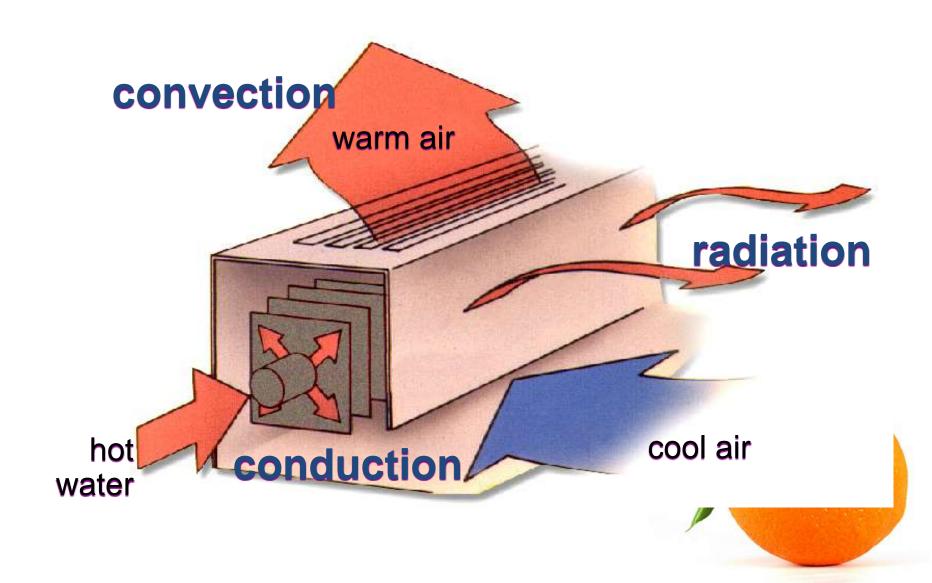
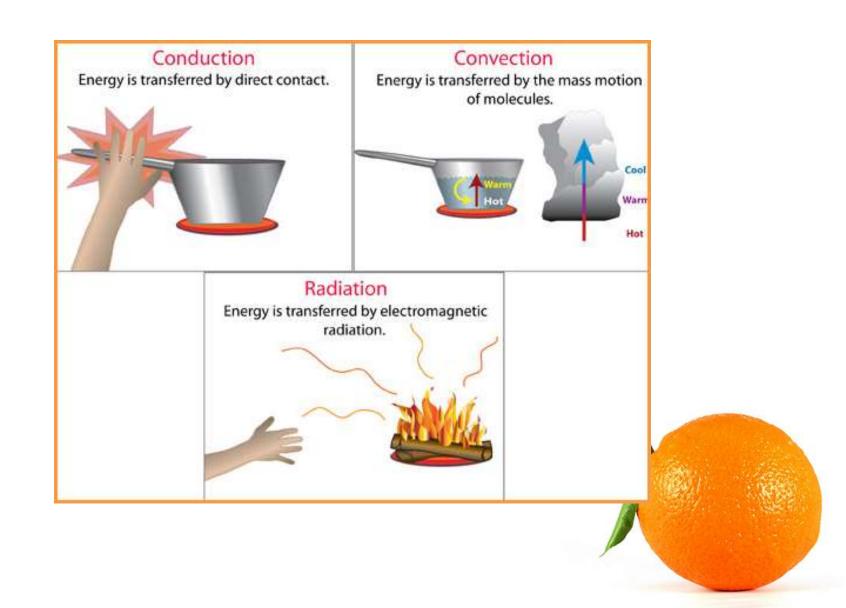
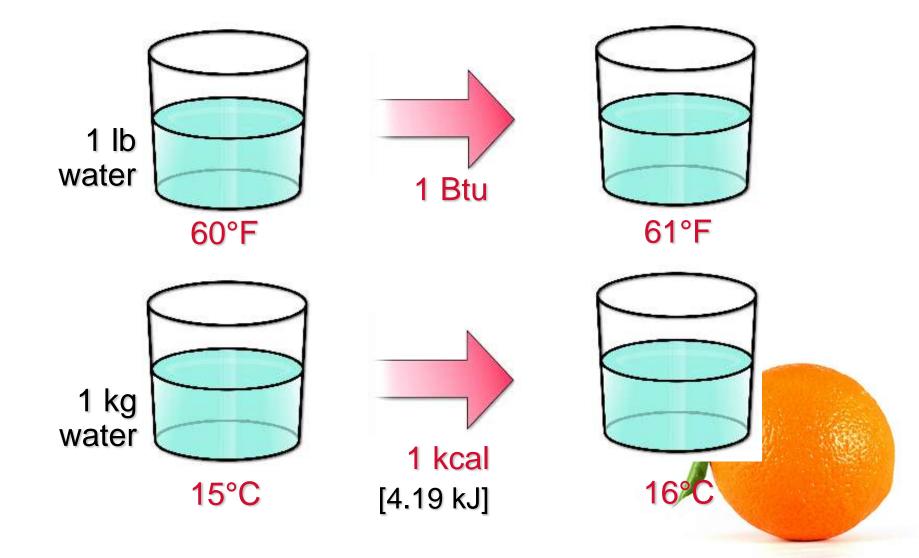
COOLING LOAD ESTIMATION


Principles of Heat Transfer

Heat energy cannot be destroyed.

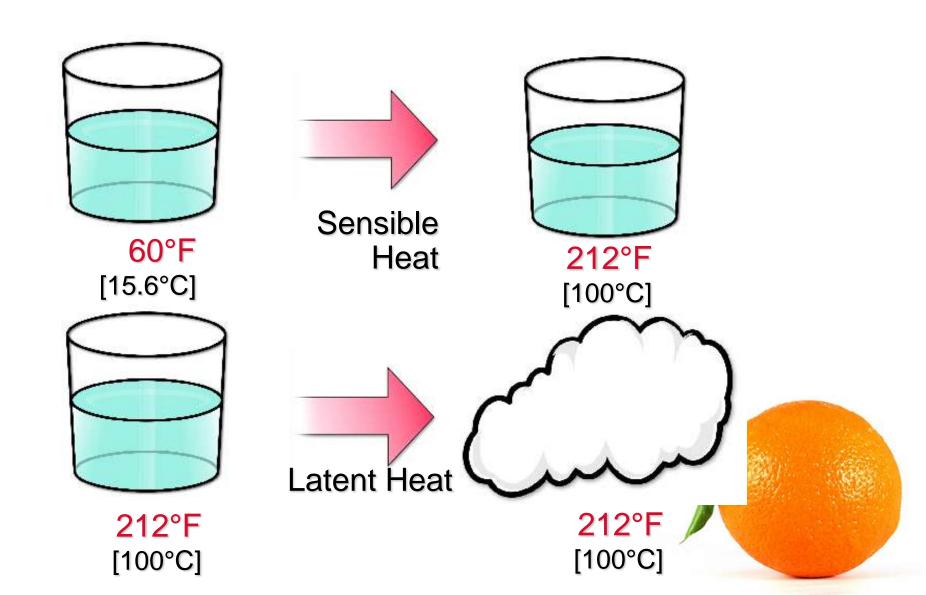

 Heat always flows from a higher temperature substance to a lower temperature substance.

 Heat can be transferred from one substance to another.


Methods of Heat Transfer

Conduction, Convection & Radiation

Measuring Heat Quantity


What is BTU?

BTU refers to British Thermal Unit.

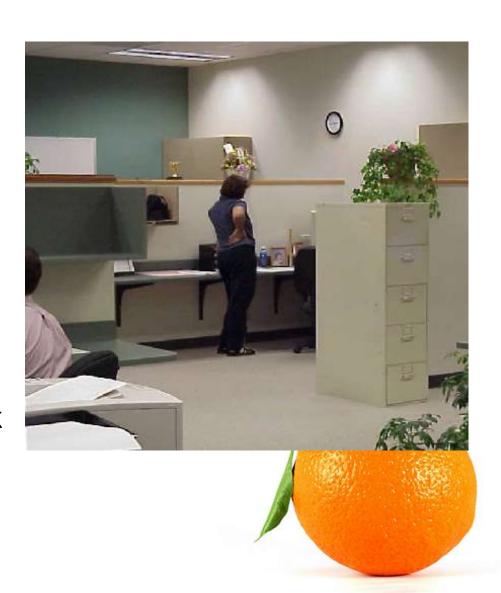
 Unit of Heat Energy in Imperial System or I-P System.

 1 BTU is the amount of Heat energy required to raise the temperature of 1 lb water by 1°F.

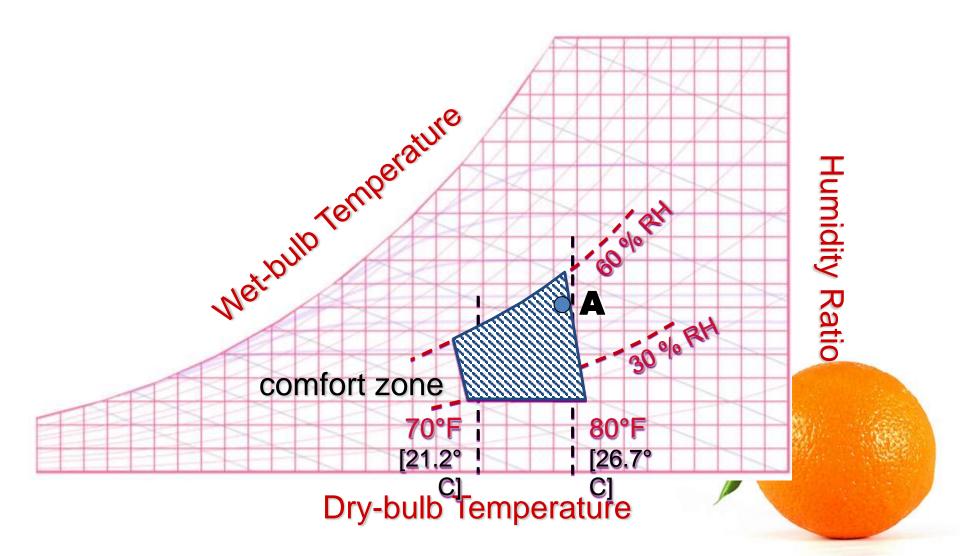
Sensible Vs Latent Heat

Human Comfort

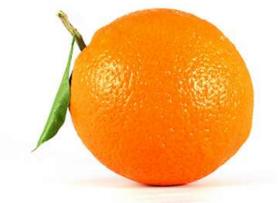
 Conditions at which most people are likely to feel comfortable most of the time.

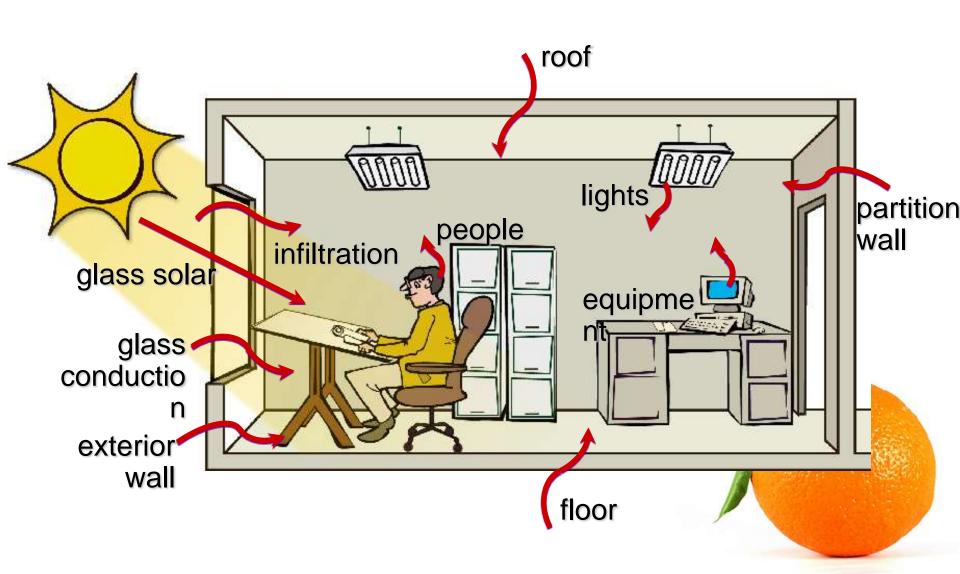

Also called as Thermal Comfort.

Temperature: 78°F (Summer) – 68°F(Winter).

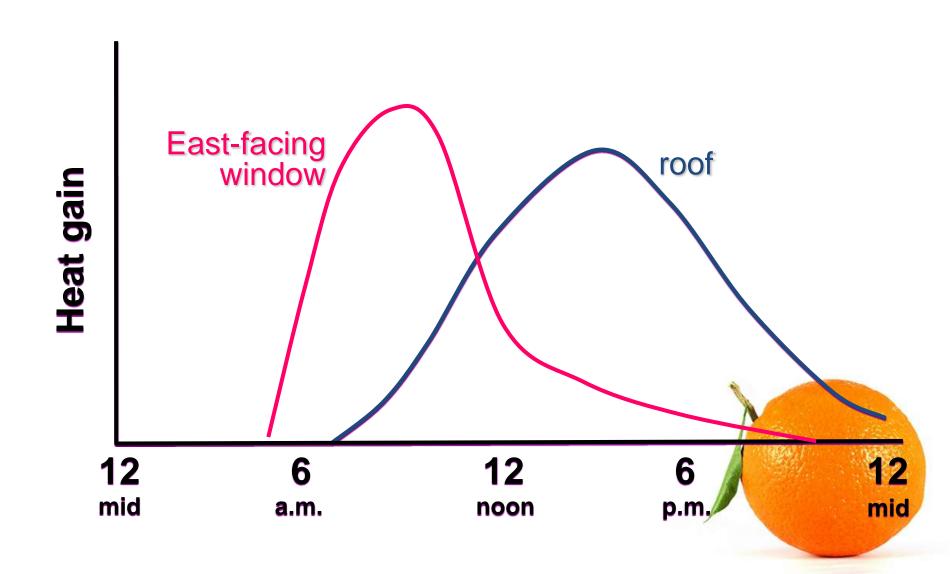

• Relative Humidity: 30 %– 40%.

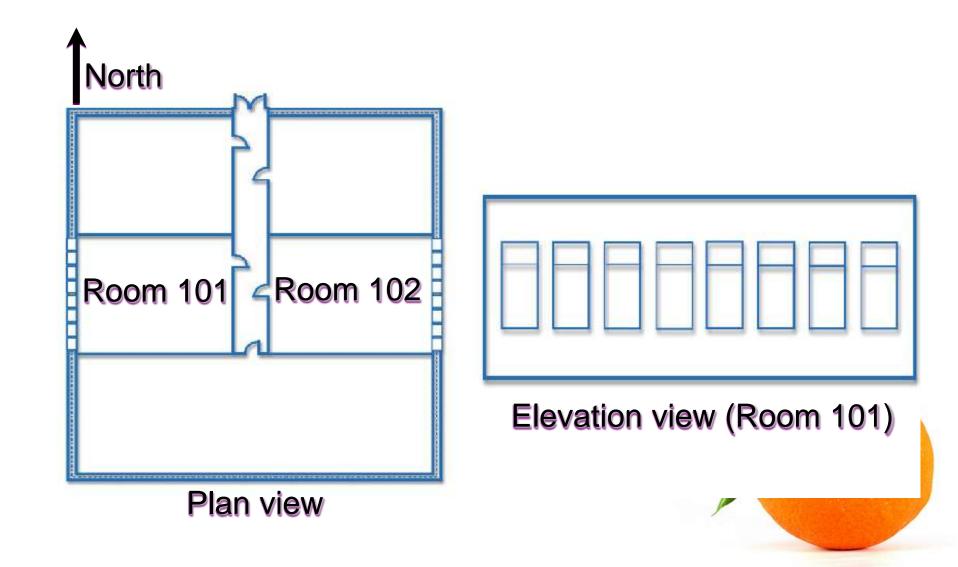
Factors Affecting Human Comfort


- Dry-bulb temperature
- Humidity
- Air movement
- Fresh air
- Clean air
- Noise level
- Adequate lighting
- Proper furniture and work surfaces


Indoor Design Conditions

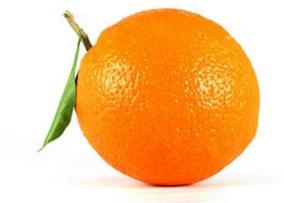
Cooling Load Estimation Procedure


Cooling Load Components

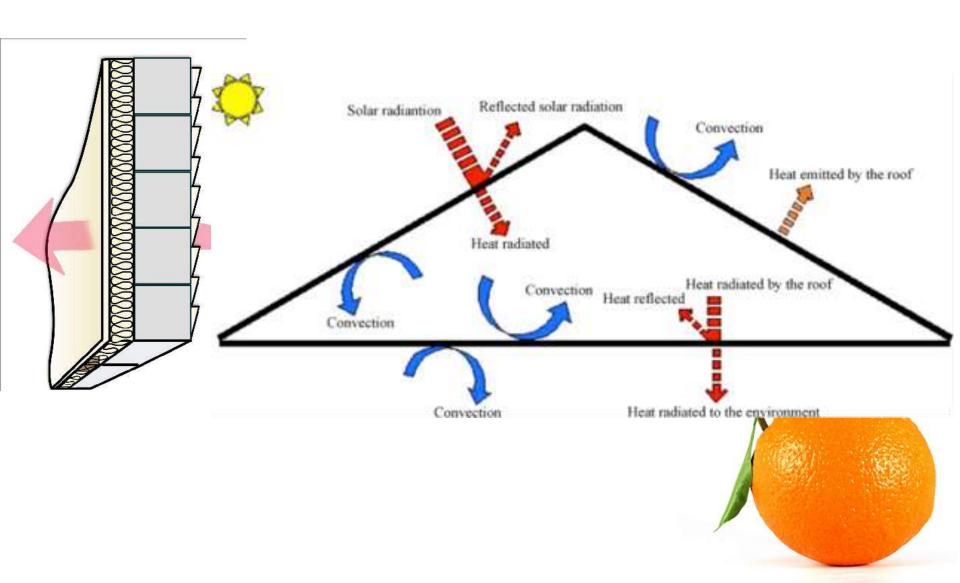

Cooling Load Components

cooling load components		Sensible latent Load load		space load	coil load
	Conduction through roof, walls, windows, and skylights	✓		✓	✓
	Solar radiation through windows	, sky √ hts		V	V
	Conduction through ceiling, interior	✓		~	✓
	Peoplertition walls, and floor	V	V	V	V
	Lights	V		V	V
	Equipment/ Appliances	V	V	V	
	Infiltration	V	V		V
	Ventilation	V	V		V
	System Heat Gains	V			V

Time of Peak Cooling Load

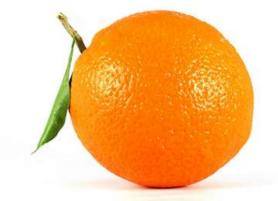


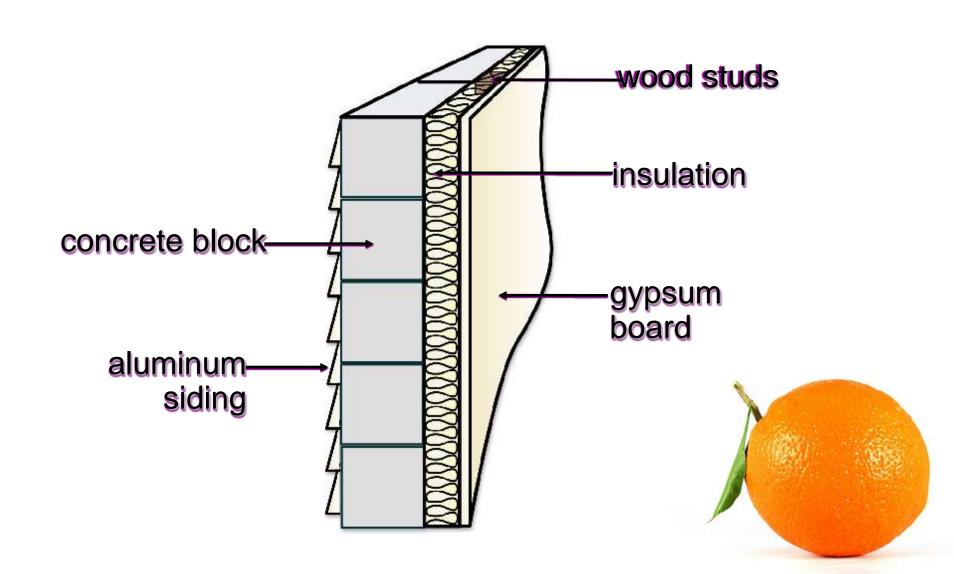
Example Office Space (Room 101)



Outdoor Design Conditions

	0.4%		1%		2%	
	<u>DB</u>	<u>WB</u>	<u>DB</u>	<u>WB</u>	<u>DB</u>	<u>WB</u>
St. Louis, Missouri	95°F [35°C]			75°F [24°C]		74°F [23°C]


Heat Conduction through Surfaces


Conduction through a Shaded Wall

$$Q = U \times A \times \Delta T$$

- **U** Overall heat transfer coefficient of the surface
- A Area of the surface
- Δ T Dry bulb temperature difference across the surface

U-factor

U-factor for Example Wall

thermal resistance (R)

Routdoor-air film 0.25 [0.04]

0.61 [0.11] Rsiding

Rconcretelock 2.00 [0.35]

13.00 [2.29] Rinsulation

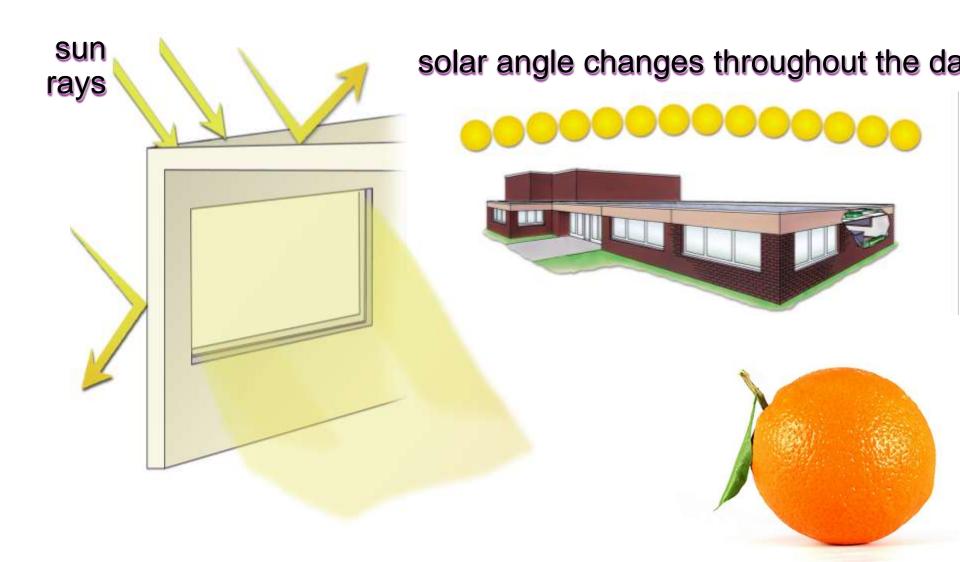
Rgypsumboard 0.45 [0.08]

Rtotal 16.99 [2.99]

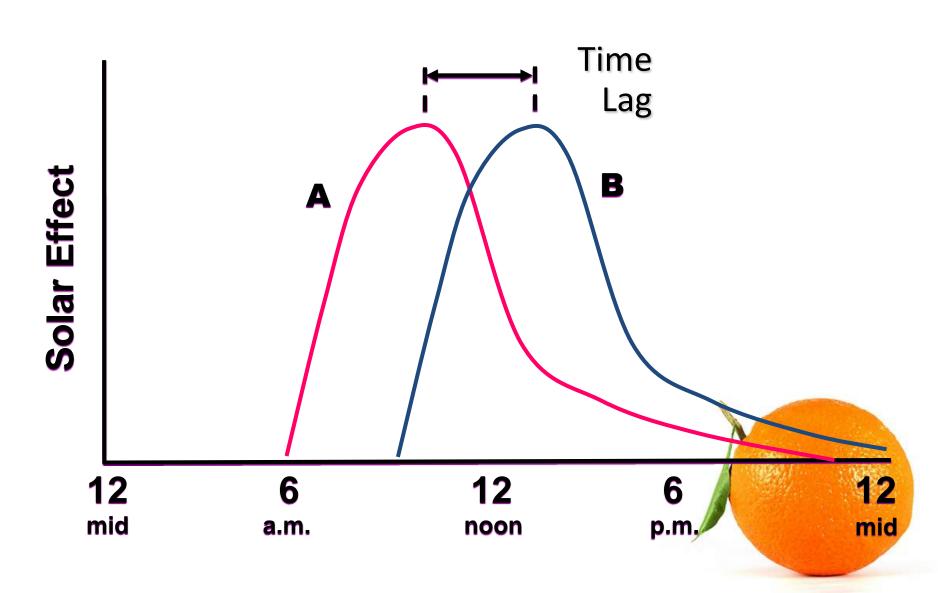
$$U = \frac{1}{R_{total}}$$

 $U = 0.06 Btu/hr \cdot ft^2 \cdot °F$

Rindoor-air film 0.68 [0.12] $\left[U = 0.33 \text{ W/m}^2 \cdot ^{\circ} \text{K} \right]$


Conduction through a Shaded Wall

$$Q_{wall} = 0.06 \times 380 \times (95 - 78) = 388 \text{ Btu/hr}$$

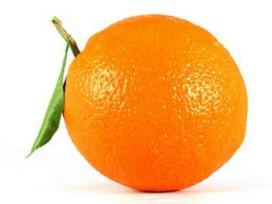

$$[Q_{wall} = 0.33 \times 36.3 \times (35 - 25.6) = 113 W]$$

Sunlit Surfaces

Time Lag

Conduction through Sunlit Surfaces

$$Q = U \times A \times CLTD$$


CLTD: Term used to account for the added heat transfer due to the sun shining on exterior walls, roofs, and windows, and the capacity of the wall and roof to store heat.

CLTD Factors for West-Facing Wall

```
hou
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

CLTD (°F) 35 30 25 21 17 14 11 8 7 6 6 7 8 10 12 16 22 30 37 44 48 48 45 41

CLTD (°C) 19 17 14 12 9 8 6 4 4 3 3 4 4 6 7 9 12 17 21 24 27 27 25 23
```


Conduction through Sunlit Surfaces

$$Q_{wall} = 0.06 \times 380 \times 22 = 502 \text{ Btu/hr}$$

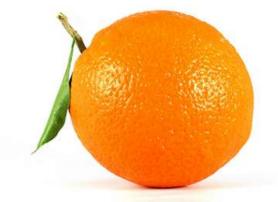
$$Q_{roof} = 0.057 \times 2700 \times 80 = 12312 \text{ Btu/hr}$$

$$[Q_{wall} = 0.33 \times 36.3 \times 12 = 144 W]$$

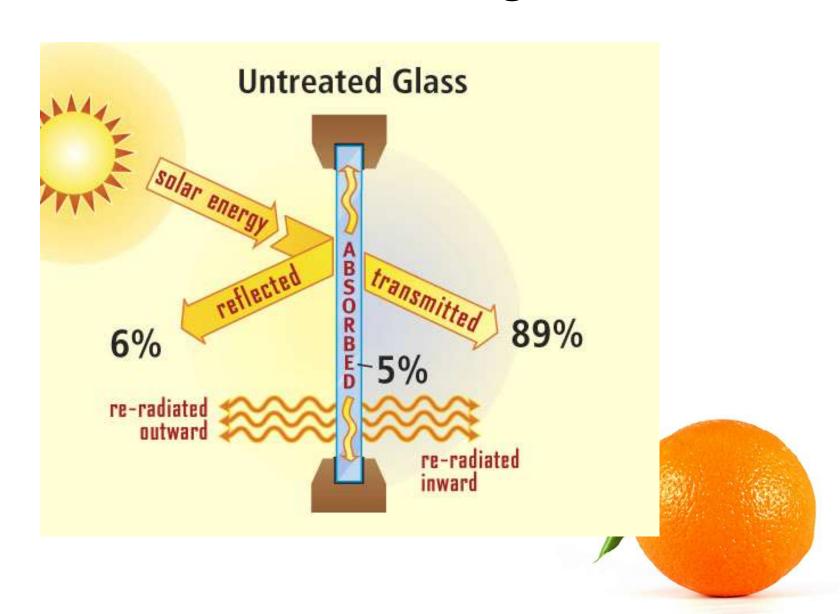
$$[Q_{roof} = 0.323 \times 250.7 \times 44 = 3563 W]$$

U-factors for Windows

fixed frames, vertical installation


single glazing 1/8 in. [3.2 mm] glass	aluminu without <u>the</u> <u>break</u> 1.13 [6.4	ermal v	ninum vith <u>woo</u> <u>ermal</u> वृद्धि7] 0.98	od/viny <u>l</u> [5.55]
double glazing				
1/4 in. [6.4 mm] air space	0.69 [3.9	0.63	[3.56] 0.56	[3.17]
1/2 in. [12.8 mm] air space	0.64 [3.6	0.57	[3.22] 0.50	[2.84]
1/4 in. [6.4 mm] argon space	0.66 [3.7	[5] 0.59	[3.37] 0.52	[2.98]
1/2 in. [12.8 mm] argon space	0.61 [3.4	7] 0.54	[3.08] 0.48	[2.70]
triple glazing				
1/4 in. [6.4 mm] air spaces	0.55 [3.1	0] 0.48	[2.73] 0.41	[2.33]
1/2 in. [12.8 mm] air spaces	0.49 [2.7	[6] 0.42	[2.39] 0.35	[2.01]
1/4 in. [6.4 mm] argon spaces	0.51 [2.9	0.45	[2.54] 0.38	[2.15]
1/2 in. [12.8 mm] argon space:	0.47 [2.6	0.40	[2.30] 0.34	[1.91]

Conduction through Windows


$$Q_{windows} = U \times A \times CLTD$$

$$Q_{windows} = 0.63 \times 160 \times 13 = 1310 \text{ Btu/hr}$$

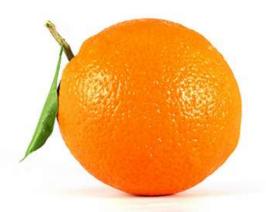
$$[Q_{windows} = 3.56 \times 14.4 \times 7 = 359 W]$$

Solar Radiation through Glass

Solar Heat Gain through Glass

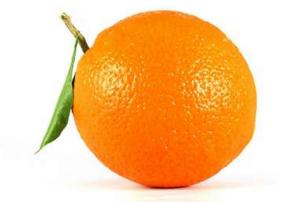
$$Q = A \times SC \times SCL$$

Where,


SC – Shading Coefficient

SCL – Solar Cooling Load Factor

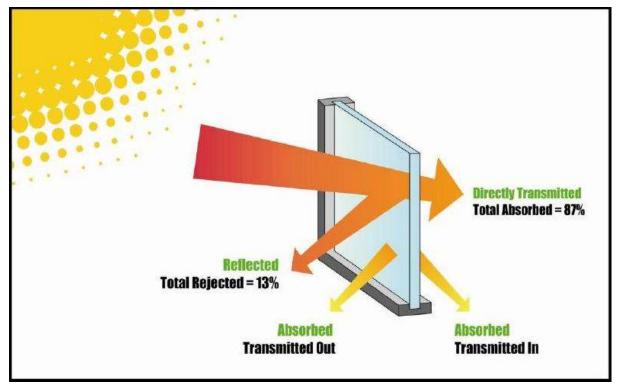
Solar Cooling Load Factor (SCL)


- Direction that the window faces
- Time of day
- Month
- Latitude
- Construction of interior partition walls
- Type of floor covering
- Existence of internal shading devices

SCL: A factor used to estimate the rate at which solar heat energy radiates directly into the space, heats up the surfaces and furnishings, and is later released to the space as a sensible heat gain.

Shading Coefficient (SC)?

It is an expression used to define how much of the radiant solar energy, that strikes the outer surface of the window, is actually transmitted through the window and into the space.



Shading Coefficient (SC)

shading coefficient at normal

	a imcidence ne		other frames	
	<u>operable</u>	fixed	<u>operable</u>	<u>fixed</u>
uncoated single glazing				
1/4 in. [6.4 mm] clear	0.82	0.85	0.69	0.82
1/4 in. [6.4 mm] green	0.59	0.61	0.49	0.59
reflective single glazing				
1/4 in. [6.4 mm] SS on clear	0.26	0.28	0.22	0.25
1/4 in. [6.4 mm] SS on green	0.26	0.28	0.22	0.25
uncoated double glazing				
1/4 in. [6.4 mm] clear - clear	0.70	0.74	0.60	0.70
1/4 in. [6.4 mm] green - clear	0.48	0.49	0.40	0.47
reflective double glazing			200	The state of the s
1/4 in. [6.4 mm] SS on clear - clear	0.20	0.18	0.15	0.17
1/4 in. [6.4 mm] SS on green -	0.18	0.18	0.15	0.16
clear SS = stainless-steel reflective coating				

Solar Radiation through Windows

$$Q_{windows} = 160 \times 0.74 \times 192 = 22733 Btu/hr$$

$$[Q_{windows} = 14.4 \times 0.74 \times 605 = 6447W]$$

Internal Heat Gains

People

Heat Generated by People

Metabolism of the human body normally generates more heat than it needs

 60% heat is transferred by convection and radiation to the surrounding environment.

 40% is released by perspiration and respiration.

Heat Generated by People (Chart)

Level Of Activity	Sensible Heat Gain	Latent Heat Gain
Moderately active work (Office)	250 BTU/hr (75W)	200 BTU/hr (55W)
Standing, light work, walking (Store)	250 BTU/hr (75W)	200 BTU/hr (55W)
Light bench work (Factory)	275 BTU/hr (80W)	475BTU/hr (140W)
Heavy work (Factory)	580BTU/hr(170W)	870BTU/hr (255W)
Exercise (Gymnasium)	710BTU/hr (210W)	1090BTU/hr (315W)

CLF Factors for People

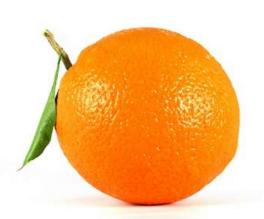
Total hours				Н	ours a	after	peop	le en	ter			
in space		2	3	₄ sp	aœ	6	7	8	9	10	11	12
2	0.65	0.74	0.16	0.11	0.08	0.06	0.05	0.04	0.03	0.02	0.02	0.01
4	0.65	0.75	0.81	0.85	0.24	0.17	0.13	0.10	0.07	0.06	0.04	0.03
6	0.65	0.75	0.81	0.85	0.89	0.91	0.29	0.20	0.15	0.12	0.09	0.07
8	0.65	0.75	0.81	0.85	0.89	0.91	0.93	0.95	0.31	0.22	0.17	0.13
10	0.65	0.75	0.81	0.85	0.89	0.91	0.93	0.95	0.96	0.97	0.33	0.24

Note: CLF – Cooling Load Factor

Capacity of a space to absorb and store heat.

Heat Gain from People

 Q_S = No: of people x Sensible heat gain per person x CLF


$$Q_{\text{sensible}} = 18 \times 250 \times 1.0 = 4500 \text{ Btu/hr}$$

 $Q_L = No:$ of people \times Latent heat gain/ person

$$Q_{latent} = 18 \times 200 = 3600 \text{ Btu/hr}$$

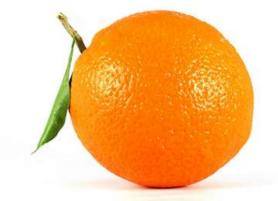
$$[Q_{\text{sensible}} = 18 \times 75 \times 1.0 = 1350 \text{ W}]$$

$$[Q_{latent} = 18 \times 55 = 990 W]$$

Heat Gain from Lighting

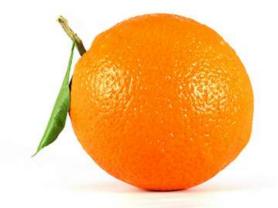
Q = Btu/hr × Ballast factor × CLF

 $Q = watts \times Ballast factor \times CLF$

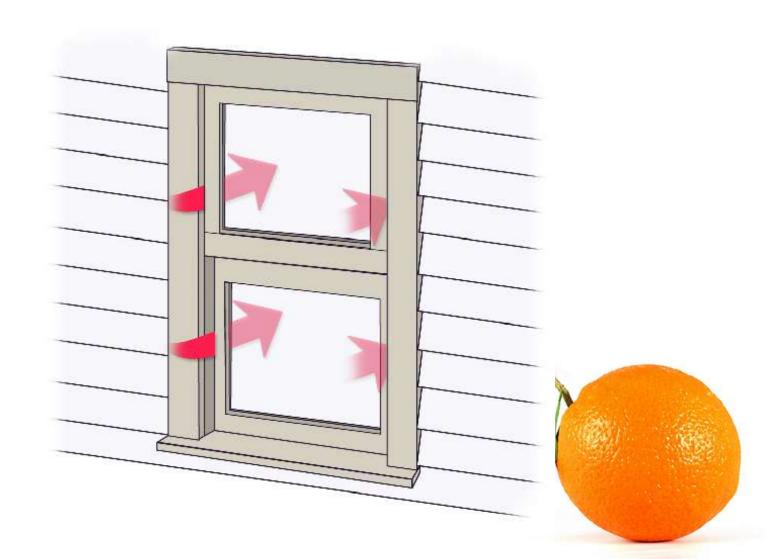

Ballast factor = 1.2 for fluorescent lights

Ballast factor = 1.0 for incandescent lights

Heat Gain from Lighting

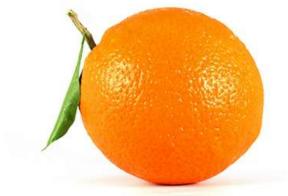

$$Q_{lights} = 5400 \times 3.41 \times 1.2 \times 1.0 = 22097$$
 Btu/hr

$$[Q_{lights} = 5400 \times 1.2 \times 1.0 = 6480 W]$$



Heat generated by equipment

Equipment	Sensible Heat Gain	Latent Heat Gain
Coffee maker	3580 BTU/hr (1050W)	1540 BTU/hr (450W)
Printer	1000 BTU/hr (292W)	
Typewriter	230 BTU/hr (67W)	



Infiltration

Methods of Estimating Infiltration

- Air change method
- Crack method
- Effective leakage-area method

Infiltration Airflow

Infiltration airflow =
$$\frac{32400 \times 0.3}{60}$$
 = 162 CFM

$$\begin{bmatrix} Infiltration \\ airflow \end{bmatrix} = \frac{927.6 \times 0.3}{3600} = 0.077 \text{ m}^3/\text{s}$$

Heat Gain from Infiltration

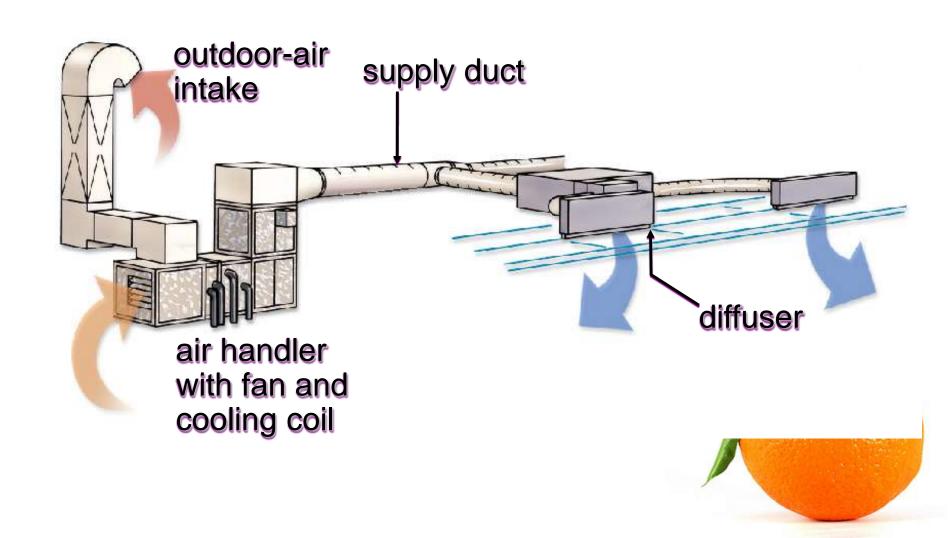
 $Q_{\text{sensible}} = 1.085 \times \text{airflow} \times \Delta T$

```
Q_{latent} = 0.7 \times airflow \times \Delta W
[Q_{\text{sensible}} = 1210 \times \text{airflow} \times \Delta T]
[Q_{latent} = 3010 \times airflow \times \Delta W]
\Delta W = (Outdoor Humidity Ratio – Indoor Humidity Ratio)
Air Flow – Quantity of air infiltrating the place
\Delta T = (Outdoor D.B.T - Indoor D.B.T)
Density x Specific Heat = 1.085 (1210) Btu•min/hr•ft3•°F
[J/m<sup>3</sup>•°K]
Latent Heat Factor = 0.7 (3010) Btu•min•lb/hr•ft³•gr
[J•kg/m³•g]
```

Heat Gain from Infiltration

$$Q_S = 1.085 \times 162 \times (95 - 78) = 2,988 \text{ Btu/hr}$$

$$Q_L = 0.7 \times 162 \times (105 - 70) = 3,969 \text{ Btu/hr}$$


$$[Q_S = 1,210 \times 0.077 \times (35 - 25.6) = 876 W]$$

$$[Q_L = 3,010 \times 0.077 \times (15 - 10) = 1,159 W]$$

Summary of Space Cooling Loads

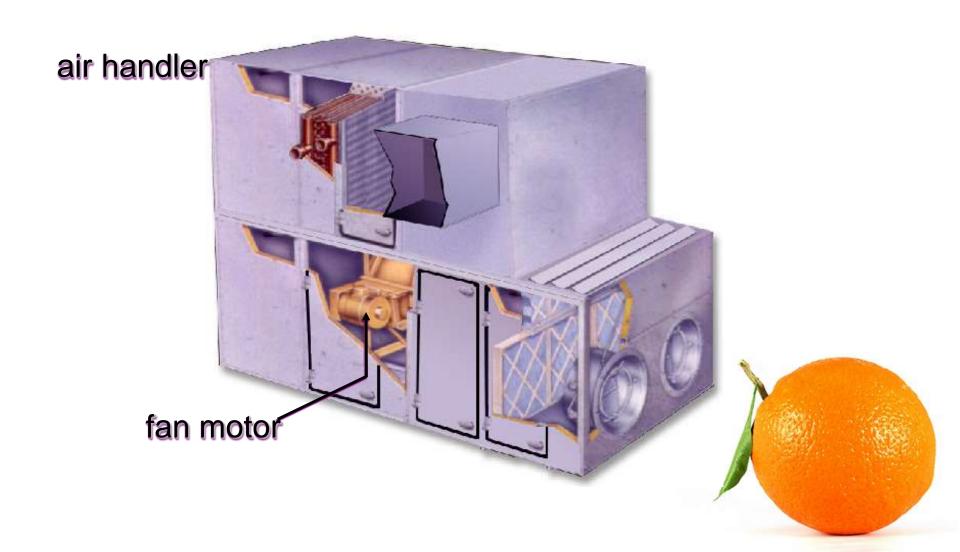
space load components	sensible load Btu/hr ₁ ½ ½ ½ ½ ½ ½ 2	latent load Btu/hr [W]
conduction through roof	[35 5 23]	
conduction through exterio	r wall (,13441)	
conduction through window	vs 23523 3	
solar radiation through wine	dows [64,4507]	3,600
people	[22,3507]	[990]
lights	[68,488)]	1,540
equipment	2 29 4 84]	[45969
infiltration	[876] 74.626	[1,159] 9,109
Total space cooling load	[21,623]	[2,599]

Ventilation

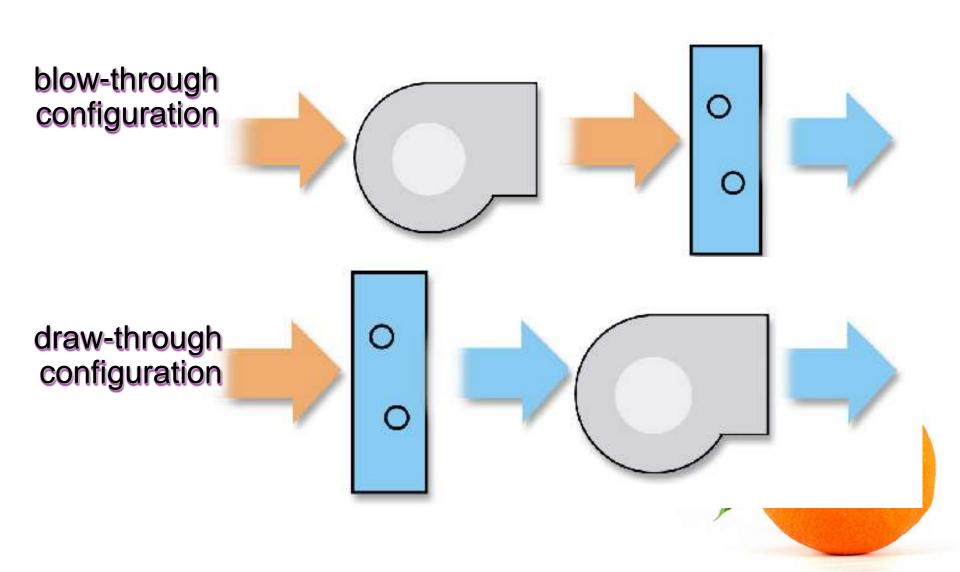
Outdoor Air Requirements

Type of Space	Outdoor Air/ person	Outdoor Air/ ft2 (m2)
Auditorium	15 CFM (0.008 m ³ /s)	
Class rooms	15 CFM (0.008 m ³ /s)	
Locker rooms		0.5 CFM (0.0025 m ³ /s)
Office space	20 CFM (0.01 m ³ /s)	
Public restrooms	50 CFM (0.025 m ³ /s)	
Smoking lounge	60 CFM (0.03 m ³ /s)	

Cooling Load Due to Ventilation


$$Q_S = 1.085 \times 360 \times (95 - 78) = 6640 \text{ Btu/hr}$$

$$Q_L = 0.7 \times 360 \times (105 - 70) = 8820 \text{ Btu/hr}$$


$$[Q_S = 1210 \times 0.18 \times (35 - 25.6) = 2047 W]$$

$$[Q_L = 3010 \times 0.18 \times (15 - 10) = 2709 W]$$

System Heat Gains

Components of Fan Heat

Heat Gain in Ductwork

Summary of Cooling Loads

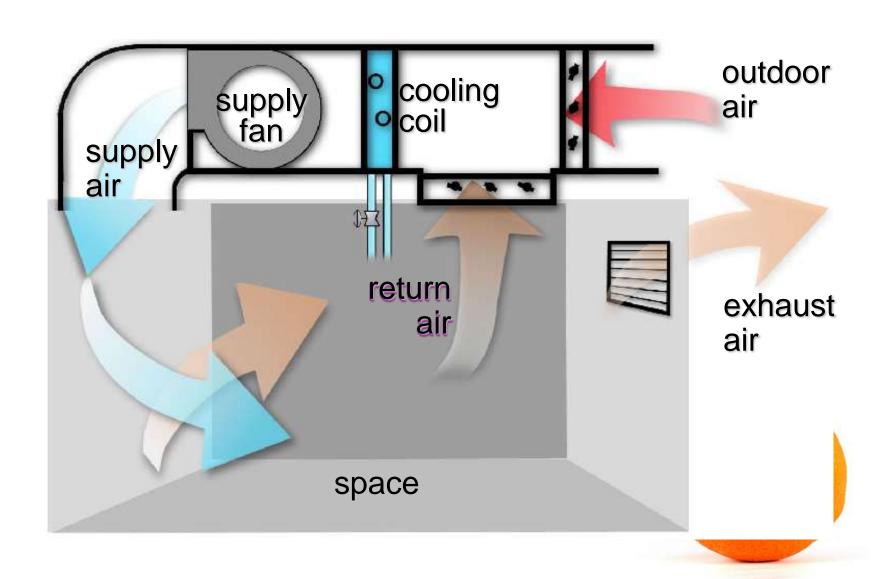
•	sensible load Btu/hrl 2 V S]12	latent load Btu/hr [W]
conduction through roof	[3 552 3]	
conduction through exterior	wall 1,131141	
conduction through windows	22593 3	
solar radiation through wind	ows [644 50 70]	3,600
people	22,3507	[990]
lights	[68,41 880]	1,540
equipment	22948 4]	[4596 9
infiltration	[7 46626	[19,1503
total space cooling load	[29,643]	[2,599]
ventilation	[39,26 6	477929
total coil cooling load	[23,670]	[5,308]

Psychometric Analysis

Space Load versus Coil Load

	space load	coil load	
conduction through roof, walls, windows,	✓	✓	
solar radiation through windows, s	kyligh	V	
conduction through ceiling, interior	✓	✓	_
people rtition walls, and floor	V	V	
lights	\	~	 -
equipment and appliances	V	V	
infiltration	V	V (See)	
ventilation		V	100
system heat gains			

Space Sensible and Latent Loads


space load components	sensible load Btu/hrj 1/3/12	latent load Btu/hr [W]
conduction through roof	[35 56 23]	
conduction through exterior	wall (,1344)	
conduction through window	rs 23523 3	
solar radiation through wind	dows [64,4507]	3,600
people	[212,35907]	[990]
lights	[68,4884]	1,540
equipment	229494]	[45969
infiltration	[876] 74.626	[1 ₉ 159]
total space cooling load	[21,623]	[2,599]
		1870 270 200 500

Sensible Heat Ratio (SHR)

$$SHR = \frac{74,626}{74626 + 9109} = 0.89$$

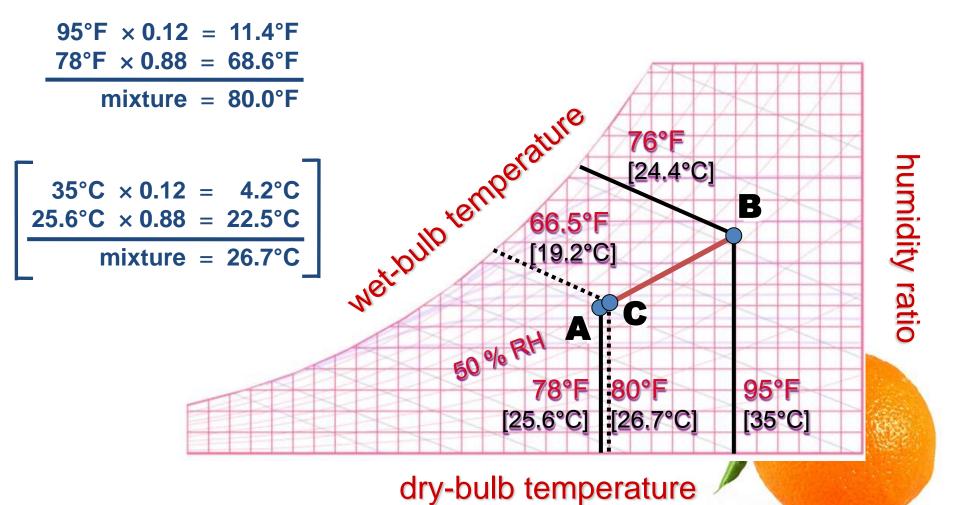
$$SHR = \frac{21623}{21623 + 2599} = 0.89$$

Single-Space Analysis

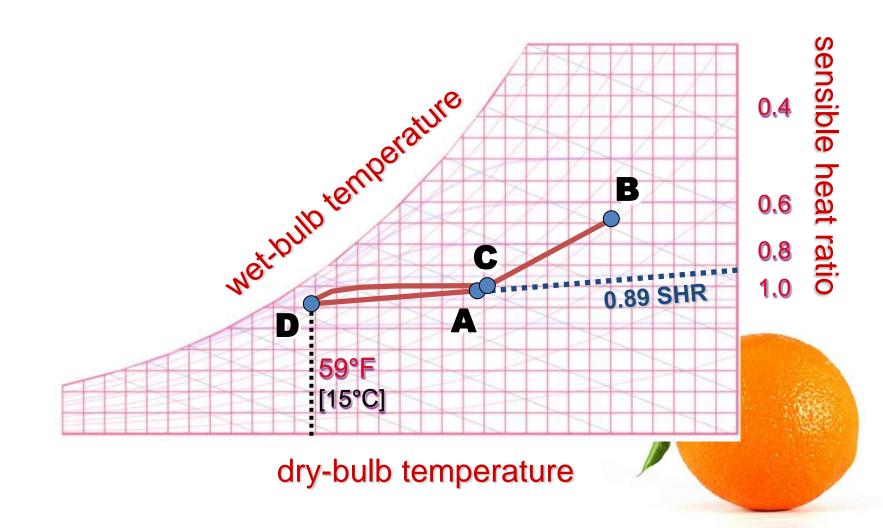
Determine Supply Airflow

Determine Supply Airflow

supply airflow =
$$\frac{74,626}{1.085 \times (78 - 55)}$$
 = 2,990 cfm


$$\begin{bmatrix} \text{supply} \\ \text{airflow} \end{bmatrix} = \frac{21,623}{1,210 \times (25.6 - 12.8)} = 1.40 \text{ m}^3/\text{s}$$

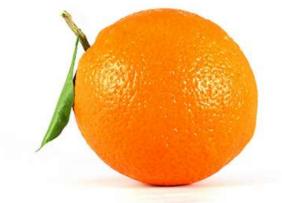
Calculate Entering Coil Conditions


$$%OA = \frac{360 \text{ cfm}}{2990 \text{ cfm}} = 0.12$$

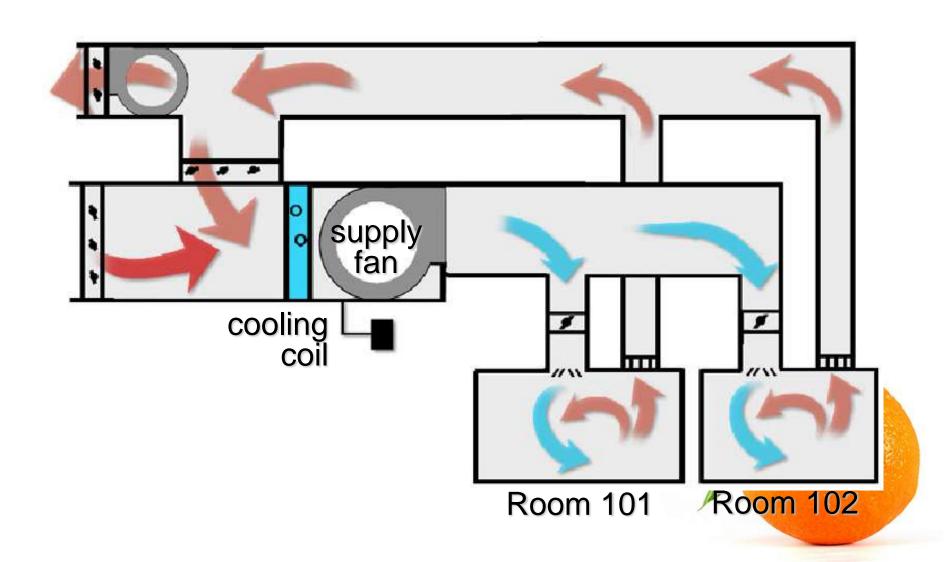
.0

Calculate Entering Coil Conditions

Determine Supply Air Temperature


Recalculate Supply Airflow

supply airflow =
$$\frac{74,626}{1.085 \times (78 - 59)}$$
 = 3,620 cfm


$$= \frac{21,623}{1,210 \times (25.6 - 15)} = 1.69 \text{ m}^3/\text{s}$$

Total Cooling Load on Coil

	Room 101 Btu/hr - 14/626
total space sensible load	[21,623]
total space latent load	9,109 [25,5489]
ventilation	[4,756] 99,195
total coil cooling load	[28.978]

Multiple-Space Analysis

Room 101 (Faces West)

space sensible load components	8 a.m. Btu/hp, β///6	4 p.m. Btu/hr ₁ ½ ⅓ <u>} 2</u>
conduction through roof	[740]	[355623]
conduction through exterior	wa 1 160 [48]	1,13440]
conduction through windows	202 [5,15] 52	23523 3
solar radiation through windo	ows [14,0502]	[64,45070]
people	22,3507	[22,3590]
lights	[68,41892]	[8,4894
equipment	2 29 88 4]	[29894]
infiltration	[876] 44.299	[876]
total space sensible load	[12,961]	[21,623]

Room 102 (Faces East)

space sensible load components	8 a.m. Btu/hp, β/√6	4 p.m. Btu/hrլ ֆ Vիչի 2
conduction through roof	[740]	[385443]
conduction through exterior	wa 1 160 [48]	[252]
conduction through windows	202 45,1 367	3,35793
solar radiation through windo	ows [64,1 581]	[\a75]
people	[22,3507]	[212,35507]
lights	[8,4894	[68,4880]
equipment	2 2,9 48 94]	[29884]
infiltration	[876] 62.414	[876] 55,313
total space sensible load	[18,087]	[16,158]

"Sum-of-Peaks" versus "Block"

space sensible load

Room 101 (faces west)

Room 102 (faces east)

8 a.m.

Btu/hr [14/299

[16246114

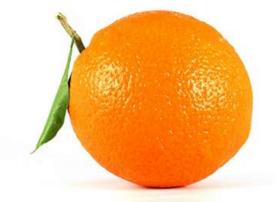
[18087]

4 p.m.

Btu/hr [14626

[25623]

[16158]


sum-of-peaks = **74626** + **62414** = **137040** Btu/hr [21623 + 18087 = 39710 W]

block = 74626 + 55313 = 129939 Btu/hr [21623 + 16158 = 3778 W]

"Sum-of-Peaks" versus "Block"

• Sum-of-peaks supply airflow = $6,648 \text{ CFM } [3.10 \text{ m}^3/\text{s}]$

• Block supply airflow = $6,303 \text{ CFM } [2.95 \text{ m}^3/\text{s}]$

"Block" Cooling Load

loads at 4 p.m.	Room 101 Btu/hr [W] 74626	Room 102 Btu/hr [W] 55313
total space sensible load	[21623]	[16158]
total space latent load	9109 [25489]	9109 [25489]
ventilation	[4756] 99195	[4756] 7988 2
Total coil cooling load	[28978]	[23513]

```
Block cooling = 99195 + 79882 = 179077 Btu/hr [28978 + 23513 = 52491 W] (4 p.m.)
```