

Shell and Tube Heat Exchanger Design Comparison

HTRI and Aspen EDR

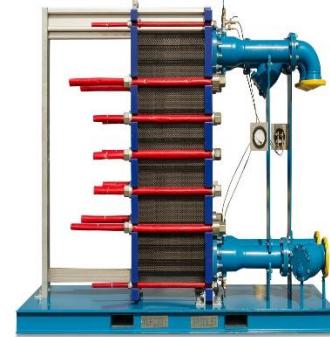
Chemical Engineer
Juan Pablo Hernández

HEAT EXCHANGER

A heat exchanger is an equipment used to transfer thermal energy(enthalpy) between two or more fluids which are at different conditions (temperature, pressure, flow). [1]

It is widely used for different industry applications (in heating and cooling of process streams) such as:[2]

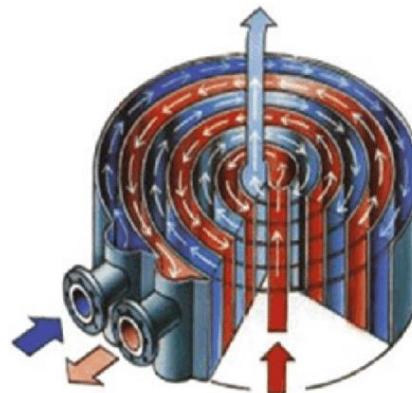
1. Air conditioning systems.
2. Petrochemical plants
3. Petroleum field.
4. Power plants.
5. Cryogenic plants.
6. Etc.


Since heat exchangers are involved in almost all industrial processes, it is highly recommended to know how to design them using different methods: Hand made and Computer Aided Software's.

HEAT EXCHANGER: TYPES

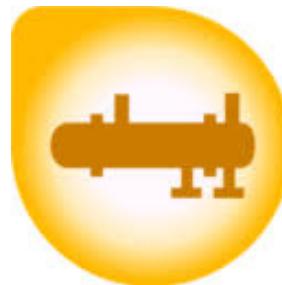
There are a wide variety of heat exchangers. The most used are:

Double Tube


Plate

Air Cooler

Shell & Tube


Spiral Plate

HEAT EXCHANGER

This presentation aims to do a Shell & Tube heat exchanger design comparison using the following methods:

1. Hand Made (Already designed by SERTH) [4]
2. HTRI software
3. Aspen Exchanger Design and Rating (EDR)

Before starting it is important to highlight that all methods used are based under TEMA heat exchanger configurations.

All methods, basically, follows a common algorithm. Nevertheless, it will be noted which one is more practical and reliable at the moment of designing Shell & Tubes Heat Exchanger.

HEAT EXCHANGER: TEMA

FRONT END STATIONARY HEAD TYPES		SHELL TYPES		REAR END HEAD TYPES
A	CHANNEL AND REMOVABLE COVER	E	ONE PASS SHELL	L
B	BONNET (INTEGRAL COVER)	F	TWO PASS SHELL WITH LONGITUDINAL BAFFLE	M
C	REMOVABLE TUBE BUNDLE ONLY	G	SPLIT FLOW	N
	CHANNEL INTEGRAL WITH TUBE-SHEET AND REMOVABLE COVER	H	DOUBLE SPLIT FLOW	P
N	CHANNEL INTEGRAL WITH TUBE-SHEET AND REMOVABLE COVER	J	DIVIDED FLOW	S
D	SPECIAL HIGH PRESSURE CLOSURE	K	KETTLE TYPE REBOILER	T
		X	CROSS FLOW	U
				W
				EXTERNALLY SEALED FLOATING TUBESHEET

HEAT EXCHANGER:CONSTRAINTS

Before beginning any procedure, it is important to know that heat exchangers must meet two main constraints to be suitable for the service. Therefore, before starting to design, it is firstly more important, knowing how to **evaluate** the constraints.

Thermal evaluation:

Parting from the heat transfer developed: Convection(tube fluid)+Conduction(through pipe thickness)+ Convection(Shell fluid).

$$Q = (m C_p \Delta T)$$

$$Q = U_{Req} A F (\Delta T_{ln})_{cf} \quad \text{where}$$

$$U_{Req} = \frac{Q}{A F (\Delta T_{ln})_{cf}}$$

$$Q = U_{clean} A \Delta T_m \quad \text{where}$$

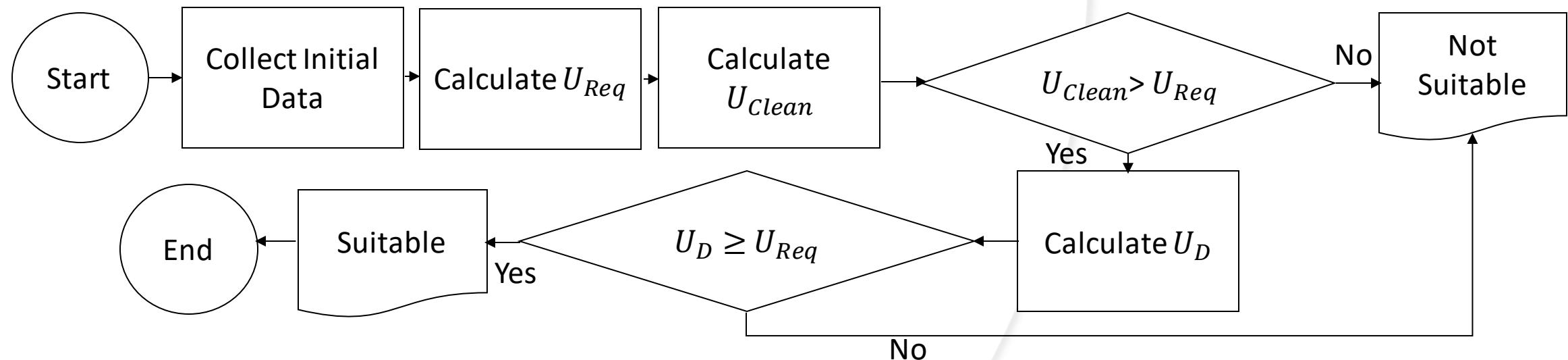
$$U_{clean} = \left(\frac{D_o}{h_i D_i} + \frac{D_o \ln(D_o/D_i)}{2k} + \frac{1}{h_o} \right)^{-1}$$

U_{clean} is used when the Heat Exchanger is new. While U_D is used when dirt or scale appears.

$$Q = U_D A F (\Delta T_{ln})_{cf}$$

$$U_D = \left(\frac{D_o}{h_i D_i} + \frac{D_o \ln(D_o/D_i)}{2k} + \frac{1}{h_o} + \frac{R_{Di} D_o}{D_i} + R_{Do} \right)^{-1}$$

To be thermally suitable, the overall coefficients must::


$$U_{clean} > U_D > U_{Req}$$

HEAT EXCHANGER:CONSTRAINTS

Assumptions

- Generally, for having an idea(when exchanger geometry is unknown) about heat transfer preliminary area, it is used a U_D provided by tables (starting point). [4]
- The heat transfer coefficients h_i and h_o are calculated using Nusselt number (for fully developed pipe flow) and Delaware correlations, respectively.
- The literature states that the correction factor (F) should be greater than 0,8. In case F is lower than 0,8 ; it is recommended to increase shell passes. [4]

Thermal Evaluation Diagram Flow

HEAT EXCHANGER:CONSTRAINTS

Hydraulic evaluation: Tube and shell side total pressure drop must be lower than pressure drop allowed.

Once an initial exchanger geometry is chosen, the following equations(When using English Units) are used to check if the initial geometry meets the pressure drops allowances.

Tube Side $\Delta P_{tubes} = \Delta P_f + \Delta P_r + \Delta P_n$

$$\Delta P_f = \frac{f n_p L G^2}{(7,50 * 10^{12}) D_i s \phi}$$

$$\Delta P_r = 1,334 * 10^{-13} \alpha_r G^2 / s \quad (\text{Velocity Head})$$

Nozzles ΔP

$$\left\{ \begin{array}{ll} \Delta P_n = 2 * 10^{-13} N_s G_n^2 / s & (\text{Turbulent flow}) \\ \Delta P_n = 4 * 10^{-13} N_s G_n^2 / s & (\text{Laminar flow}) \end{array} \right.$$

α_r		
Flow Regime	Regular Tubes	U-tubes
Turbulent	$2Np-1.5$	$1.6Np-1.5$
Laminar	$3.25Np-1.5$	$2.38Np-1.5$

Shell side $\Delta P_{shell} = \Delta P_f + \Delta P_n$

$$\Delta P_f = \frac{f G^2 d_s (n_b + 1)}{(7,50 * 10^{12}) d_e s \phi}$$

Nozzles ΔP

$$\left\{ \begin{array}{ll} \Delta P_n = 2 * 10^{-13} N_s G_n^2 / s & (\text{Turbulent flow}) \\ \Delta P_n = 4 * 10^{-13} N_s G_n^2 / s & (\text{Laminar flow}) \end{array} \right.$$

For a suitable Heat Exchanger evaluation

$$\Delta P_{tubes,allowed} > \Delta P_{tubes}$$

$$\Delta P_{shell,allowed} > \Delta P_{shell}$$

HEAT EXCHANGER:CONSTRAINTS

Factors affecting pressure drop

Tube Side

1. Tube Length (L)
2. Number of tube passes n_p

Shell Side

1. Baffle spacing (B) . Increasing B increases the flow area across the tubes bundle which lowers the ΔP_{shell}
2. Tube pitch (P_T). It is not common used because increasing the tubes pitch increases the heat exchanger area and therefore its cost.

These factors are important when designing both in hand made and computer aided softwares. In case the initial geometry chosen does not meet the pressure drop requirements, then it is necessary to change the factors that affect potentially the pressure drop across the heat exchanger in order to reach a suitable equipment.

HEAT EXCHANGER: INITIAL GEOMETRY

But... What initial geometry must I choose? [4]

1

FLUID PLACEMENT(TUBE SIDE)	
Cooling water	
The more fouling	
The less viscous	
The higher pressure	
The hotter fluid	
The smaller volumetric flowrate	

2

TUBING SELECTION				
Service	Size(in)	BWG	L(ft)	Pitch(in)
Water	3/4	16	16-20	1
Hydrocarbon(Low fouling)	3/4	14	16-21	1
Hydrocarbon(High fouling)	1	14	16-22	1.25

Pitch can be triangular or square. For high fouling fluids it is recommended to use the square pitch

4

BAFFLES	
Type	Single segmental (widely used)
Spacing	0.2ds-1ds
Cut	20-35% (20% recommended for Delaware method)
Thickness(in)	(1/16)-(3/4)

3

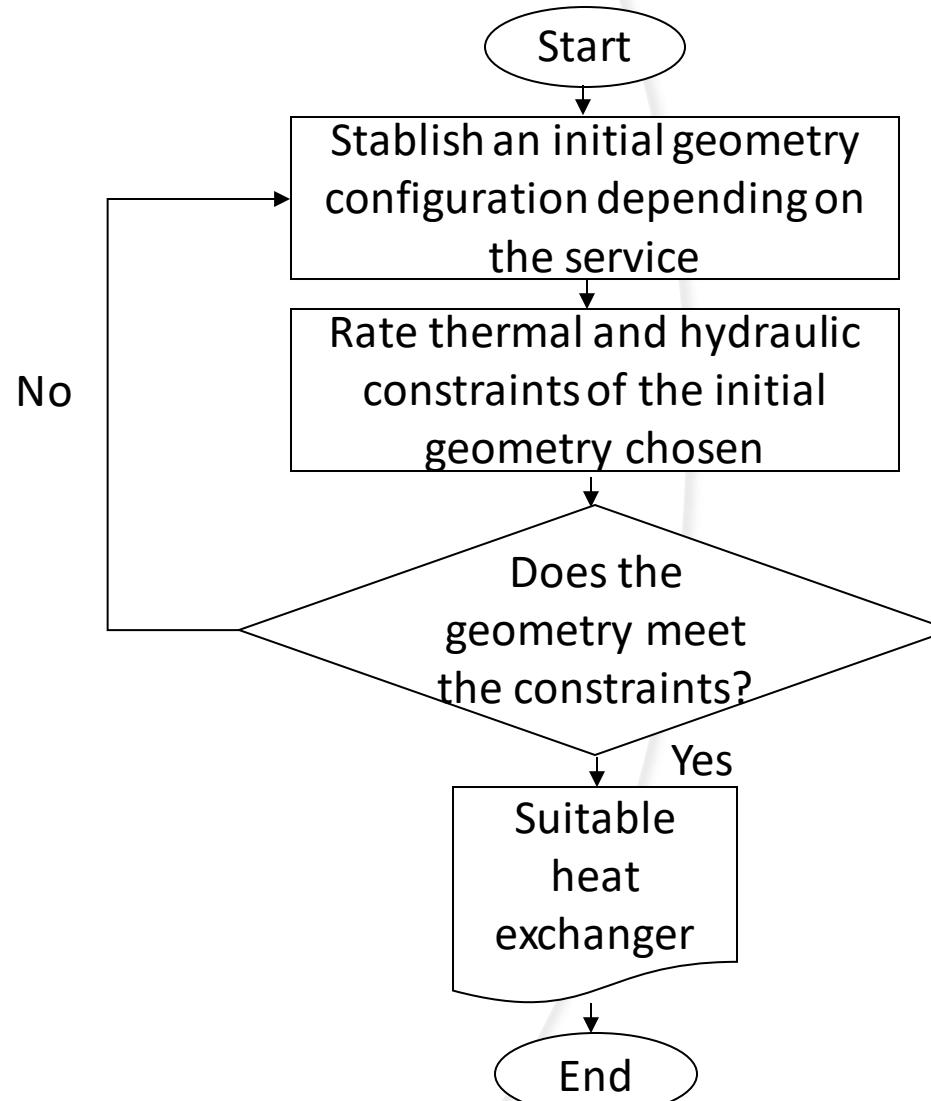
SHELL	
Type	Applications
E	Standard
F	Two shell pass flow (truly counter flow)
G,H,K,X	Reboilers, Condensers, Coolers
J,K	When low ΔP (shell) is required

HEAD		
Property	Bonnet	Channel
Cost	Cheaper	More Expensive
Prone to leakage	Less probability	High probability
Access	Disconnect process piping and remove from shell	Unbolting and removing channel cover(easier)
Fixed tubesheet		Floating tubesheet
Cost	Cheaper	More Expensive
Prone to leakage	Less probability	High probability
Cleaning	Cannot be removed for cleaning	Can be removed for cleaning

A floating head and U-tubes exchangers can be used when mechanical cleaning is needed

HEAT EXCHANGER:INITIAL GEOMETRY

But...What initial geometry must I choose? [4]


5

NOZZLES	
Shell size(in)	Nominal Diameter(in)
4-10	2
12-17.25	3
19.25-21.25	4
23-29	6
31-37	8
39-42	10

6

SEALING STRIPS	
One pair/10 tubes rows	

Shell and Tube Design Flow diagram[4]

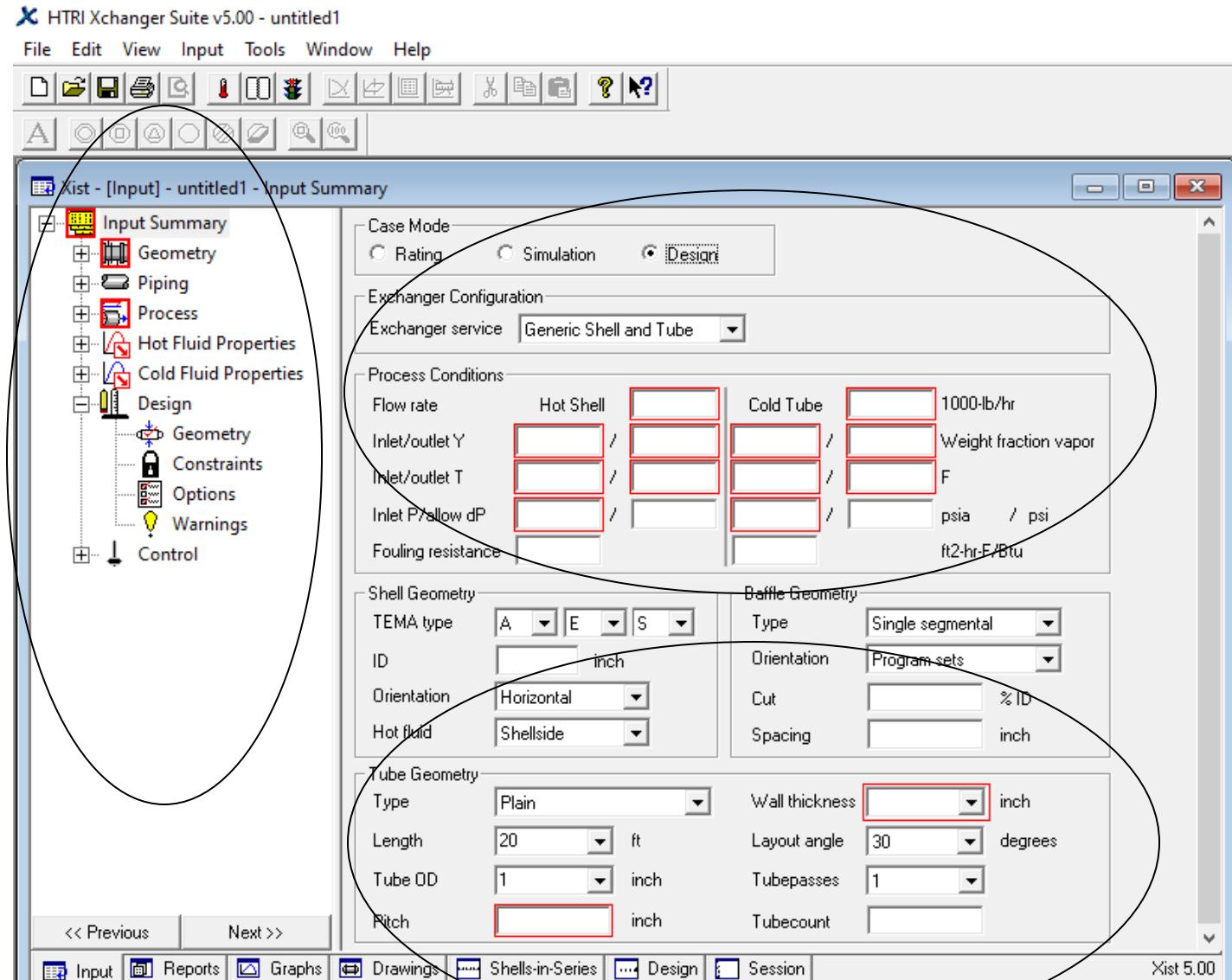
HEAT EXCHANGER:EXAMPLE

A kerosene stream with a Flow rate of 45000 lb/h is to be cooled from 390°F to 250°F by heat Exchange with 150000 lb/h of crude oil at 100°F. A maximum pressure drop of 15 psi has been specified fro each stream. Prior experience with this particular oil indicates that it exhibits significant fouling tendencies, and a fouling factor of $0,003 \frac{h \cdot ft^2 \cdot ^\circ F}{BTU}$ is recommended. Design a Shell and Tube Heat Exchanger for this application.

PHYSICAL PROPERTIES		
Fluid property	Kerosene	Crude Oil
Cp(BTU/lbm°F)	0,59	0,49
k(BTU/h ft °F)	0,079	0,077
$\mu(lbm/ft h)$	0,97	8,5
Specific gravity	0,785	0,85
Pr	7,24	55,36

Initial Geometry		
Tube fluid	Crude Oil	
TEMA Configuration	AES	
Tubing Selection	Tube Size(in)	1
	Tube BWG	14
	Tube Long(ft)	20
	Tube Layout	Square
	Tube Pitch(in)	1,25
Baffles	Cut	20%
	Spacing(B/ds)	0,3
Sealing Strips	Pair/10 tubes rows	1
Material	Shell and tube side	Carbon steel

HEAT EXCHANGER:HTRI


- ✓ As many of you might know, HTRI is a software of engineering used for the simulation, rating and design of heat exchangers.
- ✓ When entering to the interface the program offers a wide variety of heat exchangers, in which Shell and tube heat exchanger is found.
- ✓ It is necessary to know basics of heat exchanger design previously, because when running your case probably your design will not reach a solution due to thermal and/or hydraulic constraints did not meet the initially conditions given.
- ✓ Most of the cases for not reaching a solution is because the pressure drop calculated is greater than the pressure drop allowed. In those cases, it is necessary to change the factors that affect potentially the pressure drop across tubes and/or shell side until finding a design which can meet the over-design allowed by your client.
- ✓ After running your case, if any change needed, the program suggests to change some parameters. These suggestions can be as: fatal messages or warning messages. Both are important.
- ✓ A feature HTRI offers is that you can design using other constraints such as: Tube long, tube and Shell passes; baffle spacing, tube diameter, etc. However, it is important to know that when tightening too much your case, the design could not be reached easier, because the program iterations did not reach a solution according to these constraints given.
- ✓ HTRI does not have a large component list as other programs have. Nevertheless, properties can also be saved and provided by the user.

HEAT EXCHANGER:HTRI INTERFACE

After

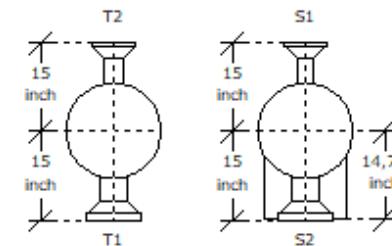
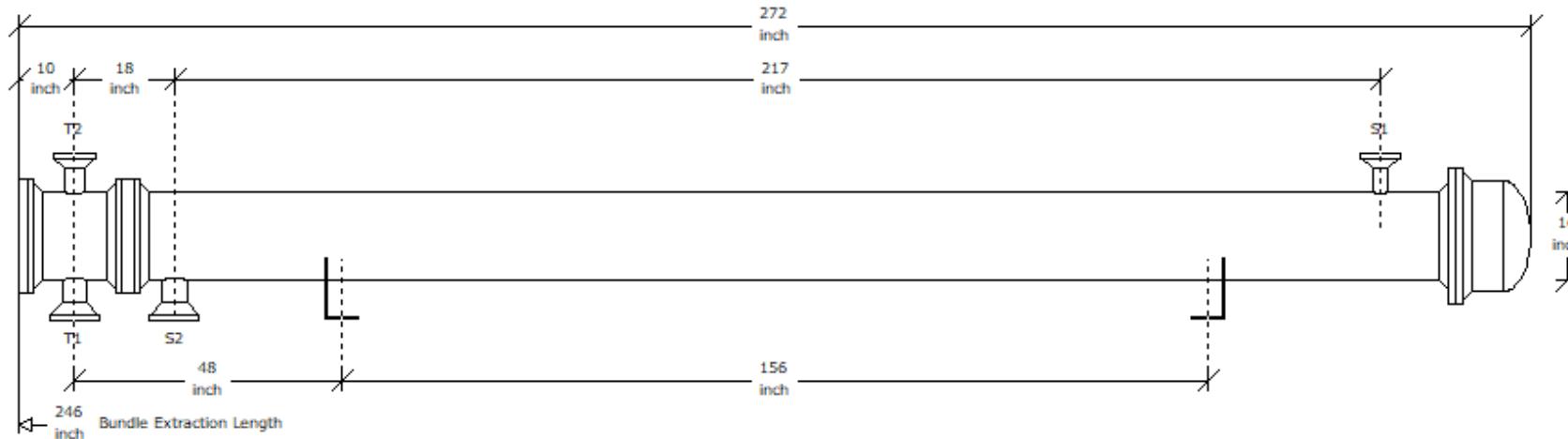
1. knowing the input geometry (guessed)
2. Filling all boxes required.
3. Troubleshooting the initial run warnings

Solution is reached

HEAT EXCHANGER:HTRI RESULTS

HEAT EXCHANGER SPECIFICATION SHEET

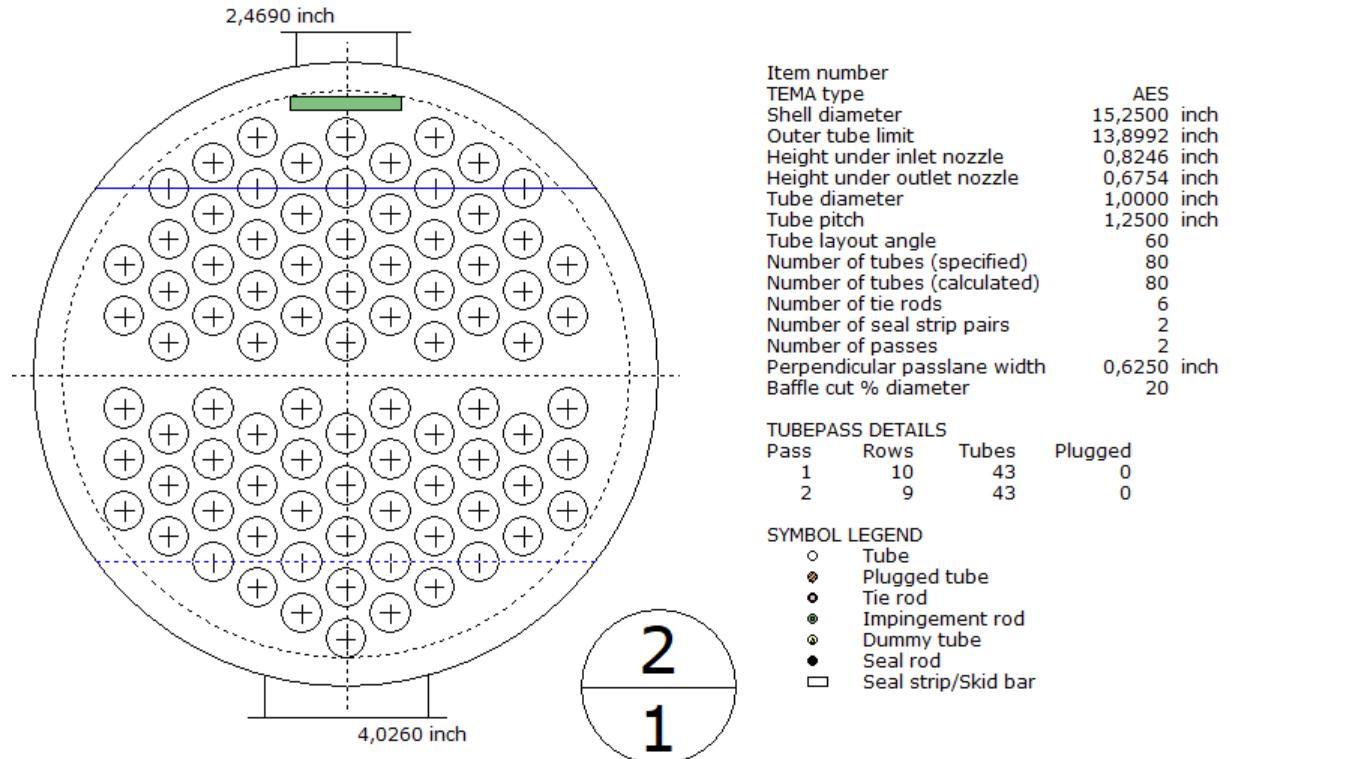
Page 1
US Units



Customer		Job No.	
Address		Reference No.	
Plant Location		Date	30/07/2020
Service of Unit		Rev	
Size	15,2500 x 240,000 inch	Type	AES
Surf/Unit (Gross/Eff)	418,88 / 413,56 ft ²	Horz.	Connected In
Shell/Unit	1	1 Parallel	1 Series
Surf/Shell (Gross/Eff)			
418,88 / 413,56 ft ²			
PERFORMANCE OF ONE UNIT			
Fluid Allocation		Shell Side	Tube Side
Fluid Name	Kerosone	Crude Oil	
Fluid Quantity, Total	lb/hr	45000,0	150000
Vapor (In/Out)			
Liquid	45000,0	45000,0	150000
Steam			150000
Water			
Noncondensables			
Temperature (In/Out)	F	390,00	250,00
		100,00	150,57
Specific Gravity		0,7800	0,7800
		0,8446	0,8446
Viscosity	cP	0,4010	0,4010
		3,5965	3,5965
Molecular Weight, Vapor			
Molecular Weight, Noncondensables			
Specific Heat	Btu/lb-F	0,5900	0,5900
Thermal Conductivity	Btu/hr-ft-F	0,0790	0,0790
Latent Heat	Btu/lb		
Inlet Pressure	psia		
Velocity	ft/sec	1,70	5,21
Pressure Drop, Allow/Calc	psi	15,000	7,188
Fouling Resistance (min)	ft ² -hr-F/Btu	0,00300	0,00300
Heat Exchanged	Btu/hr	3716999	MTD (Corrected) 182,2 F
Transfer Rate, Service		49,33 Btu/ft ² -hr-F	Clean 92,86 Btu/ft ² -hr-F
			Actual 57,58 Btu/ft ² -hr-F

CONSTRUCTION OF ONE SHELL				Sketch (Bundle/Nozzle Orientation)	
Design/Test Pressure		psig	150,000 /	Tube Side	
Design Temperature		F			
No Passes per Shell			1	2	
Corrosion Allowance		inch			
Connections	In	inch	1 @ 2,4690	1 @ 4,0260	
Size &	Out	inch	1 @ 4,0260	1 @ 3,0680	
Rating	Intermediate		@	@	
Tube No.	80	OD 1,0000 inch	Thk(Avg) 0,0830 inch	Length 20,000 ft	Pitch 1,2500 inch Layout 60
Tube Type	Plain		Material CARBON STEEL		
Shell	ID 15,2500 inch	OD	inch	Shell Cover	
Channel or Bonnet				Channel Cover	
Tubesheet-Stationary				Tubesheet-Floating	
Floating Head Cover				Impingement Plate	Circular plate
Baffles-Cross	Type	SINGLE-SEG.	%Cut (Diam) 20,0	Spacing(c/c) 3,0777	Inlet 16,7036 inch
Baffles-Long				Seal Type	
Supports-Tube				U-Bend	Type
Bypass Seal Arrangement				Tube-Tubesheet Joint	
Expansion Joint				Type	
Rho-V2-Inlet Nozzle	2904,14	lb/ft ²	Bundle Entrance 34,62	Bundle Exit 64,94	lb/ft ²
Gaskets-Shell Side				Tube Side	
-Floating Head					
Code Requirements				TEMA Class	
Weight/Shell	4425,15		Filled with Water 5987,20	Bundle 1810,13	lb
Remarks:					

Reprinted with Permission (v5)

Case	Over Design %	Total Area (ft ²)	Duty (MM Btu/hr)	EMTD (F)	U (Btu/ft ² -hr-F)	Shell h (Btu/ft ² -hr-F)	Tube h (Btu/ft ² -hr-F)	Shell Velocity (ft/sec)	Tube Velocity (ft/sec)	Shell DP (psi)	Tube DP (psi)	Shells In Series	Shells In Parallel	Shell ID (inch)	Baffle Spacing (inch)	Tube Passes	Tube Length (ft)
Design	17,21	397,935	3,7170	181,2	61,21	304,75	194,38	1,67	5,48	7,117	5,824	1	1	15,2500	3,0777	2	20,000


HEAT EXCHANGER:HTRI RESULTS

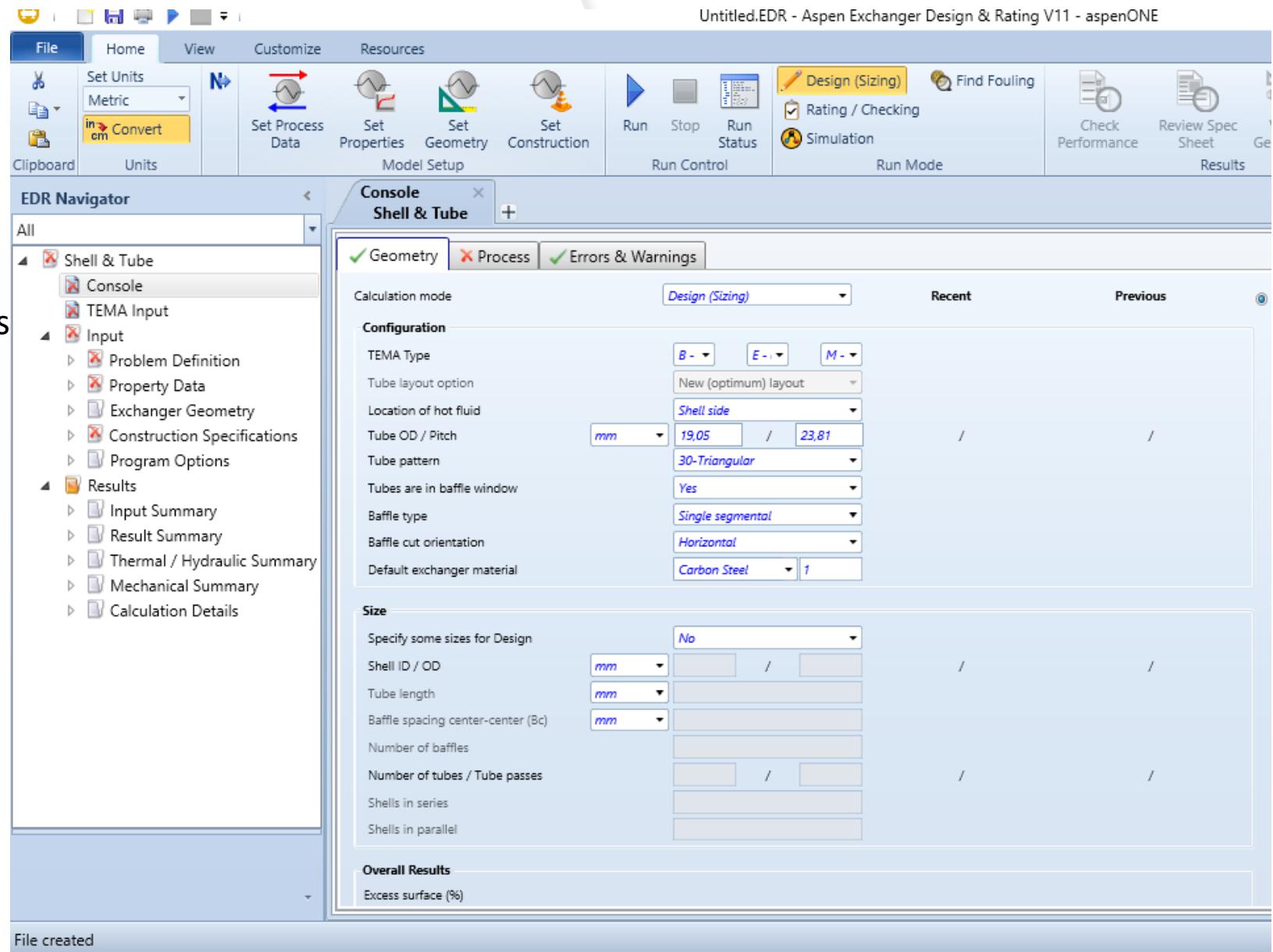
Front Channel Shell

S1	Nozzles	NPS, in	Rating	Design	Shell	Tube	Weight	lb	Company	Customer	Juan	Ref	00
S2	Inlet	2,5	150	Pres (psig)	150	150	2300		Customer	None			
S2	Outlet	4	150	Temp (F)			5200		Item				
T1	Inlet	4	150	Passes	1	2	7000		Service	Kerosene-Oil Shell & Tube Heat Exchanger			
T2	Outlet	3	150	Thick (inch)	0,375	0,083			TEMA	AES			Setting Plan
									Date	30/07/2020	By		
									Diagram		Rev		0

HEAT EXCHANGER:HTRI RESULTS

HEAT EXCHANGER:ASPEN EDR

- ✓ As HTRI, Aspen EDR can also be used for the simulation, rating and design of heat exchangers.
- ✓ When entering to the interface the program offers a wide variety of heat exchangers, in which Shell and tube heat exchanger is found.
- ✓ It is necessary to know basics of heat exchanger design previously, because when running your case probably your design will not reach a solution due to thermal and/or hydraulic constraints did not meet the initially conditions given.
- ✓ Most of the cases for not reaching a solution is because the pressure drop calculated is greater than the pressure drop allowed. In those cases, it is necessary to change the factors that affect potentially the pressure drop across tubes and/or shell side until finding a design which can meet the over-design allowed by your client.
- ✓ A feature Aspen EDR offers is that you can design using other constraints such as: Tube long, tube and Shell passes; baffle spacing, tube diameter, etc. However, it is important to know that when tightening too much your case, the design could not be reached easier, because the program iterations did not reach a solution according to these constraints given.
- ✓ As a suite of Aspen, Aspen EDR is interconnected with hysys and you can pass from hysys to EDR(viceversa) without problems and without filling all physical properties data. (In this case, it was needed because "Crude Oil" doesn't exist in the list. However, if it was needed to start from hysys, it could also be added as an hypothetical component)
- ✓ Aspen EDR takes less time in doing the iterations.


HEAT EXCHANGER:EDR INTERFACE

After

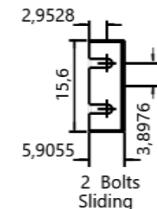
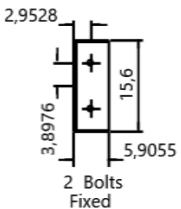
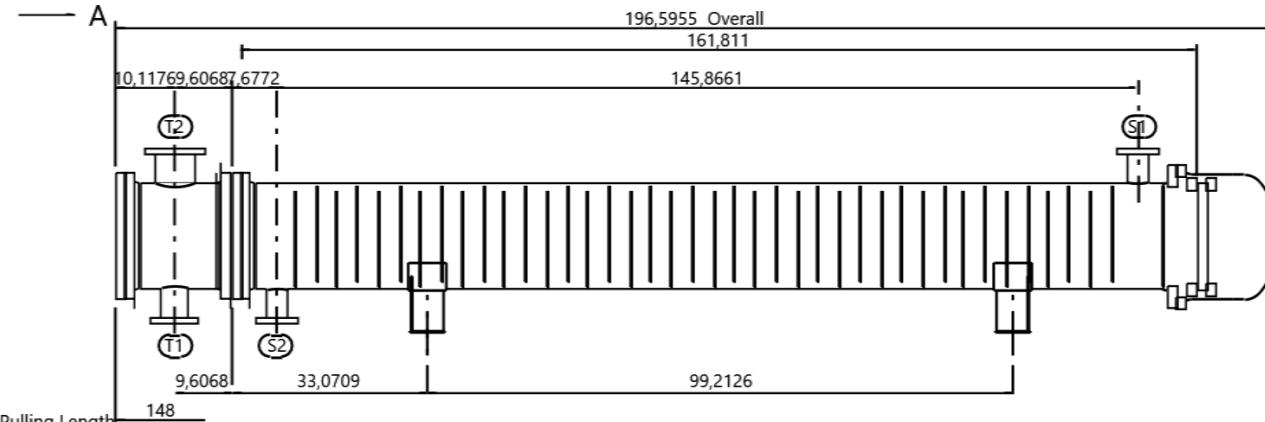
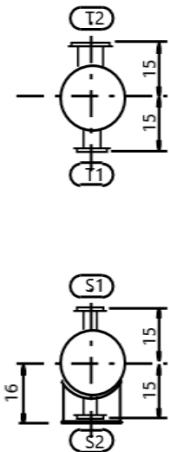
1. knowing the input geometry (guessed)
2. Filling all boxes required.
3. Troubleshooting the initial run warnings

Solution is reached

HEAT EXCHANGER:EDR RESULTS

TEMA Sheet

Heat Exchanger Specification Sheet





1	Company:				
2	Location:				
3	Service of Unit:	Our Reference:			
4	Item No.:	Your Reference:			
5	Date:	Rev No.:	Job No.:		
6	Size :	438 - 4200 mm	Type: AES Horizontal	Connected in: 1 parallel	1 series
7	Surf/unit(eff.)	320,7 ft ²	Shells/unit	1	Surf/shell(eff.) 29,8 m ²
8	PERFORMANCE OF ONE UNIT				
9	Fluid allocation	Shell Side		Tube Side	
10	Fluid name				
11	Fluid quantity, Total	lb/h	45000	150000	
12	Vapor (In/Out)	kg/h	0	0	0
13	Liquid	lb/h	45000	45000	150000
14	Noncondensable	kg/h	0	0	0
15					
16	Temperature (In/Out)	°F	390	250	100
17	Bubble / Dew point	°F	/	/	/
18	Density Vapor/Liquid	lb/ft ³	/ 48,67	/ 48,67	/ 52,7
19	Viscosity	cp	/ 0,401	/ 0,401	/ 3,5964
20	Molecular wt, Vap				
21	Molecular wt, NC				
22	Specific heat	BTU/(lb-F)	/ 0,59	/ 0,59	/ 0,49
23	Thermal conductivity	BTU/(ft-h-F)	/ 0,079	/ 0,079	/ 0,077
24	Latent heat	kcal/kg			
25	Pressure (abs)	psi	50	47,39	50
26	Velocity (Mean/Max)	m/s	0,24 / 0,52		2,71 / 2,89
27	Pressure drop, allow./calc.	psi	15	2,61	15
28	Fouling resistance (min)	ft ² -h-F/BTU	0,003	0,003	0,0036 Ao based
29	Heat exchanged	3717064 BTU/h	MTD (corrected)		102,71 °C
30	Transfer rate, Service	62,69	Dirty	63,71	Clean 109,9 BTU/(h-ft ² -F)

CONSTRUCTION OF ONE SHELL						Sketch
31		Shell Side		Tube Side		
32	Design/Vacuum/test pressure	psi	58,02 / /	58,02 / /		
33	Design temperature / MDMT	°F	455 /	455 /		
34	Number passes per shell		1	4		
35	Corrosion allowance	mm	3,18	3,18		
36	Connections	In mm	1 76,2 / -	1 101,6 / -		
37	Size/Rating	Out	1 76,2 / -	1 152,4 / -		
38	Nominal	Intermediate	/ -	/ -		
39						
40	Tube #:	94	OD: 1 Tks. Average 0,083	in Length: 4200 mm	Pitch: 1,25 in	Tube pattern: 90
41	Tube type:	Plain	Insert: None	Fin#:	#/m	Material: Carbon Steel
42	Shell	Carbon Steel	ID 17,25 OD 18	in	Shell cover	Carbon Steel
43	Channel or bonnet	Carbon Steel			Channel cover	Carbon Steel
44	Tubesheet-stationary	Carbon Steel	-		Tubesheet-floating	Carbon Steel
45	Floating head cover	Carbon Steel			Impingement protection	None
46	Baffle-cross	Carbon Steel	Type Single segmental	Cut(%d)	7,34	Hi Spacing: c/c 3,5433 in
47	Baffle-long	-	Seal Type		Inlet	9,1029 in
48	Supports-tube	U-bend	0		Type	
49	Bypass seal			Tube-tubesheet joint	Expanded only (2 grooves)(App.A i)	
50	Expansion joint	-		Type	None	
51	RhoV2-Inlet nozzle	1813	Bundle entrance	56	Bundle exit	56 kg/(m-s ²)
52	Gaskets - Shell side		Flat Metal Jacket Fibre	Tube side		Flat Metal Jacket Fibre
53	Floating head		Flat Metal Jacket Fibre			
54	Code requirements	ASME Code Sec VIII Div 1		TEMA class	R - refinery service	
55	Weight/Shell	1605,8	Filled with water	2300,8	Bundle	737,5 kg
56	Remarks					
57						
58						

HEAT EXCHANGER:EDR RESULTS

Views on arrow A

Nozzle Data				Design Data	Units	Shell	Channel	Notes:	Company:
Ref	OD	Wall	Standard	Design Pressure	psi	58.01	58.01		Location:
S1	3.5"	0.216"	Slip on	Design Temperature	°F	455	455		Service of Unit:
S2	3.5"	0.216"	Slip on	Full Vacuum		0	0		Our Reference:
T1	4.5"	0.237"	Slip on	Corrosion Allowance	in	0,125	0,125		Item No.:
T2	6.625"	0.28"	Slip on	Test Pressure	psi				Your Reference:
				Number of Passes		1	4		Date:
				Radiography		0	0		Rev No.:
				PWHT		0	0		Job No.:
				Internal Volume	ft³	15,7801	8,0893		
				Weight Summary					
				Empty		Flooded	Bundle		
				3540 lb		5072 lb	1626 lb		

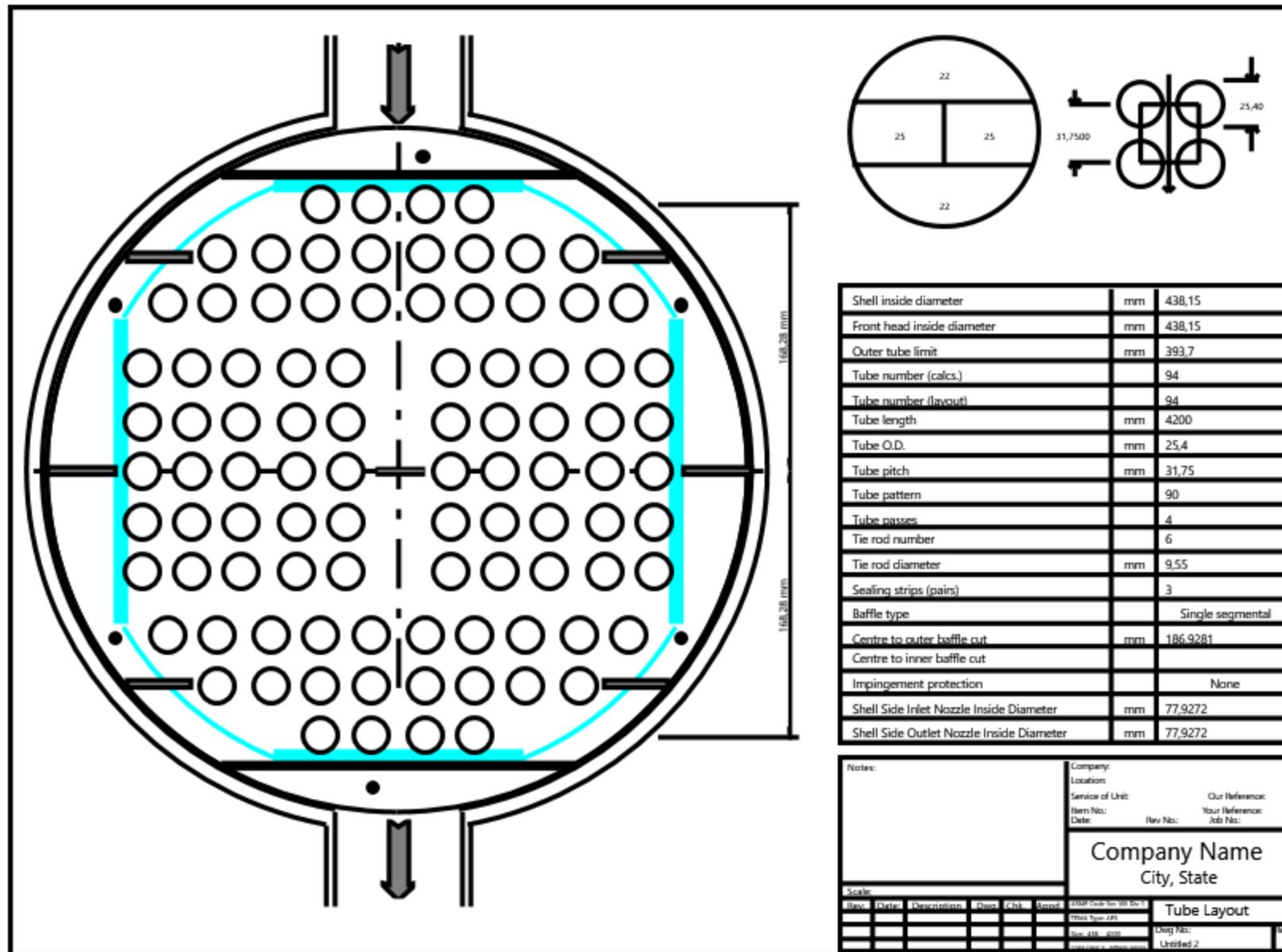
Company Name
City, State

Setting Plan

0

TEMA Type: AES

Size: 17 - 165


Dwg No.:

Rev: 0

TEMA Class: 0

serth example 1

HEAT EXCHANGER:EDR RESULTS

HEAT EXCHANGER:ANALYSIS

SHELL AND TUBE HEAT EXCHANGER DESIGN COMPARISON				
RESULTS		SERTH (HAND MADE)	HTRI	EDR
Shell	Fluid	Kerosene	Kerosene	Kerosene
	Type	AES	AES	AES
	ID(in)	19,25	15,25	17,25
Tubes	Fluid	Crude Oil	Crude Oil	Crude Oil
	Number of tubes	124	80	94
	Size OD(in)	1	1	1
	Tube BWG	14	-	-
	Tube Length(ft)	14	20	13,77
	Tube Layout	Square	Triangular	Square
	Tube Pitch(in)	1,25	1,25	1,25
	Tube Passes	4	2	4
Heat transfer area	ft2	454	397,935	320,7
Baffles	Cut(%)	20	20	7,34
	Spacing(in)	3,85	3,0777	3,54
Sealing Strips	Pair/10 tubes rows	1	2	3
Nozzles	Tube side	4 in Sch 40	T1(4 in, CL 150) T2(3 in, CL150)	T1(4,5in) T2(6,62 in)
	Shell side	3 in Sch 40	S1(2.5 in, CL 150) S2(4 in, CL150)	S1(3,5in) S2(3,5 in)
Material	Shell and tube side	Carbon steel	Carbon steel	Carbon steel

HEAT EXCHANGER:ANALYSIS

Which design is the best one?

- ✓ First at all, all methods used reached a solution according to the constraints initially established. However, it must be highlighted that each method can be analyzed according to the needs of the client.
- ✓ There are cases in which tube length must be carefully designed due to the fact sometimes the space available at plant is not enough for long tube length.
- ✓ If the cost of the equipment was a concern then the lowest area should be chosen (EDR)
- ✓ Despite Aspen EDR reached a solution. Between all methods, it would not be preferable to choose EDR because its tube side pressure drop would be a problem in the future because at clean condition (new) is just at 1,62 psi from the pressure drop allowance. An eventual obstruction or increasing of fouling would put in danger the equipment.
- ✓ As said in other presentations, hand made gave good results. However, this method tends to fall into calculation mistakes.

One of the main advantage of EDR it is that can be used integrated inside process simulation developed in HYSYS to design/evaluate rigorous the performance of heat exchangers. However, thermal departments of engineering companies always are truly about HTRI results

As recommendation, EDR in design mode can be used to provide a good initial estimation point to initiate the heat transfer calculation with HTRI. [5]

TERMINOLOGY

Parameter	Definition
Q	Rate of heat transfer
m	Mass flow
C_p	Heat capacity
F	LMTD correction factor
ΔT_m	Logarithmic mean temperature difference
U_{Req}	Required overall heat transfer coefficient
U_{clean}	Clean overall heat transfer coefficient
U_D	Design overall heat transfer coefficient
D_o	External pipe diameter
D_i	Internal pipe diameter
k	Pipe thermal conductivity
R_{Di}	Fouling factor inner fluid
R_{Do}	Fouling factor outer fluid
h_i	Heat transfer coefficient for inner fluid
h_o	Heat transfer coefficient for outer fluid
ΔP_{Shell}	Shell pressure drop
ΔP_{tubes}	Tubes pressure drop
ΔP_f	Pressure drop due to fluid friction
ΔP_r	Pressure drop due to return bends
ΔP_n	Pressure loss in nozzles
f	Darcy friction factor
n_p	Tubes number of passes
L	Tube lenght
G	Mass flux
α_r	Number of velocity head allocated for minor losses in tube side
P_T	Tubes pitch
d_s	Shell ID
n_b	Number of baffles
d_e	Equivalent diameter
s	Fluid specific gravity
ϕ	Viscosity correction factor

REFERENCES

- [1] R. K. Shah y D. P. Sekulic, Fundamentals of heat exchanger design, United States: Wiley, 2003.
- [2] K. Thulukkanam, Heat Exchanger Design Handbook, United States: CRC Press, 2013.
- [3] Tubular Exchanger Manufacturers Association, Inc, Standars of the Tubular Exchanger Manufacturers Association 9th Edition, Tarrytown, NY, 2007.
- [4] R. W. Serth, Process Heat Transfer: Principles and Applications, Texas USA: Elsevier, 2007.
- [5] M. Gutierrez, *EDR or HTI*, USA: LinkedIn, 2017.

¡Thanks for watching!

- **Juan Pablo Hernández Castillo**
- Contact:
- Email: juanpaheca@outlook.es
- Cel: +57 304 395 5569
- LinkedIn: www.linkedin.com/in/juanhdezcastillo