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Zusammenfassung 

Gegenstand der vorliegenden Arbeit ist die Beantwortung der Frage, welche Vorteile kerami-

sche Dünnschichten mit nanoskaliger Morphologie für die Hochtemperaturbrennstoffzelle 

(solid oxide fuel cell, SOFC) bieten. Aufgrund der geringen Korngröße ist die Korngrenzdich-

te im Nanoskaligen so weit erhöht, dass Korngrenzeffekte möglicherweise zu einer stark 

verbesserten Leitfähigkeit führen. Verbesserte Ladungstransporteigenschaften wiederum 

senken die ohmschen Verluste im Elektrolyten und die Polarisation der Elektroden, die z.B. 

an der Kathode während der Sauerstoffreduktion entsteht. Beides erhöht den Wirkungsgrad 

von Brennstoffzellen insbesondere im Temperaturbereich 500 °C f T f 750 °C. 

Zur systematischen Untersuchung von Korngrenzeffekten in nanoskaligen Elektrolyt- und 

Kathodendünnschichten wurden grundlegende experimentelle Untersuchungen durchge-

führt. Dabei konzentriert sich diese Arbeit auf zwei Materialsysteme: Als Elektrolyt wird 

8,3 mol% Yttrium dotiertes Zirkonoxid (YSZ) untersucht � das Standardelektrolytmaterial für 

die SOFC. Als Kathode wird mit Lanthanstrontiumkobaltat (LSC) ein mischleitender Pe-

rowskit gewählt, der exzellente Sauerstoffreduktionseigenschaften aufweist. Alle untersuch-

ten Dünnschichten wurden mittels eines Sol-Gel-Prozesses hergestellt, einem Verfahren, 

das für Beschichtungen im industriellen Maßstab geeignet ist.  

Nanoskalige Elektrolytdünnschichten 

Der Ladungstransport in YSZ-Keramiken erfolgt über einen Gitterplatzwechsel von Sauer-

stoffionen bzw. Sauerstoffleerstellen im YSZ-Kristall. Ziel der umfassenden Experimente an 

den Elektrolytdünnschichten war es zu untersuchen, ob die hohe Dichte der Korngrenzen in 

nanoskaligen Proben zu einer hohen Konzentration von Sauerstoffleerstellen und / oder ei-

ner hohen Beweglichkeit der Ladungsträger und somit zu einer erhöhten elektrischen Leitfä-

higkeit führt. Dazu wurden YSZ-Dünnschichten auf isolierende Saphirsubstrate abgeschie-

den. Die Schichten sind homogen, rissfrei, ca. 300 nm dick und weisen eine gute Haftung 

zum Substrat auf. Durch anschließende Temperaturbehandlung zwischen 650 °C und 

1400 °C (jeweils 24 Std.) kann die mittlere Korngröße d zwischen 5 nm und 782 nm variiert 

werden. Die Reinheit und Kristallinität der Korngrenzen wurde elektronenmikroskopisch 

nachgewiesen. Die Schichten weisen eine kubische Struktur mit tetragonalen Ausscheidun-

gen im Nanometermaßstab auf. Diese Ausscheidungen sind homogen in den keramischen 

Körnern und Korngrenzen verteilt und können für die Untersuchung der Transporteigen-

schaften der Filme vernachlässigt werden.  

Die elektrische Leitfähigkeit der YSZ-Dünnschichten wurde zwischen 200 °C und 400 °C in 

Luftatmosphäre untersucht: Während die Gesamtleitfähigkeit der Schichten mit Körnern im 

µm-Bereich mit der Leitfähigkeit polykristalliner Standardelektrolyte übereinstimmt, steigt mit 
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zunehmender Korngrenzdichte im Nanoskaligen der Widerstand der Proben an. Impedanz-

spektroskopisch kann dieser Anstieg den Korngrenzen zugeordnet werden. Die spezifischen 

Leitfähigkeiten von Korn und Korngrenze für 232 nm f d f 782 nm können durch Anwendung 

des sog. Brick-Layer-Modells berechnet werden. Dabei gibt die spezifische Leitfähigkeit den 

Ladungstransport bezogen auf ein einzelnes Korn bzw. eine einzelne Korngrenze mit einer 

äquivalenten elektrischen Korngrenzdicke δgb = 5,37 nm an. Beide Leitfähigkeiten zeigen 

Arrheniusverhalten, wobei die spezifische Korngrenzleitfähigkeit (EA = 1,15 eV) zwei Deka-

den unterhalb der spezifischen Kornleitfähigkeit (EA = 1,09 eV) liegt. Die Anwendung des 

Brick-Layer-Modells für nanoskalige Proben mit d f 36 nm zeigt, dass sich die Ladungs-

transportvorgänge in YSZ-Dünnschichten im Nanoskaligen grundsätzlich nicht von denen in 

polykristallinen Materialien unterscheiden. Die Korngrenzen wirken unabhängig von der 

Korngröße auch im Nanoskaligen als Potenzialbarriere und behindern den Transport 

geladener Sauerstoffionen durch den Kristall. Durch die hohe Anzahl an Korngrenzen in na-

noskaligen Materialien weisen diese Elektrolyte deshalb einen besonders hohen Gesamtwi-

derstand auf. 

Gegenüber herkömmlichen polykristallinen YSZ-Elektrolyten führen nanoskalige YSZ-

Dünnschichten daher nicht zu einer Senkung des ohmschen Widerstandes und tragen zu 

keiner Verbesserung des SOFC-Wirkungsgrades bei. In dieser Arbeit wird nachgewiesen, 

dass nanoskalige YSZ-Dünnschichten keine günstigen Korngrenzeffekte aufweisen, die den 

Sauerstoffionentransport erhöhen. 

Nanoskalige Kathodendünnschichten 

Um den Einfluss der Mikrostruktur nanoskaliger und nanoporöser LSC-Kathoden auf die 

Sauerstoffreduktion zu ermitteln, wurden (La1-xSrx)CoO3-δ (x = 0,5) Dünnschichten auf YSZ-

Oberflächen und auf Gadolinium dotierte Ceroxidoberflächen (GCO) mittels Sol-Gel-

Verfahrens aufgebracht. Die Kristallisation der perowskitischen LSC-Phase wurde durch 

Thermoanalyse und röntgendiffraktometrische Experimente untersucht. Dadurch wurden 

folgende Kalzinierungsschritte ermittelt: 170 °C, 700° C und 900 °C (jeweils t = 5 min). Die 

auskristallisierten Schichten sind rissfrei und homogen und weisen eine gute Haftung zum 

jeweiligen Substrat auf. 

Anstatt der reinen kubischen Struktur wird röntgendiffraktometrisch an beiden Probensyste-

men (LSC / YSZ und LSC / GCO) eine rhomboedrische Verzerrung nachgewiesen, was auf 

ein leichtes Sr-Defizit und, durch die Verarmung auf dem A-Platz des ABO3-Kristalls, auf 

Kobaltoxidausscheidungen im Nanometerbereich hindeutet. Aufgrund ihrer geringen Größe 

haben diese Zweitphasen einen vernachlässigbaren Einfluss auf die Funktion der Kathode. 

Allerdings führt eine Grenzflächenreaktion zwischen LSC-Kathode und YSZ-Elektrolyt zu der 

Bildung von Zirkonaten, die in einer massiven Schädigung der chemischen LSC-Phase re-

sultiert. Diese Grenzflächenreaktion wird durch thermodynamische Simulationen für den ge-

samten untersuchten Temperaturbereich von  500 °C f T f 850 °C vorausgesagt � allerdings 

ist die Kinetik dieser Reaktion unbekannt. In der Literatur wurde die Bildung von Zirkonaten 

zwischen LSC und YSZ bisher für hohe Temperaturen (T g 900 °C) und lange Zeiträume 
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nachgewiesen. Diese Arbeit zeigt die Kristallisation von Strontiumzirkonaten mikrostrukturell 

bereits bei 700 °C. Elektrische Untersuchungen über 100 Std. weisen die isolierenden Zirko-

nate bereits bei T > 500 °C zwischen der nanoskaligen LSC-Kathode und dem YSZ-

Elektrolyten nach. Die Grenzfläche zwischen LSC und GCO ist hingegen über einen weiten 

Temperaturbereich (Tmin = 1200 °C) stabil. Die Morphologie der Nanokathoden ändert sich 

mit der Temperatur: Bis 800 °C wurde selbstlimitierendes Kornwachstum festgestellt, d.h. die 

Größe der keramischen Körner läuft auf einen Endwert zu (d = 83 nm). Bei höheren Tempe-

raturen unterliegt die Schicht einem nicht-parabolischen Kornwachstum, das zu einer Zerstö-

rung der Nanokathode führt. 

Die Polarisationsverluste, die während der Sauerstoffreduktion an der Kathode entstehen, 

sind im Fall der nanoskaligen mischleitenden LSC-Kathoden äußerst gering: In symmetri-

schen Zellmessungen wird bei 600 °C ein flächenspezifischer Polarisationwiderstand ASRpol 

von 146 mΩ·cm² (LSC / YSZ) bzw. 130 mΩ·cm² (LSC / GCO) festgestellt. Diese Werte un-

terbieten alle veröffentlichten Polarisationswiderstände mischleitender Kathoden und zeigen 

somit eine ausgezeichnete elektrochemische Aktivität während der Sauerstoffreduktion. 

Durch ihren unterschiedlichen Stabilitätsbereich (LSC / YSZ: T f 500 °C, LSC / GCO: 

T f 700 °C) kommen für diese Systeme unterschiedliche Anwendungsbereiche in Frage. 

Mikrobrennstoffzellen (µ-SOFCs), die z.B. für den Akkuersatz in Laptops entwickelt werden, 

beschränken sich auf eine Temperatur von ca. 500 °C; deshalb sind dort LSC / YSZ � Ka-

thoden vielversprechend. Hilfsaggregate für Automobile (auxiliary power units, APU) sind mit 

ihrer etwas höheren Betriebstemperatur eine potentielle Anwendung für die LSC / GCO � 

Kathoden. 

Die exzellenten Eigenschaften der LSC-Nanokathoden bei der Sauerstoffreduktion beruhen 

neben den mischleitenden Materialeigenschaften auf der hohen Oberfläche der Elektroden. 

Der Sauerstoffaustausch an der Kathodenoberfläche ist im gesamten elektrochemischen 

Prozess der ratenbestimmende Schritt. Die Sauerstoffionendiffusion im Perowskiten und der 

Ladungsdurchtritt in den Elektrolyten sind bei nanoskaligen LSC-Kathoden vernachlässigbar. 

Das Modell von Adler, das die elektrochemische Sauerstoffreduktion an der Kathode be-

schreibt, wird durch den Vergleich der elektrischen Kennwerte unterschiedlicher Dünn-

schichtkathoden mit nanoskaliger Morphologie validiert. Das Modell sagt eine Oberflächen-

vergrößerung der Nanokathoden um den Faktor 8 gegenüber einer dichten Dünnschichtka-

thode voraus. Diese Ergebnisse motivieren zu einer weiteren Optimierung der Mikrostruktur 

nanoskaliger Kathoden, wobei insbesondere eine Vergrößerung der Kathodendicke zu einer 

weiteren Verbesserung der elektrochemischen Eigenschaften führen wird.  

Die Ergebnisse dieser Arbeit und deren Diskussion zeigen, dass die Korngrenzeffekte in na-

noskaligen YSZ-Dünnschichten den Gesamtwiderstand der Probe erhöhen statt ihn zu sen-

ken. Daher sollten für die Anwendung in der SOFC, Keramiken mit großen Körnern und we-

nigen Korngrenzen eingesetzt werden, um die ohmschen Verluste im Elektrolyten zu redu-

zieren. In LSC-Kathoden hingegen zeigen nanoskalige keramische Körner und eine nanopo-

röse Struktur exzellente Eigenschaften bei der Sauerstoffreduktion. Dabei werden die Polari-
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sationswiderstände bestehender Kathodenkonzepte deutlich unterboten. Die hohe Oberflä-

che der Nanokathoden senkt die Polarisationsverluste entscheidend. Die Erkenntnisse zur 

mikrostrukturellen, chemischen und elektrischen Stabilität von nanoskaligen LSC-

Dünnschichtkathoden und das Verständnis der elektrochemischen Vorgänge in der Kathode 

legen damit den Grundstein für den Einsatz nanoskaliger, mischleitender Kathoden im Be-

reich mobiler SOFC-Anwendungen. 
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1 Introduction 

1.1 Fuel Cells for Energy Supply 

Ever since the beginning of industrialization, fossil fuels - coal, oil and natural gas - have 

been the major source of energy supply. However, it is certain that the supply of cheap, 

conventionally produced oil will peak and decline this century. The predictions about �peak 

oil� run from 2010 by ASPO (Association for the Study of Peak Oil and Gas) to a peak 

approximately in 2030 by DOE / AIE (US Department of Energy / International Energy 

Agency) [1]. Then at the latest, an energy revolution to alternative energy sources such as 

solar and wind will have taken place to cover the worldwide growing need for energy. 

Meanwhile there are fundamental environmental (ipcc report [2]), strategic (ipcc report [2]) 

and economic (Stern report [3]) interests for a responsible dealing with fossil fuels. For 

example, eleven of the last twelve years (1995 � 2006) rank among the twelve warmest 

years in the instrumental record of global surface temperature (since 1850) � the economic 

costs of the climate change range between 5% and 20% of the worldwide gross domestic 

products (several trillion Euros). Therefore, governmental and non-governmental 

organizations strive to solve present and future energy problems on an international level (cf. 

UN Climate Change Conference, Bali, Indonesia, 3-14 December 2007 [4] and its analysis 

by J.L. Morgan, E3G [5]). 

Regardless of what the driving force may eventually be, political reason or increasing energy 

prices, the importance of a more efficient use of energy has been recognized as a key issue 

for technology development. Considerable aspirations in this context are connected with fuel 

cells. Interest in these alternative energy-conversion devices has increased rapidly in recent 

years, whereas the basic principles of fuel-cell operation are known since the early 

experiments of Schönbein and Grove in the first half of the 19th century. These fuel cells with 

high-energy conversion efficiency and low emission are promising systems for replacing 

combustion-based electrical generators at all sizes. 

1.1.1 Working Principle of Solid Oxide Fuel Cells (SOFC) 

A fuel cell can be defined as a galvanic element, in which the reactants and the products are 

continuously supplied and removed [6, 7]. A simplified functional principle of a solid oxide 

fuel cell (SOFC), a concept that is regarded as one of the most promising systems due to its 

high efficiency and its flexibility in terms of the fuel gas, is schematically shown in Fig. 1. The 

reactant gases are separated by an ionically conducting oxide membrane, which is usually 

made of doped zirconium oxide. The chemical potential difference between the reactant 

gases initiates a driving force for gas compensation through the oxygen ion-conducting 



1 INTRODUCTION 

2 

electrolyte. The electrodes facilitate the incorporation and removal of oxygen ions into and 

from the electrolyte.  

O2

N2

H2

H2O

consumer load

N2 O2−

2e−

cathode

(La,Sr)MnO3-δ or
(La,Sr)(Co,Fe)O3-δ

electrolyte

(Zr,Y)O2-δ

anode

Ni cermet

 

Fig. 1 Schematic SOFC concept [8] 

Oxygen and fuel (here H2) react via a dense, oxide ion-conducting electrolyte (e.g. yttria-doped 

zirconia, YSZ); the spatial separation of reduction and oxidation reaction enables the utilization 

of the electrons involved in the redox process. 

If, for example, hydrogen is used as fuel gas, the following electrochemical reactions occur at 

the two electrodes: 

Cathode: ( ) ( ) ( )2
2

1
g 2 cathode electrolyte

2
O e O −′+ →  Eq. 1 

Anode: 
2

2 2(electrolyte) (g) (g) 2 (anode)O H H O e− ′+ → +  Eq. 2 

Sum: 2 2 2

1
(g) (g) (g)

2
O H H O+ →  Eq. 3 

The electronically conducting SOFC cathode (typically lanthanum strontium manganite, LSM) 

leads the oxidant through its porous channels to the electrolyte, where the oxygen-reduction 

mechanism takes place (Eq. 1). The region where the electronic conducting phase (cathode), 

gas phase (porous cathode channels) and ionic conducting phase (electrolyte) meet, is 

called triple-phase boundary (tpb); the concentration of these active sites determines the 

electrochemical performance of the cathode. Before incorporation of the oxygen ions into the 

electrolyte, a variety of steps including adsorption of the molecules, dissociation into oxygen 

atoms and ionization take place at the cathode. Due to the chemical potential difference, the 

oxygen ions travel through the electrolyte towards the anode where the redox reaction 

occurs (Eq. 2). The electrons, which are involved in the electrochemical reaction, are forced 
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to flow through an outer circuit performing electrical work. In case of an open circuit, the 

Nernst voltage UN arises between cathode and anode: 

 2

2

(cathode)
ln

2 (anode)N

pORT
U

F pO
= ⋅  Eq. 4 

where R is the general gas constant, T the absolute temperature, F Faraday�s constant and 

pO2 the respective oxygen partial pressure at cathode and anode.  

In reality, however, the respective electrochemical processes in the cell are lossy. Thus, 

ohmic losses arise during the transport of charge carriers in the electrodes and in the 

electrolyte, where the latter (diffusion losses of the oxygen ions) dominate the ohmic part of 

the total losses. Additionally, polarization losses evolve during the conversion of electronic 

current into ionic current. Both the ionic transport in the electrolyte and the electrochemical 

reaction at the electrodes are thermally activated; thus, the ohmic and polarization losses 

increase with decreasing temperature. (A deeper understanding of the transport properties in 

the electrolyte and the electrochemical reaction in the cathode is provided in chapter 2.1.2 

and chapter 2.2.1, respectively). Due to the losses, the cell voltage UC always undercuts the 

Nernst voltage UN:  

 C N L k
k

U U j ASR= − ⋅ ∑  Eq. 5 

with jL as load current and k the contributing loss portions, which are given by their respective 

area specific resistance (ASR).  

1.1.2 Goals of SOFC Development 

Efficiency and long-term stability are the two main goals of SOFC development, particularly 

with regard to new applications. Besides commercially available stationary systems, mobile 

applications like auxiliary power units (APU) [9, 10] or µ-SOFCs [11] as battery replacement 

are of increasing interest. In the course of that, the operating temperature of the systems 

need to be reduced from 800 °C f T f 1000 °C to T f 750 °C for APU application and to       

T f 600 °C for µ-SOFC application. In general, a reduction of the operating temperature 

offers advantages and bears drawbacks. The material requirements of the system and 

developing costs are reduced substantially for intermediate-temperature SOFCs (IT-SOFCs) 

at 500 °C f T f 750 °C. For example, the bipolar plate facilitating the electrical contacting of 

the fuel cells and providing the supply of the gaseous fuels can be made of highly alloyed 

ferritic steel as opposed to ceramic interconnects at operating temperatures below 800 °C, 

which makes the production of the plate suitable for a cheep mass production. Additionally, 

decreasing operating temperature leads to increased long-term stability and simplified 

thermal management of the SOFC system. On the other hand, the thermally activated 

transport processes in solid oxide fuel cells decrease in principle with decreasing operating 

temperature entailing an increase of ohmic (predominantly electrolyte based) and electrode 

polarization losses and thereby causing a decrease of SOFC efficiency. However, the 

increase of power density is a central approach in world-wide SOFC research [12] to further 
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the competitiveness to existing energy systems. Therefore, the development of highly 

efficient electrolytes and catalytically effective electrodes at 500 °C f T f 750 °C is of 

decisive relevance. 

On the electrolyte-site the first step to meet these demands was the introduction of thin-film 

electrolytes (thickness t ≈ 10 µm) in anode-supported cells (ASC), which are able to 

significantly reduce the portion of ohmic losses in comparison to electrolyte-supported cells 

(ESC, t ≈ 150 µm). Besides geometrical optimization, two approaches for higher oxygen-ion 

conduction of the electrolyte itself are pursued: a) the development of new materials (e.g. 

doped lanthanum gallate, (La,Sr)(Ga,Mg)O3-δ, LSGM [13]) with high oxygen-diffusion 

properties and b) the usage of a tailored microstructure of the electrolyte taking advantage of 

potential grain-size effects. (However, the role of the grain boundaries on the transport 

properties of charge carriers is still object of controversial discussions and will be subject 

matter of this work).  

For the development of high-performance cathodes, the following requirements have been 

stipulated [14]: beneficial chemical diffusion and oxygen-exchange properties of the cathode 

material (I), adjusted coefficients of thermal expansion (TEC) (II) and chemical compatibility 

(III) between cathode and substrate and a tailored microstructure (IV).  

Some of these requirements have already been fulfilled: Mixed ionic-electronic conducting 

(MIEC) iron- and cobalt-containing perovskites from the (La,Sr)(Co,Fe)O3-δ (LSCF) material 

group are already known for their high oxygen permeability (I) [15] and high electrocatalytic 

activity [16-18]. These MIEC materials significantly enlarge the area where the oxygen 

reduction can take place and thereby provide lower cathode polarization losses compared to 

solely electronic conducting cathode materials like (La,Sr)(Mn)O3-δ (LSM). The TEC of the 

cathode (II) is usually adjusted by the stoichiometry on the B-site (Co, Fe) [19]; the chemical 

compatibility (III) is ensured by the introduction of a ceria-based interlayer between cathode 

and electrolyte [20, 21]. The role of the microstructure (IV), however, is still unclear.  

1.1.3 Potential of Nanoscaled Thin Films 

The decrease in physical dimensions down to the nanometer scale is often linked with a 

dramatic change of the physical and electrochemical properties of materials [22, 23]. 

Enhanced ionic conduction in nanocrystalline films, when it occurs, is attributed to the role of 

the grain boundaries. Grain boundaries are regarded as possessing high defect densities 

and/or enhanced mobilities [23]. Moreover, the adjoining space-charge regions may hold 

increased ionic defect densities. A positive space charge would be required to increase the 

oxygen-vacancy density. These effects offer a potential means for increasing the ionic 

conductivity [24, 25], particularly in nanostructured materials with a very high fractional 

volume represented by the grain boundaries. Nanostructured thin-film electrolytes in anode-

supported cells (ASC) may therefore be able to reduce the portion of ohmic losses 

significantly.  
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With respect to cathode application, higher ionic conductivity inevitably leads to an 

enlargement of the electrochemically active volume and a potential increase of the cathode 

performance. Furthermore, Adler, Lane and Steele [26] suggested that the cathode oxygen-

reduction performance depends amongst others on the active inner surface of the cathode. 

By the deliberate introduction of nanoporosity in LSC thin-film cathodes, the inner surface 

area would substantially increase entailing an increase of the electrochemically active 

cathode volume and low cathode polarization losses.  

Using nanostructured ionic and mixed ionic-electronic conducting materials within fuel cells 

could potentially facilitate lower temperature operation. However, thorough studies of the 

thin-film processing, the structural and chemical stability of the thin films and the transport 

characteristics and electrochemical properties are necessary to gain an understanding, 

which is prerequisite for the utilization of nanoionics effects. At the best, nanoscaled thin 

films applied in solid oxide fuel cells provide faster start-up times, improved stability, reduced 

cost and less complicated thermal management. 

1.2 Goal of this Work and Outline 

For the development of SOFC systems in the intermediate-temperature regime of             

500 °C f T f 750 °C, nanoscaled thin films are of substantial interest. Goal of the present 

work is the study of the role of interfaces, grain size and porosity in nanoscaled electrolyte 

and cathode thin films. Thereto, thorough investigations of the microstructural, electrical and 

electrochemical properties of the thin films are performed to derive an understanding of their 

charge-carrier transport. Established transport models are evaluated and applied at the 

nanoscale.  

One of the main objectives of this work is the processing, design and electrochemical 

characterization of nanoscaled electrolyte and electrode structures, where the electrolytes 

are realized as nominal 8 mol% yttria-doped ZrO2 (YSZ) and the cathodes are realized as 

(La0.5Sr0.5)CoO3-· (LSC) thin films. With respect to SOFC application, special emphasis is put 

on the stability of the thin films and the cathode � electrolyte interface at the nanoscale. The 

restrictions concerning lifetime and upper temperature limit of the individual thin films are 

examined by detailed microstructural analyses as well as thermodynamic calculations and 

electrical investigations. 

In the following chapter 2 (p. 7), the fundamentals of the material systems YSZ and LSC are 

developed. Special emphasis is put on the transport phenomena of the material systems and 

the chosen stoichiometry. The sol-gel processing as well as the comprehensive experimental 

efforts for the characterization of the nanostructured layers including complementary 

techniques like electrochemical impedance spectroscopy (EIS) in a symmetrical setup and 

the use of microprobes, scanning electron microscopy (SEM), (high-resolution) transmission 

electron microscopy (TEM, HRTEM) and thermodynamic calculations are described in 

chapter 3 (p. 43). The results of the performed experiments are presented in detail in chapter 
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4 (p. 55). A comprehensive understanding of the grain-size effects and transport properties 

of oxygen ions in YSZ thin films is derived by the discussion of the results with respect to the 

fundamentals (chapter 5.1, p. 93). Subsequently, the oxygen-reduction mechanism in 

nanoscaled LSC thin films with special emphasis on stability considerations is discussed 

(chapter 5.2, p. 103). A brief summary of the essential findings of this work is given in 

chapter 6 (p. 117).  
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2 Fundamentals 

This chapter comprises the fundamental properties of yttria-doped zirconia electrolytes (2.1) 

and lanthanum strontium cobaltite cathodes (2.2) with regard to SOFC application. Special 

emphasis is put on the chemical stability of the material systems and the transport processes 

of the charge carriers. Furthermore, the stoichiometry of (Zr0.84Y0.16)O2-δ and (La0.5Sr0.5)CoO3-δ 

is motivated. A literature review of thin-film deposition methods is given in 2.3 exemplarily for 

YSZ and LSCF thin films. 

2.1 Yttria-Stabilized Zirconia (YSZ) Thin-Film Electrolytes 

Although many oxide formulations have been examined during the past decades, zirconia-

based compositions are still the best electrolytes at present owing to their beneficial 

properties regarding SOFC application (2.1.1) and the well-understood material properties of 

polycrystalline YSZ electrolytes (2.1.2). However, a substantial decrease of the mean grain 

size into the nanometer regime may change these material properties by grain-boundary 

effects (2.1.3). These nanoionics effects potentially lead to better ionic transport properties 

meeting the need for high ionic conduction at IT-SOFC application. For the calculation of the 

specific grain-boundary properties and a deeper understanding of the transport phenomena, 

the so-called brick-layer model is applied (2.1.4). 

2.1.1 YSZ Electrolytes in SOFC Application 

Several requirements are addressed to SOFC electrolytes [13, 27]: Firstly, electrolytes must 

be gas-tight to separate two gas-filled compartments with different oxygen partial pressures. 

Secondly, any substantial electronic conduction would short-circuit the electrolyte internally. 

The electrolyte must therefore be purely ionic conducting, thus enabling only the transport of 

oxygen ions from the cathode to the anode. Thirdly, the electrolyte needs to be chemically 

stable under oxidizing and reducing atmospheres to prevent chemical decomposition. 

Chemical interface reaction between the electrolyte material and the electrodes reduces the 

electrochemical performance of the cell as discussed exemplarily for the cathode-site in 

chapter 2.2.4. Fourthly, mechanical stability of the electrolyte is an important issue in the 

case of electrolyte-supported cells (ESC). Fifthly, the SOFC undergoes temperature cycles 

during production and operation, which requires adjusted thermal expansion behavior 

between the electrolyte and the electrodes to prevent cracking of the electrolyte or 

delamination at the cathode / electrolyte interface in the course of thermocycling. Lastly, low 

cost materials and processing techniques are favorable.  
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2.1.2 Material Properties of (Zr0.84Y0.16)O2-δ 

Oxygen-ion conductivity was first observed in 15 atm% Y2O3 doped ZrO2 (YSZ) by Nernst 

already in the 1890s [28]. Ionic transport in zirconia is facilitated via oxygen vacancies, which 

arise by a negligible extent by thermodynamic reactions (intrinsic defects) and mainly by 

cation doping of zirconia (extrinsic defects). The conductivity not only depends on the 

concentration of the oxygen vacancies, but also on the mobility of the oxygen ions. The 

mobility, however, is determined by the affinity of the dopant to form clusters, by the ion 

radius of the cation with respect to the host lattice and by the microstructure of the compound 

including grains and grain boundaries. Based on different dopants, it is shown in this chapter 

that the cation yttrium (Y) not only governs the transport properties of zirconia but also its 

crystal structure.  

Ionic Conductivity 

In the pure, undoped zirconia (ZrO2) compound (Fig. 2 left), very few intrinsic defects are 

formed thermodynamically according to  
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where x
OO  denotes an oxygen ion on the regular lattice site, ••

OV  a double negatively charged 

oxygen vacancy, n the concentration of electrons and K0, ΔG and k are constants; the 

Kröger-Vink notation is used [29]. Eq. 6 shows that the intrinsic defects (oxygen vacancies) 

increase with temperature and decrease with ambient pO2. At the same time, electronic 

charge carriers accumulate with T and deplete with pO2, respectively. 

X
2 3 Zr O OY O 2Y 3O V••′→ + +

X
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Fig. 2 Effect of Y doping on the ZrO2 fluorite structure [27] 

Oxygen vacancies emerge upon doping of tetravalent Zr by trivalent Y. 

The doping of zirconia with earth alkali or noble earths (CeO, CaO, MgO, Yb2O3, Gd2O3, 

Nd2O3, Y2O3, Sc2O3, etc.) drastically increases the oxygen-vacancy concentration, entailing 

extrinsic defects, according to  
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as depicted in Fig. 2 in the case of Y2O3. For every two Y ions incorporated into the zirconia 

host lattice ( '
ZrY ), one oxygen vacancy OV••  is generated. Exemplarily, the majority charge 

carriers of 10 mol% Y2O3 doped ZrO2 (10YSZ) are plotted in Fig. 3a with respect to pO2 and 

T.  
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Fig. 3 Electronic (electrons, holes) and ionic (oxygen ions) conductivity of 10YSZ  

a) Electrical conductivity σ plotted vs. pO2; diagram redrawn after [30] b) dominant charge 

transport with respect to pO2 and T; grey area indicates operation regime of the solid oxide fuel 

cell (SOFC). 

Whereas the ionic conduction (O2-) is due to extrinsic defects virtually independent from the 

oxygen partial pressure and at constant high levels, holes (h+) and electrons (e-) arise from 

intrinsic defects and dominate the electronic conductivity at very low and very high pO2, 

respectively. However, except for pO2 < 10-30 bar and pO2 > 108 bar (900 °C), the overall 

conductivity is dominated by ionic charge transport. This is far beyond the normal SOFC 

operating range of 0.21 � 10-20 bar and T f 950 °C, where ionic conduction prevails (grey 

area in Fig. 3b). This regime is characterized by an oxygen-ion transference number of       

tion ≈ 1.  

Generally, an increase of the cation doping increases the concentration of charge carriers 

and thereby the ionic conductivity, which is shown in Fig. 4a for different cations at 1000 °C. 

However, the curves run through a maximum of the conductivity und decline, depending on 

the dopant, at 7.5 < mol% M2O3 < 11. The decrease in conductivity is related to diminished 

oxygen-ion mobility in the lattice. At high cation concentrations, clusters of the form 
••⎡ ⎤′′ −⎣ ⎦

x

Zr OY V , 
•••⎡ ⎤′ −⎣ ⎦Zr OY V  or ••⎡ ⎤′ ′− −⎣ ⎦

x

Zr O ZrY V Y  are generated [31-36]. These associates 

accumulate due to Coulomb�s interactions between the vacancies and the cations, which 

decrease both the mobility of the oxygen ions and the concentration of active vacancy sites 

and entail a decrease of the electrical conductivity at high dopant concentrations (Fig. 4a).  

The tendency to form clusters increases with increasing mismatch between the ion radius of 

the cation and the ion radius of zirconium. The activation energy for association or clustering 
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HA (∇) decreases with increasing mismatch of the radii from Sc to Gd (Fig. 4b). Therefore, 

less Zr4+ ions can be replaced by M3+ without clustering, which explains the shift of the 

maximum conductivity from Sc to Gd (Fig. 4a). 
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Fig. 4 Influence of the dopant on the electrical conduction of ZrO2 

a) The oxygen-ion conductivity of doped zirconia increases upon increasing dopant 

concentration until a maximum is reached and clusters are formed; diagram redrawn after [37] 

b) electrical conductivity σ (■), ion-migration enthalpy HM (Δ) and association enthalpy HA (∇) 

versus dopant ionic radius rion; diagram redrawn after [38]. 

The mobility of the oxygen ions does not only depend on clusters but also on lattice 

distortions, which arise if the ion radius of the cation is greater than the ion radius of the host 

lattice. The more the cation radius is adapted to the ion radius of Zr4+ (rion = 0.84 Å), the less 

the transport path of the anions is disrupted and the higher is the mobility of the oxygen ions. 

Therefore, Sc-doped (rion = 0.87 Å) zirconia shows a higher conductivity than Y-doped (rion = 

1.02 Å) zirconia and Gd-doped (rion = 1.06 Å) zirconia. Fig. 4b depicts the maximum 

conductivity of doped zirconia with respect to cation radius. For a small deviation in ion radii 

between dopant and Zr4+, the migration enthalpy HM (Δ) is low and therefore the mobility 

high. For a large deviation of the radii, the activation energy for migration is increased and 

consequently the mobility and the conductivity decreased.  

The oxygen-ion transport in doped zirconia takes place by means of a hopping mechanism 

via the vacant lattice sites, resulting in a thermal activation behavior of the diffusion 

coefficient according to [34]  

 −
⋅= ⋅0 e
AE

k TD D  Eq. 8 

where 0D  is a constant, EA the activation energy of the hopping mechanism, k Boltzmann 

constant and T the absolute temperature. The activation energy EA comprises of HM and HA 

[13]. In case of a doped zirconia compound lacking of clusters, EA equals HM. By application 

of the Nernst-Einstein equation [34], the mobility of the oxygen ions can be derived by 
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qD

kT
 Eq. 9 

with the electrical charge q. The oxygen-ion conduction Ã is therefore exponentially 

temperature dependent: 
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where Ã0 is a constant.  

0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50
0

2

4

6

8

10

1000 900 800 700 600 500 400

ln
(σ

·T
/ 

S
/m

·K
)

1000 K / T

¸ / °C

8YSZ

10Sc1CeSZ

EA = HM + HA

EA = HM

T1 T2

 

Fig. 5 Arrhenius plot of the electrical conductivity of 10Sc1CeSZ and 8YSZ [38] 

Both data sets show Arrhenius-type temperature dependencies with a change in the activation 

energies at T ≈ 600 °C. 

Fig. 5 depicts the electrical conductivity of 10 mol% scandia and 1 mol% ceria-doped zirconia 

(10Sc1CeSZ) and 8 mol% yttria-doped zirconia (8YSZ) [38]. The data show Arrhenius-type 

temperature dependencies at 600 °C f T1 f 950 °C and 400 °C (450 °C) f T2 f 600 °C. Both 

temperature regimes show different activation energies. To initiate ionic charge transport in 

the regime T2, the sum of migration and association energy corresponds to the total 

activation energy (EA = HM + HA). With increasing temperature, the clusters dissociate 

completely to free ••
OV , thereby increasing oxygen-ion mobility and free charge-carrier 

concentration. In this regime, the association enthalpy is reduced [31, 39]. Consequently, the 

high-temperature regime T1 is solely dominated by the migration energy.  

Within polycrystalline electrolytes, the transport properties do not only depend on the dopant 

but also on the microstructure of the sample. The symmetry of the crystal lattice is disrupted 

at the grain boundaries, which impedes the migration of oxygen ions through the specimen. 
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Therefore, several groups found the activation energy of the grain-boundary conductivity 

higher than the activation energy of the bulk transport. This applies especially for reduced 

temperatures. Therefore, the evaluation of the grain-size effects was studied in a reduced 

temperature regime at 200 °C f T f 400 °C (cf. chapter 3.3.1). The general trend is that the 

activation energy of ionic conduction in the grains Ãg ranges between 0.93 eV and 1.09 eV, 

whereas the activation energy of the grain-boundary conduction Ãgb is higher (1.13 eV f EA f 

1.18 eV, Table 1). The higher activation energy of the grain-boundary process might indicate 

a blocking of the trespass of charged oxygen ions via the grain boundaries at the microscale. 

However, the transport properties and the role of the grain boundaries at the nanoscale 

might differ significantly (cf. 2.1.3). 

Table 1 Activation energies for YSZ as a function of temperature 

Temperature regime Activation energy EA / eV Stoichiometry Source 

/ °C total grain boundary grain   

200 � 400 - - 1.08 8YSZ [40] 

200 � 500 - 1.16 1.05 8YSZ [41] 

200 � 600 1.06 - - 7YSZ [42] 

300 � 650 - 1.13 0.93 8YSZ [43] 

325 � 425 - - 1.02 8YSZ [44] 

327 � 727 - 1.13 1.08 8YSZ [45] 

375 � 475 1.03 1.18 0.98 8YSZ [46] 

395 � 500 1.11 - - 8YSZ [44] 

600 � 800  0.92 - - 8YSZ [47] 

650 � 1000 - 1.13 1.09 8YSZ [43] 

850 � 1000 0.88 - - 8YSZ [44] 

950 � 1050 0.82 - - 8YSZ [48] 

 

Further oxygen-ion conductors like doped ceria (CeO2) [49] and lanthanum gallate (LSGM: 

(La1-xSrx)(Ga1-yMgy)O3-δ, x,y = 0.1 ... 0.2) [50] have been suggested as a replacement of 

doped zirconia due to their substantially increased ionic conductivity � especially at reduced 

operating temperatures � and their chemical compatibility with state-of-the-art cathode 

materials. However, these alternative electrolyte materials bear disadvantages concerning 

electronic conduction (ceria, [51, 52]) or chemical instability (lanthanum gallate, [53]) in a 

reduced environment, chemical incompatibility with Ni anodes (lanthanum gallate) or poor 

mechanical stability (ceria, lanthanum gallate). Although Sc-doped zirconia features excellent 

chemical and mechanical stability and high ionic conductivity, the price and availability of 

scandia is a drawback in terms of industrial application. Until today, 8 mol% Y2O3 stabilized 

ZrO2 is still the state-of-the-art material for SOFC electrolytes with favorable properties 

regarding oxygen-ion transport, mechanical stability, chemical stability and production costs 

that meet the requirements for SOFC application best.  
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Fig. 6 Chemical phase stability of the system ZrO2 � Y2O3 

Phase diagram of Y2O3-stabilized ZrO2 according to [54]; b) and c) depict dark-field images 

taken with a (112) reflection of the tetragonal phase of b) as-prepared 8YSZ (sintering:               

T = 1550 °C) and c) 8YSZ after heat treatment at 950 °C (2500 h) and current load (j = 0.17 A / 

cm²) [55]; the tetragonal precipitates appear as bright contrast. 

The dopant concentration does not only govern the transport properties of yttria-doped 

zirconia but also determines the crystal structure of the lattice. At high temperatures, zirconia 

crystallizes in the fluorite structure, which is a face-centered cubic arrangement (Fig. 7a). 

The oxygen anions occupy the tetrahedral sites forming a cubic anionic sublattice in the 

fluorite structure. 

Zirconia exhibits three polymorphs [13]: The crystal structure is monoclinic (m) at room 

temperature (Fig. 7c), undergoes a phase transition to tetragonal (t) at 1170 °C (Fig. 7b) and 

exhibits a cubic (c) structure from 2370 °C until 2680 °C (Fig. 7a), which is the melting point 

of zirconia. The resulting volume changes during phase transition drastically reduce the 

mechanical stability. By doping with Y2O3 or other earth alkali or noble earths, the tetragonal 

or cubic structure can be stabilized, eventually even down to room temperature. Fig. 6a 

depicts the phase diagram of ZrO2 - Y2O3 with respect to temperature according to [13]. 
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Besides the cubic, tetragonal and monoclinic phase, a metastable t� phase arises upon 

quenching from the cubic or tetragonal phase (for YSZ ca. 3.5 to 7 mol% [40]).  

a = 0.512 nm

a) cubic b) tetragonal c) monoclinic

a = 0.509 nm
c = 0.518 nm

a = 0.516 nm
b = 0.519 nm
c = 0.530 nm
β = 81 °

 

Fig. 7 The three polymorphs of zirconia 

Comparison of the a) cubic, b) tetragonal and c) monoclinic structure and the respective lattice 

constants of ZrO2 [40]. 

Relevant for industrial application are so-called TZP ceramics (TZP: tetragonal zirconia 

polycrystal), where the zirconia is doped with e.g. 3 mol% yttria (3YSZ).  
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Fig. 8 DC conductivity of 8YSZ and 10YSZ as a function of time at 950 °C [55] 

The degradation of the electrical conductivity is linked to the tetragonal precipitates in 8YSZ. 

The 10YSZ specimen, however, is considered as FSZ. 
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These ceramics feature a fine microstructure with grain sizes below 500 nm. Thereby, the 

grains interfinger and prevent the phase transition from t → m according to Fig. 6a, thus 

stabilize the tetragonal phase of the material. Furthermore, the TZP ceramic features good 

mechanical properties. For cubic stabilization (FSZ: fully stabilized zirconia), the minimum of 

doping is 8 mol% Y2O3, which coincides with the maximum electrical conductivity (Fig. 4a). 

New findings derived from electron microscopic studies by Butz et al. [55], however, show 

that the doping must exceed 8 mol% Y2O3 to achieve full cubic stabilization. The extensive 

TEM studies revealed the existence of tetragonal precipitates in 8YSZ. These tetragonal 

precipitates appear as bright contrast in Fig. 6b in as-prepared 8YSZ ceramics. After heat 

treatment at 950 °C and electrical load (j = 0.17 A / cm²) over a duration of 2500 h the 

precipitates have grown (Fig. 6c) causing a degradation of the electrical conductivity of the 

electrolyte (Fig. 8, ○) [55]. Upon increase of the Y concentration to 10 mol% (□), however, a 

stabilization of the electrical degradation was yielded. The authors concluded that a 

refinement of the phase diagram of the ZrO2 � Y2O3 system is necessary [55]. These 

observations coincide with the findings of [43, 54], who suggested an Y2O3 content of at least 

9.5 mol% for full cubic stabilization from room to melting temperature. 

Dielectric Properties 

The knowledge of the polarization properties of yttria-doped zirconia allows the modeling of 

its frequency-dependent impedance. By this, characteristic thin-film properties like the 

specific conductivities, i.e. the electrical conductivity of a single grain boundary, and the 

specific grain-boundary thickness can be calculated as discussed in chapter 2.1.4.  

In general, the relative permittivity ¸r is given by the Clausius-Mosotti equation: 

 
¸ ³
¸ ¸
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=

+ 0
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2 3
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r V
 Eq. 11 

where α is the polarizability, V the volume of the unit cell and ¸0 the permittivity of free space. 

Whereas α is given by electron and ion polarization and is almost independent from Y2O3 

doping, the volume of the lattice changes upon phase change [56]. During the transition from 

m → t, the unit-cell volume decreases yielding an increase of ¸r. From t → c, the volume 

change entails a decrease of the dielectric constant. As an example, Thompson et al. [56] 

found the relative permittivity ¸r to alter from about 23 over 42 to 40 upon change of the 

crystal structure from monoclinic (pure ZrO2) over tetragonal (3YSZ) to cubic (8YSZ). 

However, literature values for 8 mol% yttria-doped zirconia scatter significantly ranging from 

28.7 [57] over 29 [58], 38 [59], 40 [56] and 55 [41] to 60 [60, 61]. 

2.1.3 Reduction of Particle Size: Nanoionics 

In general, Tuller [22, 23] and Maier [24, 25] suggested that a substantial decrease of the 

average grain size into the nanometer regime could lead to enhanced ionic conductivity 

through grain-boundary effects and therefore to a remarkably improved performance of solid-

state electrochemical devices. Thereby, Maier distinguishes trivial size effects from true size 
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effects [62]. Where the former describe effects that equally occur at single interfaces, but are 

augmented by the high interfacial density, the latter involves intrinsic modifications of the 

local physical properties. Due to the segregation of impurities and dopants to the grain 

boundaries, charge concentration and mobility might be increased along the grain 

boundaries (black arrows, Fig. 9a). At the nanoscale, the increased grain-boundary density 

would entail beneficial transport properties compared to the polycrystalline material (which 

would be an example for a trivial size effect). Across the grain boundaries, the impact of the 

potential barrier might be reduced at the nanoscale if the Debye length » is greater than the 

grain size d, where » is the distance, over which the electrical potential drops to e-1 of its 

initial value. This would even lead to enhanced conduction perpendicular to the grain 

boundaries (white arrows, Fig. 9a) compared to the polycrystalline material (this would be an 

example for the true size effect). 

Therefore, nanostructured systems with their significantly larger density of interfaces and 

grain boundaries might comprise improved transport properties (Fig. 9b). For the electrolyte-

site, higher ionic conductivity allows the application of SOFCs in a reduced temperature 

regime without bearing the disadvantage of higher ohmic losses. For the electrode-site, 

increased oxygen-diffusion properties are desired as well since they lower ohmic losses in 

mixed ionic-electronic conducting cathodes (cf. 2.2.1) and increase the utilization range, 

where the electrochemical reaction takes place (cf. 2.2.3). Both effects are eligible to 

increase SOFC performance in a reduced temperature regime. 
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boundary
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g

 Ã
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Fig. 9 Principle grain-boundary effects on the transport properties 

a) Transport paths in polycrystalline materials with respect to microstructure; b) potential 

increase of the ionic transport properties at the nanoscale. 

Space-charge regions play an essential role for enhanced conduction at boundaries. 

According to the core-space charge layer model [63], a grain boundary consists of a grain-

boundary core and two adjacent space-charge layers. Charged species, impurities, dopants 

or defects, which segregate to the grain boundaries to lower the strain and the electrostatic 

energy of the system, are compensated by the formation of space charges in the adjoining 

grains. If the bulk defect with high mobility is accumulated in the space-charge region, the 

overall conductivity of the solid should increase. For nanostructured YSZ thin films, a positive 
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space charge with a high amount of ��
0V  would be required to increase the oxygen-vacancy 

density (Fig. 10). Consecutively, a negatively charged grain-boundary core, i.e. the depletion 

of ��
0V  is needed to preserve electroneutrality. Reducing the mean grain size d into the 

nanometer regime and ultimately lowering the grain size to d f 4», where » is the Debye 

length, leads to an overlap of the space-charge regions. Thus, the defect density no longer 

approaches the bulk value at the center of the particle. The entire particle is expected to 

show enhanced ionic conduction [22]. Whereas the oxygen vacancies are considered mobile 

even for T << 500 °C, the built-in cation concentration (Y) is constant with the space 

coordinate x in the investigated temperature regime. 

dCharge
density

++ ++
++ ++

++ ++

-- --
----
----

++ ++
++ ++

++ ++

-- --
----
----

x

»

dgb

·gb
 

Fig. 10 Schematic representation of two grain boundaries 

The area enclosed by the dotted line is electrically neutral [64]. Decreasing the grain size d into 

the range of the Debye length λ (d f 4λ) leads to an overlap of the space-charge regions [65]. 

dgb and ·gb denote the microstructural and electrical grain-boundary thickness, respectively, 

where the latter includes potential space-charge regions on both sides of the grain-boundary 

core. 

For yttria-stabilized zirconia, an enhanced performance with decreasing grain size and 

therefore increased fractional volume of material near the disrupted boundary region was 

reported by several groups. Kosacki et al. [66] reported for nanocrystalline YSZ an increase 

of two order of magnitude in conductivity compared to polycrystalline and single crystalline 

YSZ. In a later work, Kosacki et al. [67] observed significantly enhanced electrical 

conductivity of highly textured 10YSZ thin films (thickness t < 60 nm) deposited onto MgO 

substrates. Interfacial conductivity was found to be over three orders of magnitude larger 

than lattice limited conductivity. Cheikh et al. [68] also reported on a pronounced contribution 

of grain boundaries to the ionic conductivity with respect to the volume contribution within 

4YSZ material with an average grain size of 300 nm. Additionally, enhanced oxygen 

diffusivity at the interfaces compared to oxygen bulk diffusion within 7YSZ was shown in the 

work of Brossmann et al. [69]. Similar effects of enhanced oxygen diffusion in nanocrystalline 

6.9YSZ samples were observed by Knöner et al. [70] who reported an increase of three 

orders of magnitude of oxygen diffusion along the grain boundaries compared to the bulk.  

In contrast, Mondal et al. [71] measured that the electrical conductivity in the grain 

boundaries of 1.7 and 2.9 mol% yttria-stabilized zirconia is 2-3 orders of magnitude smaller 
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than in the crystallite volume. Correspondingly, the activation energy of the electrical 

conduction at interfaces with 1.0-1.2 eV is significantly higher than 0.84-0.93 eV observed for 

the bulk conductivity. Chun et al. [72] deposited 3YSZ onto Al2O3 (102), MgO (100) and SiO2 

glass. The activation energies for the oxygen-vacancy conduction were determined in the 

single crystal (0.86 eV), the grain (0.83 eV) and the grain boundaries (1.03 eV) of 

polycrystalline ceramic samples (grain size: 500-1000 nm) and thin films (1.22 eV, grain size: 

100-200 nm). These results suggest that the activation energy for the thin film is determined 

by the grain boundaries because the volume fraction of the grain boundaries increases with 

decreasing grain size. Ning et al. [73] prepared 4.5YSZ thin films via atmospheric plasma 

spraying (APS) onto aluminum substrates, which were dissolved after thin-film deposition. 

The electrical conductivity of the YSZ coatings in the direction perpendicular to the coating 

surface was found to be much lower than that of bulk materials. SIMS studies on cubic 

10YSZ bicrystals exhibited an abrupt decrease of the oxygen profile around the boundary 

plane indicating the oxygen-diffusion blocking of the grain boundary [74]. As early as 1981, 

Verkerk et al. [45] stated that for polycrystalline samples the grain-boundary conductivity is 

about 100 times lower than the bulk conductivity. Guo and Zhang [75] and Guo and Ding [76] 

also found the grain-boundary conductivity to be lower than the bulk conductivity within 3YSZ 

and 8YSZ, respectively. However, they observed an increase of the grain-boundary 

conductivity with decreasing grain size. Boulc�h et al. [77] investigated the electrical 

properties of tetragonal nanostructured 2.5YSZ. According to this group, the grain-boundary 

blocking effect is linked to different levels of yttrium segregation, which depend on the 

thermal history of the 2.5Y-TZP (tetragonal zirconia polycrystal). The matrix conductivities 

were found to be equal for both nanocrystalline (60 nm) and microcrystalline (600 nm) 

tetragonal zirconia. Park et al. [78] attributed the lower conductivity of 8YSZ thin films 

compared to bulk 8YSZ to poor crystallinity, whereas Wanzenberg et al. [79] suggested that 

the decrease in the conductivity is evoked by an artifact of the contacting electrodes during 

the measurement and not by the deposited films themselves. A variety of groups suggested 

that an intergranular siliceous phase accounts for the very low grain-boundary conductivity 

[80-82]. However, Guo et al. stated that the siliceous phase does not alter the grain-

boundary conduction mechanism; rather a depletion of oxygen vacancies in the space-

charge layers accounts for the blocking effect of the grain boundaries [41].  

In summary, the role of interfaces in YSZ is still controversially discussed in literature. 

2.1.4 Modeling of the Transport Properties 

The so-called brick-layer model [83] describes the macroscopic impedance of a polycrystal 

with microscopic grain and grain-boundary characteristics. For the evaluation of the transport 

properties of polycrystals consisting of grain boundaries and grains, the complex 

microstructure of the polycrystalline 8YSZ thin film is transferred into the simplified brick 

model as depicted in Fig. 11. The model comprises cubic grains with an edge length of the 
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mean grain size d of the YSZ grains and grain boundaries with a constant thickness ·gb 

surrounding the cubes.  

·gb

d

(1)

(2)

(3)

grain

grain
boundary

z = 315 nm

y = 2.7 µm

x = 4.0 µm

 

Fig. 11 Transfer of the thin-film microstructure into the brick-layer model [83] 

The mean grain size d evaluated by means of electron microscopy or X-ray diffration analysis, 

is represented by the cubes with an edge length of d. The grain-boundary thickness is 

represented by spacings of ·gb between the cubes.   

Analytical results can be evaluated from the model and even space-charge effects can be 

included in the overall analysis (e.g. [75]). However, in real systems the grains are neither 

cubic and of constant size nor is the microstructure of a simple geometry. In order to 

evaluate the influence of the microstructure on the calculated grain-boundary properties, 

Fleig et al. performed finite-element (FE) calculations [84]: deviations from the brick-layer 

model are e.g. caused by the detour effect, which means that current detours around 

blocking grain boundaries if this lowers the impedance. Consequently, both the effective 

grain-boundary capacitance and the grain-boundary conductance differ from the brick-layer 

values [85]; the relaxation angular frequency ω0 = 1 / (RC), however, is barely influenced by 

detour effects and always close to the true relaxation frequency of the grain boundaries [86]. 

For a variety of computer-generated microstructures analyzed in [84, 85] (e.g. orthogonal, 

zigzagged, hexagonally shaped grain boundaries), the maximum deviation between the 

�true� grain-boundary properties and the properties derived from the brick-layer model was 

found to be a factor of two. However, the authors concluded that this deviation is significantly 

reduced in polycrystalline ceramics, since the analyzed geometry effects cancel out. 

For the application of the brick-layer model to the YSZ thin films, the following assumptions 

are made: The grain boundaries are assumed to be of constant thickness ·gb, where ·gb does 

not denote the microstructural grain-boundary thickness dgb but the effective electrical one 

comprising the grain-boundary core and two times » if space charges are present (Fig. 10). 

The bulk and grain-boundary conductivity are assumed frequency independent, and the 

permittivity of the bulk and the grain boundary is identical: ¸g = ¸gb. This seems to be plausible 

since even large deviations of the grain-boundary stoichiometry from the bulk chemistry 

would not entail further polarization mechanisms increasing ¸gb. The permittivity data of 

different YSZ stoichiometries are within the scattering range of the literature data (cf. 2.1.2 

and table C.2 in [40]). 
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According to [41, 75, 76, 80, 87] the following equations can be derived from the brick-layer 

model and the previously noted assumptions: 

The total conductivity of the thin film Ãtf is given by 

 
,1 A tfE
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tf

tf el

l const
e
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Ã

−
⋅= ⋅ = ⋅

⋅
 Eq. 12 

where Rtf is the total resistance of the thin-film sample including the resistance of the grains 

and the grain boundaries, lcl denotes the electrode clearance (lcl equals 68 µm for all 

analyzed samples) and the effective area is given by the electrode length lel times the film 

thickness t. The activation energy is denoted by EA,tf (cf. Eq. 10). The respective values for Ãg 

and Ãgb are calculated accordingly. The values for the resistances are extracted from the fit of 

the impedance spectra (chapter 3.3.3). 

Although the total grain-boundary conductivity T

gbÃ  is a parameter of practical importance 

widely reported in the literature, for the purpose of this work, it is necessary to characterize 

the specific grain-boundary conductivity S

gbÃ  corresponding to the conductivity of a grain-

boundary region of thickness ·gb. The specific grain-boundary conductivity is determined 

from the total grain-boundary conductivity as 
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where d is the mean grain size and n the number of grain boundaries to be trespassed in the 

measurement direction. The effective electrode clearance (lcl) and the effective cross-section 

of the thin film (lel x t) is adjusted according to the brick-layer model in this work. 

A negligible contribution of conduction parallel to the grain boundaries to the total 

conductivity is assumed (and later verified). Thus, S

gbÃ  in this work refers implicitly to the 

conductivity normal to the boundary. 

The grain-boundary thickness ·gb can be calculated from the capacitances according to 

 0
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gb gb cl
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d

C C l
· ¸ ¸= ⋅ = ⋅ ⋅  Eq. 14 

The capacitances of the bulk and the grain-boundary processes can be derived from fitting 

the electrical impedance data to equivalent circuits consisting of three parallel RQ elements 

(cf. Fig. 25), which each represents the electrode process, the bulk process and the grain-

boundary contribution. The constant phase element Q can be calculated into the capacitance 

C according to [41] by  

 
1

1( )n nC R Q−= ⋅  Eq. 15 

where n is a fitting parameter less or equal to unity correlating amongst others with the grain-

size distribution. 

Thus, by application of the brick-layer model, the grain-boundary thickness as well as the 

specific grain-boundary conductivity can be obtained. 
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2.2 Lanthanum Strontium Cobaltite (LSC) Thin-Film Cathodes 

The efficiency of solid oxide fuel cells (SOFC) depends on the polarizations of the electrolyte 

and the electrodes (2.2.1). For the development of high-performance cathodes in the 

temperature regime 500 °C f T f 750 °C, transition metal oxides emerged to be auspicious 

(2.2.1). Due to their mixed ionic-electronic (MIEC) transport mechanism (2.2.2) and their 

advantageous oxygen-reduction properties (2.2.3), the material (La,Sr)CoO3-δ features high 

catalytic performance. However, drawbacks of these materials from the perovskite system 

are usually a mismatch of thermal expansion coefficients (TEC) between cathode and 

substrate (2.2.2) and their chemical incompatibility (2.2.4). Thin-film technology (2.3) 

potentially overcomes the mismatch of the TECs and the chemical incompatibility due to its 

low processing temperatures and the unique microstructure of the thin films. 

2.2.1 Cathode Polarization Losses 

The cell voltage and thereby the electrical efficiency of a solid oxide fuel cell (SOFC) crucially 

depend on the polarizations occurring in correlation with the electrochemical reactions (Eq. 1 

- Eq. 3). Polarization is a voltage loss or overpotential, which is a function of current density 

[88]. The polarization is usually given by the overpotential or by the area specific polarization 

resistance (ASRpol [89]). One distinguishes ohmic polarization or ohmic loss, concentration 

polarization and activation polarization. Fig. 12 shows a schematic polarization curve of 

voltage versus current density of a typical SOFC.  

Without current flowing through the cell, the Nernst voltage UN (Eq. 4) equals the open circuit 

voltage (OCV) U0. However, when an external load is connected to the cell and the flow rates 

of fuel and oxidant are not sufficiently high compared to the gas consumption, UN becomes a 

function of current density [88]. At any given current density, the voltage over the cell UC (Eq. 

5) equals 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
act act conc conc

c a c a

C NU j U j j j j j jη η η η ηΩ= − − − − −  Eq. 16 

where , , , ,
act act conc conc

c a c aη η η η ηΩ are the voltage losses regarding activation (�act�) and 

concentration (�conc�) polarization of the cathode (�c�) and the anode (�a�). The difference 

between ( )NU j  and ( )0NU j =  is a measure of the change in gas phase compositions just 

outside of the electrodes [88]. 

Ohmic losses emerge from the motion of electrical charge. They typically arise in the 

electrolyte (oxygen-ion resistance) and in the contact of the electrodes, i.e. the current 

collector (electronic resistance). However, in most SOFCs, the main contribution to ·Ω can be 

attributed to the electrolyte, since its ionic resistivity (2.1.2) is much greater than the 

electronic resistivities of the cathode (2.2.2) and the anode. The relative contribution of the 

ohmic losses to the overall polarization losses may vary extensively due to different cell 

designs: electrolyte-supported cells (thickness t ≈ 150 µm) bear greater ohmic losses than 

electrode-supported cells with a thickness of approximately t ≈ 10 µm. Ohmic resistances are 
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considered as independent from current load and time-invariant. However, as the fuel cell 

heats up, the resistance of the electrolyte strongly depends on the operation temperature 

(2.1.2).  

current density j

Uth: theoretical
cell voltage

U0: open circuit
voltage (OCV)

ohmic losses

polarisation
losses

fuel utilization

voltage

activation
polarization

concentration
polarization

overpotential

UC: cell voltage

UN: Nernst voltage

 

Fig. 12 Schematic plot of voltage versus current density of an SOFC [88, 90] 

showing different types of polarizations: activation polarization is dominant at low current 

densities; concentration polarization is dominant at high current densities when the transport 

of reactive species to the electrolyte / electrode interface becomes a limiting factor for the cell 

reaction [88]. The losses occurring during SOFC operation decrease the maximum theoretical 

cell voltage Uth (in dependence from temperature and gas composition ca. 0.9 to 1.2 V) to the 

smaller cell voltage UC (in dependence from electrical load and further operating conditions ca. 

0.5 to 0.8 V) [90]. 

Transport of gaseous species occurs by binary diffusion and Knudsen diffusion in 

microstructures with a small pore size [91]. This transport of fuel and oxidant to the 

respective electrodes is reflected by an electrical voltage loss called concentration 

polarization ,
conc conc

c aη η . The concentration polarization at the cathode 
conc

cη  is related to the 

transport of oxygen and nitrogen through the porous cathode. The flux of O2 from the gas 

stream through the cathode to the cathode / electrolyte interface, is linearly proportional to 

the current density [88]. Therefore, 
conc

cη  is a function of the binary diffusion coefficient of O2 / 

N2, the microstructure of the cathode, the partial pressure of the oxidant gas and the current 

density of the cell. 

The activation polarization at the cathode c

actη  is linked to the electrochemical reaction, i.e. 

the oxygen-reduction reaction (ORR, Eq. 1) and the charge transfer from the cathode in the 

electrolyte.  

On the atomistic scale, the physical processes occurring during the oxygen reduction are still 

matter of research. However, the basic procedure of the ORR is known. It is mainly 
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determined by the transport properties of the cathode; one differentiates purely electronic 

conducting cathodes and mixed ionic-electronic conducting (MIEC) cathodes. 

In case of a purely electronic-conducting material, the electrochemical reaction is confined to 

the triple-phase boundary (tpb) between the electronic conducting cathode, the ionic 

conducting electrolyte and the gas phase (Fig. 13a). The tpb is characterized by a line, 

extending along the electrolyte surface. According to Ivers-Tiffée and Virkar [88], the 

electrochemical reaction in a purely electronic conducting cathode material is characterized 

by the following reaction steps:  

� Surface adsorption of oxygen molecules 

� Dissociation of the adsorbed oxygen molecules into adsorbed atoms 

� Surface diffusion of the adsorbed oxygen atoms to the tpb 

� Formation of oxygen ions by electron transfer with incorporation of these ions into the 

electrolyte 

Fig. 13a depicts possible transport paths of the molecular, gaseous oxygen O2 (g), adsorbed 

oxygen Ox,ads and ionized oxygen O2- in an electronic conducting cathode. Many of the above 

steps are thermally activated. The voltage drop, which is associated with the cathode 

reaction or the passage of current at the cathode, is the activation polarization c

actη . The 

relationship between c

actη  and the current density is usually nonlinear, except at very low 

current densities. In general, c

actη  is a function of the cathode material properties, the 

microstructure, the temperature, the atmosphere and the current density [88]. A 

phenomenological theory, which gives a quantitative relation between the current density and 
c

actη , is the Butler-Volmer equation [88, 90]: 

 ( )
( )1

0

c c
act act

constconst
c c RT RT
actj j e e

´´ η η
η

− ⋅⋅
⋅ − ⋅» ¿

= ⋅ −¼ À¼ À
½ Á

 Eq. 17 

where ³ is the transference number and 0
cj  is the exchange current density, which is a 

measure for the effectiveness of the electrode. 

In principle, MIEC cathode materials exhibiting both ionic and electronic conductivity feature 

lower polarization losses since the electrochemical reaction is not restricted to the tpb [92, 

93]. Instead, the entire cathode surface may be utilized for the ORR. In reality, the 

electrochemically active volume is restricted to some µm from the cathode / electrolyte 

interface in state-of-the-art cathodes depending on the material properties [26]. The 

correlation between utilization range lδ and surface exchange and oxygen-diffusion 

coefficients is thoroughly discussed in 2.2.3. In case of MIEC cathodes, at least three 

reaction steps have to be considered as rate determining [88]: the surface exchange at the 

gas phase / MIEC surface, the bulk diffusion in the MIEC and the incorporation of oxygen 

ions into the electrolyte at the MIEC / electrolyte interface (cf. Fig. 13b).  



2 FUNDAMENTALS 

24 

a) Electronic conductor (e.g. LSM) b) Mixed ionic-electronic conductor (e.g. LSC)

electrolyteelectrolyte O2-O2-

TPB

Ox,ads

Oads

e-

e-

O2 (g) Ox,ads

O2-

e-

O2-

2
2

1
2

2
O e O− −+ →

O2 (g)O2 (g)

O2 (g)
Ox,ads

Ox,ads Ox,ads

 

Fig. 13 Principle of cathodic oxygen reduction 

of a) a purely electronic conducting material (e.g. LSM) via the surface path and b) a mixed 

conducting material (e.g. LSC, LSCF) via the bulk path. 

In the 1980s and 1990s, the electronic-conducting transition metal manganese was mainly 

employed as (La,Sr)MnO3-δ (LSM) (a comprehensive literature review is given in [94]). Due to 

its long process of development and its chemical stability [95], LSM was successfully applied 

as an SOFC cathode [96] (and ref. therein) in SOFC stacks (e.g. HEXIS concept [12]). In the 

recent past, the transition metals cobalt and iron got into focus as (La,Sr)(Co,Fe)O3-δ (LSCF). 

As MIEC materials, they are utilized in state-of-the-art cells and are object matter of research 

(e.g. [12, 94, 97]).  

From the previous considerations, the following requirements for powerful, effective SOFC 

cathodes can be derived: Since the concentration of active sites determines the activation 

polarization, the cathode microstructure should be very fine, thus facilitating a high number of 

triple-phase boundaries in case of an electronic conducting material. Even better, a MIEC 

material should be employed, which extends the ORR from a line to an area. Besides 

chemical stability of the cathode material with respect to temperature, oxidant, current load 

and the electrolyte material (cf. 2.2.4), the role of porosity is an essential issue. Open 

porosity is of decisive advantage since the molecular diffusion of oxygen in the pores causes 

much lower losses than the solid-state diffusion of oxygen ions in the bulk. Since the surface 

exchange in MIEC cathodes may be rate determining, a high surface area is auspicious. A 

high porosity of the cathode increases the surface area, thus lowers the activation 

polarization. This matter of fact can be utilized to a maximum extend in nanoscaled MIEC 

cathodes featuring nanopores. As derived in 2.2.3, the electrochemical reaction in a MIEC 

cathode is restricted to the utilization range lδ, which characterizes the active thickness of the 

cathode from the electrolyte surface. Therefore, an optimized microstructure of the cathode 

for a minimized activation polarization would feature a coarse microstructure with large pores 

above lδ to facilitate binary diffusion and nanoscaled grains and nanopores near the 

electrolyte / electrode interface to increase the surface of the cathode. 
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This approach has been pursued by Ivers-Tiffée et al. and Herbstritt et al. [88, 98-101] who 

observed a significant increase in power density by the introduction of a nanoporous and 

nanocrystalline LSM film at the cathode-electrolyte interface. The increase of power density 

was explained by the high concentration of active sites on the electrolyte surface. 

2.2.2 Material Properties of (La0.5Sr0.5)CoO3-δ (LSC) 

Cobalt-based perovskites like (La1-xSrx)CoO3-δ, 0 f x f 1 show a high electronic conductivity, 

besides tolerating large oxygen-vacancy concentrations. This particular feature results in a 

significant ionic conductivity and catalytic activity. Therefore, gas separation membranes 

[102-104], oxidation catalysts [104, 105], oxygen sensors [106] and electrodes in solid oxide 

fuel cells [94] (and ref. therein) are possible applications for these materials. Within the state-

of-the-art (La,Sr)(Co,Fe)O3-δ system, the chemical diffusion and oxygen-exchange properties 

of (La0.5Sr0.5)CoO3-δ (LSC) excel the material properties of the cathode material 

(La0.6Sr0.4)(Co0.2Fe0.8)O3-δ (LSCF). Therefore, LSC was selected as object of research in this 

work.  

This chapter comprises the material properties of (La0.5Sr0.5)CoO3-δ (LSC). It is shown that 

the Sr concentration governs the chemical phase of the ternary compound as well as its 

lattice constant and its thermal expansion coefficient TEC. Moreover, the substitution of La 

by Sr determines the concentration of oxygen vacancies in the material and thereby its 

defect chemistry yielding directly the superior electronic and ionic conductivity of LSC. 

Additionally, all material properties depend on ambient conditions like oxygen partial 

pressure pO2 and temperature T. 

Crystal Structure 

La, Sr
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Co
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La, SrB: Co
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Fig. 14 Cubic perovskite crystal structure ABO3 

La and Sr occupy the cornered site �A� and Co the centered �B� site. Oxygen atoms are face 

centered. 

Materials of the (La1-xSrx)CoO3-δ family crystallize in the perovskite structure ABO3 (Fig. 14). 

The B-site ion is centered in the structure, the A-site ions are found at its corners. Oxygen 
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ions are located on the cube faces. Due to their similar ionic radii, La3+ (rion = 1.36 Å [107]) 

and Sr2+ (rion = 1.44 Å [107]) ions occupy the A-sites and Co3+ ions (rion = 0.61 Å [107]) the B-

site in the perovskite structure. 

At room temperature, (La1-xSrx)CoO3-δ (x = 0) has a rhombohedral structure, which 

transforms into the cubic structure between 750 K and 1673 K (there is a large discrepancy 

in the data obtained by Petrov et al. [108] (■) and Mizusaki et al. [109] (▲), Fig. 15). With 

increasing Sr concentration, the published data on transition temperatures converge. At        

x = 0.4, the data approximately coincide with the findings of Søgaard et al. [110] (●) and the 

data of Wang et al., who determined the phase transition from rhombohedral to cubic at    

673 K for (La0.6Sr0.4)CoO3-δ [111] (h, Fig. 15). Further increase of the Sr concentration to        

x = 0.5-0.6 leads to a reduction of the transition temperature to room temperature. 
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Fig. 15 Phase transition with respect to temperature and stoichiometry  

Temperature vs. composition, x, diagram showing the phase transition of the (La1-xSrx)CoO3-δ 

system from the rhombohedral to the cubic structure studied by Petrov et al. [108] (■), Mizusaki 

et al. [109] (▲), Wang et al. [111] (h) and Søgaard et al. [110] (●). 

Thermal Expansion 

Haggerty et al. [112] calculated the lattice parameters of (La1-xSrx)CoO3-δ (x = 0.5) by Rietveld 

refinement with respect to oxygen non-stoichiometry and compared them to the pseudocubic 

cell parameters calculated from the volume of the cell: the lattice constant ranges between 

3.833 Å (· = 0.01) to 3.846 Å (· = 0.21) at room temperature where · is the oxygen 

deficiency. Thus, the expansion of the perovskite lattice upon heating is not only associated 

with usual thermal lattice expansion (�thermal expansivity� [113]), but also with a �chemical 

expansivity� [113] associated to a major part with the formation of oxygen vacancies [114]. 

For (La0.5Sr0.5)CoO3-δ, Minh [115] and Petric et al. [116] published a coefficient of thermal 

expansion TECLSC of 23.7⋅10-6 1/K and 22.3⋅10-6 1/K (30 f T f 1000 °C), respectively. These 

values are in conflict with the thermal expansion coefficients of yttria-doped zirconia (YSZ)             
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(TECYSZ = 10.5·10-6 1/K [115]) and gadolinia doped ceria (GCO) substrates                  

(TECGCO = 12.5·10-6 1/K [117]). This distinct mismatch results in mechanical stress upon 

heating and cooling of the cell and ultimately leads to cracking and breakdown of the SOFC 

system. Fortunately, the application of the LSC cathodes by thin-film technology provides the 

excitatory opportunity to outflank this mismatch in thermal expansion coefficients between 

cathode and substrate as discussed in chapter 2.3. 

Phase Stability 

Chemical secondary phases may form easily in (La0.5Sr0.5)CoO3-δ [118] due to its extremely 

narrow stability field of 0.997 < La / Sr < 1.003 [119]. Furthermore, Petrov et al. [108] stated 

that due to the high defect concentration in (La0.5Sr0.5)CoO3-δ the ideal dilute solution model 

may not remain applicable. Instead, new defect structures may develop in the material 

involving the association of defects with the formation of defect complexes and clusters and 

the formation of microdomains with ordered defects. These would lead to an inhomogeneous 

distribution of oxygen vacancies within the material. This is supported by Sitte et al. [120], 

who observed superstructures in (La1-xSrx)CoO2.71 (x = 0.6), which were attributed to the 

ordering of oxygen vacancies (also cf. [121]) or aperiodically alternating La-rich and Sr-rich 

(001) lattice planes. Several other groups reported the formation of superstructures in LSC 

by the ordering of oxygen vacancies [122, 123], which is well known in anion deficient 

perovskites [124]. Wang et al. explained the superstructure firstly as cation ordering [125, 

126]. Later they described it as combined cation/anion-vacancy ordering [127] for a Sr/La 

ratio of approximately unity.  

Defect Model 

The transport properties of LSC (and thereby its electronic and ionic conductivity and 

oxygen-reduction characteristics) depend crucially on the defects in the (La1-xSrx)CoO3-δ 

crystal [108, 109, 128-135]. Assuming statistically distributed, non-ordered oxygen 

vacancies, the following defect model is developed on the basis of the cited literature. 

Mizusaki et al. [128] stated that cobalt ions predominately assume valence states between 

Co3+ and Co4+, while the valence state of La3+, Sr2+, and O2- are fixed (Eq. 18). 

 ( ) ( )2+ 3+ 3+ 4+ 2-
La La Co Co 3-δSr La Co Co O  Eq. 18 

The substitution of La3+ ions on the A-sites of the 
3+ 3+ 2-

3La Co O  lattice by the dopant Sr2+ 

requires charge compensation. Electroneutrality in (La1-xSrx)CoO3-δ is maintained in two 

ways: Either by a valence change of the B-site Co cation (creation of holes, electronic 

compensation) or by the formation of oxygen vacancies (ionic compensation). In general, 

both processes occur and compete with each other, depending on composition, oxygen 

partial pressure and temperature. The lanthanum substitution by strontium ions and its 

effects on electroneutrality can be described by the Kröger-Vink notation [29]: 

 �� � '
O Co La2 V Co Sr⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  Eq. 19 
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For sake of simplicity, the oxygen vacancies 
��
OV  are assumed to be doubly positively 

charged, but the charge of the vacancies is in reality expected to be a function of 

temperature [108]. The cobalt ions are tetravalent Co4+ and positively charged with respect to 

the host lattice, while the bivalent strontium ions Sr2+ are negatively charged with respect to 

the host lattice La3+. The relation between �
CoCo  and ��

OV  may be expressed by the following 

defect reaction and mass equation at equilibrium [108]: 

 � x x ��
Co O Co O 2

1
2Co O 2Co V ( )

2
O g+ = + +  Eq. 20 

 
1

2 2�� X � X 2
O Co 0 Co O 2V Co Co O

G

kTK e pO
Δ

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  Eq. 21 

where K0 is the equilibrium constant, ΔG the free reaction enthalpy, k Boltzmann constant 

and T the absolute temperature. Hence, the general trends are that the oxygen-vacancy 

concentration (ionic compensation) grows with T and decreases with pO2, whereas the 

concentration of tetravalent cobalt (electronic compensation) decreases with T and increases 

with pO2.  
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Fig. 16 Influence of stoichiometry on cobalt valence and oxygen-vacancy concentration 

Concentration of tetravalent cobalt ions ([Co
4+

], ■) and oxygen non-stoichiometry (3-δ, ●) vs. 

composition x of the (La1-xSrx)CoO3-δ system. The [Co
4+

] was taken from [108] (measurements 

performed at 1000 °C in air atmosphere) and the (3-δ) from [109] (measurements performed at 

800 °C, 0.1 atm O2); for x g 0.5 the oxygen vacancies potentially form clusters [108, 120]. 

To preserve electroneutrality, the mean cobalt valence n for (La1-xSrx)CoO3-δ is given by 

[109]:  

 3 2n x ·= + −  Eq. 22 

where x accounts for the stoichiometry and · for the oxygen deficiency in the material 

system. For x f 0.3, the increase in x mainly contributes to an increase of tetravalent cobalt 

[Co4+] as depicted in Fig. 16. With increasing x, the [Co4+] reaches a maximum and is 

approximately constant for 0.3 f x f 0.5, whereas the oxygen-vacancy concentration 
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increases with x. For x > 0.5, the increase in x results in the increase of the mean cobalt 

valence. Hence, one can conclude that the strontium additions are primarily compensated by 

the formation of the tetravalent cobalt ions for x f 0.3. For 0.3 f x f 0.5, the relative 

importance of oxygen vacancies on the compensation mechanism increases. For a Sr 

concentration of x = 0.5, about 2/3 of the ions are compensated by tetravalent cobalt and 

about 1/3 by oxygen vacancies.  

Charge Transport Properties 

Both electronic and ionic conductivities in the (La1-xSrx)CoO3-δ material class are 

extraordinarily large, i.e. LSC is a mixed ionic-electronic conductor (MIEC). Petrov et al. [108] 

reported values of Ãel = 1500 S / cm at 680 °C (Fig. 17) in air for (La0.5Sr0.5)CoO3-δ. Between 

700 and 1000°C in air atmosphere, the values of Ãion exceed those of zirconia-based solid 

electrolytes by about one to two orders of magnitude (Fig. 17). For (La0.5Sr0.5)CoO3-δ, an 

absolute value of 3.90·10-4 S / cm at 680°C in air has been reported in [136], seven orders of 

magnitude below Ãel. 
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Fig. 17 Temperature dependency of the electrical conductivity of LSC 

Electronic (Ãel, □, left axis) and ionic (Ãion, ○, right axis) conductivity of (La0.5Sr0.5)CoO3-δ and 

(La0.4Sr0.6)CoO3-δ respectively over 1000 K / T. The data was taken from [108] (□, measurements 

performed at 0.21 atm pO2) and Sitte et al. [120] (○, measurements performed at oxygen 

nonstoichiometry 3-· = 2.76). For comparison, the ionic conductivity of polycrystalline 8YSZ 

substrates (▲) is added. 

The electronic (Ãel) and ionic (Ãion) conductivities of (La1-xSrx)CoO3-δ are determined by the 

respective charge-carrier concentration of the electron holes p and the oxygen vacancies v 

and their mobility ¼el,ion (Eq. 23, Eq. 24). 

 0el pe pÃ ¼= ⋅ ⋅  Eq. 23 
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 02ion Ve vÃ ¼= ⋅ ⋅  Eq. 24 

As the charge-carrier concentrations of (La1-xSrx)CoO3-δ are closely related to the 

concentration of its defects, the electronic carrier concentration is given by the positively 

charged tetravalent cobalt ions (Eq. 25); the electronic conductivity Ãel is therefore p-type. 

The concentration of the oxygen vacancies is given by (Eq. 26). 

 �
CoCo p⎡ ⎤ =⎣ ⎦  Eq. 25 

 ��
OV v·⎡ ⎤ = =⎣ ⎦  Eq. 26 

Therefore, the curves of Ãel and Ãion show a similar dependency on Sr dopant concentration x 

as �
CoCo⎡ ⎤⎣ ⎦  and ��

OV⎡ ⎤⎣ ⎦  (Fig. 16): as the electronic conductivity increases with x and reaches a 

maximum at x = 0.4 (□, Fig. 18), its value drops parallel to the concentration of �
CoCo⎡ ⎤⎣ ⎦        

(■, Fig. 16). The ionic conductivity is low for small values of ��
OV⎡ ⎤⎣ ⎦  at x f 0.3. For larger 

values of x, higher ionic conductivity values are determined experimentally (○, Fig. 18), which 

correlates with the increase of ��
OV⎡ ⎤⎣ ⎦  with x (●, Fig. 16).  

The mobility of the charge carriers depends on the prevailing transport mechanism that is 

discussed controversially in literature:  

The electronic transport mechanism of (La1-xSrx)CoO3-δ has been considered to take place by 

the Co-3d electrons through the chain of Co-O-Co bonds [130], whether by a rigid band 

composed of Co-3d and O-2p levels [137, 138] (i.e. non-localized electron holes are 

considered to occupy a partially filled electron band [132]) or by the hopping of electron holes 

localized at the cobalt ions [109]. The first transport mechanism implies a negative 

temperature dependence of the electron-hole mobility, the latter a positive one. 

Which conduction mechanism prevails, depends on the degree of overlapping of the Co-3d 

and O-2p levels. The overlap is governed by the Sr concentration: higher [Sr] raises the 

amount of Co4+ / Co-3d and 2
OV +  / O-2p that leads to a higher degree of overlapping of the 

energy levels. The electron holes change from the localized to the delocalized state 

switching the conduction mechanism from polaron hopping conduction to metallic conduction 

behavior.  

As the Sr concentration also determines the volume of the LSC unit cell, coherence between 

the type of conduction and the lattice parameters can be expected [133]. Mizusaki et al. [109, 

128] found a close relationship between the temperature dependence of the conduction 

mechanism and the rhombohedral angle α. For (La1-xSrx)CoO3-δ with α < 60.4° (x > 0.5), the 

conductivity decreases with temperature, suggesting metallic conduction. For                   

(La1-xSrx)CoO3-δ with α > 60.4° (x < 0.5), the conductivity increases with temperature 

suggesting a hopping mechanism. In contrast to that, Petrov et al. [108] did not find a direct 

correlation between the structure and the electrical conductivity. 

Sitte et al. [134] evaluated the isostoichiometric conductivity of (La0.6Sr0.4)CoO3-δ over T-1 

yielding activation energies of 0.02 f EA f 0.05 eV (0.12 f · f 0.16). This indicates a 
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thermally activated polaron hopping mechanism. For (La0.4Sr0.6)CoO3-δ, negative activation 

energies were obtained at 0.12 f · f 0.20. Therefore, it was stated that an itinerant electron 

model [137], i.e. delocalized electrons, which form a rigid band, would probably be more 

appropriate for describing the electronic conduction mechanism of (La0.4Sr0.6)CoO3-δ. 

However, Søgaard et al. [110] could explain the oxygen nonstoichiometry in 

(La0.6Sr0.4)0.99CoO3-δ satisfactorily using the itinerant electron model as well. They concluded 

that the electron-hole mobility decreases with increasing Sr content and that the mobility is 

inversely proportional to the absolute temperature entailing metallic type conduction in 

LSC40. 
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Fig. 18 Electronic and ionic conductivity versus stoichiometry of (La1-xSrx)CoO3-δ 

Electronic (Ãel, □, left axis) and ionic (Ãion, ○, right axis) conductivity of the (La1-xSrx)CoO3-δ 

system with respect to Sr dopant concentration x. The data was taken from [108] 

(measurements performed at 600 °C, 0.21 atm pO2) and Zipprich et al. [136] (measurements 

performed at 680 °C, 0.21 atm pO2); for x g 0.5 the oxygen vacancies potentially form clusters 

[108], [120]. 

In summary, the general trends of the electronic conductivity are an increasing Ãel for higher 

Sr content reaching a maximum at x = 0.4, and a decreasing Ãel towards lower oxygen partial 

pressures (Fig. 19) and higher temperatures (Fig. 17) [111, 114, 139-141]. With increasing 

temperature or decreasing pO2 the concentration of oxygen vacancies grows, these are 

compensated by the Co4+ and the decrease of free electron holes [108]. The dependencies 

of Ãel on T and pO2, however, are rather moderate. For (La0.5Sr0.5)CoO3-δ, a decrease of the 

electronic conductivity from 3600 to 1600 S/cm between 25 and 688 °C has been measured 

[108] (cf. Fig. 17), and a reduction from 1400 to 900 S/cm at 600°C was observed upon 

lowering the oxygen partial pressure from 0.15 to 1.4·10-4 bar [109] (cf. Fig. 19). Whether the 

physical nature of the electronic transport process is polaron-type or obeys the itinerant 

electron model, is still controversially discussed in literature. 
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Fig. 19 Electrical conductivity versus pO2 

Electronic (Ãel, □, left axis) and ionic (Ãion, ○, right axis) conductivity of (La1-xSrx)CoO3-δ (x = 0.4, 

0.5) with respect to pO2. The data were taken from [109] (□, (La0.5Sr0.5)CoO3-δ, measurements 

performed at 600 °C) and [120] (○, (La0.6Sr0.4)CoO3-δ, measurements performed at 750 °C). 

The ionic conductivity Ãion is mainly determined by the concentration of oxygen vacancies. 

Assuming statistically distributed, non-interacting oxygen vacancies and a hopping 

mechanism, the dependencies of Ãion from Sr-dopant concentration [Sr], temperature T and 

oxygen partial pressure pO2 can be derived accordingly to the previously presented defect 

model: 

• As ��
OV⎡ ⎤⎣ ⎦  increases continuously with the Sr-dopant concentration, this leads to a strong 

increase of Ãion with Sr (○, Fig. 18). In [136] a decrease of the activation energy from 2.2 

to 1.1 eV has been measured in the system (La1-xSrx)CoO3-δ upon increasing the Sr 

content from 0.1 to 0.5. For (La1-xSrx)CoO3-δ with x = 0.4, an activation energy of 1.0 eV 

[142] was obtained. 

• With temperature, both ��
OV⎡ ⎤⎣ ⎦  and ¼ion increase leading to an increase of Ãion with T    

(Fig. 17). 

• Lower oxygen partial pressures lead to an increase of ��
OV⎡ ⎤⎣ ⎦  and thereby should facilitate 

higher ionic conductivities. For a Sr concentration of x = 0.2, this behavior has been 

confirmed by [136, 143]. However, as depicted in Fig. 19, falling oxygen partial pressure 

results in a decrease of Ãion for x g 0.4. Bucher et al. [144, 145] found that the increase of 

Ãion upon increasing ��
OV⎡ ⎤⎣ ⎦  is only true until a maximum value of 3 - · ≈ 2.77 (T = 825 °C) 

for (La0.4Sr0.6)CoO3-δ. With further increase of ·, the conductivity decreases continuously. 

This was explained with the formation of �blocking� microdomains of the size 5 � 50 nm 

[121]. Several superstructures were identified in (La1-xSrx)CoO3-δ perovskites: They were 

ascribed either to ordering of the A-cations (La and Sr) [125] or to ordering of oxygen 

vacancies [123, 146]. According to Petrov et al. [108] the formation of ordered 

microdomains in LSC at high Sr and low oxygen levels can be described by neutral 
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complex defects (SrLaVOSrLa)
x. These microdomains, which have been analyzed by 

means of high-resolution transmission electron microscopy (HRTEM), can be expected at 

(i) high vacancy concentrations and (ii) high temperatures [120]. Furthermore, Sitte et al. 

[120] observed an increase of the activation energy for ionic conduction with increasing 

nonstoichiometry, which is in accordance with the assumption of progressive vacancy 

ordering. Hence, although the oxygen-vacancy concentration increases upon pO2 

reduction, the overall ionic conductivity is determined by a decrease of the oxygen-ion 

mobility at high oxygen deficiencies. The indication that the ionic conductivity goes 

through a maximum is a well-known behavior and has been discussed for yttria-doped 

zirconia in chapter 2.1.2. Søgaard et al. identified this maximum at · = 0.15 for 

(La0.4Sr0.6)CoO3-δ [110]. 

2.2.3 Surface Exchange and Oxygen Diffusion 

The catalytic properties of the SOFC cathode are governed by the oxygen exchange and 

oxygen-diffusion properties of the electrode material. Therefore, all developments for high-

capacity fuel cell cathodes strive to enhance oxygen exchange and oxygen-diffusion 

properties mostly by employing mixed ionic-electronic conductors (MIEC) like                   

(La1-xSrx)(Co1-yFey)O3-δ. A direct consequence of this MIEC behavior is that oxygen reduction 

can take place along the surface of the grains and is not restricted to the triple-phase 

boundary (tpb) in case of a purely electronic conducting cathode material like                   

(La1-xSrx)MnO3-δ (Fig. 13).  

Whereas the bulk diffusion in the ABO3 perovskite structure simply occurs by the hopping of 

oxygen vacancies, the overall surface reaction may involve many steps such as adsorption, 

dissociation, transfer of charge to oxygen molecules, and incorporation of oxygen ions in the 

oxide bulk [147] (cf. chapter 2.2.1). The diffusion mechanism is described by the diffusion 

coefficient D, the surface reactions are summarized by the oxygen-exchange coefficient k. 

Different sets of variables and nomenclatures are used in literature to describe the oxygen 

exchange and oxygen-diffusion properties in (LaxSr1-x)CoO3-δ. This is due to the different 

measuring techniques, which are applied: 

• Impedance spectroscopy is used by Adler to extract the oxygen-diffusion coefficient and 

the oxygen-exchange coefficient from a model [94, 148]. 

 
q

q

k

D
 Eq. 27 

• The conductivity relaxation technique involves time-sensitive measurement of the 

electrical conductivity of a sample after a stepwise change in the ambient oxygen partial 

pressure. The relaxation data are fitted to theoretical equations using the chemical 

diffusion coefficient and the surface-transfer coefficient as fitting parameters. This method 

is employed besides others by  [110, 119, 147]. The oxygen-exchange coefficient k and 
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the oxygen-diffusion coefficient D obtained from these �chemical� experiments are 

denoted as  

 
, , 

, , 

chem

chem

k k k

D D D

·

·
 Eq. 28 

• Oxygen isotopes (O18) are utilized for tracer experiments to obtain D and k. After thermal 

treatment, the time-dependent diffusion profile is investigated by secondary ion mass 

spectroscopy (SIMS) [26, 94, 132, 148-151]. The coefficients k and D obtained from 

tracer experiments are denoted as 

 
2

0 *

0 *

, , , 

, , , 

tr ex

tr O

k k k k

D D D D −

 Eq. 29 

In the following, kchem / Dchem and ktr / Dtr are used to refer to the electrical (impedance 

spectroscopy and conductivity relaxation) and tracer measurements, respectively.  

The value of Dchem reflects both the oxygen-vacancy concentration and the thermodynamic 

factor Γ, while Dtr is more directly related to the structure and composition of the oxide [119]. 

Eq. 30 relates the chemical diffusion coefficient Dchem to the diffusion coefficient of the 

oxygen ions Dtr [119]: 

 0chem trD D= Γ ⋅  Eq. 30 

 

 0chem trk k= Γ ⋅  Eq. 31 

 

 2

O2-

ln1

2 lnO

pO

c

∂
Γ = ⋅

∂
 Eq. 32 

where Γ0 is the thermodynamic factor [152] and c02- the concentration of oxygen ions. For 

(La0.5Sr0.5)CoO3-δ, Γ0 was determined to 124, 120 and 114 for 619°C, 649°C and 696°C 

within the experimental range of Wang et al. [119] (0.01 atm < pO2 < 1 atm, 600 °C < T         

< 700 °C). This is consistent with the calculations of Søgaard et al., who determined Γ0 to 

115 (700 °C) based on the itinerant electron model [110]. Applying Eq. 32 to Eq. 30 and    

Eq. 31, respectively, oxygen diffusion and oxygen-exchange properties derived from different 

experimental methods can be compared. All data show Arrhenius-type temperature 

dependency (Fig. 20) and rather large deviations from the mean values. 

Kilner et al. [149] noted an empirical relationship between the surface-exchange coefficient 

and the oxygen-diffusion coefficient: 

 
tr trk D=  Eq. 33 

irrespective of A and B cation types, temperature, pressure and dopant level. This strong 

correlation between the oxygen exchange and oxygen-diffusion properties suggests that 

oxygen vacancies play a major role both in the diffusion mechanism and in the surface 
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oxygen transfer [147]. This is supported by Fig. 21, which depicts a similar pO2 dependence 

of k and D. 
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Fig. 20 Oxygen exchange and oxygen diffusion of LSC vs. temperature 

Oxygen-diffusion coefficient Dchem and kchem of (La0.5Sr0.5)CoO3-δ at pO2 = 1 atm with respect to 

1000 / T. The data was taken from [119] (∆, □) and [132] (▲, ■). 

The activation energies of Dchem and kchem were determined to 133 and 67 kJ / mol for        

pO2 = 1 atm [119]. This is close to the activation energies for Dtr (EA = 136 kJ / mol) and ktr 

(EA = 78 kJ / mol) obtained from tracer experiments by DeSouza et al. [132] at pO2 ≈ 1 atm. 

Van der Haar et al. [147] observed that the activation energies increase with decreasing pO2 

ranging from EA = 106 kJ / mol (pO2 = 0.11 bar) to EA = 131 kJ / mol (pO2 = 4·10-4 bar) for 

Dchem, which correlates with the decrease of oxygen diffusion with decreasing pO2 (Fig. 21). 
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Fig. 21 Oxygen exchange and oxygen diffusion of LSC vs. oxygen partial pressure 

Oxygen-diffusion coefficient Dchem and kchem of (La0.5Sr0.5)CoO3-δ at T = 650 °C with respect to 

pO2. The data was taken from [147]. 
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Although there is still debate around the oxygen-reduction reaction (ORR) in LSC on the 

atomistic scale [94], the rate-determining steps (rds) of the ORR are generally discussed in 

terms of oxygen exchange and oxygen diffusion. Bouwmeester et al. [153] suggested that 

the critical length Lc of a dense LSCF cathode, at which the rds switches from exchange-

controlled to diffusion-controlled follows: 

 tr
c

tr

D
L

k
=  Eq. 34 

At Lc, the electrochemical reaction is neither diffusion nor exchange controlled. Larger 

oxygen-diffusion properties of the cathode material lead to an extended electrochemically 

active regime. For different compositions (La1-xSrx)CoO3-δ, different pO2 and different T, Lc 

was found to vary between 50 and 150 µm [147]. Adler et al. added a geometry term to     

Eq. 34 [26]: 

 
1 tr

c g

tr

D
l L l

a k
·

¸
Ä

−
= ⋅ ≈ ⋅

⋅
 Eq. 35 

where l· is the utilization range, ¸ denotes the porosity of the cathode, Ä  its tortuosity, a the 

inner surface area and lg the particle dimension. For lg = 50 nm (20 nm), the utilization range 

of an LSC50 cathode becomes 1323 nm (826 nm) at 650 °C. In case of a nanoscaled LSC 

thin film with a thickness of approximately 300 nm, the rds is therefore considered to be 

exchange-controlled. This is supported by experiments conducted by Baumann et al. [154], 

who applied nanoscaled dense LSCF thin-film cathodes as geometrically well-defined model 

electrodes (t = 100 nm) onto single-crystal YSZ. Via electrical impedance spectroscopy the 

surface-exchange resistance was identified as the dominant oxygen-reduction mechanism 

[155]. 

For oxygen-exchange controlled cathodes, however, the role of porosity becomes essential 

(cf. 2.2.1). An optimized cathode structure needs to feature a maximum surface area within 

the utilization range, which entails a decrease of the oxygen-exchange losses and an 

increase of SOFC efficiency. The combination of a fine microstructure and a distinct 

nanoporosity leads to the maximization of the active cathode surface. This can be attained 

by the application of a sol-gel technique (metal-organic deposition), which is described in 

detail in 2.3. The influence of microstructure (grain size, thickness, porosity) on the cathode 

polarization losses is studied by Rüger et al. by 3-dim simulations [91] in a continuing work. 

2.2.4 Chemical Stability of the LSC / Substrate Interface 

The chemical stability between the cathode material LSC and the YSZ substrate is a critical 

issue. The formation of zirconate layers (SrZrO3 and / or La2Zr2O7) was described in detail for 

T g 900 °C by many groups [156-161].  

However, for lower temperatures (T = 700 °C) Sase et al. [162] analyzed the interface 

reaction between a dense (La0.6Sr0.4)CoO3-δ thin film and (100) YSZ in a 3800 h testing 
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procedure. Post-test SIMS examination indicated the crystallization of SrZrO3 with slow 

kinetics (the parabolic rate constant kp was estimated to 10-18 cm²/s < kp < 10-17 cm²/s). 

The formation of a chemical reaction layer between LSC and YSZ entails three negative 

effects: Firstly, the precipitation of La or Sr rich zirconates leads to changes of the cathode 

stoichiometry (predominately depletion of Sr) and thereby to different material properties 

(predominately decrease of oxygen exchange and oxygen diffusion) as shown in chapter 

2.2.2 and 2.2.3. Secondly, according to the ternary phase diagram of the system La2O3-SrO-

CoO [163] the thermodynamic stability for the (LaxSr1-x)CoO3-δ system is given for a narrow 

band with 0.997 < La / Sr < 1.003 [119]. Even slight deviations from this stoichiometry lead to 

the formation of CoO (also cf. [118]). Thirdly, insulating [164, 165] zirconates, which 

precipitate at the LSC / YSZ interface, impede the ionic transport processes across the 

cathode-electrolyte interface and lead to increased polarization losses (charge-transfer 

polarization ASRct (iv), Fig. 73). 

Gadolinia-doped ceria was suggested as a barrier layer by Chen et al. [20] in 1993 to block 

interdiffusion. Steele [21] and other groups [166-168] investigated CeO2 and its cation 

diffusion inhibiting properties. They could not detect any reaction between (LaxSr1-x)CoO3-δ 

and Gd-doped CeO2 (GCO). Further investigations of the chemical compatibility between 

GCO and LSC can be found in [14, 20, 169-171]. The chemical compatibility between GCO 

and the state-of-the-art cathode material LSCF was shown by [19, 20, 159, 172].  

In this work, the (La0.5Sr0.5)CoO3-δ thin films are processed by a sol-gel method, which 

contents itself with processing temperatures of T f 900 °C and short dwell times               

(tRTA f 15 min), which is fairly below the known crystallization conditions of the interface 

reaction between LSC and YSZ. However, the LSC thin-film cathodes are analyzed on both 

surfaces YSZ (�design 1�) and GCO (�design 2�) with special emphasis on the interfacial 

stability. 

2.3 Thin-Film Processing 

For the evaluation of grain-size effects in nanoscaled electrolyte and cathode thin films, a 

variety of demands is addressed to the samples and thereby to the thin-film deposition 

technique. Two different material systems are deposited as thin films in this work: yttria-

stabilized zirconia and lanthanum strontium cobaltite. Whereas the YSZ thin films need to be 

free of nanopores, the LSC thin films are to exhibit distinct nanoporosity. Three different 

substrates were selected: single-crystalline sapphire for the YSZ thin films and polycrystalline 

YSZ electrolytes and screen-printed GCO surfaces for the LSC thin films. Due to the 

interface reaction between LSC and YSZ (cf. chapter 2.2.4), the deposition method needs to 

content itself with processing temperatures fairly below the crystallization temperature of 

zirconates. Additionally, low temperatures during thin-film preparation facilitate a variation in 

grain size (and pore size) down to the nm-scale. This fine microstructure reduces the 
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stresses caused by different coefficients of thermal expansions (TEC) between deposited 

material and substrate (cf. 2.2.2). Finally, all thin films need to have high purity. 

Tremendous efforts are undertaken to process high-quality YSZ and LSC / LSCF thin films 

for different purposes. The potential of thin-film synthesis was demonstrated in the 1990s 

[173, 174] with (La,Sr)(Co,Fe)O3-δ cathodes. Some groups take advantage of the 

nanoporosity of the films and its high inner surface area [97] (also cf. 2.2.1 and 2.2.3), others 

structure the thin films predominately by a lithography and etching procedure to process 

model electrodes with a well-defined geometry [175, 176] to elucidate the rate-determining 

oxygen-reduction steps of the cathode [150, 155, 162, 177-179]. Furthermore, for IT-SOFC 

application, thin-film electrolytes are inevitable. The sticking point here is to ensure gas-

tightness of the YSZ thin film, although the thin films usually have to be deposited onto 

undulated anode or cathode substrates. 

Table 2 Chemical deposition methods for the processing of YSZ and LSCF thin films 

Deposition Method Thin Film Substrate Source 

YSZ Al2O3 (102) [72] Chemical Vapor Deposition (CVD) 

YSZ MgO (100), SiO2 [72] 

 YSZ ceria [180] 

 YSZ Al2O3 [181] 

Sol-gel YSZ NiO / YSZ [182] 

 YSZ Sc2O3, Al2O3 [183] 

 YSZ Al2O3 [66, 184] 

 YSZ LSM [185] 

 LSCF various [173] 

 LSC fused silica [174] 

 LSC silica [186, 187] 

 LSC YSZ [98, 100, 188] 

 LSC LSGM [189] 

Spray Pyrolysis (SP) YSZ NiO / YSZ [190] 

  YSZ inconel foil [191]  

 YSZ inconel foil [192] 

 YSZ Si (100) [193] 

 LSCF silica, glass [194] 

 LSCF sapphire [194] 

 LSCF GCO [97] 

 

Conventionally, SOFC electrolytes and cathodes with a thickness in the range of 200 µm and 

50 µm, respectively, are prepared by tape casting or screen-printing. During the screen-

printing process, a highly viscous paste consisting of a mixture of ceramic powder, organic 



2.3 THIN-FILM PROCESSING 

39 

binder and plasticizer is forced through the open meshes of a screen [195]. Subsequently, 

the screen-printed films are dried and sintered at high temperatures. By the tape-casting 

technique, green tapes are produced, which may be cut into different shapes and 

subsequently sintered to a ceramic. Although these techniques are considered very cost-

effective, they are not eligible for the processing of thin films due to the large shrinkage 

associated with the removal of the polymeric binders. 

The challenge in processing electrolyte and cathode thin films is to find suitable processing 

techniques, which allow a cost-effective deposition of high-quality YSZ and LSC films. 

Further demands are low investment costs, high yield, high deposition rates, flexibility in the 

deposition material, high purity of the films, large area deposition, and tunable porosity of the 

films. A comprehensive review of the suitability of processing techniques for high-quality thin 

films has been given by Will et al. [195]. 

Several different approaches are pursued to obtain dense YSZ and nanoporous LSC or 

LSCF thin films. All methods can be differentiated into chemical and physical thin-film 

deposition. A literature review for the electrolyte and cathode thin films processed by 

chemical deposition techniques is given in Table 2. Physical deposition approaches are 

summarized in Table 3.  

Chemical deposition methods include chemical vapor deposition (CVD) and thin-film 

deposition by a liquid precursor route. CVD is a chemical process, in which the reactant 

vapors are transported to the surface of the substrate where a chemical reaction and 

subsequent solid crystal growth takes place. For SOFC application, metal-organics have 

become important as precursor materials (MOCVD). For the liquid precursor route, molecular 

precursors are utilized, which entails a high purity and uniformity of the thin films. During sol-

gel deposition, wet precursors are deposited by a variety of techniques (spin-coating, 

tampon-printing, dip-coating) onto the substrate. Consecutive heat treatment leads to the 

crystallization of the targeted material. This deposition method is capable of processing 

large-area, high-quality thin films at favorable low cost on a variety of substrates. The sol-gel 

approach, which was used to process the thin films studied in this work, is described in detail 

in chapter 3.1. For spray pyrolysis, a metal salt solution is sprayed onto a heated substrate to 

obtain the corresponding metal oxide films. The sprayed constituents react to form a 

chemical compound and crystallize upon heat-treatment. 

Physical deposition methods utilize thermal spray technology, laser-deposition techniques or 

physical-vapor deposition techniques. Thermal spray technology comprises techniques, 

which heat up the coating material before it is projected at high velocity onto a substrate, e.g. 

air plasma spraying or atmospheric plasma spraying (APS). The laser-deposition techniques 

feature the ability to deposit a broad range of materials. The pulsed-laser deposition (PLD) 

method involves evaporation of a target by means of short and high-energy laser pulses and 

subsequent deposition of the vaporized material on the substrate in form of a thin film. 

Physical vapor deposition (PVD) is a generic term for a variety of sputtering techniques 

including direct current (DC) and radio frequency (RF) sputtering, which holds relatively low 
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deposition rates and reactive magnetron sputtering, which exhibits much higher yield. The 

sputtering technique relies on a plasma, which breaks a few atoms from the target material, 

followed by the deposition of the ablated material on a substrate.  

Table 3 Physical deposition methods for the processing of YSZ and LSCF thin films 

Deposition Method Thin Film Substrate Source 

Air Plasma Spraying (APS) YSZ stainless steel [196] 

 YSZ aluminum [73] 

 YSZ substrate removed [197] 

YSZ Pt, sapphire [198] Pulsed Laser Deposition (PLD) 

YSZ MgO (100) [67] 

 YSZ steel [199] 

 YSZ MgO (100), Si (100) [199] 

 LSC YSZ (100) [162, 200, 201] 

 LSC Ca doped ceria [150, 171, 177, 202]

 LSCF YSZ [155, 203]  

DC and RF Sputtering YSZ Ni/YSZ [190] 

 YSZ NiO / YSZ [79] 

 LSC YSZ [156] 

 LSC GCO [175] 

YSZ Si (100) [204] Reactive  Magnetron Sputtering 

YSZ aluminum (porous) [78] 

 LSC LaAlO3 (001) [205] 

 LSC SrTiO3 (001) [205] 

 

Whereas dense and crack-free thin films can be expected by application of the PVD methods 

(DC, RF and magnetron sputtering) or laser ablation (PLD), these techniques hold relatively 

small deposition rates. By contrast, spray pyrolysis and thermal spray technologies (APS) 

offer high deposition rates and the possibility for up-scaling. However, in case of thermal 

spraying, the high growth rates lead to thick and porous coatings. In terms of flexibility, 

chemical vapor deposition (CVD) and liquid deposition techniques offer a broad range of 

possible precursors. Especially the latter bears the disadvantage of many process 

parameters. However, if all parameters are kept under control, sol-gel deposition not only 

features low processing temperatures and high flexibility in the coating material, but also 

offers thin films with exceptionally high purity. Therefore, the sol-gel technique was chosen in 

this work to process dense YSZ and nanoporous LSC thin films. 

All thin films presented in this work were processed within cooperation between the IWE and 

Fraunhofer Institute for Silicate Research (ISC), Würzburg. The cathode thin films were 

prepared by Dr. U. Guntow and co-workers and the electrolyte thin films by Dr. M. 
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Bockmeyer, Dr. R. Krüger and co-workers. The foundation for the processing has been laid 

down in the previous project �Compound Thin-Film Electrolyte / Cathode Substrate 

(Verbundstruktur Dünnschichtelektrolyt / Kathode)� supported by the Deutsche 

Forschungsgemeinschaft (DFG IV 14/1, DFG IV 14/2). In this work, Ivers-Tiffée et al. and 

Herbstritt et al. [88, 98-101] showed that the power density of solid oxide fuel cells can be 

significantly increased by the introduction of a porous electronic-conducting LSM film at     

950 °C. 
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3 Experimental 

A variety of techniques was applied to elucidate experimentally the role of interface density, 

grain size and porosity on the transport properties of nanoscaled thin films. This chapter 

comprises the sol-gel processing of the YSZ and the LSC thin films (3.1), the techniques 

applied for the evaluation of the microstructure and the structural properties (3.2) as well as 

the methods for the electrical and the electrochemical characterization of the thin films (3.3). 

3.1 Thin-Film Preparation 

3.1.1 Sol-Gel Deposition of Thin Films 

Sol-gel processing has become a versatile method for preparing thin films on an industrial 

scale [206]. Sol-gel describes a technique, which processes non-metallic inorganic materials 

from wet, molecular dispersive precursors. A variety of advantages excels this method over 

other deposition methods as there are [207, 208]: high quality of the films, processing at 

favorable low cost, large-area processing, and depending on sol composition and processing 

parameters a variety of film properties that can be realized for diverse applications like 

catalytic applications (porous) or separating membranes (dense) (cf. chapter 2.3). However, 

a variety of demands is addressed to a coating sol, such as high yield, low crystallization 

temperature and good properties in wetting, filming and evaporation, which makes the 

development of the sols challenging. In the case of the nanoscaled thin-film cathodes, 

nanoporous thin films are aspired. For the electrolyte thin films, pore- and crack-free thin 

films are aimed.  

Even though the preparation of materials from the liquid phase has a vast potential for 

applications, the sol-gel processing of inorganic films has the disadvantage of limited 

maximum film thickness. Due to the tensile stresses evolving during uniaxial densification, 

the ceramic sol-gel coatings have an upper (�critical�) limit [209]. Therefore, the thin films in 

this work consist of 1 � 10 individual coatings on top of each other to achieve film 

thicknesses up to 500 nm. 

The thin films were developed within close cooperation with the Fraunhofer Institute for 

Silicate Research (ISC), Würzburg. The cathode thin films were prepared by Dr. U. Guntow 

and co-workers, the electrolyte thin films by Dr. M. Bockmeyer, Dr. R. Krüger and co-

workers. 

Three different thin-film deposition techniques are applied in this work: dip-coating, spin-

coating and tampon-printing of liquid sol. Whereas the dip-coating technique is used to 

process the 8YSZ thin films on sapphire substrates and the LSC thin films on gadolinia 
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doped ceria surfaces, the LSC thin films on yttria-doped zirconia are fabricated by spin-

coating or tampon-printing. 

During dip-coating the liquid film is obtained by transfer of the coating solution to a moving 

substrate. The film thickness is governed by numerous factors such as withdrawal rate v0, sol 

viscosity ·, and density ρ [206]. The final film thickness is described by the law of Landau-

Levich: 

 00,8
v

d
g

η
ρ

⋅
= ⋅

⋅
 Eq. 36 

where v0 was in the range of 3 cm / min. 

During the spin-coating process [210], a solution is placed on a substrate, which is then 

rotated at high speed; the centrifugal force spreads the fluid over the substrate. The spin-

coating parameters were set to 2000 rpm, 60 s.  

During the tampon-printing process, an elastic polymer plunger carries the liquid sol from a 

printing plate to the substrate. By structuring the printing plate, this method is eligible to 

deposit thin films with a well-defined geometry. 

3.1.2 Sol-Gel Deposition of YSZ Electrolytes 

For the 8 mol% yttria-doped zirconia thin films, precursor powder was prepared based on a 

method previously reported [211, 212] (Fig. 22a). By slow addition of 1.0 mol (100.2 g) 

acetylacetone to 1.0 mol (424.9 g) zirconium-n-propoxide a yellow sol was obtained, which 

was stirred at 40 °C for one hour. After cooling down to room temperature 3.0 mol (54.0 g) 

distilled water and 0.173 mol (58.8 g) yttrium-acetate hydrate were added. The sol was 

stirred for 30 minutes at room temperature followed by 30 minutes at 80 °C. Subsequently, 

all volatile components were removed from the reaction mixture by rotational evaporation at 

reduced pressure with a maximum bath temperature of 80 °C. The resulting fine yellowish 

powder was X-ray amorphous and had a solid yield of 53 wt% with respect to 8YSZ. Coating 

sols (Fig. 22a) were prepared by dissolution of the precursor powder in a mixture of 90% 

ethanol and 10% 1.5-pentandiol, stirred over night and filtered through a 0.2 µm membrane. 

By adding 1.5-pentandiol to the sol thin film cracking can be significantly reduced or 

completely avoided because a higher degree of network flexibility is preserved [207]. 

To prepare the 8YSZ thin films, sapphire substrates (52.5 x 52.5 x 0.53 mm³, one side 

polished, average roughness Ra = 0.06 nm, Crystec, Germany) were dip-coated ten times 

into the molecular disperse sol. After each coating step, the samples were tempered by RTA 

for 10 min at 500 °C. Subsequently, the specimens were exposed to a final tempering step at 

temperatures between 500 °C and 1400 °C for 24 h (heating ramp 5 K/min) respectively. 

As mentioned in chapter 3.1.1, all YSZ thin-film electrolytes were prepared by colleagues at 

the ISC. 
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8YSZ coating sol

8YSZ precursor powder

0.17 mol Y(acac)3 * x H2O

1 mol Zr(OPr)4

1 mol acetylacetone

3 mol H2O

90% ethanol
10% pentandiol

Educts: La2(CO3)3, Sr metal, Co(OH)2

Precursor powder: La, Sr, Co acetates

Solvent: propionic acid (CH2H5COOH) 
nonanoic acid (CH3(CH2)7COOH)
acetic acid (CH3COOH)

(La0.5Sr0.5)CoO3-δ coating sol (11-13 wt%)

a) 8YSZ sol b) LSC sol

 

Fig. 22 Chemical processing routes of the coating sols  

for the preparation of a) (Zr0.84Y0.16)O2-δ and b) (La0.5Sr0.5)CoO3-δ thin film. 

3.1.3 Sol-Gel Deposition of LSC Cathodes 

(La0.5Sr0.5)CoO3-δ (LSC) thin films were deposited onto 8 mol% yttria-doped zirconia (8YSZ, 

Itochu Europe, Brussels, Belgium) electrolytes and screen-printed gadolinia-doped ceria 

(GCO) buffer layers by the sol-gel method [174]. The metallorganic precursors necessary for 

the preparation of the coating solutions were synthesized by using commercially available 

La2(CO3), Co(OH)2 and metallic Sr as starting materials (Fig. 22b). The synthesis was 

performed by reaction of these components with propionic acid (in excess) in the presence of 

propanoic anhydride or solely in the presence of acetic acid. After precipitation and filtration, 

precursor powders were obtained, which were mixed stoichiometrically. Coating sols were 

prepared by the dissolution of the precursor powder in a mixture of propanoic, nonanoic and 

acetic acid. The final composition of the coating solutions was controlled by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES). The concentration of the coating 

solutions was typically adjusted between 11 mass% and 13 mass% content. Substrates were 

either multiple spin-coated (2000 rpm, 60 s) [213] or tampon-printed or dip-coated into the 

liquid sol. Subsequently, the coated samples were exposed to three rapid thermal annealing 

(RTA) steps at 170, 700 and 900 °C for 5 minutes each, which led to the oxidation of all 

organic moieties. 

All LSC thin-film cathodes were prepared by colleagues at the ISC (cf. chapter 3.1.1). 

3.1.4 Evaluation of the Precursor Calcination by Means of Thermal Analysis 

The calcination temperatures (i.e. rapid thermal annealing, RTA) of the thin films were 

obtained by thermal analyses. The oxidative removal of organic components with respect to 

temperature was studied by thermal gravimetry (TG; TG439, Netzsch-Gerätebau GmbH, 
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Selb, Germany) and differential scanning calorimetry (DSC; DSC404, Netzsch-Gerätebau 

GmbH, Selb, Germany). 

Both setups were calibrated using α-Al2O3 as a reference powder. The measurements were 

conducted using platinum crucibles in dry air atmosphere. No chemical reaction was 

observed between the platinum crucible and LSC precursor powder after calcination in the 

furnace at 850 °C (6 h). Heating ramps were chosen to 10 K / min and 1K / min, respectively. 

To analyze the properties of the YSZ gel, glass plates were multiple dip-coated (30 times). 

After drying at 60 °C for 15 min, the coating was scraped off. Differential thermal analysis 

(DTA) and thermogravimetric analysis (TGA; Setaram TAG24, Caluire, France) of the 

obtained powder were carried out with a heating rate of 10 K / min in dry air atmosphere. 

These experiments were conducted by Dr. M. Bockmeyer, ISC [212]. 

The evaluation of the TG and DSC data was conducted with the software Proteus Analysis 

(Netzsch-Gerätebau GmbH, Selb, Germany). By applying the MARSH algorithm the 

characteristic (extrapolated) temperatures Tonset, Tmean, Tpeak, Tend were obtained (a detailed 

description is given in the respective user manuals 03.88 (DSC) and 12.88 (TG)). 

3.2 Analytics for Thin Films 

A variety of analytical tools was applied to the sol-gel derived LSC and YSZ thin films. 

Whereas the microstructure of the thin films was studied by scanning electron microscopy 

(SEM), the crystallization and the phase composition were evaluated by transmission 

electron microscopy (TEM) and X-ray diffraction (XRD).  

3.2.1 Microstructure Characterization by SEM 

The dependence of thin-film processing and temperature treatment on the microstructure of 

the thin films was evaluated by scanning electron microscopy (SEM; LEO 1530, Zeiss, 

Oberkochen, Germany). For plan-view examination, the samples were mounted with a 

conductive carbon pad onto an aluminum SEM sample holder. For the study of the cross 

sections, the fraction surfaces were mounted perpendicular to the C-pad and the sample 

holder. All samples were contacted with silver paste to facilitate sufficient conductivity of the 

primary electrons of the SEM gun. Working distance and acceleration voltage were chosen 

to 5 � 8 mm and 1 � 5 kV, respectively. 

3.2.2 Structural Characterization by (HT)XRD and (HR)TEM 

The crystallization and chemical homogeneity of the precursor powders and the YSZ and 

LSC thin films were investigated by X-ray diffraction (XRD; Siemens D5000, Bruker-AXS, 

Karlsruhe, Germany). The setup was equipped with a copper radiation source (CuKα1,           

» = 0.15406 nm) followed by a monochromator (Bruker-AXS). Partly, a scintillator together 

with a soller slit (both Bruker AXS) was used. 
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The chemical reaction and the formation of secondary phases between the LSC and YSZ 

was studied by high-temperature (HT) XRD analyses of a powder mixture of 1 mol LSC 

derived from the sol-gel precursor powder and 1 mol YSZ powder. For these experiments, a 

heating module (HTK 16, Anton Paar GmbH, Graz, Austria) was used. 

Individual samples were selected for thorough investigations by means of transmission 

electron microscopy (TEM). The studies on the YSZ thin films were performed by B. Butz 

and Dr. H. Störmer, Laboratory for Electron Microscopy (LEM), Universität Karlsruhe (TH) in 

the joint DFG-NSF project �Nanoionics�. The experiments on the LSC thin films were mainly 

conducted by Levin Dieterle (LEM) within the common project D5 �Functional Electrode 

Structures� of the Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH). 

Most of the results on the microstructure of the LSC thin films were published in [214]. The 

essential findings of the structural properties of the YSZ thin films were published in [215]. 

Selected-area electron diffraction (SAED), conventional and high-resolution TEM (TEM / 

HRTEM) imaging was performed with a 200 keV Philips CM200 FEG/ST equipped with a 

field-emission gun. The local chemical composition of the samples was analyzed by energy 

dispersive X-ray spectrometry (EDXS) by means of a Noran Vantage system with a Ge 

detector. Electron-spectroscopic imaging (ESI) was performed with a 200 kV LEO 922 

Omega transmission electron microscope with an in-column Omega energy filter. Based on 

electron spectroscopic images, the element distribution was revealed by means of the three-

window technique [216]. 

Two different techniques were applied for TEM sample preparation. Plan-view samples were 

prepared conventionally by grinding, polishing and Ar-ion milling. Cross-section samples with 

a homogeneous thickness of about 100 nm were prepared by focused ion beam (FIB) milling 

using the H-bar technique [217] with the following preparation steps. Two sample pieces with 

an area of 1 mm � 2 mm were glued together with the thin-film LSC layers oriented against 

each other. Top and bottom sides of this sandwich were polished to an overall thickness of 

about 40 µm. The front face, which is used for the ion milling was polished, too. 

Subsequently, the sandwich was mounted into a halved TEM aperture grid. In a combined 

SEM / FIB system (ZEISS EsB 1540 Crossbeam), a focused Ga-ion beam was used to cut 

out two 40 µm long cuboids perpendicular to the glue gap until a thin membrane remains, 

which was stabilized by the surrounding thicker material. A thin line of Pt was deposited 

previously by ion-beam induced deposition on the glue gap to protect the front face of the 

milled membrane against the tail of the Ga ion beam [214]. 

3.2.3 Grain-Growth Analysis 

The grain-growth behavior of the LSC thin films was studied by SEM analyses. For grain-

growth investigation of the 8YSZ thin films both SEM and XRD analyses were applied. 

The mean grain sizes of the thin films were statistically evaluated from the SEM micrographs 

using the image processing software SPIPTM (Image Metrology A/S; Lyngby, Denmark). Each 

grain diameter was calculated as a circle equivalent diameter from the grain area.  
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While SEM was used to evaluate grain sizes in the micrometer and sub micrometer range, 

XRD offers means to characterize grain-growth behavior of several tens of nanometers and 

below. The line widths of the Bragg peaks provide information on both the average grain size 

d and the internal strain e of the thin films. Broadening by grain size and strain can be 

separated by means of Halder and Wagner plots (�Method of Integral Breadth�) where 

Δ²/tan²Θ is plotted versus Δ/(tanΘsinΘ) [218] (Eq. 37).  
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Δ denotes the full width at half maximum (FWHM) in 2Θ of (111) and (222) reflections; » is 

the wavelength of the setup (cf. chapter 3.2.2); K takes a value of 0.89 for spherical grains 

[219]. Θ0 and FWHM values were obtained from XRD spectra by Fourier analysis (Software 

EVA 9.0). The FWHM results from peak broadening due to instrumental broadening FWHMi 

and due to the microstructure FWHMc [219]. The instrumental peak broadening          

(FWHMi = 0.05°) of the diffractometer was determined by measuring an 8YSZ electrolyte 

(Itochu, Tokyo, Japan) with micrometer sized grains and was eliminated from the FWHM by 

the equation of Warren and Biscoe [219] (Eq. 38).  

 2 2 2
c iFWHM FWHM FWHM= −  Eq. 38 

To facilitate grain growth, the 8YSZ and LSC specimens were exposed to annealing 

temperatures of 500 °C and 1400 °C for 24 h and to annealing temperatures of 500 °C to 

900 °C for 2 h, 10 h and 100 h, respectively. 

3.3 Electrochemical Experiments 

One experimental key tool to evaluate the transport processes in nanoscaled thin films was 

their electrochemical characterization by electrical impedance spectroscopy (EIS) [220]. Two 

different setups, which were designed during this work, emerged to be eligible: 

Microelectrodes were used for the analysis of the in-plane conductivity of the YSZ thin films 

and a symmetrical setup was applied for the evaluation of the polarization losses of the LSC 

thin-film cathodes. 

3.3.1 Microprobing 

The electrical conductivity of the nanoscaled YSZ thin films was studied using a Micro-Prober 

Module (Kammrath & Weiß GmbH, Dortmund, Germany) and a Heater Module (Kammrath & 

Weiß GmbH) (Fig. 23, left)1. The samples were contacted by gold needles with a peak radius 

of approximately 100 nm (Fig. 23, right), which were positioned onto sputtered platinum 

electrodes (100 µm x 4 mm). A Novocontrol Alpha frequency response analyzer (Novocontrol 

Technologies GmbH, Hundsangen, Germany) was used for impedance spectroscopy 

                                                 

1 This setup was designed within the diploma thesis of Barbara Szöke: �Elektrische Charakterisierung 

von Nanoschichten� (Electrical Characterization of Nanoscaled Thin Films), IWE, March 2006 
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measurements, which were performed between 200 °C and 400 °C in air atmosphere. The 

temperature of the samples was measured by two thermocouples fitted onto the surface of 

the sample and underneath the sample in the Heater Module. 

10 µm10 µm

a) b)

heater module

microprobes

 

Fig. 23 Images of the microprobing setup 

a) Microprobes and heater module used for the electrical characterization of the 8YSZ thin 

films; b) SEM image of two gold needles on top of a coarse crystalline 8YSZ electrolyte (Itochu, 

Japan). 

The accuracy of the testing setup was evaluated by a comparison measurement of a coarse 

crystalline SOFC electrolyte (8YSZ, Itochu, Japan, mean grain size: 9.6 µm) in the 

microprobing AC setup (Fig. 24b, ▼) and in a four contact AC setup (Fig. 24b, ■). Fitting the 

impedance data (Fig. 24a) with a nonlinear least-squares fitting algorithm (software ZView, 

Scribner Associates, Inc., North Carolina, USA) and equivalent circuits consisting of three 

serial RQ elements representing the grains, the grain boundaries and the electrodes, a 

reasonable fit was obtained (Fig. 24a, grey curve). Details on the evaluation of the setup 

were published in [221]. 

The error bars in the Arrhenius plot (Fig. 24b) account for uncertainties during the electrical 

characterization in both setups, namely temperature measurement as well as geometrical 

considerations associated with the screen-printed (four contact AC setup) or sputtered 

(microprobing AC setup) platinum electrodes and the measuring accuracy of the electrical 

equipment (manufacturers� data). In chapter 4.1.3, the transport properties of YSZ thin films 

are studied with respect to grain size. The data presented in this chapter comprise additional 

errors due to the evaluation of the mean grain size and the mean film thickness. The 

comparison of the obtained results shows a consistency of the data within a deviation of the 

activation energy of ∆EA < 2% and confirms accuracy within the temperature range           

200 °C f T f 400 °C.  

By open circuit measurements, the stray capacitances of the setup, which arise because of 

non-ideal shielding of the wiring and the electrodes, were determined to Csetup = 7.4·10-14 F 

(Fig. 25).  
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Fig. 24 Evaluation of the microprobing setup 

a) Nyquist plot of an 8YSZ electrolyte analyzed in the microprobing setup at 300 °C, the fit of 

the impedance data is depicted in grey; b) Arrhenius plot shows a comparison between the 

ionic conductivity of the 8YSZ electrolytes obtained by measurements in the four contact AC 

setup (■) and the microprobing AC setup (▼). 
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Fig. 25 Electrical equivalent circuits of the microprobing setup and the YSZ sample 

For the fit of the EIS data, parallel capacitances originating from the substrate (sapphire), the 

environment (air atmosphere) and the setup (microprobes and wiring) were considered. The 

YSZ specimen itself is characterized by three serial RQ elements representing the grains (RQg), 

the grain boundaries (RQgb) and the electrodes (RQel). The figure also depicts the equivalent 

circuits of the frequency response analyzer (Novocontrol, Alpha). 

The capacitances of the environment (Cair) and the substrate (Csubstrate) were determined by a 

reference measurement (Cair + Csubstrate = 32·10-14 F). These capacitances were taken into 
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account as parallel paths for the EIS data evaluation. The resistance of the substrate 

appeared to be much higher than the 8YSZ thin-film resistance over all temperatures. The 

sapphire substrate can therefore be assumed to be insulating. This is consistent with FEM 

simulations (conductivity data taken from [222]), which showed that the substrate resistance 

of the sapphire substrate is about two decades higher than the 8YSZ thin-film resistance. 

3.3.2 Symmetrical Cell Measurements 

Electrochemical properties of the thin-film cathodes were examined by electrical impedance 

spectroscopy (EIS). The experiments were carried out with symmetrical cells (screen-printed 

current collector | nanoscaled LSC cathode | electrolyte substrate (either YSZ or screen-

printed GCO on YSZ) | nanoscaled LSC cathode | screen-printed current collector) in a 

single chamber reactor (Fig. 26)2.  
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Fig. 26 Sketch of the symmetrical measuring setup for EIS characterization  

The symmetrical cells consist of LSCF current collector / LSC thin film / electrolyte substrate / 

LSC thin film / LSCF current collector. 

As a current collector (La,Sr)(Co,Fe)O3-δ paste was applied, which was consecutively dried at 

70 °C for 12 h in air. Together with a spot-welded Au-mesh (> 99.99% Au,                       

1024 meshes / cm², 0.06 mm wires) the current collector allowed a homogeneous current 

distribution over the electrode and assured a negligible contact resistance of less than 

                                                 
2 This setup was evaluated within the study project of Holger Götz: �Einfluss der Mikrostruktur auf den 

Polarisationswiderstand einer LSC-Nanokathode� (Influence of the Microstructure on the Polarization 

Losses of a nanoscaled LSC Thin-Film Cathode), IWE, June 2007. 
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10 mΩ·cm² [223]. The symmetrical cells were placed into an Al2O3 sample holder. A weight 

of 120 g applied to a 1 cm² electrode area ensured a reliable contacting. EIS measurements 

were carried out using a Solartron 1260 frequency response analyzer (FRA) at frequencies 

between 10-1 Hz and 106 Hz. The electrical impedance measurements were conducted with 

amplitudes below 20 mV to ensure a linear system response (this was verified in current � 

voltage measurements with Zahner IM6 (Zahner-Elektrik, Kronach, Germany), also cf. [224] 

and the discussion on cathode polarization in chapter 2.2.1). All measurements were carried 

out in ambient air. Two thermocouples (type S: Pt - Pt/Rh), which were fitted into the contact 

blocks (Fig. 26), ensured that the cell temperature (Tcell) remained constant during each EIS 

measurement. 
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Fig. 27 Reproducibility of symmetrical cell measurements 

a) Example for reproducibility measurement over temperature; b) summary of the 

reproducibility measurements over temperature. 

Reproducibility measurements of identical LSC thin-film samples (the as-prepared samples 

were cut into two parts prior to electrochemical characterization) are depicted in Fig. 27. The 

graph Fig. 27a shows good agreement of two samples during the standard measuring 

procedure (room temperature RT → 850 °C → RT). The absolute values of four 

reproducibility measurements are summarized in Fig. 27b, where the deviation from the 

mean value of each sample pair is given in percent over measuring temperature. This 

deviation of ∆max = 17.5% comprises errors evoked during the processing of the thin films 

(±2%), the sample preparation (paste flow: +2%, layer misalignment: -9.8%), measuring 

accuracy of the frequency response analyzer and the thermocouples (Solartron 1260: ±0.2%, 

�type S� thermocouples: ±1.5%, inhomogeneous temperature distribution in the furnace: 

±3%) and subsequent analyses of the EIS data (±1%). An additional error arises from 

potential lateral conduction within the LSC thin film, which increases the electrochemically 

active area to maximum 11 x 11 mm², which corresponds to an error of +21.6% as estimated 
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by FEM modeling. These maximum errors are inserted as error bars in the respective charts 

within this work. 

3.3.3 Evaluation of the Electrical Impedance Data 

Two approaches are employed to analyze the complex impedance data: (i) a physical 

approach, which needs an a-priori knowledge about the electrochemical processes, from 

which electrical equivalent circuits are derived and (ii) a general approach, which goes 

without previous knowledge about the electrochemistry.  

If the underlying physical processes are known, the obtained impedance spectra can be 

analyzed by a complex nonlinear least squares (CNLS) approximation to a model function 

represented by an equivalent circuit. In this case, the equivalent circuit model needs to be 

defined a-priori. However, in reality the real number of polarization processes contributing to 

the overall polarization loss of the cell is often unknown leading to a severe ambiguity of the 

adopted model. Alternatively, a pre-identification of the impedance response can be obtained 

by calculating and analyzing the corresponding distribution function of relaxation times (DRT) 

as reported in details in [225, 226]. This approach uses �generalized equivalent circuits�, 

consisting of a serial connection of RC elements (80 elements in this work). These electrical 

elements do not evitably correspond to physical processes, but solely describe the dynamics 

of the system. The analysis leads to a distribution function of relaxation processes ( )g Ä , 

which describes the frequency dependent losses of the system (Eq. 39). The distribution 

function exhibits a significantly higher resolution than the impedance data, because dynamic 

processes are usually separated on the frequential scale. 
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∞

=
+∫  Eq. 39 

For the solution of this Fredholm integral equation of the first kind, the Tikhonov 

regularization is applied within the program �FTIKREG� [227] (and ref. therein). This 

algorithm has been implemented into a user-friendly Microsoft Excel sheet �Tikcel 0.99.xls� 

by Volker Sonn, IWE. 

The high frequential resolution of the DRT approach is used to visualize the impact of the 

grain boundaries on the overall conductivity of the YSZ thin films (cf. Fig. 39). By applying the 

CNLS fit on the impedance data, the grain-boundary conductivity and the bulk conductivity 

were calculated (cf. Fig. 40). 

The impedance data of the LSC thin-film cathodes were fitted to equivalent circuits using 

both the CNLS fitting algorithm (software ZView, Scribner Associates, Inc., North Carolina, 

USA), from which the area specific polarization resistance (ASRpol [89]) was derived and the 

DRT analysis to evaluate individual polarization parts. 
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4 Results 

To elucidate the transport properties of charge carriers in nanoscaled YSZ and LSC thin 

films, the results of the electrical and electrochemical experiments are presented. In case of 

the YSZ thin films (4.1), the analysis focuses on their ionic conductivity with respect to grain 

size. In case of the LSC thin films (4.2), transport in terms of the oxygen-reduction 

mechanism and its dependency from grain size and nanoporosity is studied. Regarding the 

discussion of these results in chapter 5, special emphasis is put on the evaluation of the 

processing of the thin films and their chemical and microstructural stability. An overview of 

the conducted experiments is given in the Appendix 7.1. 

4.1 Grain-Size Effects in YSZ Electrolytes 

This chapter comprises the results of the processing of YSZ thin films (4.1.1), the 

temperature related change of the thin-film microstructure, i.e. grain growth (4.1.2) and the 

study of the ionic transport properties of the thin films with respect to mean grain size (4.1.3). 

4.1.1 Processing of the YSZ Thin Films 

For the processing of crack-free, homogeneous YSZ thin films, temperature treatment of the 

samples is an essential issue. Therefore, thermal analysis was applied to determine the rapid 

thermal annealing (RTA) procedure, which the samples were exposed to.  
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Fig. 28 Thermal analysis of scratched-off YSZ precursor powder 

Heating rate: ΔT = 10 K / min in synthetic air. TG measurements (left axis) show a relative mass 

loss of 39 wt% and mass constancy for T > 1100 °C. 
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Chemical decomposition and oxidation of the sol-gel precursor powder were analyzed by 

differential thermal analysis (DTA, Fig. 28) and thermogravimetric analysis (TG, Fig. 28) in 

cooperation with Dr. M. Bockmeyer (Fraunhofer Institute for Silicate Research ISC, 

Würzburg).  

The DTA analysis shows three exothermic chemical reactions in a temperature range 

between room temperature and 1200 °C. All three processes are accompanied by mass 

losses as indicated by TG measurements. Between room temperature and 400 °C (region I) 

the major part of the total mass loss (83%) occurs. The first part below 100 °C is attributed to 

the evaporation of water. The DTA and TG data between 100 °C and 400 °C are explained 

by the oxidative removal of organic groups (acetylacetone, extrapolated onset                 

Tonset,I = 300 °C, Tpeak,I = 360 °C) [228]. In the same temperature range, pycnometry shows a 

significant increase of powder density of 37% [229]. Two further exothermic processes can 

be identified between 400 °C and 600 °C (region II) and 600 and 800 °C (region III). Since 

both chemical reactions are accompanied by mass losses (15%), they cannot be attributed to 

phase changes. Instead, DTA analysis with a varying ratio of ethanol and other alcoholates 

suggests that the second regime is attributed to their removal from the powder. Skeletal 

density increases linearly in region II and III to 90% of the theoretical value of 8YSZ 

(5.8 g/cm3 [230]) [229]. The third exothermic process, which is accompanied by a change of 

the powder color from black to white, might be attributed to the removal of remaining carbon 

compounds. This would explain further densification in this temperature regime and would 

lead to a significant relaxation of the microstrain in the thin films. From 1100 °C, TG analysis 

indicates a final weight of 61% relative mass, which correlates with 98% of the theoretical 

density of 8YSZ at this temperature [229]. 

Optical and scanning electron microscopic analyses exhibit crack-free surfaces over an area 

of 40 x 50 mm². Fig. 29 shows 2.5 x 1.25 μm² sections of the surface with respect to 

calcination temperature (1st and 4th row). With increasing temperature, grain growth is 

apparent. The cross-section analysis (Fig. 29, 3rd and 5th row) displays constant film 

thicknesses between 300 and 450 nm and an excellent adhesion to the sapphire substrate. 

Prior to SEM evaluation, the samples were coated with silver paste, dried and subsequently 

cut to ensure a good electronic contact. Some remainings of the silver paste can be seen on 

the cross-section images. 

The porosity of the thin films was verified by HAADF STEM imaging visualizing porous 

regions as local changes in density, as those appear darker in contrast. Fig. 29a-c (2nd row) 

show HAADF STEM micrographs of the thin films calcined at Tcal = 650 °C, 850 °C and   

1000 °C, respectively, where the pore sizes are of similar dimension as the average grain 

size in the thin films. Specimens, heat-treated at temperatures exceeding 1100 °C, were 

found to be dense. 
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Fig. 29 SEM and HAADF STEM analyses of 8YSZ thin films 

SEM top-view (1
st

 and 4
th

 row) and cross-section (3
rd

 and 5
th

 row) images of YSZ thin films 

calcined at a) 650 °C (MOD056), b) 850 °C (MOD057), c) 1000 °C (MOD058), d) 1250 °C (MOD059), 

e) 1350 °C (MOD060) and f) 1400 °C (MOD061); the films are crack-free over 40 x 50 mm²; the 

film thickness t ranges between 300 and 450 nm. 2
nd

 row: HAADF STEM micrographs of           

a) MOD056, b) MOD057 and c) MOD058 visualize pores, which appear darker in contrast. All 

samples were calcined for 24 h.  
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X-ray measurements of the 8YSZ thin films in the glancing incidence mode show the 

characteristic reflection data of 8 mol% yttria-doped zirconia (92ZrO2·8Y2O3, JCPDS3 

PDF#00-030-1468) and exhibit cubic crystallization as demonstrated with a representative 

sample calcined at 1350 °C (Fig. 30). With decreasing calcination temperature of the thin 

films, a broadening of the diffraction peaks is observed, which is employed for grain-growth 

analyses (4.1.2).  
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Fig. 30 XRD analysis of 8YSZ thin film (1350 °C / 24 h)  

Comparison between the diffraction data and PDF#00-030-1468 exclusively shows cubic single-

phase crystallization of the (Zr0.84Y0.16)O2-δ thin film. 

Quantitative analysis of the yttria-dopant concentration revealed a Zr : Y ratio of 83.4 : 16.6 

corresponding to 8.3 ± 0.3 mol% Y2O3 in the YSZ [215], which is in good agreement with the 

desired 8 mol% Y2O3. 

TEM bright-field micrographs of the cross-section of specimens MOD056 (650 °C) and 

MOD057 (850 °C) are given in Fig. 31a and Fig. 31b, respectively. Specimens MOD056 as 

well as MOD057 show a layered structure created by the 10-fold dip-coating process. No 

evidence for a layered structure was found in specimens that were calcined at temperatures 

above 850 °C.  

Whereas the specimens annealed up to 1000 °C are characterized by a uniform film 

thickness, the samples calcined at Tcal g 1250 °C exhibit grain diameters larger than the film 

thickness entailing a variation of the film thickness between grain boundary and bulk (e.g. 

MOD060 (Tcal = 1350 °C), Fig. 29e). The relationship between thickness of the thin films with 

                                                 
3 JCPDS-ICDD: Joint Committee on Powder Diffraction Standards � International Centre for Diffraction 

Data, Newton Square, USA 
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remained porosity to thickness of the pore-free thin films gives an estimate of the volume 

fraction of the pores (cf. [215]). For all calcination temperatures, the same density of the 

crystalline phase can be assumed since the yttria contents and thus the lattice parameters of 

the YSZ are similar in all thin films. The porosity is highest for MOD056 (Tcal = 650 °C) with 

15.4 vol% and remains zero for MOD059, MOD060 and MOD061 (Table 4). 

a) b)

200 nm 200 nm

(MOD056) (MOD057)
 

Fig. 31 TEM cross-section bright-field micrographs 

of a) MOD056 (Tcal = 650 °C, 24 h) and b) MOD057 (Tcal = 850 °C, 24 h) show a layered structure 

created by the 10-fold dip-coating process; MOD057 exhibits grain growth in comparison to 

MOD056. 

TEM analysis was applied to analyze the chemical phase of the YSZ thin films [215]: Fig. 32a 

shows a homogeneous distribution of small precipitates with a size of a few Å and tetragonal 

structure, which are visible as a bright contrast within the dark cubic matrix in the sample 

calcined at 650 °C. The bright regions with sizes of about 5 to 20 nm, marked by arrows in 

Fig. 32a, are cubic ZrO2 regions with strongly excited (200) or (220) reflections. Fig. 32b 

shows a grain boundary in the specimen calcined at 1250 °C marked by arrows. This 

micrograph demonstrates that the density of tetragonal precipitates inside the grains and 

close to the grain boundaries is homogeneous, which applies also to all other specimens. In 

contrast to the nanocrystalline specimens, the precipitates in the specimen calcined at     

1350 °C tend to coarsen as visualized by the inhomogeneous distribution of the bright 

regions in Fig. 32c. 

Special emphasis was put on the thorough analyses of the grain boundaries in the YSZ thin 

films [215]. Representative HRTEM images of the grain boundaries are shown in Fig. 33. 

The arrow-marked grain boundaries do not yield any evidence for amorphous grain-boundary 

phases. This result even applies to the samples calcined at 650 °C (MOD056), which were 

annealed at the lowest temperature, indicating the absence of carbon residues at the grain 
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boundaries. EDXS analyses, additionally performed at several grain boundary and triple-

point regions, with probe diameters of approximately 1 nm did not yield any indication for 

segregation of impurities or yttrium ions within the detection limit of 0.1�1 at.% in the 

illuminated volume in any of the specimens. 

a) Tcal = 650 °C c) Tcal = 1350 °Cb) Tcal = 1250 °C

(MOD056) (MOD059) (MOD060)
 

Fig. 32 Dark-field micrographs taken with the (112) reflection [215] 

of a) the sample calcined at 650 °C (24 h, MOD056), the arrows mark bright contrast of cubic 

matrix of excited grains caused by the aperture size; b) the sample calcined at 1250 °C (24 h, 

MOD059),  the arrows mark a grain boundary; c) the sample calcined at 1350 °C (24 h, 

MOD060). Tetragonal precipitates are visible as a bright contrast. 

 

a) b)

(MOD057) (MOD058)
 

Fig. 33 HRTEM micrographs of samples calcined 24 h at a) 850 °C and b) 1000 °C [215] 

The arrow-marked grain boundaries are additionally enlarged shown in the insets. 
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4.1.2 Temperature-Dependent Grain Growth 

Coarsening of the YSZ thin films was studied by image processing of the SEM micrographs 

(Fig. 29) and the evaluation of the XRD data (Fig. 30). Additionally, single grains were 

evaluated by TEM analysis. While large grains were analyzed by SEM, the grain growth in 

the tens of nanometer regime was evaluated by TEM and XRD. Thereby, the full width at half 

maximum (FWHM) of the XRD spectrum was employed to the method of integral breadth as 

described in 3.2.3. Fig. 34a depicts the (111) peak at 2Θ = 30.2° noting the FWHM value at 

50 % of the maximum peak intensity. With decreasing calcination temperature, a broadening 

of the XRD peaks becomes apparent as depicted in Fig. 34b entailing information on both 

the mean grain size and the microstrain of the films. 

Between 600 °C and 850 °C, a reduction of the internal strain of 50% was observed, which 

correlates with the third exothermic process of the DTA analysis and was attributed to the 

removal of carbon compounds [229]. 
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Fig. 34 Grain-size evaluation by application of the method of integral breadths 

a) Evaluation of the (111) XRD peak; b) (111) peak of the YSZ thin films with respect to 

calcination temperature (650 °C f Tcal f 1400 °C) and mean grain size d. 

While the grain sizes do not exceed a few tens of nanometers between 650 and 1250 °C 

(characterized by XRD and TEM), the mean grain sizes at 1350 f Tcal f 1400 °C 

(characterized by SEM and TEM) were found to be in the submicron range (Fig. 35). The 

mean grain size rises by more than two decades from 5 nm at 650 °C to 782 nm at 1400 °C 

calcination temperature. This grain-size variance is considerably larger than in other studies 

on zirconia thin films [231-237]. The data obtained by XRD, SEM and TEM analyses coincide 

well suggesting two grain-growth regimes with different activation energies. Grain growth can 

be described by the equation [238] (cf. Eq. 45 and Eq. 46) 
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 −
= ⋅ ⋅0

Q
n RTd k t e  Eq. 40 

where d represents the grain size, Q the activation energy for the predominant transport 

mechanism, and t the calcination duration. The exponent n may vary significantly between 2 

and 4 [238]. It cannot be determined on the basis of the experiments conducted in this work, 

where only the temperature was changed using always the same calcination time. Plotting ln 

(d / nm) as a function of 1000 / T in Fig. 35 (left axis) yields a straight line for the three 

porous specimens (MOD056, MOD057, MOD058). This indicates that the same processes 

dominate during grain growth in the porous regime. An acceleration of the grain growth upon 

densification is observed for MOD059, MOD060 and MOD061, which implies a possible 

change of both n and Q. The transition temperature at approximately Tcal = 1100 °C 

correlates with the presence of nanoporosity in the studied 8.3 mol% yttria-doped zirconia 

thin films (Fig. 35, right axis).  
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Fig. 35 Mean grain size d and volume porosity ¸ as a function of calcination temperature 

left axis: Arrhenius plot of grain growth, i.e. the average grain size as a function of reciprocal 

temperature, in YSZ thin films evaluated by TEM (∇), XRD (□) and SEM (Δ); right axis: porosity 

(○) of the thin films with respect to calcination temperature, studied by TEM analysis; fits are 

guide to the eye. Whereas the porosity of the films decreases with Tcal, the mean grain size 

increases from 5 nm (Tcal = 650 °C, 24 h) to 782 nm (Tcal = 1400 °C, 24 h). 

Table 4 summarizes the morphological and structural properties of the 8YSZ thin films with 

respect to calcination temperature. With increasing grain size, the deviation of the film 

thickness from the mean value increases. 
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Table 4 Morphological and structural properties of the calcined 8YSZ thin films 

where d denotes the mean grain size obtained by XRD, SEM and TEM studies, tmin and tmax the 

minimal and maximal film thickness, ¸ the nanoporosity and e the microstrain in the YSZ films. 

Tcal / °C 650 850 1000 1250 1350 1400 

MOD-ID 056 057 058 059 060 061 

dXRD,SEM / nm 9 15 38 232 628 782 

dTEM / nm 5 14 36 335 548 - 

tmin / nm 450 420 400 342 270 236 

tmax / nm 450 420 400 390 390 390 

¸ / vol% 15.4 7.7 2.6 0 0 0 

e / % 0.53 0.15 0.16 0.20 - - 

4.1.3 Electrical Transport in YSZ Thin Films 

The transport properties of the 8.3 mol% yttria-doped zirconia thin films were 

electrochemically analyzed by means of impedance spectroscopy using microprobes (3.3.1). 

A simulation of the current-density distribution showed that the electric field in the YSZ thin 

films was homogeneous in good approximation (the aspect ratio between electrode 

clearance lcl and film thickness t was greater than 120).  

As denoted in 4.1.1 and 4.1.2, the YSZ thin films calcined at Tcal f 1000 °C exhibited 

homogeneously distributed nanopores (¸YSZ-650 = 15.4 vol%, ¸YSZ-850 = 7.7 vol%,                 

¸YSZ-1000 = 2.6 vol%). This nanoporosity entails an extension of the transport path and causes 

current constrictions in the specimens, thus, increases the resistance compared to a 

completely dense sample. To account for this increase and to obtain the intrinsic transport 

properties, the effective sample geometry was modeled applying a 3-dim model set up by 

Rüger [91].  

The microstructure of the model, which consisted of 10 x 10 x 20 cubes representing either 

insulating nanopores or conductive YSZ grains, was randomly generated by a geometry 

generator [91]. Ten randomly generated pore distributions were calculated and subsequently 

analyzed. Thereby, the increase of the thin-film resistance by insulating nanopores compared 

to a sample without porosity was determined to 30.9% (MOD056, Tcal = 650 °C), 13.5% 

(MOD057, Tcal = 850 °C) and 4.3% (MOD058, Tcal = 1000 °C).  

From the EIS data, the total thin-film resistance was obtained consisting of the bulk 

resistance Rg and the grain-boundary resistance Rgb. The total resistance Rtf was 

transformed into the ionic conductivity of the electrolyte by applying: 

 
tf

1 cll

R A
Ã = ⋅  Eq. 41 

where lcl denotes the electrode clearance (lcl = 68 µm) and A the cross-section of the active 

thin-film volume (electrode length lel = 4 mm times film thickness t, cf. Table 4). 
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Fig. 36 Three-dimensional model [91] to account for the nanoporosity in the YSZ thin films 

The model comprises 10 x 10 x 20 cubes representing either YSZ material (filled) or pores 

(empty). 
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Fig. 37 Total electrical conductivity with respect to mean grain size 

The conductivity data of MOD056, MOD057, MOD058 (Tcal f 1000 °C, d f 36 nm) were emended 

by the influence of nanopores. For comparison, the electrical conductivity of a polycrystalline 

YSZ electrolyte (∇) is depicted; fits are guide to the eye. 
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Considering the correction of the detour effect and the current constrictions, which arose 

through the nanopores, the electrical conductivity of the YSZ thin films can be plotted versus 

mean grain size (5 nm f d f 782 nm). The data are depicted in Fig. 37 with respect to 

measuring temperature (200 °C f T f 400 °C). With increasing mean grain size, the electrical 

conductivity increases continuously by 1 - 2 decades reaching a plateau at d ≈ 500 nm. The 

electrical conductivity of the thin films with these large YSZ grains (e.g. d = 782 nm:              

Ãtf = 1.0·10-2 S/m, T = 400 °C) coincides with a deviation of 10% with the electrical 

conductivity of coarse crystalline Itochu-8YSZ (Ãpolycrystal = 0.9·10-2 S/m, T = 400 °C). The 

oxygen-vacancy transference number of the 8YSZ electrolyte is close to unity, which 

suggests that oxygen vacancies are mainly involved in the charge transport in the 8YSZ thin 

films due to the congruence of the electrical conduction values. However, the decrease of the 

mean grain size into the nanometer regime goes along with a diminution in electrical 

conduction by 98 % (d = 5 nm: Ãtf = 2.4·10-4 S/m, T = 400 °C).  
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Fig. 38 Arrhenius plot of the total electrical conductivity with respect to mean grain size 

The data of MOD056, MOD057 and MOD058 (Tcal f 1000 °C, d f 36 nm) were emended by the 

influence of nanopores. The conductivity diminishes with decreasing mean grain size. Inset: 

extrapolated electrical conductivity of a coarse crystalline 8YSZ electrolyte (Itochu, Japan) 

obtained by Simonin [38]. 

As discussed in 2.1.2, ionic transport in YSZ obeys the Arrhenius law (Eq. 10). The activation 

energies of the thin films were fitted to 1.13 ± 0.02 eV (Fig. 38). The sample with the smallest 

mean grain size (5 nm) shows an activation energy of EA = 1.00 eV. For comparison, the 

electrical conductivity of coarse crystalline Itochu-8YSZ is depicted in the plot (inset). The 

data coincides well with the conductivity data of MOD061 featuring the largest grains. 
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Fig. 39 Distribution of relaxation times of the 8YSZ thin films at T = 250 °C 

Whereas the low-frequency process is attributed to the grain-boundary process with the 

relaxation time gbÄ , the high-frequency process indicates the transport through the YSZ grains 

(relaxation time gÄ ). 

To elucidate the cause of this decrease in ionic transport upon decreasing mean grain size, 

the impedance spectra of the 8YSZ thin films were analyzed by calculating the distribution 

function of relaxation times (DRT) (cf. chapter 3.3.3), which enables the distinct separation of 

the processes related to grain transport and grain-boundary transport. Fig. 39 depicts the 

DRT at T = 250 °C. Two distinct processes with different relaxation times are apparent. 

Whereas the low-frequency process is allotted to the grain boundaries, the high-frequency 

part is attributed to the bulk processes. Since the area enveloped by the curve is a measure 

for the resistance of the particular process, the DRT spectra portend a constant, grain-size 

independent contribution of the bulk resistance to the total resistance. The grain-boundary 

resistance, however, decreases with increasing grain size and causes an overall decrease of 

the total resistance. The shift of the grain-boundary relaxation (1/ gbÄ ) towards lower 

frequencies can be explained by this increase of the resistance according to 

 
1 1

2gb gb

gb gb gb

f
R C

ω π
Ä

= ⋅ = =
⋅

 Eq. 42 

With increasing Rgb, the relaxation frequency takes lower values. The complex impedance 

data were fitted to equivalent circuits comprising transport processes of the grains and the 

grain boundaries (Fig. 40a). Parallel capacitances are taken into account due to measuring-

setup considerations (chapter 3.3.1). Applying the electrical equivalent circuits and a CNLS 

approximation (chapter 3.3.3), the resistances and capacitances for the YSZ grains and the 

grain boundaries can be derived, respectively. Fig. 40b depicts a typical Nyquist plot of the 

impedance data at 400 °C. In grey, the respective CNLS fits are plotted. It is noteworthy, that 

the grain-boundary resistance exceeds the grain resistance by more than a factor of 100 for 
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d f 36 nm. In this grain-size regime, the grain process and the grain-boundary process 

cannot be resolved from the impedance data by the CNLS fit. 
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Fig. 40 a) Electrical equivalent circuits; b) Nyquist plot of MOD061 at T = 400 °C 

The complex impedance data was fitted to the equivalent circuits by a CNLS fit yielding a 

separation of the total thin-film resistance Rtf into the bulk resistance Rg and the grain-

boundary resistance Rgb. 
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Fig. 41 Electrical grain-boundary thickness ·gb with respect to the mean grain size 

The values were derived at 200 °C f T f 400 °C by the application of the brick-layer model to the 

complex impedance data (cf. chapter 2.1.4). Deviations from the mean value of ·gb = 5.3 nm are 

mainly caused by errors in the evaluation of the mean grain size. 

The bulk and grain-boundary capacitances can be calculated from the constant phase 

elements according to Eq. 15. The application of Eq. 14 yields the �electrical� grain-boundary 

thickness ·gb, which was derived to 4.36 nm f ·gb f 6.13 nm. The calculated grain-boundary 

thickness is independent of the mean grain size (232 nm f d f 782 nm) and the measuring 

temperature (200 °C f T f 400 °C). All values of ·gb are constant within the uncertainty of the 

grain-size evaluation. Thus, a mean value of ·gb = 5.3 nm, which is inserted as a dashed line 

in Fig. 41, can be utilized for further analyses of the impedance data. 
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Applying Eq. 13, the specific bulk and grain-boundary conductivities can be derived, i.e. the 

conductivities related to the effective grain and the grain-boundary thickness. As depicted in 

Fig. 42, the specific bulk conductivities excel the specific grain-boundary conductivities by 

approximately two decades in the Arrhenius plot. The grain transport                       

(1.08 eV f EA f 1.09 eV) shows lower activation energies than the grain-boundary 

conduction (1.14 eV f EA f 1.15 eV). This difference of the activation energies corresponds 

in principle to the published data on µm-scaled YSZ electrolytes (Table 1). No grain-size 

dependence of the data can be observed for 232 nm f d f 782 nm. 

For smaller grains (d f 36 nm), the resolution of the impedance data is limited by the large 

ratio of Rgb / Rg. In this grain-size regime, the bulk process cannot be separated from the 

grain-boundary process and thus, the grain-boundary thickness ·gb cannot be calculated 

from the data. In order to evaluate the existence of potential grain-size effects, the total 

resistance of the 8YSZ thin films featuring grain sizes of 5 nm f d f 36 nm is calculated by 

the application of the brick-layer model in chapter 5.1. 
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Fig. 42 Arrhenius plot of the specific conductivities with respect to mean grain size 

The specific bulk conductivity 
s

gÃ  is depicted in black, the specific grain-boundary 

conductivity 
s

gbÃ  in grey color. 

4.2 Nanoscaled LSC Cathodes for SOFC Application 

This chapter comprises the results of the crystallization of the chemical LSC phase (4.2.1), 

the temperature related change of the thin-film microstructure, i.e. grain growth (4.2.2), the 

stability of the LSC / substrate interface (4.2.3) and the electrochemical characterization of 

the LSC thin-film cathodes (4.2.4).  
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4.2.1 Crystallization of the Chemical LSC Phase 

Insights about the decomposition and oxidation of the sol-gel precursor powder are inevitable 

for the processing of homogeneous LSC thin films. The rapid thermal annealing (RTA) steps, 

which the coated substrates were exposed to during the processing, were investigated by 

differential thermal analysis (DTA, Fig. 43 right axis) and thermogravimetric analysis (TG, 

Fig. 43 left axis).  
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Fig. 43 Thermal analysis of (La0.5Sr0.5)CoO3-δ sol-gel precursor powder  

Heating rate: ΔT = 1 K / min in synthetic air. The TG measurement (left axis) shows a relative 

mass loss of 59 wt% and mass constancy for T > 700 °C. According to the DTA signal (right 

axis), the thermal decomposition of the organic moieties occurs for T < 355 °C. 

The DTA analysis shows two exothermic chemical reactions within the analyzed temperature 

range from room temperature to 850 °C. Both processes are accompanied by mass losses 

as indicated by the TG measurement. After the evaporation of water below 100 °C, the 

exothermic chemical reaction in regime I may be attributed to a polymerization of the 

precursor powder (extrapolated onset Tonset,I = 115 °C, Tpeak,I = 128 °C). The exothermic 

chemical reactions in regime II (extrapolated onset Tonset,II = 238 °C, Tpeak,II = 326 °C) 

coincide with a mass loss of 42 %. The chemical reactions in regime II are caused by the 

thermal decomposition of the precursors and the oxidative removal of organic groups. In 

regime III (mass loss 5%), distinct chemical reactions are not apparent in the DTA signal. 

From 700 °C TG analysis shows constant weight (41.0 wt% of the starting value) indicating 

the complete removal of the organic compounds and the complete crystallization of the 

perovskite phase.  

To increase the resolution of the TG measurement in region III and to obtain a distinct 

temperature, at which constant weight can be observed, the precursor powder was calcined 

at 500 °C (12 h) prior to characterization.  
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Fig. 44 Thermal analysis of calcined (500 °C, 12 h) LSC sol-gel precursor powder  

Heating rate: ΔT = 1 K/min in synthetic air. 

Until 500 °C minor mass losses are observed as the TG curve drops by Δm = 10.9% in 

regime III (extrapolated onset Tonset = 621 °C, Tend = 711 °C, Fig. 44). Besides the rapid 

thermal annealing steps (RTA) at 170 °C and 700 °C the additional step at 900 °C 

determines the surface quality and mean grain size of the LSC thin films.  
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Fig. 45 High-temperature XRD analysis of LSC precursor powder at RT f T f 1050 °C 

�▲� denotes the Pt phase (heater material Pt, PDF#00-004-0802), �■� denotes the LSC phase 

((La0.5Sr0.5)CoO3-δ, PDF#00-048-0122), �○, ●� the cobalt oxide phase (Co3O4, PDF#00-043-1003 

and CoO, PDF#01-071-1178, respectively). The crystallization of the LSC phase occurs between 

550 °C and 600 °C; heating rate: ΔT = 1 K / s, annealing time: t = 45 min. 
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The crystallization process of the LSC precursor powder with respect to temperature has 

been studied by in-situ high-temperature XRD (HT-XRD). Fig. 45 presents the temperature-

dependent XRD patterns ascending between room temperature (RT) and 1050 °C. It is 

noteworthy, that the XRD peaks shift towards lower reflection angles upon heating. In 

general, the distance between atomic layers in the crystal dcrys and the X-ray reflection angle 

Θ  are linked by Bragg�s law: 

 2 sincrysn d»⋅ = ⋅ ⋅ Θ  Eq. 43 

where n »⋅  is a whole-number multiple of the X-ray wavelength ( » = 0.15406 nm). Upon 

heating, the atomic lattice expands (increasing values of dcrys) resulting in smaller reflection 

angles Θ . Additionally, the expansion of the platinum heating band leads to a slight 

displacement of the samples from the X-ray plane. Both effects contribute to the peak shift 

with increasing measuring temperature.  

b) top view: LSC-MOD surface

20 mm20 mm
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6 µm6 µm
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Fig. 46 Top-view analysis of a YSZ substrate (52.5 x 52.5 mm²) coated with LSC 

The thin film was exposed to thermal treatment (170 °C, 700 °C, 900 °C for 5 min each);             

a) photograph of the LSC thin-film surface; b) SEM image of the LSC thin-film surface. 

The platinum peaks (▲, JCPDS4 reference data: PDF#00-004-0802) in the spectra account 

for the heater material. The phase transition from the predominantly amorphous state to the 

rhombohedral phase (■, PDF#00-048-0122) can be recognized between 550 °C and 600 °C 

for LSC. This crystallization regime is consistent with the transition temperature in the study 

of (La0.5Sr0.5)CoO3-δ thin films deposited by pulsed laser deposition on (100) silicon [177]. 

Additionally, a minor impurity phase is identified from 750 °C. This phase can be attributed to 

the crystallization of cobalt oxide (○, PDF#00-043-1003), which changes its valence to 

                                                 
4 JCPDS-ICDD: Joint Committee on Powder Diffraction Standards � International Centre for Diffraction 

Data, Newtown Square, USA; PDF: powder diffraction file 
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bivalent cobalt at 900 °C (●, PDF#01-071-1178). Consecutive thermocycling showed that the 

switching of the Co valence is a reversible process. After final cooling-down to room 

temperature (separated by a blank line in Fig. 45), the XRD spectrum shows a well-

crystallized, virtually chemically pure (La0.5Sr0.5)CoO3-δ phase. 

ID: MOD094b, ISC217
Sol: (La0,5Sr0,5)CoO3-δ (Rez. 082006)

13 wt% LSC 
solvent: propionic acid

Coatings: 1
Substrate: 8YSZ (Itochu)
RTA: 170 °C, 700 °C, 900 °C (5 min)
Thickness: approx. 300 nm

(MOD094b)
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400 nm400 nm

ID: MOD086, ISC147
Sol: (La0,5Sr0,5)CoO3-δ (Rez. new)

20 wt% LSC 
Solvent: propionic acid

Coatings: 3
Substrate: GCO screen-printed layer
RTA: 170 °C, 700 °C, 900 °C (5 min)
Thickness: approx. 200 nm

ID: MOD164, ISC1-310
Sol: (La0,5Sr0,5)CoO3-δ (Rez. LSC_210507)

12 wt% LSC 
Solvent: propionic acid

Coatings: 1
Substrate: 8YSZ (Itochu)
RTA: 170 °C, 700 °C (5 min)
Thickness: approx. 60 nm

a) Deposition method: spin-coating

c) Deposition method: dip-coating

b) Deposition method: tampon-printing
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Fig. 47 The effect of deposition techniques on thin-film microstructure 

a) spin-coating; b) tampon-printing and c) dip-coating. 

The deposition of viscous LSC sol on 8YSZ substrates via sol-gel and consecutive thermal 

treatment (rapid thermal annealing at 170 °C, 700 °C and 900 °C for 5 min, respectively) 

leads to black thin films with a metallic glint. Optical (Fig. 46a) and SEM (Fig. 46b) top-view 

examinations show a predominantly smooth LSC surface lacking of macroscopic cracks.The 

SEM side-view images of the LSC � YSZ (Fig. 47a, Fig. 47b) and LSC � GCO (Fig. 47c) 

interfaces display homogeneous LSC thin films with no instances of delamination. Whereas a 

spin-coating (Fig. 47a) and tampon-printing (Fig. 47b) technique was used for the relatively 

smooth YSZ electrolyte surfaces, a dip-coating method (Fig. 47c) turned out to be adequate 

for the screen-printed GCO layers. Depending on processing technique the solids content of 
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the coating sol was adjusted accordingly. The film thicknesses ranged between 60 nm for the 

tampon-printed thin films and 300 nm in case of spin-coated thin films. 
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Fig. 48 XRD diffractograms of well-crystallized single-phase LSC thin films 

which were deposited on a) 8YSZ substrate (�design 1�) and b) GCO thick film on a 3.5YSZ 

substrate (�design 2�) as received by a rapid thermal annealing procedure (RTA); �■� denotes 

the rhombohedrally distorted LSC phase ((La0.5Sr0.5)CoO3-δ, PDF#00-048-0122), �h� the cubic 

8YSZ phase ((Zr0.85Y0.15)O1.93, PDF#00-030-1468), �◊� the tetragonal 3.5YSZ phase 

((Zr0.92Y0.08)O1.96, PDF#00-048-0224) and �▼� the cubic GCO phase ((Ce0.8Gd0.2)O1.90, PDF#01-

075-0162); a) Inset: XRD pattern of LSC / YSZ (�design 1�) ranging from 29° < 2Θ < 38° 

compares as received by RTA (black line) and after consecutive annealing at 800 °C for            

10 hours (grey line); secondary phases are identified as �○� for the cobalt oxide phase (Co3O4, 

PDF#00-043-1003), and �g� for the strontium zirconate phase (SrZrO3, PDF#00-044-0161). 
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Fig. 48a exhibits the XRD spectrum of an LSC thin film on YSZ (�design 1�), where �■� 

denotes the LSC phase (PDF#00-048-0122) and �h� the 8YSZ phase (PDF#00-030-1468). 

The rather broad peaks of the LSC phase indicate a small crystallite size. The Miller indices 

are included in brackets. The magnification of the XRD spectrum presumably indicates a 

secondary phase in the range of the detection limit of the XRD at 2Θ = 31.4 ° (220) and 

2Θ = 37.0 ° (311), denoted with �○� (black graph in Fig. 48, inset) and attributed to Co3O4 

(PDF#00-043-1003). Annealing of the sample at 800 °C for 10 h in air results in a slight 

increase of the (311) Co3O4 peak intensity (grey graph in Fig. 48, inset) in combination with 

weak, but characteristic reflections at 2Θ = 30.8 ° (200) and 2Θ = 30.9 ° (121), (002) 

indicating the formation of SrZrO3 (�g�, PDF#00-044-0161). In case of the LSC thin film on 

GCO (�design 2�), XRD analysis shows as expected single-phase crystallization (Fig. 48b). 

The diffraction data was attributed to the characteristic reflections of the rhombohedrally 

distorted (La0.5Sr0.5)CoO3-δ phase (�■�, PDF#00-048-0122), the cubic (Ce0.8Gd0.2)O1.90 phase 

(�▼�, PDF#01-075-0162) and the tetragonal (Zr0.92Y0.08)O1.96 phase (�◊�, PDF#00-048-0224). 

4.2.2 Temperature-Dependent Grain Growth 

The surface microstructure of the LSC thin films on 8YSZ with respect to annealing 

temperature is studied via top-view SEM examination (Fig. 49). For that purpose, the 

specimens were annealed in air between 500 °C and 900 °C for 10 h, respectively. With 

increasing annealing temperature, pore and grain growth occurred. 

The grain sizes were statistically evaluated using the image processing software SPIPTM 

(Image Metrology A/S; Lyngby, Denmark). Each grain diameter was calculated as a circle 

equivalent diameter from the grain area [229]. The error bars in Fig. 51 account for the 

standard deviation evaluated by statistical image processing of the SEM images. 

Fig. 50 depicts the isothermal grain growth exemplarily for T = 700 °C and T = 900 °C after 

annealing for 2 h, 10 h and 100 h. Whereas the mean grain size is approximately constant 

over time at 700 °C (Fig. 50a-c), grain growth and an increase of the thin-film porosity is 

apparent at 900 °C (Fig. 50d-f). The isothermal grain-growth data of the LSC thin films on 

YSZ with respect to annealing temperature is depicted in Fig. 51a. The grain growth occurs 

mostly in the first 10 h of dwell. For larger annealing times, the grain growth perishes for       

T f 800 °C resulting in a maximal grain size of 83.5 nm. This self-limiting grain growth was 

fitted to a relaxation function [219]: 

 ( )0 0 1
t

Ld d d d e Ä
−» ¿

− = − −¼ À¼ À
½ Á

 Eq. 44 

where d is the mean grain size at the time t, d0 is the initial grain size at the time t0 and Ä  the  

relaxation time. For the annealing temperature of 800 °C, the relaxation time was found to be 

Ä = 4.33 ± 2.01 h. 
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a) RTA (900 °C, 5 min)
mean d = 55 ± 20 nm

1 µm

(MOD102d) (MOD106c) (MOD106d)

(MOD107a) (MOD107b) (MOD107c)

b) RTA + 500 °C (10 h)
mean d = 52 ± 20 nm

c) RTA + 600 °C (10 h)
mean d = 59 ± 21 nm

d) RTA + 700 °C (10 h)
mean d = 62 ± 21 nm

e) RTA + 800 °C (10 h)
mean d = 83 ± 30 nm

f) RTA + 900 °C (10 h)
mean d = 165 ± 60 nm

 

Fig. 49 Grain growth of LSC thin films with respect to annealing temperature  

SEM top-view analyses after a) rapid thermal annealing and subsequent annealing for 10 h in 

air at b) 500 °C; c) 600 °C; d) 700 °C; e) 800 °C; f) 900 °C 
5
. The increasing annealing 

temperature fosters both grain growth and increase of porosity. Solvent: propionic acid, 

deposition technique: spin coating, substrate: 8YSZ. 

For higher annealing temperatures (T = 900 °C), grain growth occurs during the whole 

experiment according to the generalized grain-growth law ([219] and ref. therein; cf. Eq. 40): 

 ( )0 0
n n

nd d k t t− = −  Eq. 45 

where d denotes the mean grain size at the time t, d0 the initial grain size at the time t0 and kn 

is given by ([215] and ref. therein): 

 
0

Q

kT
nk k e D

−
= ⋅ ∝  Eq. 46 

where k0 is a material constant, Q the activation energy, k the Boltzmann constant and T the 

temperature in Kelvin. This term is proportional to the diffusion coefficient D. 

For the isothermal hold at 900 °C (Fig. 51a), a grain-growth exponent of n = 7.5 ± 1.1 was 

determined from Eq. 45. Rupp et al. stated that the grain-growth exponent ranges between     

n = 2 for the parabolic grain growth up to n = 10 [219]. This deviation from the theoretically 

                                                 
5 The grain growth in LSC thin films was studied within the study projects of Irene Netsch 

�Mikrostrukturanalyse nanoskaliger Dünnschichtkathoden� (Microstructral Analysis of nanoscaled 

Thin-Film Cathodes), 2007, IWE. 



4 RESULTS 

76 

expected parabolic grain growth was explained by pores, which affect the grain-growth 

kinetics. These pores are well apparent in Fig. 49. 

a) RTA + 700 °C (2 h)
mean d = 60 nm

1 µm

(MOD105c) (MOD107a) (MOD108c)

(MOD106a) (MOD107c) (MOD109a)

b) RTA + 700 °C (10 h)
mean d = 62 nm

c) RTA + 700 °C (100 h)
mean d = 60 nm

d) RTA + 900 °C (2 h)
mean d = 118 nm

e) RTA + 900 °C (10 h)
mean d = 165 nm

f) RTA + 900 °C (100 h)
mean d = 209 nm

 

Fig. 50 Grain growth of LSC thin films with respect to annealing time   

SEM top-view analyses after rapid thermal annealing and subsequent annealing in air at 700 °C 

for a) 2 h, b) 10 h, c) 100 h and at 900 °C for d) 2 h, e) 10 h, f) 100 h. Whereas grain growth is 

apparent at 900 °C, the images at 700 °C show similar grain sizes irrespective of thermal 

annealing. Solvent: propionic acid, deposition technique: spin coating, substrate: 8YSZ. 

The temperature-dependent grain growth at a constant dwell of 10 h is depicted in Fig. 51b. 

Between 700 °C (10 h) and 900 °C (10 h) the mean grain sizes range from 62 ± 21 nm 

(700 °C) over 83 ± 30 nm (800 °C) to 165 ± 60 nm (900 °C) in diameter. Applying the non-

parabolic grain growth law (Eq. 39) to Fig. 51b a reasonable fit can be obtained. 

Besides LSC grains, the SEM top-view images depict nanopores. Whereas the pore size is 

constant during the annealing at 700 °C (Fig. 50a-c), at 900 °C substantial pore growth can 

be observed (Fig. 50d-f). This suggests that the changes in the pore size follow the analyzed 

grain-growth behavior. Furthermore, the SEM images of the specimens annealed at 900 °C 

show inhomogeneities besides the LSC grains. This indicates the presence of chemical 

secondary phases, which are caused by an interface reaction between the LSC thin film and 

the YSZ substrate (cf. the thorough study of this interface reaction in chapter 4.2.3 and the 

discussion of the results in chapter 5.2.1).  
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Fig. 51 Mean grain size d as a function of calcination time and calcination temperature 

a) Average grain size of the LSC thin films as a function of dwell time (0 h, 2 h, 10 h, 100 h) and 

annealing temperature (500 °C f T f 900 °C). Black symbols (■) represent grain growth data 

following self-limiting grain growth. Gray symbols (◄) follow the generalized non-parabolic 

grain growth law; b) Statistically evaluated mean grain sizes of LSC thin films with respect to 

annealing temperature after rapid thermal annealing (RTA) (500 °C f T f 900 °C, 10 h). The table 

states the mean grain diameter with its standard deviation with respect to annealing 

temperature. 

4.2.3 Stability of the LSC Thin-Film Cathodes 

The stability of LSC and the interface reactivity to the adjoining substrate is evidential for the 

evaluation of grain-size effects in nanoscaled cathodes and potential SOFC application.  
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Fig. 52 Mass loss of LSC powder (obtained from precursor powder) at 850 °C 

The drift was determined by a reference measurement and was subtracted from the curve. 

TG439 resolution:  Δm = 0.1 µg. 

Via a TG measurement the question should be answered whether individual chemical 

elements, predominately Sr, evaporate into the gas phase during the processing of the thin 

films and thereby change the targeted stoichiometry of La:Sr:Co = 1:1:2 of the perovskite. 

Fig. 52 depicts the mass loss of LSC powder at 850 °C, which has crystallized from the 

precursor powder during the heating up. Within the dwell of 16 h, no mass loss is recognized. 

Furthermore, the LSCF current collector applied for the electrochemical characterization 

increases the chemical vapor pressure above the LSC thin film, which allows the conclusion 

that evaporation of single chemical elements is improbable during the electrical 

characterization at T = 850 °C. However, this leaves the possibility that chemical elements 

may have evaporated during the heating-up (cf. the discussion on the chemical stability of 

LSC in chapter 5.2.1) 

The sol-gel deposition method contents itself with processing temperatures fairly below the 

known crystallization temperature of the interface reaction between LSC thick film cathodes 

and YSZ (the formation of insulating zirconate layers (La2Zr2O7 and / or SrZrO3) was 

described in detail for T g 900 °C by many groups [156-159]). However, the chemical stability 

between the cathode material and the substrate is essential in terms of long-term stability for 

SOFC application and cathode polarization properties (cf. chapter 2.2). Two approaches 

were chosen to elucidate the stability of the LSC / YSZ interface with respect to temperature: 

on the one hand, the chemical reactivity between LSC and YSZ was calculated 

thermodynamically; on the other hand, a variety of experiments was conducted to account for 

the kinetics of the chemical interface reaction. 

The chemical stability of the LSC cathode / YSZ electrolyte interface and the decomposition 

of the perovskite phase was calculated thermodynamically within cooperation with Dr. 

Harumi Yokokawa6 using the software MALT (MAterials oriented Little Thermodynamic 

                                                 
6 National Institute of Advanced Industrial Science and Technology (AIST), Energy Technology 

Research Institute, AIST Central 5, Higashi 1-1-1, Tsukuba 305-8565, Japan 
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database) [239]. Equilibrium calculations based on the thermodynamic properties of the 

applied materials were carried out with the program gem (Gibbs Energy Minimizer), which is 

included in the software package MALT. This thermodynamic approach provides decisive 

information about the stability of the interface and the formation of parasitic secondary 

phases [240-242]. 
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Fig. 53 Chemical stability calculations of a virtual LSC / YSZ powder mixture 

The thermodynamic calculations of LSC (0.5 mol LaCoO3, 0.5 mol SrCoO3) and ZrO2 (1 mol) 

were performed in MALT; ZrO2 (h), LaCoO3 (■), Co3O4 (○), CoO (●), SrZrO3 (g) and La2Zr2O7 (♠). 
As starting conditions pO2 = 0.21 bar and T = 25 °C were chosen. An overview of the resulting 

chemical phases with respect to temperature (500 °C < T < 1100 °C) is given in a); b) � d) show 

the chemical phases of ZrO2 and (La0.5Sr0.5)CoO3, cobalt oxide and zirconates, respectively. The 

brackets include the detection temperatures of the respective phases obtained by XRD 

analysis of a powder mixture from LSC precursor powder and YSZ (cf. Fig. 54). 

The thermodynamic data for the present calculations were taken mainly from MALT, which is 

based on the NBS chemical thermodynamic data [243] combined with available heat 

capacities; except for (La,Sr)CoO3, numerical values are given in [244], references quoted 

therein and [245-248]. The data for the SrCoO3-δ component in LSC was determined so as to 

reproduce the oxygen nonstoichiometry in SrCoO3-δ [249] and the phase relation in the La-

Sr-Co-O system [250]. 

The starting conditions of these thermodynamic calculations were 0.5 mol LaCoO3, 0.5 mol 

SrCoO3 and 1 mol ZrO2. The calculations were performed at an oxygen partial pressure of 
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pO2 = 0.21 atm. The presence of thermodynamically stable phases between 500 °C and 

1100 °C is shown in Fig. 53. At 500 °C the strontium in LSC reacts with 0.5 mol ZrO2 (h) to 

form 0.5 mol SrZrO3 (g) and 0.167 mol of Co3O4 (○). The remaining LaCoO3 (0.5 mol) reacts 

with ZrO2 at 825 °C due to the crystallization of 0.25 mole of La2Zr2O7 and the decomposition 

of LaCoO3. The formation of lanthanum zirconate results in an increase of cobalt oxide, 

which changes its valence from Co3O4 (○) to bivalent cobalt (●) at 700 °C [242, 248]. 

According to these results, the strontium in the LSC perovskite layer should react completely 

with the zirconia substrate to SZO even at 500 °C whereas a pure LaCoO3 should be stable 

up to 800°C. 

However, these thermodynamic calculations do not account for kinetic considerations, which 

may lead to time constants of the chemical interface reaction, which are irrelevant to the 

application of LSC thin-film cathodes. Therefore, the following experiments were conducted 

to shed light on this issue. 
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Fig. 54 HT-XRD analysis of an LSC / YSZ powder mixture for RT < T < 1000 °C 

The mixtures composes of LSC precursor powder and YSZ powder; Pt (▲, PDF#00-004-0802), 

(Zr0.85Y0.15)O1.93 (h, PDF#00-030-1468),  (La0.5Sr0.5)CoO3-δ (■, PDF#00-048-0122), Co3O4 (○, PDF#00-

043-1003), CoO (●, PDF#01-071-1178), SrZrO3 (g, PDF#00-044-0161) and La2Zr2O7 (♠, PDF#00-

050-0837). The crystallization of parasitic secondary phases (SZO) is apparent between 750 °C 

and 800 °C. 

Due to the deficient signal to noise ratio of the XRD signal of an LSC thin film on YSZ, a 

powder mixture of LSC precursor powder and 8YSZ powder was prepared for HT-XRD 

analysis (Fig. 54). At room temperature the Bragg reflections can be attributed to the 

platinum heater (Pt, ▲, PDF#00-004-0802) and YSZ from the powder mixture 
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((Zr0.85Y0.15)O1.93, h, PDF#00-030-1468). The precipitation of the LSC phase and the 

crystallization of cobalt oxide correlate with the findings in Fig. 45 (study of pure LSC 

precursor powder). The chemical interface reaction between 8YSZ and LSC can be 

observed for T > 750 °C with the crystallization of parasitic secondary phases. Strontium 

zirconate precipitates between 750 °C and 800 °C (SrZrO3, g, PDF#00-044-0161) and 

lanthanum zirconate (La2Zr2O7, ♠, PDF#00-050-0837) between 900 °C and 950 °C. 

Compared to the XRD data at 1000 °C the spectrum after cooling-down to room temperature 

shows the same chemical phases. However, the spectrum is staggered to higher reflection 

angles, which is explained by the reduction of the spacing between the planes in the atomic 

lattice. 

Further examinations of the LSC / YSZ interface have been performed by SEM and TEM on 

thin films. SEM cross-section analysis of the coated 8YSZ electrolytes after RTA is depicted 

in Fig. 55a. After annealing at 800 °C for 100 h a chemical interface reaction between YSZ 

and LSC can be observed (Fig. 55b). This secondary phase has a thickness of 

approximately 80 nm and emerges as a homogeneous band between the nanoscaled LSC 

thin film and the substrate. 

For further information, LSC thin films on 3.5YSZ were exposed to 700 °C (�LSC700�) and 

1000 °C (�LSC1000�) for 8 h each. Cross-section samples were studied to analyze the 

distribution of the different phases as a function of the distance from the interface. Fig. 56a 

and Fig. 56b display zero-loss-filtered TEM images of both samples [214], which show layers 

with a thickness of about 240 nm on top of the YSZ substrate. An interfacial layer marked by 

white dashed lines in Fig. 56a and Fig. 56b is observed in both samples with an average 

thickness of 42 ± 5 nm in LSC700 (Fig. 56a) and a larger thickness of 130 ± 20 nm in 

LSC1000 (Fig. 56b). 

500 nm500 nm

8YSZ substrate

(MOD102d)

LSC thin film cathode

b) Calcination: RTA + 800 °C (100 h)

(MOD108d)

500 nm500 nm

a) Calcination: RTA (Tmax = 900 °C)

chemical inter-
face reaction

8YSZ substrate

 

Fig. 55 SEM cross-view analysis of the LSC - YSZ interface  

a) after RTA (170 °C, 700 °C, 900 °C, 5 min each) and b) after annealing (800 °C, 100 h). A band-

like secondary phase is displayed at the LSC / YSZ interface. 

Electron spectroscopic images were recorded to obtain a comprehensive overview of the 

element distribution in the LSC / YSZ interface region [214]. The La-N4,5 edge (edge onset at 

an energy loss ΔE = 90 eV) was used for imaging the La distribution (bright regions in       
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Fig. 56c and Fig. 56d). LSC700 (Fig. 56c) exhibits an inhomogeneous La distribution. Even 

grains without La were detected. These grains are partly located within the La-rich region 

and at the substrate / layer interface. In LSC1000 (Fig. 56d), La is confined completely to the 

surface region. Only a small amount of La is located in subjacent grains. In contrast, Sr 

mapped with the Sr-L2, 3 edge at ΔE = 1940 eV is depleted at the surface and enriched at the 

interface. This effect is more pronounced in LSC1000 (Fig. 56f) than in LSC700 (Fig. 56e). 

The Sr-enriched layer corresponds to the interfacial layer in Fig. 56a and Fig. 56b. The 

symmetry of the SAED patterns (not shown) and the evaluated lattice-plane distances 

correspond well to the perovskite structure of the SrZrO3 (SZO) phase. The Co distribution 

imaged with the Co-L2,3 edge (ΔE = 779 eV) shows that the grains depleted in Sr and La are 

cobalt oxides (as also verified by EDXS and SAED). These regions correspond to the grains 

with bright and speckled contrast in Fig. 56a and Fig. 56b. In case of LSC700 (Fig. 56g) the 

Co3O4 grains are embedded in the LSC layer. In LSC1000 (Fig. 56h), the CoO grains lie 

between the LSC and the Sr-rich reaction layer. As expected for the SZO reaction layers, the 

Zr distribution (imaged with the Zr-L2,3 edge at ΔE = 2222 eV) shows a higher Zr content 

exactly in those regions where an enrichment of Sr is found. This effect is more pronounced 

in LSC1000 (Fig. 56j) than in LSC700 (Fig. 56i). The Zr signal, which is visible in the LSC 

layer, can be ascribed to Zr redeposition during FIB milling. Owing to a large sample drift 

particularly caused by high electron-irradiation doses, the lateral resolution of the maps for 

elements with high energy-loss edges like Zr and Sr is deteriorated. The element distribution 

obtained by ESI could be confirmed by corresponding EDXS maps. 

Cross-section images of an as-prepared LSC thin film after RTA (not shown here) 

demonstrate that the SZO phase is already formed during the RTA process at the LSC / YSZ 

interface with an average thickness of 16 ± 3 nm. In addition to reflections of the 

rhombohedrally distorted LSC structure, Debye diffraction patterns contain reflections of the 

Co3O4 phase, which is formed likewise during the RTA process. 

EDXS analyses of plan-view samples yield a Sr deficiency of LSC grains in both samples 

LSC700 and LSC1000 with a more pronounced deficiency and chemical inhomogeneity in 

LSC1000. Although strontium evaporation during the calcination process cannot be excluded 

(cf. chapter 4.2.1), analyses by EFTEM, SEM, XRD and MALT evidenced that one reason for 

this inhomogeneity of the LSC grains is the reaction of strontium with the YSZ electrolyte.  

The chemical stability of the �design 2� (LSC / GCO) was studied by a HT-XRD 

measurement of a powder mixture between LSC precursor powder and GCO powder. The 

mixture was heated up to 1200 °C and the spectrum was recorded at 500 °C f T f 1200 °C 

in 100 °C steps. Consistently to Fig. 45 and Fig. 54, the chemical LSC phase and the cobalt 

oxide phase precipitate at 600 °C and 800 °C, respectively. The switching of the cobalt 

valency at 900 °C is also observed at the LSC / YSZ powder mixture. However, until 1200 °C 

no chemical interface reactions between LSC and GCO can be detected, which proves the 

efficiency of a GCO buffer layer in �design 2�. 
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Fig. 56 High-resolution EFTEM cross-section analyses of LSC thin films on 3.5YSZ [214] 

calcined at 700 °C for 8 h (images a - e) and at 1000 °C for 8 h (images f � j); a) and f) depict 

bright-field (BF) images; the following elemental distributions were analyzed by ESI: Co (b, g), 

La (c, h), Sr (d, i) and Zr (e, j). 
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Fig. 57 High-temperature XRD analysis of an LSC / GCO powder mixture  

LSC precursor powder and GCO powder ((Gd0.1Ce0.9)O1.95, Treibacher Industrie AG, Althofen, 

Austria) for RT < T < 1200 °C; Pt (▲, PDF#00-004-0802), (Gd0.1Ce0.9)O1.95 (Δ, PDF#01-075-0161),  

(La0.5Sr0.5)CoO3-δ (■, PDF#00-048-0122), Co3O4 (○, PDF#00-043-1003) and CoO (●, PDF#01-071-

1178). 

4.2.4 Electrochemical Properties of the Nanoscaled LSC Cathodes 

Nanoscaled (La0.5Sr0.5)CoO3-δ thin films were successfully deposited on 8YSZ electrolytes 

(�design 1�, Fig. 58a) and GCO buffer layers (�design 2�, Fig. 58d) by MOD. The deposition 

of viscous LSC sol via MOD and consecutive thermal treatment (rapid thermal annealing at 

170 °C, 700 °C and 900 °C for 5 min each) led to homogeneous, crack-free LSC surfaces 

(Fig. 58b, Fig. 58e). In the case of LSC on YSZ, a slightly higher porosity was observed in 

comparison with LSC on the screen-printed GCO buffer layer. The SEM side-view images of 

the LSC / YSZ (Fig. 58c) and the LSC / GCO interfaces (Fig. 58f) display LSC thin films with 

a thickness of 200 - 300 nm and good adhesion to the adjoining electrolyte material.  

Fig. 59a depicts the temperature profile for the electrochemical impedance analyses of LSC 

on YSZ (�design 1�) and LSC on GCO (�design 2�) where each EIS measurement is denoted 

by an arrow. The complex impedance plot (Cole-Cole view) of a symmetrical cell (□, �design 

1�) at 850 °C is shown in Fig. 59b. Three regimes can be identified from the plot, denoted as 

(I), (II) and (III). Regime (I) is attributed to the ohmic losses of the electrolyte and the 

(negligible) contact resistance [223] of the setup. The regimes (II) and (III) are associated 

with electrochemical and gas diffusion processes. The total area specific polarization 

resistance ASRpol of the cathode is given by the intercept of the spectra with the real axis 

divided by a factor of two to account for the electrodes on both sides. The temperature-

dependent cathode-polarization losses of the nanoscaled LSC thin-film cathode on YSZ (□, 

�design 1�) and GCO (■, �design 2�) are given in Fig. 59c. From  500 °C to  650 °C the ASRpol 
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values decrease continuously with increasing temperature from 489 mΩ·cm² (Tcell = 498 °C) 

to 85 mΩ·cm² (Tcell = 649 °C) (LSC on YSZ) and from  910 mΩ·cm² (Tcell = 489 °C) to 

81 mΩ·cm² (Tcell = 643 °C) (LSC on GCO). As from 650 °C upwards, the performance of   

LSC / YSZ and LSC / GCO differs significantly. In the case of LSC / YSZ (□, �design 1�) the 

gradient flattens out until 750 °C, changes sign for further increasing temperature and 

reaches 48 mΩ·cm² at 850 °C. Within 20 h at 850 °C the ASRpol increases to 78 mΩ·cm²  

(Fig. 59d), resulting in an ASRpol of 94 Ω·cm² at 498 °C after cooling-down.  

8YSZ substrate
(100 µm)

(La,Sr)(Co,Fe)O3-δ
(porous, 30µm)

(La0.5Sr0.5)CoO3-δ
(300 nm)

3.5YSZ substrate
(100 µm)

(La,Sr)(Co,Fe)O3-δ
(porous, 30 µm)

GCO (thick-film, 5 µm)

b) Top view: nanoscaled LSC thin film

c) Side view: LSC / YSZ interface

RTA (Tmax = 900 °C)

600 nm600 nm

a) �design 1�: 
LSCF | LSC thin film | YSZ

600 nm600 nm

LSC thin film

d) �design 2�: 
LSCF | LSC thin film | GCO | YSZ

e) Top view: nanoscaled LSC thin film

f) Side view: LSC / GCO interface

RTA (Tmax = 900 °C)
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Fig. 58 Symmetrical cells prepared for electrochemical testing 

comprise a 30 µm thick screen-printed LSCF current collector and a nanoscaled LSC thin-film 

cathode deposited on a) an 8YSZ electrolyte (�design 1�) and d) a GCO buffer layer (�design 

2�); SEM top-view images of nanoscaled LSC thin films on YSZ (b) and GCO (e) after rapid 

thermal annealing (RTA), SEM cross-section images of LSC / YSZ (c) and LSC / GCO (f) 

interfaces. 

The applied temperature profile and the dwell of 20 h at 850 °C leads to a tremendous 

change in cathode performance, yielding an increase by two orders of magnitude for ASRpol 

of LSC / YSZ at 498 °C (489 mΩ·cm² to 94 Ω·cm²). In contrast, in the case of LSC / GCO (■, 

�design 2�), an excellent durability even at temperatures as high as 845 °C could be 

observed: The ASRpol decreases continuously for increasing temperature between 492 °C 
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and 845 °C and results in a fairly low value of 23 mΩ·cm² at 845 °C. During 20 h dwell at 

845 °C the ASRpol shows constant performance and levels off at 21 mΩ·cm² (Fig. 59d). 

During cooling-down the ASRpol matches approximately the initial values during heating-up, 

resulting in an increase of the polarization resistance of 25 % between start and finish of the 

measuring cycle (910 to 1140 mΩ·cm² at 492 °C)  (Fig. 59c).  

0.0 0.65 0.70 0.75

-0.050

-0.025

0.000

Z´ / Ω·cm²
Z

´´
/ 
Ω

·c
m

²
0.0 0.65 0.70 0.75

-0.050

-0.025

0.000

Z´ / Ω·cm²
Z

´´
/ 
Ω

·c
m

²
0 20 40 1000 2000 3000

0

500

1000

T
 /
 °

C

t / min

Processing
(RTA)

Electrical
characterization

...

EIS measurement

2·ASRpol

(I) (II) (III)

100 mHz

400 kHz
1.9 Hz

30 kHz

11
22

33

22T = 850 °C

a) b)

d)

(□ �design 1�, sample ID: MOD094c)

500 600 700 800
0.01

0.1

1

10

100

33

22
11

33

A
S

R
p

o
l
/ 
Ω

·c
m

²

T / °C

( □ �design 1�, sample ID: MOD094c 
■ �design 2�, sample ID: MOD086 )

c)
( □ �design 1�, sample ID: MOD094c 
■ �design 2�, sample ID: MOD086 )

(�design 1� and �design 2�)

0 5 10 15
0.00

0.05

0.10

t / h

A
S

R
p
o

l
/ 
Ω

·c
m

²

 

Fig. 59 Symmetrical EIS characterization of LSC thin-film cathodes 

a) Temperature history of samples: processing (rapid thermal annealing (RTA)) followed by 

electrical characterization during heat-up (1), 850 °C (2) and cool-down (3); arrows (↓) indicate 

impedance measurements (EIS); b) Nyquist plot of a nanoscaled LSC thin-film cathode on 

8YSZ (�, �design 1�) in a symmetrical setup at 850 °C: (I) ohmic resistance, (II+III) polarization 

resistance ASRpol; c) ASRpol temperature course for a nanoscaled LSC thin-film cathode on i) 

YSZ (�, �design 1�) and on ii) GCO (■, �design 2�)  with heat-up (1), 850 °C (2) and cool-down 

(3); d) monitoring of ASRpol for 20 hours at T = 850 °C for nanoscaled LSC thin-film cathode on 

i) YSZ (�, �design 1�) and on ii) GCO (■, �design 2�). The microstructure of the specimens is 

depicted in Fig. 58; note that the microstructure of the samples MOD094b and MOD094c 

corresponds.  

The error bars in Fig. 59c - Fig. 59d account for uncertainties during the characterization, 

namely the reproducibility of the thin-film processing as well as geometrical considerations 

associated with the screen-printing process of the current collector (layer misalignment, 
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paste flow) and the measuring accuracy of the electrical equipment (manufacturers� data)  

(cf. 3.3.2).  

The results of Fig. 59c - Fig. 59d must be attributed to chemical or structural changes within 

the LSC / YSZ system as a function of thermal treatment and time, whereas the LSC / GCO 

system exhibits a stable performance. According to [156-159, 161, 251], the formation of 

zirconates at the LSC / YSZ interface has been reported for T g 900 °C. The results shown in 

Fig. 59d (Tmax = 850 °C), however, suggest application of an extended testing procedure 

(100 h) at even lower temperatures, thus allowing an assessment of the maximum 

temperature, up to which the material combination LSC / YSZ remains stable. The slight 

increase in ASRpol of the LSC / GCO, on the other hand, might be attributed to morphological 

changes of the nanoscaled LSC thin film, which was previously studied in chapter 4.2.2. 
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Fig. 60 Normalized ASRpol of LSC thin-film cathodes vs. annealing temperature 

at i) 600 °C (nanoscaled LSC on YSZ (�, �design 1�)) and at ii) 650 °C (nanoscaled LSC on GCO 

(■, �design 2�)) after aging between 500 °C and  950 °C for 100 h, respectively; dashed lines are 

guide to the eye 
7
. 

Fig. 60 shows the results of this extended testing procedure, applied to LSC / YSZ and 

LSC / GCO samples, respectively. After annealing at different temperatures between 500 °C 

and 900 °C for 100 h, the ASRpol was subsequently determined at a fixed temperature in 

each case and normalized with respect to its initial value (ASRpol (0 h)). In the case of the 

LSC / YSZ samples, annealing led to a very pronounced increase of the normalized ASRpol, 

commencing at a threshold value of about 500 °C and ranging from a factor of 1.16 

(annealing at 500 °C for 100 h) to 231.7 (900 °C, 100 h). 

For a better understanding of this rise of the polarization resistance of the LSC / YSZ cells (□, 

�design 1�), the impedance spectra at the dwell (20 h) at T = 850 °C were analyzed by 

calculating the distribution function of relaxation times (DRT, cf. chapter 3.3.3). The DRTs of 

                                                 
7 The effect of annealing on the polarization of nanoscaled LSC thin-film cathodes has been 

investigated by Holger Götz within the study project �Einfluss der Mikrostruktur auf den 

Polarisationswiderstand einer LSC-Nanokathode� (Influence of the Microstructure on the Polarization 

Losses of a nanoscaled LSC Thin-Film Cathode), 2007, IWE. 
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LSC / YSZ and LSC / GCO enable the distinct separation of the polarization processes    

(Fig. 61a, Fig. 62a). Whereas the gas phase process is approximately constant during the 

twenty hours dwell (○, Fig. 61b), the remaining polarization processes increase with 

operating time and cause the overall increase of the polarization resistance ASRpol in case of 

LSC / YSZ. As depicted in Fig. 59d the total area specific polarization resistance of the 

LSC / GCO cells (■, �design 2�) is constant over 20 h at 850 °C. The DRT graph (Fig. 62a) 

and its evaluation (Fig. 62b) depict both constant gas-phase polarization ASRgas and 

invariant remaining polarization processes.  
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Fig. 61 Analyses of the polarization losses of �design 1� at T = 850 °C over time 

a) Distribution of relaxation times ( )g Ä  (DRT [226]) versus 1/Ä  of the nanoscaled LSC thin-film 

cathode on YSZ (�design 1�) derived from the evaluation of EIS spectra ranging from t = 0 h to  

t = 20 h at T = 850 °C; gas-phase polarization (process III in Fig. 59b and Fig. 63) remains 

constant, charge-transfer polarization (process II in Fig. 59b and Fig. 63) generates a distinctive 

change in magnitude and frequency; b) ASRpol split up into gas-phase polarization (○) and 

charge-transfer polarization (●) with respect to measuring time at 850 °C. 
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The polarization resistance of the LSC / GCO samples shown in Fig. 60 (■, �design 2�), 

however, exhibited steady values after annealing at 650 °C for 100 h (normalized          

ASRpol = 1.08) and increased values for T g 750 °C (normalized ASRpol = 1.26 (750 °C, 

100 h), ASRpol = 1.42 (850 °C, 100 h), ASRpol = 2.43 (950 °C, 100 h)). As the chemical 

compatibility of LSC / GCO was previously proven (Fig. 57), this increase cannot be 

attributed to an interface reaction. Instead, the temperature dependency the ASRpol in Fig. 60 

(■) corresponds to the coarsening of the microstructure for T > 700 °C (Fig. 51b) suggesting 

a linkage between the two thin film properties. 
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Fig. 62 Analyses of the polarization losses of �design 2� at T = 850 °C over time 

a) Distribution of relaxation times ( )g Ä  (DRT [226]) versus 1/Ä  of the nanoscaled LSC thin-film 

cathode on GCO (�design 2�) derived from the evaluation of EIS spectra ranging from t = 0 h to 

t = 20 h at T = 850 °C; gas-phase polarization (process III in Fig. 59b and Fig. 63) and charge-

transfer polarization (process II in Fig. 59b and Fig. 63) remain constant. 
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The temperature dependency of the electrode conductivity (1 / ASRpol) is analyzed in Fig. 63 

(LSC / GCO cells, �design 2�). The complex impedance spectra at 650 °C (A) and 850 °C (B) 

(Fig. 63, right plots) show two major processes (II, III), which govern the total polarization 

resistance at the respective temperatures. 
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Fig. 63 Separation of ASRgas from ASRpol 

left: Temperature dependence of the electrode conductivity 1/ASRpol and right: Nyquist plots at 

650 °C (A) and 850 °C (B) of a nanoscaled LSC thin-film cathode on GCO (�design 2�). 

Semicircles II and III sum up to the total polarization resistance ASRpol (■), semicircle III is 

attributed to gas-phase polarization (○, ASRgas), semicircle II to oxygen-reduction polarization 

(●, mainly ASRex); fits are depicted in grey color. 

Throughout this work, a variety of processing parameters for the thin-film preparation were 

varied to obtain homogeneous LSC thin films with a distinct nanoporosity. In the course of 

the variation of deposition technique, solvent composition, number of coatings and 

temperature treatment by rapid thermal annealing, specimens with a variety of different 

microstructures were obtained. The polarization losses with respect to morphological 

properties of these LSC thin films are depicted in Fig. 64 and Fig. 65. The polarization losses 

range from ASRpol = 0.08 Ω·cm² to ASRpol = 2.66 Ω·cm² at 600 °C depending on film 

thickness (60 nm f t f 300 nm), particle size (10 nm f d f 70 nm) and film porosity (17.5% f 

¸ f 50%). The deposition technique and the number of coatings govern the film thickness as 

shown exemplarily in Fig. 47; the mean particle size is determined by the calcination 

procedure, i.e. RTA. All morphological parameters were obtained from the SEM 

examinations and optical valuations and are therefore afflicted with errors as discussed in 

chapter 5.2.2. The correlation between the electrochemical and geometrical properties is 

derived by application of a transport model in chapter 5.2.2. 
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Fig. 64 SEM analyses of differently prepared LSC thin films  

in top-view (left) and cross-section (right); polarization resistance (ASRpol) at 600 °C, particle 

size (d), film thickness (t) and estimated porosity (¸) are given in between. For the evaluation of 

the electrochemical and geometrical properties, the following errors were assumed:          

ASRpol ± 29.3%, d ± 25%, t ± 10%, ¸ ± 10% (absolute error). 
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Fig. 65 SEM analyses of differently prepared LSC thin films  

in top-view (left) and cross-section (right); polarization resistance (ASRpol) at 600 °C, particle 

size (d), film thickness (t) and estimated porosity (¸) are given in between. For the evaluation of 

the electrochemical and geometrical properties, the following errors were assumed:         

ASRpol ± 29.3%, d ± 25%, t ± 10%, ¸ ± 10% (absolute error). 
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5 Discussion 

In this chapter, the results of the conducted experiments concerning the transport properties 

of nanoscaled yttria-doped zirconia (5.1) and lanthanum strontium cobaltite (5.2) thin films 

are discussed. Special emphasis is put on potential IT-SOFC application of the thin films at 

500 °C f T f 750 °C. 

5.1 Grain-Size Effects in Nanoscaled YSZ Thin Films 

Grain-size effects at the nanoscale potentially facilitate improved charge transport in yttria-

doped zirconia. Significantly enhanced transport properties, in turn, are of profound interest 

for YSZ thin-film electrolytes in IT-SOFC application. However, the effects of grain-size on 

the transport properties in nanoscaled YSZ thin films are controversially discussed in 

literature. Enhanced oxygen diffusion at the interfaces was observed by [66-70] (cf. chapter 

2.1.3). On the other hand, several groups reported a �blocking effect� of the grain 

boundaries, which entails a decreasing electrical conduction upon decreasing of the mean 

grain size  [41, 45, 71-78].  

To elucidate the role of interfaces at the nanoscale, this work studies the electrical transport 

properties of 8YSZ thin films within a broad grain-size regime. This chapter discusses the 

processing, design and electrical characterization of nanoscaled YSZ thin films. Special 

emphasis is put on the evaluation of grain-size effects. 

For the evaluation of the transport properties with regard to microstructure, thin-film 

electrolytes were processed with a broad variation of the mean grain size. A sol-gel method 

was applied for the preparation of dense YSZ thin films on insulating sapphire substrates. As 

shown by Bockmeyer and Löbmann for sol-gel derived TiO2 [207], temperature treatment 

turned out to be crucial for the surface quality of the thin films. A rapid thermal annealing step 

at 500 °C (10 min) and subsequent calcination at 650 °C f T (24 h) f 1400 °C led to crack-

free thin films with a broad grain-size distribution (Fig. 29). Since the sol-gel method contents 

itself with low processing temperatures compared to other chemical or physical thin film 

deposition techniques (chapter 2.3), possible carbon residues from the sol-gel process in the 

films are an essential issue. Thermal analyses of YSZ powder after RTA at 500 °C showed 

an exothermic chemical reaction between 600 °C and 800 °C (region III in Fig. 28). Since 

this reaction was accompanied with mass loss (15 wt%), this indicates the removal of 

remaining carbon compounds from the films. Additionally, a relaxation of the thin film was 

observed at 650 °C f Tcal f 850 °C correlating with the TG results. The samples, calcined at 

Tcal g 850 °C, however, are completely free of carbon residues. This was confirmed by high-

resolution transmission electron microscopy (HRTEM) studies, which did not evidence any 



5 DISCUSSION 

94 

amorphous phases in the thin films or residues of carbon remainings from the sol-gel 

precursors (Fig. 33). 

The stoichiometry of the yttria-doped zirconia films was evaluated to 8.3 mol% yttria. Single-

phase crystallization was shown by XRD analysis (Fig. 30). However, TEM studies revealed 

the presence of tetragonal precipitates in the cubic matrix (Fig. 32). These precipitates were 

homogeneously distributed and with a size of a few Å. In general, Butz et al. stated that 

tetragonal precipitates are always present in 8 mol% yttria-doped zirconia materials � even in 

state-of-the-art polycrystalline 8YSZ electrolytes, which are often considered as completely 

stabilized in the cubic phase [55, 215] (cf. YSZ phase diagram in Fig. 6). Due to the small 

size of the tetragonal precipitates and their homogeneous distribution in the YSZ grains and 

due to the fact that these precipitates do not accumulate at the grain boundaries, they do not 

alter the transport properties of the thin films by an extent distinguishable by state-of-the-art 

experimental methods. For potential long-term stability in IT-SOFC application, however, the 

tetragonal precipitates may be a cause for degradation as discussed in 2.1.2 (Fig. 8).  

Grain boundaries in nanocrystalline YSZ electrolytes deserve particular attention because 

they might strongly affect the overall ionic conductivity. The segregation of alumina and silica 

to the grain boundaries, for example, was found to significantly increase the grain-boundary 

resistance as investigated by Aoki et al. [80] and others [81, 82]. However, extensive EDXS 

analyses confirmed, within the detection limits, the absence of contaminants in the sol-gel 

layers. Applying HRTEM, the existence of amorphous phases at the grain boundaries can be 

excluded as well � at least for calcination temperatures Tcal g 850 °C (Fig. 33). A local 

segregation of yttrium ions in the grain-boundary regions is expected to lead to a local 

depletion of the tetragonal phase in the vicinity of grain boundaries [252, 253]. This was 

disproved by experimental observations as well (Fig. 32). Additionally, TEM analysis 

determined a minor volume percentage of nanopores at T < 1100 °C. The presence of 

porosity can be understood by considering the preparation method based on a sol-gel 

precursor with a considerable volume fraction of organic material. During the RTA process, 

the organic components of the precursor are pyrolyzed resulting in pores (Fig. 29). Upon 

heat treatment, the YSZ layers densify, accompanied by grain growth (Fig. 29, Fig. 31), 

resulting in completely dense YSZ films for calcination temperatures of T > 1100 °C.  

Depending on calcination temperature, the mean grain sizes of the investigated YSZ thin 

films could be varied by two decades, ranging from 5 nm (Tcal = 650 °C, tdwell = 24 h) over    

36 nm (Tcal = 1000 °C, tdwell = 24 h) to 782 nm (Tcal = 1400 °C, tdwell = 24 h). This grain size 

variance is considerably larger than in other studies on zirconia thin films [231-237], but 

correlates well with the studies of 8YSZ thin films on sapphire substrates performed by 

Kosacki et al. [66]. Fig. 35 suggests exponential grain growth with two grain-growth regimes 

with different activation energies at 650 °C f Tcal f 1100 °C and 1100 °C f Tcal f 1400 °C. 

Grain growth is known to be limited during the densification of microcrystalline ceramic 

materials [254] and increases upon full densification as observed by Díaz-Parralejo et al. for 

3YSZ films [231]. Therefore, the nanoporosity in the studied 8.3 mol% yttria-doped zirconia 
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thin films (Fig. 35, right axis) is considered to impede grain growth until approximately     

1100 °C. At higher calcination temperatures, the samples completely densify and coarsen 

during the calcination period. 

Electrical impedance spectroscopy (EIS) was applied to evaluate both the total resistance of 

the thin films and the individual losses related to grain and grain-boundary transport. The 

impact of nanoporosity for T f 850 °C was evaluated by a 3-dim model of the thin-film 

microstructure (Fig. 36). With increasing mean grain size, the total electrical conductivity of 

the YSZ thin films increases continuously by 1 - 2 decades reaching a plateau at d ≈ 500 nm 

(Fig. 37). The conductivity of this plateau coincides well with the electrical conductivity of 

coarse crystalline Itochu-8YSZ. Due to the known transference number of unity of the 

polycrystalline electrolyte (Fig. 3), this suggests that the measured charge transport in the 

thin films is of pure ionic character. Except the sample with the smallest grains (d = 5 nm,  

Tcal = 650 °C, MOD056), all others show Arrhenius-type conductivity yielding activation 

energies of EA = 1.13 ± 0.02 eV. These activation energies correlate with the activation 

energies for the grain-boundary conductivity summarized in Table 1 suggesting that the total 

electrical conductivity of the thin film is governed by the grain-boundary transport. 

The general trend of Fig. 38 is a substantial decrease in ionic conduction upon increase of 

the grain-boundary density. These findings are in contrast to the observations of Kosacki et 

al. [66] who found the ionic conduction in nanoscaled 8YSZ thin films to be substantially 

enhanced. It is noteworthy, that the thin films studied in [66] were processed very similar to 

the samples investigated in this work: 8 mol% yttria-doped zirconia thin films were processed 

on sapphire substrates via a polymeric precursor spin-coating method (cf. Table 2). 

The conductivity data of the thin films obtained in this work (grey) and by Kosacki et al. [66] 

(black) are depicted in Fig. 66. Comparing similar mean grain sizes (d = 14 / 20 nm vs.         

d = 782 / 2400 nm), the controversial trend becomes apparent. Whereas the activation 

energies of the microcrystalline thin films approximately coincide (EA = 1.11 / 1.19 eV) and 

the data match well with the conductivity data of coarse crystalline Itochu-8YSZ (Fig. 66, 

inset), the activation energies for the nanocrystalline grains differ distinctly (EA = 0.93 /     

1.14 eV) suggesting different transport processes in the thin films. With decreasing mean 

grain size, Kosacki et al. observed an enhancement of about two orders of magnitude at 

600 °C in the ionic conductivity for nanocrystalline YSZ. Whereas Kosacki et al. attributed the 

increase in electrical conduction to enhanced ion mobility in the extended grain-boundary 

volume, the data of this work suggests a blocking of oxygen ions at the grain-boundary. This 

is supported by the DRT analysis (Fig. 39), which shows two distinguished electrochemical 

processes: in accordance to reported models (e.g. [41, 255]), the low-frequency process was 

attributed to the grain-boundary process and the high-frequency process to the bulk transport 

of oxygen ions (Fig. 40). Whereas the latter is approximately constant for all investigated 

samples, the resistance related to the grain-boundary transport increases with decreasing 

mean grain size.  
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Fig. 66 Arrhenius plot of the total electrical conductivity with respect to mean grain size 

Whereas the findings of this work show that conductivity decreases with mean grain size (grey 

data points), Kosacki et al. [66] observed an increase of electrical conduction at the nanoscale.  

Inset: extrapolated electrical conductivity of a coarse crystalline 8YSZ electrolyte (Itochu, 

Japan) obtained by Simonin [38]. 

From CNLS fits of the complex impedance spectra (Fig. 41), the electrical grain-boundary 

thickness could be derived to 4.36 nm f ·gb f 6.13 nm. This thickness was found to be 

independent of grain size (232 nm f d f 782 nm) and measuring temperature (200 °C f T f 

400 °C). The grain-boundary thickness is in good agreement with values for polycrystalline 

8YSZ derived by Guo et al. (·gb = 4.8 nm [41, 87]), Verkerk et al. (·gb = 5.4 nm [45]) and 

Boulfrad et al. (·gb = 5.15 ± 2.45 nm [256]). It is noteworthy, that the grain-boundary 

thickness decreases significantly for zirconia dopants that deviate from 8 mol% yttria as 

shown in Table 5. 

Table 5 Evaluation of the grain-boundary thickness ·gb in doped zirconia samples 

Stoichiometry /  

doping of ZrO2 

film / polycrystal d / nm ·gb / nm source 

8.3 mol% Y2O3 thin film 232 / 548 / 782 5.3 this work 

8 mol% Y2O3 polycrystal 16,000 4.8 [41, 87] 

8 mol% Y2O3 polycrystal 350 � 55,000 5.4 [45] 

8 mol% Y2O3  polycrystal  25 / 51 2.8 / 3.5 [256] 

8 mol% Y2O3  polycrystal  76 / 95 7.6 / 2.7 [256] 

10 mol% Y2O3 thin film - 1.6 [67] 
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Stoichiometry /  

doping of ZrO2 

film / polycrystal d / nm ·gb / nm source 

2.5 mol% Y2O3 polycrystal 60 1.3 [77] 

15 mol% CaO polycrystal 140 � 11,400 1 [80] 

 

Applying the brick-layer model, the specific bulk and grain-boundary conductivities could be 

obtained accounting for the charge transport in grains and grain boundaries with respect to 

their specific geometry. The conductivities were found to be Arrhenius-type with activation 

energies of EA = 1.085 ± 0.005 eV for the bulk process and EA = 1.145 ± 0.005 eV for the 

grain-boundary process (Fig. 42). This deviation in activation energies corresponds to the 

findings of [41, 43, 45, 46] as summarized in Table 1. Since the bulk conductivities excel the 

specific grain-boundary conductivities by approximately two decades (Fig. 42), the previously 

discussed blocking effect of the grain boundaries is confirmed. For 232 nm f d f 782 nm, the 

specific bulk and grain-boundary conductivities were independent of the mean grain size, 

where deviations of the curves among each other were mainly related to the brick-layer 

model (cf. chapter 2.1.4). Thus, constant values of s

gbÃ  suggest the presence of trivial size 

effects [62], i.e. the physical effects are augmented by the high interfacial density but do not 

change principally upon geometry modifications at 232 nm f d f 782 nm. For smaller grains             

(d f 36 nm), the resolution of the impedance data is limited by the large ratio of Rgb / Rg. In 

this grain-size regime, the bulk process cannot be separated from the grain-boundary 

transport and thus, the grain-boundary thickness ·gb cannot be calculated from the data. In 

order to evaluate the existence of potential grain-size effects at the nanoscale, the total 

resistance of the 8YSZ thin films featuring grain sizes of 5 nm f d f 36 nm is calculated by 

the application of the brick-layer model and compared to the experimental results.  

Possible transport paths in the YSZ thin films with respect to bulk (�g�), grain boundary (�gb�) 

and grain-boundary core (�core�) are depicted in Fig. 67. Following [76], the charge transport 

can be described by electrical equivalent circuits consisting of three parallel transport paths. 

Generally, both ionic �ion� and electronic �el� conduction may occur, firstly through the bulk 

and perpendicular to the grain boundaries, secondly parallel to the space-charge layers in 

the grain boundaries and thirdly parallel in the grain-boundary core. 

Then the total thin-film resistance Rtf is given by 

 ( ) ( ) ||, ||, , ,, ,

1 1 1 1 1 1 1
ion el core ion core elion ion el el

tf gb gb gb gbg gb g gb
R R R R RR R R R⊥ ⊥

= + + + + +
+ +

 Eq. 47 

The transport properties of the YSZ thin films evaluated in this work can be summarized as 

following: The overall conductivity of the thin films with the largest grains (d = 782 nm) 

matches with the conductivity of ionically conducting electrolytes (Fig. 37). Thus, electronic 

conduction parallel to the grain boundaries el

gbR ||,  and ,core el

gbR  or perpendicular to the grain 

boundaries via el

gR → ,el

gbR⊥  can be excluded. With decreasing mean grain size, the overall 

resistances of the films increase. However, assuming the presence of ionic conduction 
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parallel to the grain boundaries ion

gbR ||,  and in the grain-boundary core ,core ion

gbR , an increase of 

the grain-boundary density would facilitate ionically conducting channels in the thin film and 

inevitably lead to a reduction of Rtf. Thus, the ionic transport parallel to the grain boundaries 

or in the grain-boundary core must be nil or negligible compared to the bulk transport. This 

suggests that the transport in the YSZ thin films occurs via ion

gR  → ,ion

gbR⊥ , where the intrinsic 

transport properties of the bulk and the grain boundaries are found to be constant upon 

grain-size reduction from 782 nm to 232 nm. 
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Fig. 67 Brick-layer model and equivalent circuits applied for nanoscaled YSZ thin films 

a) Possible transport paths in the crystalline structure; b) equivalent electrical circuits of the 

ohmic losses where �ion� denotes the ionic charge transport and �el� the electronic charge 

transport. 

Based on these considerations, the thin-film resistances for smaller grains (5 nm f d < 

232 nm) can be calculated. As a thought experiment, it is assumed in the following that the 

bulk and grain-boundary characteristics ( s

gÃ , s

gbÃ , ·gb) can be applied at the nanoscale. 

Evidence for true size effects will be provided, if the simulated values excel the measured 

ones. On the other hand, trivial size effects will be proved, if the values coincide. 

With reducing mean grain size the effective geometrical lengths of the thin film change 

according to the brick-layer model (Fig. 68). Thus, for the bulk transport, the effective 

electrode clearance lcl, the thin-film thickness t and the electrode length lel are reduced by the 

number of grain boundaries in the respective dimension times their electrical thickness ·gb. 

For the grain-boundary transport, the effective electrode clearance equals (lcl / d) x ·gb, 

whereas the entire thin-film cross-section (lel x t) is utilized for conduction. The effective 

geometrical properties are given in Fig. 68. Additionally, the influence of porosity determined 

by TEM analysis (Table 4) and FEM modeling (Fig. 36), is considered in the model. 
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Fig. 68 Brick-layer model appraised for the evaluation of the total Rtf for d f 36 nm 

Whereas the transport path perpendicular to the grain boundaries is characterized by σg and 

σgb, the parallel path does not contribute to the overall conductance. 

For the calculation of the overall resistance of the samples with d f 36 nm, the bulk and 

grain-boundary characteristics of MOD059 (d = 232 nm) are applied to the brick-layer model. 

In Fig. 69, the measured data for the total thin-film resistance Rtf are given by symbols. An 

increase of Rtf with decreasing mean grain size can be observed consistently to Fig. 37. The 

modeled resistivity values are depicted as a straight line. Whereas the data coincide well for 

d = 36 nm (MOD058) and d = 14 nm (MOD057), the sample with the smallest grains            

(d = 5 nm, MOD056) deviates from the modeled values and exhibits a lower activation 

energy (■, Fig. 69). This may be related to the substantial release of the microstrain in the 

thin films observed between Tcal = 650 °C (e = 0.53% [229]) and 850 °C (e = 0.15% [229]) 

(Table 4) and / or to the layered structure and inhomogeneous pore distribution of MOD056 

and MOD057 created by the 10-fold dip-coating process and the low calcination temperature 

(Fig. 31). For calcination temperatures of Tcal g 850 °C, however, the application of the brick-

layer model coincides well with the experimental data.  

Thus for 14 nm f d f 36 nm, space-charge effects or other true size effects [62] are absent in 

this grain-size regime because they would entail a decrease of the measured resistance 

compared to the modeled one where only augmented effects with decreasing mean grain 

size are considered.  
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Fig. 69 Total resistances of the YSZ thin films Rtf with d f 36 nm 

Measurement data are depicted as symbols, modeled data are shown as straight lines; for the 

model, the previously obtained bulk and grain-boundary characteristics of the sample calcined 

at 1250 °C (MOD059) were applied to the brick-layer model according to Fig. 68. 

Contrarily to these observations, Kosacki et al. found the overall conductivity 
Kosacki et al.
totÃ  

significantly enhanced at the nanoscale [66]. The electrical conductivity increased as much 

as two orders of magnitude as the grain size approaches 20 nm. Kosacki et al. attributed this 

behavior to size-dependent grain-boundary impurity segregation. The decrease in activation 

energy from 1.34 eV for polycrystalline YSZ and 1.19 eV for the microcrystalline thin film to 

0.93 eV for nanocrystalline materials was related to enhanced ion mobility at the grain 

boundaries. Unique defect thermodynamics at the nanoscale, which determined the hopping 

energy for oxygen ions in the extended interfacial area, led, according to the authors, to 

beneficial transport properties at the nanoscale. 

For further analyses of Kosacki�s results, two main transport paths are assumed in the 

following: an ionic path through the grains and perpendicular to the grain boundaries 

(
,ion ion

g gbR R⊥+ ) and a parallel path in the space-charge region of the grain boundaries and in 

the grain-boundary core (
||,core

gbR , cf. Fig. 67). Where the first transport path has to be ionic 

due to the ionic conduction of the YSZ bulk, the second transport path may involve both ionic 

and electronic conduction. These assumptions lead to a simplification of Eq. 47 to 

 ( )Kosacki et al. ||,,

1 1 1
coreion ion

tf gbg gb
R RR R⊥

= +
+

 Eq. 48 

By application of the brick-layer model, Eq. 48 yields to 



5.1 GRAIN-SIZE EFFECTS IN NANOSCALED YSZ THIN FILMS 

101 

 

1

||, Kosacki et al.
,

1 1 1

1

gbcore

gb tf ion ion
gbgb g gb

d

d

d

·
Ã Ã

·· Ã Ã

−

⊥

» ¿» ¿¼ À¼ À
¼ À¼ À= ⋅ − ⋅ + ⋅
¼ À¼ À−¼ À¼ À½ Á½ Á

 Eq. 49 

where d = 20 nm [66], and gb· , 
ion

gÃ  and 
,ion

gbÃ ⊥
 are taken from this work. At T = 300 °C, this 

yields a parallel grain-boundary conductivity 
||,core

gbÃ  of 7.37·10-2 S/m, which is approximately 

120 times the bulk conductivity of 8YSZ. For the grain-boundary thickness of 1 nm assumed 

by Kosacki et al., 
||,core

gbÃ  reaches even higher values (636 times the bulk conductivity of 

8YSZ). This conductivity parallel to the grain boundaries may possess ionic and / or 

electronic character. Assuming a true grain-size effect, i.e. the space-charge region or the 

grain-boundary core facilitates better ionic conductivity than the bulk (by a factor of 120 / 

636), this may be linked to higher mobility or concentration of the oxygen vacancies. 

However, Tuller [23] and DeSouza et al. [257] speculated that the substantial rise of the 

conductivity observed by Kosacki et al. [66] may have originated from the influence of 

humidity on the exposed side of the specimens during the conducted experiments or strain in 

the studied films. In another work, Kosacki et al. investigated the influence of the film 

thickness on the ionic conductivity [67] where the thin films were epitaxially grown on (001) 

single crystal MgO substrates. According to this study, enhanced conductivity by protonic 

conduction evoked by water or hydroxyl groups can be excluded. However, previous 

observations by Kosacki et al. were confirmed: The interface related conductivity was about 

three to four orders of magnitude larger than that of the lattice with an activation energy of 

0.45 eV.  

One can only speculate about the reasons of this enhancement. Most probably, an electronic 

conducting path has been created during the processing of the thin films. It is hard to imagine 

that either the oxygen-vacancy concentration or the mobility of the vacancies can be 

increased so far that an increase of the overall conductivity by almost three decades is 

possible. Hence, most probably, electronic conduction occurs in the samples analyzed by 

Kosacki et al.. Charge and mobility of electronic conduction may easily be increased, e.g. by 

the unintentional contamination of the thin films during the processing. 

Similar effects of enhanced oxygen diffusion in nanocrystalline YSZ samples were observed 

by Knöner et al. [70] who reported an increase of the oxygen diffusion along the grain 

boundaries compared to the bulk by three orders of magnitude. DeSouza et al. [257], 

however, attributed this observation to open porosity and microcracks in the studied 

samples. DeSouza et al. themselves studied the oxygen diffusion in nanocrystalline (d ≈ 50 

nm) YSZ at 500 f T f 700 °C by 18O / 16O annealing and consecutive SIMS analyses [257]. 

In contrast to the studies of Kosacki et al. and Knöner et al., DeSouza et al. did not observe 

enhanced grain-boundary diffusion, since the diffusion data was close to those found for 

single crystalline material, the authors concluded that the grain boundaries are neither paths 

of hugely enhanced oxygen diffusivity nor paths of hugely reduced diffusivity. 
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The grain boundaries of nanoscaled YSZ thin films were found to hinder the charge transport 

parallel and perpendicular to the grain boundaries. This, consecutively, means that the 

mobility of the oxygen vacancies is not increased because of �interconnected excess free 

volume� [23], but decreased in the grain-boundary region because of the low symmetry at the 

fringe of the crystal lattice [257]. Additionally, the grain boundaries are likely to be depleted of 

oxygen vacancies, which is in contrast to the proposed nanoionics effect. Instead of a 

positive space charge as discussed in Fig. 10, the depletion of oxygen vacancies in the 

space-charge regions leads to a negative charge because of the immobile [ ]ZrY′  ions (Fig. 

70). To account for electroneutrality, the space-charge core needs to be positively charged, 

e.g. by an accumulation of oxygen vacancies OV••⎡ ⎤⎣ ⎦ . However, the core itself does not 

necessarily provide enhanced oxygen-diffusion properties either because of a potential 

clustering of the vacancies (cf. discussion of Fig. 4), which consecutively causes a 

substantial decrease of the oxygen-vacancy mobility. In addition, fast-ion conduction requires 

a crystal structure of high symmetry and the grain-boundary core has to be considered as a 

region of greatly reduced symmetry.  
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Fig. 70 Schematic representation of two YSZ grain boundaries as studied in this work 

Area enclosed by the dotted line is electrically neutral. The grain boundaries were found to be 

insulating, thus, possibly depleted of oxygen vacancies. Consecutively, the space charge is 

negative. To preserve electroneutrality, the grain-boundary core needs to be positively 

charged, e.g. by accumulation of OV••
 at the core. Subsequent clustering of the vacancies 

entails low charge-carrier mobility and low conductivity. 

This model of the space-charge regions (depletion of oxygen vacancies) is supported by the 

work of Guo et al. [41, 75, 76, 87]. The authors observed an increase of the bulk and grain-

boundary conductivity upon exposing the samples in a reduced environment and thereby 

generating oxygen vacancies [76]. Since grain-boundary conduction increased more than 

bulk conduction, especially the increase of charge-carrier concentration in the grain-

boundary region facilitated improved ionic transport. The authors concluded that the charge-

carrier distribution (depletion of oxygen vacancies and accumulation of electrons) in the 

space-charge layers is responsible for the electrical properties of ZrO2 grain boundaries. 
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Hence, the space-charge regions at the grain boundaries of 8YSZ thin films are insulating 

irrespective of grain size. For a potential application as IT-SOFC electrolytes, the reduction of 

the mean particle size seems to be counterproductive. 

5.2 Nanoscaled (La0.5Sr0.5)CoO3-δ Thin-Film Cathodes 

Since stability is a critical issue for the potential application of nanoscaled LSC cathodes and 

is prerequisite for the interpretation of their transport properties, a separate presentation of 

the stability regime in terms of microstructure and interface is given in 5.2.1. The transport 

properties, i.e. the oxygen-reduction mechanism, of the thin-film cathodes are discussed in 

5.2.2. The chapter concludes with a comparative review of high-performance SOFC 

cathodes. 

5.2.1 Stability Regime of Nanoscaled LSC Thin-Film Cathodes 

For the insight into the cathode polarization mechanism and its potential application as IT-

SOFC cathode, the stability of the nanoscaled LSC thin films is of profound interest. 

Therefore, the morphological and chemical stability of the cathode with special emphasis on 

the LSC / YSZ interface is discussed. 

a) LSC thin film (as-prepared) b) LSC thin film (after calcination)
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Fig. 71 Model for chemical decomposition of the LSC thin films on YSZ (�design 1�) 

a) as-prepared LSC thin films exhibit a rhombohedral distortion (cf. XRD analyses, Fig. 48), 

which suggests an A-site deficiency (Sr) and a B-site surplus entailing potentially small Co 

precipitates in the range of a few nm (below or near the XRD detection limit, cf. XRD analyses 

after RTA, Fig. 48a, inset) in the ABO3 perovskite structure; b) upon annealing (e.g. 700 °C, 8 h) 

mobile Sr cations diffuse to the interface and chemically react with Zr to SrZrO3                       

(cf. examinations by XRD (Fig. 48, Fig. 54), SEM (Fig. 55), EFTEM (Fig. 56)). The SZO phase 

increases A-site deficiency and B-site surplus, respectively, and results in the growth of the Co 

precipitates as shown by XRD and EFTEM analyses. 

The targeted stoichiometry of the (La1-xSrx)CoO3-δ (x = 0.5) thin films was ensured by the 

thorough analysis of the composition of the coating sols by inductively coupled plasma 

atomic emission spectroscopy (ICP-AES, chapter 3.1.3). After rapid thermal annealing and 

accompanying crystallization, the LSC grains in the thin films were found to be single-phase, 
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though rhombohedrally distorted instead of exhibiting the cubic perovskite structure (LSC / 

GCO, Fig. 48b). According to Petrov et al. [108] and Mizusaki et al. [109], this rhombohedral 

distortion is caused by a La / Sr ratio greater than unity (Fig. 15) suggesting a depletion of Sr 

in the cathode material. Moreover, due to its extremely narrow stability field (0.997 < La / Sr 

< 1.003) even a slightly depleted Sr concentration on the A-site of the ABO3 perovskite 

suggests a surplus of Co ions, thus the precipitation of cobalt oxide, on the B-site (chapter 

2.2.2).  

From thermogravimetric analysis (TG, Fig. 43, Fig. 44, Fig. 52) and high-temperature X-ray 

diffraction studies (HT-XRD, Fig. 45) of the LSC precursor powder, the following statements 

can be derived: During rapid thermal annealing (RTA at 170 °C, 700 °C, 900 °C) constant 

weight of the crystallized LSC phase is observed from 700 °C. Even during calcination at 

850 °C (16 h), the measurements do not indicate any Sr evaporation or the depletion of other 

chemical elements. According to the ICP-AES results and the targeted stoichiometry prior to 

crystallization, this suggests that the Sr depletion occurs between 250 °C and 700 °C. This is 

supported by the HT-XRD data, which shows the precipitation of cobalt oxide (Co3O4) at 

700 °C < T < 750 °C after calcination for 30 min at each measurement temperature. With 

regard to the detection limit of the XRD, cobalt oxide precipitates are likely to be present in 

the powder mixture at even lower temperatures. The lacking of the cobalt phase in the XRD 

spectrum of the LSC / GCO thin film (Fig. 48b) can be explained by the small size of the 

cobalt precipitates after calcination of only 5 min (RTA) in comparison to the higher 

calcination times of the HT-XRD experiments. In summary, although the deposited LSC thin 

films are apparently single-phase after sol-gel processing, it is highly probable that the thin 

films are slightly depleted of Sr, which entails the crystallization of cobalt oxide precipitates in 

the range of a few nanometers (Fig. 71a).  

While the XRD spectrum of the LSC / GCO sample (�design 2�) is free of secondary phases 

(with regard to the detection level of the setup, Fig. 48b), the LSC / YSZ sample (�design 1�) 

exhibits distinct signals of secondary phases, especially after calcination at 800 °C (10 h), 

which are attributed to SrZrO3 (SZO) and Co3O4 (Fig. 48a). According to the prior discussion, 

the detection of cobalt oxide suggests the depletion of Sr on the perovskite A-site. Whereas 

the HT-XRD analysis of pure LSC precursor powder identifies a small volume percentage of 

cobalt oxide from 750 °C (Fig. 45), but no increase of the phase until 1050 °C, the HT-XRD 

study of an LSC precursor / YSZ powder mixture detects an increasing cobalt oxide 

concentration with raising measuring temperature (Fig. 54). Hence, additionally to the 

indications for Sr evaporation during processing of the thin films, this increasing Co3O4 level 

suggests the presence of another depletion source: an interface reaction between Sr and Zr 

(from the YSZ substrate) and the crystallization of SrZrO3. According to the ternary phase 

diagram of the system La2O3-SrO-CoO [163], the formation of SZO results in a shift of the 

equilibrium towards CoO/LaCoO3 and the formation of Co and La rich secondary phases. At 

high temperatures (T g 950 °C), the La surplus also results in a chemical reaction with Zr to 

La2Zr2O7 (Fig. 54). The chemical reaction occurs right at the LSC / YSZ interface as shown 
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by SEM cross-section analysis (Fig. 55b) after annealing at 800 °C (100 h), where a distinct 

layer has formed between the LSC thin film and the YSZ substrate. Additional spatial 

information is obtained by element specific imaging of an LSC / 3.5YSZ interface after 

annealing at 700 °C (8 h) (Fig. 56a-e): a 42 nm broad reaction layer can be recognized, 

which is caused by the Sr diffusion to the LSC / YSZ interface and consecutive reaction with 

Zr. The depletion of Sr occurs in the complete thin film resulting in the precipitation of cobalt 

oxide grains in the range of tens of nanometers. These observations are consistent with the 

findings of Sase et al. [162] who detected an increased Sr concentration at the 

(La0.6Sr0.4)CoO3-δ / (100) YSZ interface by SIMS upon annealing at 700 °C (3800 h). The 

chemical segregation is even more pronounced for an LSC / 3.5YSZ sample calcined at 

1000 °C (8 h) (Fig. 56f-j). 

Thermodynamically, the interface reaction between (La0.5Sr0.5)CoO3-δ and ZrO2 and the 

crystallization of SZO and Co3O4 / CoO is predicted in the whole temperature regime of 

500 °C f T f 750 °C (Fig. 53). However, due to slow kinetics zirconates were formerly 

considered to precipitate at T g 900 °C [156-159, 161, 251] or very long annealing times at 

T = 700 °C [162]. The microstructural proof of the crystallization of SZO at even lower 

temperatures and shorter calcination times in case of nanoscaled LSC thin films amends the 

ongoing discussion of a crucial aspect. 

In contrast to thermodynamic calculations, which predict that lanthanum zirconate (La2Zr2O7) 

secondary phases arise for T > 800 °C (Fig. 53d), neither the results of the XRD analysis 

(calcination at 800 °C, Fig. 48a) nor the EFTEM studies (calcination at 1000 °C, Fig. 56 f - j) 

suggest the precipitation of La2Zr2O7 in the case of LSC / YSZ diffusion couples. This can be 

explained by the following: the high activity of Sr in contact with ZrO2 results in the SZO 

phase leading to the formation of the SZO structure. Thereby, the band-like SZO structure 

causes a spatial separation between the La-enriched LSC and the ZrO2 phase and inhibits 

the formation of LZO in case of the LSC thin films. In case of a powder mixture, however, the 

LZO phase can be proved for T > 900 °C (Fig. 54) by HT-XRD measurements consistently to 

the thermodynamic predictions. 

Additionally, a valency change from Co3O4 to CoO is determined between 850 °C and 

900 °C, which was also observed by Kweon et al. in a sol-gel derived LSC thin film [258]. 

This switch in the cobalt valency is consistent with the thermodynamic calculations (Fig. 53c) 

as well.  

Besides temperature induced microstructural changes of the LSC, morphological coarsening 

of the thin films is apparent with increasing annealing temperature (Fig. 49). The evaluation 

of the average grain size shows that grain growth remains insignificant during annealing at 

700 °C (as-prepared thin film: d = 55 nm, after annealing for 2 h: d = 60 nm, 10 h: d = 62 nm, 

100 h: d = 60 nm, Fig. 50). Until 800 °C self-limiting grain growth is determined, i.e. the grain 

coarsening stops at a maximum value (Fig. 51a). For T > 800 °C, the grain growth follows a 

non-parabolic grain growth law resulting ultimately a destruction of the nanoscale thin-film 

structure.  
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The chemical, microstructural and morphological stability of nanoscaled cathode layers with 

a nominal composition of (La0.5Sr0.5)CoO3-δ on YSZ electrolytes can be summarized as 

following. 

� Cobalt oxide precipitates in the range of a few nanometers are likely to be present in 

as-prepared thin films due to a Sr deficiency on the A-site of the perovskite (Fig. 71a). 

� Sr diffuses to the electrode / electrolyte interface and reacts with Zr to SZO at 

surprisingly low temperatures (Fig. 71b). 

� This leads to an inhomogeneous chemical composition of the cathode layer, where 

cobalt (II) oxide is formed (Fig. 71b). The CoO formation results from the shift of the 

composition towards Sr-poor conditions at the boundary between cathode and 

electrolyte. 

� Grain growth is self-limiting for T f 800 °C (Fig. 72). 
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Fig. 72 Stability regime of the LSC thin-film cathodes on a) YSZ and b) GCO 

The chemical interface reaction and the precipitation of cobalt oxide in �design 1� can be 

proved for T g 700 °C by EFTEM and HT-XRD (Fig. 56, Fig. 54); increasing polarization losses 

(Fig. 60) suggest a chemical reaction between Sr and Zr for T g 500 °C; whereas the overall 

stability of the LSC / YSZ design is governed by the chemical interface reaction, the stability of 

the LSC / GCO design is controlled by the coarsening of the microstructure, which is self-

limiting for T f 800 °C and classical for T > 800 °C entailing an increase of the polarization 

losses due to a reduction of the active surface as discussed in chapter 5.2.2. 

Both the results on the microstructural and morphological stability of the LSC thin films are 

amended by electrochemical experiments. The area specific polarization resistance ASRpol 

comprises the oxygen-reduction mechanisms at the cathode and is therefore taken as a 

benchmark for the catalytic activity of the cathode (chapter 2.2.1). Symmetrical cell 

measurements were performed not only to obtain the absolute values for the ASRpol but also 

to determine the relative electrical stability of the cathodes taking advantage of the high 

sensitivity of the electric testing method in comparison to microstructural investigations. 
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While a detailed discussion on the polarization losses is given in the next chapter, the 

stability of the overall ASRpol with respect to operating temperature and time shall be given 

here. During calcination at 850 °C the ASRpol data of the LSC / YSZ samples (�design 1�) 

show a significant increase over time (20 h) (Fig. 59d). Moreover, long-term measurements 

over 100 h show that this degradation of the polarization resistance is observed above a 

threshold value of about 500 °C (Fig. 60). The distribution of relaxation times (DRT) of the 

EIS spectra allocates the increase of the polarization resistance to the charge-transfer 

process (Fig. 61) at the LSC / YSZ interface (transport step (iv), cf. 5.2.2). Since the 

previously observed formation of zirconates occurs at the LSC / YSZ interface and since 

zirconates are known to be poorly oxygen ion conducting [164, 165] and thereby impede the 

ionic transport across the cathode electrolyte interface, the degradation of the ASRpol can be 

linked to the precipitation of strontium zirconate at the LSC / YSZ interface. The DRT further 

portends that the low frequency process (transport step (i), gas phase polarization) is 

constant during the dwell at 850 °C (○, Fig. 61b) and does not contribute to the increase of 

the ASRpol for the LSC / YSZ cells (�design 1�).  

The introduction of a gadolinia-doped ceria (GCO) buffer layer between the nanoscaled LSC 

thin film and the substrate entails an electrochemical stabilization (cf. Fig. 59c, Fig. 59d, Fig. 

60, Fig. 62). Due to its chemical compatibility to LSC (Fig. 57), GCO interferes the interface 

reaction [14, 21, 169-171] (the chemical compatibility between GCO and the cathode 

material LSCF was shown by [19, 20, 159, 172]) and successfully averts the precipitation of 

the SrZrO3. These cells (�design 2�) also exhibit a slight increase of the polarization losses 

after annealing for 100 h at T = 750 °C (plus 26 %, Fig. 60). Given the chemical stability of 

the LSC / GCO interface, it is shown in the next chapter, that this increase must be attributed 

to a coarsening of the thin-film microstructure during the EIS measurements (Tmax = 950 °C) 

and a diminution of the electrochemically active LSC surface (cf. Fig. 51, where grain growth 

of the LSC thin films on YSZ was observed for T > 700 °C). The reduction of the surface area 

upon annealing at 800 °C (4 h) was also held responsible by Beckel et al. [97] for the noted 

increase of the ASRpol in the case of (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ thin films. 

The electrical stability of nanoscaled LSC cathode layers on YSZ and GCO substrates can 

be summarized as following. 

� A stable oxygen-reduction reaction at the cathode is observed for T f 500 °C for   

LSC / YSZ (Fig. 72a). 

� A stable oxygen-reduction reaction at the cathode is observed for T < 750 °C for   

LSC / GCO (Fig. 72b). 

These findings limit the scope of applications for the nanoscaled LSC / YSZ system    

(�design 1�) to operation temperatures below 500 °C, which is the targeted temperature 

regime for micro SOFCs (µ-SOFC) [11]. However, automotive applications like auxiliary 

power units (APU) demand an operation temperature of 500 °C f T f 750 °C and operation 

times of more than 1000 h. Due to the shown chemical compatibility between GCO and LSC 
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and the preserved nanoscaled microstructure (self-limiting grain growth for T f 800 °C), the 

feasible operation regime thus can be extended to intermediate-temperature SOFC 

application (500 °C f T f 750 °C). 

5.2.2 Oxygen-Reduction Mechanism in LSC Thin-Film Cathodes 

To analyze the polarization phenomena in LSC thin-film cathodes in detail, the following 

transport steps relevant for the oxygen reduction in MIEC cathodes have to be taken into 

account (cf. Fig. 13b and discussion in chapter 2.2.1): (i) the diffusion of oxygen molecules in 

the gas phase (gas diffusion: ASRgas), (ii) the oxygen exchange at the MIEC surface (surface 

exchange: ASRex), (iii) the diffusion of oxygen ions through the MIEC to the MIEC / 

electrolyte interface (bulk diffusion: ASRd), and (iv) the incorporation of oxygen ions into the 

electrolyte (charge transfer: ASRct).  

ASRgas (i)

ASRex (ii)

ASRd (iii) t

½ O2

O2-
2e-

electrolyte

ASRct (iv) O2-

a) dense MIEC

d

MIEC

b) porous MIEC

 

Fig. 73 Model for the appraisement of the ASRpol  

showing a) a dense and b) a nanoporous (La0.5Sr0.5)CoO3-δ thin-film cathode with the grain size 

d and the electrode thickness t. 

The effect of gas-phase diffusion limitations (i) is caused by gas diffusion in a stagnant gas 

layer above the cathode surface and in the pores of the cathode. Due to its time constant it 

appears as a separate arc in the impedance plot at low frequencies [94] and can easily be 

separated from the overall polarization losses. 

ASRex and ASRd values, corresponding to losses at the MIEC surface (ii) and area specific 

diffusion losses in the bulk (iii) of the nanoscaled LSC thin-film cathode, respectively, can be 

extracted from the surface-exchange coefficient kchem and the oxygen-diffusion coefficient 

Dchem with the help of literature data (cf. 2.2.3). For a dense (La0.5Sr0.5)CoO3-δ cathode      

(Fig. 73a), these polarization values can be calculated from 

 ,
,

N
ex d

ex d

U
ASR

j
=  Eq. 50 

where UN is the Nernst voltage, which arises if an oxygen ion flux jEx,D causes a drop in the 

chemical potential of the oxygen (for sake of simplicity in the following equations the 

corresponding oxygen partial pressure will be used). For the oxygen exchange (ii), this drop 

occurs between the gas phase (pO2, gas phase) and the oxygen potential right below the MIEC 
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surface (pO2, MIEC surface). In the case of the bulk diffusion, the pO2 drop arises between 

pO2, MIEC surface and the oxygen potential above the electrode / electrolyte interface 

(pO2, MIEC interface). UN,ex,d (cf. Eq. 4) and jex,d are given by 
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 Eq. 52 

where R is the ideal gas constant (8.314 J/mol/K), T the temperature (923.15 K), F Faraday�s 

constant (96,487 C/mol), kchem and Dchem the oxygen-exchange and oxygen-diffusion 

coefficients in (La0.5Sr0.5)CoO3-δ at 650 °C and pO2 = 0.3 atm (kchem = 4.0 · 10-6 m/s and 

Dchem = 1.4 · 10-10 m²/s [147]) and t the cathode thickness (300 nm). The concentrations of 

oxygen ions (c) in (La0.5Sr0.5)CoO3-δ with respect to pO2 are obtained from [119] accounting 

for the stoichiometry of the LSC cathode. For a dense, 300 nm thick LSC thin-film cathode at 

T = 650 °C, the area specific resistance caused by oxygen exchange is calculated to 

ASRex = 784.45 mΩ·cm², whereas the losses caused by oxygen diffusion in the thin film are 

determined to ASRd = 6.72 mΩ·cm². Hence, the oxygen-reduction reaction in a dense 

cathode is dominated by the surface-exchange polarization. This finding is supported by 

Prestat et al. [178] who investigated the oxygen reduction of dense LSCF thin films. They 

expected that the influence of oxygen-vacancy diffusion is almost independent of the film 

thickness at 700 °C, meaning that the bulk diffusion is negligible in this temperature regime.  

The incorporation of oxygen ions into the electrolyte (iv) has been studied by isotope-

exchange measurements where virtually no resistance for 18O2- / 16O2- exchange across the 

LSC / Ca-doped ceria interface was found [150]. Furthermore, Prestat et al. [178] found the 

charge-transfer resistance between a dense LSCF thin film and a GCO substrate negligible. 

However, in the case of LSC on YSZ a solid-state reaction results in an increase of the 

interfacial resistance as discussed above. 

This is consistent with the findings of Yang et al. [259] and Baumann et al. [155] who stated 

that the electrochemical resistance of dense (La0.5Sr0.5)CoO3-δ thin films (thickness 250 nm f 

t f 500 nm) and (La0.6Sr0.4)(Co0.8Fe0.2)O3-δ microelectrodes (thickness t = 100 nm) are 

dominated by the oxygen-exchange reaction at the gas / electrode interface, respectively.  

However, as shown in the SEM micrographs (Fig. 58) the presented LSC thin-film cathodes 

are not dense as assumed for the calculation above, but they contain a distinct nanoporosity. 

This yields an increase of the active surface area, entailing smaller values of ASRex (cf. 

discussion in chapter 2.2.1). Moreover, the reduced effective diffusion path leads to smaller 

ASRd values, which may even be further decreased by grain-boundary effects [23-25]. 
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For a porous MIEC-cathode, the utilization region l·, over which the reduction reaction 

occurs, can be appraised by Eq. 35. In the case of a nanoporous (La0.5Sr0.5)CoO3-δ thin-film 

cathode with an average grain size of 50 nm, a value of l· = 1323 nm can be derived from 

Adler�s equation at 650 °C. Therefore, it can safely be assumed that the entire volume of an 

LSC cathode with a maximum thickness of t = 300 nm, as depicted in Fig. 58, is 

electrochemically active.  

Hence,  

� The polarization impedance of a (La0.5Sr0.5)CoO3-δ thin-film cathode is governed by 

the oxygen-exchange process (ii). The ASRex is the rate-determining step for the 

oxygen-reduction reaction. Other transport steps (ASRd, ASRct) are negligible. 

� According to Adler�s model, the polarization of the cathode is low for a high inner 

surface area and a large thickness of the cathode. 

� The thin-film cathodes (t f 300 nm) are completely utilized for the ORR. 

For MIEC thin films with l· g t, Adler [94, 148] 8, derived expression Eq. 53 9 for the non-

charge-transfer processes ASRchem 

 ( )2
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1

4chem

f b

RT
ASR

a t rF ³ ³
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⋅ ⋅ ⋅ +
 Eq. 53 

where a is the active surface area and αf and αb are kinetic parameters of order unity. The 

value of r0 · (αf + αb) equals ktr · cO with cO as the concentration of lattice sites in LSC [119]. 

The relevant parameters in Eq. 53 are the thin-film thickness t and the internal surface area 

a, which is completely utilized for O2 reduction.  

For an entirely dense, 300 nm thick LSC thin-film cathode the active surface area is 3.3 µm-1 

and equation Eq. 53 results in chemical losses of ASRchem = 719.49 mΩ·cm², which is in 

good agreement with the calculated value of ASRpol = 791.17 mΩ·cm² 

(ASRex = 784.45 mΩ·cm² plus ASRd = 6.72 mΩ·cm²) according to equation Eq. 50. 

The observed cathode polarization losses for nanoscaled LSC thin films on YSZ (�design 1�, 

85 mΩ·cm² at 649 °C) and on GCO substrates (�design 2�, 81 mΩ·cm² at 643 °C) fall 

significantly short of the estimated polarization losses for a completely dense, 300 nm thick 

LSC thin-film cathode. The Adler model can account for these experimentally obtained 

values if the electrochemically active surface is increased by a factor of 8 compared to the 

completely dense LSC thin-film cathode. According to these results, the nanoscaled LSC 

                                                 
8 Adler�s model implies several assumptions, e.g. the mixed conductor is treated as a moderately 

dilute solid solution, complex particle geometries like sintering necks are not considered; moreover, 

the sample geometry is taken to be macrohomogeneous. Yang and co-workers [259] observed a 

deviation of four between surface-exchange coefficients derived from Adler�s 1D model and their 

impedance analyses of a dense, 500 nm thick (La0.5Sr0.5)CoO3-δ electrode. 

9 The prefactor of Eq. 53, given in Ref. [148] and Ref. [94], deviates by a factor of two. 
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thin-film cathodes exhibit an effective surface area of 27 µm-1 due to the nanoporosity of the 

thin films.  

Taking advantage of a broad scope of different thin-film morphologies (Fig. 64, Fig. 65) 

experimental proof of the validity of Adler�s model is given for T = 600 °C. Whereas the 

polarization losses ASRpol are obtained within a maximal error of 29.3% (chapter 3.3.2), the 

geometry parameters were evaluated from the SEM images within an estimated error of 25% 

for the grain size, 10% for the film thickness and 10% for the porosity of the films. By 

application of a 3-dim finite element model developed by Rüger, IWE, the inner surface area 

a was modeled from these parameters10. Fig. 74 depicts the ASRpol over 1 / (a·t) for a variety 

of different thin-film morphologies. The data (A) to (F) coincide with the general dependency 

of Adler�s 1-dim model within the error bars. For high values of 1 / (a·t) the deviations from 

the model increase, which can partly be attributed to microcracks (cf. Fig. 65G, inset), which 

lead to an overestimation of the inner surface area and thereby to lower 1 / (a·t) values.  
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Fig. 74 Application of Adler�s model to the properties of the LSC thin-film cathodes 

Polarization resistance ASRpol at T = 600 °C over inverse inner surface area a times film 

thickness t in comparison with Adler�s model; the error bars comprise for uncertainties in 

determination of geometry properties (t, particle size d, porosity ¸). 

Herefrom, the following conclusion can be drawn: 

� Adler�s model is confirmed experimentally for nanoscaled LSC thin film cathodes. 

� The cathode polarization decreases with increasing thickness of the electrode. 

                                                 
10 The model comprises of 10 x 10 x 20 cubes with the dimension of the particle size. The pores are 

assumed to be in the same order of magnitude as the grains. The effects of percolations are included. 
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� ORR efficiency increases with the inner surface area, which mainly depends on the 

porosity of the films and the grain size. 

� These results suggest further studies on the oxygen reduction in MIEC thin-film 

cathodes on the field of microstructure optimization. The microstructural properties of 

nanoscaled LSC thin-film cathodes regarding cathode thickness and inner surface 

area are currently optimized by Rüger and Hayd (both IWE), who respectively model 

the transport properties by a finite-element method and experimentally validate the 

results in an ongoing work. 
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Fig. 75 Polarization losses of selected model electrodes  

Literature data of electrode conductivities 1 / ASRpol of LSCF thin-film electrodes with different 

microstructures among 700 °C g T g 450 °C:  LSCF thin-film cathodes evaluated by Beckel et al. 

[97] and Prestat et al. [178] put opposite to 1 / ASRpol obtained for a nm-scaled thin-film LSC 

combined with µm-scaled LSCF as current collector (■, �design 2�), as reported in this work. 

By comparison of the electrode conductivity (inverse ASRpol) of the nanoporous LSC thin-film 

cathodes (■) with dense LSCF thin films investigated by Prestat et al. (●) [178], the 

exceptional importance of the inner surface area becomes apparent (Fig. 75). Since the 

analyzed thin films exhibit similar film thicknesses (200 nm < tLSC < 300 nm vs.                  

tLSCF = 330 nm), the higher electrode conductivity can be attributed to the nanoporosity of the 

LSC thin films investigated in this work. For LSCF thin-film electrodes, the determination of 

the role of the inner surface area results in the same general trend: with increasing 

nanoporosity, i.e. increasing inner active surface area, cathode oxygen reduction is 

facilitated. However, due to its beneficial geometrical properties and its good oxygen 

reduction and oxygen-diffusion properties, the electrode conductivity (1 / ASRpol) of the 

nanoscaled LSC thin-film cathode (■) excels the performance of the porous LSCF thin film 

(Δ). 

At 600 °C the LSC / GCO cell concept (�design 2�, Fig. 58b) exhibits notably high cathode 

performance (ASRpol = 130 mΩ·cm² at Tcell = 592 °C, Fig. 59c). Its dependency on measuring 

temperature is depicted in Fig. 63 left (■, �design 2�). The logarithmic electrode conductivity 
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(inverse total ASRpol) of the LSC / GCO cell shows an Arrhenius-type behavior for 

500 °C < T < 650 °C. However, for 650 °C < T < 850 °C the curve deviates from the 

Arrhenius behavior, which can be explained by a detailed analysis of the impedance spectra. 

Fig. 63 (right plots) shows the spectra at 650 °C (A) and 850 °C (B). The spectra consist of 

two major processes (II, III). The high-frequency process (f0 = 1.3 kHz and f0 = 17 kHz, 

respectively) shows an Arrhenius-type temperature dependency (II, left plot: ●) with an 

activation energy of EA = 1.07 eV and is attributed to the oxygen-reduction processes. Yang 

and co-workers [259] analyzed a dense (La0.5Sr0.5)CoO3-δ thin film and obtained an activation 

energy of EA = 1.1 eV for the oxygen surface exchange, which gives further evidence that the 

overall ASRpol of the studied nanoscaled LSC thin-film cathodes is dominated by the oxygen 

surface exchange (ii). The low-frequency process in Fig. 63, right plots (f0 = 1.7 Hz and 

f0 = 1.7 Hz, respectively) shows a minor temperature dependency for 650 °C < T < 850 °C 

(III, left plot: ○) and can be attributed to the gas-phase polarization (i) [224, 260].  
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Fig. 76 a) ASRd and b) ASRex of LSC / YSZ (�design 1�) and LSC / GCO (�design 2�) 

All data were obtained by fitting of the respective DRT data (�design 2�: Fig. 61a, �design 2�: 

Fig. 62a). The general trends are constant values for �design 2� and increasing losses for 

�design 1�. 

Based on the previous discussion on the stability of the LSC cathode on YSZ (�design 1�) 

and GCO (�design 2�), further understanding of the electrochemistry of the nanoscaled LSC 

thin films can be derived from the DRT analyses of the samples (�design 1�: Fig. 61a and 

�design 2�: Fig. 62a). Additionally to the already identified gas-phase polarization (ASRgas) 
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two distinct processes at approximately 102 Hz and 104 Hz, respectively, evolve from the 

spectra. Assuming an effective diffusion length of 100 nm in the porous thin films, the area 

specific diffusion losses can be calculated to ASRd,cal = 0.47 mΩ·cm² at 850 °C 

corresponding to the low-frequency process of the LSC / GCO sample (measured value 

ASRd,meas = 0.4 mΩ·cm²). Thus, the low-frequency process at 102 Hz can be attributed to the 

oxygen diffusion process (Fig. 76a). It is noteworthy, that the values of ASRd decrease 

slightly within the first 3 h (∇, Fig. 76a), which corresponds to the coarsening of the 

microstructure and a minor reduction of the effective diffusion length. This coarsening is 

consistent with the observed grain-growth behavior (relaxation time for self-limiting grain 

growth Ä  = 4.3 h at 800 °C, Fig. 51a). In case of the LSC / YSZ sample (Δ, Fig. 76a), the 

initial value at t = 0 h coincides with the LSC / GCO data. With increasing time, however, an 

increase of ASRd is observed. As discussed in chapter 5.2.1, the chemical interface reaction 

between LSC and YSZ entails the precipitation of SrZrO3 and the depletion of Sr from      

(La1-xSrx)CoO3-δ, which involves a decrease in ionic conduction (cf. Fig. 18). The observed 

increase of ASRd in Fig. 76a (�design 1�, factor 6.6) corresponds to depletion of Sr from        

x = 0.5 to x ≈ 0.35.  

The high-frequency process (104 Hz) dominates the overall ASRpol and is therefore � 

accordingly to the previous findings � attributed to the oxygen surface exchange (ASRex) in 

case of LSC / GCO and a combination of ASRex and charge-transfer polarization (ASRct) in 

case of LSC / YSZ. Whereas the values of ASRex of the LSC / GCO sample (▼, Fig. 76b) are 

constant over the calcination at 850 °C, the polarization losses of the LSC / YSZ cell increase 

(▲, Fig. 76b). This can be explained by a depletion of Sr entailing a reduction of the oxygen 

exchange properties and the crystallization of the insulating SrZrO3 phase inhibiting charge 

transfer between cathode and electrolyte.  

The superior performance of the nanoscaled thin-film cathodes becomes evident by 

reviewing the literature on high-performance SOFC cathodes: Fig. 77 depicts a comparison 

of the cathode conductivity (1/ASRpol) of the nanoscaled LSC thin-film cathode (�design 2�) 

with literature data of other cathode concepts. Most developments strive to enhance oxygen 

exchange and bulk-diffusion properties by employing mixed ionic-electronic conductors as a 

thick film (30 µm < t < 100 µm). Examples given here are a mixed ionic-electronic 

(La0.6Sr0.4)(Co0.2Fe0.8)O3-δ cathode on (Ce0.9Gd0.1)O2-δ (□, EA = 1.38 eV [261]), a 

(La0.58Sr0.4)(Co0.2Fe0.8)O3-δ cathode on (Ce0.8Gd0.2)O2-δ (∆, EA = 1.39 eV [262]), a composite 

cathode consisting of (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ and GCO (○, EA = 0.59 eV [263]) and a 

cathode with differently conducting phases ranging from purely ionic (YSZ) over electronic 

((La0.85Sr0.15)Mn1.1O3-δ) to mixed ((La0.84Sr0.16)CoO3-δ) conduction (∇, EA = 1.01 eV [264]). All 

referred cathodes are applied as thick-film cathodes, which require the thermal expansion 

coefficient of the cathode material to be adjusted to the TEC of the electrolyte. The 

nanoscaled thin-film cathode of this work, however, outflanks this limitation and enables the 

application of (La0.5Sr0.5)CoO3-δ with its excellent oxygen exchange and chemical diffusion 
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properties. The target value of 200 mΩ·cm² of the European project SOFC600 11 ( , Fig. 77) 

is undercut by the electrode conductivity of the nanoscaled LSC thin-film cathode presented 

in this work. These unique results demonstrate that a nanoscaled (La0.5Sr0.5)CoO3-δ thin-film 

cathode features notably low polarization losses, which is compulsory for the development of 

IT-SOFCs for 500 °C f T f 750 °C. Besides LSC / GCO (�design 2�) the material combination 

LSC / YSZ (�design 1�) is also considered promising for µ-SOFC applications (e.g. project 

�OneBat� [11, 97]) where the maximal temperature is limited to T = 500 °C. 

Nanoscaled MIEC cathode (LSC)

this work (sample ID: MOD086)

Target value for highly effective cathodes 
for SOFC, European project SOFC600 
(2006-2010)

MIEC cathode (LSCF)

Esquirol et al.
Leonide et al.

Composite cathode (LSCF-GCO)

Seabaugh et al.

Graded cathode (LSC-LSM-YSZ) 

Cassidy et al.
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this work (sample ID: MOD086)
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for SOFC, European project SOFC600 
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MIEC cathode (LSCF)

Esquirol et al.
Leonide et al.
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Cassidy et al.
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Fig. 77 Comparison of cathode polarization performance 

Literature data of electrode conductivities 1/ASRpol and activation energies EA reported for 

considerably different concepts based on MIEC cathode structures among 

1000 °C g T g 500 °C: a) µm-scaled single layer LSCF cathodes evaluated by Esquirol et al. 

[261], Leonide et al. [262]; b) µm-scaled composite layer LSCF + GCO (Gd-doped ceria) studied 

by Seabaugh et al. [263], µm-scaled functional gradient layers LSC-LSM + YSZ studied by 

Cassidy et al. [264] put opposite to 1/ASRpol and EA obtained for a nm-scaled thin-film LSC 

combined with µm-scaled LSCF as current collector (■, �design 2�), as reported in this work. 

Except for [262] the reported values were obtained from EIS measurements on symmetrical 

cells. 

 

 

                                                 
11 EUROPEAN COMMISSION, 6th Framework Programme on Research, Technological Development 

and Demonstration, FP6-2004-Energy-3, project acronym �SOFC600�, contract number 020089 





 

 
117

6 Summary 

Subject matter of the present work is to elucidate the advantages of nanoscaled thin films for 

solid oxide fuel cells (SOFC). At the nanoscale, the increased grain-boundary density may 

lead to grain-size effects, which potentially facilitate substantially enhanced electrical 

conductivity. Enhanced charge-transport properties in turn reduce the ohmic losses in the 

electrolyte and the polarization of the electrodes. Both effects yield an increased efficiency of 

SOFCs, especially in the intermediate-temperature regime at 500 °C f T f 750 °C. 

This work systematically comprises fundamental experimental studies concerning grain-size 

effects in nanoscaled electrolyte and cathode thin films. For the experiments on the 

electrolyte-site, 8.3 mol% yttria-doped zirconia (YSZ) was studied � a material employed in 

state-of-the-art SOFC systems. On the cathode-site, (La0.5Sr0.5)CoO3-δ (LSC) was chosen. 

LSC exhibits excellent oxygen-reduction properties and can therefore be regarded as a 

model substance for the technologically interesting class of mixed conducting perovskite 

(ABO3)-type oxides. For the processing of the thin films, a sol-gel technique was employed, 

which is eligible to be up-scaled with respect to industrial application. 

Nanoscaled electrolyte thin films  

Charge transport in YSZ takes place by means of a hopping mechanism of oxygen ions via 

vacant lattice sites. Goal of the conducted experiments was to clarify if grain boundaries in 

nanostructured materials possess high densities of oxygen vacancies and / or enhanced 

mobilities of the oxygen ions facilitating an increase of the ionic conductivity. Thereto, nano- 

and microcrystalline YSZ thin films were prepared by the sol-gel method on insulating 

sapphire substrates. The YSZ films are homogeneous, crack-free, about 300 nm thick and 

exhibit an excellent adhesion to the substrate. Subsequent temperature treatment between 

650 °C and 1400 °C (24 h respectively) leads to a variation of the mean grain size d between 

5 nm and 782 nm. The purity and crystallinity of the grain boundaries was evidenced by 

means of electron microscopy. The thin films are single-phase cubic with tetragonal YSZ 

precipitates in the range of a few nanometers. These precipitates are homogeneously 

distributed in the grains and the grain boundaries and can therefore be neglected for the 

analyses of the transport properties.  

The electrical conductivity of the YSZ thin films was studied at 200 °C f T f 400 °C in air. 

Whereas the electrical conduction data of the thin films with submicron-sized grains 

coincides well with the data of polycrystalline YSZ electrolytes, the electrical resistivity 

increases with increasing grain-boundary density at the nanoscale. By means of electrical 

impedance spectroscopy, this increase can be attributed to the grain boundaries. The 

specific grain and grain-boundary conductivities can be derived by application of the brick-

layer model for 232 nm f d f 782 nm. The specific conductivity represents the charge 
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transport of a single grain or a single grain boundary with an electrical grain-boundary 

thickness of 5.37 nm. Both conductivities show Arrhenius-type temperature dependency. The 

specific grain-boundary conductivity (EA = 1.15 eV) ranges approximately two decades below 

the specific bulk conductivity (EA = 1.09 eV). The application of the brick-layer model for        

d f 36 nm shows that the ionic charge transport at the nanoscale does not principally differ 

from the transport in polycrystalline YSZ. Instead, the grain boundaries act independently of 

the grain size as a potential barrier and impede the transport of oxygen ions through the 

lattice. Due to the high density of grain boundaries at the nanoscale, the nanoscaled YSZ 

thin films hold an exceptionally high total resistance.  

Compared to state-of-the-art polycrystalline YSZ electrolytes, nanoscaled YSZ thin films 

therefore do not yield a decrease of the ohmic losses and do not contribute to an increase of 

SOFC efficiency. This work evidences that nanoscaled YSZ thin film do not offer beneficial 

grain-size effects, which increase oxygen-ion transport. 

Nanoscaled Cathode Thin Films  

To investigate the effect of microstructure on the oxygen-reduction mechanism of mixed 

ionic-electronic (MIEC) thin-film cathodes, a sol-gel processing technique was applied to 

deposit nanocrystalline (La1-xSrx)CoO3-δ (x = 0.5) thin films on YSZ electrolytes and gadolinia-

doped ceria (GCO) surfaces. The crystallization of the LSC perovskite phase was studied by 

thermal analyses and X-ray diffraction, from which the calcination temperatures were 

derived: 170 °C, 700° C and 900 °C (5 min respectively). The thin films are crack-free and 

homogeneous and exhibit excellent adhesion to the respective substrates. 

Instead of a pure cubic phase, a rhombohedral distortion was evidenced by X-ray diffraction. 

This indicates a slight Sr deficiency and entails Co precipitations in the range of a few 

nanometers because of the depletion on the A-site of the ABO3 crystal. Due to their small 

size, these secondary phases do not affect the functionality of the cathode. However, an 

interface reaction between the LSC thin film and the YSZ substrate leads to the precipitation 

of zirconates, which cause a massive deterioration of the chemical LSC phase. This interface 

reaction is predicted by thermodynamic simulations for the whole investigated temperature 

regime of 500 °C f T f 850 °C � yet the kinetics of this reaction are unknown. The formation 

of zirconates at the LSC / YSZ interface has been reported for T g 900 °C and long annealing 

times in literature. This work evidences the precipitation of strontium zirconate (SZO) 

microstructurally already at 700 °C. Electrical measurements prove the insulating SZO phase 

between the nanoscaled LSC cathode and the YSZ electrolyte for T > 500 °C after 100 h 

annealing. The LSC / GCO interface, however, is free of secondary phases until at least     

Tmin = 1200 °C. The microstructure of the nanoscaled cathodes changes with temperature: 

until 800 °C, the grain growth is self-limiting, i.e. the grain size approaches a final value       

(d = 83 nm). For higher annealing temperatures, the grain growth shows a non-parabolic 

behavior resulting in microstructurally instable LSC thin films. 
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The polarization losses evolving from the oxygen reduction at the cathode are exceptionally 

low for nanoscaled, mixed conducting LSC cathodes. In symmetrical cell measurements at 

600 °C the polarization resistances are determined to 146 mΩ·cm² (LSC / YSZ) and          

130 mΩ·cm² (LSC / GCO). These polarization resistances are lower than any values reported 

for concepts based on MIEC cathode structures in the literature and demonstrate the 

superior electrochemical activity during oxygen reduction. Due to their different stability 

regimes (LSC / YSZ: T f 500 °C, LSC / GCO: T f 700 °C), different scopes of high-

performance operation come into consideration. Micro SOFCs (µ-SOFC), which are 

developed as battery replacement for laptops, restrict themselves to a temperature of 

approximately 500 °C; therefore, here the LSC / YSZ design is promising. At higher operation 

temperatures, the LSC / GCO system is auspicious for application in automotive auxiliary 

power units (APUs). 

The excellent properties of nanoscaled LSC thin-film cathodes regarding oxygen reduction 

rely on the MIEC material properties and on the high surface area of the cathodes. The 

surface-exchange reaction at the cathode surface is the rate-determining step during the 

oxygen-reduction reaction. The oxygen diffusion in the bulk and the charge transfer from the 

cathode into the electrolyte can be neglected in case of nanoscaled LSC cathodes. The 

model of Adler, which describes the polarization during oxygen reduction at the cathode, is 

validated by a comparison of the electrical data of different specimens with a nanoscaled 

microstructure. The model predicts an increase of the surface by a factor of eigth, as 

compared to a dense cathode structure. These results suggest a systematic optimization of 

the cathode microstructure, where particularly an increase of the film thickness will entail 

further enhancement of the performance of nanoscaled LSC cathodes.  

 

The results of this work and their discussion show that grain-size effects in nanoscaled YSZ 

thin films increase the total resistance instead of lowering it. Rather large mean grain sizes 

should be aimed to minimize ohmic losses in the SOFC electrolyte. On the cathode-site, 

however, nanoscaled and nanoporous LSC thin films exhibit excellent oxygen-reduction 

properties. Prevailing benchmarks for the electrochemical efficiency of MIEC cathodes are 

outclassed. The high surface area of the nanoscaled cathodes decreases the polarization 

losses decisively. The perceptions on the microstructural, chemical and electrical stability of 

nanoscaled LSC thin-film cathodes and the insights into the electrochemical processes of the 

cathode lay the foundation for the application of nanoscaled, mixed ionic-electronic 

conducting cathodes in the field of mobile SOFCs. 
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7 Appendix 

7.1 List of Samples 

The following tables (Table 6 - Table 9) summarize the experiments conducted within this 

work. The first column �IWE-ID� contains the continuous number for each individual sample, 

mostly processed by the ISC (�ISC-ID�, 2nd column). Unless denoted otherwise 8YSZ or 

LSC thin films (3rd column) were deposited by spin- or dip-coating or tampon-printing (4th 

column) on YSZ or sapphire substrates (5th column). The next three columns account for the 

temperature treatment of the samples including rapid thermal annealing (6th column) and an 

additional annealing at Tdwell (7th column) and tdwell (8th column). The remaining columns 

account for the measuring objective and the conducted experiments. The last column 

(�remarks�) states the cooperation, in which the experimental results were obtained, including 

1: M. Bockmeyer, R. Krüger (ISC), 2: L. Dieterle, B. Butz (LEM), 3: B. Szöke (diploma thesis, 

IWE), 4: J. Joos (study project, IWE), 5: H. Götz (study project, IWE), 6: I. Netsch (study 

project, IWE), 7: U. Peters (study project, IWE), 8: Th. Knapp (study project, IWE). 
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Table 6 Overview about performed experiments 

T
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E
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Measuring ID
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r e

x
p
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LSM spin YSZ 170 / 700 - -
Deposition 

tests
√ √ Ab154 Ab155

8YSZ - Si 500
550 - 
1150

-
Thin film 

development
√ √ 1

8YSZ dip Si 500
500 - 
1250

1
Grain growth 

analysis
√ √ √ 1

MOD023 13 LSC50 spin 3YSZ 170 / 700 / 900 700 8 √ √ 2

MOD024 14 LSC50 spin 3YSZ 170 / 700 / 900 800 8 √ 2

MOD025 15 LSC50 spin 3YSZ 170 / 700 / 900 900 8 √ 2

MOD026 16 LSC50 spin 3YSZ 170 / 700 / 900 1000 8 √ √ 2

MOD027 17 LSC50 spin 3YSZ 170 / 700 / 900 700 8 √ 2

MOD028 18 LSC50 spin 3YSZ 170 / 700 / 900 800 8 √ 2

MOD029 19 LSC50 spin 3YSZ 170 / 700 / 900 900 8 √ 2

MOD030 20 LSC50 spin 3YSZ 170 / 700 / 900 1000 8 √ 2

MOD031 21 LSC50 spin 3YSZ 170 / 700 / 900 700 8 √ 2

MOD032 22 LSC50 spin 3YSZ 170 / 700 / 900 800 8 √ 2

MOD033 23 LSC50 spin 3YSZ 170 / 700 / 900 900 8 √ 2

MOD034 24 LSC50 spin 3YSZ 170 / 700 / 900 1000 8 √ 2

MOD035 25 LSC50 spin 3YSZ 170 / 700 / 900 700 8 √  2

MOD036 26 LSC50 spin 3YSZ 170 / 700 / 900 800 8 √ 2

MOD037 27 LSC50 spin 3YSZ 170 / 700 / 900 900 8 √ 2

MOD038 28 LSC50 spin 3YSZ 170 / 700 / 900 1000 8 √ 2

8YSZ dip sapphire 500
500 - 
1700

24
Thin film 

development
√ √ √ "IWE-ID" + T 3

LSC50 spin sapphire 170 / 700 / 900
900 - 
1300

8
Deposition 

tests
√  

MOD055 - 8YSZ dip sapphire 500 500 24 √ √ √ √ ID + T
MOD056 - 8YSZ dip sapphire 500 650 24 √ √ √ √ √ ID + T
MOD057 - 8YSZ dip sapphire 500 850 24 √ √ √ √ √ ID + T
MOD058 - 8YSZ dip sapphire 500 1000 24 √ √ √ √ √ ID + T
MOD059 - 8YSZ dip sapphire 500 1250 24 √ √ √ √ √ ID + T
MOD060 - 8YSZ dip sapphire 500 1350 24 √ √ √ √ √ ID + T
MOD061 - 8YSZ dip sapphire 500 1400 24 √ √ √ √ ID + T
MOD062 - 8YSZ dip sapphire 500 1700 24 √ √

8YSZ dip 8YSZ 500
500 - 
1000

24
Reprodu-

cibility
√

MOD067 - LSC50 spin 3YSZ 170 / 700 / 900 - - √ IS2.046

MOD068 - LSC50 spin 3YSZ 170 / 700 / 900 - - √ IS2.045

MOD069 - LSC50 tampon 3YSZ 170 / 700 / 900 - - √ IS2.020

- -
GCO / 
YSZ

- - ASR Pol √ IS2.055 - 
IS2.057

MOD074 164 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD075a 165 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.069

MOD075b 165 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.072

MOD076a 166 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.078

MOD076b 166 LSC50 spin 8YSZ 170 / 700 / 900 - - √
MOD077 167 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD078 168 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD079a 169 LSC50 spin 8YSZ 170 / 700 / 900 - - √ √ IS2.066

MOD079b 169 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.077

MOD079c1 169 LSC50 spin 8YSZ 170 / 700 / 900 700 8 √
MOD079c2 169 LSC50 spin 8YSZ 170 / 700 / 900 800 8 √
MOD079c3 169 LSC50 spin 8YSZ 170 / 700 / 900 900 8 √
MOD079c4 169 LSC50 spin 8YSZ 170 / 700 / 900 1000 8 √
MOD080 170 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD081a 171 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.070

MOD081b 171 LSC50 spin 8YSZ 170 / 700 / 900 - - √ √ IS2.071

MOD082 172 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD083a 173 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.068

MOD083b 173 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD084a 174 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.079

MOD084b 174 LSC50 spin 8YSZ 170 / 700 / 900 - - √
MOD084c 174 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD085a 175 LSC50 spin 8YSZ 170 / 700 / 900 700 8 √
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(4 samples)

MOD003 - 006                      
(4 samples)

Analyses of 
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structure, 

grain growth 
and LSC / YSZ 

interface

MOD039 - 044                   
(6 samples)

MOD007 - 022                      
(16 samples)

MOD045 - 054                 
(10 samples)
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MOD001 - 002                     
( 2 samples)

MOD070 - 73                     
(4 samples)
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Table 7 (continued) 
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MOD085b 175 LSC50 spin 8YSZ 170 / 700 / 900 800 8 √
MOD085c 175 LSC50 spin 8YSZ 170 / 700 / 900 900 8 √
MOD085d 175 LSC50 spin 8YSZ 170 / 700 / 900 1000 8 √
MOD085e 175 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD086 147 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.054

MOD087 - 170 / 700 / 900 700 8 √
MOD088 - 170 / 700 / 900 - - √

MOD089 - 170 / 700 / 900
700 
850

8 √

MOD090a - 170 / 700 / 900 1000 20 √
MOD090b - 170 / 700 / 900 1350 20 √
MOD091 - 170 / 700 / 900 850 20 √
MOD092 218 170 / 700 / 900 - -

MOD093a 216 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.074

MOD093b 216 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.073

MOD093c1 216 LSC50 spin 8YSZ 170 / 700 / 900 700 8

MOD093c2 216 LSC50 spin 8YSZ 170 / 700 / 900 1000 8

MOD093d1 216 LSC50 spin 8YSZ 170 / 700 / 900 700 8

MOD093d2 216 LSC50 spin 8YSZ 170 / 700 / 900 1000 8

MOD094a 217 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.080
MOD094b 217 LSC50 spin 8YSZ 170 / 700 / 900 - - √ √ Z3.016
MOD094c 217 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.013

MOD094d 217 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.016
MOD095a - LSC50 - 8YSZ - - - √ IS2.076
MOD095b - LSC50 - 8YSZ - - - √ IS2.075
MOD095c - LSC50 - 8YSZ - - - √ IS2.081
MOD095d - LSC50 - 8YSZ - - - √  
MOD096 - LSC50 - 8YSZ - - -

MOD097 144 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.058

MOD097a 151 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.065

MOD097b 146 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.051

MOD097c 147 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.052

MOD097d 150 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.053

MOD097e 152 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ IS2.063

MOD097f 181 LSC50 dip
GCO / 
3YSZ

170 / 700 / 900 - - √ √ IS2.059

MOD097g 184 LSC50 dip
GCO / 
3YSZ

170 / 700 - - √ √ IS2.062

MOD097h 183 LSC50 dip
GCO / 
3YSZ

170 / 700 - - √ IS2.060

MOD098a 221 LSC50 spin 8YSZ 170 / 700 / 900 500 2 √ Z3.001 5
MOD098b 221 LSC50 spin 8YSZ 170 / 700 / 900 600 2 √ √ Z3.001 5
MOD098c 221 LSC50 spin 8YSZ 170 / 700 / 900 700 2 √ Z3.002 5
MOD098d 221 LSC50 spin 8YSZ 170 / 700 / 900 800 2 √ Z3.002 5
MOD099a 222 LSC50 spin 8YSZ 170 / 700 / 900 900 2 √ Z3.003 5
MOD099b 222 LSC50 spin 8YSZ 170 / 700 / 900 1000 2 √ Z3.003 5
MOD099c 222 LSC50 spin 8YSZ 170 / 700 / 900 500 10 √ Z3.004 5
MOD099d 222 LSC50 spin 8YSZ 170 / 700 / 900 600 10 √ Z3.004 5
MOD100a 223 LSC50 spin 8YSZ 170 / 700 / 900 700 10 √ Z3.005 5
MOD100b 223 LSC50 spin 8YSZ 170 / 700 / 900 800 10 √ Z3.005 5
MOD100c 223 LSC50 spin 8YSZ 170 / 700 / 900 900 10 √ Z3.006 5
MOD100d 224 LSC50 spin 8YSZ 170 / 700 / 900 1000 10 √ √ Z3.006 5
MOD101a 224 LSC50 spin 8YSZ 170 / 700 / 900 500 100 √ Z3.009 5
MOD101b 224 LSC50 spin 8YSZ 170 / 700 / 900 600 100 √ Z3.009 5
MOD101c 224 LSC50 spin 8YSZ 170 / 700 / 900 700 100 √ Z3.010 5
MOD101d 224 LSC50 spin 8YSZ 170 / 700 / 900 800 100 √ Z3.010 5

MOD102a 225 LSC50 spin 8YSZ 170 / 700 / 900 900 100 √ Z3.011 5

MOD102b 225 LSC50 spin 8YSZ 170 / 700 / 900 1000 100 √ Z3.011 5

MOD102c 225 LSC50 spin 8YSZ 170 / 700 / 900 800 10 √ Z3.012 5
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LSC50 precursor powder

LSC50 precursor powder

LSC50 precursor powder

LSC50 precursor powder
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Table 8 (continued) 

T
A

S
E

M

(H
R

)T
E

M

A
F

M

(H
T

)X
R

D

E
IS

Measuring ID

o
th

e
r e

x
p

.

MOD102d 225 LSC50 spin 8YSZ 170 / 700 / 900 - - √ √ 6

MOD103a 226 LSC50 spin 8YSZ 170 / 700 / 900 - - √ LF2.055 5

MOD103b 226 LSC50 spin 8YSZ 170 / 700 / 900 500 2 √ Z3.008 5

MOD103c 226 LSC50 spin 8YSZ 170 / 700 / 900 600 2 √ Z3.008 5

MOD103d 226 LSC50 spin 8YSZ 170 / 700 / 900 - - 5

MOD104 - - - - - - -

MOD104a 227 LSC50 spin 8YSZ 170 / 700 / 900 700 10 √ Z3.012 5

MOD104b 227 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.018 5

MOD104c 227 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.007 5

MOD104d 227 LSC50 spin 8YSZ 170 / 700 / 900 - - √ √ Z3.007 5

MOD105a 228 LSC50 spin 8YSZ 170 / 700 / 900 500 2 √ √  6

MOD105b 228 LSC50 spin 8YSZ 170 / 700 / 900 600 2 √ √ LF2.061 5

MOD105c 228 LSC50 spin 8YSZ 170 / 700 / 900 700 2 √ √ 6

MOD105d 228 LSC50 spin 8YSZ 170 / 700 / 900 800 2 √ √ 6
MOD106a 229 LSC50 spin 8YSZ 170 / 700 / 900 900 2 √ √ √ LF2.060 5,6
MOD106b 229 LSC50 spin 8YSZ 170 / 700 / 900 1000 2 √ √ 6
MOD106c 229 LSC50 spin 8YSZ 170 / 700 / 900 500 10 √ √ √ LF2.064 5,6
MOD106d 229 LSC50 spin 8YSZ 170 / 700 / 900 600 10 √ √ 6

MOD107a 230 LSC50 spin 8YSZ 170 / 700 / 900 700 10 √ √ 6

MOD107b 230 LSC50 spin 8YSZ 170 / 700 / 900 800 10 √ √ 6

MOD107c 230 LSC50 spin 8YSZ 170 / 700 / 900 900 10 √ √ 6

MOD107d 230 LSC50 spin 8YSZ 170 / 700 / 900 1000 10 √ √ 6
MOD108a 231 LSC50 spin 8YSZ 170 / 700 / 900 500 100 √ √ √ LF2.065 5,6
MOD108b 231 LSC50 spin 8YSZ 170 / 700 / 900 600 100 √ √ 6

MOD108c 231 LSC50 spin 8YSZ 170 / 700 / 900 700 100 √ √ 6

MOD108d 231 LSC50 spin 8YSZ 170 / 700 / 900 800 100 √ √ 6

MOD109a 232 LSC50 spin 8YSZ 170 / 700 / 900 900 100 √ √ 6

MOD109b 232 LSC50 spin 8YSZ 170 / 700 / 900 1000 100 √ √ 6

MOD109c1 232 LSC50 spin 8YSZ 170 / 700 / 900 - - √ LF2.062 5

MOD109c2 232 LSC50 spin 8YSZ 170 / 700 / 900 - - √ LF2.066 5

MOD109d 232 LSC50 spin 8YSZ 170 / 700 / 900 600 2 √ √ 6

MOD110abcd 243 LSC50 spin 8YSZ 170 / 700 / 900 - - √
MOD111 244 LSC50 spin 8YSZ 170 / 700 / 900 700 8

MOD111b 244 LSC50 spin 8YSZ 170 / 700 / 900 800 8

MOD112abcd 245 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD113abcd 246 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD114a 238 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.082

MOD114b 238 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.083

MOD114c 238 LSC50 spin 8YSZ 170 / 700 / 900 - - √

LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD118a 242 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.028

MOD118b 242 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.029

MOD118c 242 LSC50 spin 8YSZ 170 / 700 / 900 - - √
MOD119a 247 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.085

MOD119b 247 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.084

MOD119c 247 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.086

MOD119d 247 LSC50 spin 8YSZ 170 / 700 / 900 - -

MOD120abcd 248 LSC50 spin 8YSZ 170 / 700 / 900 - - √
MOD121a 249 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.013 5

MOD121b 249 LSC50 spin 8YSZ 170 / 700 / 900 - -  5

MOD121c1 249 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.015 5

MOD121c2 249 LSC50 spin 8YSZ 170 / 700 / 900 - - √ Z3.015 5

MOD121d 249 LSC50 spin 8YSZ 170 / 700 / 900 - - √ 5

MOD122abcd 250 LSC50 spin 8YSZ 170 / 700 / 900 - - 5

GCO tampon 8YSZ 400 / 1080 - - √

MOD125a 276 LSC50 spin(LSC)
GCO / 
8YSZ

170 / 700 - -

MOD125b 276 LSC50 spin(LSC)
GCO / 
8YSZ

170 / 700 - - √ Z3.017

MOD126a 277 LSC50 spin(LSC)
GCO / 
8YSZ

170 / 700 / 900 - -

Influence of 
thin film 

morphology on 
polarization 

losses

Development 
of GCO       

buffer-layer

MOD114d - 117d                  
(13 samples)

MOD123a - 124                    
(3 samples)
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Table 9 (continued) 

T
A

S
E
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(H
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R
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Measuring ID

o
th

e
r e

x
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MOD126b 277 LSC50 dip (LSC)
GCO / 
8YSZ

170 / 700 / 900 - - √ Z3.017

MOD126c 277 LSC50 dip (LSC)
GCO / 
8YSZ

170 / 700 / 900 - - √

MOD127 278 LSC50 dip (LSC)
GCO / 
8YSZ

170 / 700 / 900 - -

LSM
spray 

pyrolysis
8YSZ - 750 1 / 2

CFN 
cooperation

Z3.019-1/2

LSC 
microel.

various 
techn.

8YSZ 170 / 700 / 900 - - √ √ 7

MOD135 -
LSC 

microel.
various 
techn.

8YSZ 170 / 700 / 900 - - √ √ 7

MOD135_a 171 LSC50 spin 8YSZ 170 / 700 / 900 - - √ IS2.071

MOD136 - LSC50 dip GCO 170 / 700 / 900 - - √
MOD137 - LSC50 dip GCO 170 / 700 / 900 - - √
MOD138 287 - - -
MOD139 285 - 850 16 √
MOD140 286 - - -
MOD141a-f - - - -
MOD142 ISC 296 - - -
MOD143 - - - -
MOD144 ISC 296 -  - √ √
MOD145 - -  - √
MOD146 - -  - √
MOD147 - - - -
MOD148 - - - -
MOD149 - - - GCO - - - √ 8

MOD150 - - - GCO - - - √ 8
MOD151 - - - - √ 8

- - GCO - - - √ 8

MOD151_15 1-372 LSC50 dip GCO 170 / 700 / 900 800 10 √ √ Z3.036 8

MOD151_16 2-372 LSC50 dip GCO 170 / 700 / 900 900 10 √ 8

MOD151_17 3-372 LSC50 dip GCO - - - √ √ Z3.037 8

MOD151_18 4-372 LSC50 dip GCO 170 / 700 / 900 900 10 √ √ Z3.050 8

- - GCO - - - √ Z3.035 8

MOD151_23 1-376 LSC50 dip GCO 170 / 700 / 900 800 10 √ √ Z3.044 8

MOD151_24 2-376 LSC50 dip GCO 170 / 700 / 900 - - √ Z3.038 8
MOD151_25 3-376 LSC50 dip GCO 170 / 700 / 900 - - √ Z3.040 8
MOD151_26 4-376 LSC50 dip GCO 170 / 700 / 900 800 10 √ Z3.043 8

MOD151_27 1-380 LSC50 dip GCO 170 / 700 / 900 800 2 √ Z3.045 8

MOD151_28 2-380 LSC50 dip GCO 170 / 700 / 900 - - √ Z3.041 8

MOD151_29 3-380 LSC50 dip GCO 170 / 700 / 900 - - √ Z3.042 8

MOD151_30 4-380 LSC50 dip GCO 170 / 700 / 900 800 2 √ √ Z3.047 8

MOD151_31 5-380 LSC50 dip GCO 170 / 700 / 900 - - √ 8

MOD151_32 6-380 LSC50 dip GCO 170 / 700 / 900 900 10 √ √ Z3.046 8

MOD151_33 7-380 LSC50 dip GCO 170 / 700 / 900 900 2 √ √ Z3.048 8

MOD151_34 8-380 LSC50 dip GCO 170 / 700 / 900 900 2 √ Z3.049 8

8YSZ + 
Zr/Y-sol

dip sapphire 500
1250 
1350

24
Doping of YSZ 

gb.
√

MOD164a 1-310 LSC50 tampon 8YSZ 170 / 700 - - √ Z3.028 5
MOD164b 1-310 LSC50 tampon 8YSZ 170 / 700 - - √ Z3.029 5
MOD164c,d 1-310 LSC50 tampon 8YSZ 170 / 700 - - √ 5

Development 
of GCO       

buffer-layer

"IWE-ID" + 
No.

Characteri-
zation by 

micro-
electrodes

LSC precursor powder

MOD128 - 133                      
(6 samples)

MOD134 (58 samples)

LSC precursor powder
LSC precursor powder

LSC precursor powder

LSC precursor powder
mixture: LSC50 + 8YSZ (Tosoh)

sintering aids (LSC50_CP3)

GCO powder (DKKK)

mixture: MOD144 + 8YSZ 
mixtues: MOD144 + GCO 
GCO powder (Treibacher)
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Crystallization 
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reaction 
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Influence of 
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7.2 Indices 

7.2.1 Symbols 

α polarizability 

³ transference number 

´ temperature and geometry dependent scaling factor 

· oxygen nonstoichiometry 

·gb �electrical� grain-boundary thickness [m] 

∆ full width at half maximum [°] 

¸ porosity [%] 

¸0 permittivity of free space [¸0 = 8.85·10-12 As/Vm] 

¸g permittivity of the bulk 

¸gb permittivity of the grain boundary 

¸r relative permittivity 

· polarization loss [V] 

» Debye length [m] 

· sol viscosity [m²/s] 

ρ density [kg/m³] 

Ã electrical conductivity [S/m] 

Ãel electronic conductivity [S/m] 

Ãg bulk conductivity [S/m] 

Ãgb grain-boundary conductivity [S/m] 

Ãion ionic conductivity [S/m] 

Ãtf electrical conductivity of the thin film [S/m] 

Ä relaxation time [s] 

¸ XRD grazing angle [°] 

a inner surface area [m-1] 

A cross-section of thin film [m²] 

c concentration [1/m³] 

C capacitance [F] 
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d mean grain size [m] 

d0 initial grain size at t0 [m] 

dgb microstructural grain-boundary thickness [m] 

dcrys distance between atomic layers in a crystal [m] 

D oxygen-diffusion coefficient [m²/s] 

Dchem (D·,D ) oxygen-diffusion rate with respect to a �chemical� experiment [m²/s] 

Dtr (D
0, D*) oxygen-diffusion rate with respect to a �tracer� experiment [m²/s] 

Dq oxygen-diffusion rate with respect to an �electrical� experiment [m/s] 

e strain [%] 

EA activation energy [eV], [kJ/mol] 

f frequency [1/s] 

F Faraday constant [F = 9.649·104 C/mol] 

g gravimetric constant [g = 9.81 m/s²] 

I current [A] 

HA association enthalpy [eV] 

HM migration enthalpy [eV] 

j current density [A/m²] 

k a) Boltzmann constant [k = 8.617·10-5 eV/K] 

 b) surface-exchange rate [m/s] 

kchem (kδ, k ) surface-exchange rate with respect to a �chemical� experiment [m/s] 

ktr (k
0, k*, kex)

 surface-exchange rate with respect to a �tracer� experiment [m/s] 

kq surface-exchange rate with respect to an �electrical� experiment [m/s] 

kp parabolic rate constant [cm²/s] 

l· utilization range [m] 

lcl electrode clearance [m] 

lel electrode length [m] 

lg particle dimension [m] 

Lc critical length of a dense cathode [m] 

n a) exponent in Q-C relation characterizing the deviation of Q from an 

�ideal� capacitance 

 b) concentration of electrons [m-3]  
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OCV open circuit voltage [V] 

pO2 oxygen partial pressure [bar] 

Q constant phase element 

rion ion radius [Å] 

R a) gas constant [R = 8.314 J/(mol·K)] 

 b) resistance [Ω]  

Ra average surface roughness 

Rg bulk resistance [Ω] 

Rgb grain-boundary resistance [Ω] 

Rtf thin-film resistance [Ω] 

RT room temperature 

t film thickness [m] 

tdwell dwell time [s] 

tion oxygen transference number 

tRTA calcination time during rapid thermal annealing [s] 

T absolute temperature [K] 

Tcal calcination temperature [K] 

Tcell cell temperature [K] 

U voltage [V] 

U0 open circuit voltage (OCV) [V] 

UC cell voltage [V] 

UN Nernst voltage [V] 

v0 withdrawal rate in dip-coating process [m/s] 

V volume of unit cell [m³] 

Z complex impedance [Ω] 

Z´ real part of the complex impedance [Ω] 

Z´´ imaginary part of the complex impedance [Ω] 

7.2.2 Abbreviations 

AFM atomic force microscopy 

APU auxiliary power unit 

ASR area specific resistance 
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ASRchem  ASR caused by oxygen-reduction mechanism except charge-transfer 

(Adler�s model) 

ASRgas  ASR caused by diffusion of oxygen molecules in the gas phase 

ASRct  ASR caused by the incorporation of oxygen ions into the electrolyte 

(charge transfer) 

ASRd  ASR caused by diffusion of oxygen ions through the MIEC to the MIEC / 

electrolyte interface 

ASRex  ASR caused by oxygen exchange at the MIEC surface 

ASRpol area specific polarization resistance [Ω·m²]  

DSC differential scanning calorimetry  

EIS electrochemical impedance spectroscopy 

FEM finite element method 

FIB focused ion beam 

FRA frequency response analyzer 

FSZ fully stabilized zirconia 

FWHM full width at half maximum 

FWHMc  full width at half maximum regarding the sample related peak 

broadening 

FWHMi full width at half-maximum regarding instrumental peak broadening 

GCO gadolinium cerium oxide (Gd,Ce)O2-δ 

HAADF high-angle annular dark-field 

HRTEM high-resolution TEM 

IT-SOFC intermediate-temperature SOFC (500 °C f T f 750 °C) 

ICP-AES inductively coupled plasma atomic emission spectroscopy 

ISC Fraunhofer Institut für Silicatforschung, Würzburg 

IWE Institut für Werkstoffe der Elektrotechnik, Universität Karlsruhe (TH) 

JCPDS Joint Committee on Powder Diffraction Standards 

LEM Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH) 

LSC lanthanum strontium cobaltite (La1-xSrx)CoO3-δ 

LSCF lanthanum strontium cobalt ferrite (La1-xSrx)(Co1-yFey)O3-δ 

LZO lanthanum zirconate La2Zr2O7 

MALT materials oriented little thermodynamic database 

MIEC mixed ionic-electronic conductor 
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MOD metallorganic deposition 

OCV open circuit voltage 

ORR oxygen-reduction reaction 

PLD pulsed laser deposition 

rds rate-determining step 

rpm rotations per minute  

SEM scanning electron microscopy 

SIMS secondary ion mass spectroscopy 

SOFC solid oxide fuel cell 

STEM scanning transmission electron microscope 

SZO strontium zirconate SrZrO3 

TA thermal analysis 

TG thermogravimetry 

TEC thermal expansion coefficient 

TEM transmission electron microscope 

tpb triple-phase boundary 

TZP tetragonal zirconia polycrystal 

XRD X-ray diffraction 

YSZ general: yttria-stabilized zirconia (Y2O3-doped ZrO2) 

 here: 8 mol% Y2O3 stabilized ZrO2 (8YSZ)  

 here: 3.5 mol% Y2O3 stabilized ZrO2 (3.5YSZ) 

7.3 List of Figures 
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for applications related to energy conversion and environmental monitoring 
including batteries, fuel cells, permeation membranes and sensors. Due to 
their high energy conversion efficiencies and low emissions, Solid Oxide Fuel 
Cells (SOFCs) show promise as a replacement for combustion-based elec-
trical generators at all sizes. Further increase of SOFC efficiency is aimed by 
microstructural optimization of the electrolyte and the electrodes. At the nano-
scale, grain-size effects potentially lead to substantially enhanced electrical 
conductivity. Improved charge-transport properties in turn reduce the ohmic 
losses in the electrolyte and the polarization of the electrodes. 

However, an increased grain-boundary density at the nanoscale affects the 
charge transport in electrolytes and electrodes in different ways: whereas ionic 
transport is decreased in nanoscaled yttria-doped zirconia (YSZ) thin film 
electrolytes, nanoscaled and nanoporous (La0.5Sr0.5)CoO3-δ (LSC) thin film 
electrodes exhibit excellent oxygen-reduction properties. Due to the benefi-
cial material properties of LSC and the high active surface area of the nano-
structured cathode, prevailing benchmarks for the electrochemical efficiency 
of MIEC cathodes are outclassed. The research results are based on micro-
structural, chemical and electrical measurements of nanoscaled LSC thin-film 
cathodes and give insights into the electrochemical processes of the cathode. 
Thus, this work lays the foundation for the application of nanoscaled, mixed 
ionic-electronic conducting cathodes in the field of mobile SOFCs with ope-
rating temperatures of 500 °C ≤ T ≤ 750 °C.
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