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Abstract 

Accurately measuring physical activity and energy expenditure in persons with chronic 

physical disabilities who use wheelchairs is a considerable and ongoing challenge. 

Quantifying various free-living lifestyle behaviours in this group is at present restricted 

by our understanding of appropriate measurement tools and analytical techniques. This 

review provides a detailed evaluation of the currently available measurement tools used 

to predict physical activity and energy expenditure in persons who use wheelchairs. It 

also outlines numerous considerations specific to this population and suggests suitable 

future directions for the field. Of the existing three self-report methods utilised in this 

population, the three-day Physical Activity Recall Assessment for People with Spinal 

Cord Injury (PARA-SCI) telephone interview demonstrates the best reliability and 

validity. However, the complexity of interview administration and potential for recall 

bias are notable limitations. Objective measurement tools, which overcome such 

considerations, have been validated using controlled-laboratory protocols. These have 

consistently demonstrated the arm or wrist as the most suitable anatomical location to 

wear accelerometers. Yet, more complex data analysis methodologies may be necessary 

to further improve energy expenditure prediction for more intricate movements or 

behaviours. Multi-sensor devices that incorporate physiological signals and 

acceleration have recently been adapted for persons who use wheelchairs. Population 

specific algorithms offer considerable improvements in energy expenditure prediction 

accuracy. This review highlights the progress in the field and aims to encourage the 

wider scientific community to develop innovative solutions to accurately quantify 

physical activity in this population.    

mailto:J.Bilzon@bath.ac.uk
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Key points 

 Predicting energy expenditure from physical activity is inherently more 

challenging in persons with chronic physical disabilities who use wheelchairs due 

to altered movement patterns and variations in metabolically active muscle mass. 

 Recent studies have successfully attempted to utilise technological advancements 

(i.e. multi-sensor devices) to measure physical activity and predict energy 

expenditure (using population or activity-specific algorithms) in persons who use 

wheelchairs.  

 Combining measurement methods (both self-report and objective) might provide 

greater contextual information about the types and purpose of activities being 

performed by persons who use wheelchairs. This has implications to inform the 

wider public health agenda by promoting physical activity and reducing non-

communicable diseases in persons with chronic physical disabilities.  
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1 Introduction 

Considerable evidence now exists to support the beneficial effects of physical activity 

(PA) for human health and wellbeing [1-3]. However, the majority of this evidence is 

from research in adults without disabilities. Our understanding of the impact and 

importance of PA for populations with chronic physical disabilities, particularly those 

who use wheelchairs, is therefore lacking. One of the major barriers to the acquisition 

and analysis of PA data in populations who use wheelchairs is the uncertainty 

surrounding the validity and reliability of the existing PA measurement tools. Improved 

assessment of habitual PA would permit; appropriate cross-sectional comparisons to 

biomarkers of metabolic health, allow researchers to comment on the efficacy of 

behaviour change interventions and potentially inform PA guidelines [4]. This review 

provides a detailed evaluation of the available tools within the context of their potential 

application in persons who use wheelchairs. Firstly, three of the most frequently utilised 

self-reported measures will be described and evaluated. Then our attention will turn to 

the increasingly employed objective methods of measuring PA.  

 

2 Population considerations 

The PA behaviour of persons who use wheelchairs is inherently difficult to measure 

due to the heterogeneous nature of the population, whereby different disability 

aetiologies responsible for the use of a wheelchair result in highly variable movement 

patterns. Common physical disabilities that require prolonged use of a wheelchair 

include spinal cord injury (SCI), amputation, multiple sclerosis, cerebral palsy and 

cerebrovascular disease. Currently, it is problematic to accurately equate PA into units 

of energy expenditure (EE), as EE varies significantly from person to person depending 

on body mass, type of physical disability and efficiency of movement. Due to 

movement being primarily restricted to the upper-body, the energy cost of most exercise 

and activities of daily living performed by persons who use wheelchairs result in a 

considerably lower energy cost (-27%) than those reported in the general population [5, 

6]. The smaller skeletal muscle mass activated to perform certain activities does not 

achieve the same whole-body metabolic rate. Metabolic equivalents (METS) are often 

used to express the energy costs of PA as multiples of resting metabolic rate (RMR) 

[7]. However, the conventional MET value (oxygen uptake of 3.5 mL.kg-1.min-1) is not 

applicable for persons with a disability, as disuse/paralysis results in atrophy of leg fat 

free mass (FFM) [8, 9].  RMR is influenced by FFM [10], which explains why RMR is 
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reduced in persons with disabilities who use wheelchairs compared to adults without 

disabilities [11]. For example, commonly used equations to predict RMR in persons 

with spinal cord injury (SCI) overestimate measured requirements by 5 – 32% [12]. 

Considering RMR is the largest component of total daily energy expenditure (TDEE) 

(up to 80% for sedentary individuals [13]), error in the prediction of this component 

using existing algorithms for persons without disabilities can have profound 

implications for accurately predicting TDEE. Consequently, approaches that solely 

measure physical activity energy expenditure (PAEE) might have greater utility, 

particularly as this is the most malleable component of TDEE. 

 

3 Measurement Methods 

The PA monitoring field is evolving at a rapid pace. However, the development of 

validated self-report and objective tools to quantify PA/EE in persons who use 

wheelchairs remains relatively under-researched. It is not always feasible to use 

criterion methods (i.e. indirect calorimetry, observation, doubly labelled water) to 

measure free-living PA/EE, as these techniques require expensive/sophisticated 

equipment or are impractical for use outside of the laboratory. Therefore, this review 

provides an overview of the predominant methods of measuring PA/EE in persons who 

use wheelchairs. Specifically, we describe and review the different self-report and 

objective tools currently available whilst also considering their potential strengths and 

limitations.  

 

3.1 Self-report Measures 

Until recently the quantification of free-living PA in persons who use wheelchairs had 

been reliant on outputs from self-report measures [14, 15]. Self-report questionnaires 

offer researchers an inexpensive and easy-to-administer method of measuring PA. 

However, these methods are reliant upon the accuracy of the participants’ memory and 

recall. Furthermore, it has been suggested that self-report measures fail to adequately 

quantify the lower end of the PA continuum [16, 17], suffer from floor-effects (lowest 

score is too high for inactive respondents) and participant over-reporting [18]. Besides 

these general limitations, specific issues pertaining to the administration of the three 

predominant questionnaires (Table 1) used to predict components of PA in this 

population are discussed below.  It is noteworthy that not all were developed and/or 

validated for persons who use wheelchairs.  
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The Physical Activity and Disability Survey (PADS) [19] was one of the first 

questionnaires developed but was validated for participants with a wide range of 

disabilities ranging from stroke to type-2 diabetes, and subsequently a revised version 

(PADS-R) in persons with neurological conditions [20, 21]. Therefore, it could be 

argued that the content of the PADS fails to capture activities specific to the lifestyle of 

persons that use wheelchairs. The Physical Activity Scale for Individuals with Physical 

Disabilities (PASIPD) [22] was adapted from the Physical Activity Scale for the Elderly 

(PASE) and follows a similar format to that of the International Physical Activity 

Questionnaire (IPAQ) [23]. Despite being developed in people with both visual and 

auditory disabilities, its implementation in people with locomotor impairment and SCI 

means it could be considered sensitive to persons who use wheelchairs. However, only 

the Physical Activity Recall Assessment for People with Spinal Cord Injury (PARA-

SCI) was specifically developed and evaluated for people with SCI. 
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Table 1: Characteristics of questionnaires used previously to measure components of PA in persons who use wheelchairs 

ADL activities of daily living, LTPA leisure time physical activity, PA physical activity, PADS Physical Activity and Disability Survey, PARA-SCI Physical Activity Recall 

Assessment for People with Spinal Cord Injury, PASIPD Physical Activity Scale for Individuals with Physical Disabilities 

 PADS [19] PASIPD [22] PARA-SCI  [24] 

Items/ 

administration/ 

duration 

46-item semi-structured interview or self-

administered  questionnaire (20 – 30 minutes) 

13-item self-administered questionnaire (~ 

15 minutes) 

Semi-structured interview whereby a series of 

flow charts help the interviewer guide the 

participants through 8 periods of the day (20 – 

45 minutes) 

Timeframe 7 days 7 days 3 days 

Dimensions 

1. Exercise 

2. LTPA 

3. General Activity 

4. Therapy 

5. Employment/school 

6. Wheelchair use 

1. Home repair/gardening 

2. Housework 

3. Vigorous sport 

4. Moderate sport 

5. Occupation 

1. LTPA 

2. ADL 

Outcome 

Score is based on the time respondents spend 

doing the activities multiplied by an intensity 

rating of that activity. Each activity has an 

assigned weighting (Aerobic = .3, strength = 

.2 and flexibility = .1). Higher scores represent 

more activity and negative scores can be 

achieved through sedentary behaviour 

Number of days per week and hours per day 

of participation in above dimensions. 

Intensity of activity is established by 

multiplying the average hours per day for 

each item by a standard MET value (MET-

h/day) 

The mean number of minutes per day spent in 

mild, moderate, and heavy intensity LTPA 

and ADL. Scores may be summed to generate 

total accumulated PA (min/day) 
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3.1.1 Questionnaire administration 

A distinguishing feature between the three questionnaires is the resource demand to 

complete each tool (Table 1). The PARA-SCI was designed as an interview based 

questionnaire that collects rich behavioural data. Thus the PARA-SCI is resource 

intensive because it was developed, as a research tool, to be used in epidemiological 

studies. For example, it can take between 20-45 minutes to complete, the cost of the 

interviewer needs to be considered and there is considerable participant demand. Ullrich 

et al, [25] also suggested that the use of the PARA-SCI might have limited application 

for other investigators, besides the developers, due to the exclusion of subjective 

appraisals and the technical complexity of interview administration. These limitations 

were acknowledged by the authors who subsequently developed a new questionnaire to 

address these limitations. The Leisure Time Physical Activity Questionnaire for People 

with Spinal Cord Injury (LTPAQ-SCI) [26] is a brief (5 minutes) self-report 

questionnaire specifically designed for persons with SCI that measures minutes of mild, 

moderate and heavy-intensity leisure time physical activity (LTPA) performed over the 

previous 7 days, but is not capable of measuring other activities of daily living. 

 

3.1.2 Reliability and Validity 

The test-retest reliability of the three questionnaires has been examined, however, the 

PADS has had no reliability studies conducted in persons who use wheelchairs. 

Therefore, it remains unclear whether the PADS can be reliably used as a measure of 

physical activity behaviour in this population. A test-retest reliability correlation of .77 

was established for the PASIPD in a study of 45 adult patients with a range of 

disabilities, but these patients did not use wheelchairs [27]. The PARA-SCI is the only 

instrument tested for reliability in a sample solely consisting of persons who use 

wheelchairs. To establish the test-retest reliability of the PARA-SCI, 102 people with 

SCI completed the instrument on two separate occasions a week apart [24]. Intra-class 

correlations revealed good test-retest reliability for total cumulative activity (.79). 

However, moderate-intensity (LTPA) and heavy-intensity (lifestyle activity) 

demonstrated poor levels of reliability (ICC = .45 and .56, respectively).  

 

Establishing the validity of questionnaires is important to ensure that the tool effectively 

measures what it intends to (i.e. the activity of persons that use a wheelchair). Manns 

and colleagues [28] revealed a significant moderate relationship between scores on the 
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PADS and V̇O2 max (r = 0.45). Likewise, comparison of scores from the PASIPD with 

indicators of physical capacity revealed weak to moderate relationships (V̇O2 max; r = 

0.25, manual muscle test; r = 0.35) [29]. However, we contend that equating self-

reported PA to physical capacity, rather than a criterion measure of PA, may not be the 

most appropriate way to ascertain concurrent validity. Measures of physical capacity 

can be related to numerous variables beyond the users’ PA level. 

 

Results from validity studies indicate that of the three questionnaires, the PARA-SCI 

has the strongest relationships with criterion measures. During the development and 

evaluation of the PARA-SCI [24], criterion (V̇O2 reserve) values displayed a very large 

correlation with cumulative (LTPA plus lifestyle) activity data (r = 0.79). When data 

was coded for intensity of activity, large to very large positive correlations were seen 

for moderate-intensity (r = 0.63) and heavy-intensity (r = 0.88) activity. However, this 

relationship was weak and non-significant for low-intensity activities (r = 0.27) and 

consequently the PARA-SCI under-reported time spent doing activities of low-intensity 

by 10%. Therefore, although these findings indicate some evidence of convergent 

validity, the results also highlight limitations of self-report measures. 

 

3.1.3 Measuring intensity 

A distinguishing feature between the three disability questionnaires is how they gather 

information pertaining to the intensity of activity conducted. Evidence from adults 

without disabilities would suggest superior reductions in mortality risk with vigorous-

intensity PA in comparison to light-to-moderate intensity PA [30-32]. Therefore, failure 

to consider individual differences in PA intensity makes it difficult to detect 

relationships between lifestyle activities and health outcomes [24]. The PADS employs 

a single item to examine the overall intensity of structured activity but doesn’t assess 

the intensity of leisure time activities. A fundamental limitation of the PASIPD is the 

use of standard MET values as a measure of activity intensity regardless of the 

participant’s type of disability. If MET values are to be used, it will be necessary to 

develop a new empirically-based supplement to the compendium of physical activity 

appropriate for persons that use wheelchairs [33]. The inability of the PASIPD and 

PADS to effectively measure activity intensity prompted the development of the 

PARA-SCI. Subsequently, the authors of the PARA-SCI conducted a systematic 

process to develop definitions of three different exercise intensities (i.e. mild, moderate 
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and heavy) specifically for people with SCI [24]. The empirical development of 

intensity-based definitions suggests the PARA-SCI may be the most effective self-

report questionnaire at measuring the intensity of PA in persons with SCI. However, it 

should be noted that even with such a rigorous development of intensity definitions, the 

PARA-SCI is still dependent upon the accurate recall of behaviour. Research has also 

challenged the use of psychophysiological indexes as a measure of perceived exertion 

in persons with SCI [34]. This could have implications for the prediction of activity 

intensity using self-report measures in persons with disabilities, which could be 

influenced by secondary conditions such as chronic pain and discomfort, coupled with 

the inability to engage large muscle groups in constant rhythmic activities.  

 

Objective sensors overcome many of the shortcomings of self-report methods, 

predominantly by removing the subjective recall element. The next section will discuss 

the use of these objective sensors in wheelchair users. 

 

3.2 Accelerometers  

Accelerometers or movement sensors report their outcomes in ‘activity counts’ per unit 

time or epoch, which are the product of the frequency and intensity of movement. 

Accelerometers are therefore capable of providing temporal information about specific 

variables such as the total amount, frequency and duration of PA [35]. They can also 

monitor the accumulation of moderate-to-vigorous intensity PA (MVPA) and/or 

sedentary behaviour thanks to the development of population-specific cut-points for 

activity counts per minute. Despite enormous differences in signal processing and 

internal components, all accelerometers have similar fundamental properties defined by 

accuracy, precision, range and sensitivity and should be compared against criterion 

measurements to demonstrate validity [36]. Monitors have been compared to a selection 

of criterion laboratory measurements in persons that use wheelchairs: oxygen uptake 

(V̇O2) [37-39], EE [40, 41] and PAEE [42, 43] measured by indirect calorimetry (Table 

2). Studies have utilised different commercial monitors, worn at various locations, 

validated using diverse activity protocols including: propulsion on a wheelchair adapted 

treadmill; wheelchair ergometer or over ground; arm-crank ergometry (ACE) and; 

various activities of daily living. Two fundamentally different varieties of 

accelerometers are widely used in PA research; uniaxial and, increasingly, tri-axial. 

Uniaxial accelerometers register movement in the vertical axis only, whereas tri-axial 
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accelerometers register movement in the anteroposterior (X), mediolateral (Y) and 

vertical (Z) axes. In keeping with pooled data from a systematic review of laboratory 

and free-living validation studies in adults without disabilities [44], it appears that the 

greater sensitivity of the tri-axial accelerometer leads to a better prediction of EE than 

uniaxial accelerometers in persons who use wheelchairs (Table 2). 

 

3.2.1 Monitors attached to the wheelchair  

Researchers have explored attaching a custom data logger [45] or biaxial [46] and tri-

axial [47] accelerometers onto the wheels of a wheelchair. Other preliminary research 

has simply attached a smartphone (containing a gyroscope and accelerometer) onto the 

armrest of a wheelchair [48, 49]. Considering the exponential growth of smartphone 

ownership [50], this later approach in particular can widely be used to capture certain 

mobility characteristics such as average speed and distance travelled, functioning in a 

similar manner to pedometers in persons who do not use wheelchairs. However, despite 

these approaches being relatively unobtrusive, they are unable to quantify the intensity 

of activities being performed and are limited in deriving accurate EE estimates. Conger 

et al, [51] tried to address this limitation by using a PowerTap Hub attached to the wheel 

of a wheelchair. The measured hand rim propulsion power explained 48% of the 

variance in predicting criterion EE. The authors revealed three significant prediction 

models from this laboratory protocol, with model 3 (incorporating power, speed and 

heart rate) explaining the greatest variance (87%). Seemingly, the incorporation of a 

physiological signal significantly improved the prediction of EE.   

 

However, we propose that a device attached to the wheelchair cannot distinguish 

between self or assisted propulsion, certainly not without complex analyses of the raw 

acceleration outputs [52], and are unable to quantify activity out of the wheelchair. 

Further, it is common for persons who use wheelchairs to have different chairs to 

participate in various sports or undertake ACE as a mode of exercise. Therefore, a single 

device attached to a wheelchair will fail to capture moderate-to-vigorous-intensity 

activity in structured exercise, likely to contribute a large proportion towards TDEE. 

Moreover, if a person uses a power-assisted wheelchair, signals from devices attached 

to the chair will provide erroneous measurements regarding upper-body PAEE. These 

limitations need to be considered when using this approach to predict free-living PA/EE 

in persons that use wheelchairs. 
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3.2.2 Body-borne accelerometers 

Waist-mounted single-sensor devices, positioned within close proximity to an 

individual’s centre of mass, have been the mainstay of activity monitoring in cohorts 

without physical disabilities. Single units worn on the waist can be limited for certain 

types of upright behaviours that have a low ambulatory component and may involve 

upper-body work [53]. The measurement error of waist-mounted devices is generally 

related to the inability to detect arm movements as well as static work (e.g. lifting, 

pushing, carrying loads). With movement of persons that use wheelchairs 

predominantly restricted to the upper-body, it is unsurprising that stronger correlations 

between accelerometer outputs and criterion measurements were reported for devices 

worn on the upper arm and wrist, r = 0.83 – 0.93  and r = 0.52 – 0.93, respectively 

(Table 2). While two studies [37, 41] have found differences in the strength of 

correlations between the left and right wrist, these discrepancies could be due to hand-

dominance or the specific asymmetry of the activities performed in these studies. The 

predominance of research, however, suggests little to no difference between dominant 

and non-dominant wrists [38, 39], suggesting freedom/flexibility in selecting either 

wrist to predict PA/EE in this population.   
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Table 2: Summary of the accuracy of accelerometers worn on various anatomical locations and wheelchair during laboratory protocols. 

Comparison to criterion measures of oxygen uptake, energy expenditure and physical activity energy expenditure  

 

Study Samplea 
Criterion 

measure 
Activity protocol Device/ outputs Anatomical location Results 

Garcia-Masso 

et al, [38] 

20 SCI  

(T4-S1) 

V̇O2 

(COSMED 

K4b2) 

Ten activities which 

included ADL, transfers, 

ACE and propulsion that 

covered a wide range of 

exercise intensities. 

GT3X (36 features 

extracted from the 

second-by-second 

acceleration signals were 

used as independent 

variables) 

Non-dominant wrist r =0.86, MSE = 4.98 ml.kg-1.min-1 

Dominant wrist r =0.86, MSE = 5.16 ml.kg-1.min-1 

Chest r = 0.68, MSE = 10.41 ml.kg-1.min-1 

Waist r = 0.67, MSE = 10.61 ml.kg-1.min-1 

Learmonth et 

al, [39] 

24 (9F). 

SCI (n=10), 

SB (n=5), 

MS (n=4), 

AMP (n=2), 

CP (n=1), 

Other (n=2) 

V̇O2 

(COSMED 

K4b2) 

Three wheelchair propulsion 

speeds (1.5, 3.0 and 4.5 

mph) on a WT 

PAC from GT3X ACC 

Right wrist r = 0.95 

Left wrist r = 0.93 

Combined r = 0.94 

Washburn & 

Copay, [37] 

21 (9F).  

SCI (n=11), 

SB (n=7), 

other (n=3) 

V̇O2 

(Aerosport 

TEEM 1000) 

Three timed pushes (slower 

than normal, normal, and 

faster than normal) over a 

rectangular indoor course 

PAC from a CSA 

uniaxial ACC  

Left wrist r = 0.67, SEE = 4.99 ml.kg-1.min-1 

Right wrist r = 0.52, SEE = 5.71 ml.kg-1.min-1 

Hiremath & 

Ding, [54] 

24 SCI (5F) 

(T3-L4) 

IC EE 
(COSMED 

K4b2) 

Resting and three activity 

routines; propulsion 

(performed on a WERG and 

flat tiled surface), ACE (20-

40) and deskwork. 

PAC from a RT3 tri-

axial ACC and 

participant demographics  

 

Waist 
r = 0.66, SEE = 1.38 kcal.min-1. EE estimation 

errors ranged from 12.9 – 183.4% 

Upper left arm 

(general equation) 

r = 0.83, SEE = 1.02 kcal·min-1. EE estimation 

errors ranged from 14.1% – 113.7%  

Upper left arm 

(activity specific 

equations) 

r ranged from 0.63 (deskwork) to 0.91 

(propulsion). EE estimation error ↓ to between 

12.2% - 38.1%  

Combined (Waist and 

upper arm) 

r = 0.84, SEE = 1.00 kcal.min-1. EE estimation 

errors ranged from 14.1% – 116.9% 
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Kiuchi et al, 

[41] 

6 SCI  

(C6 – T9) 
IC EE 

(AR-1 Type-4) 

Propulsion at three 

continuous speeds on a WT 

that elicited an RPE of 9 

(2.5-3 km/hr), 11 (3.5-4.0 

km/hr) & 13 (4.5-5.0km/hr)  

Tri-axial ACC with 

gyro sensor. EE was 

predicted by 

incorporating 

acceleration, angular 

velocity and participant 

demographics 

Left wrist r = 0.93 

Right wrist r = 0.82 

Left upper arm r = 0.87 

Right upper arm r = 0.93 

Hiremath et 

al, [55]b 

45 SCI (6F) 

(C5 – L5) 

IC EE 
(COSMED 

K4b2) 

Participants performed 10 

activities from a list that 

included a range of activities 

and exercises of differing 

intensities 

Gyroscope-based wheel 

rotation monitor (G-

WRM) and tri-axial 

accelerometer;  The 

Physical Activity 

Monitoring System 

(PAMS) 

PAMS-arm 
ICC = 0.82 (95% CI; 0.79 – 0.85) 

M±E = 9.82 ± 37.03%, MAE = 29.04% 

PAMS-wrist 
ICC = 0.89 (95% CI; 0.87 – 0.91) 

M±E = 5.65 ± 32.61%, MAE = 25.19% 

Nightingale 

et al, [42] 

15 (3F). 

 SCI (n=9), 

SB (n=2), 

Other (n=4) 

IC PAEE 
(COSMED 

K4b2) 

Five activities including 

deskwork and wheelchair 

propulsion at various 

velocities around an outdoor 

athletics track. 

PAC from GT3X+ ACC 

Right wrist 
r = 0.93, SEE = 0.80 kcal.min-1. Absolute bias ± 

95% LoA: 0.0 ± 1.55 kcal.min-1  

Right upper arm 
r =0.87, SEE = 1.05 kcal.min-1. Absolute bias ± 

95% LoA: 0.0 ± 2.03 kcal.min-1 

Waist 
r =0.73, SEE = 1.45 kcal.min-1. Absolute bias ± 

95% LoA: 0.0 ± 2.82 kcal.min-1 

Nightingale 

et al, [43] 

17. 

SCI (n=10), 

SB (n=3), 

CP (n=1), 

AMP (n=1), 

Other (n=2). 

IC PAEE 
(TrueOne 2400, 

ParvoMedics) 

A wheelchair propulsion 

protocol across a range of 

treadmill velocities (3 – 7 

km/h and gradients (1 – 3%) 

including load carriage 

(+8% body mass) and a 

folding clothes task 

PAC from GT3X+ ACC 

Right Wrist 
r = 0.82, SEE = 0.91 kcal.min-1. 

MAE = 0.69 kcal.min-1 (33.0%) 

Right Upper Arm 
r = 0.68, SEE = 1.16 kcal.min-1. 

MAE = 0.86 kcal.min-1 (35.3%) 

Raw acceleration (g·s-1) 

from GENEActiv ACC 

Right Wrist 
r = 0.88, SEE = 0.75 kcal.min-1. 

MAE = 0.59 kcal.min-1 (21.0%) 

Right Upper Arm 
r = 0.87, SEE = 0.77 kcal.min-1. 

MAE = 0.58 kcal.min-1 (20.4%) 
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AB able-bodied, ACC accelerometer, ACE arm crank ergometry, ADL activities of daily living, AMP amputee, CP cerebral palsy, CSA computer 

science applications, EE energy expenditure, IC indirect calorimetry, LoA limits of agreement, MAE mean absolute error, MS multiple sclerosis, 

MSE mean square error, M±E mean signed error, PAC physical activity counts, PAEE physical activity energy expenditure, SB Spina Bifida, SCI 

spinal cord injury, SEE standard error of estimate, ULAM upper limb activity monitor, V̇O2 oxygen uptake, WERG wheelchair ergometer, WT 

wheelchair treadmill. 
 

a All-male participants unless stated otherwise 
b Note to avoid confusion and make interpretation easier, + or - before M±E statistics has been switched to reflect whether prediction method 

over or under predicted EE.   
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Combining data from two anatomical locations seemingly does not yield substantial 

improvements in the strength of correlations or EE estimation error [39, 54]. In some 

research and development laboratories, accelerometers have been arranged in parallel 

arrays and positioned at various anatomical locations to monitor the types of activity 

being performed by postural identification. Such prototype PA monitors were 

developed to primarily target specific population groups during rehabilitation, 

including amputees [56] or inpatients with SCI [57]. Devices with multiple arrays have 

shown good specificity (92%), agreement (92%) and sensitivity (87%) for the detection 

of wheelchair propulsion in observational studies [58]. Yet, even when worn for a 

relatively short period of time participants self-reported moderate burden [59]. These 

monitors are relatively obtrusive and, due to reduced memory capacity and battery life, 

are restricted to short monitoring durations (<48 hours). This is not in keeping with 

current end user requirements of PA monitors. Multi-site prototype arrays are also not 

typically available outside of the developing laboratory, making validation by other 

researchers challenging.  

 

A simpler set-up, the Physical Activity Monitoring System (PAMS) [60], which 

incorporates a gyroscope-based wheel rotation monitor (G-WRM) and one tri-axial 

accelerometer attached to the arm or wrist, overcomes the shortcomings of 

accelerometers attached to the wheelchair alone. When this approach was recently 

evaluated using a robust laboratory protocol and home-based follow-up session, both 

the PAMS-arm and PAMS-wrist estimated EE with small biases (M±E < 10%) [55]. 

Yet, MAE for predicting EE in persons that use a wheelchair remained elevated 

(>25%). Kooijmans et al, [61] also assessed the utility of a tri-axial accelerometer 

(GT3X+) attached to the wrist and spokes of a wheelchair. However, rater-observations 

reported less agreement (85%) and specificity (83%) for wheelchair propulsion than 

using multiple-arrays [58]. Whilst less burdensome, disagreement between GT3X+ 

(Actigraph, Pensacola, FL) outputs and observers was greatest for propulsion on a slope 

and being pushed whilst making excessive arm movements. Therefore, it is likely that 

physiological signals, such as heart rate, should be incorporated into the prediction of 

EE to improve accuracy. 
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3.3 Heart rate 

Heart rate (HR) is useful as a physiological variable as it increases linearly and 

proportionately with exercise intensity and thus oxygen uptake [36], at least in 

individuals without disabilities. Keytel et al, [62] concluded that EE can be accurately 

predicted from HR after adjusting for age, sex, body mass and fitness. However, during 

lower intensity PA there is a weak relationship between HR and EE [63]. This is most 

likely due to small postural changes causing alterations in stroke volume, or that HR 

during low intensity PA is affected by external factors such as psychological stress, 

stimulants, ambient temperature, dehydration and illness [64].  There are a number of 

ways to use HR data to predict EE, one of the most promising being the FLEX-HR 

method [65], which has previously been used in persons with SCI [66, 67]. Despite 

recent research into the use of various HR indices [68] and artificial neural networks 

[69] in the prediction of V̇O2 in individuals with SCI, it is clear that the accurate 

prediction of EE using HR is heavily reliant on individual calibration. Hayes et al, [67] 

found that the variance in measured EE was considerably improved using an individual 

calibration (55%) compared to HR alone (8.5%) during five activities of daily living in 

thirteen individuals with SCI. Considering the type of activities performed, the large 

variations in cardiovascular fitness and cardiovascular responses to exercise stress 

persons who use wheelchairs, individual specific HR-EE relationships are necessary for 

the accurate prediction of EE using HR. This consideration is perhaps even more 

important for persons with considerable functional impairment or various disability 

aetiologies that may disrupt the autonomic nervous system, such as high-level SCI 

(>T6). 

 

3.4 Multi-sensor devices 

New multi-sensor technologies, which include the combination of physiological 

parameters and accelerometry, have great potential for increased accuracy in assessing 

EE as they incorporate and minimise the strengths and weaknesses of physiological 

signals and accelerometry alone. The use of multi-sensor devices has mostly been 

limited to laboratory based validation of the SenseWear® Armband (SWA) 

(BodyMedia Inc., Pittsburgh, PA), which is worn on the upper arm, a preferential 

anatomical location for the prediction of EE in persons that use wheelchairs (Table 2). 

More detailed components and specifications of this activity monitor have been 

described elsewhere [36]. It is clear that the proprietary manufacturer’s algorithms 
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intrinsic to the SWA device are not appropriate to predict EE in persons that use 

wheelchairs, with ICCs < 0.64 [40, 70, 71]. The overestimation of EE by the SWA 

manufacturer’s model is likely due to the movements typically performed by persons 

that use wheelchairs (e.g. wheelchair propulsion and ACE) not being included in 

predefined activity categories. Hence, such activities are misclassified into more 

strenuous types of PA.  

 

Researchers have developed new EE prediction models (SCI general and activity 

specific) for the SWA device that have been cross-validated [40, 71]. Where MAE 

statistics are available [40, 70, 71] weighed means were calculated, with the SCI general 

(22.7%) and activity specific (18.2%) models performing significantly better than the 

manufacturer’s model (54.4%). Whilst these findings provide encouragement for the 

use of the SWA in persons that use wheelchairs with new prediction models, Conger et 

al, [72] noticed that even when using the SCI general model, the SWA tended to 

overestimate EE (27 to 43%), whereas a wrist-mounted accelerometer more accurately 

predicted EE (9 to 25%) during wheelchair prolusion. It is noteworthy that the SWA 

utilizes upwards of twenty possible output parameters, including heat flux, galvanic 

skin response and temperature to predict EE. Individuals with high level SCI (>T6) 

experience impaired thermoregulatory function (reduced sweating response and 

inability to dilate superficial vasculature [73]), which might intrinsically effect the error 

when using SWA in this population. Unfortunately, the acquisition of the company 

BodyMedia by Jawbone in 2013 resulted in the device being taken off the market and 

cessation of all BodyMedia web applications. Despite considerable improvements in 

EE prediction error it seems the future use of this technology is limited.  
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Table 3: Summary of the accuracy of multi-sensor devices in persons who use wheelchairs during laboratory protocols 

Study Samplea 
Criterion 

measure 
Activity protocol Device and location Results 

Conger et 

al,[74] 

14 (3F). 

 SCI (n=7) 

SB (n=4) 

AMP (n=2) 

Other (n=1) 

IC EE  

(Oxycon 

Mobile) 

Five different wheeling 

activities. Propulsion on a level 

surface (4.5, 5.5 & 6.5 km/h), 

wheeling on a rubberised 400 m 

track (5.5 km/hr) & wheeling on 

a sidewalk course at a S-S speed 

Actical on right wrist 
No sig. differences between criterion method and 

Actical EE (±9 – 25%) 

SWA on right upper arm 
Sig. overestimated EE during wheelchair propulsion 

(+30 - 80%) 

SWA using SCI general model 

(Hiremath and Ding, [70]) 

↓ EE prediction error (+27-43%), yet, this was still 

elevated during higher intensity activities  

Hiremath & 

Ding [40] 

24 SCI (5F) 

(T3-L4) 

IC EE 
(COSMED 

K4b2) 

Resting and three activity 

routines; propulsion (performed 

on a WERG and flat tiled 

surface), ACE (20-40) and 

deskwork 

Estimated EE from RT3 tri-axial 

ACC worn on the waist 

RS = 0.72 for all activities (↓ for propulsion; RS = 

0.44, ↑ for deskwork; RS = 0.66). EE estimation errors 

ranged from 22.0 to 52.8%. Poor ICCs 0.64  

Estimated EE from SWA worn on 

the upper arm (manufacturer’s 

model) 

RS = 0.84 for all activities (↓ for deskwork; RS = 0.65, 

↑ for propulsion; RS = 0.76). EE estimation errors 

ranged from 24.4 to 125.8%. Poor ICCs 0.62. Neither 

device is an appropriate tool for quantifying EE 

(<0.75)  

Hiremath et 

al, [70]c 

45 (8F)  

(C4–L4) 

IC EE 
(COSMED 

K4b2) 

Estimated EE from SWA worn on 

the upper arm (manufacturer’s 

model) 

ICC = 0.64 (95% CI; 0.57 – 0.70) 

M±E = 51.5 ± 31.6%  

MAE = 2.0 kcal·min-1 (59.2%) 

Estimated EE from SWA worn on 

the upper arm (SCI general model) 

ICC = 0.72 (95% CI; 0.66 – 0.77) 

M±E = -10.4 ± 11.8% 

MAE = 0.9 kcal·min-1 (24.7%) 

Estimated EE from SWA worn on 

the upper arm (activity-specific 

model) 

ICC = 0.86 (95% CI; 0.82 – 0.88) 

M±E = - 9.6 ± 10.9%  

MAE = 0.6 kcal·min-1 (16.8%) 
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ACC accelerometers, ACE arm crank ergometry, AHR ActiheartTM, AMP amputee, CP cerebral palsy, EE energy expenditure, IC indirect 

calorimetry, LoA limits of agreement, MAE mean absolute error, PAEE physical activity energy expenditure, SB Spina Bifida, SCI spinal cord 

injury, SEE standard error of estimate, SWA SenseWear® Armband, S-S self-selected, WERG wheelchair ergometer. 
 

a All-male participants unless stated otherwise. 
b Independent sample of participants to previous Hiremath et al, [70] trial in table 
c Note to avoid confusion and make interpretation easier direction, + or - before M±E statistics has been switched to reflect whether prediction   

method over or under predicts EE.  

Tsang et al, 

[71]c 

45 SCIb (6F) 

 (C5 – L5) 

IC EE 
(COSMED 

K4b2) 

Participants performed 10 

activities from a list that 

included a range of activities 

and exercise of differing 

intensities 

Estimated EE from SWA worn on 

the upper arm (manufacturer’s 

model) 

ICC = 0.62 (95% CI; 0.16 – 0.81) 

M±E = 39.6 ± 37.8% 

MAE = 43.3 ± 33.5% 

Estimated EE from SWA worn on 

the upper arm (SCI general model) 

ICC = 0.86 (95% CI; 0.82 – 0.89) 

M±E = 2.8 ± 26.1% 

MAE = 20.6 ± 16.2% 

Estimated EE from SWA worn on 

the upper arm (activity-specific 

model) 

ICC = 0.83 (95% CI; 0.79 – 0.87) 

M±E = 4.8 ± 25.4% 

MAE = 19.6 ± 16.8% 

Nightingale 

et al, [75] 

15.  

SCI (n=8), 

SB (n=3), 

CP (n=1),   

AMP (n=1),  

Other (n=2) 

IC PAEE 
(TrueOne 2400, 

ParvoMedics) 

A wheelchair propulsion 

protocol across a range of 

treadmill velocities (3 – 7 km/h 

and gradients (1 – 3%) 

including load carriage (+8% 

body mass) and a folding 

clothes task 

ActiheartTM using manufacturers 

proprietary algorithms  

r = 0.76 (P < 0.01), SEE = 1.07 kcal·min-1 

mean bias ± 95% LoA = 0.51 ± 3.75  kcal·min-1 

MAE = 1.35 kcal·min-1 (51.4 %) 

ActiheartTM using individual heart 

rate calibration 

r = 0.95 (P < 0.01), SEE = 0.49 kcal·min-1 

mean bias ± 95% LoA = - 0.22 ± 0.96  kcal·min-1 

MAE = 0.39 kcal·min-1 (16.8 %) 
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The Actiheart (Cambridge Neurotechnology Ltd, Papworth, UK) integrates an 

accelerometer and HR monitor into a single-piece movement monitor. The Actiheart 

(AHR) unit has been described in detail previously [4], along with the detailed branched 

modelling technique it utilises to estimate PAEE through the combination of HR and 

accelerometer counts [76]. Previous work from our research group [75] has assessed 

the performance of this device in a controlled-laboratory environment with a 

heterogeneous sample of persons who use wheelchairs. Across all activities 

considerable mean absolute error (MAE) was reported (51.4%) using the 

manufacturer’s proprietary algorithms to predict PAEE. By using an incremental ACE 

test, which permitted an individual HR-EE relationship similar to that performed by 

Hayes et al, [67], individual calibration was incorporated and MAE was considerably 

reduced to 16.8% across all activities. Individual calibration has also been shown to 

improve the prediction of EE estimations using this device in free-living [77, 78] and 

laboratory settings [79] in adults without disabilities during walking and running. The 

sizeable improvement in EE prediction error in persons who use wheelchairs with 

individual calibration may be due to a larger degree of individual variance in 

cardiovascular function and responses to exercise in this population. Consequently, 

individual calibration of this monitor is of upmost importance for the accurate 

prediction of PAEE in persons that use wheelchairs. Furthermore, incorporating 

individually calibrated HR and acceleration data better captures the differing energy 

costs of bespoke activities, despite similar acceleration profiles, such as wheelchair 

propulsion up a gradient or with additional load (e.g. shopping) [75]. 

 

4 Prediction accuracy of methodologies in free living environments  

The majority of PA/EE validation research in this population has been performed in a 

controlled-laboratory environment but there is a paucity of free-living studies (Table 4) 

primarily due to the practical difficulties or expense associated with ‘gold standard’ EE 

measurement (DLW). This method is not without limitations; for example minimal 

information regarding frequency, duration or intensity of activity can be obtained [80]. 

Furthermore, the estimation of EE is based on the assumption of a mean respiratory 

exchange ratio (RER) of 0.85, indicative of a standard western diet [81]. Yet, 

carbohydrate and fat oxidation has been shown to be altered with arm compared to leg 

exercise [82] and in paraplegics compared to non-disabled controls [83]. These factors 



21 

 

may lead to an increased RER in persons that use wheelchairs, which could violate the 

assumptions used in the prediction of EE via the DLW technique. 

  

Irrespective of this, Tanhoffer et al, [66], compared four aforementioned prediction 

methods (SWA, FLEX-HR, PARA-SCI, PASIPD) to DLW during habitual routines 

over an extended 14 day period. The authors demonstrated that the two best prediction 

methods were PARA-SCI and FLEX-HR for both TDEE and PAEE (Table 4). The 

SWA and PASIPD both performed particularly poorly in the prediction of PAEE, 

displaying considerable random error as demonstrated by the large 95% limits of 

agreement.  It is noteworthy that the SWA used the aforementioned error-prone 

manufacturer’s model [40, 70, 71] but could be improved with the SCI general EE 

prediction model developed by Hiremath et al, [70]. One limitation of the Tanhoffer et 

al, [66] study is that the length of PA monitoring period for each prediction method 

varied compared to the criterion method. Total EE collected over a two-week period 

for the criterion DLW technique was divided by 14 to estimate mean TDEE. However, 

the objective measures (SWA and FLEX-HR) were only worn ≥ 12 hours on two 

separate days and subjective measures, the PARA-SCI and PASIPD ask participants to 

recall the previous 3 and 7 days, respectively. This weakness in the experimental design 

means it is difficult to identify whether the error is intrinsic to each prediction method 

or simply an artefact of the comparison between different days or time-periods.  
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Table 4: Summary of free-living energy expenditure estimation studies in persons who use wheelchairs  

Study Samplea Reference standard 
Monitoring 

duration 
Method Results 

Tanhoffer et 

al, [66] 

14 SCI (1F). 

(C4 – T12) 

TDEE (DLW) 

 

 14 days 

  

SenseWear worn on the upper 

arm (manufacturer’s model) 

R2 = 0.65 (P < 0.001) 

Mean bias ± 95% LoA = 382 ± 898 kcal·day-1 

(16% over-prediction) 

FLEX-HR 

R2 = 0.68 (P = 0.001) 

Mean bias ± 95% LoA = -205 ± 655 kcal·day-1 

(13% under-prediction) 

PARA-SCI 

R2 = 0.74 (P < 0.001) 

Mean bias ± 95% LoA = -133 ± 598 kcal·day-1 

(6% over-prediction) 

PASIPD 

R2 = 0.53 (P = 0.003) 

Mean bias ± 95% LoA = - 12 ± 819 kcal·day-1 

(1% over-prediction) 

PAEE  

(TDEE (measured by 

DLW) x 0.9) – RMR (IC) 

SenseWear worn on the upper 

arm (manufacturer’s model) 

R2 = 0.16 (P = 0.159) 

Mean bias ± SD = -16 ± 1292 kcal·day-1 

3% under-prediction 

FLEX-HR 

R2 = 0.30 (P = 0.067) 

Mean bias ± SD = 22 ± 715 kcal·day-1 

3% over-prediction 

PARA-SCI 

R2 = 0.50 (P = 0.005) 

Mean bias ± 95% LoA = - 120 ± 537 kcal·day-1 

18% under-prediction 

PASIPD 

R2 = 0.13 (P = 0.198) 

Mean bias ± 95% LoA = - 11 ± 737 kcal·day-1 

3% under-prediction 

Nightingale 

et al, [75] 

8.  

SCI (n = 5), 

SB (n = 2), 

CP (n = 1) 

PAEE (Estimated from a 

physical activity log, using 

the adapted PA 

compendium (Conger and 

Bassett, [6]) 

24 hours 

 

ActiheartTM using manufacturers 

proprietary algorithms 

 

R2 = 0.16 (P = 0.24) 

SEE = 365 kcal·day-1 

ActiheartTM using individual 

heart rate calibration 

R2 = 0.50 (P = 0.03) 

SEE = 269 kcal·day-1 
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CP cerebral palsy, DLW doubly labelled water, LoA limits of agreement, PA physical activity, PAEE physical activity energy expenditure, 

PARA-SCI physical activity recall assessment for people with spinal cord injury, PASIPD physical activity scale for individuals with physical 

disabilities, RMR resting metabolic rate, SCI spinal cord injury, TDEE total daily energy expenditure.  
 

a All-male participants unless stated otherwise. 

 

 

 

 

Warms et al, 

[84] 

50 (23F) 

wheelchair 

users. Mixed 

aetiology of 

disabilities  

Daily physical activity 

record scores 
7 days 

Activity counts from a tri-axial 

Actiwatch 
r = 0.506 (P = 0.000) 

PASIPD r = 0.267 (P = 0.67) 
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In the absence of other suitable criterion free-living methods, researchers have 

encouraged the simple evaluation of the agreement and disagreement between measures 

[16]. Previous studies have compared prediction methods to daily PA record scores 

over 7 days [84] and PAEE estimated from the adapted PA compendium over 24 hours 

[75]. Again the PASIPD was poorly correlated with the reference standard, whereas 

outputs from a tri-axial Actiwatch demonstrated a stronger correlation, r = 0.51 [84]. 

Nightingale and colleagues [75] supported their earlier laboratory findings, 

demonstrating that the ActiheartTM with individual HR calibration explained more of 

the variance in free-living PAEE than using the ActiheartTM with proprietary 

algorithms. However, these analyses were only performed on a subsample of 

participants (n = 8) who had provided enough detailed information in PA logs to allow 

accurate estimation of PAEE using the adapted PA compendium for manual wheelchair 

users [6]. This compendium only describes the energy cost of 63 wheelchair activities 

compared to the 821 specific activities included in the updated version of the 

compendium of physical activities for adults without disabilities [85]. Consequently, 

coding of activities is less specific and accuracy of data is reliant on the quality of the 

self-report PA log. There are clear discrepancies between validating objective tools in 

a controlled-laboratory and free-living environments. Therefore, renewed efforts are 

required to validate measurement tools in both settings to determine convergent 

validity.  

 

5 Statistical approaches, analytical considerations and future directions 

The majority of studies found strong associations between criterion measurements and 

outputs from wearable devices. However, in some instances where results from Bland 

Altman methods are also available, considerable random error has been reported [42, 

66]. Where devices have been validated over a wide range of activities, of various 

intensities (in keeping with best practice guidelines [86]) a stronger correlation 

coefficient is likely. Consequently we encourage researchers to conduct multi-trait 

multi-method approaches [87], such as Bland Altman methods to assess agreement [88] 

or report measurement error  [89]. It is also important that authors are very clear about 

what error calculations have been performed and what error statistics are reported. 

Furthermore, it would be advisable for the wider academic community to produce a 

consensus statement addressing the clinical limits for PA/EE assessment error for 

devices used in this population.  
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It is possible that predicting EE/PAEE from linear regression equations may be too 

simple an approach to use in examining complex movements or behaviours [90]. The 

activity protocols adopted by laboratory validation studies cited here mostly focus 

around wheelchair propulsion of various velocities. It is important to characterise this 

behaviour, as it will likely make a significant contribution to TDEE in free-living 

conditions (similar to ambulation in adults without disabilities). But as push frequency 

increases to match higher velocities, so too will accelerometer outputs. Therefore, 

whilst it might be appropriate to use linear regression methods to quantify PAEE 

associated with wheelchair propulsion, this approach might misclassify other types of 

physical activity. This is highlighted by considerable increases in measurement error 

for sedentary or atypical movements such as folding clothes [38, 43]. Greater error in 

more frequently performed low-intensity or sedentary behaviours has potentially 

considerable implications for the accurate determination of free-living EE in persons 

who use wheelchairs. A more ecologically valid approach would be to develop 

regression models based on a smorgasbord of activities common in the everyday lives 

of persons who use wheelchairs. It is possible that, by giving more weight to everyday 

activities (i.e. household chores or work-based tasks), such regression models may 

reduce estimation error.  

 

An alternative solution to regression models would be to use new data analysis 

methodologies [91], including hidden Markov models [92], artificial neural networks 

[93, 94] and classification trees [95], which use the rich information to classify certain 

activities and derive a more accurate estimate of EE [86]. To obtain such rich 

information, the shortest possible epoch (1 second) should be selected for activity 

monitor data collection [96], primarily to maximise  the original PA related bio-signal 

being retained. Garcia-Masso et al, [97] recently developed and tested classification 

algorithms based on machine learning using accelerometers to identify specific 

activities performed by persons who use wheelchairs. This is encouraging since 

activity-specific EE algorithms developed for resting, wheelchair propulsion, arm-

ergometry and deskwork can improve overall EE estimation [70, 98]. One important 

consideration that remains to be addressed is, how well objective measurement tools 

and associated algorithms capture elevated energy expenditure during recovery from 

MVPA (i.e. excess post-exercise oxygen consumption). It is conceivable that a 

physiological signal is required to accurately capture this information when 
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acceleration signals post-exercise might be similar to resting values. Future research 

should consider; (i) applying and further developing new data analysis techniques, (ii) 

using more ecologically valid assessments that better resemble free-living conditions 

for persons that use a wheelchair and, (iii) evaluating the performance of EE prediction 

models during recovery after exercise (which contributes to TDEE). 

 

Some of the principal limitations of previous validation studies are the relatively small 

sample sizes recruited, the mixed aetiologies for wheelchair use and, use of EE 

prediction algorithms without cross-validation. This is likely due to difficulties 

associated with recruiting from various disabled populations [99], and we encourage 

research groups to work collaboratively to recruit larger sample sizes. Using a diverse 

sample of participants and aetiologies for wheelchair use has been widely adopted [37, 

39, 72, 84] and provides a robust model for the assessment of EE in the wider population 

of individuals who use wheelchairs, rather than a subgroup of that population. When 

the development of regression equations to predict EE and subsequent evaluation was 

conducted on the same sample of participants [37, 42], there is a tendency for the 

evaluation statistics to be biased and overly optimistic [89]. Cross-validation is 

necessary, whereby the validity of developed algorithms are assessed using an 

independent sample of participants [54, 70]. We advocate employing a leave-one-out 

cross validation analysis [100] which has been employed previously [38, 43]. This 

permits an ‘independent’ assessment of EE prediction algorithms, and is an optimal 

approach when participant recruitment is particularly challenging.  

 

6 Wearable technology and physical activity guidelines for persons that use a 

wheelchair 

The American College of Sports Medicine (ACSM) have highlighted wearable 

technology as the top fitness trend for 2016 [101]. Available consumer devices (Apple 

Watch, Microsoft Band, Fitbit Charge HR) are becoming increasingly sophisticated, 

incorporating multi-sensor technologies and are worn on the most appropriate 

anatomical location (wrist) to predict EE in persons who use wheelchairs. Apple 

recently announced at its Annual Worldwide Developer’s Conference that they have 

developed fitness tracking algorithms specifically for persons who use wheelchairs. 

Such wearable devices have the potential to provide wheelchair users with physical 

activity feedback which is informative and motivating [102]. The feasibility of 
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combining estimation methods should also be explored. Greater context regarding the 

location, type and purpose of physical activity behaviours are of huge importance in 

public health research. More detailed information may be achieved by combination of 

GPS and accelerometer outputs, especially when also incorporating self-report 

measures. This approach could help to understand specific personal and environmental 

barriers to exercise, which are numerous for persons who use wheelchairs [103].  

 

It has been suggested that individuals with disabilities should strive to meet PA 

guidelines of 150 minutes of MVPA per week [104]. These general population 

guidelines were informed by epidemiological evidence, using questionnaires, which 

capture the amount of activity required above normal lifestyle activities. While minutes 

per week represent an easy target for people to understand and attain, only the PARA-

SCI and multi-sensor devices can currently be used in persons who use wheelchairs to 

generate total accumulated MVPA per day/week. Discrepancies have been shown 

between self-reported and objectively measured PA [105, 106]. Consequently, a recent 

review of data collected with accurate multi-sensor devices in adults without disabilities 

has suggested that ~1000 min per week of MVPA is a more appropriate target [107]. 

To our knowledge, only one paper has attempted to establish MVPA cut-points for wrist 

worn accelerometer outputs in persons who use wheelchairs [108]. However, 

accelerometer outputs alone (without complex data processing techniques) cannot 

easily detect the resistance of various movements that have similar acceleration profiles 

i.e. arm-crank exercise at 70 revolutions per minute; with no resistance (light-intensity 

activity) vs. 40W (likely MVPA). Therefore, deriving MVPA cut-points for single unit 

wrist/arm accelerometers might have limited applicability, as direct outputs are unable 

to differentiate the resistance of certain arm movements (thus activity intensity) 

common in the everyday lives of persons who use wheelchairs. As such, measuring 

activity intensity is of utmost importance to accurately estimate MVPA, above and 

beyond daily PAEE/EE. Improvements in measurement techniques that capture this 

specific variable would significantly help to inform specific PA guidelines for persons 

with chronic disabilities who use wheelchairs.  

 

[PLEASE INSERT FIGURE 1 ABOUT HERE] 
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7 Conclusion 

There is now a renewed impetus to translate progress in measuring PA in adults without 

disabilities to persons who use wheelchairs, with the techniques reviewed here (i.e. self-

report, physiological signals, accelerometry and multi-sensor devices), displaying 

varying degrees of success. Currently, selecting a PA assessment tool to use in this 

population presents a challenging proposition for clinicians and researchers alike due 

to differing outcome variables of interest, practicality/usability of the tool and 

population specific considerations. To help guide decision-making, Figure 1 was 

developed to provide a systematic evaluation of the strengths and limitations of the 

different measurement tools reported herein. The PARA-SCI has been extensively 

developed and is the most suitable self-report measure to predict time spent performing 

various intensity activities. This methodology also captures the type of activities being 

performed, categorised as either LTPA or activities of daily living, which provide useful 

behavioural information. Tri-axial accelerometers worn on the wrist or arm are well 

tolerated and relatively unobtrusive [109]. They offer a promising alternative to self-

report methods for predicting PA/EE, particularly when combined with devices 

attached to the wheelchair or by incorporating complex data analysis methodologies. 

Multi-sensor devices, with algorithms developed specifically for the individual or 

generally for persons who use wheelchairs, demonstrate considerably improved error 

in the prediction of PA/EE during controlled laboratory protocols. It is possible that due 

to altered movement patterns and variations in metabolically active mass, predicting 

PA/EE in persons that use wheelchairs might be intrinsically more challenging. 

However, building on the current progress outlined in this review, we encourage the 

scientific community to rise to the challenge and provide innovative solutions to 

accurately predict free-living PA behaviours in this population. This is particularly 

important given the greater risk of non-communicable diseases, which are often 

associated with reduced activity, in persons with chronic physical disabilities who use 

wheelchairs. 
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Figure 1 Title: A guide for clinicians / researchers to help select the most suitable 

physical activity measurement tool in persons that use a wheelchair.  

 

Figure 1 Legend:  
 

* 
Researcher / clinician can decide which of these questions they consider most 

important. 
 

† 
Taking into account the burden of tool administration and the complexities of data 

processing.  

 
‡
 Based on the synthesis of evidence reported in this review. 

 

Abbreviations: GPS, Global Positioning System; LTPAQ-SCI, Leisure Time Physical 

Activity Questionnaire for People with Spinal Cord Injury; MWU, manual wheelchair 

user; PADS, Physical Activity and Disability Survey; PARA-SCI, Physical Activity 

Recall Assessment for People with Spinal Cord Injury. PASIPD, Physical Activity 

Scale for Individuals with Physical Disabilities.  
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