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Abstract

Accurately measuring physical activity and energy expenditure in persons with chronic
physical disabilities who use wheelchairs is a considerable and ongoing challenge.
Quantifying various free-living lifestyle behaviours in this group is at present restricted
by our understanding of appropriate measurement tools and analytical techniques. This
review provides a detailed evaluation of the currently available measurement tools used
to predict physical activity and energy expenditure in persons who use wheelchairs. It
also outlines numerous considerations specific to this population and suggests suitable
future directions for the field. Of the existing three self-report methods utilised in this
population, the three-day Physical Activity Recall Assessment for People with Spinal
Cord Injury (PARA-SCI) telephone interview demonstrates the best reliability and
validity. However, the complexity of interview administration and potential for recall
bias are notable limitations. Objective measurement tools, which overcome such
considerations, have been validated using controlled-laboratory protocols. These have
consistently demonstrated the arm or wrist as the most suitable anatomical location to
wear accelerometers. Yet, more complex data analysis methodologies may be necessary
to further improve energy expenditure prediction for more intricate movements or
behaviours. Multi-sensor devices that incorporate physiological signals and
acceleration have recently been adapted for persons who use wheelchairs. Population
specific algorithms offer considerable improvements in energy expenditure prediction
accuracy. This review highlights the progress in the field and aims to encourage the
wider scientific community to develop innovative solutions to accurately quantify

physical activity in this population.
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Key points

Predicting energy expenditure from physical activity is inherently more
challenging in persons with chronic physical disabilities who use wheelchairs due
to altered movement patterns and variations in metabolically active muscle mass.
Recent studies have successfully attempted to utilise technological advancements
(i.e. multi-sensor devices) to measure physical activity and predict energy
expenditure (using population or activity-specific algorithms) in persons who use
wheelchairs.

Combining measurement methods (both self-report and objective) might provide
greater contextual information about the types and purpose of activities being
performed by persons who use wheelchairs. This has implications to inform the
wider public health agenda by promoting physical activity and reducing non-
communicable diseases in persons with chronic physical disabilities.



1 Introduction

Considerable evidence now exists to support the beneficial effects of physical activity
(PA) for human health and wellbeing [1-3]. However, the majority of this evidence is
from research in adults without disabilities. Our understanding of the impact and
importance of PA for populations with chronic physical disabilities, particularly those
who use wheelchairs, is therefore lacking. One of the major barriers to the acquisition
and analysis of PA data in populations who use wheelchairs is the uncertainty
surrounding the validity and reliability of the existing PA measurement tools. Improved
assessment of habitual PA would permit; appropriate cross-sectional comparisons to
biomarkers of metabolic health, allow researchers to comment on the efficacy of
behaviour change interventions and potentially inform PA guidelines [4]. This review
provides a detailed evaluation of the available tools within the context of their potential
application in persons who use wheelchairs. Firstly, three of the most frequently utilised
self-reported measures will be described and evaluated. Then our attention will turn to

the increasingly employed objective methods of measuring PA.

2 Population considerations

The PA behaviour of persons who use wheelchairs is inherently difficult to measure
due to the heterogeneous nature of the population, whereby different disability
aetiologies responsible for the use of a wheelchair result in highly variable movement
patterns. Common physical disabilities that require prolonged use of a wheelchair
include spinal cord injury (SCI), amputation, multiple sclerosis, cerebral palsy and
cerebrovascular disease. Currently, it is problematic to accurately equate PA into units
of energy expenditure (EE), as EE varies significantly from person to person depending
on body mass, type of physical disability and efficiency of movement. Due to
movement being primarily restricted to the upper-body, the energy cost of most exercise
and activities of daily living performed by persons who use wheelchairs result in a
considerably lower energy cost (-27%) than those reported in the general population [5,
6]. The smaller skeletal muscle mass activated to perform certain activities does not
achieve the same whole-body metabolic rate. Metabolic equivalents (METS) are often
used to express the energy costs of PA as multiples of resting metabolic rate (RMR)
[7]. However, the conventional MET value (oxygen uptake of 3.5 mLkg'min) is not
applicable for persons with a disability, as disuse/paralysis results in atrophy of leg fat
free mass (FFM) [8, 9]. RMR is influenced by FFM [10], which explains why RMR is
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reduced in persons with disabilities who use wheelchairs compared to adults without
disabilities [11]. For example, commonly used equations to predict RMR in persons
with spinal cord injury (SCI) overestimate measured requirements by 5 — 32% [12].
Considering RMR is the largest component of total daily energy expenditure (TDEE)
(up to 80% for sedentary individuals [13]), error in the prediction of this component
using existing algorithms for persons without disabilities can have profound
implications for accurately predicting TDEE. Consequently, approaches that solely
measure physical activity energy expenditure (PAEE) might have greater utility,

particularly as this is the most malleable component of TDEE.

3 Measurement Methods

The PA monitoring field is evolving at a rapid pace. However, the development of
validated self-report and objective tools to quantify PA/EE in persons who use
wheelchairs remains relatively under-researched. It is not always feasible to use
criterion methods (i.e. indirect calorimetry, observation, doubly labelled water) to
measure free-living PA/EE, as these techniques require expensive/sophisticated
equipment or are impractical for use outside of the laboratory. Therefore, this review
provides an overview of the predominant methods of measuring PA/EE in persons who
use wheelchairs. Specifically, we describe and review the different self-report and
objective tools currently available whilst also considering their potential strengths and

limitations.

3.1 Self-report Measures

Until recently the quantification of free-living PA in persons who use wheelchairs had
been reliant on outputs from self-report measures [14, 15]. Self-report questionnaires
offer researchers an inexpensive and easy-to-administer method of measuring PA.
However, these methods are reliant upon the accuracy of the participants’ memory and
recall. Furthermore, it has been suggested that self-report measures fail to adequately
quantify the lower end of the PA continuum [16, 17], suffer from floor-effects (lowest
score is too high for inactive respondents) and participant over-reporting [18]. Besides
these general limitations, specific issues pertaining to the administration of the three
predominant questionnaires (Table 1) used to predict components of PA in this
population are discussed below. It is noteworthy that not all were developed and/or

validated for persons who use wheelchairs.
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The Physical Activity and Disability Survey (PADS) [19] was one of the first
questionnaires developed but was validated for participants with a wide range of
disabilities ranging from stroke to type-2 diabetes, and subsequently a revised version
(PADS-R) in persons with neurological conditions [20, 21]. Therefore, it could be
argued that the content of the PADS fails to capture activities specific to the lifestyle of
persons that use wheelchairs. The Physical Activity Scale for Individuals with Physical
Disabilities (PASIPD) [22] was adapted from the Physical Activity Scale for the Elderly
(PASE) and follows a similar format to that of the International Physical Activity
Questionnaire (IPAQ) [23]. Despite being developed in people with both visual and
auditory disabilities, its implementation in people with locomotor impairment and SCI
means it could be considered sensitive to persons who use wheelchairs. However, only
the Physical Activity Recall Assessment for People with Spinal Cord Injury (PARA-

SCI) was specifically developed and evaluated for people with SCI.



Table 1: Characteristics of questionnaires used previously to measure components of PA in persons who use wheelchairs
PADS [19] PASIPD [22] PARA-SCI [24]

Semi-structured interview whereby a series of

Items/
dmini on/ 46-item semi-structured interview or self- 13-item self-administered questionnaire (~ flow charts help the interviewer guide the
administration
durati administered questionnaire (20 — 30 minutes) 15 minutes) participants through 8 periods of the day (20 —
uration
45 minutes)
Timeframe 7 days 7 days 3 days
1. Exercise . .
1. Home repair/gardening
2. LTPA
o 2. Housework
) ) 3. General Activity . 1. LTPA
Dimensions 3. Vigorous sport
4. Therapy 2. ADL
4. Moderate sport
5. Employment/school )
) 5. Occupation
6. Wheelchair use
Score is based on the time respondents spend
) o o ) ) Number of days per week and hours per day
doing the activities multiplied by an intensity T ) ) ) )
) o o of participation in above dimensions. The mean number of minutes per day spent in
rating of that activity. Each activity has an ) S ) ) ) )
) o ) Intensity of activity is established by mild, moderate, and heavy intensity LTPA
Outcome assigned weighting (Aerobic = .3, strength = o
multiplying the average hours per day for and ADL. Scores may be summed to generate

.2 and flexibility = .1). Higher scores represent ) .
each item by a standard MET value (MET- total accumulated PA (min/day)

more activity and negative scores can be
h/day)

achieved through sedentary behaviour

ADL activities of daily living, LTPA leisure time physical activity, PA physical activity, PADS Physical Activity and Disability Survey, PARA-SCI Physical Activity Recall
Assessment for People with Spinal Cord Injury, PASIPD Physical Activity Scale for Individuals with Physical Disabilities



3.1.1 Questionnaire administration

A distinguishing feature between the three questionnaires is the resource demand to
complete each tool (Table 1). The PARA-SCI was designed as an interview based
questionnaire that collects rich behavioural data. Thus the PARA-SCI is resource
intensive because it was developed, as a research tool, to be used in epidemiological
studies. For example, it can take between 20-45 minutes to complete, the cost of the
interviewer needs to be considered and there is considerable participant demand. Ullrich
et al, [25] also suggested that the use of the PARA-SCI might have limited application
for other investigators, besides the developers, due to the exclusion of subjective
appraisals and the technical complexity of interview administration. These limitations
were acknowledged by the authors who subsequently developed a new questionnaire to
address these limitations. The Leisure Time Physical Activity Questionnaire for People
with Spinal Cord Injury (LTPAQ-SCI) [26] is a brief (5 minutes) self-report
questionnaire specifically designed for persons with SCI that measures minutes of mild,
moderate and heavy-intensity leisure time physical activity (LTPA) performed over the
previous 7 days, but is not capable of measuring other activities of daily living.

3.1.2 Reliability and Validity

The test-retest reliability of the three questionnaires has been examined, however, the
PADS has had no reliability studies conducted in persons who use wheelchairs.
Therefore, it remains unclear whether the PADS can be reliably used as a measure of
physical activity behaviour in this population. A test-retest reliability correlation of .77
was established for the PASIPD in a study of 45 adult patients with a range of
disabilities, but these patients did not use wheelchairs [27]. The PARA-SCI is the only
instrument tested for reliability in a sample solely consisting of persons who use
wheelchairs. To establish the test-retest reliability of the PARA-SCI, 102 people with
SCI completed the instrument on two separate occasions a week apart [24]. Intra-class
correlations revealed good test-retest reliability for total cumulative activity (.79).
However, moderate-intensity (LTPA) and heavy-intensity (lifestyle activity)

demonstrated poor levels of reliability (ICC = .45 and .56, respectively).

Establishing the validity of questionnaires is important to ensure that the tool effectively
measures what it intends to (i.e. the activity of persons that use a wheelchair). Manns

and colleagues [28] revealed a significant moderate relationship between scores on the
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PADS and VO, max (r = 0.45). Likewise, comparison of scores from the PASIPD with
indicators of physical capacity revealed weak to moderate relationships (VO2 max; r =
0.25, manual muscle test; r = 0.35) [29]. However, we contend that equating self-
reported PA to physical capacity, rather than a criterion measure of PA, may not be the
most appropriate way to ascertain concurrent validity. Measures of physical capacity

can be related to numerous variables beyond the users’ PA level.

Results from validity studies indicate that of the three questionnaires, the PARA-SCI
has the strongest relationships with criterion measures. During the development and
evaluation of the PARA-SCI [24], criterion (VO2 reserve) values displayed a very large
correlation with cumulative (LTPA plus lifestyle) activity data (r = 0.79). When data
was coded for intensity of activity, large to very large positive correlations were seen
for moderate-intensity (r = 0.63) and heavy-intensity (r = 0.88) activity. However, this
relationship was weak and non-significant for low-intensity activities (r = 0.27) and
consequently the PARA-SCI under-reported time spent doing activities of low-intensity
by 10%. Therefore, although these findings indicate some evidence of convergent

validity, the results also highlight limitations of self-report measures.

3.1.3 Measuring intensity

A distinguishing feature between the three disability questionnaires is how they gather
information pertaining to the intensity of activity conducted. Evidence from adults
without disabilities would suggest superior reductions in mortality risk with vigorous-
intensity PA in comparison to light-to-moderate intensity PA [30-32]. Therefore, failure
to consider individual differences in PA intensity makes it difficult to detect
relationships between lifestyle activities and health outcomes [24]. The PADS employs
a single item to examine the overall intensity of structured activity but doesn’t assess
the intensity of leisure time activities. A fundamental limitation of the PASIPD is the
use of standard MET values as a measure of activity intensity regardless of the
participant’s type of disability. If MET values are to be used, it will be necessary to
develop a new empirically-based supplement to the compendium of physical activity
appropriate for persons that use wheelchairs [33]. The inability of the PASIPD and
PADS to effectively measure activity intensity prompted the development of the
PARA-SCI. Subsequently, the authors of the PARA-SCI conducted a systematic
process to develop definitions of three different exercise intensities (i.e. mild, moderate
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and heavy) specifically for people with SCI [24]. The empirical development of
intensity-based definitions suggests the PARA-SCI may be the most effective self-
report questionnaire at measuring the intensity of PA in persons with SCI. However, it
should be noted that even with such a rigorous development of intensity definitions, the
PARA-SCI is still dependent upon the accurate recall of behaviour. Research has also
challenged the use of psychophysiological indexes as a measure of perceived exertion
in persons with SCI [34]. This could have implications for the prediction of activity
intensity using self-report measures in persons with disabilities, which could be
influenced by secondary conditions such as chronic pain and discomfort, coupled with

the inability to engage large muscle groups in constant rhythmic activities.

Objective sensors overcome many of the shortcomings of self-report methods,
predominantly by removing the subjective recall element. The next section will discuss

the use of these objective sensors in wheelchair users.

3.2 Accelerometers

Accelerometers or movement sensors report their outcomes in ‘activity counts’ per unit
time or epoch, which are the product of the frequency and intensity of movement.
Accelerometers are therefore capable of providing temporal information about specific
variables such as the total amount, frequency and duration of PA [35]. They can also
monitor the accumulation of moderate-to-vigorous intensity PA (MVPA) and/or
sedentary behaviour thanks to the development of population-specific cut-points for
activity counts per minute. Despite enormous differences in signal processing and
internal components, all accelerometers have similar fundamental properties defined by
accuracy, precision, range and sensitivity and should be compared against criterion
measurements to demonstrate validity [36]. Monitors have been compared to a selection
of criterion laboratory measurements in persons that use wheelchairs: oxygen uptake
(VO2) [37-39], EE [40, 41] and PAEE [42, 43] measured by indirect calorimetry (Table
2). Studies have utilised different commercial monitors, worn at various locations,
validated using diverse activity protocols including: propulsion on a wheelchair adapted
treadmill; wheelchair ergometer or over ground; arm-crank ergometry (ACE) and;
various activities of daily living. Two fundamentally different varieties of
accelerometers are widely used in PA research; uniaxial and, increasingly, tri-axial.

Uniaxial accelerometers register movement in the vertical axis only, whereas tri-axial
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accelerometers register movement in the anteroposterior (X), mediolateral (YY) and
vertical (Z) axes. In keeping with pooled data from a systematic review of laboratory
and free-living validation studies in adults without disabilities [44], it appears that the
greater sensitivity of the tri-axial accelerometer leads to a better prediction of EE than

uniaxial accelerometers in persons who use wheelchairs (Table 2).

3.2.1 Monitors attached to the wheelchair

Researchers have explored attaching a custom data logger [45] or biaxial [46] and tri-
axial [47] accelerometers onto the wheels of a wheelchair. Other preliminary research
has simply attached a smartphone (containing a gyroscope and accelerometer) onto the
armrest of a wheelchair [48, 49]. Considering the exponential growth of smartphone
ownership [50], this later approach in particular can widely be used to capture certain
mobility characteristics such as average speed and distance travelled, functioning in a
similar manner to pedometers in persons who do not use wheelchairs. However, despite
these approaches being relatively unobtrusive, they are unable to quantify the intensity
of activities being performed and are limited in deriving accurate EE estimates. Conger
etal, [51] tried to address this limitation by using a PowerTap Hub attached to the wheel
of a wheelchair. The measured hand rim propulsion power explained 48% of the
variance in predicting criterion EE. The authors revealed three significant prediction
models from this laboratory protocol, with model 3 (incorporating power, speed and
heart rate) explaining the greatest variance (87%). Seemingly, the incorporation of a

physiological signal significantly improved the prediction of EE.

However, we propose that a device attached to the wheelchair cannot distinguish
between self or assisted propulsion, certainly not without complex analyses of the raw
acceleration outputs [52], and are unable to quantify activity out of the wheelchair.
Further, it is common for persons who use wheelchairs to have different chairs to
participate in various sports or undertake ACE as a mode of exercise. Therefore, a single
device attached to a wheelchair will fail to capture moderate-to-vigorous-intensity
activity in structured exercise, likely to contribute a large proportion towards TDEE.
Moreover, if a person uses a power-assisted wheelchair, signals from devices attached
to the chair will provide erroneous measurements regarding upper-body PAEE. These
limitations need to be considered when using this approach to predict free-living PA/EE
in persons that use wheelchairs.
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3.2.2 Body-borne accelerometers

Waist-mounted single-sensor devices, positioned within close proximity to an
individual’s centre of mass, have been the mainstay of activity monitoring in cohorts
without physical disabilities. Single units worn on the waist can be limited for certain
types of upright behaviours that have a low ambulatory component and may involve
upper-body work [53]. The measurement error of waist-mounted devices is generally
related to the inability to detect arm movements as well as static work (e.g. lifting,
pushing, carrying loads). With movement of persons that use wheelchairs
predominantly restricted to the upper-body, it is unsurprising that stronger correlations
between accelerometer outputs and criterion measurements were reported for devices
worn on the upper arm and wrist, r = 0.83 — 0.93 and r = 0.52 — 0.93, respectively
(Table 2). While two studies [37, 41] have found differences in the strength of
correlations between the left and right wrist, these discrepancies could be due to hand-
dominance or the specific asymmetry of the activities performed in these studies. The
predominance of research, however, suggests little to no difference between dominant
and non-dominant wrists [38, 39], suggesting freedom/flexibility in selecting either

wrist to predict PA/EE in this population.
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Table 2: Summary of the accuracy of accelerometers worn on various anatomical locations and wheelchair during laboratory protocols.
Comparison to criterion measures of oxygen uptake, energy expenditure and physical activity energy expenditure

Study Sample? Cr:nré;izgg Activity protocol Device/ outputs Anatomical location Results
Ten activities which GT3X (36 features  Non-dominant wrist r =0.86, MSE = 4.98 mikgmin’!
' VO, included ADL, transfers, extracted from the Dominant wrist r =0.86, MSE = 5.16 ml'kg*min-
Garcia-Masso 20 SCI (COSMED ACE and propulsion that second-by-second S -00, : g
et al, [38] (T4-S1) ) prop acceleration signals were _ _ Lr-Lmin-d
K4b?) covered a wide range of used as independent Chest r =0.68, MSE = 10.41 mlkg*min
exercise Intensities. variables) Waist r=0.67, MSE = 10.61 ml'kg*min!
24 (9F). Right wrist r=0.95
SCI (n=10), )
Learmonth et SB (n=5), VO Three wheelchair propulsion )
al, [39] MS (n=4), (COSMED speeds (1.5, 3.0 and 4.5 PAC from GT3X ACC Left wrist r=0.93
' AMP (n=2), K4b?) mph) ona WT
CP (n=1),
Other (n=2) Combined r=0.94
21 (9F). . Three timed pushes (slower : _ _ Lyl
Washburn &  SCI (n=11), (Ae\r]cgéort than normal, normal, and PAC from a CSA Left wrist r=067, SEE =4.99 mikg™min
Copay, [37] SB (n:Z), TEEM 1000) faster than n.ormal) over a uniaxial ACC Right wrist r = 0.52, SEE = 5.71 mlkgtmin™
other (n=3) rectangular indoor course
Waist r = 0.66, SEE = 1.38 kcal'min’. EE estimation
errors ranged from 12.9 — 183.4%
IC EE Re:g&?ﬂir;‘_j t?gezﬁsﬁgr\]’ity PAC from a RT3 tri- Upper left arm r = 0.83, SEE = 1.02 kcal-min‘!. EE estimation
Hiremath & 24 SCI (5F) (COSMED (performed (’)r?a \?VERG and axial ACC and (general equation) errors ranged from 14.1% — 113.7%
Ding, [54] (T3-L4) K4b?) flat tiled surface), ACE (20- Participant demographics Upper left arm r ranged from 0.63 (deskwork) to 0.91

40) and deskwork.

(activity specific

equations)

(propulsion). EE estimation error | to between
12.2% - 38.1%

Combined (Waist and

upper arm)

r = 0.84, SEE = 1.00 kcal'min’. EE estimation
errors ranged from 14.1% — 116.9%
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Tri-axial ACC with

. Left wrist r=0.93
Propulsion at three gyro sensor. EE was
S continuous speeds on a WT predicted by Right wrist r=0.82
K|U(:[2|1]et al, (C%Sfc'll9) (AR!STEEe-4) that elicited an RPE of 9 incorporating
yp (2.5-3 km/hr), 11 (3.5-4.0 acceleration, angular Left upper arm r=0.87
km/hr) & 13 (4.5-5.0km/hr)  velocity and participant ) ~
demographics Right upper arm r=0.93
Gyroscope-based wheel _ .
Participants performed 10 rotation monitor (G- PAMS-arm M +I|§ C_: 5 g283 89758/;5 II\SI)'ZE—_OZQB %)40/
Hiremathet 45 SCI (6F) IC EE activities from a list that WRM) and tri-axial == T 902 2900370, BERGAES
al, [55]° (C5—L5) (COSMED included a range of activities accelerometer; The
' K4b?) and exercises of differing Physical Activity PAMS-wrist ICC =0.89 (95% CI; 0.87 — 0.91)
intensities Monitoring System M=E = 5.65 + 32.61%, MAE = 25.19%
(PAMS)
Ridht wrist r =0.93, SEE = 0.80 kcal'min’. Absolute bias +
g 95% LoA: 0.0 + 1.55 kcal'min?
15 (3F) Five activities including )
P X IC PAEE deskwork and wheelchair . r =0.87, SEE = 1.05 kcal-min. Absolute bias +
= Righ .
'\L'tg:f'?ggie o (51”_2%)’ (COSMED propulsion atvarious ~ PAC from GT3X+ ACC 'gnt Upper arm 95% LoA: 0.0 + 2.03 kcal min'?
’ Other (;]_ Zl) K4b?) velocities around an outdoor
- athletics track. i i
Waist r =0.73, SEE = 1.45 kcal'min™t. Absolute bias +
95% LoA: 0.0 + 2.82 kcal'min
. . r =0.82, SEE = 0.91 kcal'min.
Right Wrist y R 0
17 A wheelchair propulsion PAC from GT3X+ ACC MAE = 0.69 keal min™(33.0%)
sCl (n=10), 1 PAEE grotgcq:lacr?ss_?_ rargge 0;‘ Right Upper Arm r = 0.68, SEE = 1.16 kcal'min'.,
_ readmill velocities (3 — - -
'\L'tg:: "[]gg;e i% 52:3 (TrueOne 2400, km/h and gradients (1 — 3%) MAE = 086 keal min” (35.3%)
' AMP (n=17) ParvoMedics) including load carriage Right Wrist r =0.88, SEE = 0.75 kcal'min™.
Other (n=2)’. (+8% body mass) and a Raw acceleration (g-s%) MAE = 0.59 kcal min™ (21.0%)

folding clothes task

from GENEActiv ACC

Right Upper Arm

r=0.87, SEE = 0.77 kcal' min.
MAE = 0.58 kcal'min’ (20.4%)
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AB able-bodied, ACC accelerometer, ACE arm crank ergometry, ADL activities of daily living, AMP amputee, CP cerebral palsy, CSA computer
science applications, EE energy expenditure, I1C indirect calorimetry, LoA limits of agreement, MAE mean absolute error, MS multiple sclerosis,
MSE mean square error, M+E mean signed error, PAC physical activity counts, PAEE physical activity energy expenditure, SB Spina Bifida, SCI
spinal cord injury, SEE standard error of estimate, ULAM upper limb activity monitor, VO, oxygen uptake, WERG wheelchair ergometer, WT
wheelchair treadmill.

& All-male participants unless stated otherwise

b Note to avoid confusion and make interpretation easier, + or - before M+E statistics has been switched to reflect whether prediction method
over or under predicted EE.
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Combining data from two anatomical locations seemingly does not yield substantial
improvements in the strength of correlations or EE estimation error [39, 54]. In some
research and development laboratories, accelerometers have been arranged in parallel
arrays and positioned at various anatomical locations to monitor the types of activity
being performed by postural identification. Such prototype PA monitors were
developed to primarily target specific population groups during rehabilitation,
including amputees [56] or inpatients with SCI [57]. Devices with multiple arrays have
shown good specificity (92%), agreement (92%) and sensitivity (87%) for the detection
of wheelchair propulsion in observational studies [58]. Yet, even when worn for a
relatively short period of time participants self-reported moderate burden [59]. These
monitors are relatively obtrusive and, due to reduced memory capacity and battery life,
are restricted to short monitoring durations (<48 hours). This is not in keeping with
current end user requirements of PA monitors. Multi-site prototype arrays are also not
typically available outside of the developing laboratory, making validation by other

researchers challenging.

A simpler set-up, the Physical Activity Monitoring System (PAMS) [60], which
incorporates a gyroscope-based wheel rotation monitor (G-WRM) and one tri-axial
accelerometer attached to the arm or wrist, overcomes the shortcomings of
accelerometers attached to the wheelchair alone. When this approach was recently
evaluated using a robust laboratory protocol and home-based follow-up session, both
the PAMS-arm and PAMS-wrist estimated EE with small biases (MzE < 10%) [55].
Yet, MAE for predicting EE in persons that use a wheelchair remained elevated
(>25%). Kooijmans et al, [61] also assessed the utility of a tri-axial accelerometer
(GT3X+) attached to the wrist and spokes of a wheelchair. However, rater-observations
reported less agreement (85%) and specificity (83%) for wheelchair propulsion than
using multiple-arrays [58]. Whilst less burdensome, disagreement between GT3X+
(Actigraph, Pensacola, FL) outputs and observers was greatest for propulsion on a slope
and being pushed whilst making excessive arm movements. Therefore, it is likely that
physiological signals, such as heart rate, should be incorporated into the prediction of

EE to improve accuracy.
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3.3 Heart rate

Heart rate (HR) is useful as a physiological variable as it increases linearly and
proportionately with exercise intensity and thus oxygen uptake [36], at least in
individuals without disabilities. Keytel et al, [62] concluded that EE can be accurately
predicted from HR after adjusting for age, sex, body mass and fitness. However, during
lower intensity PA there is a weak relationship between HR and EE [63]. This is most
likely due to small postural changes causing alterations in stroke volume, or that HR
during low intensity PA is affected by external factors such as psychological stress,
stimulants, ambient temperature, dehydration and illness [64]. There are a number of
ways to use HR data to predict EE, one of the most promising being the FLEX-HR
method [65], which has previously been used in persons with SCI [66, 67]. Despite
recent research into the use of various HR indices [68] and artificial neural networks
[69] in the prediction of VO in individuals with SCI, it is clear that the accurate
prediction of EE using HR is heavily reliant on individual calibration. Hayes et al, [67]
found that the variance in measured EE was considerably improved using an individual
calibration (55%) compared to HR alone (8.5%) during five activities of daily living in
thirteen individuals with SCI. Considering the type of activities performed, the large
variations in cardiovascular fitness and cardiovascular responses to exercise stress
persons who use wheelchairs, individual specific HR-EE relationships are necessary for
the accurate prediction of EE using HR. This consideration is perhaps even more
important for persons with considerable functional impairment or various disability
aetiologies that may disrupt the autonomic nervous system, such as high-level SCI
(>T6).

3.4 Multi-sensor devices

New multi-sensor technologies, which include the combination of physiological
parameters and accelerometry, have great potential for increased accuracy in assessing
EE as they incorporate and minimise the strengths and weaknesses of physiological
signals and accelerometry alone. The use of multi-sensor devices has mostly been
limited to laboratory based validation of the SenseWear® Armband (SWA)
(BodyMedia Inc., Pittsburgh, PA), which is worn on the upper arm, a preferential
anatomical location for the prediction of EE in persons that use wheelchairs (Table 2).
More detailed components and specifications of this activity monitor have been
described elsewhere [36]. It is clear that the proprietary manufacturer’s algorithms
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intrinsic to the SWA device are not appropriate to predict EE in persons that use
wheelchairs, with ICCs < 0.64 [40, 70, 71]. The overestimation of EE by the SWA
manufacturer’s model is likely due to the movements typically performed by persons
that use wheelchairs (e.g. wheelchair propulsion and ACE) not being included in
predefined activity categories. Hence, such activities are misclassified into more

strenuous types of PA.

Researchers have developed new EE prediction models (SCI general and activity
specific) for the SWA device that have been cross-validated [40, 71]. Where MAE
statistics are available [40, 70, 71] weighed means were calculated, with the SCI general
(22.7%) and activity specific (18.2%) models performing significantly better than the
manufacturer’s model (54.4%). Whilst these findings provide encouragement for the
use of the SWA in persons that use wheelchairs with new prediction models, Conger et
al, [72] noticed that even when using the SCI general model, the SWA tended to
overestimate EE (27 to 43%), whereas a wrist-mounted accelerometer more accurately
predicted EE (9 to 25%) during wheelchair prolusion. It is noteworthy that the SWA
utilizes upwards of twenty possible output parameters, including heat flux, galvanic
skin response and temperature to predict EE. Individuals with high level SCI (>T6)
experience impaired thermoregulatory function (reduced sweating response and
inability to dilate superficial vasculature [73]), which might intrinsically effect the error
when using SWA in this population. Unfortunately, the acquisition of the company
BodyMedia by Jawbone in 2013 resulted in the device being taken off the market and
cessation of all BodyMedia web applications. Despite considerable improvements in
EE prediction error it seems the future use of this technology is limited.
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Table 3: Summary of the accuracy of multi-sensor devices in persons who use wheelchairs during laboratory protocols

Results

Device and location

No sig. differences between criterion method and

Actical on right wrist

Actical EE (£9 — 25%)

SWA on right upper arm

Sig. overestimated EE during wheelchair propulsion
(+30 - 80%)

SWA using SCI general model
(Hiremath and Ding, [70])

| EE prediction error (+27-43%), yet, this was still
elevated during higher intensity activities

Rs=0.72 for all activities (| for propulsion; Rs=

Study Sample? Cr:nré;izgg Activity protocol
Five different wheeling
Slél(?nF—)'?) IC EE activities. Propulsion on a level
Conger et SB (n—_4) (Oxycon surface (4.5, 5.5 & 6.5 km/h),
al,[74] - ¥ wheeling on a rubberised 400 m
AMP (n=2) Mobile) K km/h heeli
Other (n=1) tra(_: (5.5 km/hr) & wheeling on
a sidewalk course at a S-S speed
Hiremath & 24 SCI (5F) (CISSII\E/IIIEED
Ding [40] (T3-L4) Kab?)
Resting and three activity
routines; propulsion (performed
on a WERG and flat tiled
surface), ACE (20-40) and
deskwork
. ICEE
Hiremath et 45 (8F)
anfrop cate  (CRREEP

Estimated EE from RT3 tri-axial
ACC worn on the waist

0.44, 1 for deskwork; Rs=0.66). EE estimation errors
ranged from 22.0 to 52.8%. Poor ICCs 0.64

Estimated EE from SWA worn on
the upper arm (manufacturer’s
model)

Rs=0.84 for all activities (| for deskwork; Rs = 0.65,
1 for propulsion; Rs= 0.76). EE estimation errors
ranged from 24.4 to 125.8%. Poor ICCs 0.62. Neither
device is an appropriate tool for quantifying EE
(<0.75)

Estimated EE from SWA worn on
the upper arm (manufacturer’s
model)

ICC =0.64 (95% CI; 0.57 - 0.70)
M+E =515+ 31.6%
MAE = 2.0 kcal-min (59.2%)

Estimated EE from SWA worn on
the upper arm (SCI general model)

ICC = 0.72 (95% CI; 0.66 — 0.77)
MzE =-10.4 +11.8%
MAE = 0.9 kcal-min (24.7%)

Estimated EE from SWA worn on
the upper arm (activity-specific
model)

ICC =0.86 (95% ClI; 0.82 — 0.88)
MzE =-9.6 £ 10.9%
MAE = 0.6 kcal-min (16.8%)
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Participants performed 10

Estimated EE from SWA worn on
the upper arm (manufacturer’s
model)

ICC =0.62 (95% CI; 0.16 — 0.81)
M=E = 39.6 + 37.8%
MAE =43.3 + 33.5%

Estimated EE from SWA worn on
the upper arm (SCI general model)

ICC =0.86 (95% ClI; 0.82 — 0.89)
M=+E =2.8 +26.1%
MAE = 20.6 + 16.2%

Estimated EE from SWA worn on
the upper arm (activity-specific
model)

ICC =0.83 (95% CI; 0.79 — 0.87)
M=E = 4.8 + 25.4%
MAE =19.6 + 16.8%

b ICEE activities from a list that
Tsa[n7gliect al, 45(55C 1 665'):) (COSMED included a range of activities
K4b?) and exercise of differing
intensities
15 A wheelchair propulsion
sl (n.:8) protpcol across a range of
Nightingale SB (n=3) ' IC PAEE treadmill veI(_)cmes (37 km/h
etal, [75] cp (n:1), (TrueOne 2_400, _ and_ gradients (1_ — 3%)
' AMP (nzl,) ParvoMedics) including load carriage (_+8%
Other (n:2)’ body mass) and a folding
clothes task

Actiheart™ using manufacturers
proprietary algorithms

r=0.76 (P <0.01), SEE = 1.07 kcal-min!
mean bias + 95% LoA = 0.51 + 3.75 kcal-min*
MAE = 1.35 kcal-min (51.4 %)

Actiheart™ using individual heart
rate calibration

r=0.95 (P < 0.01), SEE = 0.49 kcal-min-!
mean bias + 95% LoA = - 0.22 + 0.96 kcal-min'
MAE = 0.39 kcal-min* (16.8 %)

ACC accelerometers, ACE arm crank ergometry, AHR Actiheart™, AMP amputee, CP cerebral palsy, EE energy expenditure, IC indirect
calorimetry, LoA limits of agreement, MAE mean absolute error, PAEE physical activity energy expenditure, SB Spina Bifida, SCI spinal cord
injury, SEE standard error of estimate, SWA SenseWear® Armband, S-S self-selected, WERG wheelchair ergometer.

& All-male participants unless stated otherwise.

b Independent sample of participants to previous Hiremath et al, [70] trial in table
¢ Note to avoid confusion and make interpretation easier direction, + or - before M+E statistics has been switched to reflect whether prediction

method over or under predicts EE.
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The Actiheart (Cambridge Neurotechnology Ltd, Papworth, UK) integrates an
accelerometer and HR monitor into a single-piece movement monitor. The Actiheart
(AHR) unit has been described in detail previously [4], along with the detailed branched
modelling technique it utilises to estimate PAEE through the combination of HR and
accelerometer counts [76]. Previous work from our research group [75] has assessed
the performance of this device in a controlled-laboratory environment with a
heterogeneous sample of persons who use wheelchairs. Across all activities
considerable mean absolute error (MAE) was reported (51.4%) using the
manufacturer’s proprietary algorithms to predict PAEE. By using an incremental ACE
test, which permitted an individual HR-EE relationship similar to that performed by
Hayes et al, [67], individual calibration was incorporated and MAE was considerably
reduced to 16.8% across all activities. Individual calibration has also been shown to
improve the prediction of EE estimations using this device in free-living [77, 78] and
laboratory settings [79] in adults without disabilities during walking and running. The
sizeable improvement in EE prediction error in persons who use wheelchairs with
individual calibration may be due to a larger degree of individual variance in
cardiovascular function and responses to exercise in this population. Consequently,
individual calibration of this monitor is of upmost importance for the accurate
prediction of PAEE in persons that use wheelchairs. Furthermore, incorporating
individually calibrated HR and acceleration data better captures the differing energy
costs of bespoke activities, despite similar acceleration profiles, such as wheelchair

propulsion up a gradient or with additional load (e.g. shopping) [75].

4 Prediction accuracy of methodologies in free living environments

The majority of PA/EE validation research in this population has been performed in a
controlled-laboratory environment but there is a paucity of free-living studies (Table 4)
primarily due to the practical difficulties or expense associated with ‘gold standard’ EE
measurement (DLW). This method is not without limitations; for example minimal
information regarding frequency, duration or intensity of activity can be obtained [80].
Furthermore, the estimation of EE is based on the assumption of a mean respiratory
exchange ratio (RER) of 0.85, indicative of a standard western diet [81]. Yet,
carbohydrate and fat oxidation has been shown to be altered with arm compared to leg

exercise [82] and in paraplegics compared to non-disabled controls [83]. These factors
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may lead to an increased RER in persons that use wheelchairs, which could violate the

assumptions used in the prediction of EE via the DLW technique.

Irrespective of this, Tanhoffer et al, [66], compared four aforementioned prediction
methods (SWA, FLEX-HR, PARA-SCI, PASIPD) to DLW during habitual routines
over an extended 14 day period. The authors demonstrated that the two best prediction
methods were PARA-SCI and FLEX-HR for both TDEE and PAEE (Table 4). The
SWA and PASIPD both performed particularly poorly in the prediction of PAEE,
displaying considerable random error as demonstrated by the large 95% limits of
agreement. It is noteworthy that the SWA used the aforementioned error-prone
manufacturer’s model [40, 70, 71] but could be improved with the SCI general EE
prediction model developed by Hiremath et al, [70]. One limitation of the Tanhoffer et
al, [66] study is that the length of PA monitoring period for each prediction method
varied compared to the criterion method. Total EE collected over a two-week period
for the criterion DLW technique was divided by 14 to estimate mean TDEE. However,
the objective measures (SWA and FLEX-HR) were only worn > 12 hours on two
separate days and subjective measures, the PARA-SCI and PASIPD ask participants to
recall the previous 3 and 7 days, respectively. This weakness in the experimental design
means it is difficult to identify whether the error is intrinsic to each prediction method

or simply an artefact of the comparison between different days or time-periods.
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Table 4: Summary of free-living energy expenditure estimation studies in persons who use wheelchairs

Monitoring

Study Sample? Reference standard duration Method Results
R2=0.65 (P <0.001)
SenseWear worn on the upper Mean bias  95% LoA = 382 + 898 kcal-day™
arm (manufacturer’s model) (16% over-prediction)
R?=0.68 (P = 0.001)
FLEX-HR Mean bias + 95% LoA = -205 + 655 kcal-day™*
(13% under-prediction)
TDEE (DLW) R2=0.74 (P <0.001)
PARA-SCI Mean bias + 95% LoA = -133 + 598 kcal-day™*
(6% over-prediction)
R?=0.53 (P = 0.003)
PASIPD Mean bias + 95% LoA = - 12 + 819 kcal-day™*
Tanhoffer et 14 SCI (1F). 14 days (1% over-prediction)
al, [66] (C4-T12) SenseWear worn on the u R*=0.16 (P =0.159)
_e upper Mean bias + SD = -16 + 1292 kcal-day™*
arm (manufacturer’s model) 39% under-prediction
R?=0.30 (P = 0.067)
PAEE FLEX-HR Mean bias + SD = 22 + 715 kcal-day™*
3% over-prediction
(TDEE (measured by R2=0.50 (P = 0.005)
DLW) x 0.9) = RMR (IC) PARA-SCI Mean bias + 95% LoA = - 120 + 537 kcal-day*
18% under-prediction
R?=0.13 (P = 0.198)
PASIPD Mean bias + 95% L0oA = - 11 + 737 kcal-day™*
3% under-prediction
8 PAEE (Estimated from a Actiheart™ using manufacturers R?2=0.16 (P = 0.24)1
Nightingale ~ SCI (n = 5), physical activity log, using proprietary algorithms SEE = 365 kcal-day
_ the adapted PA 24 hours
etal, [75] SB(n=2), compendium (Conger and
CP(n=1) Actiheart™ using individual R2=0.50 (P =0.03)

Bassett, [6])

heart rate calibration

SEE = 269 kcal-day™*
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50 (23F) Activity counts from a tri-axial r = 0.506 (P = 0.000)

wheelchair . . L Actiwatch
Warms et al, users. Mixed Daily physical activity 7 days
[84] ! record scores
ae_tlolc_)gy of PASIPD r=0.267 (P =0.67)
disabilities

CP cerebral palsy, DLW doubly labelled water, LoA limits of agreement, PA physical activity, PAEE physical activity energy expenditure,
PARA-SCI physical activity recall assessment for people with spinal cord injury, PASIPD physical activity scale for individuals with physical
disabilities, RMR resting metabolic rate, SCI spinal cord injury, TDEE total daily energy expenditure.

& All-male participants unless stated otherwise.
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In the absence of other suitable criterion free-living methods, researchers have
encouraged the simple evaluation of the agreement and disagreement between measures
[16]. Previous studies have compared prediction methods to daily PA record scores
over 7 days [84] and PAEE estimated from the adapted PA compendium over 24 hours
[75]. Again the PASIPD was poorly correlated with the reference standard, whereas
outputs from a tri-axial Actiwatch demonstrated a stronger correlation, r = 0.51 [84].
Nightingale and colleagues [75] supported their earlier laboratory findings,
demonstrating that the Actiheart™ with individual HR calibration explained more of
the variance in free-living PAEE than using the Actiheart™ with proprietary
algorithms. However, these analyses were only performed on a subsample of
participants (n = 8) who had provided enough detailed information in PA logs to allow
accurate estimation of PAEE using the adapted PA compendium for manual wheelchair
users [6]. This compendium only describes the energy cost of 63 wheelchair activities
compared to the 821 specific activities included in the updated version of the
compendium of physical activities for adults without disabilities [85]. Consequently,
coding of activities is less specific and accuracy of data is reliant on the quality of the
self-report PA log. There are clear discrepancies between validating objective tools in
a controlled-laboratory and free-living environments. Therefore, renewed efforts are
required to validate measurement tools in both settings to determine convergent

validity.

5 Statistical approaches, analytical considerations and future directions

The majority of studies found strong associations between criterion measurements and
outputs from wearable devices. However, in some instances where results from Bland
Altman methods are also available, considerable random error has been reported [42,
66]. Where devices have been validated over a wide range of activities, of various
intensities (in keeping with best practice guidelines [86]) a stronger correlation
coefficient is likely. Consequently we encourage researchers to conduct multi-trait
multi-method approaches [87], such as Bland Altman methods to assess agreement [88]
or report measurement error [89]. It is also important that authors are very clear about
what error calculations have been performed and what error statistics are reported.
Furthermore, it would be advisable for the wider academic community to produce a
consensus statement addressing the clinical limits for PA/EE assessment error for
devices used in this population.
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It is possible that predicting EE/PAEE from linear regression equations may be too
simple an approach to use in examining complex movements or behaviours [90]. The
activity protocols adopted by laboratory validation studies cited here mostly focus
around wheelchair propulsion of various velocities. It is important to characterise this
behaviour, as it will likely make a significant contribution to TDEE in free-living
conditions (similar to ambulation in adults without disabilities). But as push frequency
increases to match higher velocities, so too will accelerometer outputs. Therefore,
whilst it might be appropriate to use linear regression methods to quantify PAEE
associated with wheelchair propulsion, this approach might misclassify other types of
physical activity. This is highlighted by considerable increases in measurement error
for sedentary or atypical movements such as folding clothes [38, 43]. Greater error in
more frequently performed low-intensity or sedentary behaviours has potentially
considerable implications for the accurate determination of free-living EE in persons
who use wheelchairs. A more ecologically valid approach would be to develop
regression models based on a smorgasbord of activities common in the everyday lives
of persons who use wheelchairs. It is possible that, by giving more weight to everyday
activities (i.e. household chores or work-based tasks), such regression models may

reduce estimation error.

An alternative solution to regression models would be to use new data analysis
methodologies [91], including hidden Markov models [92], artificial neural networks
[93, 94] and classification trees [95], which use the rich information to classify certain
activities and derive a more accurate estimate of EE [86]. To obtain such rich
information, the shortest possible epoch (1 second) should be selected for activity
monitor data collection [96], primarily to maximise the original PA related bio-signal
being retained. Garcia-Masso et al, [97] recently developed and tested classification
algorithms based on machine learning using accelerometers to identify specific
activities performed by persons who use wheelchairs. This is encouraging since
activity-specific EE algorithms developed for resting, wheelchair propulsion, arm-
ergometry and deskwork can improve overall EE estimation [70, 98]. One important
consideration that remains to be addressed is, how well objective measurement tools
and associated algorithms capture elevated energy expenditure during recovery from
MVPA (i.e. excess post-exercise oxygen consumption). It is conceivable that a
physiological signal is required to accurately capture this information when
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acceleration signals post-exercise might be similar to resting values. Future research
should consider; (i) applying and further developing new data analysis techniques, (ii)
using more ecologically valid assessments that better resemble free-living conditions
for persons that use a wheelchair and, (iii) evaluating the performance of EE prediction

models during recovery after exercise (which contributes to TDEE).

Some of the principal limitations of previous validation studies are the relatively small
sample sizes recruited, the mixed aetiologies for wheelchair use and, use of EE
prediction algorithms without cross-validation. This is likely due to difficulties
associated with recruiting from various disabled populations [99], and we encourage
research groups to work collaboratively to recruit larger sample sizes. Using a diverse
sample of participants and aetiologies for wheelchair use has been widely adopted [37,
39, 72, 84] and provides a robust model for the assessment of EE in the wider population
of individuals who use wheelchairs, rather than a subgroup of that population. When
the development of regression equations to predict EE and subsequent evaluation was
conducted on the same sample of participants [37, 42], there is a tendency for the
evaluation statistics to be biased and overly optimistic [89]. Cross-validation is
necessary, whereby the validity of developed algorithms are assessed using an
independent sample of participants [54, 70]. We advocate employing a leave-one-out
cross validation analysis [100] which has been employed previously [38, 43]. This
permits an ‘independent’ assessment of EE prediction algorithms, and is an optimal

approach when participant recruitment is particularly challenging.

6 Wearable technology and physical activity guidelines for persons that use a
wheelchair

The American College of Sports Medicine (ACSM) have highlighted wearable
technology as the top fitness trend for 2016 [101]. Available consumer devices (Apple
Watch, Microsoft Band, Fitbit Charge HR) are becoming increasingly sophisticated,
incorporating multi-sensor technologies and are worn on the most appropriate
anatomical location (wrist) to predict EE in persons who use wheelchairs. Apple
recently announced at its Annual Worldwide Developer’s Conference that they have
developed fitness tracking algorithms specifically for persons who use wheelchairs.
Such wearable devices have the potential to provide wheelchair users with physical
activity feedback which is informative and motivating [102]. The feasibility of
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combining estimation methods should also be explored. Greater context regarding the
location, type and purpose of physical activity behaviours are of huge importance in
public health research. More detailed information may be achieved by combination of
GPS and accelerometer outputs, especially when also incorporating self-report
measures. This approach could help to understand specific personal and environmental

barriers to exercise, which are numerous for persons who use wheelchairs [103].

It has been suggested that individuals with disabilities should strive to meet PA
guidelines of 150 minutes of MVPA per week [104]. These general population
guidelines were informed by epidemiological evidence, using questionnaires, which
capture the amount of activity required above normal lifestyle activities. While minutes
per week represent an easy target for people to understand and attain, only the PARA-
SCI and multi-sensor devices can currently be used in persons who use wheelchairs to
generate total accumulated MVPA per day/week. Discrepancies have been shown
between self-reported and objectively measured PA [105, 106]. Consequently, a recent
review of data collected with accurate multi-sensor devices in adults without disabilities
has suggested that ~1000 min per week of MVPA is a more appropriate target [107].
To our knowledge, only one paper has attempted to establish MVPA cut-points for wrist
worn accelerometer outputs in persons who use wheelchairs [108]. However,
accelerometer outputs alone (without complex data processing techniques) cannot
easily detect the resistance of various movements that have similar acceleration profiles
i.e. arm-crank exercise at 70 revolutions per minute; with no resistance (light-intensity
activity) vs. 40W (likely MVPA). Therefore, deriving MVPA cut-points for single unit
wrist/arm accelerometers might have limited applicability, as direct outputs are unable
to differentiate the resistance of certain arm movements (thus activity intensity)
common in the everyday lives of persons who use wheelchairs. As such, measuring
activity intensity is of utmost importance to accurately estimate MVPA, above and
beyond daily PAEE/EE. Improvements in measurement techniques that capture this
specific variable would significantly help to inform specific PA guidelines for persons

with chronic disabilities who use wheelchairs.

[PLEASE INSERT FIGURE 1 ABOUT HERE]
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7 Conclusion

There is now a renewed impetus to translate progress in measuring PA in adults without
disabilities to persons who use wheelchairs, with the techniques reviewed here (i.e. self-
report, physiological signals, accelerometry and multi-sensor devices), displaying
varying degrees of success. Currently, selecting a PA assessment tool to use in this
population presents a challenging proposition for clinicians and researchers alike due
to differing outcome variables of interest, practicality/usability of the tool and
population specific considerations. To help guide decision-making, Figure 1 was
developed to provide a systematic evaluation of the strengths and limitations of the
different measurement tools reported herein. The PARA-SCI has been extensively
developed and is the most suitable self-report measure to predict time spent performing
various intensity activities. This methodology also captures the type of activities being
performed, categorised as either LTPA or activities of daily living, which provide useful
behavioural information. Tri-axial accelerometers worn on the wrist or arm are well
tolerated and relatively unobtrusive [109]. They offer a promising alternative to self-
report methods for predicting PA/EE, particularly when combined with devices
attached to the wheelchair or by incorporating complex data analysis methodologies.
Multi-sensor devices, with algorithms developed specifically for the individual or
generally for persons who use wheelchairs, demonstrate considerably improved error
in the prediction of PA/EE during controlled laboratory protocols. It is possible that due
to altered movement patterns and variations in metabolically active mass, predicting
PA/EE in persons that use wheelchairs might be intrinsically more challenging.
However, building on the current progress outlined in this review, we encourage the
scientific community to rise to the challenge and provide innovative solutions to
accurately predict free-living PA behaviours in this population. This is particularly
important given the greater risk of non-communicable diseases, which are often
associated with reduced activity, in persons with chronic physical disabilities who use

wheelchairs.
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Figure 1 Title: A guide for clinicians / researchers to help select the most suitable
physical activity measurement tool in persons that use a wheelchair.

Figure 1 Legend:

Researcher / clinician can decide which of these questions they consider most
important.

' Taking into account the burden of tool administration and the complexities of data
processing.

* Based on the synthesis of evidence reported in this review.

Abbreviations: GPS, Global Positioning System,; LTPAQ-SCI, Leisure Time Physical
Activity Questionnaire for People with Spinal Cord Injury; MWU, manual wheelchair
user, PADS, Physical Activity and Disability Survey;, PARA-SCI, Physical Activity
Recall Assessment for People with Spinal Cord Injury. PASIPD, Physical Activity
Scale for Individuals with Physical Disabilities.
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