

SCENE

Piping Engineering Note Rev. 6

Wednesday, January 31, 2018

Rev 3 Prepared by David Montanari	Organization Fermilab	Phone 630-840-5195	Signature And Utata	Date February 27, 2014
Rev 4 Updated by Hugh Lippincott	Organization Fermilab	Phone 630-840-3258	Signature	Date March 1, 2017
Rev 4 Updated by Hugh Lippincott	Organization Fermilab	Phone 630-840-3258	Signature	Date August 7, 2017

Table of Contents

1.0	introd	uction	3
2.0	Desig	n code and evaluation criteria	4
3.0	Mater	ials	4
4.0	GAr li	ne from heat exchanger to condenser	5
	4.1 U	nlisted components	7
5.0	Cond	enser	8
	5.1	Unlisted components	9
6.0	LAr lir	ne from condenser to detector	10
	6.1	Unlisted components	12
7.0	Detec	etor	12
	7.1	Unlisted components	14
7.2	Detec	tor Modification for Rev 4	14
	7.3	Unlisted components	16
8.0	GAr li	ne from detector to condenser	16
	8.1	Unlisted components	19
8.2	Gas li	ne to differential pressure transducer, for Rev 4	19
	8.3	Unlisted components	21
9.0		ne from detector to heat exchanger	22
	9.1	Unlisted components	24
10.0		documentation	25
		ure relief system	26
	Press	ure test	28
13.0	Sumn	nary	28
APPE	ENDICE	ES .	
Appe	ndix A	SCENE P&ID (including most recent revision)	29
Appe	ndix B	Weld documents - Leonard Harbacek	30
Appe	ndix C	Detector PRV sizing calculations for liquid argon service	38
		Pressure test form	39
Appe	ndix E	Detector PRV sizing calculations for liquid xenon service	40
Appe	ndix F	Burst disc sizing and information	45
Appe	ndix G	Valve, instrument, and equipment list	46

1.0 Introduction

The SCENE detector, has been designed and installed at the Fermilab building PAB in 2012. It has run successfully with liquid argon since then.

In 2014, for Rev 3, this document was updated to run it with liquid xenon. The design pressure remains the same, but the temperature is now 170K. No changes in the design are needed. At this time, Appendix E was added to verify that the Pressure Relieving Device is suitable for these conditions as well. A note was added to Section 11.0 to that effect.

The P&ID shown in Appendix A was changed, but the changes were in warm piping. A pressure vessel has also been added: PPD-10120. It is U-stamped and it already has the PPD sticker.

All the rest remained the same.

In December of 2016, for Rev 4 of this document, the inner vessel was changed. The 4" diameter vessel that was used for the original design was replaced by a 6" diameter vessel. In addition, a differential pressure transducer was inserted between the inner vessel and the condenser. These changes are detailed in new Sections 7.2, 7.3, 8.2 and 8.3, including a new P&ID relevant just for those sections. A paragraph was also added to Section 11.0 confirming that the original pressure relief is still correctly sized for the new inner vessel. The two vessels are meant to be interchangeable. In the course of preparing Rev. 4, it was noticed that many of the previous calculations used 15 psig for the working pressure. While this is true relative to atmosphere, the detector itself and much of the piping operates in an insulating vacuum, and so the differential pressure is 30 psid. The previous calculations were not updated, but all new calculations use 30 psid. All other details, including the pressure relief devices, are unchanged.

In August of 2017, for Rev 5 of this document, the pressure relief valve was replaced by a slightly larger pressure relief valve with a relieving pressure of 20 psig. As a result, the MAWP of the system was changed to 20 psig, and all calculations were updated, including Appendix D containing the PRV sizing calculations.

Revision 6 was created for this document on January 31, 2018. The current SCENE cryostat has one primary relief valve. This valve (PSV-01) has already been approved and meets the flow capacity requirements for both argon and xenon cases. A small leak, suspected to stem from this relief valve, is affecting the purity when the experiment is operating under normal conditions. For this revision, a burst disc was added between the relief valve and the vessel to prevent the leaking relief valve from contaminating the xenon or argon inside.

Additionally, a check valve was added to prevent the relief valve from going off during the filling process. The check valve leads to a large 440L dewar (PPD-10120) with a MAWP of 200 psi. The check valve is manufactured by Swagelok and has part number SS-8CPA2-3. It has a cracking pressure of 30 psi.

The SCENE detector will be used for the study of scintillation and ionization from recoils in liquid Argon and liquid Xenon. This detector will operate in three modes: filling, recirculation and data-taking.

The filling takes place once, at the beginning. During the filling, the gas handling system supplies a stream of ultra pure Argon gas to the detector from a commercial cylinder. The Argon flows through a commercial getter to remove residual impurities, then through a commercial heat exchanger where it is pre-cooled down by the cold Argon gas coming from the detector. It then enters the condenser where it is liquified. Liquid Argon fills the detector by gravity. The cold gas from the detector goes to the condenser and back in the piping through the heat exchanger, to pre-cool down the incoming warm Argon gas. Detector, condenser and heat exchanger are only connected by straight pieces of pipe. After the required amount of Argon has entered the detector, the outside supply of Argon gas will be shut off. The gas system transits into recirculation mode, where Argon gas from inside the detector is pumped through the getter then back into the detector. Once the Argon in the detector reaches the desired purity, recirculation is halted, and data-taking begins. Recirculation is restarted whenever the Argon purity falls below the threshold.

The cooling power of the condenser is given by a PT-60 cryocooler from Cryomech, whose cold head is directly connected to the top flange of the condenser.

A vacuum jacket surrounds heat exchanger, condenser, detector and all the cryogenic lines.

This document summarizes the design calculations for the following cryogenic lines:

1) GAr line from heat exchanger to condenser	(Section 4)
2) Condenser	(Section 5)
3) LAr line from condenser to detector	(Section 6)
4) Detector	(Section 7)
5) GAr line from detector to condenser	(Section 8)
6) GAr line from detector to heat exchanger	(Section 9)

2.0 Design codes and evaluation criteria

The piping of the SCENE system must satisfy the requirements listed in the "Piping System" Section of the Fermilab ES&H Manual (Section 5031.1). This section states that piping systems containing cryogenic fluids fall under the category of Normal Fluid Service and shall adhere to the requirements of the ASME Process Piping Code B31.3.

The Maximum Allowable Working Pressure (MAWP) of the SCENE piping system is 20 psig. The operating temperature is about 94K.

3.0 Materials

The piping of the SCENE system is fabricated from 304L seamless stainless steel tube. The lowest allowable stress from Table K-1 of ASME B31.3 will be used in this analysis.

The piping of the SCENE system will operate at about 94K. According to 323.2.2 of the Code impact test is required, except as stated in Table 323.2.2 Note 6 where impact test is

not required when the maximum obtainable Charpy specimen has a width along the notch of less than 2.5 mm (0.098 in). All the tubes used in the SCENE piping system have a wall thickness lower than 0.098 in, therefore impact test is not required for the piping system.

Moreover, Fermilab has extensive service experience using the 300 series stainless steel at cryogenic temperatures even much lower than 94K.

Table 3.1 summarizes the material used and the corresponding allowable stresses from the Code, ASME B31.3, Table K-1.

Table 3.2 summarizes the results of the wall thickness calculations.

Component	Material	Code Allowable Stress
GAr line from heat exchanger to Condenser	304L SS tube seamless	20,000 psi
Condenser	304L SS tube seamless	20,000 psi
LAr line from Condenser to Detector	304L SS tube seamless	20,000 psi
Detector	304L SS tube seamless	20,000 psi
GAr line from Detector to Condenser	304L SS tube seamless	20,000 psi
GAr line from Detector to heat exchanger	304L SS tube seamless	20,000 psi

Table 3.1 - Materials

Component	P Design Int/Ext	D	S	Nominal thickness t	Required thickness Internal	Required thickness External	Е
	psi	in	psi	in	in	in	
GAr line from heat exchanger to Condenser	35/15	0.5	20,000	0.035	0.0005	0.0005	0.8
Condenser	35/15	4	20,000	0.083	0.0044	0.004	0.8
LAr line from Condenser to Detector	35/15	0.5	20,000	0.035	0.0005	0.0005	0.8
Detector	35/15	6	20,000	0.065	0.0066	0.01	0.8

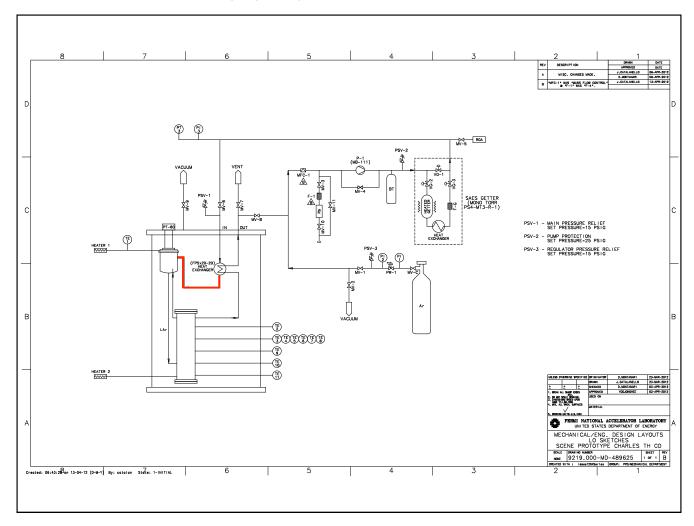
Component	P Design Int/Ext	D	S	Nominal thickness t	Required thickness Internal	Required thickness External	E
GAr line from Detector to Condenser	35/15	0.5	20,000	0.035	0.0005	0.0005	0.8
GAr line from Detector to heat exchanger	35/15	0.5	20,000	0.035	0.0005	0.0005	0.8

Table 3.2 - Summary of the results

The selected wall thicknesses are greater than the minimum for both internal and external pressure. The requirements are therefore satisfied.

4.0 GAr line from heat exchanger to condenser

The GAr line from heat exchanger to condenser brings the cold gaseous Argon from the heat exchanger to the condenser, where it condenses. This line is a standard 304L stainless steel seamless tube with 0.50 inch OD and 0.035 inch wall thickness.


Operating pressure is 35 psid. Operating temperature is about 94K.

During the installation, there will be external atmospheric pressure. It is then necessary to analyze the GAr line from heat exchanger to condenser under external atmospheric pressure.

Figure 1 - GAr line from heat exchanger to condenser

This line is a standard 0.50 inch OD with 0.035 inch wall thickness 304L seamless stainless steel tube ASTM A 269. The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$t = \frac{P \cdot D}{}$	
$t = \frac{1}{2 \cdot (S \cdot E \cdot W + P)}$	Y)
$t < \frac{D}{6}$	satisfied
P=35 psi	design pressure
$D = 0.50 \ in$	tube outer diameter
S = 20,000 psi	allowable stress, from Table A-1
E = 0.8	quality factor, from Table A1-A (worst case)
W = 1	weld join strength reduction factor
Y = 0.4	coefficient, from Table 304.1.1

The minimum wall thickness is 0.0005 inch, the tube wall thickness is 0.035 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \begin{pmatrix} D_0 \\ t \end{pmatrix}}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3. Table 4.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	15	psi	External pressure design
D ₀	0.50	in	Shell outer diameter
L	30.00	in	Shell length

SCENE - Piping Engineering Notes Rev. 6 - Wednesday, January 31, 2018

Variable	Value	Unit	Description
t	0.035	in	Shell thickness
L/D0	60.00		
D0/t	14.29		
Α	0.005		Subpart 3, Section II, Part D, Figure G
В	12,000		Subpart 3, Section II, Part D, Figure HA-3
Pa	1,120	psi	Maximum external working pressure
t _{min}	0.0005	in	Minimum thickness for external pressure design

Table 4.1 - GAr line from heat exchanger to condenser

The maximum allowable external working pressure is 1,120 psi, the requirement is therefore satisfied.

The GAr line from heat exchanger to condenser includes a flexible hose, to allow flexibility, see Table 4.2.

4.1 Unlisted components

Table 4.2 shows the unlisted components installed in the GAr line from heat exchanger to condenser of the SCENE piping system, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
Elbow	Swagelok, P/N: 6LV-8MW-9	3,700 psi	35 psid	304.7.2(a) Extensive service experience
Flex hose	Hose Master, Masterflex, P/ N: AF5550 1/2"	1,186 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: 6LV-8- VCR-3S-8TB2	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-1	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-4	3,500 psi	35 psid	304.7.2(a) Extensive service experience

Table 4.2 - Unlisted components

5.0 Condenser

The condenser is 4 inch outer diameter with 0.083 inch wall thickness, and 3.2 inch high.

Operating pressure is 35 psid, operating temperature is about 94K. Fluid is liquid Argon.

The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$$t < \frac{D}{6}$$
 satisfied
$$P = 35 \text{ psid} \qquad \text{design pressure}$$

$$D = 4.00 \text{ in} \qquad \text{tube outer diameter}$$

$$S = 20,000 \text{ psi} \qquad \text{allowable stress, from Table A-1}$$

$$E = 0.8 \qquad \text{quality factor, from Table A1-A (worst case)}$$

$$W = 1 \qquad \text{weld join strength reduction factor}$$

$$Y = 0.4 \qquad \text{coefficient, from Table 304.1.1}$$

The minimum wall thickness is 0.0044 inch, the tube wall thickness is 0.083 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \left(\frac{D_0}{t}\right)}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3. Table 5.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	15	psi	External pressure design
D ₀	4.00	in	Shell outer diameter
L	3.20	in	Shell length
t	0.083	in	Shell thickness
L/D0	0.80		
D0/t	48.19		

Variable	Value	Unit	Description
Α	0.005		Subpart 3, Section II, Part D, Figure G
В	12,000		Subpart 3, Section II, Part D, Figure HA-3
Pa	332	psi	Maximum external working pressure
t _{min}	0.0038	in	Minimum thickness for external pressure design

Table 5.1 - Condenser under external pressure

The maximum allowable external working pressure is 320 psi, the requirement is therefore satisfied.

There is one opening in the condenser shell with 0.50 inch diameter.

UG-36 of the Code states that an opening in a shell doesn't require additional reinforcement if:

- the opening diameter is less than half the shell diameter, UG-36(b)(1)
- the opening diameter is less than 3.5 inch in shell with a required minimum thickness of $\frac{3}{2}$ inch or less, UG-36(c)(3)

The opening meets the above criteria and no additional reinforcement is required.

5.1 Unlisted components

Table 5.2 shows the unlisted components installed in the condenser, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
Сар	Robert James, CAP 3.5" SCH5S.	417 psi	35 psid	304.7.2(a) Extensive service experience

Table 5.2 - Unlisted components

6.0 LAr line from condenser to detector

The LAr line from condenser to detector carries the liquid Argon from the condenser to the detector, by gravity. This line is a standard 304L stainless steel seamless tube with 0.50 inch OD and 0.035 inch wall thickness.

Operating pressure is 35 psid. Operating temperature is about 94K.

During the installation, there will be external atmospheric pressure. It is then necessary to analyze the LAr line from condenser to detector under external atmospheric pressure.

This line is a standard 0.50 inch OD with 0.035 inch wall thickness 304L seamless stainless steel tube ASTM A 269. The minimum thickness is evaluated using 304.1.2(a) of

ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$$t < \frac{D}{6}$$
 satisfied
$$P = 35 \text{ psid} \qquad \text{design pressure}$$

$$D = 0.50 \text{ in} \qquad \text{tube outer diameter}$$

$$S = 20,000 \text{ psi} \qquad \text{allowable stress, from Table A-1}$$

$$E = 0.8 \qquad \text{quality factor, from Table A1-A (worst case)}$$

$$W = 1 \qquad \text{weld join strength reduction factor}$$

$$Y = 0.4 \qquad \text{coefficient, from Table 304.1.1}$$

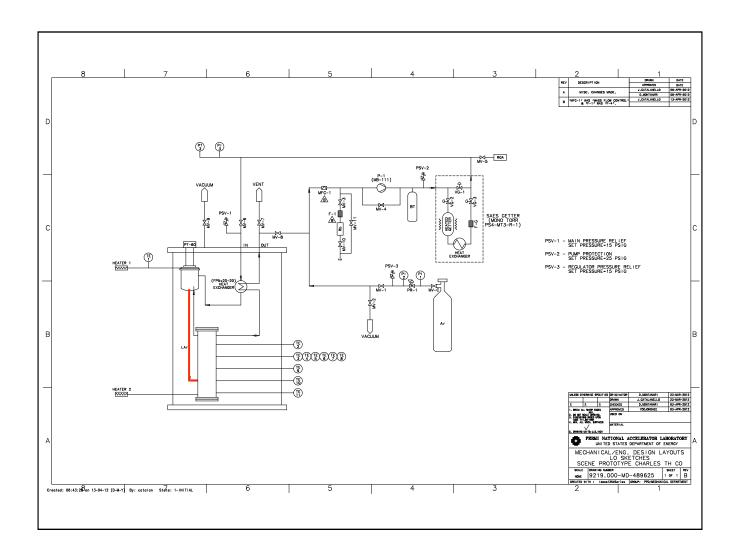


Figure 2 - LAr line from condenser to detector

The minimum wall thickness is 0.0005 inch, the tube wall thickness is 0.035 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \begin{pmatrix} D_0 / \\ / t \end{pmatrix}}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3.

Table 6.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	15	psi	External pressure design
D ₀	0.50	in	Shell outer diameter
L	34.00	in	Shell length
t	0.035	in	Shell thickness
L/D0	68.00		
D0/t	14.29		
Α	0.005		Subpart 3, Section II, Part D, Figure G
В	12,000		Subpart 3, Section II, Part D, Figure HA-3
Pa	1,120	psi	Maximum external working pressure
t _{min}	0.0005	in	Minimum thickness for external pressure design

Table 6.1 - LAr line from condenser to detector

The maximum allowable external working pressure is 1,120 psi, the requirement is therefore satisfied.

The LAr line from condenser to detector includes a flexible hose, to allow flexibility, see Table 6.2.

6.1 Unlisted components

Table 6.2 shows the unlisted components installed in the LAr line from condenser to detector of the SCENE piping system, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
Elbow	Swagelok, P/N: 6LV-8MW-9	3,700 psi	35 psid	304.7.2(a) Extensive service experience
Flex hose	Hose Master, Masterflex, P/ N: AF5550 1/2"	1,186 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: 6LV-8- VCR-3S-8TB2	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-1	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-4	3,500 psi	35 psid	304.7.2(a) Extensive service experience

Table 6.2 - Unlisted components

7.0 Detector

The Detector is 4 inch outer diameter with 0.065 inch wall thickness, and 30 inch high. Operating pressure is 35 psid, operating temperature is about 94K. Fluid is liquid Argon.

The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$$t < \frac{D}{6}$$
 satisfied
$$P = 35 \text{ psid}$$
 design pressure
$$D = 4.00 \text{ in}$$
 tube outer diameter
$$S = 20,000 \text{ psi}$$
 allowable stress, from Table A-1
$$E = 0.8$$
 quality factor, from Table A1-A (worst case)
$$W = 1$$
 weld join strength reduction factor
$$Y = 0.4$$
 coefficient, from Table 304.1.1

The minimum wall thickness is 0.0044 inch, the tube wall thickness is 0.065 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \begin{pmatrix} D_0 / \\ / t \end{pmatrix}}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3.

Table 7.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	15	psi	External pressure design
D ₀	4.00	in	Shell outer diameter
L	30.00	in	Shell length
t	0.065	in	Shell thickness
L/D0	7.50		
D0/t	61.54		
А	0.00035		Subpart 3, Section II, Part D, Figure G
В	4,700		Subpart 3, Section II, Part D, Figure HA-3
Pa	102	psi	Maximum external working pressure
t _{min}	0.0096	in	Minimum thickness for external pressure design

Table 7.1 - Condenser under external pressure

The maximum allowable external working pressure is 102 psi, the requirement is therefore satisfied.

There are three openings in the detector shell with 0.50 inch diameter.

UG-36 of the Code states that a openings in a shell do not require additional reinforcement if:

- the opening diameter is less than half the shell diameter, UG-36(b)(1).
- the opening diameter is less than 3.5 inch in shell with a required minimum thickness of $\frac{3}{2}$ inch or less, UG-36(c)(3)(a).

- no two isolated unreinforced openings in accordance with the above shall have their centers closer to each other than the sum of their diameters, UG-36(c)(3) (c).

The openings are more than 0.5 inch apart. They therefore meet the above criteria and no additional reinforcement is required.

7.1 Unlisted components

Table 7.2 shows the unlisted components installed in the detector, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
6-Way Cross	Kurt Lesker, P/N: C6-0275	285 psi	35 psid	304.7.2(a) Extensive service experience
Feedthrough	Ceram Tech, P/N: 17187-01-CF	1,400 psi	35 psid	304.7.2(a) Extensive service experience
Feedthrough	Ceram Tech, P/N: 17216-02-CF	1,200 psi	35 psid	304.7.2(a) Extensive service experience
Feedthrough	Ceram Tech, P/N: 17187-01-CF	1,500 psi	35 psid	304.7.2(a) Extensive service experience

Table 7.2 - Unlisted components

7.2 Detector Update for Rev 4, December 2016

The new Detector is a 6 inch outer diameter vessel with 0.120 inch wall thickness, and 13.12 inch height (MDC Vacuum part 402008).

Operating pressure is 35 psid (since it operates with an external vacuum), operating temperature is down to 94K. Fluid is either liquid argon or liquid xeon.

The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$$t < \frac{D}{6}$$
 satisfied
$$P = 35 \text{ psid}$$
 relative to the vacuum in the Outer Vacuum Can tube outer diameter

SCENE - Piping Engineering Notes Rev. 6 - Wednesday, January 31, 2018

S=20,000psi	allowable stress, from Table A-1
E = 0.8	quality factor, from Table A1-A (worst case)
W = 1	weld join strength reduction factor
Y = 0.4	coefficient, from Table 304.1.1

The minimum wall thickness is 0.0066 inch, the tube wall thickness is 0.120 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \left(\frac{D_0}{t}\right)}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3. Table 7.3 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	30	psi	External pressure design
D ₀	6.00	in	Shell outer diameter
L	13.12	in	Shell length
t	0.120	in	Shell thickness
L/D0	2.19		
D0/t	50.00		
Α	0.00035		Subpart 3, Section II, Part D, Figure G
В	4,700		Subpart 3, Section II, Part D, Figure HA-3
Pa	125	psi	Maximum external working pressure
t _{min}	0.0287	in	Minimum thickness for external pressure design

Table 7.3 - Detector under external pressure

The maximum allowable external working pressure is 125 psi, the requirement is therefore satisfied. From ED0004253, the design pressure for an 8" CF is 200 psi.

There is one opening in the detector shell with 0.50 inch diameter.

UG-36 of the Code states that a openings in a shell do not require additional reinforcement if:

- the opening diameter is less than half the shell diameter, UG-36(b)(1).

- the opening diameter is less than 3.5 inch in shell with a required minimum thickness of $\frac{3}{2}$ inch or less, UG-36(c)(3)(a).
- no two isolated unreinforced openings in accordance with the above shall have their centers closer to each other than the sum of their diameters, UG-36(c)(3) (c).

The opening meets the above criteria and no additional reinforcement is required.

7.3 Unlisted components

Table 7.4 shows the unlisted components installed in the 2016 detector configuration, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
6-Way Cross	Kurt Lesker, P/N: C6-0275	350 psi	35 psid	Report ED0004253 304.7.2(a) Extensive service experience
4-Way Cross	Kurt Lesker, P/N: C4-0275	350 psi	35 psid	Report ED0004253 304.7.2(a) Extensive service experience
2.75CF to VCR4	Kurt Lesker, P/N: F0275X4FVCR	350 psi	35 psid	Report ED0004253 304.7.2(a) Extensive service experience
Feedthrough	Ceram Tech, P/N: 17187-01-CF	1,400 psi	35 psid	304.7.2(a) Extensive service experience
Feedthrough	Ceram Tech, P/N: 17216-02-CF	1,200 psi	35 psid	304.7.2(a) Extensive service experience
Feedthrough	Ceram Tech, P/N: 17187-01-CF	1,500 psi	35 psid	304.7.2(a) Extensive service experience

Table 7.4 - Unlisted components

8.0 GAr line from detector to condenser

The GAr line from detector to condenser brings the cold gaseous Argon from the detector back to the condenser, where it re-condenses. This line is a standard 304L stainless steel seamless tube with 0.50 inch OD and 0.035 inch wall thickness.

Operating pressure is 35 psid. Operating temperature is about 94K.

During the installation, there will be external atmospheric pressure. It is then necessary to analyze the GAr line from detector to condenser under external atmospheric pressure.

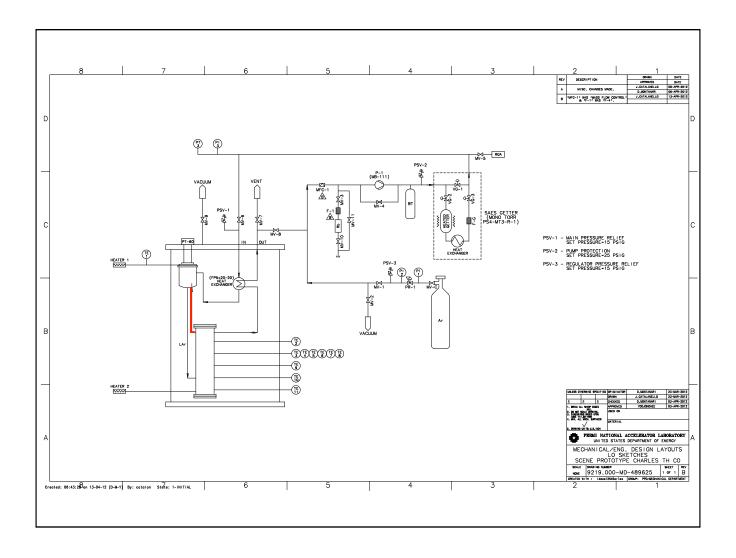


Figure 3 - GAr line from detector to condenser

This line is a standard 0.50 inch OD with 0.035 inch wall thickness 304L seamless stainless steel tube ASTM A 269. The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$$t < \frac{D}{6}$$
 satisfied
$$P = 35 \text{ psid} \qquad \text{design pressure}$$

$$D = 0.50 \text{ in} \qquad \text{tube outer diameter}$$

$$S = 20,000 \text{ psi} \qquad \text{allowable stress, from Table A-1}$$

$$E = 0.8 \qquad \text{quality factor, from Table A1-A (worst case)}$$

$$W = 1 \qquad \text{weld join strength reduction factor}$$

$$Y = 0.4 \qquad \text{coefficient, from Table 304.1.1}$$

The minimum wall thickness is 0.0005 inch, the tube wall thickness is 0.035 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \left(\frac{D_0}{t}\right)}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3. Table 8.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	15	psi	External pressure design
D ₀	0.50	in	Shell outer diameter
L	15.00	in	Shell length
t	0.035	in	Shell thickness
L/D0	30.00		
D0/t	14.29		
Α	0.005		Subpart 3, Section II, Part D, Figure G
В	12,000		Subpart 3, Section II, Part D, Figure HA-3
Pa	1,120	psi	Maximum external working pressure
t _{min}	0.0005	in	Minimum thickness for external pressure design

Table 8.1 - GAr line from detector to condenser

The maximum allowable external working pressure is 1,120 psi, the requirement is therefore satisfied.

The GAr line from detector to condenser includes a flexible hose, to allow flexibility, see Table 8.2.

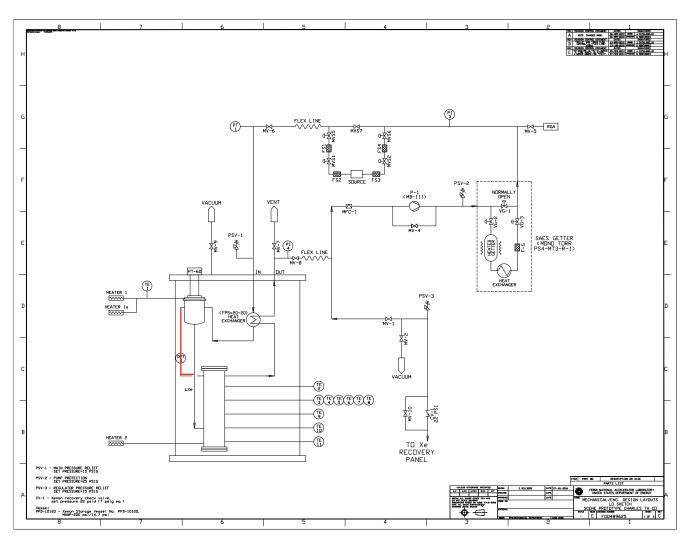
8.1 Unlisted components

Table 8.2 shows the unlisted components installed in the GAr line from detector to condenser of the SCENE piping system, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
Elbow	Swagelok, P/N: 6LV-8MW-9	3,700 psi	35 psid	304.7.2(a) Extensive service experience
Flex hose	Hose Master, Masterflex, P/ N: AF5550 1/2"	1,186 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: 6LV-8- VCR-3S-8TB2	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-1	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-4	3,500 psi	35 psid	304.7.2(a) Extensive service experience

Table 8.2 - Unlisted components

8.2 GAr line from detector and condenser to differential pressure transducer - Rev 4


For the Rev 4 modification, there is a differential pressure transducer (DPT) placed between the detector and condenser. In this modification, gas goes around the full circulation loop to return to the condenser and prevent vapor lock, and the DPT measures any issues maintaining the pressure balance. This line is a standard 304L stainless steel seamless tubing made from a combination of with 0.50 inch OD and 0.25 inch OD tubing, with 0.035 inch wall thickness.

Operating pressure is 35 psid. Operating temperature is down to 94K.

During the installation, there will be external atmospheric pressure, and the differential pressure transducer is mounted externally. It is then necessary to analyze the GAr line from detector to condenser under external atmospheric pressure.

This line is a combination of standard 0.50 inch and 0.25 inch OD with 0.035 inch wall thickness 304L seamless stainless steel tube ASTM A 269. The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$t < \frac{D}{6}$	satisfied
P = 35 psid D = 0.50 in	relative to the vacuum in the Outer Vacuum Can tube outer diameter
S = 20,000 psi	allowable stress, from Table A-1
E = 0.8	quality factor, from Table A1-A (worst case)
W = 1	weld join strength reduction factor
Y = 0.4	coefficient, from Table 304.1.1

The minimum wall thickness for the 0.5 inch section is 0.0005 inch, the tube wall thickness is 0.035 inch, the requirement is therefore satisfied. For the 0.25 inch section, the requirement is also satisfied.

Figure 4 - GAr line from detector to condenser to DPT

_ ., .•

The Code analysis for shell under external pressure is governed by equation UG-28:

$$P_a = \frac{4 \cdot B}{3 \cdot \begin{pmatrix} D_0 / t \end{pmatrix}}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3.

Table 8.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	30	psi	External pressure design
D ₀	0.50	in	Shell outer diameter
L	15.00	in	Shell length
t	0.035	in	Shell thickness
L/D0	30.00		
D0/t	14.29		
Α	0.005		Subpart 3, Section II, Part D, Figure G
В	12,000		Subpart 3, Section II, Part D, Figure HA-3
Pa	1,120	psi	Maximum external working pressure
t _{min}	0.0009	in	Minimum thickness for external pressure design

Table 8.3 - GAr line from detector to condenser

The maximum allowable external working pressure is 1,120 psi, the requirement is therefore satisfied.

The GAr line from detector to condenser includes a flexible hose, to allow flexibility, see Table 8.4.

8.3 Unlisted components

Table 8.4 shows the unlisted components installed in the GAr line from detector to condenser of the SCENE piping system, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
Differential Pressure Transducer	MKS, P/N 226A-32831	40 psig	20 psi	12 psid full range
Elbow	Swagelok, P/N: 6LV-8MW-9	3,700 psi	35 psid	304.7.2(a) Extensive service experience
Flex hose	Hose Master, Masterflex, P/ N: AF5550 1/2"	1,186 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: 6LV-8- VCR-3S-8TB2	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-1	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-4	3,500 psi	35 psid	304.7.2(a) Extensive service experience

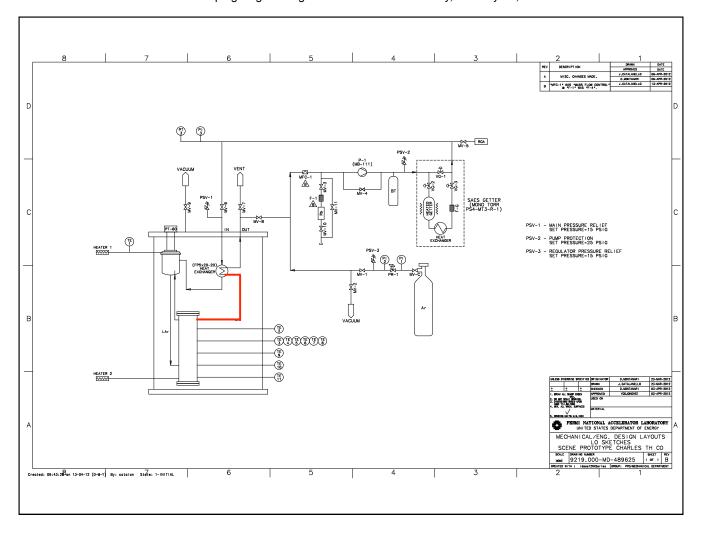
Table 8.4 - Unlisted components

9.0 GAr line from detector to heat exchanger

The GAr line from detector to heat exchanger brings the cold gaseous Argon from the detector to the heat exchanger, then the purification loop. This line is a standard 304L stainless steel seamless tube with 0.50 inch OD and 0.035 inch wall thickness.

Operating pressure is 35 psid. Operating temperature is about 94K.

During the installation, there will be external atmospheric pressure. It is then necessary to analyze the GAr line from detector to heat exchanger under external atmospheric pressure.


This line is a standard 0.50 inch OD with 0.035 inch wall thickness 304L seamless stainless steel tube ASTM A 269. The minimum thickness is evaluated using 304.1.2(a) of ASME B31.3. The minimum tube thickness for seamless or longitudinally welded piping is given by:

$$t = \frac{P \cdot D}{2 \cdot \left(S \cdot E \cdot W + P \cdot Y\right)}$$

$$t < \frac{D}{6}$$
 satisfied
$$P = 35 \text{ psid} \qquad \text{design pressure}$$

$$D = 0.50 \text{ in} \qquad \text{tube outer diameter}$$

$$S = 20,000 \text{ psi} \qquad \text{allowable stress, from Table A-1}$$

E = 0.8 quality factor, from Table A1-A (worst case) W = 1 weld join strength reduction factor Y = 0.4 coefficient, from Table 304.1.1

The minimum wall thickness is 0.0005 inch, the tube wall thickness is 0.035 inch, the requirement is therefore satisfied.

The Code analysis for shell under external pressure is governed by equation UG-28:

Figure 4 - GAr line from detector to heat exchanger

$$P_a = \frac{4 \cdot B}{3 \cdot \begin{pmatrix} D_0 / \\ / t \end{pmatrix}}$$

 P_a is the maximum allowable external working pressure, D_0 the external diameter of the shell, t the shell wall thickness and B a factor from Subpart 3, Section II, Part D, Figure HA-3.

Table 9.1 summarizes the results for the external pressure analysis.

Variable	Value	Unit	Description
Р	15	psi	External pressure design
D ₀	0.50	in	Shell outer diameter
L	10.00	in	Shell length
t	0.035	in	Shell thickness
L/D0	20.00		
D0/t	14.29		
Α	0.005		Subpart 3, Section II, Part D, Figure G
В	12,000		Subpart 3, Section II, Part D, Figure HA-3
Pa	1,120	psi	Maximum external working pressure
t _{min}	0.0005	in	Minimum thickness for external pressure design

Table 9.1 - GAr line from detector to heat exchanger

The maximum allowable external working pressure is 1,120 psi, the requirement is therefore satisfied.

The GAr line from detector to heat exchanger includes a flexible hose, to allow flexibility, see Table 9.2.

9.1 Unlisted components

Table 9.2 shows the unlisted components installed in the GAr line from detector to heat exchanger of the SCENE piping system, in accordance with B31.3 Section 304.7.2.

Component	Manufacturer	Max Pressure	MAWP	Comment
Elbow	Swagelok, P/N: 6LV-8MW-9	3,700 psi	35 psid	304.7.2(a) Extensive service experience
Flex hose	Hose Master, Masterflex, P/ N: AF5550 1/2"	1,186 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: 6LV-8- VCR-3S-8TB2	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-1	3,500 psi	35 psid	304.7.2(a) Extensive service experience
Fitting	Swagelok, P/N: SS-8-VCR-4	3,500 psi	35 psid	304.7.2(a) Extensive service experience

Table 9.2 - Unlisted components

10.0 Weld documentation

There are welds in the Argon supply system piping and they have been performed by Leonard Harbacek, from Fermilab, ASME Sect. IX qualified welder. Appendix E presents PQR, WPS and WPQ.

11.0 Pressure relief system - Updated January 31, 2018

The main venting scenario is the loss of insulating vacuum. It is assumed that air fills the vacuum region, because air has a higher thermal conductivity than Argon. There is one vacuum jacket around all the SCENE system. The detector is conservatively assumed full of liquid Argon. The same analysis has also been performed for Xenon.

The minimum required flow capacity for the primary Pressure Relieving Device (PRD) on insulated line for cryogenic fluids is given by 6.2.2 from CGA S-1.3-2008:

$$Q_{a} = \frac{\left(590 - T\right)}{4 \cdot \left(1660 - T\right)} \cdot F \cdot G_{i} \cdot U \cdot A$$

$$T = T_{s}$$

$$F = \sqrt{\frac{Z_{i} \cdot T_{i}}{Z \cdot T}} = \sqrt{\frac{P_{i} \cdot v_{i}}{P \cdot v}}$$

$$U = \frac{k_{Air}}{x_{MLI}}$$

$$G_{i} = \frac{73.4 \cdot \left(1660 - T\right)}{C \cdot L} \cdot \left(\frac{v_{g} - v_{l}}{v_{o}}\right) \cdot \sqrt{\frac{Z \cdot T}{M}}$$

$$A = \frac{A_{Ext,Inner} + A_{Int,Outer}}{2}$$

$$Z(T,P)$$

$$Z_{i}(T_{i},P_{i})$$

$$v(T,P)$$

$$v_{i}(T_{i},P_{i})$$

$$L(T,P)$$

$$P = 1.1 \cdot P_{Set} + 14.7$$

$$A = \frac{A_{Ext,Inner} + A_{Int,Outer}}{2}$$

$$T_{i} = 590 - \frac{590 - T_{S}}{e^{\left(\frac{0.55 \cdot D \cdot L_{pipe}}{W \cdot C_{p}}\right)}}$$

$$C_{p}(T_{1},P)$$

$$T_{1} = \frac{T_{s} + 1,660}{2}$$

$$P_{i} = P - 3.36 \cdot 10^{-6} \cdot \frac{f \cdot l \cdot W^{2} \cdot v(P,T_{f})}{d^{5}}$$

$$T_{f} = \frac{T + T_{i}}{2}$$

$$W = \frac{Q_{ae} \cdot C}{18.35} \cdot \sqrt{\frac{M}{Z \cdot T}}$$

 Q_a is the minimum required flow capacity for the primary PRD in *SCFM* of free air.

 Q_{ae} is the calculated flow capacity using formula 6.2.2 with F=1 in SCFM of free air.

W is the required mass flow rate of lading through the PRD in *lbm/hr* of the fluid being relieved. From 6.1.4 a).

P is the flow rating pressure in *psia*.

 P_{set} is the PRD set pressure.

T is the saturation temperature at the flow rating pressure in deg R.

 T_i is the temperature at the inlet of the PRD for operational emergency conditions without fire in deg R. From 6.1.4 b).

 P_i is the pressure at the inlet of the PRD for operational emergency conditions without fire in *psia*. From 6.1.4 c).

U is the overall heat transfer coefficient of the insulating material of the container when saturated with air (greater than Argon and same as Nitrogen) in $Btu/(hr \cdot ft^2 \cdot F)$.

Gi is a factor from Note 1 to Table 1.

L is the latent heat of product at the flow rating pressure in *Btu/lb*.

 ${\it C}$ is the constant for gas related to the ratio of specific heat (k=Cp/Cv) at standard conditions.

Z is the compressibility factor.

v is the specific volume in ft³/lbm.

M is the molecular weight of the fluid.

A is the mean area between external inner tube and internal outer tube in ft^2 .

f is the friction factor, from Crane TP-410 1-21.

l is the equivalent length of pipe in ft, from Crane TP-410.

D is the outer diameter of the relieving pipe in in.

d is the inner diameter of the relieving pipe in in.

 L_{pipe} is the length of the relieving pipe, from the tube to the PRD, in ft.

The required flow area of the relief device is given by 6.3.1:

$$\begin{split} A_{PRD} &= \frac{4.6476 \cdot S \cdot A \cdot k^2 \cdot \sqrt{M}}{k_d \cdot C \cdot P} \geq 0.011 \ in^2 \\ k &= \frac{C_p}{C} \end{split}$$

S is the safeguarding factor, conservatively assumed as 1.

A is the outer surface area, in ft2.

k is the ratio of specific heats at standard conditions (60F and 15 psia).

M is the molecular weight of the lading gas.

C is the constant for gas related to k at standard conditions.

 k_d is the discharge coefficient of the relief valve, assumed as 0.975.

The detector requires a 0.026 square inch orifice and a 5 SCFM air pressure relief valve for Argon operations. Calculations in Appendix E.

The 6" detector requires a 0.026 square inch orifice and a 4 SCFM air pressure relief valve for Xenon operations. Calculations in Appendix E.

The condenser and the piping are much smaller than the detector, but conservatively assuming the same results, the total required area is $6 \times 0.026 = 0.156$ square inch with 6×5 (max between 4 and 5) = 30 SCFM of air flow capacity.

PSV-1 is the pressure relief valve for the detector, the condenser and the piping.

In Rev 5, we have selected a pressure relief valve set to 20 psig opening pressure, model type C776 from Cash (ASME Code VIII for Cryogenic Service), with a flow capacity of 92 SCFM and an orifice size of 0.169 square inch. The requirement is therefore satisfied for both Argon and Xenon operations and both 4" and 6" detectors.

DEPRECATED in Rev 4, but kept in case we ever go wish to use the old relief valve: (We have selected a pressure relief valve, model number 760NBDF-A015 from Rockwood Swendeman (UV Stamped) with an orifice size of 0.204 square inch and a flow capacity of 74 SCFM. The requirement is therefore satisfied for both Argon and Xenon operations, and both 4" and 6" detectors.) - END DEPRECATION

There is a parallel plate relief valve to protect the vacuum jacket. The set pressure is 1 psig. The flow rate is given by the maximum fluid mass flow converted to gas from liquid in the whole system:

$$W_{Ar} = 35 \frac{lb}{hr}$$

$$W_{Xe} = 38 \frac{lb}{hr}$$

The minimum required relieving area is defined by:

$$A = \frac{W \cdot \sqrt{T \cdot Z}}{C \cdot K \cdot P_1 \cdot K_b \cdot \sqrt{M}}$$

$$T_{Ar} = 94K = 170R \qquad \text{temperature of the fluid at the valve inlet}$$

$$T_{Xe} = 178K = 321R \qquad \text{temperature of the fluid at the valve inlet}$$

$$Z = 1 \qquad \text{compressibility factor}$$

$$P_1 = P_{set} \cdot 1.10 + 14.7 = 15.8 \, psia \qquad \text{relieving pressure}$$

$$P_{set} = 1 \, psig \qquad \text{set pressure}$$

$$C_{Ar} = 377 \qquad \text{C-factor (from Figure 11-1, Section VIII,}$$

$$Appendix \ 11)$$

$$C_{Xe} = 385$$

$$K = 0.975 \qquad \text{effective coefficient of discharge}$$

$$(\text{conservatively taken as unit for gas or vapor)}$$

$$\text{capacity correction factor due to back pressure}$$

$$0.55)$$

$$M_{Ar} = 39.95 \qquad \text{molecular weight}$$

$$M_{Ye} = 131$$

The minimum required relieving area is:

$$A_{Ar} = 0.013 \ sq \ in$$

 $A_{Y_0} = 0.010 \ sq \ in$

The device is connected to a 1.5" OD and 0.065" wall thickness nozzle. The relieving area available is therefore 1.479 square inch. We have selected a parallel plate relief valve connected to a 2.75" CF with 1.5" OD and 0.065" wall thickness. The requirement is therefore satisfied.

The maximum relieving capacity is given by:

$$W_{Max}(Ar) = \frac{A_{Select} \cdot P_1 \cdot C \cdot K \cdot K_b \cdot \sqrt{M}}{\sqrt{T \cdot Z}} = 2,815 \ lb/hr$$

$$W_{Max}(Xe) = \frac{A_{Select} \cdot P_1 \cdot C \cdot K \cdot K_b \cdot \sqrt{M}}{\sqrt{T \cdot Z}} = 3,094 \ lb/hr$$

$$A_{Select} = 1.479 \ sq \ in$$

 W_{Max} is the maximum relieving capacity based on the selected valve, whose area is A_{Select} , k the ratio of specific heats of the fluid.

Additional Burst Disc added to Relief System

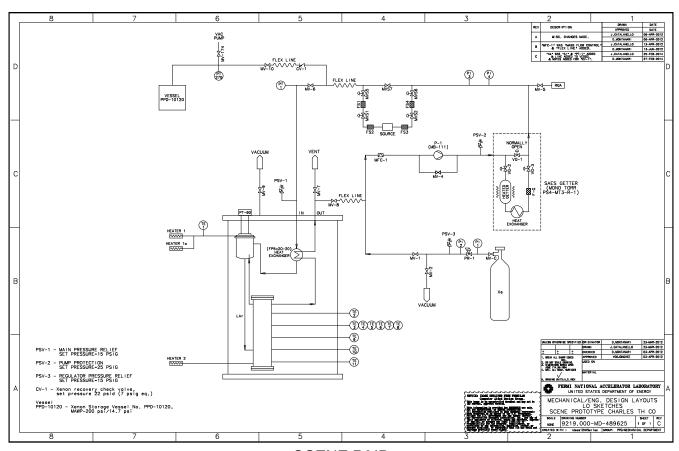
With the burst disc installed between the pressure vessel and the existing relief valve, section UG-127 of ASME Boiler and Pressure Vessel Code was followed. This section of the code dictates the following requirements [1]:

- 1. The existing relief valve's marked capacity must be multiplied by a factor of 0.90 when installed with a rupture disc.
- 2. A pressure gage, try cock, free vent, or other indicator is necessary between the burst disc and relief valve.
- 3. The burst disc capacity must be equal to or greater than the capacity of the relief valve and when the burst disc is open, it must not interfere with the functions of the relief valve.
- 4. The area of the burst disc cannot be less than the area of the relief valve.

For the first requirement, the existing relief valve's capacity is 92 scfm. When multiplied by 0.90, the new capacity of the relief valve is 82.8 scfm. This is much larger than the required flow rates of 5 scfm for the argon case and 4 scfm for the xenon case. For the second requirement, a pressure gage will be installed between the burst disc and the relief valve. For the third requirement, the capacity of the burst disc was calculated to be 134.9 scfm for the xenon case. For the argon case, the capacity was found to equal 174.1 scfm. This is greater than the existing relief valve capacity. The burst disc will be installed such that there is room for the disc to open without interfering with the relief valve. For the fourth requirement, the minimum required area of the burst disc is 0.43in^2. This is larger than the 0.026in^2 area of the relief valve. The attached calculations show that the burst disc sized for the SCENE experiment meets the requirements (listed above) of the ASME Boiler and Pressure Vessel Code.

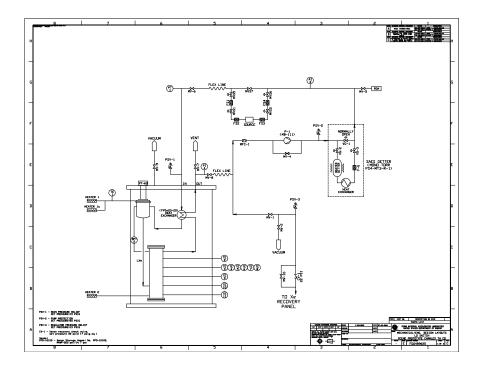
12.0 Pressure Test

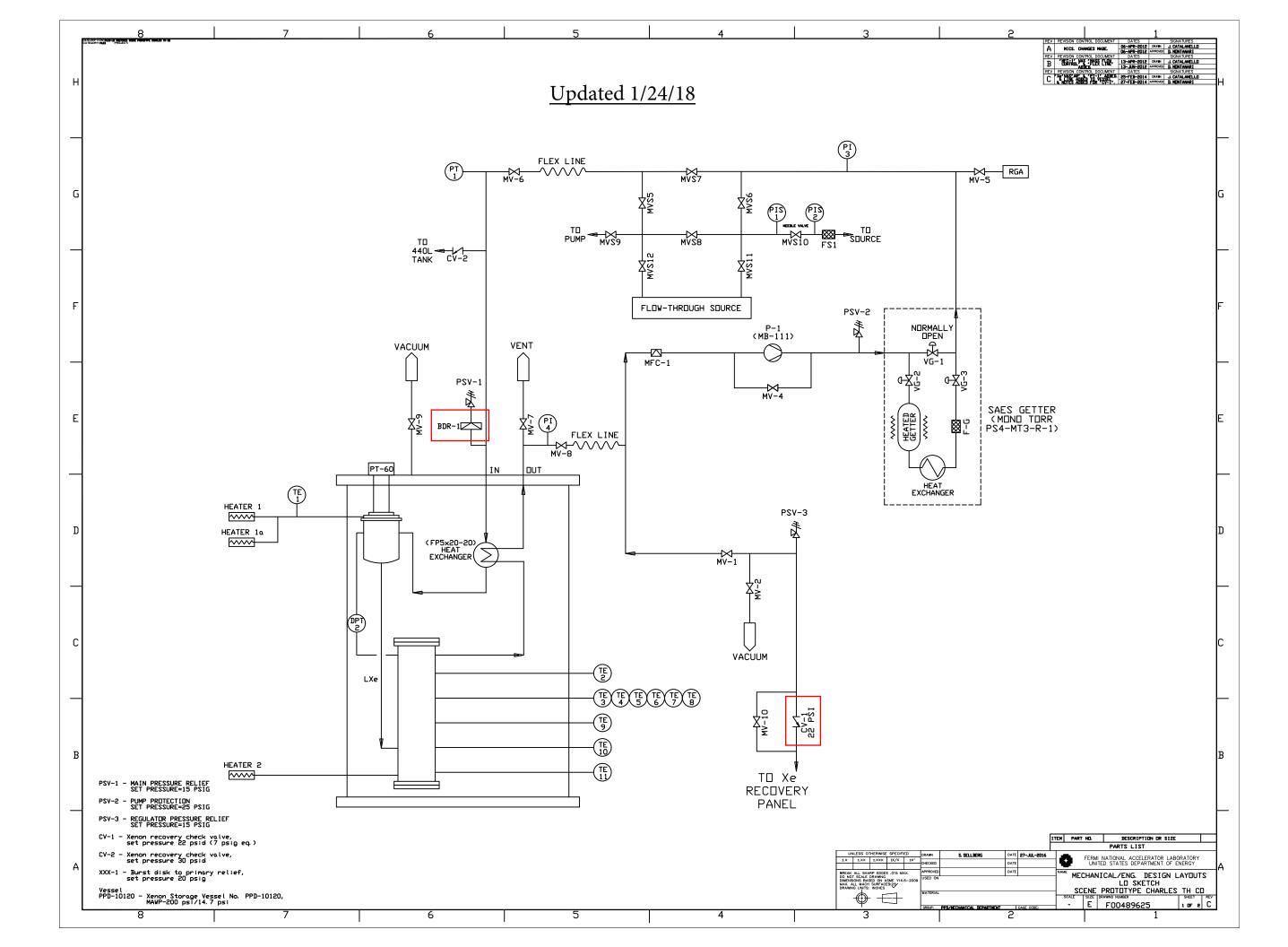
The system has to be pressure tested in accordance with Section 5034 of the Fermilab ES&H Manual and 345.5 of the Code.

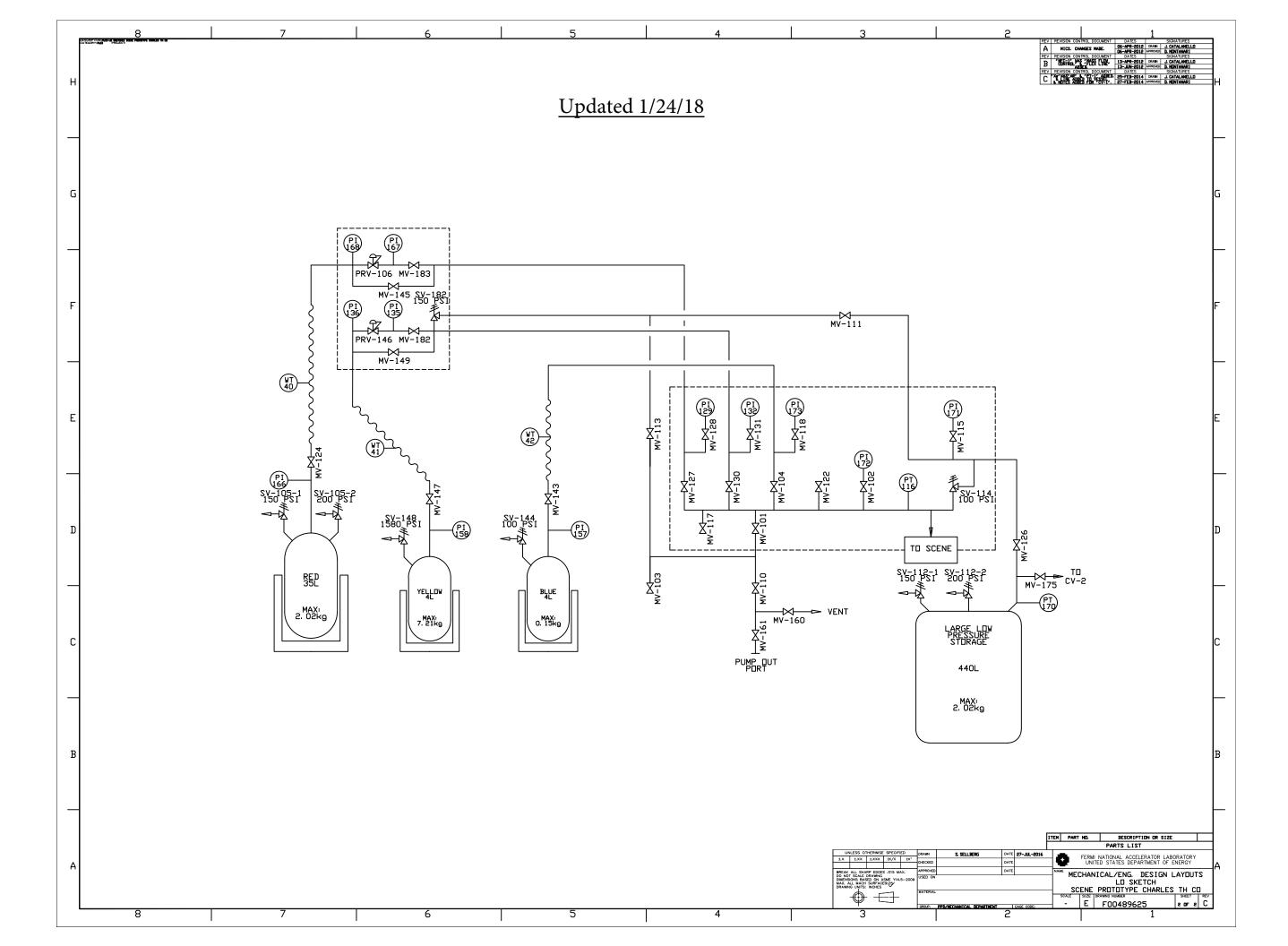

The test pressure was 28 psig, that is 1.4 times the Maximum Allowable Working Pressure of 20 psig.

The test medium was gaseous Argon. Results of the pressure tests in the Piping Engineering Notes. Results of the pressure tests in Appendix D.

13.0 Summary


The SCENE piping system satisfies the requirements of the ASME Code and of Section 5031.1 of the Fermilab ES&H Manual. The piping system is adequate to ensure that its operation represents no hazard to personnel or to any of the external systems to which it will be connected. It had been shown that the design is satisfactory for the defined MAWP of 20 psig and MAEP of 15 psia.


APPENDIX A



SCENE P&ID

SCENE P&ID REV 4

Appendix B

FERMILAB

Welder Qualification Test Record

laterial Specific	ation <u>SA 53</u>	S # <u>ES-155003</u> 3-B To MatThickness28	erial Specification	on_SA 53-B
iller Metal Spec	ification SFA	A5.13 Classifica	etion_ER-70S-2	F-No_8
hickness Depos	sited	.280		
Backing Arg	on	Gas Shiel	ding Argon	
Position	6-G	Progression_	Upward	
ectrical Charac	teristics:	CurrentD	C Pola	rity_Straight
Thickness Qualif	ied 560	"May Diameter (Qualified 2.7	/8" O.D. and over
		D'' Max Diameter (UIDED BEND TEST Figure		/6" O.D. and over
Specimen No	G	UIDED BEND TEST	RESULTS Results	
Specimen No	Type Face Face	UIDED BEND TEST Figure QW-462.3a QW-462.3a	RESULTS	
Specimen No	Type Face Face Roct	Figure QW-462.3a QW-462.3a QW-462.3a	RESULTS Results Acceptable Acceptable Acceptable	
Thickness Qualif	Type Face Face	UIDED BEND TEST Figure QW-462.3a QW-462.3a	RESULTS Results Acceptable Acceptable	
Specimen No	Face Face Roct Roct	Figure QW-462.3a QW-462.3a QW-462.3a QW-462.3a QW-462.3a	RESULTS Results Acceptable Acceptable Acceptable Acceptable	
Specimen No Cest Conducted I	Type Face Face Roct Roct By IFR Eng	Figure QW-462.3a QW-462.3a QW-462.3a	RESULTS Results Acceptable Acceptable Acceptable Acceptable C03-09-01	Date 3/19/99
Specimen No Test Conducted If We certify that tr	Type Face Face Roct Roct By IFR Eng	Figure QW-462.3a QW-462.3a QW-462.3a QW-462.3a QW-462.3a insering Test No.	RESULTS Results Acceptable Acceptable Acceptable Acceptable C03-09-01	Date 3/19/99

‡FF€

Welder In accordance w

Welders N WPS Num Welding P Type of Jo Base Meta

AWS Classif Filler Metal Filler Metal Filler Metal Consumable P- or S- Nun Base Metal

Deposit This
Welding Pos
Backing Gas
GTAW-Cur

Machi
Direct/Remo
Automatic V
Automatic J
Welding Pos
Consumable
Backing

Fillet Welds:

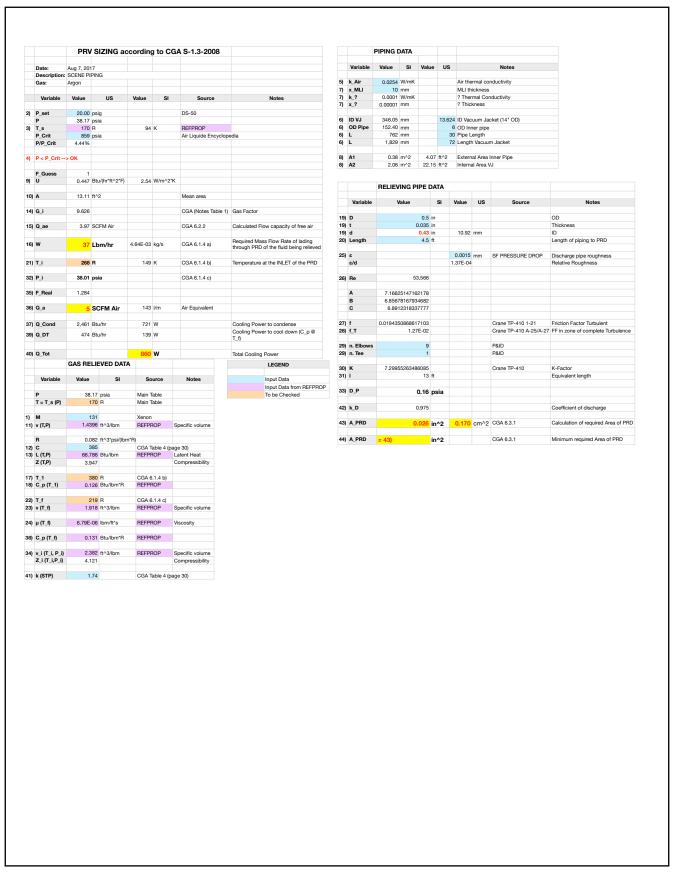
Single/Multi

ASME IX G Face Bend # Face Bend #

Visual exam

Radiographic to

Mechanical


Welding of

We certify the accordance was

Fermi Nation

Fermi Nationa
Office of

APPENDIX C

Detector - PRV sizing calculations (Argon case)

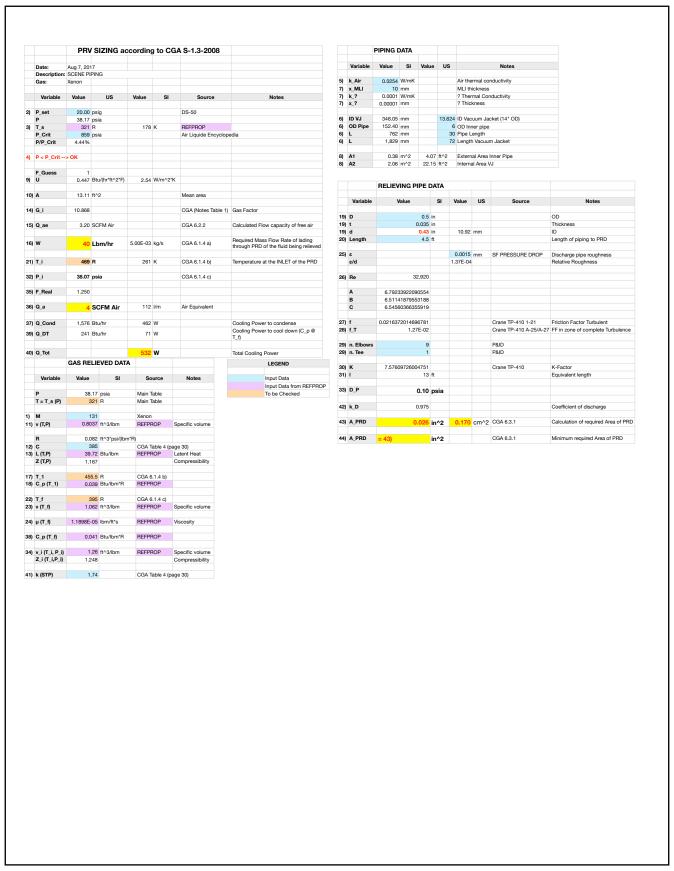

APPENDIX D

		EXHIBIT				
		Pressure Testing	Perm			
			1	Date:	5.31.12	
T (T) ([] [] []	64.0					0.xx
Type of Test: []Hydro	static 🔀 Pneu	matic			15	SIT
Test Pressure	28 psig	Maximum Allov	vable Working	2 Pressure	>6	psig
	1 0			,		10.0
Items to be Tested						
SCENE prototype	e detector ass	embly, LAr conden	ising system	and gas p	urification sys	stem
Location of Test		PAB	Date and	Time	6-7-12	7:00
Hazards Involved (use H	azard Analysis	form FESHM 2060 i	f more space is	s required))	
Leak of compressed	I gas, compon	et failure.				
Safety Precautions Taken	L)					
Area will be roped of		t will take place rer	notely (20ft).	Eye prote	ection will be	worn.
		e and componet fai	lure is unlike	ły		
None. Test is low	i low pressure	William Miner				
None. Test is low	i low pressure	William Miner	and Cary Ke	ndziora		
None. Test is low Qualified Person and Tes Dept/Date	v low pressure	William Miner	and Cary Ke	ndziora		
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety C	v low pressure		and Cary Ke	ndziora		
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety C Dept/Date	v low pressure	William Miner	and Cary Ke	ndziora		
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety C Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
Qualified Person and Tes Dept/Date Division/Section Safety C Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 17 17N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety C Dept/Date Results	v low pressure	William Miner William Eric Mitu PD/ES:	and Cary Ke	ndziora 14 12N 17.17	3-	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results Witness	t Coordinator Officer	William Miner William William Miner William	and Cary Ke	ndziora 17 17N 17.17	S/7/1	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results Witness (Safety Office)	of low pressure	William Miner William William Miner William	and Cary Ke	ndziora 17 17N 17.17	S/7/1	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results Witness	of low pressure	William Miner William William Miner William	and Cary Ke	ndziora 17 17N 17.17	S/7/1	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results Witness (Safety Office Must be signed by division, coordinator to obtain signature)	of low pressure	William Miner William William Miner William	and Cary Ke	ndziora 17 17N 17.17	y of the test	
None. Test is low Qualified Person and Tes Dept/Date Division/Section Safety Co Dept/Date Results Witness (Safety Office)	of low pressure	William Miner William William Miner William	and Cary Ke	ndziora 17 17N 17.17	S/7/1	<u> </u>

Pressure Test

APPENDIX E

Detector - PRV sizing calculations (Xenon case)

Appendix F

Burst Disk Sizing for SCENE Experiment K. Cipriano 1/30/18

Area of Burst Disk Orifice Outlet (in^2)

Area := 0.43

Determination of Pressure Values from API 520 Section 5.4.3.3.2, Table 5

MAWP of system (psig)

MAWP := 20

Max accumulated Pressure (psig)

 $Max_{accumulated} := MAWP \cdot 1.21 = 24.2$

Relief device set pressure (psig)

 $P_{set} := MAWP \cdot 1.05 = 21$

Allowable overpressure (psi)

 $P_{over} := 4$

Atmospheric pressure (psia)

 $P_{atm} := 14.7$

Relieving pressure (psia)

 $P_{relieving} := P_{set} + P_{over} + P_{atm} = 39.7$

Coefficient of discharge (0.975 when a PRV is installed with a rupture disk in combination)

 $K_D := 0.975$

Combination correction factor

 $K_c := 0.9$

Capacity correction factor

 $K_b := 1$

Comparison of relief valve orifice area to burst disc orifice area:

$$A_{burst_disc} := 0.43in^2$$

$$A_{psv1} := 0.026n^2$$

$$A_{burst_disc} = 2.774 cm^2$$

$$A_{psv1} = 0.168cm^2$$

The orifice area of the burst disc is greater than the orifice area of the relief valve. Thus, a combination factor of 0.9 is valid.

Xenon Case

API 520 Section 5.6.3.1.1 Sizing for Critical Flow, Equation (3)

Molecular weight of xenon

 $M_{xenon} := 131.29$

Compressibility factor for xenon

 $Z_{xenon} := 1.167$

Absolute temperature of xenon at inlet (Rankine)

 $T_{xenon} := 469$

Constant based on specific heats (Cp/Cv = 1.7)

 $C_{xenon} := 382$

Rated Flow Capacity (SCFM) from API 520

$$V_{xenon} \coloneqq \frac{\left(Area \cdot 6.32 \cdot K_{D} \cdot C_{xenon} \cdot P_{relieving} \cdot K_{b} \cdot K_{c}\right)}{\sqrt{T_{xenon} \cdot Z_{xenon} M_{xenon}}}$$

$$V_{\text{xenon}} = 134.911$$
 scfm

Rated Flow Capacity (SCFM) using orifice area of PSV1 (primary relief valve)

$$A_{psv} := 0.026 \quad in^2$$

$$V_{xenon2} \coloneqq \frac{\left(A_{psv} \cdot 6.32 \cdot K_{D} \cdot C_{xenon} \cdot P_{relieving} \cdot K_{b} \cdot K_{c}\right)}{\sqrt{T_{xenon} \cdot Z_{xenon} M_{xenon}}}$$

$$V_{\text{xenon2}} = 8.157$$
 scfm

Argon Case

API 520 Section 5.6.3.1.1 Sizing for Critical Flow, Equation (3)

Molecular weight of argon

 $M_{argon} := 39.948$

Absolute temperature of argon at inlet (Rankine)

 $T_{argon} := 268$

Compressibility factor for argon

 $Z_{argon} := 3.947$

Constant based on specific heats (Cp/Cv = 1.67)

 $C_{argon} := 378$

Rated Flow Capacity (SCFM) from API 520

$$V_{argon} \coloneqq \frac{\left(Area \cdot 6.32 \cdot K_D \cdot C_{argon} \cdot P_{relieving} \cdot K_b \cdot K_c\right)}{\sqrt{T_{argon} \cdot Z_{argon} \cdot M_{argon}}}$$

 $V_{argon} = 174.087$ scfm

Rated Flow Capacity (SCFM) using orifice area of PSV1 (primary relief valve)

$$V_{argon2} \coloneqq \frac{\left(A_{psv} \cdot 6.32 \cdot K_{D} \cdot C_{argon} \cdot P_{relieving} \cdot K_{b} \cdot K_{c}\right)}{\sqrt{T_{argon} \cdot Z_{argon} \cdot M_{argon}}}$$

 $V_{argon2} = 10.526$ scfm

Capacity of Primary Relief Valve (scfm)

 $V_{\text{valve}} := 92$

New rated capacity of relief valve in combination with burst disk (scfm)

 $v_{\text{valve new}} := 0.9.92 = 82.8$

With the newly rated capacity of the primary relief valve, the relief valve capacity (82.8 scfm) still exceeds the requirement of 4 scfm for the xenon case and 5 scfm for the argon case.

Allied Valve Riverdale 4419 State St. Riverdale IA 52722 563-359-8100 www.alliedvalveinc.com

Quotation

Quote Date | Quote # 8/25/2017 | 71751

Page 1 of 2

Bill To	Ship To
Fermilab Pine Street Batavia IL 60510 United States	Fermilab Pine Street Batavia IL 60510 United States

Conta	act Na	me				Memo/Detai	ls				Terms
NORT	HWES	TERN U	NIVERSITY - E	VANSTON : Dan Baxte	er	1182461					Net 30
Prepa	ared B	By Expires FOB Please Note:									
Wrigh	t, Krista	L	. 9/24/2017 SP Please reference quote number upon ordering - All material quoted from stock subject to pr					t to prior sale			
Line	Qty	Size	Mfr	Description	•		Set	Tag	Delivery	Price	Amount
1	1	3/4"	CDC	Continental Rupture Disc in Holder Per CD1#TBA 316 SS 3/4 MP PTFE Outlet Ga Aluminum Outle Fluoropolymer (Aluminum Disc Fluoropolymer I Black Buna-N Ir 316 SS 3/4 MP RATED: 20 psig	asket Let Ring Dutlet Coating Inlet Coating Inlet O-Ring I Inlet @ 72 Deg F RNG.: 15 To 20 ps	Tite-Seal	20 PSIG		45 Working Days ARO	2,951.83	2,951.83

Six nearby locations are available to supply and service your needs. For more information, visit www.alliedvalveinc.com.

Illinois 1019 W. Grand Ave. Chicago, IL 60642-6590 Tall Free 800 827-1197 (PJ 312-226-1506 (F) 312-226-1197 Indiana 6675 Daniel Burnham Dr. Suile D Portage, IN 46368 (P) 219-764-3010 (F) 219-764-3084 lowa 4419 State St. Riverdale, IA 52722 (P) 563-359-8100 (F) 563-359-0857 Minnesota 6291 318th St. Way Cannon Falls, MN 55009 (P) 507-263-2251 (F) 866-929-3719 North Dakota 1751 93rd St. NE Bismarck, ND 58501 (PJ 701-214-5502 (F) 701-557-7850 Wisconsin 3301 East Evergreen Dr. Appleton, WI 54913 (P) 920-832-9778 (F) 920-832-9798

Allied Valve Riverdale 4419 State St. Riverdale IA 52722 563-359-8100 www.alliedvalveinc.com

Quotation

Quote Date | Quote # 8/25/2017 | 71751

Page 2 of 2

Lino	Qty	Size	Mfr	Description	Set	Тад	Delivery	Price	Amount
Line				Description Leak rate not to exceed 1 x 10 E-8 atm cc/sec of helium Special Material Comply with ASME Section VIII Division 1 Krgl value: 3.59 NB Cert: 75282 Minimum Net Flow Area: 0.43 in2 Perform Liquid Relief Test per MP-7003 Tag: Gas/Vapor/Liquid Maximum Recommended Operating Pressure: 11.7 psig @ 72 Deg F The above pricing does not include Shipping costs. Any incurred freight will be additional.		Tag	Delivery	FIICE	Amount
to exp	nderst oort an ations.	y part of the	goods covered se items, it is yo	by this Estimate/Invoice are intended for U.S. our obligation to comply with all applicable U.S	domestic use S. and/or local	. If you intend I country export	Subtotal Shipping Cos Total	st (BESTWAY)	2,951.83 0.00 \$2,951.83

Six nearby locations are available to supply and service your needs. For more information, visit www.alliedvalveinc.com.

Appendix G

SCENE Prototype Parts list Rev. 4 (Jan 24, 2018):

	P. & I.D. designation	Manufacturer	Part Number	Description	Range / Set Point	Comments
1	CV-1	Swagelok	SS-4CA-VCR-3	Check Valve	22 psi set	
2	CV-2	Swagelok	SS-8CPA2-3	Check Valve	30 psi set	
3	MV-1	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
4	MV-2	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
5	MV-4	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
6	MV-5	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
7	MV-6	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
8	MV-7	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
9	MV-8	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
10	MV-9	Nor-Cal Products	ESB1502NWB	Manual Valve	Vacuum range 1x10E-9 Torr	
11	MV-10	Swagelok	SS-4BG-V51	Manual Valve	max 1000 psi	
12	MVS5	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
13	MVS6	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
14	MVS7	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
15	MVS8	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
16	MVS9	Swagelok	6LVV-DPFR4-P	Manual Valve	Max. Pressure = 250 psig	
17	MVS10	Swagelok	SS-3NBVCR4	Needle Valve	Max. Pressure = 6000 psig	
18	MVS11	Swagelok	6LVV-DPFR4-P-RD	Manual Valve	Max. Pressure = 250 psig	
19	MVS12	Swagelok	6LVV-DPFR4-P-RD	Manual Valve	Max. Pressure = 250 psig	
20	FS1	SAES	MC1-902F	In-Line Gas Filter	, ,	
21	PSV-1	Cash Valve	C776	Pressure Safety Valve	20 psig	McMaster #8089K14
22	PSV-2	Swagelok	SS-RL3M4-F4	Pressure Safety Valve	15 psig	
23	PSV-3	Swagelok	SS-RL3M4-F4	Pressure Safety Valve	15 psig	
24	BDR-1	Continental	G-C-SRA-C (special)	Burst Disk	20 psig	not a stock part
25	MFC-1	Sierra Instruments	C100L-DD-8-OV1-SV1-PV2-V1-S1-C10	Mass Flow Controller	Max. Pressure = 500 psig	
26	P-1	Metal Bellows	MB-111	Vacuum Pump	Max. Discharge Pressure = 23 psig	
27	SAES GETTER MONO TORR	SAES	PS4-MT3-R-1	Purifier Getter w/ bypass	Maximum Inlet Pressure = 150 psig	
28	PT1	Pfeiffer	HPT 100	Ion Gauge	1e-9 - 1000 mbar	Mod No: PT R34 330
29	DPT2	MKS	Baratron 226A	Differential Sensor	500 Torr bidirectional	
30	PI3	WIKA	50328808	Pressure Gauge	Range -30 inHg / 160 psi	
31	PI4	MKS	750B23TGA4GL	Pressure Transmitter	Range 0-2000 torr	
32	PIS1	Matheson	63-2233-V	Pressure Indicator	3000 psi	
33	PIS2	Swagelok	PGU-50-PC300-C-4FSF	Pressure Indicator	300 Psi	
34	FP5x20-20 Heat Exchanger	GEA	FP5x20-20	Heat Exchanger	Max. Pressure = 450 psig	
35	Heater 1	TECO Rene Koch	custom	OFHC Cu heater block for PT60 cold head	25 ohms (2x 50 ohms wired in parallel)	
36	Heater 2	Watlow	C2A4-L36T	Firerod cartridge heater	120V, 2x 50W	
37	TE1	LakeShore	DT-670B-CU-HT	Silicon Diode	Max. Temperature = 500K, +/- 0.5K absolute accuracy	
	TE2	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
39	TE3	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
40	TE4	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
41	TE5	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
	TE6	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
43	TE7	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
44	TE8	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
45	TE9	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
46	TE10	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	
47	TE11	IST	P1K0-520-6W-Y-010	PT1000 Temperature Sensor	Range -200°C to +600°C	