

PHYSICAL HAZARDS CONNECTING THE DOTS FROM RECALL TO HAZARD ANALYSIS

GEOFF FARRELL

GLOBAL SENIOR TECHNICAL MANAGER - NSF

AGENDA

- 01 **DEFINE PHYSICAL HAZARDS**
- 02 **RECALLS PHYSICAL HAZARDS**
- 03 HAZARD ANALYSIS
- 04 PROGRAMS / CONTROLS
- 05 **BEST PRACTICES**

PHYSICAL HAZARDS

Foreign materials that may be introduced anywhere along the food chain from production to the consumer.

Foreign materials can be introduced by anything or anyone coming in contact with the food i.e. People, storage, transportation.

Foreign materials are considered hazards if they can result in injury or illness to anyone who consumes the food.

PHYSICAL HAZARDS EXAMPLES

RECALLS

fragments in product

By News Desk on September 9, 2022

Foster Farms Recalls Fully Cooked Frozen Chicken Patty Products Due to Possible Foreign Matter Contamination

FOSTER FARMS →

FSIS Announcement

WASHINGTON, Oct. 29, 2022 – Foster Farms, a Farmerville, La. establishment, is recalling approximately 148,000 pounds of fully cooked frozen chicken breast patty products that may be contaminated with extraneous materials, specifically hard clear pieces of plastic, the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS) announced today.

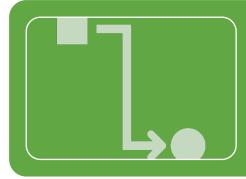
Tyson Fresh Meats, Inc. Recalls Raw Ground Beef Products Due to Possible Foreign Matter Contamination

TYSON FRESH MEATS, INC. →

FSIS Announcement

WASHINGTON, Nov. 16, 2022 – Tyson Fresh Meats, Inc., an Amarillo, Texas establishment, is recalling approximately 93,697 pounds of raw ground beef products that may be contaminated with extraneous materials, specifically reflective mirror-like material, the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS) announced today.

Picture from Melton Borough Council


Krispy Kreme fined after metal found in doughnut

By News Desk on September 13, 2022

WALKING IT BACK TO HAZARD ANALYSIS!

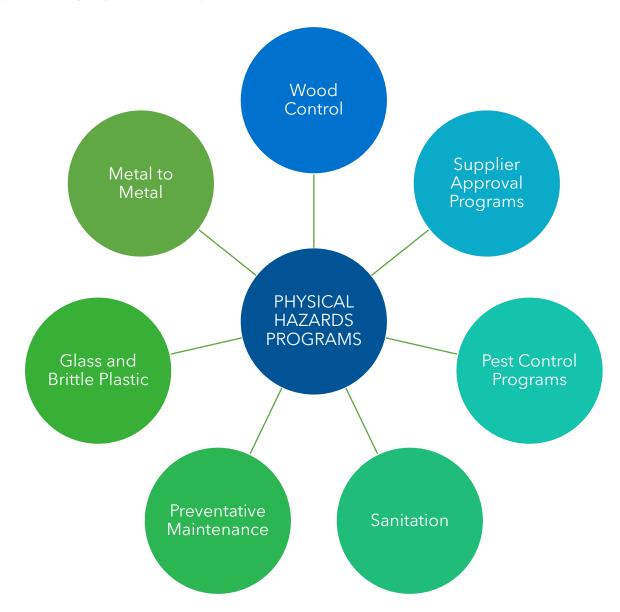
This is where it all starts!
The beginning!

It is imperative you understand the products and the physical hazards associated with foods and processes.

Use a cross functional group

- Employees from all different areas
- Documented production issues i.e., rework, complaint
- External References publications, industry association

HAZARD ANALYSIS


Hazard Identification is critical

Identify all hazards expected or likely to occur

- All inputs raw materials, ingredients, packaging, additives
- Production Steps Equipment, Conveyors
- Process Flow
- Employee Flow

PHYSICAL HAZARDS PROGRAMS

PHYSICAL HAZARD CONTROLS

Metal Detector

Sifter

Magnets

X-ray

Destoners

PHYSICAL HAZARDS - BEST PRACTICES

GMP Audit Reviews

Management Power Walks - gather all physical hazards

Educate - Monthly list of all physical hazards gathered

Complaint Investigation - focused physical hazard investigation

Physical Hazard Contests

Recall Investigations

Using Certified products and Equipment

Q&A

THANK YOU.

GEOFF FARRELL

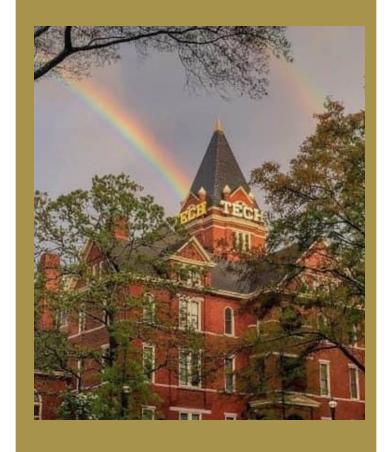
GLOBAL SENIOR TECHNICAL MANAGER, NSF

Understanding, Prioritizing, and Preventing Foreign Object Hazards Across Different Food Categories

Wendy Wade White
Industry Manager for Food & Beverage

Wendy White Industry Manager for Food & Beverage

Background:


- -B.S. Biology UGA
- -M.S. Food Science UGA
- -17 Years in Food Manufacturing
- -3 Years in Academia

Certifications:

- -HACCP Certificates
- -ASQ Certified Quality Auditor
- -SQF Practitioner
- -BRC Internal Auditor

Lead Instructor:

- -Preventive Controls for Human Food (PCQI)
- -Foreign Supplier Verification Program (FSVP)
- -International HACCP Alliance

GaMEP – Georgia

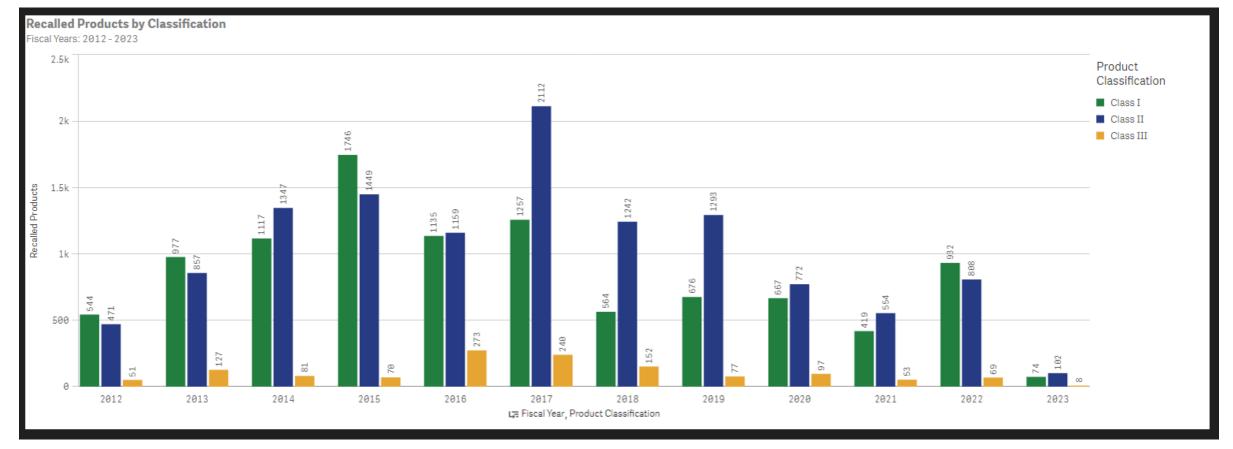
Manufacturing

Extension Partnership

The Go-To Experts for Advancing U.S. Manufacturing

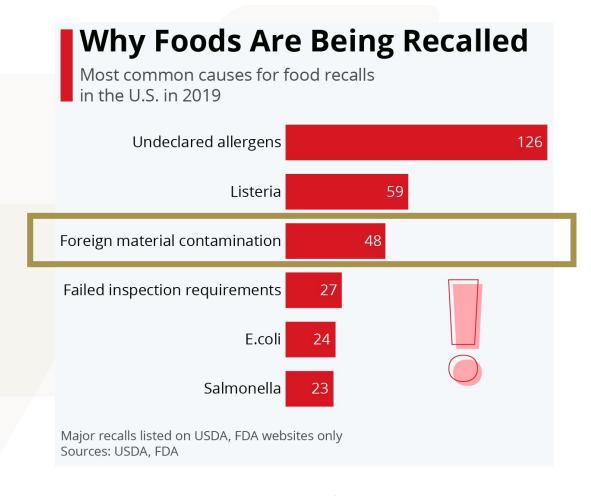
GaMEP at Georgia Tech: How We Work

- Consulting Projects
- Training
- Events
- Subjects:
 - Strategy and Leadership Development
 - Process Improvement (Lean 6-Sigma)
 - Quality and Food Safety
 - Energy and Sustainability
 - Cybersecurity
 - Automation and Technology



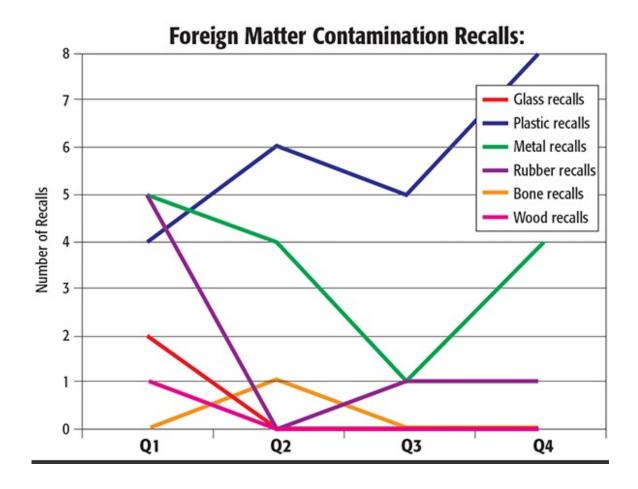
Agenda

- Overview of foreign object recalls over the past few years
- Specific industries that are predisposed to certain foreign objects
- Understanding contamination pathways for these hazards
- Assessing risk and prioritizing physical hazards
- Utilizing multiple preventive methods (hurdle method) for control
- Empowering your workforce to remain vigilant


Food & Cosmetic Recalls (FDA)

https://datadashboard.fda.gov/ora/cd/recalls.htm

2019 Food Recall Snapshot



- Foreign Material is the Third Largest Cause of Recalls.
 - USDA
 - FDA

https://www.statista.com/chart/20681/us-food-recalls-by-type/

2019 Food Recall Snapshot

Top Foreign Object Recalls:

- 1. Plastic
- 2. Metal
- 3. Rubber
- 4. Glass
- 5. Wood & Bone

https://www.food-safety.com/articles/6487-a-look-back-at-2019-food-recalls/

Where Are These Foreign Objects Coming From?

- Plastic
 - Box Liners
 - Containers
 - Pallet Pieces
 - Plastic Shavings from Conveyors
- Metal
 - Metal Shavings from Equipment
 - Metal Parts (nuts & bolts)

- Rubber
 - Broken Gaskets
- Glass
 - Broken Glass from Facility
 - Broken Glass from Packaging
- Wood
 - Pallet Pieces
- Bone

Understanding Your Foreign Object Risk

Industry-Specific Foreign Objects:

- Ground Meats
 - Metal Shavings
 - Soft Plastic
 - Bone
- Produce
 - Peanuts:
 - Stones
 - Lettuce:
 - Hard Plastic
 - Insects & Frogs

Regional Differences

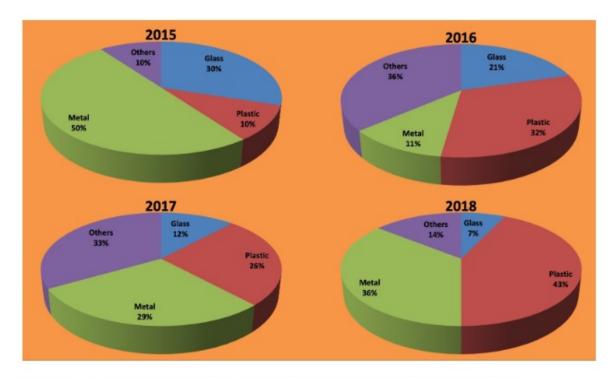


Figure 2 - Foreign Bodies Reported by the Food Drug Administration (USA)

https://www.theauditoronline.com/the-importance-of-controlling-foreign-matter-in-food-production/

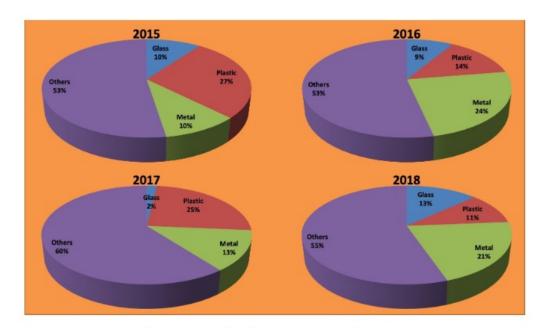


Figure 3 - Foreign Bodies Reported by the Canadian Food Inspection Agency

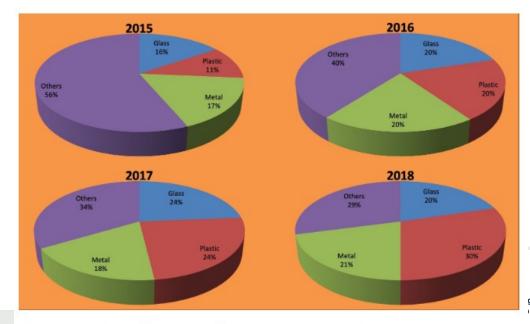
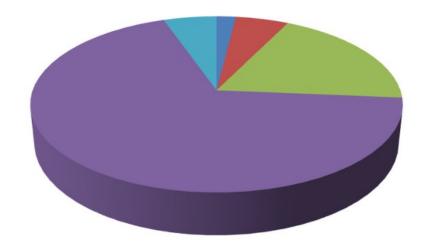
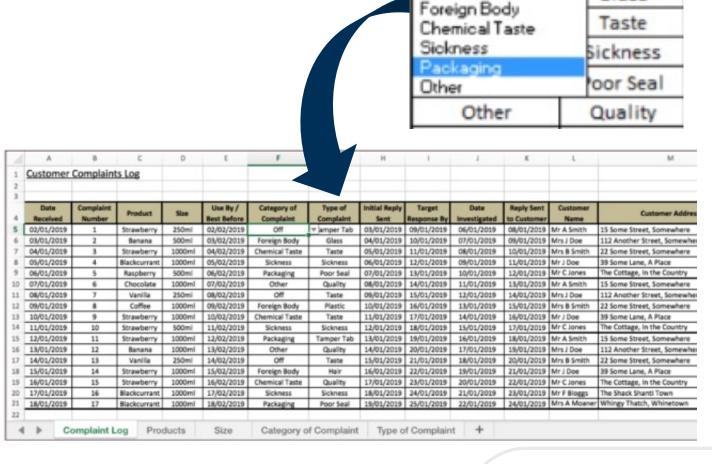




Figure 4 - Foreign Bodies Reported by RASFF (European Union)

Utilize Data to Determine Likelihood

- Industry Data
- Unforeseen Incidents
- Customer Complaints

Category of

Complaint

Off

Type of

Complaint

Imper Tab

Glass

Prioritize Your Target Foreign Objects

Risk = Significance + Likelihood

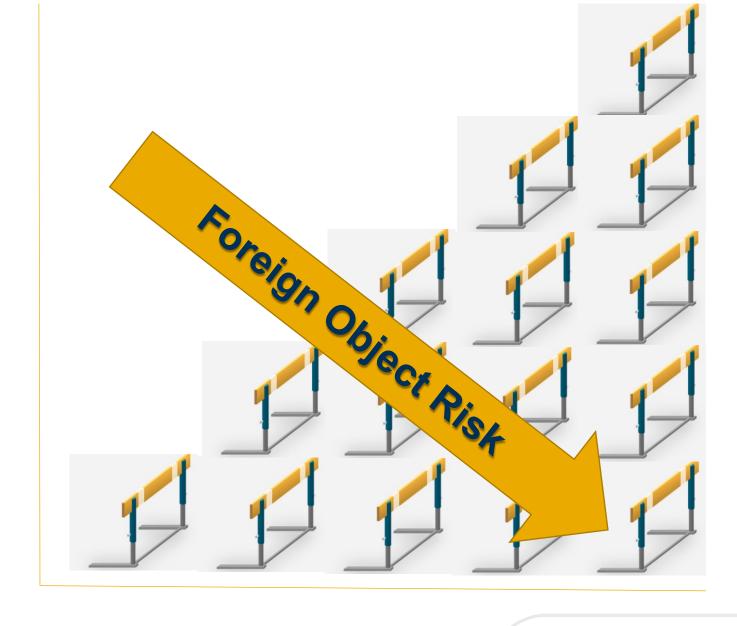
- 1. Metal Shavings = High
- 2. Bone = Medium
- 3. Soft Plastic = Medium

Risk Assessment	Likelihood			
		Low	Medium	High
	Low	Low	Low	Medium
Significance	Medium	Low	Medium	Medium
	High	Medium	Medium	High

Foreign Object Controls

Equipment

- Screens
- Filters
- Magnets
- Bone-Eliminator
- Metal Detection
- X-Ray
- Optical Sorter


Programs

- Supplier Approval Program
- Raw Material Evaluation
- Visual Inspection
- Glass & Hard Plastic Program
- Metal Detectable Blue Band-Aids

Hurdle Concept

Multiple hurdles can be used together to further reduce the likelihood of contamination.

Food Safety Is Everyone's Job!

- Your employees are your LAST line of defense.
- Train them regularly on your foreign object controls.
- Empower employees to prevent FO contamination:
 - "See Something, Say Something!"
 - Stop the production line if they see contamination

Summary

- Identify the Most Common Foreign Object for Your Process and Product
 - Industry Data
 - In-House Unforeseen Incidents
 - Customer Complaints
- Determine the Best Control for that Object
- Utilize Multiple Controls (Hurdle Concept) to add Extra Protection
- Track Foreign Object Incidents and Review Program
- Train and Empower Employees to Help!

Questions?

Wendy White Georgia Tech, GaMEP wwhite@gatech.edu

Scan for my virtual business card

MYCOTOXINS AND METALS THREATS TO FOOD

Kelly O'Connor

Columbia Laboratories

December 13, 2022

MYCOTOXINS

- Affect a variety of different crops and foodstuffs including cereals, nuts, spices, dried fruits, apples and coffee beans, often under warm and humid conditions
- Can occur either before harvest or after harvest, during storage, on/in the food itself often under warm, damp and humid conditions.
- Most mycotoxins are chemically stable and survive food processing. (and botanical supplement processing)

AFLATOXINS

THE MOST POISONOUS

Aflatoxins are one of the most toxic mycotoxins known. The dominant aflatoxin produced (AFB1) is the most powerful naturally occurring carcinogen, classified as group I by the International Agency for Research in Cancer [34].

Hay/grain cereals oilseeds spices tree nuts

Aflatoxin M1 is also found in milk of cows that eat aflatoxin B1 contaminated crops

produced by certain moulds (Aspergillus flavus and Aspergillus parasiticus

The toxins can also be found in the milk of animals that are fed contaminated feed, in the form of aflatoxin M1 genotoxic, meaning they can damage DNA and cause cancer in

cause liver cancer in humans, cause birth defects, and lead to kidney and immune system problems

animal species.

3

OCHRATOXIN A

THE MOST COMMON

Primarily Cereals data in Common food-contaminating mycotoxin cereal animals products, Coffee Formed during the storage of crops beans, kidney dry vine damage 5 August 2022: EU amended regulation (EC) fruits, No 1881/2006 to lower the maximum levels wine and of ochratoxin A in certain foodstuffs. grape juice, Maximum level (μ g/kg) ranges: 3,0 – 15 spices and **Commodity Specific** liquorice (a µg is one billionth of a <u>kilogram</u>).

PATULIN

APPLE JUICE CHEESE

produced by a variety of moulds, particularly Aspergillus, Penicillium and Byssochlamys	Rotting apples apple product fruit, grains, and cheese	In animals: include liver, spleen and kidney damage and toxicity to the immune system In humans: nausea, gastrointestin al disturbances
	apple juice made from	
	affected fruit	and vomiting

FUSARIUM FUNGI

DEADLIEST TOXIN

Common in soil – and storage trichothecenes such as deoxynivalenol (DON), nivalenol (NIV) and T-2 and HT-2 toxins, as well as zearalenone (ZEN) and fumonisins (the vomit toxin)

deoxynivalenol (DON), also known as vomitoxin * DON has been found in bread, noodles, beer, popcorn, and other foods, causing nausea.

The level of fumonisins in a corn product depends on weather conditions. High levels of this toxin occur when hot, dry weather is followed by a period of high humidity. Milling, storage, and manufacturing processes can also affect levels of contamination with fumonisins.

cereal oesophageal cancer in crops: humans, and DON and to liver and ZEN: kidney WHEAT toxicity in

T-2 and

HT-2: OATS

infertility at high intake levels, particularly in pigs

animals.

FUSARIUM FUNGI

FDA LIMITS

Human Foods		
<u>Product</u>	Total Fumonisins (FB ₁ +FB ₂ +FB ₃)	
Degermed dry milled corn products (e.g., flaking grits, corn grits, corn meal, corn flour with fat content of < 2.25%,="" dry="" weight="">	2 parts per million (ppm)	
Whole or partially degermed dry milled corn products (e.g., flaking grits, corn grits, corn meal, corn flour with fat content of ≥ 2.25 %, dry weight basis)	4 ppm	
Dry milled corn bran	4 ppm	
Cleaned corn intended for masa production	4 ppm	
Cleaned corn intended for popcorn	3 ppm	

EVOLVING THREAT

TEMP, CO2, AW

Main factors for mycotoxin production includes all three factors. CC estimates +2 *C.

LOWER LIMITS

5 August 2022 EU amended regulation (EC) No 1881/2006 to lower the maximum levels of ochratoxin A in certain foodstuffs.

CURRENT CHALLENGE

2003, 2004, and 2012 summer seasons in Italy, where dry and hot weather (>35 °C) contributed to an outbreak of *A. flavus* on crops, previously uncommon

FUTURE CHALLENGES

Increased aflatoxins: drought conditions and rising temperatures (extreme hot dry)-

HOW TO MITIGATE MYCOTOXINS

STORAGE

Store and Dry crops
with best practices
avoid damage to
grains before and
during drying, and in
storage, as damaged
grain is more prone
to invasion of moulds
and therefore
mycotoxin
contamination

VENDOR/ SOURCING

Test against the supplier's claims. inspect whole grains for evidence of mould, and discard any that look mouldy, discoloured, or shrivelled

THIRD PARTY TESTED

Testing for
Aspergillus, Moulds,
Mycotoxins and more
with the FDA
approved method,
reaching EU Action
Limits

COMPLIANCE

"by using modern agricultural and processing techniques, companies can reduce the possibility of contamination in their products."

REFERENCES

Mycotoxins | FDA

Mycotoxins (who.int) WHO

EUR-Lex - 32022R1370 - EN - EUR-Lex (europa.eu) Commission Regulation (EU) 2022/1370 of 5 August 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of ochratoxin A in certain foodstuffs (Text with EEA relevance)

<u>Toxins | Special Issue : Mycotoxins in Relation to Climate Change</u>
(<u>mdpi.com</u>) MDPI: All manuscripts are thoroughly refereed through a double-blind peer-review process

Toxins | Free Full-Text | Effect of Temperature, Water Activity and

Carbon Dioxide on Fungal Growth and Mycotoxin Production of

Acclimatised Isolates of Fusarium verticillioides and F. graminearum

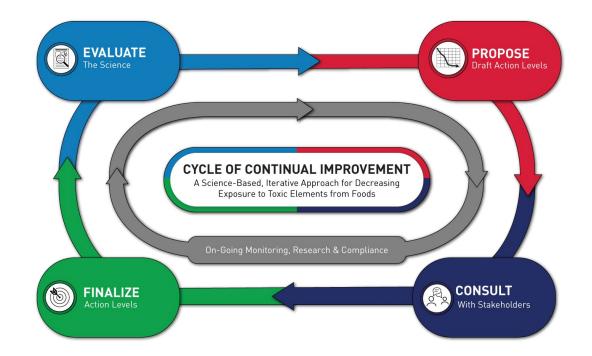
10

CAUSE AND EFFECT

report released by Congress in 2021 on heavy metals contamination in baby food.

IN ACTION (IRL FOR LEAD)

10 ppb action level for lead in apple juice (Phase one of establishing MRLs)


ESTABLISHING LOWEST POSSIBLE MRLS

Evaluate the scientific basis for action levels.

Propose action levels.

Consult with stakeholders, including the achievability and feasibility.

Finalize action levels.

HEAVY METALS INTRODUCTION

Water, Soil

Product/ Stage	Testing (General)	Testing Considerations
Concentrate/ Extract: Ingredient	Pesticides-	Food Grade
	Residual Solvents	Cannabis Safe
	Mycotoxins	Homogenization Studies
	Potency (optional)- AOAC	Batch Testing
	Nutritional Testing	Shelf-life studies
	Microbiology: Pathogens	
Formulated Products		Micro highly recommended per batch
Can limit testing to potency for label verification and microbiology per batch, on the premise that the ingredients were cleared for contaminants testing and then diluted into the final product.	Active Ingredients Potency (+/- 10% of claim) Micro for safety (SALM, STEC, TYM, APC)	Buyers check for supply chain testing (Vendor Vetting) Layer COAs- contaminants on the ingredient and label verification plus micro on final batches.
If you don't have COAs/ Spec sheets that meet regulatory requirements on the ingredient, then get the final product tested for a full panel per	Metals (packaging) — detector vs Full Panel	Provide consolidated test report for client facing summary.
batch.	PITCH DECK	15

Multiple Commodity Service Lines In-House

- Nutritional
- Nutraceutical
- Microbiological
- Environmental
- Pesticides & Residues
- Commodity Specific
- Pet Food and Feed
- Soil to Sale Cannabis Testing

Trusted Testing since 1996

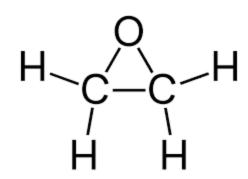
- 55+ employees with over 150 years of combined analytical experience.
- Members of Tentamus
 Network
- ISO 17025 Accredited
- CDPHE Accredited
- TNI/ ORELAP Accredited

Accredited Industry leaders

- 2016 FIRST State accredited cannabis laboratory (ORELAP)
- 2018 FIRST ISO 17025 accredited cannabis lab in Oregon.
- 2018 FIRST fully validated
 cannabis multi-residue screen:
 +370 analytes
- Method standardization with

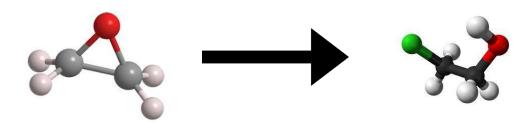
THANK YOU

Kelly O'Connor 503-807-0426 www.columbialaboratories.com Kelly.oconnor@tentamus.com

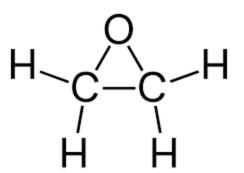


Agenda

- 1. What is ethylene oxide? Applications
- 2. Current Situation Globally
- 3. North American Situation Current and looking forward



Ethylene Oxide


Characteristics

- A simple but strained cyclic ether
- A true gas at room temperature (25 deg C)
- A mobile liquid at 0 deg C.
- Breaks down to 2-chloroethanol (2-CE) in the presence of chlorides

Ethylene Oxide

Applications

- 97% of EtO is used for as a precursor to industrial chemicals (anti-freeze, polyester, detergents)
- A reactive molecule used as a surface disinfectant and for heat-sensitive medical equipment
- A sterilant used to reduce microbiological load in sensitive products such as herbs and spices where heat treatment may affect color or flavor
- A fumigant used in nut warehouses, grain bins and the like.

Ethylene Oxide Regulatory Status

- Banned in most countries in the world
 - Maximum Residues Limits from 0.01 to 0.1 mg/kg (ppm)
 - Measured as the sum of EtO and 2-CE calculated as EtO
- Still used in Canada, US and India (and a few others)
 - MRLs typically 7 ppm for EtO and much higher (940 ppm) for 2-CE

Ethylene Oxide Regulatory Status

RECALLS

- Sesame seeds 2020
 - Over 500 alerts in Europe as many products were affected (breads, hummus, crackers etc.)
- Ice-cream
 - From thickeners (locus bean gum) and flavors (vanilla bean)
- Pet Food

Ethylene Oxide Going Forward

Issues

- Source of 2-CE
 - Some suppliers claim 2-CE is formed naturally form non-EtO sources
- Toxicity of 2-CE
 - While EtO is clearly genotoxic testing on 2-CE has been insufficient and inconclusive

Ethylene Oxide Going Forward

Canada and the US will continue to phase out the use of Ethylene Oxide for use in food.

MRLs will likely mirror the EU and other jurisdictions, effectively zero tolerance

Fate of 2-CE regulation will hinge on the outcome of genotoxicity testing

Q and (hopefully) A

38%

Lorem ipsum dolor si amet, consectetuer adipiscing elit, 38%

Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

38%

Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

38%

Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

38%

Lorem ipsum dolor si amet, consectetuer adipiscing elit, 38%

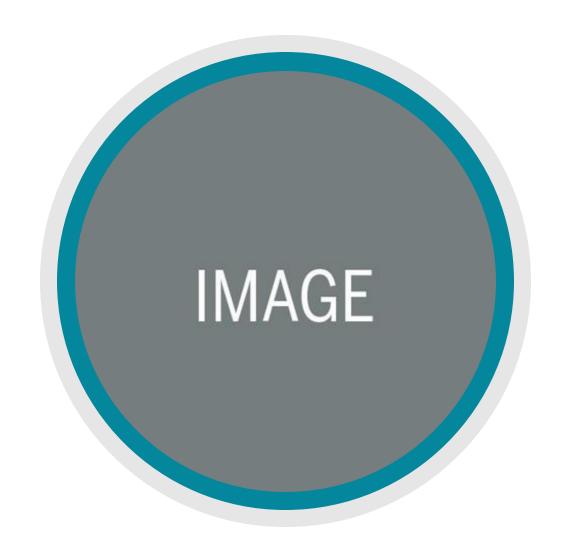
Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

38%

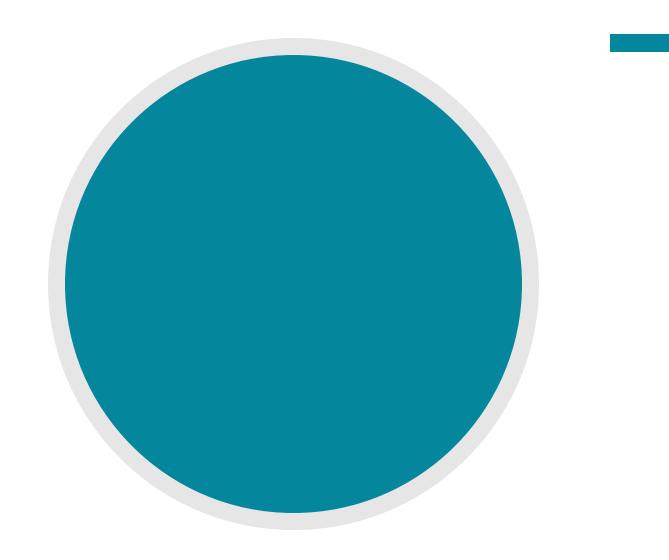
Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

38%

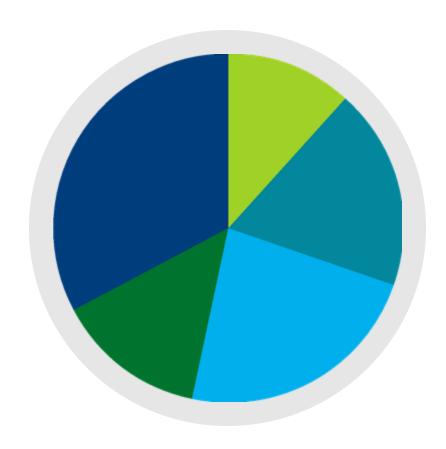
Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

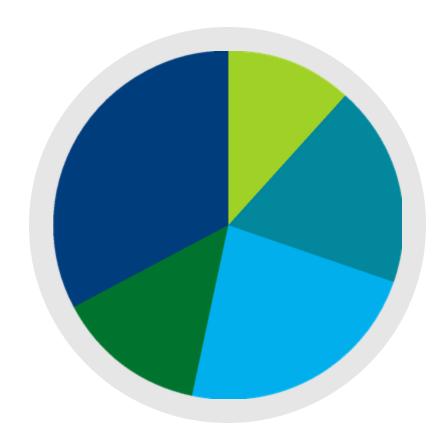


IMAGE



IMAGE





Duis autem vel eum iriure dolor in hendrerit in

Duis autem vel eum iriure dolor in hendrerit in

Qualitative Testing Services		
Lorem ipsum	Lorem ipsum	
	Vulputate velit ess	
accumsan et iusto	Lorem ipsum	
Vulputate velit ess	accumsan et iusto	
Ut wisi enim ad		

Qualitative Testing Services

Lorem ipsum

Vulputate velit esse molestie

Ut wisi enim ad

Qualitative Testing Services		
Lorem ipsum	Lorem ipsum	
	Vulputate velit ess	
accumsan et iusto	Lorem ipsum	
Vulputate velit ess	accumsan et iusto	
Ut wisi enim ad		

Qualitative Testing Services

Lorem ipsum

Vulputate velit esse molestie

Ut wisi enim ad

Better Food. Better Health. Better World.

Thank you

Amet, consectetuer adipiscing elit, sed diamlocilisi.

Undeclared Allergens - Not your usual chemical hazard

Steven Gendel, Ph.D.

Principal

Gendel Food Safety LLC

steve@gendelfoodsafety.com

Introducing Myself

- Over 30 years in food safety
- 25 years at FDA CFSAN
- Independent consultant and advisor

Presentation Title

2

What is different?

Unlike all the other hazards discussed today:

- Food allergens are healthy and nutritious for most consumers
- Communication is the risk management tool
 - Assuming accurate and complete labeling

Gendel Food Safety LLC ©

3

The problem

- Undeclared allergens remain the leading cause of food recalls in the US and around the world
- Sensitive consumers are still at risk 16 years after FALCPA became effective
- Under the PCHF rule manufacturers should have effective allergen controls but many do not

Gendel Food Safety LLC ©

Gendel Food Safety LLC ©

Examples of the problem

- October 2022
- The recall was initiated because the Gluten Free claim on the side of the packaging did not match with the product's ingredient label and allergen information.

Examples of the problem

- November 2022
- It was discovered at a retail location by staff that cases labeled [X] contained [X], but were labeled with the [Y] sleeves, resulting in the undeclared allergen

Examples of the problem

- · December 2022
- The recall was initiated after it was discovered that the [H] product was mislabeled as [J] and peanut was not declared on finished product label.

Other Examples of the problem - FDA Warning Letters

- Your allergen control program did not adequately address the monitoring of labels
- Your hazard analysis did not identify and evaluate known or reasonably foreseeable hazards ...
 Specifically, you did not identify and evaluate ... allergen hazards to determine whether they require a preventive control

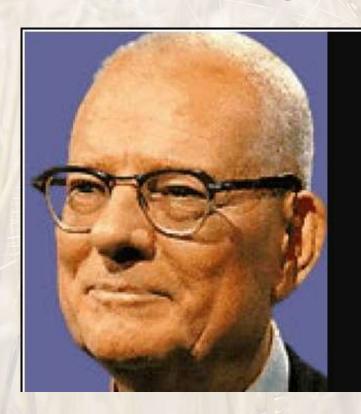
What can we learn from all this?

- · Labels are a vital part of your safety program
 - Control
 - What they are supposed to say
 - What they do say
 - Where/when they are used

Gendel Food Safety LLC ©

- Allergen sanitation is not enough
 - Neither is testing
- Supply chain controls are critical

Gendel Food Safety LLC ©


1

Why does this problem persist?

- You can't prevent problems if you don't know why they happen
 - Why is as important as what
 - Need to identify "known and reasonably foreseeable" failures
 - AKA Vulnerabilities

Gendel Food Safety LLC ©

A final thought

Manage the cause, not the result.

— W. Edwards Deming —

Better Food, Better Health, Better World.

Allergens 360° Solutions

Allergen Program

Enhancing your Allergen program to keep your facility safety under control & prevent food recalls

Chemical Hazards - Allergens

- A food allergy is a medical condition in which exposure to a food triggers a harmful immune response. The immune response, called an allergic reaction, occurs because the immune system attacks proteins in the food that are normally harmless. The proteins that trigger the reaction are called allergens.
- The symptoms of an allergic reaction to food can range from mild (itchy mouth, a few hives) to severe (throat tightening, difficulty breathing).
- Anaphylaxis is a serious allergic reaction that is sudden in onset and can cause death.

Researchers estimate that up to 15 million Americans have food allergies, including 5.9 million children under age 18, 1 in 13 children

Factors to consider when identifying allergens as a hazard:

- Incoming ingredients with 'pass-through', unexpected allergens
- Different processing types: Peanuts are an allergen but is the oil?
- Processing Aids/Lubricants with incidental allergens: Soy Lecithin
- Are there multiple allergens handled in the same facility, same area, same line?
- Is their potential for cross contamination or cross contact from occurring during processing or sanitation activities (environment, tools)

Best Practices for Proactively Managing Allergens

- ID of ingredients that are allergens (inbound id)
- Warehouse storage control
- Controls in formulation (utensils, scoops, labeling, bins)
- Scheduling of processes
- ID and control of WIP and rework (like into like)
- Change over (allergen to a non-allergen) validation
 - Wet sanitation
 - Dry sanitation
 - Product flush
- Label approval and labeling ("May contain" statements)

360° Solutions

Providing food safety, quality & sustainability **solutions**

by combining a complete suite of **services**

at every stage of the **food value chain**, from farm to fork.

CHEMISTRY

- ELISA Kit
- Real-time PCR

RESEARCH

- Allergen Product
 Formulation &
 Substitution
- Process Validation for Allergens

CONSULTANCY & LABELING

- Allergen Sanitation
 Validation
- Allergen Label Check

360 Solutions

Allergen Program

MICROBIOLOGY

 Incorporation with your environmental monitoring program

DIGITAL TOOLS

- EnviroMap—Allergen testing mapping
- Regulatory Update—new allergen regulations
- Safety HUD—Allergen recalls

AUDITING & TRAINING

- Allergen Verification Audit
- Allergen Training (online & in person)

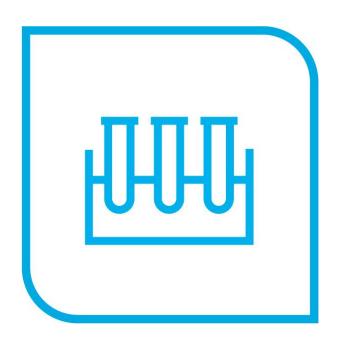
Free Allergen Program Kit

Better Food, Better Health, Better World.

Thank you

www.merieuxnutrisciences.com/na

Allergen Chemistry



Mérieux NutriSciences helps you preventing product recalls due to unintentional product contamination and inefficient cleaning procedures by testing your finished product or swabs for a number of known Allergens by ELISA Kit or by Real-time PCR.

- Allergen Validation Studies
- Analytical Allergen Consultation
- Allergen Swab testing
- Allergen Product Testing
 - By ELISA Kit: Gluten, Almond, Coconut, Crustacean, Egg, Hazelnut, Macadamia Nut, Milk, Mustard, Pecan, Peanut, Sesame, Soy, Tree nut, Walnut
 - By Real-time PCR: Mustard, further offerings in validation
 - X-Map technology

Allergen Microbiology

Mérieux NutriSciences is the industry's leading food microbiology testing partner with 9 out of the top 10 food manufacturers using our trusted services.

- Allergen Environmental Monitoring Program (EMP)
- Sanitation Validation
- Sampling & Courier

Allergen Digital Tools

Let's face it, in today's high-tech world you need software to record and manage your procedure. Manually searching through spreadsheets for data causes more frustration than it is worth. Elevate your digital landscape with these digital tools.

EnviroMap

A secure, cloud-based system that allows you to automate your allergen environmental monitoring program and assists with the entire sampling lifecycle.

SafetyHud

→ Discover allergen recalls from ingredient suppliers in real-time with data from 73 countries to safeguard your supplier programs.

Regulatory Update

Understand allergen regulations and compliance policies in XX countries to help you reach new markets

Allergen Auditing & Training

Auditing your facility ensure your facility is meeting allergen standards every day. We offer our Allergen Training courses in a variety of different formats.

Audits

- Allergen Audit
- BRCGS Gluten Free **Certification Audit**

Training Courses

- Controlling Food Allergens in the Plant (streaming video)
- Allergens & Their Controls (eLearning)
- Advanced Allergen Management (eLearning)
- Allergen Management Beyond Preventive Controls (Live Instructor Led)

Allergen Consultancy & Labeling

We start by understanding and responding to your needs, from risk assessment to crisis management. Drawing on decades of industry and regulatory expertise, our experts help you safeguard your product, fortify security protocols and protect your brand.

At the onset of each new project, we assess your needs and partner you with our most experienced and industry-specific consultants.

- Allergen Crisis Management Support
- Allergen Program Development
- Allergen Risk Assessment
- Allergen Label Check
- Allergen Ingredient Assessments

Allergen Research & Sensory

Our services give you the ability to evaluate the quality of your food and beverage products, discover new consumer attitudes, compare products against competitors and generate new product ideas all in one place.

Mérieux NutriSciences offers an innovative portfolio of research and sensory services to the food industry to guarantee product stability, quality, and safety from concept development to retail shelf.

Research Services

- Reformulation support and consumer insights
- Process Validation for Allergens
- Troubleshooting
 - → Identification
 - Whole Genome Sequencing

U.S. Department of Homeland Security | Science and Technology Directorate

DHS S&T CSAC Food Adulteration Events and Chemical Toxicity

Jessica Cox, Carol Brevett

Chemical Security Analysis Center Office of National Laboratories Innovation & Collaboration

December 13, 2022

DHS Science and Technology

Responding to the Needs of the Homeland **Security Enterprise**

Mission

S&T CSAC is the nation's only federal studies, analysis, and knowledge management center for assessing the threat and hazard associated with an accidental or intentional large-scale chemical event or chemical terrorism event in the United States.

S&T CSAC is built on an Integrated
Capability platform with a foundation in
Modeling & Simulation and Core Subject
Matter Expertise

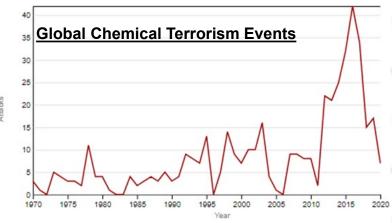
Surveillance / Detection

Chemical Hazard Analysis

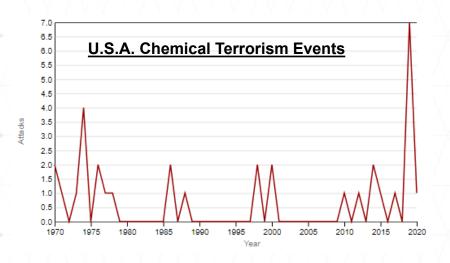
- S&T-based Technical Assistance 24/7
- Quick Reaction Bulletins (e.g., Aqaba Jordan)
- Daily Reports / Weekly Reports
- Chemical Agents Reactions Database (CARD)
- ChemInformatics, including interagency Non-Traditional Agents (NTA) Library

Chemical Hazard Characterization

- Chemical Assessment tailored assessments
- Chemical Characterization assessing the threat posed by the intentional use of high-consequence chemicals


Chemical Surveillance / Detection

 Chemical detection subject matter expertise and knowledge products


Chemical Hazard Landscape

According to the Global Terrorism Database:

- 425 Incidents of Chemical Terrorism occurred globally from 1970 to 2020
- Majority occurred in South Asia (121), Middle East (99) and Western Europe (52)
- 38 Chemical Terrorism Incidents occurred in North America, 33 in the U.S.A.
- Worldwide private citizens, police, educational institutes and the military/government were the targets attacked most

START. (2022). Global Terrorism Database 19 July 2022. Retrieved from http://www.start.umd.edu/gtd

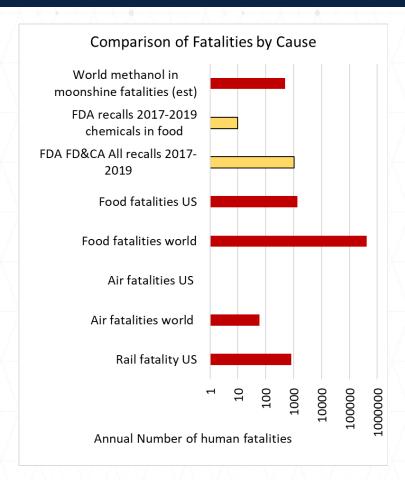
Chemical Hazard and Threat Characterization Landscape

- In September 2022, the Chemical Abstracts Service Registry had 200 million unique organic and inorganic chemical substances of which 350,000 are produced commercially and 86,000 are regulated by the U.S. Environmental Protection Agency (EPA) under the Toxic Substances Control Act.
- Large number of these chemical compounds are highly toxic and used in a number of industries throughout the country. They are transported, stored, processed, sold and disposed of in large quantities.
- Each of these points provides potential for access or diversion of the material to become a "weapon of opportunity."
- There are billions of possible scenarios that involve these chemicals of opportunity.

Food Defense Incidents

- Accidental, intentional and criminal food adulteration incidents occur routinely
- These incidents provide case scenarios for future intentional adulteration events and draw attention to the impacts and toxicities of the compounds for bad actors/terrorists

Chemicals of Concern for Food & Water Targets that are Modeled by DHS


\	Che	emicals of Concern for Food & Water Targets from S&T CSAC Threat Assessments				
1	<u>Opioids</u>	<u>Stimulants</u>	Carbamate Pesticides			
	Fentanyl	Caffeine	Aldicarb	\		
\	Carfentanil	Nicotine	Methomyl	1		
\		2,4-Dinitrophenol				
	Metallic compounds	Other	Organophosphorus Pesticides			
/	Arsenic Trioxide	4-Aminopyridine	Chloropyrifos			
	Dimethyl Mercury	Brodifacoum	Disulfoton	>		
\	Mercuric Chloride	Cyanides	Methamidophos			
	Osmium Tetroxide	Methacrylonitrile	Parathion			
/	Thallium Sulfate	Sodium Fluoroacetate (1080)	Phorate			
/-	Vanadium Pentoxide	Sodium Azide	Phosphamidon	\		
\		Strychnine	Tetraethylpyrophosphate (TEPP)			
\		Tetramine (TETS)				
/	Acids & Alkalis	<u>Toxins</u>	Nerve Agents			
	Aqueous Ammonia	Anatoxin A	GB			
	Nitric Acid	Picrotoxin	GD	1		
\	Hydrofluoric Acid		VX	7		

Criteria: Solid or Liquid, Stable, High Toxicity

Red, bold = chemical has been used in a food adulteration event

Comparison of 2017 Fatalities by Cause

- Food fatalities greatly outrank air and rail fatalities
- Most food fatalities are caused by microbes, but chemical adulterants, and poor manufacturing (e.g., wood alcohol in ethanol) do occur.
- Sub-lethal Food Economically Motivated Adulteration (EMA) can become very widespread and persistent, such as di(2-ethylhexyl) phthalate in Taiwan (2011).
- The melamine in milk EMA (2008) incident in China was very widespread, and there were fatalities.

Food Adulteration Events: Common

Multiple Events - Common Occurrences

- Methanol in home brewing worldwide occurrence
- Methanol in bottled beverages from commercial establishments (Manning & Kowalska, 2021)
- Suicide, homicide, and family murders with pesticides;
 especially common in South East (SE) Asia (Bonvoisin, 2020)
- Tetramine poisonings in China that occurred from ~2000 to ~2006 (Li, 2014). 148 events, 3526 victim, 225 fatalities.
- Melamine in milk in China (Huang, Quartz, 2018)

Food Adulteration Events: Occasional

- Non-familial food preparation, such as in restaurants or at schools
- On-farm, manufacturing, wholesale, and any pre-purchase contamination
- Workplace and social event poisonings
- Select EMA events on rare occasions the adulterant gives noticeable negative health effects
- Select Accidents on rare occasions these are not caught or recalled, and the adulterant causes noticeable negative health effects

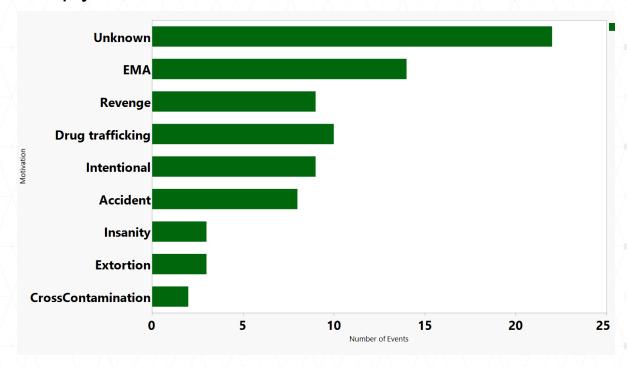
Data Collection

Sources:

- DHS S&T CSAC's daily publication 'DHS S&T CSAC Chemical Current
 News Report' on chemical-related news events, including food adulteration
- Relevant events from the daily electronic publication Food Safety News
- Journals and Academic publications

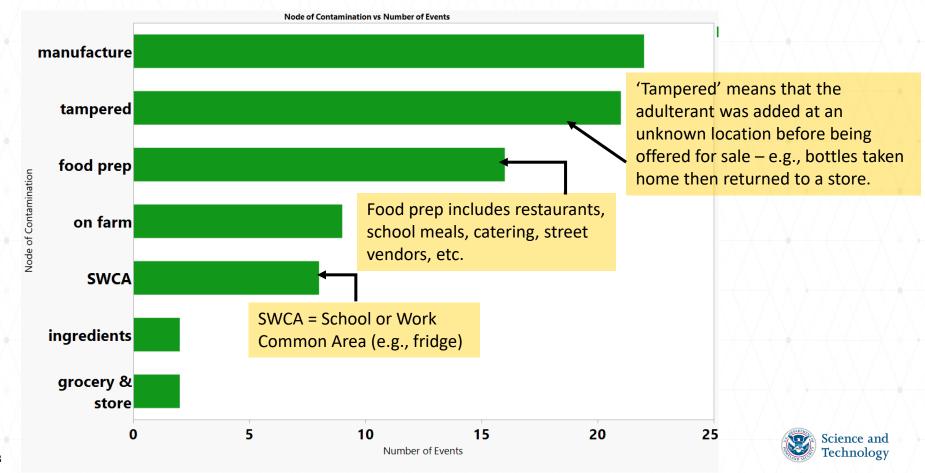
Required Information:

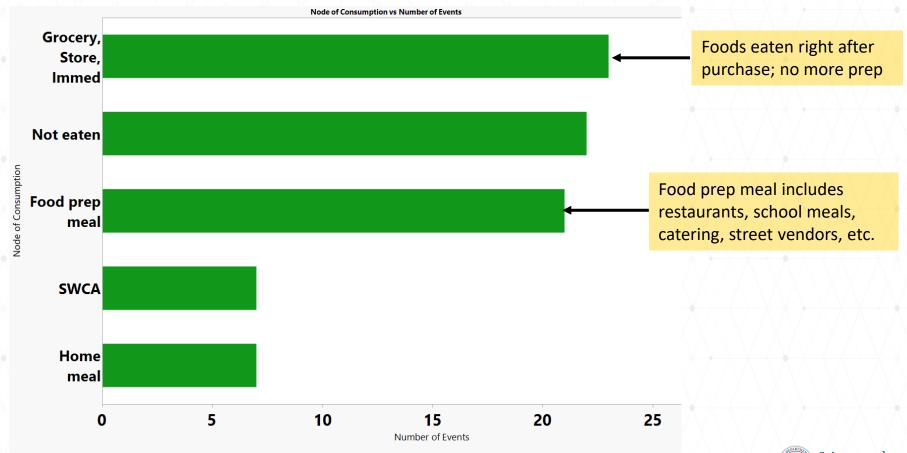
- Location of the poisoning
- Chemical used
- Number of people affected (illnesses and deaths)


Desired Information:

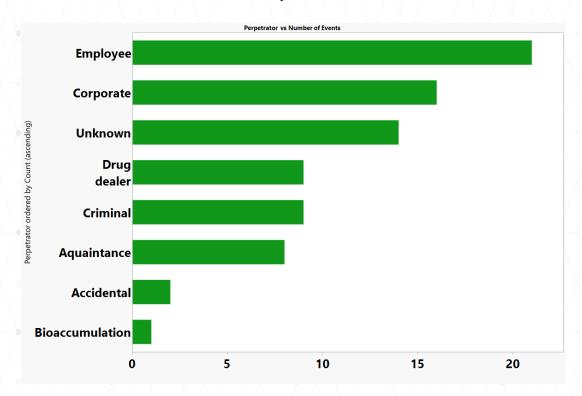
- Location of adulteration
- Intent (often inferred from the article)
- Perpetrator, if arrested

Motivations for Food Adulteration with Chemicals


- Total of 80 events from 2009 to August 2022 were identified
- In many instances the motivation was inferred from the news reports, but in 28% of the cases it was simply unknown.
- Although crosscontamination and accidents occur during manufacturing, these instances are generally caught before the product is shipped.
- Cross-contamination, EMA, and accident events illustrate how an intentional adulteration could be enacted.


Node of Contamination vs. Number of Events

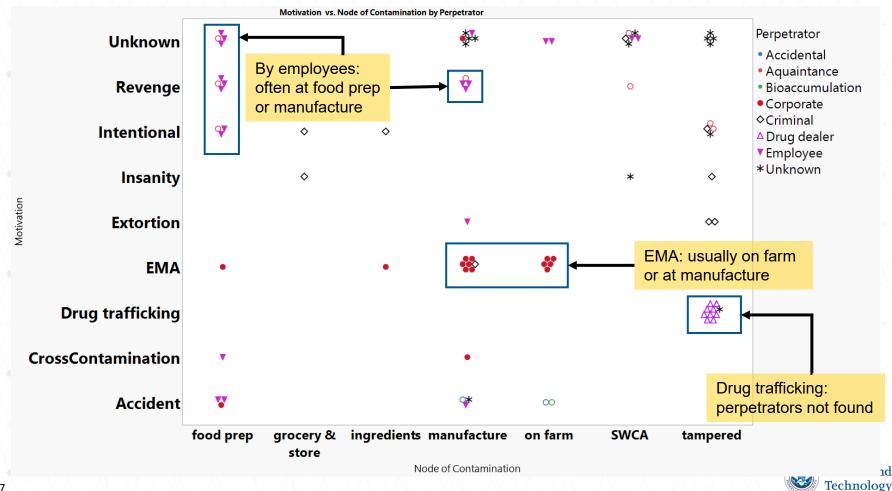
The node of contamination was inferred from the news article, although in tampering cases the exact node was hard decipher.

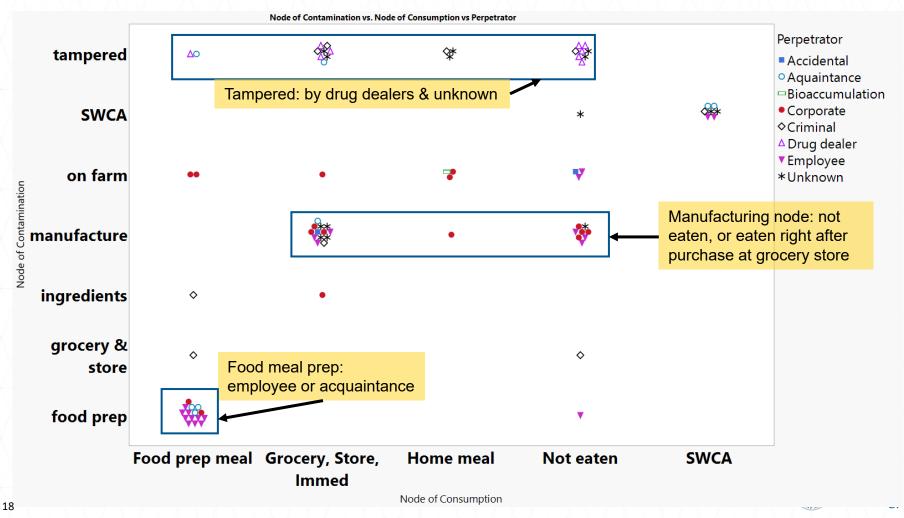

Node of Consumption vs Number of Events

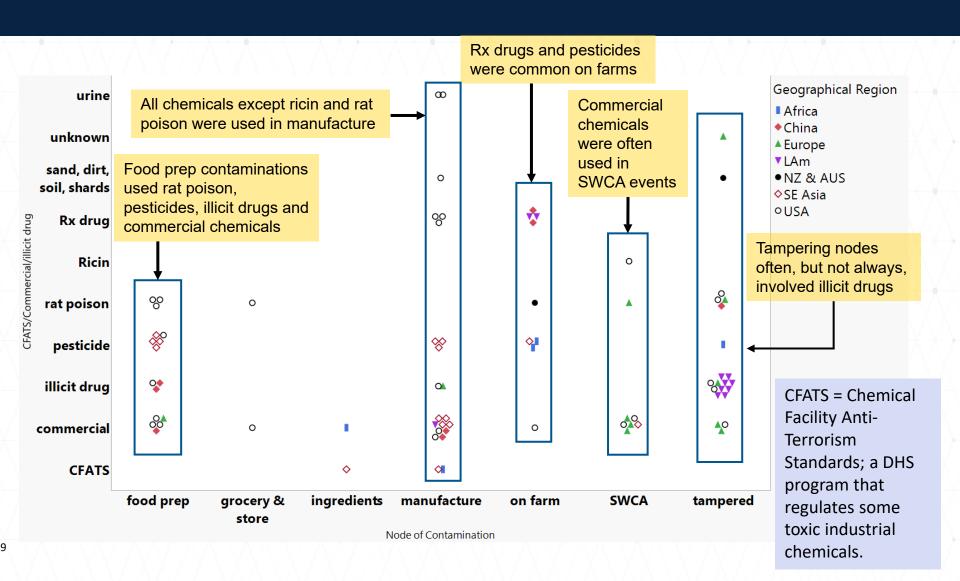
The node of consumption was generally available from the news articles.

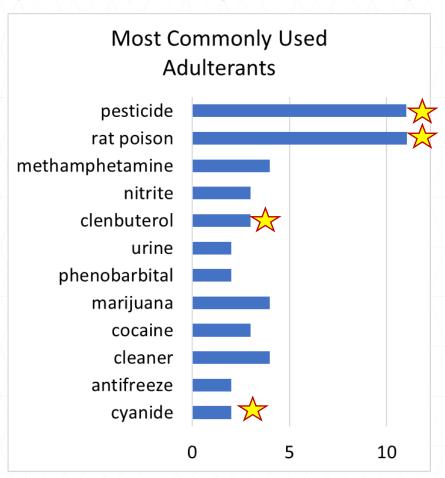
Perpetrators for Food Adulteration

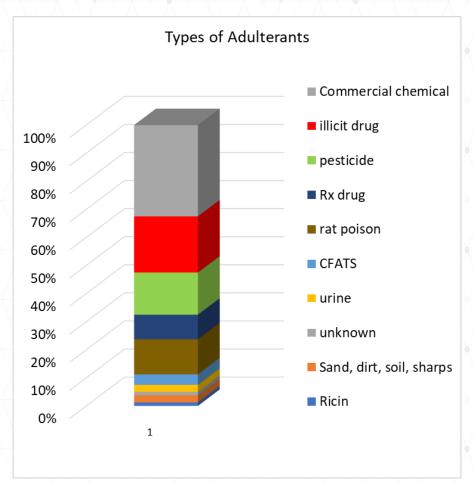
- The perpetrator was sometimes identified in the news article.
- In 58.8% of the cases no-one was arrested.
- In 25.0% of the cases one person was arrested.

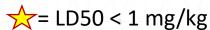



Motivation vs Node of Consumption by Perpetrator

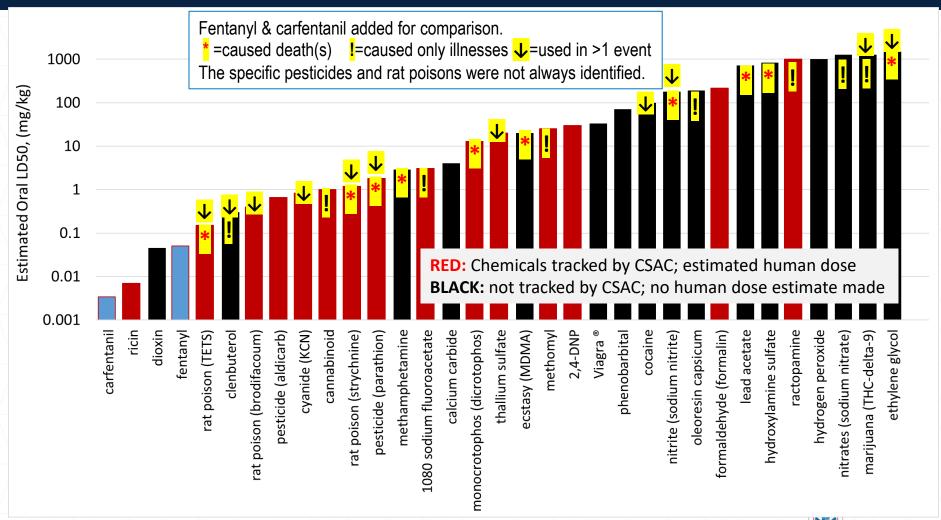

Motivation vs Node of Contamination by Perpetrator

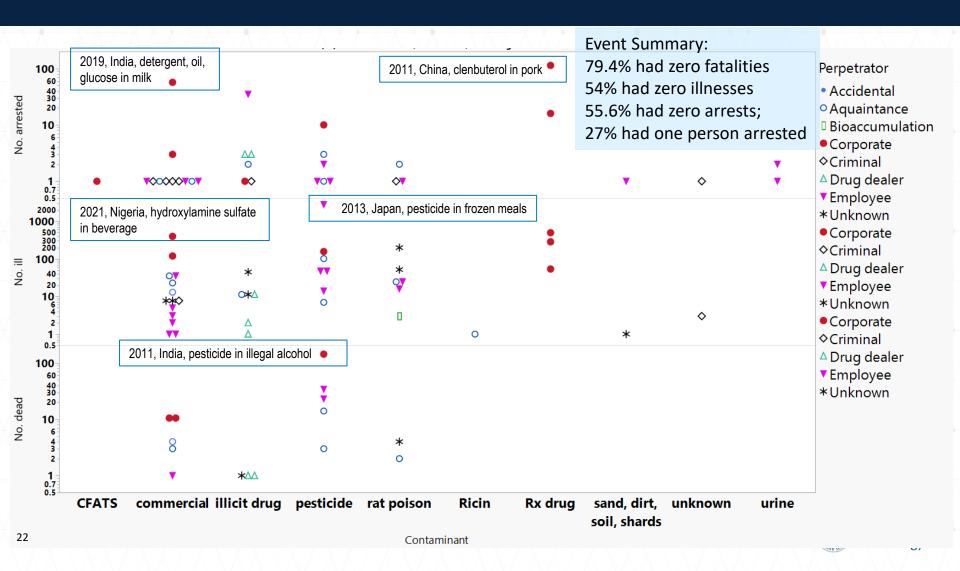

Node of Contamination vs Node of Consumption by Perpetrator

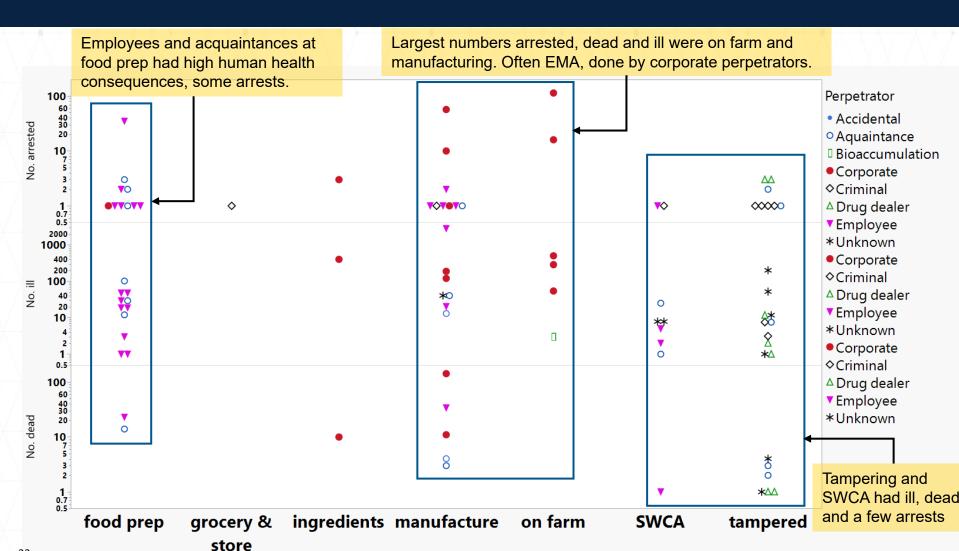



Class of Adulterant vs Node of Contamination by Geographical Region

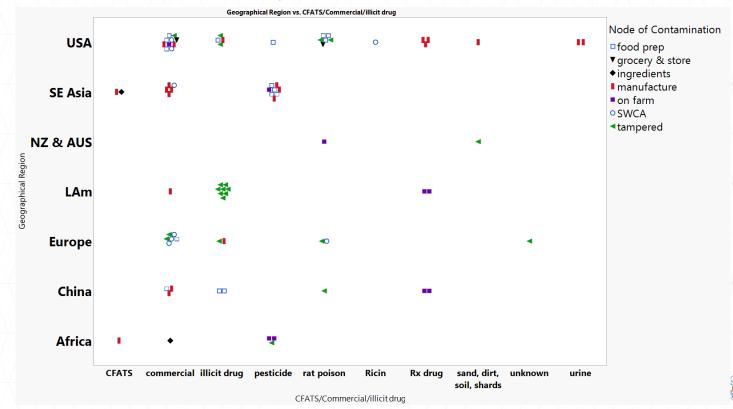
Types of Adulterants Used






Oral Toxicity of Compounds Used

Human Consequences vs. Adulterant Used



Human Consequences by Node of Contamination

Geographical Trends in Chemicals Used

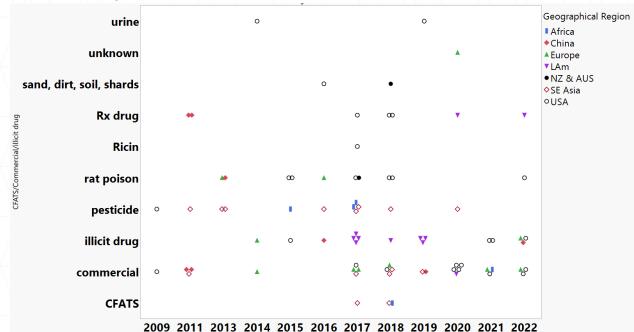
- Pesticides seen mostly in SE Asia and Africa
- Illicit Drugs concealed with food most were in Latin America
- Commercial chemical are used in all locales
- The US has the widest variety of chemicals used



Science and

Technology

Geographical Trends in Motivation


- EMA was very common in SE Asia
- Revenge common in US and SE Asia
- Unknown motivation in 28% of cases

Annual Trends

- Few trends with type of chemical and year of event
- Illicit drug concealment as food was first noted in 2017
- Multiple food fraud incidents were found in China over the years, but the incidents did not have the information needed for this study
 - ➤ Many of these events involved ingredients (salt, oil, milk) or animal husbandry, and arrests of perpetrators occurred

Summary

- Food defense events happen routinely, providing case examples for the terrorists.
- Our routine use and dependency upon a large number of highly toxic compounds make them a "weapon of opportunity."
 - All of the chemicals chosen were readily available; none were Chemical Warfare agents.
 - The chemicals chosen spanned a range of toxicity values.
- Some food adulteration scenarios have the potential to produce hundreds of thousands of injured people.
- DHS S&T CSAC can model scenarios to help the food sector focus food defense planning, preparedness and mitigation efforts on the most likely, most catastrophic and highest risk compounds and toxidromes to secure our food supply and save lives.

List of the Top Fatality and Illness Events

Year	Country	Agent used	Type of chemical	Food	Motivation	Node of Consumption	Node of Contamination	Perpetrator	No. dead	No. III	No. arrested
2011	India	pesticide	Commercial	local illegal alcohol 'desi daroo'	EMA	Retail direct	manufacture	Corporate	143	144	10
2016	Pakistan	pesticide	pesticide	Candy	Revenge	Retail direct	manufacture	Employee	34	14	0
2013	India	monocrotophos	pesticide	school lunch	CrossContamination	Food prep meal	food prep	Employee	23	47	1
2018	India	monocrotophos	pesticide	tomato rice	Revenge	Food prep meal	food prep	aquaintance	14	102	3
2011	China	antifreeze	Commercial	vinegar	CrossContamination	Retail direct	manufacture	Corporate	11	120	0
2021	Nigeria	hydroxylamine sulfate	Commercial	Dan Tsami beverage	EMA	Retail direct	ingredients	Corporate	10	400	3
2018	USA	rat poison	rat poison	Synthetic marijuana	Unknown	Home meal	tampered	Unknown	4	200	0
2011	China	nitrite	Commercial	milk	Revenge	Retail direct	manufacture	aquaintance	3	36	1
2013	Japan	pesticide	pesticide	Frozen Products	Revenge	Retail direct	manufacture	Employee	0	2800	1
2022	Mexico	clenbuterol	Rx drug	pork (cochinita)	EMA	Food prep meal	on farm	Corporate	0	500	0
2011	China	ractopamine	Rx drug	pork	EMA	Retail direct	on farm	Corporate	0	286	16
2009	USA	methomyl	pesticide	Salsa	Revenge	Food prep meal	food prep	Employee	0	48	2
2015	USA	cannabinoid	illicit drug	Bread (King cake)	Unknown	Retail direct	manufacture	Unknown	0	45	0
2011	China	clenbuterol	Rx drug	pork	EMA	Retail direct	on farm	Corporate	0	0	114
2022	China	opium	illicit drug	chili oil	EMA*	Food prep meal	food prep	Corporate	0	0	1
2019	India	liquid detergent, refined oil, glucose powder	Commercial	Milk	EMA	Retail direct	manufacture	Corporate	0	0	57

References

- 1. START. (2022). Global Terrorism Database 19 July 2022. Retrieved from http://www.start.umd.edu/gtd. (Accessed July 19, 2022).
- 2. American Chemical Society, CAS Registry®, https://www.cas.org/cas-data/cas-registry (Accessed October 3, 2022).
- 3. Wang, Z. et al., Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories, *Environ. Sci. Technol.* 2020, *54:5*, 2575-2584. https://doi.org/10.1021/acs.est.9b06379, (Accessed October 3, 2022).
- 4. United States Environmental Protection Agency, About the TSCA Chemical Substance Inventory, https://www.epa.gov/tsca-inventory/about-tsca-chemical-substance-inventory (Accessed October 3, 2022).
- 5. Statista.com; https://www.reuters.com/article/us-airlines-safety-worldwide/fatalities-on-commercial-passenger-aircraft-rise-in-2018-idUSKCN10W007, (Accessed August 14, 2019).
- 6. Reuters, 2017 safest year on record for commercial passenger air travel: groups, https://www.reuters.com/article/us-aviation-safety/2017-safest-year-on-record-for-commercial-passenger-air-travel-groups-idUSKBN1EQ17L, (Accessed October 3, 2022).
- 7. United States Food and Drug Administration, Recalls, Market Withdrawals and Safety Alerts, https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts, (Accessed October 3, 2022).
- 8. Bradley, D. Derivation of Toxicity Values for Agents of Concern, CSAC 18-027, Department of Homeland Security Chemical Security Analysis Center.
- 9. Li, Y. et al., Tetramine poisoning in China: changes over a decade viewed through the media's eye, BMC Public Health 2014,14:842. (Accessed October 3, 2022).
- 10. Bonvoisin, T. *et al.*, Suicide by pesticide poisoning in India: a review of pesticide regulations and their impact on suicide trends, *BMC Public Health*, 2020 20:251. (Accessed October 3, 2022).
- 11. Manning, L. and Kowalska, A., Illicit Alcohol: Public Health Risk of Methanol Poisoning and Policy Mitigation Strategies, *Foods*, 2021, *10*, 1625. https://doi.org/10.3390/foods10071625. (Accessed October 3, 2022).
- 12. Huang, E., Ten years after China's infant milk tragedy, parents still won't trust their babies to local formula, Quartz, July 16, 2018. (Accessed October 3, 2022).

Questions?

FDA Update on Closer to Zero and PFAS Activities

12/13/2022

Food Safety Tech Meeting Paul South, Ph.D.

Center for Food Safety and Applied Nutrition U.S. Food and Drug Administration

.

Discussion Outline

- FDA Statutory Authority
- FDA Enforcement Options
- FDA's Monitoring and Compliance Programs
- Two Examples
 - Toxic Elements/Closer to Zero Action Plan
 - Per- and Polyfluoroalkyl Substances

Federal Food, Drug and Cosmetic Act

- Provides FDA with regulatory authority with regard to adulterated foods that are in interstate commerce or delivered for introduction into interstate commerce
- Defines when a food is adulterated [Section 402 Federal Food, Drug, and Cosmetic Act]

Adulteration under § 402(a)(1)

1) Food bears or contains any poisonous or deleterious substance **and...**

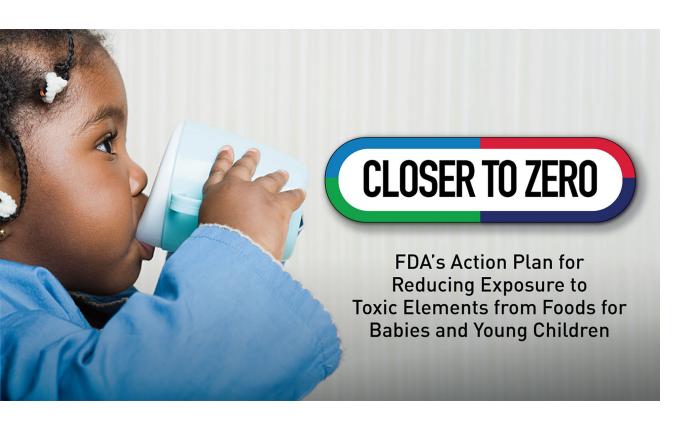
2) If the substance is **added**, FDA must show that the quantity of the substance in the food **may render** the food injurious to health

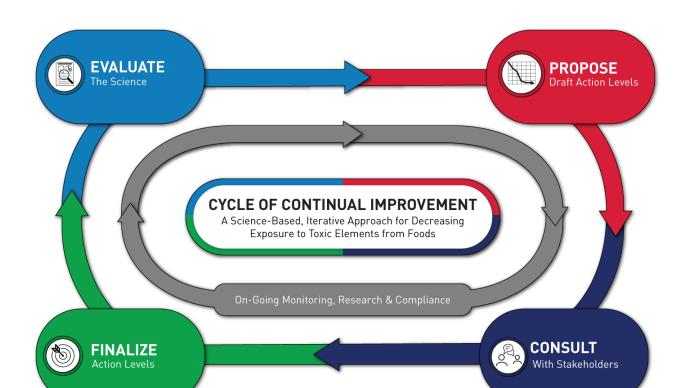
or

If the substance is **not added**, FDA must show that the quantity of the substance in the food **ordinarily renders** it injurious to health

Enforcement Options for 402(a)(1)

- Tolerances, regulatory limits, action levels under 21 CFR part 109
- Case-by-case, using safety assessments
 - Level of contaminant
 - Type of food and consumption of that food
 - Available toxicological information
- If a food is adulterated under FFDCA
 - Seizure/recall of domestic food
 - Detention or refusal of entry of imported foods




FDA Monitoring and Compliance Programs for Chemical Contaminants in Food

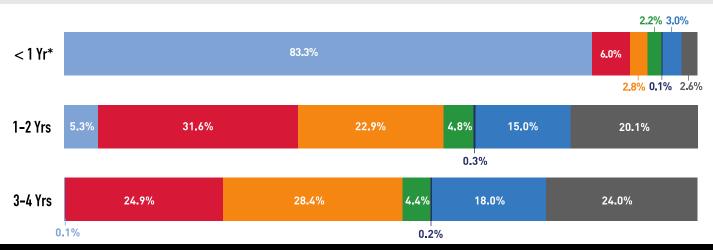
- FDA Monitoring and Compliance Programs
 - Total Diet Study
 - Toxic Elements in Food and Foodware, and Radionuclides in Food - Import and Domestic
 - Pesticides and Industrial Chemicals Import and Domestic
 - Mycotoxins in Food Import and Domestic
 - Laboratory Flexible Funding Model

Toxic Elements

FDA's Total Diet Study

LEAD EXPOSURE IN FOOD CONSUMED BY BABIES AND YOUNG CHILDREN

Total Percentage of Exposure by Food Groups



^{1.} Includes infant formula.

^{2.} Includes eggs, fats/oils, legumes, nuts, seeds, meat, poultry, fish, mixtures, and sweets. * Excludes children who consumed human milk in the 2-day period.

Action Levels for Lead in Juice: Guidance for Industry

Draft Guidance

This guidance is being distributed for comment purposes only.

U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition

April 2022

THE KEY TO A WELL-BALANCED DIET IS EATING A VARIETY OF HEALTHY FOODS

This is important for the growth and development of babies and young children ages 6 months and older.

-DA

Per- and Polyfluoroalkyl Substances (PFAS)

- PFAS are water and oil repellent and thermally and chemically stable.
- Used in stain- and water-resistant fabrics and carpeting, cleaning products, paints, fire-fighting foams, cookware, and food packaging.
- Thousands of PFAS chemicals; PFOA and PFOS, 8-chain carbon compounds, have been the most extensively produced and studied.

PFAS Attributes and Potential Health Effects

- PFAS are persistent in the environment.
- Certain PFAS have been shown to accumulate in plants and animals and in the human body.
- Exposure pathways: oral, inhalation, dermal; via food, water, indoor dust, and a variety of consumer products.
- Health effects associated with certain PFAS exposure in humans and animals include:
 - Increased cholesterol levels
 - immunotoxicity; reproductive and developmental toxicity;
 - evidence of carcinogenic activity for some PFAS.

Overview of FDA's Role

- Measuring PFAS concentrations in food and estimating dietary exposure to help inform efforts to identify and prioritize activities to reduce PFAS in human and animal food.
- Developing new and more precise testing methods to measure PFAS concentrations in various foods and working with states to build capacity for local testing laboratories.
- Supporting state and local governments in responding to known and possible contamination events that may impact human food or animal food, including as an exposure source for food-producing animals.
- Assessment and regulatory authority over food contact substances containing PFAS.

Ongoing PFAS Activities

- Continue to expand testing and analysis of U.S. food supply
 - Additional TDS foods, seafood survey, other foods
- PFAS method development/method transfe
 - Analyte extension (additional PFAS)
 - Transfer methods to FDA field laboratories, state laboratories, other laboratories
 - Standard Reference Material

Work with states

- Technical assistance, including analyzing human and animal food
- Method transfer

Ongoing PFAS Activities

- Work with other federal agencies
 - Interagency meetings for information sharing and collaboration
- PFAS in food contact applications
 - Monitoring the phase-out of certain short-chain PFAS
 - Fluorinated polyethylene
- Communications and outreach
 - Post PFAS methods and testing results on FDA webpage: https://www.fda.gov/food/chemical-contaminants-food/and-polyfluoroalkyl-substances-pfas

U.S. FOOD & DRUG

CENTER FOR FOOD SAFETY & APPLIED NUTRITION