوى.

240V 1ø Applications (L1 + L2)120 / 1000

 $3\emptyset$ Applications Peak Amps = (L1 + L2 + L3)/3

 $kW = [(Peak Amps \times Volts) \times 1.732] / 1000$

حجم المولد أكبر بنسبة 20 إلى 25٪ من ذروة الحمل.

2- طريقة معرفة الأحمال من الفواتير المؤرشفة NEC2017-220.87

تستخدم أيضا للمباني القائمة بالفعل

ويكون حجم المولد 25٪ أكبر من أكبر طلب في وقت الذروة.

3-طريقة تجميع الأحمال LSM

تستخدم الخطوات التالية لمعرفة قدرة المولد:-

- تجميع أحمال التشغيل المستقرة لجميع المحركات بإستثناء (الحمل الأكبر)المتوقع
 تشغيلها اثناء فترة الذروة
 - ◄ تجميع جميع الأحمال الأخرى (غير المحركات) المتوقع تشغيلها اثناء فترة الذروة
- تجميع الأحمال من الخطوة الأولى والثانية مع أحمال التشغيل العابر Starting لأكبر
 محرك
- ﴿ إختيار المولد مع إضافة 25% لو كان يستخدم لنشاط تجارى أو20% لو كان لنشاط سكنى

LRA	 التأكد من أن انخفاض الجهد يقع ضمن الحدود المقبولة من خلال مقارنة
	للمحرك بال generator surge

	UPS	لل توافق المولد مع	🖊 التأكد مر
--	-----	--------------------	-------------

Motor load running total (minus largest motor): kW		
Non-motor load total		kW
Starting load from largest cycling motor:		kW
Total electrical loads:	=	kW

Select generator: Commercial (add 20 to 25% to total kW) Residential (add 10 to 20% to total kW)

مثال رقم 1

EXAMPLE							
DESCRIPTION	RUNNING WATTS	ADDITONAL STARTING WATTS					
1. Refrigerator/Freezer	700	2200					
2. Furnace Fan Blower – 1/2 HP	800	2300					
3. Washing Machine	1150	2250					
4. Range Oven/Stove Top	8000	0					
5. Sump Pump 1/3 HP	800	1300					
6. Well Pump 1/2 HP	1050	2100					
7.							
	HIGHEST ADDITIONAL STARTING WATTS						
	2300						
TOTAL RUNNING WATTS + HIGHE	ST ADDITIONA	AL STARTING WATTS =					
TOTAL STARTING WATTS NEEDED 14800							

مثال رقم 2

المطلوب إختيار قدرة المولد اللازمة للأحمال التالية:-

محركان بقوة 200 حصان ، رمز G ، كفاءة تشغيل بنسبة 92٪ ، ومعامل القدرة عند
 بدأ التشغيل العابر يساوى 0.25 ومعامل القدرة أثناء التشغيل المستقر يساوى 0.91

🗸 وأحمال إنارة فلورسنت بإجمالي 100 كيلو فولت أمبير ومعامل القدرة تساوى 0.95

الحل

أولا:- حسابات المحركات

RkW = (200 hp x 0.746 kW/hp) / 0.92 = 162.2 kW

RkVA = 162.2kW / 0.91 PF = 178.2kVA

 $SkVA = 200 hp \times 5.9 kVA/hp=1180kVA$

 $SkW = 1180kVA \times 0.25 PF = 295kW$

ثانيا:- حسابات الإنارة

 $RkW = 100kVA \times 0.95 PF = 95kW$

RkVA = 100kVA

SkVA = 100kVA

 $SkW = 100kVA \times 0.95 PF = 95kW$

Load	RkW	RkVA	SkW	SkVA				
200hp Motor	162.2	178.2	295	1180				
200hp Motor	162.2	178.2	295	1180				
Lighting	95	100	95	100				

Total	419.4	456.4	685	2460

قدرة المولد المطلوب =552=95+295+162.2 كيلو فولت أمبير

الأفضل إختيار مولد =500 كيلو وات لأحمال المستقبل

ملاحظة: - يتم قبل إختيار المولد تطبيق Derating Factor للمولد سيتم ذكره بعد قليل بالتفصيل.

مثال رقم 3

المطلوب إختيار قدرة المولد اللازم للأحمال الآتية :-

الحمل الأول: - 72 وحدة إنارة فلوروسنت تحتوى كل وحدة على مصباحين كل مصباح بقدرة 40 وات من النوع السريع البدء وتعمل على جهد 220 فولت

الحمل الثاني: - 7 سخانات تعمل كل منها عند جهد 220 فولت وتيار المقنن 20 أمبير

الحمل الثالث: -4 محركات أحادية الوجه قدرة المحرك 5 حصان وتبدأ معا فى لحظة واحدة وتوصل مباشرة على الخط عند جهد 220 فولت والكفاءة لكل منهم 78% ومعامل القدرة أثناء الدوران 80%

الحمل الرابع: - 5 ماكينات لحام أحادية الوجه تعمل عند جهد 220 فولت تيار الماكينة الواحدة Lagging %40 أمبير ومعامل القدرة 40%

الحمل الخامس:- ثلاثة محركات ثلاثية الوجه تعمل على جهد 380 فولت وتبدأ تيار بدء مباشرة وقدرة المحرك 3 حصان

الحمل السادس: - محرك ثلاثى الوجه قدرته 80 حصان يبدأ بمحول ذاتى بمعامل قدرة 80% وجهد 380 فولت

الحمل السابع:- محرك ثلاثى الأوجه قدرته 80 كيلو وات تيار البدء له ستار دلتا على جهد 380 فولت

الحل كالتالى:-

Starting Load Running Load		
	الحمل الأول	
لايوجد	P1=88x24/1000=2.1 KW	
ريو بي	S1=2.12/0.95=2.22 KVA	
	الحمل الثاني	
لايوجد	القدرة القصوى للوجه S2=P2=3x220x20/1000=13.2 KW	
	الحمل الثالث	
يأخذ معامل البدء 7.1 وبالتالى القدرة العابرة تساوى Ss3=7.1x5x2=71 KVA	S3=2x5x0.746/0.78=9.6 KW S3=9.6/0.8=12 kVA	
	الحمل الرابع	
لايوجد	S4=2x220x19/1000=8.36 KVA القدرة القصوى للوجهS4=8.36x0.4=3.6 KW	
	الحمل الخامس	
حيث إن المحركات تبدأ مباشرة معامل البدء لها 7.1 وبالتالى فإن القدرة العابرة تساوى Ss5=3x7.1=21.3 KVA	P5=3x3x0.746/0.825=8.1 KW S5=8.1/0.82=9.87 KVA	
	الحمل السادس	
حيث أن المحرك يبدأ بمحول ذاتى له نقطة تفرع عند 80% Ss6=4.544 PM Ss6=4.544x80=363 KVA	P6=80x0.746/0.905=65.9 KW S6=65.9/0.91=72 KVA	
	الحمل السابع	
حيث أن المحرك يبدأ ستار دلتا لذلك فإن Ss7=2.343 PM Ss7=2.343x134=313.9 KVA	P7=134x0.746/0.912=109.6 KW S7=109.6/0.91=120.4 KVA	

محصلات القدرة الفعالة

P1-4=3X (2.112+13.2+9.6+3.6) =90 KW S1-4=3x (2.22+13.2+12+8.3) =38 KVA

Starting	tarting Running					
Ss (KVA)	S(KVA)	P (KW)	PF	رقم الحمل		
21.3	114	90	0.789	1_4		
21.3	9.87	8.1	0.82	5		
363.52	72.4	65.9	0.91	6		
313.9	109.6	100	0.91	7		
	305.8	264	0.86	الحمل الكلى		

إذا قدرة المولد تكون كالتالى :-

Ss=114+9.87+363.52+109.6=596.99 KVA

ثم نختار اقرب قدرة للمولد 625 KVA

ملاحظة: - يتم قبل إختيار المولد تطبيق Derating Factor للمولد سيتم ذكره بعد قليل بالتفصيل.

4-طريقة المعادلات:-

نقوم بإستخدام المعادلات التالية لمعرفة قدرة المولد للمشاريع

$$PG_1 = \alpha \left(\frac{p_1}{\eta_1} + \frac{p_2}{\eta_2} + \frac{p_3}{\eta_3} + \dots + \frac{p_n}{\eta_n}\right) \times \frac{1}{PF_G} [KVA]$$

Where,

PG₁ : Generator capacity [kVA]

PF_G: Generator power-factor (standardized at 0.8)

P : Output of load [kW] n : Efficiency of load (0.85)

a : Coefficient considering load factor, demand factor, margin of capacity, etc

(Motor: 0.9, Non-motor: 1.0)

$$PG_{2} = \frac{\sum W_{0} + [Q_{Lmax} \times cos \theta_{QL}]}{PF_{G}}[kVA]$$

Where

PG₂ : Generator capacity [kVA]

 $\sum W_0$: Summation of operating load [kW],

 $cos\Theta_{QL}$: Power factor during starting of the largest motor, 0.2

PF_G: Power-factor of diesel generator, 0.8

مطلوب حساب قدرة المولد الذي يغذى الأحمال التالية لأحد المشاريع

STG Essential Loads

No	Load Description	*Load Type	Rated kW	Eff.	Input kW
1	Lube oil pump #1	M	37	0.85	43.6
2	Lube oil pump #2	M	37	0.85	43.6
3	Jacking oil pump	M	30	0.85	35.3
4	Oil tank vapour extractor #1	M	0.75	0.85	0.89
5	Oil tank vapour extractor #2	M	0.75	0.85	0.89
6	Turning gear motor	M	1.5	0.85	1.76
7	Motor operated valves	N	3.0	1	3.0

DC & UPS, B.O.P Essential Load

No	Load Description	*Load Type	Rated kW	Eff.	Input kW
1	DC & UPS System	N	88	1	88
2	Boiler Lift	N	30	0.85	35.3
3	Air Handling Unit Supply Fan (common)	M	30	0.85	35.3
4	Air Handling Unit Return Fan (common)	M	11	0.85	13
5	Pump #1 for Air Cooled Condensing Unit (common)	М	71.2	0.85	83.8
6	Pump #2 for Air Cooled Condensing Unit (common)	M	71.2	0.85	83.8
7	Pump #3 for Air Cooled Condensing Unit (common)	М	71.2	0.85	83.8
8	Emergency Lightings (common)	N	7.5	0.85	8.9

لحساب قدرة EDG ، يتم النظر في الحالات التالية ؛

الحالة الأولى: السعة أثناء إيقاف تشغيل STG

الحالة الثانية: القدرة على بدء تشغيل أكبر محرك أثناء التشغيل على الجزيرة

STG Essential Loads

No	Load Description	*Load Type	Rated kW	Eff.	Input kW	*Duty Factor	Actual Load (kW)
1	Lube oil pump #1	M	37	0.85	43.6	1	43.6
2	Lube oil pump #2	M	37	0.85	43.6	0	0
3	Jacking oil pump	M	30	0.85	35.3	0.5	17.65
4	Oil tank vapour extractor #1	M	0.75	0.85	0.89	1	0.89

5	Oil tank vapour extractor #2		M	0.75	0.85	0.89	0	0
6	5 Turning gear motor		M	1.5	0.85	1.76	0.5	0.88
7	Motor operated valves		N	3.0	1	3.0	0.5	1.5
Tot	Total Load Motor							62.94
(1	l unit)	Non-Motor						1.5
Tot	al Load	Motor						188.9
(3	units)	Non-Motor						4.5

DC & UPS, B.O.P Essential Load

No	No Load Description		*Load	Rated	Eff.	Input	*Duty	Actual
110			Type	e kW		kW	Factor	Load (kW)
1	DC & U	PS System	N	88	1	88	1	88
2	Boiler Lif	t	N	30	0.85	35.3	0.5	17.7
3		lling Unit Fan (common)	M	30	0.85	35.3	1	35.3
4	Air Hand	dling Unit an (common)	M	11	0.85	13	1	13
5	Pump #1 for Air		М	71.2	0.85	83.8	1	83.8
6	Pump #2 for Air		M	71.2	0.85	83.8	1	83.8
7	Pump #3 for Air		M	71.2	0.85	83.8	1	83.8
8	Emergency Lightings		N	7.5	0.85	8.9	1	8.9
Tot	Total Load Moto							0
(1	unit)	Non-Motor						105.7
Tot	Total Load Mo							299.7
(co	mmon)	Non-Motor						8.9
Tot	al Load	Motor						299.7
(3	units)	Non-Motor						326.0

Notes: 1. Load type: M (Motor load), N (Non-motor load)

2. Input Power = Rated kW / Efficiency

- 3. Actual Load = Input Power \times Duty Factor
- 4. Duty factor: Continuous (1), Intermittent (0.5), Stand-by (0)

الحسابات عند وقوع الحالة الأولى :-

يتم حساب السعة المطلوبة للتشغيل المستمر أثناء إيقاف تشغيل STG من خلال الصيغة التالية ؛

$$\begin{split} PG_1 &= \alpha (\frac{p_1}{\eta_1} + \frac{p_2}{\eta_2} + \frac{p_3}{\eta_3} + \dots + \frac{p_n}{\eta_n}) \times \frac{1}{PF_G} [KVA] \\ &= \{0.9 \times (188.9 + 299.7) + 1 \times (4.5 + 326.0)\} \times \frac{1}{0.8} \\ &= 962.8 \ [kVA] \end{split}$$

الحسابات عند وقوع الحالة الثانية:-

يجب أن يكون EDG قادرًا أيضًا على بدء تشغيل أكبر محرك (مضخة تبريد الهواء ، وحدة تكثيف ، 71.2 كيلو وات) حيث أن الأحمال المتبقية تكون مستقرة

 $\sum W_0$: Summation of operating load [kW], 735.3 (188.9+4.5+299.7+326.0-83.8=735.3)

PG₂ =
$$\frac{\sum W_0 + [Q_{Lmax} \times \cos \theta_{QL}]}{PF_G}$$
 [kVA]
= $\frac{735.3 + (83.8 \times 7 \times 0.2)}{0.8}$
= 1065.8 [kVA]

بناءا على الحسابات السابقة يكون إختيار المولد كالتالي

Description	Calculated Capacity	Largest Capacity	
Emergency Diesel Generator	PG ₁ : 962.8 [kVA]	DG 40450 B3443	
	PG ₂ : 1065.8 [kVA]	PG ₂ : 1065.8 [kVA]	

Based on the calculated capacities and considering sufficient margin, the rated capacity of EDG will be selected as $1250 \, [kVA]$ at $0.8 \, PF$.

يمكن أيضا معرفة قدرة المولد من المعادلة التالية :-

$$PG = \frac{X d'(1 - \Delta V)}{\Delta V} x Pm x \beta x C (kva)$$

(kVA) قدرة المولدPG

المفاعلة العابرة للمولد تكون دائما بين 0.15- Xd'0.30

معدل انخفاض الجهد اللحظى عند بدء التشغيل دائما تكون بين 0.25-0.30 ك

خرج المحرك (كيلو وات):Pm:

بدأ تشغيل المحرك بالكيلو فولت أمبير لكل كيلو وات عادة تكون القيمة بين (6-9) 3:

معامل يعتمد عن طريقة البدء للمحرك (بدء مباشر -1) (ستار دلتا 0.67):

 $Hp \times 0.746 = kW$

The locked-rotor kva per hp to kva per kW = Locked-rotor kVA/0.746.

مثال: - قم بحساب قدرة المولد المبدئية لمحرك سعته 100 حصان Code G فاز توصيل مباشر

 $100 \times 0.746 = 74.6 \text{kw}$, code G = 6.29 LRkVA per hp.

(6.29/0.746) = 8.43 kVA per motor kw

X'd = 0.17pu, $\Delta V = 25\%$, $\beta = 8.43$, Pm = 74.6 kW

$$\frac{0.17X'd(1 - 0.25 \Delta V)}{0.25\Delta V} \times 74.6kW \times 8.43\beta \times 1 C$$

= 320kVA

إذا قدرة المولد تكون تقريبا 320 كيلو فولت أمبير

5-طريقة Conservative Rules Of Thumb

نقوم بإستخدام الخطوات التالية لمعرفة قدرة المولد:-

- ◄ نقوم بتجميع أحمال التيار العابر ثم ضربها في قيمة 1.25
 - 🔾 نقوم بتجميع أحمال تيار التشغيل المستقر
 - نقوم بحساب كيلو فولت أمبير للمولد

مثال

قم بإستخدام طريقة Conservative Rules Of Thumb قم بإستخدام طريقة للأحمال التالية لحساب المولد الذي يقوم بتغذية الأحمال التالية

- محرك 200 حصان
- محرك 100 حصان،
 - 🗸 محرك 60 حصان
- 🖊 إضاءة بقيمة 68 أمبير
- 🗘 أحمال متنوعة بقيمة 95 أمبير
- ◄ جهد النظام هو 480 فولت و PF هو 0.77.

Solution:

Step#1: Calculate Running Amperes

Motor loads	Load in KW (from rule#3 above)	Running Amperes
200 hp motor	100 KW	= (100x1000)/(1.732x480x0.77)= 156 A
100 hp motor	50 KW	= (50x1000)/(1.732x480x0.77)= 78 A
60 hp motor	30 KW	= (30x1000)/(1.732x480x0.77)= 48 A
Normal Loads		
Lighting load		= 68 A
Miscellaneous load	s	= 95 A
Total Running Amp	eres	= 445 A

Step#2: Calculating Starting Amperes Using 1.25 Multiplier

Motor loads	Running Amperes	Starting Amperes
200 hp motor	156 A	= 156 x 1.25 = 195 A
100 hp motor	78 A	= 78x 1.25 = 98 A
60 hp motor	48 A	= 48 x 1.25 = 60 A
Normal Loads		
Lighting load		= 68 A
Miscellaneous loads		= 95 A
Total Starting Ampere	s	= 516 A

Step 3: Selecting kVA of Generator

Running kVA = (445 A x 480 V x 1.732)/1000 = 370 kVA					
Starting kVA	= (516 A x 480 V x 1.732)/1000 = 428 KVA				
Generator must have a minimum starting capability of 428 kVA and minimum running					
capability of 370 kVA.					

6- طريقة إختيار المولد بناءا على المقارنة بين الأحمال المستقرة والعابرة

يجب إستخدام الخطوات التالية لمعرفة قدرة المولد:-

kW Starting نقوم بتجميع أحمال التشغيل العابر >

➤ نقوم بتجميع تيار التشغيل العابر Starting

Running نقوم بتجميع تيار التشغيل المستقر

✓ نقوم بإختيار المولد بناءا على القيم السابقة

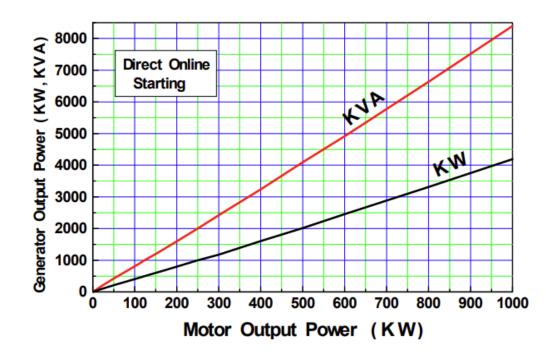
بالنسبة لأحمال التشغيل العابر

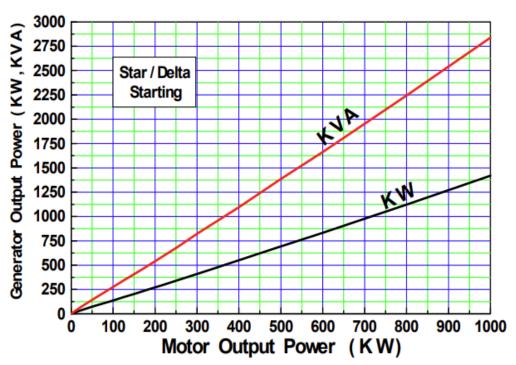
• أحمال خطية أو غير خطية

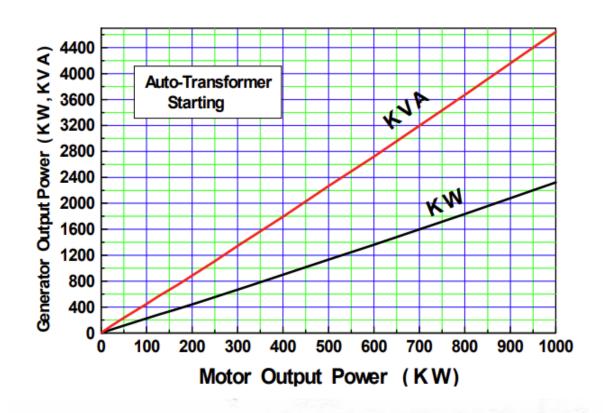
Type of Load Equipment		Starting Current
Linear Load	General Equipment	100% of Full Load Current
Non-Linear Load	UPS, Inverter, Computer, Ballast	160% of Full Load Current

• المحركات

For HP < 7.5; starting kW = HP \times 3


For HP > 7.5; starting kW = HP x 2


Kw= (Amps x V x 1.732 x PF) /1000


PF=0.95

Type of Starter	Starting Current
DOL	6 X Full Load Current
Star-Delta	4 X Full Load Current
Auto Transformer	3 X Full Load Current
Soft Starter	2 X Full Load Current
VFD	1.5 X Full Load Current

Electric Motor Size		10.50.50.50.50.50.50.50.50.50.50.50.50.50	nerator Req'd arting Method	Run Power		
HP	KW	D.O.L to KVA Size (Note 1)	S.D to KVA Size (Note 2)	KVA Used When Running (Note 3)		
1	0.75	2.5	2	1		
1.5	1.1	3.75	3	1.5		
2	1.5	5	4	2		
3	2.2	7.5	6	3		
4	3	10	8	4		
5	3.7	12.5	10	5		
6	4.5	15	12	6		
7.5	5.5	18.75	15	7.5		
10	7.5	25	20	10		
12.5	9.3	31.25	25	12.5		
15	11	37.5	30	15		
20	15	50	40	20		
25	19.6	60.5	50	25		
30	22	75	60	30		
40	30	100	80	40		
50	37	125	100	50		
60	45	150	120	60		
75	55	187.5	150	75		
100	75	250	200	100		
125	90	312.5	250	125		
150	110	375	300	150		
175	130	437.5	350	175		
200	150	500	400	200		
250	185	625	500	250		
300	225	750	600	300		
400	300	1000	800	400		

40	30	25	20	15	10	7.5	5	3	2	القدرة PM (HP)
0.39	0.42	0.44	0.46	0.49	0,53	0.56	0.61	0.66	0.07	COS¢s
0.889	0.884	0.88	0.87	0.86	0.85	0.85	0.83	0.825	0.79	η
0.90	0.89	0.89	0.89	0.88	0.87	0.87	0.85	0.82	0.79	COSφ
350	300	250	200	150	125	100	75	60	50	لقدرة Pm (HP)
0.19	0.22	0.24	0.25	0.28	0.29	0.31	0.34	0.36	0.36	COS¢s
0.93	0.923	0.92	0.917	0.91	0.909	0,905	0.90	0.896	0.896	η
0.92	0.92	0.91	0.91	0.91	0.91	0.9	0.9	0.9	0.9	COSφ

مثال رقم 1: مطلوب حساب المولد الكهربائي للأحمال التالية

معامل القدرة	الكفاءة	قدرة الحمل	نوع تغذية الحمل	الحمل الكهربائي	الرقم
0.91	92%	45 حصان	3 فاز	محرك كهربائي	1
0.85	90%	50 حصان	3 فاز	محرك كهربائي	2
0.90	90%	40 حصان	3 فاز	محرك كهربائي	3
0.85	91%	60 حصان	3 فاز	محرك كهربائي	4

مع فرض أن قدرة اقلاع كل محرك تساوي 5.9kVA/HP (قد تختلف قدرة الاقلاع من محرك لآخر).

الحل كالتالي:-

الخطوة الأولى: حساب قدرة المحركات بالكيلو واط

قدرة المحرك بالكيلو واط =(القدرة بالحصان \times 0.746 \div الكفاءة المحرك الأول= $(0.746 \times 0.90 \div 0.746 \times 36.48 = 0.92 \div 0.746 \times 45)$ المحرك الثاني= $(0.746 \times 0.90 \div 0.746 \times 20) \div 0.90 \div 0.90 \div 0.90 \times 200$ المحرك الثالث= $(0.746 \times 0.90 \div 0.90 \div 0.90 \div 0.90 \times 200)$ المحرك الرابع= $(0.746 \times 0.90 \div 0.90 \div 0.90 \times 200)$ المحرك الرابع= $(0.746 \times 0.90 \div 0.90 \div 0.90 \times 200)$ القدرات بالكيلو واط $(0.746 \times 0.90 \div 0.90 \div 0.90 \times 200)$ مجموع القدرات بالكيلو واط $(0.746 \times 0.90 \div 0.90 \div 0.90 \times 200)$

160.2 كيلو واط

الخطوة الثانية: حساب قدرة المحرك بالكيلو فولت أمبير

قدرة المحرك بالكيلو فولت أمبير =قدرة المحرك بالكيلو واط ÷ معامل القدرة أثناء التشغيل المحرك الأول= 36.48 ÷ 40 = 0.91 كيلو فولت أمبير

المحرك الثاني= 41.4 ÷ 48.7 = 0.85 كيلو فولت أمبير المحرك الثالث= 33.15 ÷ 0.90 = 36.83 كيلو فولت أمبير المحرك الرابع= 49.18 ÷ 49.18 كيلو فولت أمبير

مجموع القدرات بالكيلو فولت أمبير 57.85+48.7+40.83 =

183.38 كيلو فولت أمبير

الخطوة الثالثة: حساب قدرة اقلاع كل محرك بالكيلو فولت أمبير

بما أن قدرة الاقلاع لكل محرك 5.9 kVA/HP

قدرة اقلاع كل محرك =القدرة بالحصان VA/HPx

قدرة اقلاع المحرك الأول = 45 × 5.9 = 265.5 كيلو فولت أمبير

قدرة اقلاع المحرك الثاني = 5.0 × 5.9 = 295 كيلو فولت أمبير

قدرة اقلاع المحرك الثالث = 40 × 5.9 = 236 كيلو فولت أمبير

قدرة اقلاع المحرك الرابع = 60 × 5.9 = 354 كيلو فولت أمبير

إجمالي قدرة الاقلاع بالكيلو فولت أمبير 1150.5=435+295+295+265.5 = كيلو فولت امبير

ولتكون الحسبات أكثر دقة يمكن إيجاد معامل قدرة كل محرك لحظة التشغيل فقط وضربها في قدرة اقلاع المحرك، ومن ثم جمع القيم معاً لتحصل على الناتج الكلي لمجموع قدرة المحركات لحظة التشغيل (قدرة الاقلاع بالكيلو واط).

kVA Code	at starting (kVA/HP)
_	3.14 - O
В	3.43 – 3.15
C	3.99 – 3.44
D	4.49 – 4
E	4.99 – 4.5
F	5.59 – 5
G	6.29 - 5.6
н	7.09 – 6.3
J	7.99 – 7.1
K	8.99 – 8

الخطوة الرابعة: ايجاد قدرة المولد الكهربائي

نحتاج إلى مولد كهربائي قادر على تغذية 183.38 كيلو فولت أمبير (160.2)كيلو واطعلى الأقل الأقل بصورة متصلة وفي نفس الوقت قادر على أن يعطي 1150.5 كيلو فولت امبير على الأقل عند البدء.

وهنا سوف نختار مولد بقدرة **220** كيلو فولت أمبير على الأقل حتى يكون قادر على استيعاب الأحمال الكهربائية في حال تم تشغيلها بنفس الوقت.

مثال رقم 2

احسب سعة المولد من النوع الديزل مع زيادة نسبة 10 % للأحمال المستقبلية الأحمال كالتالي

اولا:- مجموعة اضاءات من النوع CFL بعدد 4 اضاءات 80 وات Diversity اولا:- مجموعة اضاءات من النوع

Starting & Running P.F is 0.8.

ثانيا :-وحدات تكييف بعدد 2 سينجل فاز 230 فولت سعة كل وحدة 3000 وات Diversity Factor is 1وكانيا :-وحدات تكييف عدد 2 سينجل

ثالثا: عدد واحد محرك سعة 10 كيلو وات طريقة التوصيل ستار دلتا 230 فولت Starting P.F is 0.7 & Running P.F

رابعا: - عدد واحد محرك سعة 130 كيلو وات طريقة التوصيل سوفت ستارتر 3 فاز Starting P.F is 0.7 & Running P.F وDiversity Factor is 0.8

بالنسبة لمجموعة الأحمال الأولى

Full Load KW of CFL Bulb= (No X Watt X DF) /1000
Full Load KW of CFL Bulb= (4x80x0.8)/1000=0.3KW
Full Load KVA of CFL Bulb=KW / P.F

Full Load KVA of CFL Bulb=0.3 / 0.8=0.4 KVA----(H)

FLC of CFL Bulb= (No X Watt X Diversity Factor) / (Volt x P.F)

FLC of CFL Bulb= $(4x80x0.8 / (230 \times 0.8) = 2 \text{ Amp}$ --(M)

نوع الحمل Linear

Starting KVA of CFL Bulb=1 X (KW / Starting P.F)

Starting KVA of CFL Bulb=0.3 / 0.8=0.4KVA----(1)

Starting Current=100% of Full Load Current.

Starting Current=1 X 2= 2 Amp. ----(A)

بالنسبة لمجموعة أحمال التكييف

Total Full Load KW of A.C= (No X Watt X Diversity Factor) /1000

Total Full Load KW of A.C = (2x3000x0.8)/1000=4.8KW

Total Full Load KVA of A.C = KW / P.F.

Total Full Load KVA of A.C =4.8 / 0.8=6KVA----(I)

FLC for A.C = (No X Watt X Diversity Factor) / (Volt x P.F)

Total Full Load current of A.C = $(2x3000x0.8) / (230 \times 0.8)$ =26 Amp---(N)

No Linear نوع الحمل

Starting KVA of A.C=1.6 X (KW / Starting P.F)

Starting KVA of A.C = $1.6 \times (4.8 / 0.8) = 9.6 \times (4.8 / 0.8) = 9.$

Starting Current=160% of Full Load Current.

Starting Current=1.6 X 26= 42 Amp. ----(B)

بالنسبة لمجموع أحمال المحرك الذى طريقة توصيله ستار دلتا

Full Load KW of Motor= (No X Watt X Diversity Factor) /1000

Full Load KW of Motor = (1x10000x0.8)/1000=8KW

Full Load KVA of Motor = KW / P.F

Full Load KVA of Motor = 8 / 0.8 = 10KVA----(K)

FLC for Motor = (No X Watt X Diversity Factor) / (Volt x P.FxEF)

Full Load current of Motor = $(1x10000x0.8 / (230 \times 0.8)$ =43.4 Amp—-(P)

أول من جداول NEC 430-248سوف يكون NEC 430-248 نوع التشغيل ستار دلتا

Starting KVA of Motor = 4 X (KW / Starting P.F)

Starting KVA of Motor=4X (8 / 0.7) = 45.7KVA ----(4)

Starting Current=4 X Full Load Current

Starting Current=4 X 43.4 = 174 Amp. ----(D)

بالنسبة لمجموع أحمال المحرك الذى طريقة توصيله سوفت ستارتر

Full Load KW of Motor= (No X Watt X Diversity Factor) /1000

Full Load KW of Motor = (1x130000x0.8)/1000=104KW

Full Load KVA of Motor = KW / P.F

Full Load KVA of Motor = 104 / 0.8 = 130 KVA ----(L)

Full Load current of Motor = (No X Watt X Diversity Factor) / (Volt x P.F)

Full Load current of Motor = (1x130000x0.8 / (1.732x430x0.8x0. 9) = 195 Amp--(Q)

نوع طريقة بدء ءالتشغيل سوفت ستارتر

Starting KVA of Motor = 2 X (KW / Starting P.F)

Starting KVA of Motor= $2 \times (130 / 0.7) = 371 \times VA - (5)$

Starting Current=2 X Full Load Current

Starting Current=2X 195 = 390 Amp. ----(E)

إذا المجموع الكلى

Total Starting KVA = (1) + (2) + (3) + (4)

Total Starting KVA = 0.4+9.6+45.7+371 = 426.7 KVA

Total Starting Current = (A) + (B) + (C) + (D) + E

Total Starting Current = 2+42+7+174+390 = 615 Amp

Total Running KVA =(H)+(I)+(J)+(K)+(L)

Total Running KVA = 0.4+6+10+130= 146 KVA

Total Running Current=(M)+(N)+(O)+(P)+(O)

Total Running Current=2+26+43+195= 266 Amp

بعد ذلك نقوم بإضافة قيمة التوسعه في المستقبل ١٠ في الماية في متوسط استخدام 0.8

Size of Diesel Generator= (Starting KVA) X Future Expansion X Average Use of Equipment's

Size of Diesel Generator=286 X 1.1 X 0.8

Size of Diesel Generator = 350 KVA

بعد ذلك نقوم بإختيار أقرب ستاندر من الكتالوجات وليكن kva350

Summary:

Total Starting KVA =426 KVA

Total Starting Current =615 Amp

Total Running KVA = 146KVA

Total Running Current= 266 Amp

Size of Diesel Generator = 350 KVA

مثال رقم 3

يوجد مشروع له أحمال كالتالى :-

عدد 3محرك سعة 7.5 حصان معامل القدرة 80%

عدد 1 محرك سعة 75 حصان معامل القدرة 80%

عدد 1 محرك سعة 200 حصان معامل القدرة 95%

طرمبة تسخين بقدرة 100 حصان معامل القدرة 100%

إنارة واحمال أخرى بقيمة 37 كيلو وات معامل القدرة 85%

المطلوب حساب سعة المولد لهذه الأحمال

الحل

(Customer:										
S- No	Load	НР	Qty	Tot al	h	In. kW	pf	kVA	Starter	St. pf	St. A multiplier
1	Motor	7.	3	16.	0.	21.	0.	26.	DOL	0.	6
2	Motor	7	1	56.	0.	69.	0.	87.	S-D	0.	3
3	Induction	20	1	149.	0.9	157.	0.9	16	-	0.9	1
4	Heating	10	1	74.	0.	82.	1	82.	ı	1	2
5	Lighting &		1	37.	0.	41.4	0.8	48.	-	0.8	2
	Summary		7			372.		41			
			Su			Sum		Sum			

St. kVA	St. kW	L.F	Act. kVA	Act. kW	Inst. kVA	Inst. kW
15	31.5	0	21.0	16.8	1	31.5
26	78.7	0	69.9	56.0	2	95.5
16	15	0	14	14	2	22
16	16	0	74.6	74.6	4	37
97.5	82	0	43.9	37.3	411.8	37
26	16	0.9	35	32	411.8	37
Max	Max		Sum	Sum	Max	Max

St.: Starting

L.F: Load Factor Act. : Actual

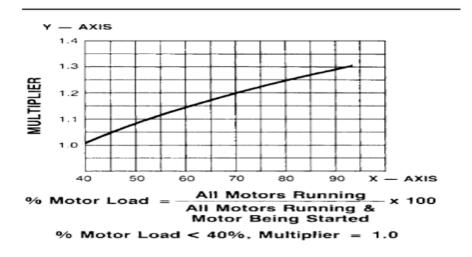
Inst: Instantaneous

Genset capacity required in kW	380
Capacity in kVA	475
Diversity factor	0.75
Hence running load in kVA	356.25
Loading factor for DG prime rating	0.75
Required capacity of DG in kVA	475
Recommended DG	500kVA

مثال رقم 4

المطلوب حساب قدرة المولد لمضخات حسب الأحمال التالية:-

عدد 2 مضخة صرف مياه بسعة 40 حصان


طريقة التوصيل ستار دلتا

كفاءة المضخات 86.6% كود F

الحل كالتالي :-

DG SIZING:	MOTOR 1	MOTOR2
A. STARTING KVA (SKVA)	40HP	40HP
B. NEMA CODE	F	F
C. SKVAR/ HP AS PER CODE	5.3	5.3
D. SKVA/HP x MOTOR HP (A x C)	212	212
EFFECTIVE SKVA:		
A1. ALL MOTORS RUNNING	0 KW	30KW
B1. ALL MOTORS RUNNING /STARTED	30KW	60KW
C1. (A1/B1) x 100	0%	50%
D1. COMPENSATION FOR MOTOR ALREADY STARTED (SEE GRAPH)	1.0	1.07
E1. D x D1	212 SKVA	226 SKVA
F1. STARTER FACTOR (STAR/DELTA 0.33) SEE TABLE	0.33	0.33
G1. EFFECTIVE SKVA = E1 x F1	70 SKVA	74 SKVA
H1. ACCEPTABLE VOLTAGE DROP IN ALTERNATOR	10%	10%
I1. SKVA FOR 10% DROP IN VOLTAGE FOR MODEL 6R1080TA	74KVA	74KVA
J1. SKVA FOR 20% DROP IN VOLTAGEFOR MODEL 6R1080TA	167KVA	167KVA
(REFER TABLE ENCLOSED FOR SKVA FOR VOLTAGE DROPS)		

Motor preload multiplier.

Rating w/o Fan	Starting kV-A at Voltage Dip				
kW	10%	20%	30%		
460	317	714	1224		
410	278	625	1071		
300	171	385	659		
270	171	385	659		
150	111	250	428		
135	74	167	286		
100	74	167	286		
85	74	167	286		

Reduced-Voltage Starting Factors

Туре	Multiply SKVA By
Resistor, Reactor, Impedance	
80% Tap	0.80
65% Tap	0.65
50% Tap	0.50
45% Tap	0.45
Autotransformer	
80% Tap	0.68
65% Tap	0.46
50% Tap	0.29
Y Start, Run	0.33

Solid State: Adjustable, consult manufacturer or estimate 300% of full load kV+A

(Use 1 if no reduced voltage starting aids used)

إذا سوف نختار المولد ذو البيانات التالية

Overall Specification : Kirloskar ePacks : _ ~								
Kirloskar ePack Model	Kirloskar Bagine Model	Rated Output at 1800 spm	Radiator Fan Loss	Recommended ePack Rating kVA (0.8 pf)		Recommended ePack Rating kWe		Alternator Efficiency © Full load
		Continuous bhp	hp	Continuous	Stand by	Continuous	Stand-by	%
				-				
KeP23W	2R1040	30	2	22	24	18	19	86.5
KeP37W	3R1040	44	3	31	35	26	28	83.5
KeP50W	4R1040	60	4	43	47	34	38	83.7
KeP70W	4R1040T	90	4	67	74	54	59	85.3
KeP112W	4R1040TA	112	8	81	88	64	70	85.1
KeP148W	6R1080T	148	10	109	120	87	96	85.7
KeP171W	6R1080TA	171	10	128	138	100	110	86.5

مثال رقم 5

حساب قدرة المولد لللأحمال التالية بإعتبار أن المحرك المطلوب 9.3-27/480 بر 150 الحالة الأولى :-محرك واحد بقوة 150 حصان ، كود F ، كفاءة تشغيل 95٪ معامل القدرة له عند بدء التشغيل 0.26 وأثناء التشغيل 0.86 كفاءة تشغيل 95.4 الحالة الثانية :-محرك واحد بقوة 200 حصان ، كود G ، كفاءة تشغيل 95.4 ومعامل القدرة له عند بدء التشغيل هي 0.24 وأثناء التشغيل 0.87 الحالة الثالثة:-أحمال متنوعة من 75 كيلو فولت أمبير ، ومعامل القدرة عند بدء التشغيل 0.84 وأثناء التشغيل 0.91 تشغيل المحل كالتالى :-

SkVA = motor hp x locked-rotor kVA/hp Where locked-rotor, Code F motor = 5.5 kVA/hp; Code G motor = 6 kVA/hp per NEC, Table 430.7(B)

SkW = SkVA x starting motor PF

 $RkW = motor hp \times 0.746-kW/hp/efficiency$

RkVA = RkW/running motor PF

Miscellaneous load: The following equations are used to

Calculate SkW and RkW:

 $SkW = SkVA \times starting PF$

 $RkW = RkVA \times starting PF$

Where load kVA remains constant: kVA = SkVA = RkVA الحالة الأولى :-

مولد 1000 كيلووات مع 2525 SkVA عند انخفاض الجهد بنسبة 20% تم اختياره من ورقة مواصفات الشركة المصنعة لتوفير سعة إجمالية تبلغ 2100 كيلو ... SkVAإجمالي الحمل 342 كيلووات يمثل 34% من معدل المولد 1000 كيلو وات . المولد غير محمّل في حالة التشغيل النهائية بسبب سعة المولد الكبيرة المطلوبة لتلبية بدء كيلو فولت أمبير.

الحالة الثانية:-

يتم اختيار مولد 800 كيلووات مع 2000 SkVA عند انخفاض الجهد بنسبة 20% من ورقة مواصفات الشركة المصنعة لتوفير سعة إجمالية تبلغ 1412 كيلو SkVA. إجمالي الحمل 342 كيلووات يمثل 43% من معدل المولد 800 كيلو واط المولد غير محمّل في حالة التشغيل النهائية بسبب سعة المولد الكبيرة المطلوبة لتلبية بدء كيلو فولت أمبير عندما بدأت الأحمال بشكل متقطع (التحميل التدريجي) ، تم تقليل المولد SkVA من SkVA المطلوب في مثال بدء جميع الأحمال بشكل متزامن.

الحالة الثالثة:-

اختيار مولد بقدرة 400 كيلووات مع 567 SkVA عند انخفاض الجهد بنسبة 20% من ورقة مواصفات الشركة المصنعة لتوفير حمولة إجمالية تبلغ 710 ... SkVAإجمالي الحمل 342 كيلووات هو 86% من معدل المولد 400 كيلو واط .يتم تحميل المولد إلى حوالي 86% من تصنيفه في حالة التشغيل النهائية ، بافتراض أن العابرين مقبولة .عندما بدأت الأحمال بشكل متقطع وتم استخدام الجهد المنخفض لبدء أحمال المحرك ، تم تقليل المولد المطلوب SkVA بشكل كبير.

(Rules of thumb)

Motor Starting Transients

Alternator

-
$$skVA = hp \times 6.0$$

• Engine

$$- skW = hp x 2$$

$$- \text{ rkW } = hp x .85$$

EXCEPTIONS: SPECIALTY MOTORS

Submersible Pumps

Generator sizing guidelines for submersible motors

Rated (Generator Power			
Rateu C	Jutput	DOL st	tarting		
kW	HP	kW	KVA		
4	5.5	10	12.5		
5.5	7.5	12.5	15.6		
7.5	10	15	18.8		
9.3	12.5	18.5	23.5		
11	15	22.5	28		
15	20	30	38		
18.5	25	40	50		
22	30	45	57		
26	35	52	65		
30	40	60	75		
37	50	75	94		
45	60	90	112		
55	75	120	150		
66	90	135	170		
75	100	150	190		
93	125	185	230		
110	150	210	260		
135	180	260	323		
150	200	280	360		
165	225	325	404		
185	250	365	454		

Generator Power					
Star-Delt	Star-Delta starting				
kW	KVA				
8	10				
10.8	13.5				
14	17.5				
17.2	21.5				
20.5	25.5				
27	34				
33	42				
40	50				
45	57				
52	65				
65	81				
77	97				
102	128				
115	144				
128	160				
158	198				
190	237				
228	284				
254	316				
285	354				
320	398				

Chart provides guidelines only

مثال

محطة ضح يوجد بها ثلاث محركات لها القدرات التالية:-

50 -حصانًا ، 100 حصان ، 200 حصان

أذكر قدرة المولد عند وجود 3 حالات مختلفة كالتالي

الحالة الأولى :- تقوم المضخة 200 حصان الإقلاع أولا ثم المضخة 100 حصان ثم المضخة 50 حصان ثم المضخة 50 حصان

الحالة الثانية:-تقوم المضخة 50 حصان بالإقلاع أولا ثم المضخة 100 حصان ثم المضخة 200 حصان المضخة 200 حصان

الحالة الثالثة :-تقوم المضخات الثلاثة بالإقلاع في نفس الوقت

الحل كالتالي :-

1-قدرة المولد عند الحالة الأولى:-

- Start 200hp x 2 = 400 skW (need 400 kW genset minimum)
- Run 200hp x .85 = 170 rkW (preload for next load step)
- > Start100hp x 2 = 200 skW+170rKW=370 sKW ((400 kW genset is still enough)
- \triangleright Run 300hp total x .85 = 255 rkW (preload for next step)
- ➤ Start 50hp x 2 = 100 skW + 255 rkW = 355 skW (400 kW engine)

- > To determine alternator size for voltage dip
- \triangleright assume skVA = 6 x hp = 6 x 200hp = 1200 skVA
- > To determine voltage dip use alternator motor starting table / specs

إذا قدرة المولد عند هذه الحالة تكون 400 كيلو وات

2-قدرة المولد عند الحالة الثانية:-

Preload of 150hp x .85 = 130 rkW (approximately) Start 200hpx2=400 sKW+130rKW=530sKW

إذا قدرة المولد عند هذه الحالة تكون بين 500-600 كيلو وات

3-قدرة المولد عند الحالة الثالثة:-

Start 350hp x 2 = 700 skW

إذا قدرة المولد عند هذه الحالة تكون 700 كيلو وات

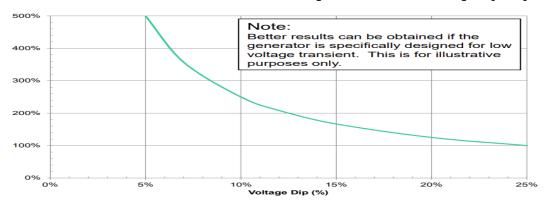
العوامل التي تؤثر على حسابات المولد

بعد الإنتهاء من الحسابات الأولية من الطرق السابقة توجد بعض العوامل التي يجب اخذها في الحسبان عند الإختيار الأخير للمولد وهي كالتالي:-

KW G-adjusted = KW G-accepted x K site conditions x K fuel type x K future needs x K pf

اولاً:-ضبط إختيار المولد وفقًا لانخفاض الجهد العابر Voltage Dip

انخفاض الجهد - القطع المختلفة من المعدات الكهربائية لها تفاوتات مختلفة لانخفاض الجهد لذلك يجب الرجوع إلى مواصفات الشركة المصنعة لمعرفة الانخفاض المسموح به في جهد الدخل (يمكن أن يكون حمل البداية للمحركات الكهربائية ست مرات تحميل التشغيل) يمكن أن تؤثر أحمال البدء على AVR في المولد عن طريق تقليل الجهد المتاحة لذلك .يجب أن تكون المولدات كبيرة الحجم بما يكفي لضمان عدم تجاوز الحد الأقصى المسموح به لانخفاض الجهد في النظام.


NEMA MG1 32.18.5.3 Motor starting equation

% Dip =
$$100 * X'd$$

X'D + Base kVA
Starting kVA

Where X'd is in per unit of the KVA base

Generator Size vs. Required V Dip (%)

Max. Allowable Project Voltage Dip:

• 25-35% is a reasonable starting point

Max. Allowable Project Frequency Dip:

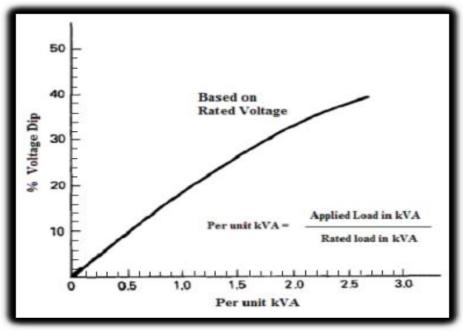
• 10-20% is a reasonable starting point

Example1: 2000 kW @ 0.8 PF with X'D = 18.2% starts a 750 HP code F motor – What is the approximate voltage dip?

Base kVA = 2000 kW / 0.8 PF = 2500

Starting kVA = 750 HP \times 5.6 kVA / HP = 4200 - % dip = 100 x (0.182) / (0.182 + (2500 / 4200)) = 23.4%

Example2: - Load Data: 100hp, NEMA code G, 480V, 3-PH Motor, DOL starting method, voltage dip 25%, X'd assumed 0.17pu


100hp x 6.29 =629SkVA

 $(629 / .25)-629 = 1887, 1887 \times 0.17 X'd = 320.7 kVA$

NEMA MG-1 Voltage Dip Equation

$$\frac{0.17 \, X'd}{0.17X'd + \frac{320kVA}{629SkVA}} = 0.250 \times 100 = 25\% \, \Delta V$$

يمكن أيضا إستخدام المنحى التالى لمعرفة فقد الجهد Voltage Dip

مثال

يوجد محرك 3 فاز بقدرة 100 حصان

,Code H = 7.10kVA per hp

والمولد المستخدم كان قدرته 400 كيلو فولت أمبير

مطلوب حساب فقد الجهد من الرسم السابق لهذا المولد

الحل

 $100hp \times 7.10kVA = 710SkVA$

710SkVA /400kVA = 1.77

من المنحى السابق تقاطع 1.7 مع المنحى يعطى قيمة فقد الجهد هي 30%

Improve motor starting

- Minimize X "d (generator reactance)

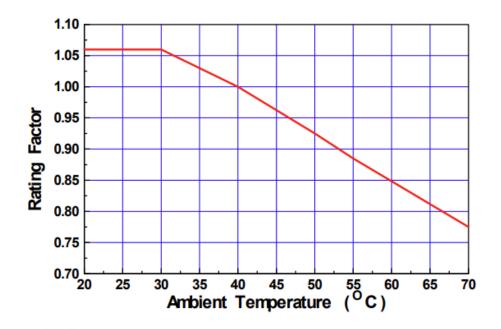
Upsize the Alternator

Rule of Thumb Formula 100hp x 6.0 skVA /hp = 600 skVA

Vdip 35% 25% 20% 10%

Alternator Model 175 230 275 750

Minimize voltage dip by upsizing alternator


2-ضبط إختيار المولد وفقًا لظروف الموقع

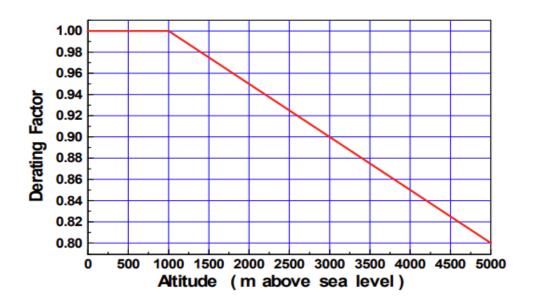
ويتم ذلك بمعرفة عنصرين

1-درجة الحرارة المحيطة (يفترض تصنيف قدرة المحرك أن الارتفاع الاسمي أقل من 1000 قدم ، ودرجة الحرارة المحيطة أقل من 104 درجة فهرنهايت ، والرطوبة أقل من 75٪)

60	55	50	45	40	رجــــــــــــــــــــــــــــــــــــ
0.88	0.91	0.94	0.97	1	عامل التخفيض F1

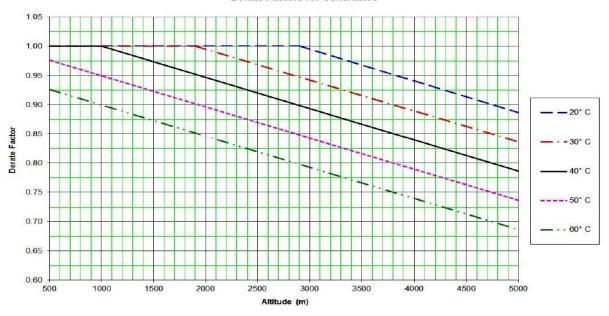
60	55	50	45	40	نوع العزل
0.88	0.91	0.94	0.97	1	Class H
0.86	0.90	0.93	0.97	1	Class F
0.82	0.87	0.81	0.96	1	Class B

جدول رقم (٣-٩) معامل التصحيح حسب درجات حرارة المكان وارتفاعه (K2)


p * · · ·	· 40	r ****	p 10	P1	نرجة حرارة المكان
1,.04	١,٠٣	١,٠٠٣	.,4٧٧	.,907	ŗř.
1,.40	1,.00	1,. 44	١,٠	.,977	, 70
1,111	١,٠٨	1,.07	1,.77	١,٠	٠ .
1,18	1,1.5	1,.4	1,.07	1,.77	0 10
1,17	1,174	1,178	١,٠٨	1,.07	٠٠.
1,4.4	1,174	1,177	1,1.4	1,.47	

2-الإرتفاع عن مستوى البحر (كلما زاد الارتفاع ، انخفضت كثافة الهواء.)

3000	2800	2600	2400	2200	2000	1800	1600	1400	1200	1000	الارتفاع عن سطح البحر (m)
0.88	0.892	0.904	0.916	0.928	0.94	0.952	0.964	0.976	0.988	1	معامل التخفيض F2


درجة حرارة الجو									
الارتفاع عن سطح البد	25 °C	40 °C	45 °C	50 °C	55 °C	60 °C (*)			
0 to 1000 m	1.045	1	0.97	0.94	0.91	0.88			
1001 to 1500 m	1.01	0.97	0.94	0.91	0.88	0.85			
1501 to 2000 m	0.98	0.94	0.91	0.88	0.86	0.83			
2001 to 2500 m	0.95	0.91	0.88	0.86	0.83	0.8			
2501 to 3000 m	0.91	0.87	0.84	0.82	0.79	0.77			

agging Power Factor	1	0.9	0.8	0.7	0.6
Factor	1	1	1	0.92	0.85

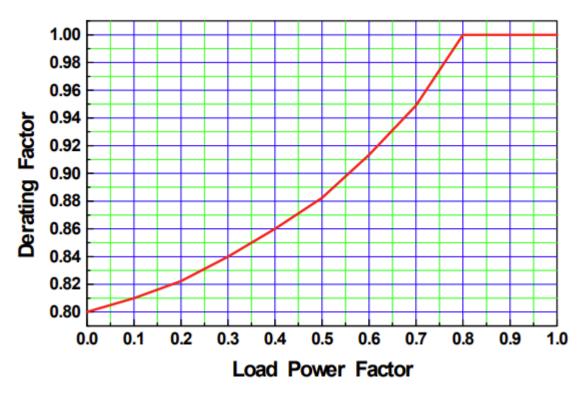
Altitude / Ambient: De-rate Chart

Altitude/Ambient Temperature Derate Factors for Generators

3-ضبط إختيار المولد وفقًا لنوع الوقود

مولدات البنزين أو الديزل يجب أن تنخفض عادة بنسبة 2-3٪ من ناتجها القياسي مولدات الغاز الطبيعي ، عادة ما يكون عامل خفض التصنيف أقرب إلى 5٪ من ناتجها القياسي

4-ضبط إختيار المولد وفقًا للاحتياجات المستقبلية


يجب ألا يقل نمو الحمل المتوقع لأي تطبيق عن 10٪

Load Growt	th Over 10 Years
Application	Typical Load Growth Factor (K _f)
Bank	30 – 50%
Medical Center	30 – 40%
Church	10 – 30%
School	50 – 80%
Hospital	40 – 80%
Warehouse	10 – 30%

5-ضبط إختيار المولد وفقًا لمعامل الطاقة (PF)

تتطلب PFs المنخفضة مولدات أكبر أو مجموعات مولدات لخدمة الحمل بشكل صحيح عادةً ما يتم تصنيف مجموعات المولدات ثلاثية الطور لأحمال PF.1.0 ومجموعات المولدات أحادية الطور لأحمال PF.1.0

0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	10	معامل القدرة
0.84	0.85	0.86	0.87	0.89	0.91	0.95	1	ı	1	معامل التخفيض F3

Lagging power factor	De-Rating factor
0.8 to 1.0	1.0
0.7	0.97
0.6	0.91
0.5	0.89
0.4	0.87
0.0	0.84

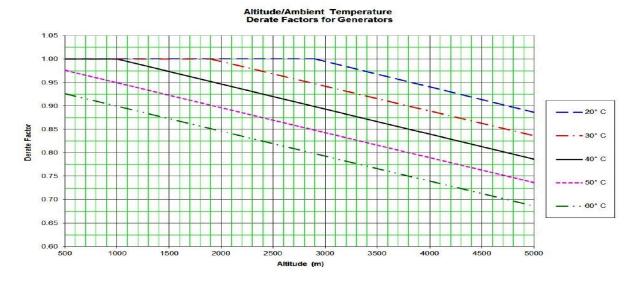
	Check Chart for Determin	ing Type/Size of Load to be Applied to the Generator			
Criteria of Load	Load Category	Comments			
Application	Standby	No overload capacity available for temporary power supply			
Application	Prime Power	Generator set is primary power with 10% overload capability			
	Altitude	Check manufacturer's derations (turbo-charger less than naturally aspirated)			
Ambient	Ambient temperature	Over 85°F - check manufacturer's derate			
	Humidity	Up to a maximum of 6% but dependent on temperature			
Valtara Din	Less than 25%	Less than 25%, standard AVR should maintain regulation			
Voltage Dip	More than 25%	Above 25%, look at permanent magnet excitation generator			
Frequency*	Governor control	Verify maximum frequency dip the system will accept (*normally 60Hz in US)			
Reactive Loading	One Large Motor	Investigate sizing engine to generator and/or starting aids			
Electric Motors, etc	Several Electric Motors	Stage start with largest motor first			
Non-reactive loads	Priority loads	These are the loads a generator set has to be sized for			
Lights, heaters, etc	Non-essential loads	Consider if for standby, some loads could be dropped from standby circuit			
Dhara	3-Phase	Power factor will be 0.8 and requires a 3-phase generator			
Phase	Single Phase	See if single phase loads can be balanced on an 3-phase system			
Voltage	Configuration	Star, Delta, Parallel, Zig Zag, etc			
Electronic Loads	SCR loads	More than 25% SCR loading, may require larger sized generator end			
UPS Systems	Leading Power Factor	Check with set manufacturer when UPS systems have leading power factors			

مثال على تطبيق Derating Factors -: Derating Factors

كانت القدرة الكلية للأحمال تساوى 3000 كيلو فولت أمبير ومعامل القدرة 0.55 وكانت أقصى درجة حرارة لغرفة الماكينات 60 درجة وكانت على إرتفاع 2000 متر من سطح البحر وإذا كان أكبر محرك لهذه الأحمال 400 كيلو وات وكانت بداية التشغيل توصيل مباشر

الحل كالتالي:-

بما أن معامل القدرة للأحمال 55% يكون Derating factor بما أن معامل القدرة للأحمال 95% يكون


0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	معامل القدرة
0.84	0.85	0.86	0.87	0.89	0.91	0.95	1	t,	1	معامل التخفيض F3

Kpf=3000/90%=3333 KVA

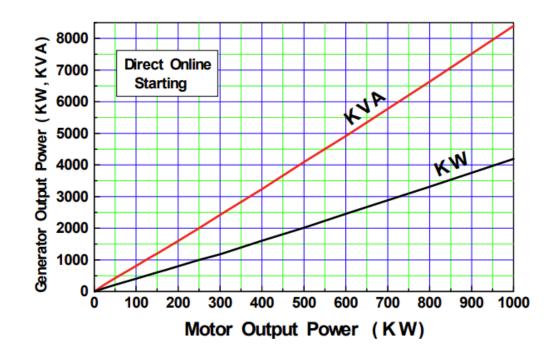
بما أن درجة حرارة الغرفة للمولد تساوى 60 درجة يكون Derating factor له تساوى 85%

وإرتفاع المولد 2000 متر عن سطح البحر يكون Derating factor له تساوى 95%

Altitude / Ambient: De-rate Chart

K ta=3333/85% x 95%

Kta=4127 KVA


وبما أن قدرة المحرك كانت قدرته تساوى 400 كيلو وات

معامل القدرة له 90% والكفاءة تساوى 92% قدرة دخل هذا المحرك تساوى =

((400/90)% X92%) = 483 KVA

توصيل طريقة بدء التشغيل توصيل مباشر

فإن المولد اللازم له تساوى 3200 كيلو فولت أمبير من الشكل التالى

قدرة جميع الأحمال ماعدا هذا المحرك هي 3000-483=2156 كيلو فولت أمبير

وبذلك تكون القدرة الكلية للمولد الرئيسي =5716=3200+5716 كيلو فولت أمبير

وهى أكبر من القدرة الكلية للمولد بعد معاملات Derating factor وهى 4127 كيلو فولت أمبير

مثال شامل لحساب مولد من شركة هيونداى لمحطة أحد شركات البترول

1.0 PURPOSE

This calculation describes the gas turbine generator sizing calculation of Attahaddy Gas Field Development Project.

2.0 BASIS OF ELECTRICAL POWER CONSUMPTION

The majority of plant loads are a function of the process equipment, and such information is obtained from process and mechanical engineering parties. Since their design is made considering some design margin for the most severe condition, it is necessary to apply some factors to obtain a total plant power consumption that is close to the actual power consumption of the Attahaddy Plant.

2.1 Summary of Power Consumption

Max Brake Power for motor: Maximum required power delivered from the motor
to the pump shaft. In case that brake power for motor is
not available from associated parties, such as mechanical
department and/or Vendor etc., the following multiplying
factors are applied based on the Table 6 of API610
(Centrifugal Pump for General Refinery Service).

Motor Name Plate Rating (kW)	Multiplying Factor to Motor Rating
Less than or equal to 18.5 kW	0.8
Greater than 18.5 kW and less than 75 kW	0.87
Greater than or equal to 75 kW	0.91

2) Max Brake Power for non-motor item: To obtain power consumption close to the actual value, the following multiplying factors are applied to the rating of each equipment.

Non Motor Loads	Multiplying Factor to Equipment Rating
Lighting	1.0
Utility Power	1.0
A/C including heating and ventilation	1.0
Water Heaters	1.0
Exhausters	1.0

- Demand: The electric load at the receiving terminals of motors, panels or switchgear averaged over a specified interval of time.
- Demand Factor: The ratio of the maximum demand of the system to the total connected load of the system.

Loads are classified to three categories as below considering the operational characteristic of each load.

- Continuous: Continuously Operating Loads

- Intermittent : Intermittently Operating Loads

- Stand-by : Stand-by Loads

Demand factors are applied to the each category as below for summary of power consumption. This value is assumed considering operational characteristics and design margin of the process and mechanical team.

Motor Operation Characteristic	Demand Factor
Continuous	1.0
Intermittent	0.4
Stand-by	0

3.0 BASIS OF GENERATOR SIZING

Normally both Units will be in continuous operation and equally share the Plant load. However each Unit alone must be capable of supplying the full load of Plant, starting the largest gas compressor, and 30% additional capacity for future expansion.

4.0 CALCULATION

Please refer to Attachment #1. "ELECTRICAL LOAD SUMMARY for GTG Sizing".

1) Summary of Electrical Power Consumption

			Consume	d Power		
Load Summary	Conti	nuous	Interm	ittent	Stand	l-by
	kW	kVA	kW	kVA	kW	kVA
Process Area Facilities Load	12839	14525	5482	6074	3702	4073
Offsite Area Facilities Load	204	234	36	47	143	187
Industrial Support Facilities Load	504	670	178	194	252	271
Camp Area Facilities Load	1312	1626	0	0	184	184
Sub-Total	14859	17055	5696	6314	4282	4715
Future Load (30% of The Process Area Facilities Load)	3852	4357	1645	1822	1111	1222
Total	18711	21412	7341	8136	5392	5937
Estimated Max. Load Sum	kV	V	kVA	AR.	kV	A
$(= \sum C \times 1 + \sum X \cdot 0.4 + \sum X \cdot 0)$	216	47	118	26	2460	67

2) Selected Total Power Consumption: 21.6 MW (PF=0.88)

3) Selected GTG Output Rating at Site Condition: 19.2 MW at PF=0.8

5.0 CONCLUSION

The selected GTG (Frame 5) rating is 19.2 MW and the expected total power consumption is 21.6MW at site ambient condition, based on "ELECTRICAL LOAD SUMMARY FOR GENERATOR SIZING" attached.

We believe that above discrepancy between GTG rating and expected total power consumption is made from current changes of load operation mode, such as PM-3101C, PM-3201C, PM-3202C, PM-3002C, PM-5101B, PM-5201B, from "stand-by" to "intermittent",

Therefore, actual PLANT LOAD should be re-checked during plant normal operation period to verify selected GTG rating.

Project: Attahaddy Gas Field Development 60Hz

Project: Attahaddy Gas Field Development 60Hz	s Field Development														Februar	February 17, 2004 Rev.7
			Type		Name	2	Max.	1	ì			Consumed Power	Power			Remark
Item No.	Equipment Name	BUS No.	o d	 8 8	N kw	Current	Brake	5	<u>.</u>	Continuo	ns(C)	Intermittent(I)	ent(I)	Stand-by(S)	y(S)	
				S	(kW)	(A)	(kW)	(PQ)	(P	(kW) (kVA)	(kVA)	(kW)	(kvA)	(kW)	(KVA)	
Annual safety facility (IV) (IV) (IV) (IV) (IV) (IV) (IV) (IV)																
PROCESS AREA FACILITIES LOAD	ACILITIES LOAD											4	1	ŧ	f	
	GAS PLANT PROCESS FACILITIES									1109	12506	2000	5563	681	9/9	
	WATER PLANT									137	158	20	22	142	199	
	POWER STATION FACILITIES									24 C	0	60	0	215	239	
-	TIRE FIGHTING FACILITIES HVAC									434	551	75	86	266	324	
-	LIGHTING & SMALL POWER									322	370	318	321	654	099	
	UPS/DC									393	393	0	0	511	21	
	SUB-TOTAL									12839	14525	5482	6074	3702	4073	
OFFSITES AREA FACILITIES LOAD	ACILITIES LOAD															
	SUB-TOTAL									204	234	38	47	143	187	
INDUSTRIAL SUPF	INDUSTRIAL SUPPORT AREA FACILITIES LOAD														į	
	HVAC LIGHTING & SMALL POWER									228	302	4 47	190	101	5 5	
	SID TOTAL									504	670	178	194	252	271	
	120000											1				
CAMP AREA FACILITIES LOAD	LITIES LOAD HVAC									765	926	0	0	184	184	
	LIGHTING & SMALL POWER									547	700	0	0	0	0	
	SUB-TOTAL									1312	1626	01	01	184	184	
PLANT + CAMP TOTAL	OTAL									14859	17055	5696	6314	4282	4715	
30% OF THE PROCESS AREA FA	CESS AREA FACILITIES LOAD									3852	4357	1645	1822	111	1222	
	GRAND TOTAL	Σς,Σι,Σ	so.							18711	21412	7341	8136	5392	5937	
19	GRAND TOTAL POWER CONSUMPTION	ΣC×1, Σ1×0.4, Σ S×0	1×0.4	∑ s×0						18711	21412	2936	3255	0	0	
GRAND	GRAND TOTAL POWER CONSUMPTION SUMMARY	Σ KW, Σ KVAR, Σ KVA (= Σ C x 1+Σ l x 0.4+Σ S x 0)	VAR, Σ	kvA (=	ΣC×1	+Σ1×0.	1+ΣS×	(0		21647	Ϋ́	11826	kvaR	24667	kVA	

Project: Attahaddy Gas Field Development

Project; Attahaddy Gas Freid Development 60Hz	s ried Development				Mama	-	May	-	-						Februs	February 17, 2004 Rev.7
Item No.	Equipment Name	BUS No.	9 %	No.			Brake .	Ell	l		ŀ	Consumed Power	Power			Remark
			Load		××	Current	Power			Continuous(C)	\dashv	Έŀ	ent(1)	Stand-by(S)	oy(S)	
				3	(kW)	(F)	(kW)	(PU)	(PU)	(kw)	(kVA)	(kW)	(kVA)	(KW)	(kVA)	
PROCESS AREA FACILITIES	FACILITIES															
GAS PLANT PROCESS FACII	ESS FACILITIES LOAD															
PM-2001A	Test Separator Wash Pump	BUS-31	Σ	480	45	64.53	31.33	0.93	06'0			33.62	37.35			
PM-2001B	Test Separator Wash Pump	BUS-32	Σ	480	45	64.53	31,33	0.93	06:0					33.62	37.35	
M-2101A	Production Gas Cooler Fan	BUS-13	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
M-2101C	Production Gas Cooler Fan	BUS-13	Σ	480	55	32.93	16.49	0.93	0.86	17.73	20.52					
M-2101E	Production Gas Cooler Fan	BUS-13	≅ :	480	3 53	32.93	16.49	0.93	98.0	17.73	20.92					
M-2101G	Production Gas Cooler Fan	21-000	ε :	20 00	77	7 a a b	40.45	2 6	0 0			45.23	50.25			
PM-2101A	Production Separator Wash Pump Air Cooler for D-2101A	BUS-13	2	84	0,55	0.94	0.44	0.83	0.85			0.53	0.62			
M-3002AA	Air Cooler for P-3002A	BUS-13	Σ	480	0.55	0.94	0.44	0.83	0.85			0.53	0.62			
M-3002AB	Air Cooler for P-3002A	BUS-13	Σ	480	0.55	0.94	0.44	0.83	0.85			0.53	0.62			
M-2101B	Production Gas Cooler Fan	BUS-14	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
M-2101D		BUS-14	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
M-2101F	Production Gas Cooler Fan	BUS-14	Σ	480	22	32.93	16.49	0.93	98'0	17.73	20.52					
M-2101H	Production Gas Cooler Fan	BUS-14	Σ	480	22	32.93	16,49	0.93	98.0	17.73	20.52				4	
PM-2101B	Production Separator Wash Pump	BUS-14	Σ	480	22	78.87	42.15	0.93	0.90					45.23	50.25	
M-2101BA	Air Cooler for P-2101B	BUS-14	Σ	480	0.55	0.94	0.44	0.83	0.85			0.53	0.62			
M-3002BA	Air Cooler for P-3002B	BUS-14	Σ	480	0,55	0.94	0.44	0.83	0.85			0.53	29.0			
M-3002BB	Air Cooler for P-3002B	BUS-14	Σ	684	0.55	0.94	0.44	0.83	0.85			50.0	79.0			
M-2201AA	Air Cooler for P-2201A	BUS-23	Σ	480	0.55	0.94	0.44	0.83	0.85	9	69	56.0	79'0			
M-3201AA	Air Cooler for P-3201A	BUS-23	Σ	024	0.0	48.0	4 :	0 0	0.0	0.00	30:0			0.53	0.67	
M-3201CA	Air Cooler for P-3201C	BUS-23	Σ:	480	0.55	0.94	9.44	0 0	0.00					0.53		
M-2201BA	Air Cooler for P-2201B	BUS-24	Σ	480	0.55	9.0	4. 6	200	0 6					0.00		
M-3002CA	Air Cooler for P-3002C	BUS-24	Σ:	480	0.55	0.94	44.0	0.03	0.0					0.53		
M-3002CB	Air Cooler for P-3002C	BUS-24	Σ:	9	0 0	ž 0		2 6	2 4	62	0.83					
M-3201BA	Air Cooler for P-32018	BUS-24	Σ:	000	0.0	\$ 60	7 7	9 6	0.0	3	30.0			0.53		
M-2001AA	Air Cooler for P-2001A	2-200	Ξ:	9 9	5 0	5 6			8 0					0.53	0.62	
M-2001BA	Air Cooler for P-2001B	1805-32 RHS.23	Σ Σ	480	23	32.93	16.49	0.93	0.86	17.73	20.52					
M-2201A	Production Gas Cooler Tail	2000	2	480	2	22 93	16.49	0 93	0.86	17.73	20.52					
M-22015	Production Gas Cooler Fan	BUS.23	2	480	22	32.93	16.49	0.93	0.86	17.73	20.52					
M-2201G	Production Gas Cooler Fan	BUS-23	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
PM-2201A	Production Separator Wash Pump	BUS-23	Σ	480	55	78.87	42.15	0.93	06.0			45.23	50.25			
M-2201B	Production Gas Cooler Fan	BUS-24	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
M-2201D	Production Gas Cooler Fan	BUS-24	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
M-2201F	Production Gas Cooler Fan	BUS-24	Σ	480	22	32.93	16.49	0.93	98.0	17.73	20.52					
M-2201H	Production Gas Cooler Fan	BUS-24	Σ	480	22	32.93	16.49	0.93	0.86	17.73	20.52				_	

Project: Atlahaddy Gas Field Development 50Hz

Project: Attahaddy Gas Field Development	s Field Development														Februar	February 17, 2004 Rev.7
50H2			Type	F	Name	20.5	Max.	\vdash	\vdash			Consumed Power	Power			
Item No.	Equipment Name	BUS No.	6	\oint			Brake	E E	ᆂ	Continuous	(0)	Informittent(I)	Option	Stand-bv(S)	v(S)	Kemark
			Coad	5	KW)	(X		(PU)	J.(J.)	(kW)	(kVA)	(kw)	(kVA)	(kW)	(kVA)	
M-3104W	Lean Amine Cooler Fan	BUS-13	Σ	480	13	24.62	10.82	0.92	0.80	11.80	14.77					
PM-3101A	Amine Booster Pump	BUS-13	Σ	480	110	161.78	96'66	0.95	98.0	105.11	122.22					
M-3101AA	Air Cooler for P-3101A	BUS-13	Σ	480	0.55	0.94	0.44	0.83	0.85	0.53	0.62		-			
PM-3101C	Amine Booster Pump	BUS-13	Σ	480	9	161.78	96.66	96.0	98.0			105.11	122.22	-	c c	
M-3101CA	Air Cooler for P-3101C	BUS-13	Σ	480	0.55	0.94	0.44	0.83	0.85	-				0.53	0.62	
PM-3103A	Regenerator Reflux Pump	BUS-13	Σ	480	Ξ	17.23	7.29	0.90	98.0	8.12	9,49					
PM-3104A	Amine Drum Pump	BUS-13	Σ	480	4	6.40	3.20	0.87	98.0			3.66	4.26		6	
PM-3112B ,	Anti-foam Injection Pump	BUS-13	Σ	480	0.37	0.79	0.30	0.70	0.80					0,42	0.53	
FN-4101B	MEG Air Blower	BUS-13	Σ	480	5.5	8.95	4.40	0.87	0.85		,			0.0	9	
MA-3112	Anti-foam Agitator	BUS-14	Σ:	480	0.75	1.61	0.60	0.70	08.0	0.86	1,07					
M-3103B	Amine Regen. Condenser Fan	BUS-14	Σ	480	22	32.93	15.44	56.0	0.0	10.00	13.22	_				
M-3103D	Amine Regen. Condenser Fan	BUS-14	Σ:	480	52	32.93	15.44	0.93	0.86	16.60	27.61					
M-3103F	Amine Regen. Condenser Fan	BUS-14	Σ :	989	77	32.93	4 :	2 0	0 6	00.00	19.55					
M-3103H	Amine Regen. Condenser Fan	BUS-14	Σ:	5 5	77	32.93	1 :	2 6	0.00	00.00	10.22					
M-3103J	Amine Regen. Condenser Fan	BUS-14	Σ :	480	77	32.93	4 :	2 0	00.0	00.0	37.61					
M-3103L	Amine Regen. Condenser Fan	BUS-14	Σ	480	22	32.93	4 :	0.93	0.00	00.00	13.22					
M-3103N	Amine Regen, Condenser Fan	BUS-14	Σ	480	22	32.93	5.4	0.93	99.0	16.60	19.22					
M-3103P	Amine Regen. Condenser Fan	BUS-14	Σ	480	22	32.93	15.44	0.93	0.86	16.60	19.22					
M-3104B	Lean Amine Cooler Fan	BUS-14	Σ	480	5	24.62	10.82	0.92	0.80	11.80	14.77					
M-3104D	Lean Amine Cooler Fan	BUS-14	Σ	480	15	24.62	10.82	0.92	0.80	11.80	14.77					
M-3104F	Lean Amine Cooler Fan	BUS-14	Σ	480	\$	24.62	10.82	0.92	08.	11.80	14.77					
M-3104H	Lean Amine Cooler Fan	BUS-14	Σ	480	t,	24.62	10.82	0.92	0.80	11.80	14.7					
M-3104J	Lean Amine Cooler Fan	BUS-14	Σ	480	5	24.62	10.82	0.92	0.80	11.80	14.77					
M-3104L	Lean Amine Cooler Fan	BUS-14	Σ	480	5	24.62	10.82	0.92	0.80	1.80	14.77					
M-3104N	Lean Amine Cooler Fan	BUS-14	×	480	5	24.62	10.82	0.92	0.80	11.80	14.77					
M-3104P	Lean Amine Cooler Fan	BUS-14	Σ	480	15	24.62	10.82	0.92	0.80	1.80	14.77					
M-3104R	Lean Amine Cooler Fan	BUS-14	Σ	480	ŧ5	24.62	10.82	0.92	0.0	11.80	14.77					
M-3104T	Lean Amine Cooler Fan	BUS-14	Σ	480	5	24.62	10.82	0.92	0.80	8.	14.77					
M-3104V	Lean Amine Cooler Fan	BUS-14	Σ	480	ŧ.	24.62	10.82	0.92	0.80	11.80	14.77					
M-3104X	Lean Amine Cooler Fan	BUS-14	Σ	480	5	24.62	10.82	0.92	0.80	1.80	14.77					
PM-3101B	Amine Booster Pump	BUS-14	Σ	480	2	161.78	96.66	0.95	98'0	105.11	122.22					
M-3101BA	Air Cooler for P-3101B	BUS-14	×	480	0.55	0.94	0.44	0.83	0.85	0.53	0.62				,	
PM-3103B	Regenerator Reflux Pump	BUS-14	Σ	480	Ξ	17.23	7.29	06:0	98.0					8.12	94.	
PM-3104B	Amine Drain Drum Pump	BUS-14	×	480	4	6.40	3.20	0.87	98.0					3.66	4.26	
PM-3112A	Anti-foam Injection Pump	BUS-14	Σ	480	0.37	0.79	0.30	0.70	0.80	0.42	0.53					
PM-3111A	Precoat Circulation Pump	BUS-41	Σ	480	8.5	13.70	8.50	0.91	0.82			9.34	11.39			
PM-3111B	Precoat Circulation Pump	BUS-42	×	480	83 13	13.70	8,50	0.91	0.82					46.0	11.39	
PM-3202A	Amine Charge Pump	BUS-21	Σ	4160	820	134.88	739.00	0.95	0.89	779.54	875.88					
PM-3202B	Amine Charge Pump	BUS-21	Σ	4160	820	134.88	739.00	0.95	0.89	779.54	875.88					
PM-3202C	Amine Charge Pump	BUS-22	Σ	4160	820	134.88	739.00	0.95	0.89			779.54	875.88			
MA-3212	Anti-foam Agitator	BUS-23	Σ	480	0.75	9:	09.0	0.70	0.80	0.86	1.07	_	_	_		

			Abe	_	Name	=	Max.	_	_			Concilina	A POWER			
Item No.	Equipment Name	BUS No.		Volt				=				200			100	Remark
			Load		_ ×	Current	-			좕	(C)	Intermittent(tent(I)	Stand	Stand-by(S)	
				3	(kW)	(¥)	(kW)	$\overline{}$	_		(kVA)	(KW)	(kVA)	(kM	(kVA)	A STREET, STRE
M-3203A	Amine Regen. Condenser Fan	BUS-23	Σ	480	22	32.93			98.0	16.60	19.22					
M-3203C	Amine Regen, Condenser Fan	BUS-23	Σ	480	22	32.93	15.44		98.0	16.60	19.22					
M-3203E	Amine Regen. Condenser Fan	BUS-23	×	480	22	32.93	15.44		98.0	16.60	19.22					
M-3203G	Amine Regen. Condenser Fan	BUS-23	×	480	22	32.93	15.44	0.93	98.0	16.60	19.22					
M-3203I	Amine Regen. Condenser Fan	BUS-23	Σ	480	22	32.93	15.44		98.0	16.60	19.22					
M-3203K	Amine Regen. Condenser Fan	BUS-23	Σ	480	22	32.93	15.44	0.93	98.0	16,60	19.22					
M-3203M	Amine Regen. Condenser Fan	BUS-23	×	480	22	32.93	15.44		98.0	16.60	19.22					
M-32030	Amine Regen. Condenser Fan	BUS-23	Σ	480	22	32.93	15.44		98.0	16.60	19.22					
M-3204A	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		0.80	11.80	14.77					
M-3204C	Lean Amine Cooler Fan	BUS-23	×	480	15	24.62	10.82		0.80	11.80	14.77					
M-3204E	Lean Amine Cooler Fan	BUS-23	×	480	5	24.62	10.82		0.80	11.80	14.77					
M-3204G	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		0.80	1.80	14.77					
M-3204I	Lean Amine Cooler Fan	BUS-23	×	480	15	24.62	10.82		0.80	1.80	14.77					
M-3204K	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		0.80	1.80	14.77					
M-3204M	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		0.80	1.8	14.77					
M-3204O	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		0.80	1.80	14.77					
M-3204Q	Lean Amine Cooler Fan	BUS-23	Σ	480	\$	24.62	10.82		0.80	1.80	14.77					
M-3204S	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		08.0	11.80	14.77					
M-3204U	Lean Amine Cooler Fan	BUS-23	Σ	480	5	24.62	10.82		0.80	11.80	14.77					
M-3204W	Lean Amine Cooler Fan	BUS-23	Σ	480	15	24.62	10.82		0.80	11.80	14.77					
PM-3201A	Amine Booster Pump	BUS-23	×	480	100	161.78	96.96		98.0	105.11	122.22					
PM-3201C	Amine Booster Pump	BUS-23	Σ	480	£	161.78	96.66		98.0			105.11	122.22			
PM-3203A	Regenerator Reflux Pump	BUS-23	Σ	480	Ξ	17.23	7.29		98.0	8.12	9.49					
PM-3204A	Amine Drain Drum Pump	BUS-23	Σ	480	-77	6.40	3.20		98.0			3.66	4.26			
PM-3212B	Anti-foam Pump	BUS-23	Σ	480	0.37	0.79	0.30		08.0					0.42	0.53	
M-3203B	Amine Regen. Condenser Fan	805-24	Σ	480	22	32.93	15.44		98.0	16.60	19.22					
M-3203D	Amine Regen. Condenser Fan	BUS-24	Σ	480	22	32.93	15.44		98.0	16.60	19.22					
M-3203F	Amine Regen. Condenser Fan	BUS-24	≥ :	480	22	32.93	15,44	0.93	0.86	16.60	19.22					
M-3203H	Amine Regen. Condenser Fan	BUS-24	Σ	480	22	32.93	15.44	0.93	0.86	9.0	19.77					
M-3203J	Amine Regen. Condenser Fan	BUS-24	Σ:	8	22	32.93	15.44	0.93	98.0	16.50	19.22					
M-3203L	Amine Regen, Condenser Fan	BUS-24	Σ	98	22	32.93	15.44	0.93	0.86	9.90	19.22					
M-3203N	Amine Regen, Condenser Fan	BUS-24	Σ	480	22	32.93	15.44	0.93	98.0	16.60	19.22					
M-3203P	Amine Regen, Condenser Fan	BUS-24	Σ	480	22	32.93	15.44	0.93	0.86	16.60	19.22					
M-3204B	Lean Amine Cooler Fan	BUS-24	Σ	480	\$	24.62	10.82	0.92	0.80	2	14.77					
M-3204D	Lean Amine Cooler Fan	BUS-24	Σ	480	2	24.62	10.82	0.92	0.80	8	14.77					
M-3204F	Lean Amine Cooler Fan	BUS-24	≥	480	12	24.62	10.82	0.92	0.80	1.80	14.77					
M-3204H		BUS-24	Σ	480	22	24.62	10.82	0.92	0.80	11.80	14.77					
M-3204J	Lean Amine Cooler Fan	BUS-24	Σ	480	5	24.62	10.82	0.92	0.80	1.80	14.77				_	
M-3204L	Lean Amine Cooler Fan	BUS-24	Σ	480	5	24.62	10.82	0.92	0.80	8	14.77					
M-3204N	Lean Amine Cooler Fan	BUS-24	Σ	480	5	24.62	10.82	0.92	0.80	8.	7.7					
M-3204P	Lean Amine Cooler Fan	BUS-24	Σ	480	55	24.62	10.82	0.92	0.80	8.	14.77			_	_	

Project: Attahaddy Gas Field Development 60Hz

			Type		Name	<u></u>	Max.	ì				Consume	Consumed Power			Remark
Item No.	Equipment Name	BUS No.	5	No!	Plate	Load	Brake	<u></u>		Continuous(C)	ous(C)	Interm	Intermittent(1)	Stand-by(S)	by(S)	
			050	3	(KW)	(A)	(KW)	(PU)	E	(kW)	(KVA)	(kW)	(KVA)	(kW)	(kVA)	
M-3204R	Lean Amine Cooler Fan	BUS-24	Σ	480	15	24.62	10.82	0.92	0.80	11.80	14.77					
M-3204T	Lean Amine Cooler Fan	BUS-24	Σ	430	15	24.62	10.82	0.92	08.0	11.80	14.77					
M-3204V	Lean Amine Cooler Fan	BUS-24	Σ	480	15	24.62	10.82	0.92	08'0	11.80	14.77					
M-3204X	Lean Amine Cooler Fan	BUS-24	Σ	480	5	24.62	10.82	0.92	0.80	11.80	14.77					
PM-3201B	Amine Booster Pump	BUS-24	Σ	480	110	161.78	96.96		98.0	105.11	122.22				!	
PM-3203B	Regenerator Reflux Pump	BUS-24	Σ	480	Ξ	17.23	8.50		98.0					9.47	11.07	
PM-3204B	Amine Drain Drum Pump	BUS-24	Σ	480	4	6.40	3.20		98.0					3.66	4.26	
PM-3212A	Anti-foam Pump	BUS-24	Σ	480	0.37	0.79	0.30		0.80	0.42	0.53					
PM-32118	Precoat Circulation Pump	BUS-41	Σ	480	8.5	13.70	8.50		0.82					9.34	11.39	
PM-3211A	Precoat Circulation Pump	BUS-42	Σ	480	8.5	13.70	8.50		0.82			9.34	11.39			
PM-4102A	Main Lube Oil Pump for C-4101	BUS-13	Σ	480	Ξ	16.87			98.0	8.77	10.20					
PM-4102B	Aux. Lube Oil Pump for C-4101	BUS-13	Σ	480	=	16.87			0.86					8.77	10.20	
EH-4101	Oil Heater for C-4101	BUS-13	I	480	4	4.81			9.			4.00	4.00			
M-4108A	Air cooler Fan for C-4101	BUS-13	Σ	480	m	5.95			0.74	2.93						
M-4108B	Air cooler Fan for C-4101	BUS-13	Σ	480	e	5,95	2.40		0.74	2.93	3,96					
M-4108C	Air cooler Fan for C-4101	BUS-13	Σ	480	n	5,95	2.40	_	0.74					2.93	3.96	
EH-4102	Air Heater for N2 System	BUS-13	I	480	1.85	2.23	1.85	1.00	9.			1,85				
CM-4001	Common Propane Compressor	BUS-21	Σ	4160	2420	383.47	2124.00	0.95	0.92			2231.09	2425.10			
PM-4002A	Main Lube Oil Pump for C-4001	BUS-23	Σ	480	Ξ	16.87	8.00	0.91	98'0					8.77		
PM-4002B	Aux. Lube Oil Pump for C-4001	BUS-23	Σ	480	=	16.87	8.00	0.91	0.86					8.77		
EH-4001	Oil Heater for C-4001	BUS-23	I	480	4	4.81	10.00	1.00	9.1					10.00	_	
M-4008A	Air cooler Fan for C-4001	BUS-23	Σ	480	e	5.95								2.93		
M-4008B	Air cooler Fan for C-4001	BUS-23	Σ	480	က	5.95	2.40	0.82	0.74					2.93		
M-4008C	Air cooler Fan for C-4001	BUS-23	Σ	480	က	5.95		_						2.93		
EH-4002	Air Heater for N2 System	BUS-23	I	480	1.85	2.23	1.85	1.00	9.					1.85	1.85	
PM-4202A	Main Lube Oil Pump for C-4201	BUS-24	Σ	480	=	16.87				8.77	10.20					
PM-4202B	Aux. Lube Oil Pump for C-4201	BUS-24	Σ	480	=	16.87			_					8.77	10.20	
EH-4201	Oil Heater for C-4201	BUS-24	I	480	4	4.81	_					10.00	10.00			
M-4208A	Air cooler Fan for G-4201	BUS-24	Σ	480	e	5.95				2.93						
M-4208B	Air cooler Fan for G-4201	BUS-24	Σ	480	က	5.95				2.93	3.96					
M-4208C	Air cooler Fan for G-4201	BUS-24	Σ	480	e				_					2.93	3.96	
EH-4202	Air Heater for N2 System	BUS-24	I	480	1.85							1.85				
PM-4001A	MEG Make-Up Pump	BUS-31	Σ	480	6.0							0.97				
PM-4022A	Propane Make-Up Pump	BUS-31	Σ	480	5.5							5.12	6,40			
PM-4001B	MEG Make Up Pump	BUS-32	Σ	480	6.0	2.05	0.72	0.74	0.71		_			0.97	1.36	
PM-4022B	Propane Make-Up Pump	BUS-32	Σ	480	5.5	9.62	4.40	0.86	0.80			5.12	2 6,40			
CM-4101	Propane Compressor	BUS-11	Σ	4160	2420	6.3	2	_	0.92	22	24					
M-4104A	Propane Condenser Fan	BUS-13	Σ	480	22		15.14	0.93	0.86							
M-4104C	Propane Condenser Fan	BUS-13	Σ	480	22											
M-4104E	Propane Condenser Fan	BUS-13	Σ	480	22											
M-4104G	Propane Condenser Fan	BUS-13	Σ	480	22	32.93	15.14	0.93	0.86	16.28	18.84		_	_	_	
					i	_		_			_	_				_

Project: Attahaddy Gas Field Development 60Hz

ZH09			ŀ		-	-		-						Februs	February 17, 2004 Rev.7
Item No.	Equipment Name	BUS No.	of o	Volt Plate	Load Load	d Brake	ke Eff	Ъ			Consumed Power	Power			Remark
			Load	KW	_		-e-		Continu	Continuous(C)	Intermittent(i)	(i)	Stand-by(S)	oy(S)	
			_	(V) (kW)	(A)	(kW)	(PU)	(PU)	(kW)	(kVA)	(kW)	(kVA)	(kW)	(kVA)	
M-4104B	Propane Condenser Fan	BUS-14	Σ	480				3 0.86		18.84					
M-4104D		BUS-14	Σ	480	22 32		15.14 0.93	3 0.86	16.28	18.84					
M-4104F	Propane Condenser Fan	BUS-14	Σ	480		32.93	15.14 0.93	3 0.86	16.28	18.84					
M-4104H	Propane Condenser Fan	BUS-14	Σ	480	22 32	32.93	15.14 0.93	3 0.86	16.28	18.84					
PM-4101A	MEG Injection Pump	BUS-14	Σ	480	11	16.91	8.80 0.91	1 0.86	9.67	11.24					
FN-4101A	MEG Air Blower	BUS-14	Σ	480	5.5	8.95	4.40 0.87	7 0.85	5.06	5.95					
X-3102	Nitrogen Generator Package	BUS-14	ш	480	30 56	56.38 24	24.00 0.80	0.80			30.00	37,50			
PT-TRU/A	CP Rectifier Unit (at TK-6503)	BUS-14	ш	480	3.5	4.21	3.50 1.00	00.1			3.50	3.50			
IP-TRU/A	CP Rectifier Unit (at E-3104)	BUS-14	ш	480	-	1.20	3.50 1.00	1.00			3.50	3.50			
IP-TRU/B	CP Rectifier Unit (at E-3104)	BUS-14	ш	480	-		3.50 1.00	1.00			3.50	3.50			
X-3202	Nitrogen Generator Package	BUS-24	ш	480	30 56	56.38 24	24.00 0.80	0.80			30.00	37.50			
PT-TRU/B	CP Rectifier Unit (at Train 2 S/S Bldg)	BUS-24	ш	480	2.5	3.01	2.50 1.00	1.00			2.50	2.50			
CM-4201	Propane Compressor	BUS-22	Σ 4	4160 2	2420 383	383.47 2124.00	000	5 0.92	2231.09	2425.10					
M-4204A	Propane Condenser Fan	BUS-23	Σ	480	22 32	32.93	15.14 0.93	3 0.86	16.28	18.84					
M-4204C	Propane Condenser Fan	BUS-23	Σ	480		32.93	15.14 0.93	3 0.86	16.28	18.84					
M-4204E	Propane Condenser Fan	BUS-23	Σ	480	22 32	32.93	15.14 0.93	3 0.86	16.28	18.84					
M-4204G	Propane Condenser Fan	BUS-23	Σ	480		32.93	15.14 0.93	3 0.86	16.28	18.84					
PM-4201B	MEG Injection Pump	BUS-23	Σ	480	11	16.91	8.80 0.91	1 0.86					19.6	11.24	
FN-4201B	MEG Air Blower	BUS-23	Σ	480	5.5	8.95	4.40 0.87	7 0.85					5.06	5.95	
M-4204B	Propane Condenser Fan	BUS-24	Σ	480	22 32	32.93	15.14 0.93	3 0.86	16.28	18.84					
M-4204D	Propane Condenser Fan	BUS-24	Σ	480			15.14 0.93	3 0.86	16.28	18.84					
M-4204F	Propane Condenser Fan	BUS-24	Σ	480	22 32	_	15.14 0.93	3 0.86	16.28	18.84					
M-4204H	Propane Condenser Fan	BUS-24	Σ	480	22 32	32.93	15.14 0.93	3 0.86	16.28	18.84					
PM-4201A	MEG Injection Pump	BUS-24	Σ	480	11	16.91	8.80 0.91	1 0.86	9.67	11.24					
FN-4201A	MEG Air Blower	BUS-24	Σ	430	5.5	8.95	4.40 0.87	7 0.85	5.06	5.95					
MA-5001	Condensate Corrosion Inhibitor Agilator	BUS-31	Σ	480		1.13	0.44 0.70	0.80	0.63	0.79					
PM-5001A	Condensale Corrosion Inhibitor Injection Pump	BUS-31	Σ	480	0.37 0	0.79	0.30 0.70	0.80	0.42	0.53					
PM-5001B	Condensate Corrosion Inhibitor Injection Pump	BUS-32	Σ	480	0.37 0	0.79	0.30 0.70	0.80	_				0.42	0.53	
M-5101A	Condensate Cooler Fan	BUS-13		480	15 24										
M-5101C	Condensate Cooler Fan	BUS-13	Σ	480	15 24		11.26 0.92	2 0.80	12.28	15.37					
PM-5101B	Condensate Pump	BUS-13	Σ	480	110 158	58.93 86	86.54 0.95	5 0.88			91.48	103.95			
PM-5102B	Condensate Wax Suppressant Injection Pump	BUS-13	Σ	480	0.37 0	0.79	0.40 0.70	0.80					0.57	0.71	
MA-5102	Condensate Wax Suppresant Agitator	BUS-14	Σ	480	0.55	1.18	0.44 0.70	0.80	0.63	0.79					
M-5101B	Condensate Cooler Fan	BUS-14	Σ	480	15 24	24.62	11.26 0.92	0.80	12.28	15.37					
PM-5101A	Condensate Pump	BUS-14	Σ	480	110 158	58.93 86	86.54 0.95	5 0.88	91.48	103.95					
PM-5102A	Condensate Wax Suppressant Injection Pump	BUS-14	Σ	480	0.55	1.18	0.44 0.70	0.80	0.63	0.79					
MA-5202	Condensate Wax Suppresant Agitator	BUS-23	Σ	480	0.55	1.18	0.44 0.70	0.80							
M-5201A	Condensate Cooler Fan	BUS-23	Σ	480	15 24	24.62	11.26 0.92	2 0.80	12.28	15.37					
M-5201C	Condensate Cooler Fan	BUS-23	Σ	480	15 24	24.62	11.26 0.92	0.80	12.28	15.37					
PM-5201B	Condensate Pump	BUS-23	Σ	480	110 158	58.93 86	86.54 0.95	5 0.88			91.48	103.95			
PM-5202B	Wax Suppressant Meter Pump	BUS-23	Σ				0.40 0.70	0.80					0.57	0.71	
M-5201B	Condensate Cooler Fan	BUS-24		480	15 24	24.62	11.26 0.92	2 0.80	12.28	15.37		_	_		

Project: Atlahaddy Gas Field Development 60Hz

Froject, Attantado) Gas Fleid Development 60Hz																
		-		-	-	\vdash	Max.					Consumed Power	Power			ſ
Item No.	Equipment Name	BUS No.		No!	Plate	Load	Brake	=		Continuous	(0)	Utermittentif	Olyman	Stand-bv(S)	bv(S)	Хешаїх
			Logg					(PU)	T	(KW)	(KVA)	(kW)	(KVA)	(kW)	(KVA)	
PM-5201A	Condensate Pump	BUS-24	Σ	480	110	158.93	86.54	0.95	0.83	91.48	103.95					
PM-5202A	Wax Suppressant Meter Pump	BUS-24	Σ	480	0.37	62.0	0.44	0.70	0.80	0.63	0.79					
CM-6301A	Air Compressor	BUS-41	Σ	480	150 2	223.20	122.00	0.95	0.85	128.29	150.92					
PM-6301A	Cooling Water Pump for A/Comp.	BUS-41	Σ	480	4.2	8.26	3.36	0.81	92.0	4.17	5.49					
M-6301AA	Cooling Fan for A/Comp.	BUS-41	Σ	480	2.8	7.46	2.24	0.87	0.52	2.58	4.96					
M-6301AB	Cooling Fan for A/Comp.	BUS-41	Σ	480	2.8	7.46	2.24	0.87	0.52	2.58	4.96					
CM-6301C	Air Compressor	BUS-41	Σ	480	150	223.20	122.00	0.95	0.85					128.29	150.92	
PM-6301C,	Cooling Water Pump for A/Comp.	BUS-41	Σ	480	4.2	8.26	3.36	0.81	92.0					4.17	5.49	
M-6301CA	Cooling Fan for A/Comp.	BUS-41	Σ	480	2.8	7.46	2.24	0.87	0.52					2.58	4.96	
M-6301CB	Cooling Fan for A/Comp.	BUS-41	Σ	480	2.8	7.46	2.24	0.87	0.52	_				2.58	4.96	
CM-6301B	Air Compressor	BUS-42	Σ	480	150	223.20	122.00	96'0	0.85	128.29	150.92					
PM-6301B	Cooling Water Pump for A/Comp.	BUS-42	Σ	480	4.2	8.26	3.36	0.81	92.0					4.17	5.49	
M-6301BA	Cooling Fan for A/Comp.	BUS-42	Σ	480	2.8	7.46	2.24	0.87	0.52		_			2.58	4.96	
M-6301BB	Cooling Fan for A/Comp.	BUS-42	Σ	480	2.8	7.46	2.24	0.87	0.52					2.58	4.96	
PM-8001A	Diesel Transfer Pump	BUS-3	Σ	480	18.5	27.02	13.43	0.91	16.0					14.84	16.31	
EH-8001A	Fuel Gas Electric Heater	BUS-3	ı	480	130	56.37	130.00	1.00	1.00			130.00	130.00			
PM-8001B	Diesel Transfer Pump	BUS-4	Σ	480	18.5	27.02	13.43	0.91	0.91			14.84	16.31			
PM-8001C	Diesel Transfer Pump	BUS-4	Σ	480	18.5	27.02	13.43	0.91	0.91					14.84	16.31	
EH-8001B	Fuel Gas Electric Heater	BUS-4		480	130	56.37	130.00	1.00	1.00					130.00	130.00	
PM-8004	Line Insulator Wash Pump	BUS-4	Σ	480	42.5	67.76	34.00	0.92	0.82			_		36.96	45.07	
PM-7001A	Gas Corrosion Inhibit Injection Pump	BUS-31	Σ	430	0.37	0.79	0.30	0.70	0.80	0.42	0.53					
MA-7002	Gas Corrosion Inhibit Agitator	BUS-32	Σ	480	0.37	0.79	0.30	0.70	0.80	0.42	0.53					
PM-7001B	Gas Corrosion Inhibit Injection Pump	BUS-32	Σ	480	0.37	0.79	0.30	0.70	0.80					0.42	0.53	
PM-9002B	Flare K.O Drum Pump	BUS-41	Σ	480	22	33.24	17.12	0.92	0.87			18.71	21.51			
PM-9002A	Flare K.O Drum Pump	BUS-42	Σ	430	22	33.24	17.12	0.92	0.87			18.71	21.51			
PM-9002C	Flare K.O Drum Pump	BUS-42	Σ	480	22	33.24	17.12	0.92	0.87			18.71	21.51			
PM-9101A	HC Drain Drum Pump	BUS-41	Σ	480	4	6.63	2.61	98.0	0.84			3.02	3.60			
PM-9101B	HC Drain Drum Pump	BUS-42	Σ	480	4	6.63	2.61	0.86	0.84					3.02	3.60	
ET-2	Elec. heating Tracing for Train2 area	BUS-42	ш	480	30	36.08	30.00	9	00	30.00	30.00					
PM-9201A	HC Drain Drum Pump	BUS-41	Σ	480	4	6.63	2.61	98.0	0.84			3.02	3.60			
PM-9201B	HC Drain Drum Pump	BUS-42	Σ	480	4	6.63	2.61	98.0	0.84					3.02	3.60	
ET-3	Elec. heating Tracing for Common area	BUS-42	ıIJ	480	29.6	35.60	29,60	00.	1.00	29.60	29.60					
PT-TRU/C	CP Rectifier Unit (at TK-8001)	BUS-3	ш	480	65.	1.80	1.50	1.00	00.			1.50	1.50			
ET-1	Elec. heating Tracing (at P-3102C)	BUS-41	ш	480	15	18.04	15.00	1.00	00.	15.00	15.00					
ET-4	Elec. heating Tracing	BUS-41	ш	480	22	26.46	22.00	1.00	1.00	22.00	22.00					
FL-TRU/A	CP Rectifier Unit (at Mainfold Area)	BUS-32	ш	480	3.5	4.21	3.50	00.	1.00			3.50	3.50			
FL-TRU/B	CP Rectifier Unit (at Mainfold Area)	BUS-32	ш	480	3.5	4.21	3.50	1.00	1.00			3.50	3.50			
690-MOV-01	MOV	BUS-3	Σ	480	0.1	0.85	90.0	0.33	0.43			0.18	0.42			
410-MOV-01	MOV	BUS-13	Σ	480	0.23	1.00	0.23	0.63	0.44			0.37	0.83			
410-MOV-03	MOV	BUS-13	Σ	480	0.25	4	0.25	0.55	0.48			0.45	0.95			
410-MOV-05	MOV	BUS-13	Σ	480	0.25	4.1	0.25	0.55	0.43			0.45	0.95			
410-MOV-02	Mov	BUS-14	Σ	480	0.23	1.00	0.29	0.63	0.44	_	_	0.46	1.05			

Project: Attahaddy Gas Field Development 60Hz

60Hz	Tipelio Control of the Control of th														Februa	February 17, 2004 Rev.7
			Type		Name	=	Max.	\vdash	-			Consumed Downs	Dower			
Item No.	Equipment Name	BUS No.	5	Volt	Plate	Load	Brake	Ell	7				i owei			Remark
			Load		KW	Current	Power		1	Continuous(C)	vus(C)	Intermittent(I)	tent(I)	Stand-by(S)	y(S)	
			-	3	(kW)	€	(kW)	(PU)	E)	(KW)	(KVA)	(kW)	(kVA)	(kW)	(kVA)	
410-MOV-04	MOV	BUS-14	Σ	480	0.25	1.14	0.12	0.55	0.48			0.22	0.45			
420-MOV-01	MOV	BUS-23	Σ	480	0.23	1.00	0.20	0.63	0.44			0.32	0.72			
420-MOV-03	MOV	BUS-23	Σ	480	0.25	1.1	0.12	0.55	0.48			0.22	0.45			
420-MOV-05	MOV	BUS-23	Σ	480	0.25	1.14	0.14	0.55	0.48			0.25	0.53			
420-MOV-02	MOV	BUS-24	Σ	480	0.23	1.00	0.29	0.63	0.44			0.46	1.05			
420-MOV-04	MOV	BUS-24	Σ	480	0.25	4.1	0.12	0.55	0.48			0.22	0.45			
300-MOV-01A	MOV	BUS-31	Σ	480	0.15	0.65	0.15	0.63	0.44			0.24	0.54			
300-MOV-01C	MOV	BUS-31	×	480	0.15	0.65	0.15	0.63	0.44			0.24	0.54			
300-MOV-02A	MOV	BUS-31	Σ	480	0.23	1.00	0.23	0.63	0.44			0.37	0.83			
300-MOV-02C	MOV	BUS-31	Σ	480	0.23	1.00	0.23	0.63	0.44			0.37	0.83			
400-MOV-01/1	MOV	BUS-31	Σ	480	0.23	1.00	0.23	0.63	0.44			0.37	0.83			
400-MOV-02/1	MOV	BUS-31	Σ	480	0.25	1.14	0.25	0.55	0.48			0.45	0.95			
400-MOV-03/1	MOV	BUS-31	Σ	480	0.13	0.71	0.13	0.48	94.0			0.27	0.59			
400-MOV-04/1	MOV	BUS-31	Σ	490	0.13	0.71	0.13	0.48	0.46			0.27	0.59			
400-MOV-05/1	MOV	BUS-31	Σ	480	0.25	4.	0.25	0.55	0.48			0.45	0.95			
700-MOV-01	MOV	BUS-31	Σ	480	0.77	2.85	0.77	9.0	0.50			1.18	2.37			
500-MOV-05	MOV	BUS-31	Σ	480	0.15	0.65	0.15	0.63	0.44			0.24	0.54			
300-MOV-01B	MOV	BUS-32	Σ	480	0.15	0.65	0.15	0.63	0.44			0.24	0.54			
300-MOV-02B	MOV	BUS-32	Σ	480	0.23	1.00	0.23	0.63	0.44			0.37	0.83			
400-MOV-01/2	MOV	BUS-32	Σ	480	0.23	1.00	0.23	0.63	0.44			0.37	0.83			
400-MOV-02/2	MOV	BUS-32	Σ	480	0.25	4.	0.25	0.55	0.48			0.45	0.95			
400-MOV-03/2	MOV	BUS-32	Σ	480	0.13	0.71	0.13	0.48	94.0			0.27	0.59			
400-MOV-04/2	MOV	BUS-32	Σ	480	0.13	0.71	0.13	0.48	94.0			0.27	0.59			
400-MOV-05/2	MOV	BUS-32	Σ	480	0.25	1.14	0.25	0.55	0.48			0.45	0.95			
700-MOV-02	MOV	BUS-32	Σ	480	0.18	0.58	0.18	0.70	0.53			0.26	0.49			
	GAS PLANT PROCESS LOAD TOTAL	Σ c, Σ ι, Σ	s						-	11109.09	12506.13	5000.19	5563,35	680.62	775.79	
G. P.	G. P. PROCESS LOAD POWER CONSUMPTION	ΣC×1, Σ1×0.4, ΣS×0	1×0.4,∑	S×0					-	11109.09 12506.13	12506.13	2000.08	2225.34	0.00	0.00	
G. P. PROC	6. P. PROCESS LOAD POWER CONSUMPTION SUMMARY	∑ kW, ∑ k	VAR, Σ	VA (=)	Σ KW, Σ KVAR, Σ KVA (= Σ C × 1 + Σ Ι × 0.4 + Σ S × 0)	1 x 0.4	S×0		-	13109.16	š	6720.56	kvar	14731.47	kVA	
			r	H	-	-		r	t					ľ		

Generator Size Chart

1,	APPLICATION Prime/Stand			as/Diesel Fue			_ Volts	P	nase	
II.										
	C. Motors Starting Sequence	hp		Na Reduced Vo	ameplat Itage				kW (Engine) :	he (Materia) v O
	1 2 3 4									
	5	_						Total Motor Total Engin	Load Load (A+B+C)	
IV.	ENGINE SE	LECTION	Model:		Frame:		Rating (With Fan):	kW	Hz	
٧.	GENERATO	r sizing	Start Sequence			Motor(s) 1	Motor(s) 2	Motor(s) 3	Motor(s) 4	Motor (s)
	A. Starting I 1. Motor 2. NEMA	Ratings Code	,			hp	hp	hp	hp	hp
		hp x Mot	6.0 if Code Lette or hp (A.1 x A.3			SKVA	SKVA	SKVA	SKVA	S
	1. All Mo 2. All Mo	otors Runr otors Runr	ning ning & Motor Bei	ing Started		kW kW	kW kW	kW kW	kW kW	kV kv
	3. B.1 x 4. Comp		or Motors Alread	tv Started		0_%	0%	%	%	%
	(Chart 5. Step / 6. Reduc	2) A.4. x Step ced Voltag	B.4. e Factor (Chart	3)		SKVA	SKVA	SKVA	\$KVA	St
	Effect	ive SKVA table Volt r Selectio	tarting aid used) = Step B.5. x B age Dip (10, 20, n (Chart 1)	.6.		SKVA %	SKVA %	SKVA %	SKVA %	SF
	2. Rating	,	ed Voltage Dip			kW	kW	kW	kW	kv
VI.	GENERATO Select Large	R SET SI		f Step IV and Fra	Step V me:	C.1. Ratir	ng:kW	Prime/Standby	Hz	

I,	APPLICATION Prime/Standt		(Gas/Diesel Fuel	4	80_ Volts	<i>3</i> p	hase	60
11.							. 45		I. ENGINE SIZIN
	C. Motors	-WOO LC	aus	Nan	neplate Data	\wedge	MI I		(Motor) x 0.7
	Starting			Reduced Volta		oltage Motor Eff	IVII	KN (SECONDIC) =	Motor Efficienc
	Sequence	hp	Nema Code	Starting Typ			/		(Chart 5)
	1		F	Res. 65		192			162 k
	ż	75	G	A-T 80		.9/	na.		61 k
	3	60	<u></u>	Accross the		. 9/	_		49 k
	4	50	F	Accross the		. 90	_		4/k
	5	—					Total Motor		k k
							-	e Load $(A+B+C)$	
I۷.	engine sel	ECTION	Model: <u>34</u> /	<u>275</u> F	rame: <i>586</i>	Rating (With Fan): <u>425 </u>	Hz	1800 m
۷.			Start Sequence	e	Motor(s) 1	Motor(s) 2	Motor(s) 3	Motor(s) 4	Motor (s) 5
	A. Starting k1. Motor		(A)		200 hp	75_hp	60 hp	_ 50 _hp	hp
	2. NEMA				F	G	F	F	
	SKVA	hp (Use 6	i.0 if Code Lette	er Unknown)	5.30	5.94	5.30	5.30	
			or hp (A.1 x A.3	3)	1060 SKVA	446 SKVA	3/8 SKVA	265 SKVA	SK\
	B. Effective	SKVA tors Runn	ina		0kW	/62_kW	223 kW	<i>272</i> _kW	kW
			ing & Motor Be	eing Started	/62 kW	223 kW	272 kW	3/3 kW	kW
			ing a motor be	ang dianeu	702	AA VIII	A TA	D. D. WAA	
	3. B.1 x	100			0_%	73 %	82 %	_82 %	%
		angation fo	or Motors Alrea	dy Started		7.3 40	_ 70		
	(Chart		JI WIOLOIS ANGE	dy Olarica	1.0	1.21	1.26	1.28	
		7.4. x Step	B.4.		/060SKVA	540 SKVA	401 SKVA	339 SKVA	SK\
			e Factor (Chart	3)	.65	.68	1.0	1.0	
	(use 1	.0 if no st	arting aid used)					
			= Step B.5. x i		689 SKVA	367 SKVA	401 SKVA	<i>339</i> SKVA	SK\
	8. Accept	table Volta	age Dip (10, 20	, 30%)	_20 _%	_ 20 _%	_ 20 _%	20 %	
	C. Generato		(Chart 1)		caa			11.10	
	1. Frame				588	449	584	448	
	2. Rating				<u>+/55</u> kW	225 KW	365 kW	<u>225 </u> kW	:kW
	3. SKVA	at Selecte	ed Voltage Dip		714	385	<u>543</u>	35 7	
	GENERATO								
VI.			ter Oat Madel	of Charlet and C	VO 1				
VI.	Select Large		for set model of 4/2 7 s		ep v.C.1.	Rating: 455 kW	Prime/Standby	60 Hz	/800 m

Generator Sizing Guide

Technical Data TD00405018E

Effective August 2009

Onsite Est	imating S	Sheet					Applications The QT Series does not meet the
Contractor				Email_			necessary requirements for the fol-
Phone				Fax			lowing applications:
Job Name		<u> </u>	<u> </u>	<u> </u>	<u> </u>		NEC 695 Fire Pumps
Date		Lc	cation				 NEC 700 Emergency Systems
							 NFPA 20 Fire Pumps
VOLTAGE	120/240	1ø 🔲 1	20/208 3ø	120/24	0 3ø 🔲 277/480 3	3ø	 NFPA 99 Healthcare
TYPE	☐ Natural	Gas	LP Vapor	(LPV)			 NFPA 110 Emergency Systems
ELEC. SERVICE	☐ 100 Am	р 🗌 200	Amp	400 Amp [☐ 600 Amp ☐ O	ther	Reference Codes Related Codes and Standards:
Before installation Eaton recommends					net. Jurisdictions may va	ry.	 NEC 225 Branch Circuits and Feeders
Loads: Look for heav	v building loads suc	h as refrigerati	on, air conditio	nina, pumps or l	JPS systems		 NEC 240 Overcurrent Protection
	,				7		 NEC 250 Grounding
8							NEC 445 Generators
Motor Load Table	(Refer to Table 1)	Use the follow	ing for sizing a	nd determining (generator kW.		NEC 700 Emergency Systems
Device		HP	RA	LRA	kW Rnning (= HP)	Starting kW	 NEC 701Legally Required Standby
							 NEC 702 Optional Standby
							NFPA 37 Installation & Use of Stationary Engines
							NFPA 54 National Fuel Gas Code
							NFPA 58LP Gas Code
							The file of the capture processing and an experience
							_
		-					
		-					_
							_
						5	
ES TO MANAGEMENT OF THE PERSON	May 200000 No 1000 November	Manager 200				la .	
Starting kW for HI	V Action by which the control of the						
Starting kW for Hi							
 Starting kW for lo 	ading with no listed	d HP, calculate	HP based on ru	nning amps in t	he chart on the right		

Non-Motor Load Table (Refer to Table 2) Use the following for sizing and determining generator kW.				
Device	Am	ps	kW	

Device	 Amps	kW

- Suggested concrete pad minimum thickness of 4" with 6" overhang on all sides. Composite pad included with air-cooled products.
- Consult manual for installation recommendations.
- Consult local authority having jurisdiction for local requirements.

Transfer Switch Avalability				
Single Phase*	Amps			
Service Entrance	100, 200, 400, 600, 800			
Non-Service Entrance	50, 100, 200, 400, 600, 800			

THI CCT HASC		
Service Entrance	100, 225, 300, 400, 600, 800	
Non-Service Entrance	100, 200, 300, 400, 600, 800	

* Single Phase ATS's from 100-400 Amp have intelligent load management standard.

To Calculate kW	1	
120 V 1ø	Amps x 120/1000 = kW	
240 V 1ø	Amps x 240/1000 = kW	
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW	
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW	
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW	

Recommended 6	Generator	Size	 30

Refer to Generator Sizing Instructions on other side of this sheet.

EATON CORPORATION www.eaton.com

Selected Circuit Load Calculator

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Load Summation Method

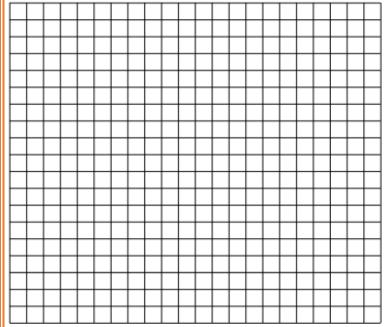
- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Select generator: Commercial (add 20 to 25% to total kW)
Residential (add 10 to 20% to total kW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity - Load Calculation


If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Project Layout

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	_ Amps x .15 =	kV
208 Volts, 3 Ø:	Amps x .22 =	kv
240 Volts, 3 Ø:	Amps x .25 =	kV
480 Volts, 3 Ø:	Amps x .50 =	kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 =	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts 3 Ø:	Amns x 34 =	kW

Estimate based on square footage

Amps to kW Rule of Thumb (assumes .8 pf)

System Capacity – Load Calculator

		NEC REFERENCE
220.80 Optional Feeder and Service Load Calculations (RESIDENTIAL)		
SECTION CAN BE USED FOR DWELLING UNITS		220.82 (A
Served by a single feeder conductor (generator) 120/240 volt or 208Y/120 volt service		
Ampacity of 100 amps or greater		
The calcultated load will be the result of adding • 220.82 (B) General Loads, and		220.82 (E
220.82 (C) Heating and Air-Conditioning Load		220.82 (0
- 220.02 (6) Nealing and Air-Containoning Load		220.02 (0
SENERAL LOADS		220.82 (E
General Lighting and General-Use Receptacles		220.02 (6
Calculate at 3 VA per square foot		220.82 (B) (1
Use exterior dimensions of the home to calculate square footage – do not include of the home to calculate square footage.	open	220.02 (b) (
	5,000	
porches, garages, or unused or unfinished spaces not adaptable for future use.		
 Add 20-amp small appliance & laundry circuits @ 1500 VA each 		220.82 (B) (2
Calculate the following loads at 100% of nameplate rating		220.82 (B) (3
· Appliances fastened in place, permanently connected or located on a specific circuit	t	220.82 (B) (3)
 Ranges, wall-mounted ovens, counter-mounted cooking units 		220.82 (B) (3)
Clothes dryers not connected to the laundry branch circuit		220.82 (B) (3)
Water heaters		220.82 (B) (3)
. Permanently connected motors not included in Heat & Air-Conditioning Load section	n	220.82 (B) (4
EATING & AIR-CONDITIONING LOADS		220.82 (0
Include the largest of the following six selections (kVA load) in calculation		
Air Conditioning and Cooling		220.82 (C) (1
100% of nameplate rating		
Heat Pumps Without Supplemental Electric Heating		220.82 (C) (2
100% of nameplate rating		
Heat Pumps With Supplemental Electric Heating		220.82 (C) (3
 100% of nameplate rating of the heat pump compressor* 		
 65% of nameplate rating of supplemental electric heating equipment 		
 If compressor & supplemental heat cannot run at the same time 		
do not include the compressor		
Electric Space Heating		
 Less than 4 separately controlled units @ 65% of nameplate rating 		220.82 (C) (4
 4 or more separately controlled units @ 40% of nameplate rating 		220.82 (C) (5
 40% of nameplate rating if 4 or more separately controlled units 		
Electric Thermal Storage (or system where the load is expected to be		220.82 (C) (6
continuous at nameplate rating		
100% of nameplate rating		
 Systems of this type cannot be calculated under any other section of 220.82 (C). 		
OAD CALCULATIONS		1
General Lighting Load	3 VA x ft²	
Small Appliance & Laundry Circuits	+ 1500 VA per circuit	l
General Appliances & Motors (100% rated load)	+ Total general appliances	l
Sum of all General Loads	 Total General Load (VA) 	l
APPLY DEMAND FACTORS		l
- First 10 kVA @ 100%	= 10,000 VA	l
- Remainder of General Loads @ 40%	(Total VA - 10,000) x .40	
	 Calculated General Load (VA) 	
HEAT / A-C LOAD @ 100%	Largest Heat or A-C Load (VA)	

Worksheet	- NEC 2017, 220 Pa	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location				
Voltage (Circle)	240V -1Ø				
Fuel		NG	LPV		
Elec. Service	100 Amp	200 Amp	400 Amp	Oth	ier
NET SQUARE FOOTAGE				 	
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	Loads (kW) (VA ÷ 1,000)
General Lighting and General Use Receptacles		3 VA/ft²	100%		
Branch Circuits (1500 VA/ft²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	nt Rating		
Well			100%		
Sump Pump			100%		
Freezer			100%	†	
Microwave (Not counter-top model)			100%	 	
Disposal			100%	 	
Dishwasher			100%	 	
Range			100%	+	
Wall-Mounted Oven			100%	 	
			100%	 	
Counter-Mounted Cooking Surface				 	
Water Heater			100%	 	
Clothes Dryer			100%		
Garage Door Opener			100%		
Septic Grinder			100%		
Other (list)			100%		
			100%		
			100%		
			100%		
			100%		
			100%		
			100%		
			100%	1	i
			100%	i i	
			100%	 	
Total General Loads			100,0	VA	kW
HEAT / A-C LOAD				•••	
A-C / Cooling Equipment			100%	Т	T
Heat Pump			100,0	 	
Compressor (if not included as A-C)			100%	+	
		-		+	
Supplemental Electric Heat Supplemental Electric Heat			65%	+	
Electric Space Heating			0.77	+	
Less than 4 separately controlled units			65%		
4 or more separately controlled units			40%	 	
System With Continuous Nameplate Load			100%	 	
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
1st 10 kW of General Loads 100% kW			100%	kW	
Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW
TOTAL CALCULATED LUAD (NET GENERAL LOADS + HEAVA-C LOAD)					KVV

المراجع العلمية

المولدات العاملة بماكينات الديزل د-أحمد عبد المتعال حساب قدرة المولدات الإحتياطية د-فتي السيد عبد القادر Generator sizing guide GENERAC
Generator sizing guide SIEMENSE
Learner's Guide GENERAC
Generator size guide Eaton
Electrical Engineers Portable Handbook
Generator Motor Starting by MQ
WWW.electricalknowhow.com
Electricalnotes.wpcomstaging.com

تم بحمد الله مهندس/ أحمد عيسى 2023

Eng.ahmedessa2020@gmail.com

الفهرس	
صفحة 2	مقدمة عن المولد الكهربائي
صفحة5	أنواع المولدات
صفحة6	طرق حساب قدرة المولد للمشاريع
صفحة6	طريقة القياس Measurement
صفحة6	طريقة معرفة الأحمال من الفواتير المؤرشفة
صفحة7	طريقة تجميع الأحمال LSM
صفحة12	طريقة المعادلات
صفحة17	طريقة Conservative Rules Of Thumb
صفحة19	طريقة إختيار المولد بناءا على المقارنة بين الأحمال المستقرة والعابرة
صفحة36	(Rules of thumb)
صفحة39	العوامل التي تؤثر على حسابات المولد
صفحة39	ضبط إختيار المولد وفقًا لانخفاض الجهد العابرVoltage Dip
صفحة42	ضبط إختيار المولد وفقًا لظروف الموقع
صفحة45	ضبط إختيار المولد وفقًا لنوع الوقود
صفحة46	ضبط إختيار المولد وفقًا للاحتياجات المستقبلية
صفحة46	ضبط إختيار المولد وفقًا لمعامل الطاقة(PF)
صفحة48	مثال على تطبيق Derating Factors للمولدات
صفحة51	مثال شامل لحساب مولد من شركة هيونداى لمحطة أحد شركات البترول
صفحة63	Generator Size Chart
صفحة69	المراجع العلمية
صفحة70	الفهرس