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RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND

BOLTZMANN EQUATIONS

KARSTEN MATTHIES AND FLORIAN THEIL

MAY 29, 2018

Abstract. We study the long-time behavior of symmetric solutions of the nonlinear Boltzmann equa-

tion and a closely related nonlinear Fokker-Planck equation. If the symmetry of the solutions corre-

sponds to shear flows, the existence of stationary solutions can be ruled out because the energy is not

conserved. After anisotropic rescaling both equations conserve the energy. We show that the rescaled

Boltzmann equation does not admit stationary densities of Maxwellian type (exponentially decaying).

For the rescaled Fokker-Planck equation we demonstrate that all solutions converge to a Maxwellian

in the long-time limit, however the convergence rate is only algebraic, not exponential.

1. Introduction

Symmetric solutions play a very important role in materials sciences. The reason is that the fun-

damental laws of physics exhibit many symmetries such as translation and rotation invariance, those

symmetries lead to the existence of time-dependent solutions that are invariant under the action of a

symmetry group.

The term ‘objective solution’ has been coined in [15] for the case where the symmetry group is a

subgroup of the Euclidean symmetry group. We will study objective solutions in the case where the

symmetries consist of translations. For the purpose of this paper we say that a function f : Rn → R is

S-objective if f(ξ+ η) = f(ξ) for all η ∈ kerS, or equivalently requirement f(ξ) = g(S ξ) for some g.

We will be mostly interested in the kinetic setting where ξ = (z,w), z being the position and w the

velocity. It is important to realize that translation invariance implies that the configuration space is

unbounded, therefore extensive thermodynamic quantities such as energy are automatically infinite.

Moreover as we are dealing with open systems, it is not necessarily the case that local energy densities

are conserved even if the equation of motion are conservative.

The properties of the symmetric solutions depend strongly on the choice of S. If n = 2d, Id ∈ R
d×d

is the identity matrix and S = (Id, 0) ∈ R
d×2d one obtains solutions that are independent of ξ and the

choice S = (Id,±Id) yields expanding and contracting flows where w = ∓z. We will study Couette

flows/shear flows where

S = (−µα⊗ β, Id),

with µ ∈ R being the shear parameter, α,β ∈ R
d being orthonormal. To see that S corresponds to

shear-flows observe that

ker(S) = span{(α, 0), (β, µα)}
so that

f(z + xα+ y β,w + µ yα) = f(z,w).

One of the key obstacles to studying the long-time behaviour is the fact that stationary solutions do

not exist as the energy density of symmetric solutions increases with time. A popular approach to

overcome the problem of energy growth is to consider rescaled objective solutions [17, 8, 9, 15] and in

particular [19]. We revisit the concept of rescaled objective solutions for the Boltzmann equation and a

Fokker-Planck equation with similar properties. Our results are based on the notion of anisotropically

rescaled solutions. We analyze the corresponding rescaled equations and obtain the following results
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for the nonlinear Fokker-Planck equation (A) and the Boltzmann equation with hard sphere collisions

(B).

A) Characterization of stationary solutions and sharp estimates of the convergence rate (Theo-

rem 5). The convergence rate is algebraic.

B) Characterization of the collision invariants and a rigorous proof that stationary solutions are

not Maxwellian (Theorem 13).

The main difference between the nonlinear Fokker-Planck equation and the Boltzmann equation is that

the former has a purely local dissipation term whereas the Boltzmann equation involves a nonlocal

and nonlinear collision operator. As a result we can obtain much more detailed information about the

long-term behaviour of rescaled objective solutions of the Fokker-Planck equation than the Boltzmann

equation. In the conservative case it is well known that the Maxwellian is the unique stationary solution

of the Fokker-Planck equation and the Boltzmann equation. Moreover solutions of the linear Fokker-

Planck equation and the nonlinear, homogeneous Boltzmann equation converge to the equilibrium at

an exponential rate, cf. [10] and [24]. For the inhomogeneous Boltzmann equation the problem of

establishing exponential convergence to the equilibrium is closely linked to Cercignani’s conjecture,

an overview can be found in [12].

The behaviour of the rescaled objective solutions is quite different. In the case of the Fokker-Planck

equation the equilibrium after the anisotropic scaling is still a Maxwellian, but the rate of convergence

is only algebraic. While it is not known whether the rescaled Boltzmann equation for hard spheres

admits stationary solutions our results imply that even if one exist it is not of exponential type. In

particular, Maxwellians are not equilibria. We point out that existence of renormalized stationary

solutions of the Boltzmann equation with Maxwellian interaction has been established in [19].

The main method to analyse the long-term behaviour of the Fokker-Planck equation is an adaption

of hypocoercivity in a non-autonomous setting. Convergence to equilibria in degenerate dissipative

equations preserving mass has attracted major interest starting with the use of logarithmic Sobolev

inequalities, entropies and other tools functional analytic tools [25, 22]. These methods could be

applied to Fokker-Planck equations [1, 5] as well as some Boltzmann equations [4, 11]. A general

abstract approach for evolution equations consisting a (possibly) degenerate dissipative part and some

conservative part was introduced by Villani with his concept of hypocoercivity [29]. This method

has successfully been adapted in many contexts like a linear operator in some vorticity formulations

[16], a wide class of dissipative kinetic equations [14], a generalized Langevin equation [26] and the

meta-stability of bar states in Navier-Stokes equations [3]. Recent extensions of the theory include [13]

for classes of linear kinetic equations, [23] for kinetic Fokker-Planck equations, and [2] for a modified

general approach using a generalised Bakry-Émery calculus.

Our methodological contribution is an adaption to non-autonomous nonlinear equations by com-

bining the abstract hypocoercivity result for a limiting problem in a Duhamel formula with a priori

estimates for higher derivatives of the full equation. These a priori estimates are indeed obtained using

a calculus inspired by hypocoercivity.

2. Objective functions

Definition 1. Let S ∈ R
l×n a matrix. A function f ∈ L1

loc(R
n) is called S-objective if f(ξ+η) = f(ξ)

for all η ∈ kerS.

A classical result for functions which are invariant under the action of a symmetry group is the

Hilbert-Weyl theorem which states that the ring of invariant polynomials has a basis, cf. e.g. [18].

We require a closely related result for measurable functions.

Proposition 2. Let f ∈ L1
loc(R

n) be a measurable function. The following are equivalent:

(1) f is S-objective.
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(2) ∇ · (fT ) = 0 if T ∈ R
n×l has the property that rangeT = kerS.

(3) There exists a measurable function g : range(S) → R such that f(ξ) = g(Sξ).

The proof is standard, we include it for the convenience of the reader.

Proof. (1) implies (2):

It suffices to show that
∫
f ∇ϕ ·η dξ = 0 for each η ∈ kerS and each smooth and compactly supported

testfunction ϕ. As f is S-objective one finds that

0 = lim
h→0

1

h

∫

(f(ξ + hη)− f(ξ))ϕ(ξ) dξ = lim
h→0

1

h

∫

(ϕ(ξ − hη)− ϕ(ξ)) f(ξ) dξ = −
∫

(∇ϕ · η) f dξ,

which is the claim.

(2) implies (1):

As rangeT = kerS there exists a ∈ R
l such that η = Ta. Then

f(ξ + η)− f(ξ) =

∫ 1

0

d

ds
f(ξ + sη) ds =

∫ 1

0
∇f(ξ + sη) · η ds =

∫ 1

0
∇ · (f(ξ + sη)T )a ds = 0.

(1) implies (3):

Define the operator S̄ : range(S∗) → range(S) by S̄ = S|range(S∗). Observe that S̄ is invertible and

define g(ξ) = f(S̄−1ξ).

(3) implies (1):

If η ∈ kerS, then

f(ξ + η) = g(S(ξ + η)) = g(Sξ) = f(ξ).

�

We are interested in a shear flow setting where α,β ∈ R
d are orthonormal vectors, n = 2d and

S = (−µα⊗ β, Id) ∈ R
d×2d.

As kerS = span{(α, 0), (β, µα)} any S-objective function f satisfies

(1) f(z,w) = f(z + xα+ y β,w + µ yα) for all x, y ∈ R.

Moreover, by Proposition 2 part (2)

∇zf · α = 0,

∇zf · β + µ∇wf · α = 0,

or equivalently

(2) ∇zf = −µ (∇wf · α)β.

Our results are based on the observation that the representation of objective functions as in Propo-

sition 2 is not unique because S is not fully determined by the null space. A careful choice of the

representation can lead to interesting results.

Definition 3. A function f is rescaled objective if it admits the representation

(3) f(ξ) = det η G(η S ξ)

for some density G, where η ∈ R
d×d
sym.
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In the shear flow setting one obtains the scaling relation

(4) p = η (w + µα⊗ βz),

and the corresponding differential relation

(5) ∇wf = η∇pG.

Rescaled solutions for the Boltzmann equation in shear flow settings have been considered in numerous

publications, in particular [8] and [17]. Our main contribution to this topic is the consideration of a

renormalization operator η which is non-isotropic, i.e. η 6= λ Id for all λ ∈ R.

3. The Fokker Planck case

The Fokker-Planck equation is typically considered as the Kolmogorov forward equation of a Brow-

nian particle in a fluid. It has also been proposed as an approximation of the Boltzmann equation,

[21, 7]. Normally the temperature θ is a fixed parameter in the Fokker-Planck equation. In our setting

we assume that θ depends on the density f , as a result the structural properties of the solutions are

very similar to the solutions of the Boltzmann equation. In particular mass, momentum and energy

are conserved, however energy conservation only holds for µ = 0. Let ξ = (z,w) ∈ R
2d

{

∂tft(ξ) = Lft(ξ) ξ ∈ R
2d, t > 0,

f0(ξ) = g0(S ξ) ξ ∈ R2d, t = 0,
(6)

with g0 ∈ L1(Rd), g0 ≥ 0,

Lf = −w · ∇zf +∆wf +
ρ d

2θ
∇w · (f(z,w) (w − 1

ρ
v(z)),

and

ρt(z) =

∫

ft(z,w) dw (density),

ϑt(z) =
1

2

∫

|w − ρ−1v(z)|2 ft(z,w) dw (temperature),

vt(z) =

∫

w ft(z,w) dw (momentum).

The motivation for (6) is that it is similar to the classical Boltzmann equation as it has comparable

conservation properties. To see this we define the standard thermodynamic quantities mt = ρt(0)

(mass), v̄t = vt(0) (momentum) and θt = ϑt(0) (energy).

Proposition 4. Let f be a solution of (6) and (1) such that sup0≤t<T E[ft] < ∞. Then there exists

gt such that ft(ξ) = gt(S ξ). Furthermore, mass m and v̄ are conserved.

If µ = 0, then energy θ is also conserved. If fM is a Maxwellian, i.e. fM(w) = exp(h(w)) and

h(w) = a+ b ·w + c |w|2,

for some a ∈ R, b ∈ R
2, c < 0, then f is a stationary solution. Any spatially homogenous f with

f(.)(1 + |.|2) ∈ L1(R2) converges to some fM with an exponential rate as t → ∞.

The proof is a standard calculation, we include it in the appendix.

Equations (6,1) do not admit stationary solutions if µ 6= 0. We now aim to characterize the

asymptotic behavior of objective solutions for non-zero µ. The main result of this section states that

there exists a time-dependent rescaling operator ηt such that Gt converges to a Maxwellian as t → ∞.
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Theorem 5. Let d = 2. There exists ηt ∈ C1([0,∞),R2×2
sym) such that the rescaled Fokker-Planck

equation

(7)

{
∂tGt = ∇ ·

(
Gt(p) (θt

−1Id− F t)p+ η2t∇Gt

)
, t > 0, p ∈ R

2,

F t = (η̇t − µ ηtα⊗ β) η−1
t , t > 0,

admits a global solution Gt if G0 ∈ L1 ∩ L∞ and
∫

R2 G0(p)(1 + |p|2) dp < ∞. The density f , which

is defined by (3), satisfies (6).

Furthermore, assume
∫

R2 G0(p) dp = 1 and
∫

R2 G0(p)p dp = 0. The density Gt converges to the

Maxwellian GM (p) = (4π)−
d
2 exp(−1

4 |p|2) for large t in the L1 sense with an algebraic rate, i.e. there

exist λ−, λ+ > 0 such that

lim sup
t→∞

tλ−‖Gt −GM‖L1(R2) < ∞ for all G0(8)

and

lim inf
t→∞

tλ+‖Gt −GM‖L1(R2) > 0 for some G0.(9)

Furthermore, for t → ∞ the rescaling operator ηt admits the asymptotics:

ηt =
1

µ t
3

2 +O(t)
(
√
3α⊗α+ 3(α⊗ β + β ⊗α) + 2µtβ ⊗ β).(10)

Remark 6. (1) The assumption that d = 2 is not necessary. The same result can be obtained if

d ≥ 2 at the expense of more complicated notation.

(2) If µ 6= 0 the energy is not conserved. As a result (6) is nonlinear, hence even long-time

existence and uniqueness of solutions is not completely trivial.

(3) The fact that Maxwellians are global attractors of the dynamics is typically attributed to the

observation that the entropy is a Lyapunov functional. We show in the appendix that the

functional

(11) S[G] =

∫

R2

(

logG+
1

2
|p|2

)

G(p) dp

decreases for solutions of Fokker-Planck equation under shear boundary condition. However,

this observation is not sufficient for the solutions to converge to the minimum of S as the

dissipation operator ∇ · (η2t∇.) degenerates for t → ∞ as in (10).

(4) The algebraic order λ− > 0 follows from proposition 11 is not explicit as we use an abstract

result of [29] to obtain it. Similarly the constant for the lower bound λ+ is relatively crude.

3.1. Reformulation and regularity. The proof will take up the rest of this section. To minimize

the notation we will assume that
∫
G0(p) dp = 1 and

∫
G0(p)p dp = 0, i.e. m = 1 and v̄ = 0.

If ft is an objective solution, i.e. ft(z,w) = gt(w + µα⊗ βz) then by (6) and (2) gt satisfies

∂tg = µ (∇wg · α) (β ·w) + ∆wg + θ−1∇w · (g(w)w)

= ∇w ·
(
g(w)

(
θ−1Id + µα⊗ β

)
w
)
+∆wg.(12)

A rescaled objective solution Gt(p) = det η−1
t gt(η

−1
t p) with p = ηtw satisfies

∂tGt(p) = ∂t
(
g(η−1

t p) det η−1
t

)

= (∂tg −∇wg · η−1
t η̇tη

−1
t p− tr (η−1

t η̇t) g) det η
−1
t

=
(
∂tg −∇w · (g η−1

t η̇tw)
)
det η−1

t

=
(
∇w ·

(
g(η−1

t p)
(
θ−1Id + µα⊗ β

)
w
)
+∆wg −∇w · (g η−1

t η̇tw)
)
det η−1

t

5



Now observe that ∇w = ηt∇p. Continuing the above calculation we obtain

∂tGt =
(
∇p · ηt

(
Gt(p)

(
θ−1Id + µα⊗ β

)
η−1
t p

)
+∇p(gt η̇tη

−1
t p)

)
det η−1

t +∇p · η2t∇pGt

= ∇p ·
(
Gt(p) (θ

−1Id− (η̇t − µ ηtα⊗ β) η−1
t )p + η2t∇pGt(p)

)

which is (7).

Next we show that equation (7) admits unique solutions for arbitrary times. It suffices to consider the

case ηt = Id because for a general function ηt ∈ C1([0,∞),R2×2) the density G(p) = det η−1
t g(η−1

t p)

satisfies (7) if g solves (12).

We formulate the underlying regularity result as a proposition.

Proposition 7. Let g0 ∈ L1(R2) ∩ L∞(R2). If
∫

R2 g0(w)(1 + |w|2) dw < ∞, then (12) admits a

unique solution for all t > 0 such that
∫

R2 gt(w)(1 + |w|2) dw < ∞. Furthermore gt is smooth for

t > 0.

Proof. The diffusion term ∆wg is the generator of the strongly continuous semigroup on L2(R2) via

convolution with the classical heat kernel Φt(·) = 1
4πt exp

(

− |·|2
4t

)

for t > 0. By Hölder’s inequality,

we have g0 ∈ L2
2(R

2), i.e. the space of integrable function that satisfy
∫

R2 g
2
0(w)(1 + |w|2) dw < ∞.

Following e.g. [20], this generates equispectral semigroups on weighted Lp spaces like L2
2(R

2).

Due to θ the equation (12) is nonlinear in g, furthermore the factor w makes the divergence terms

unbounded. Hence we need to take care to define a mild solution to (12) in the form

(13) gt = [Φt ∗ g0] +
∫ t

0
Φt−s(.) ∗ (µ∇ · (gs(.)α ⊗ β.) + θ−1∇ · (gs(.) .) ds.

We will obtain this via an approximation scheme, let

χn(w) =

{

w, if |w| < n

nw/|w|, otherwise.

and θ0 = 1, we define recursively for n ∈ N as a non-autonomous Miyardera perturbation, see e.g.

[27], the following mild solution

(14) gnt = [Φt ∗ g0] +
∫ t

0
Φt−s(.) ∗ (µ∇ · (gs(.)α⊗ βχn(.)) + θ−1

n−1∇ · (gs(.)χn(.)) ds.

By the properties of the convolution, we see that gn is smooth for t > 0 and gives a classical as the

second convolution in (14) is well-defined. For a fixed time T > 0 standard a priori estimates give

uniform bounds in L∞((0, T ), L2
2(R

2)) and L2((0, T ),H1(R2)). Differentiating θn with respect to t

gives

dθn
dt

=
1

2

∫

R2

|w|2(µ∇ · (gtα⊗ βw) + ∆gt + θ−1
n−1∇ · (gt w)) dw

=
1

2

∫

R2

|w|2∆gt dw

︸ ︷︷ ︸

=2

−µ

∫

R2

(w · α)(β ·w) gt dw − θ−1
n−1

∫

R2

|w|2 gt dw
︸ ︷︷ ︸

=2θn

≤ C + (|µ|+ 2

θn−1
θn.

Thus with a Gronwall estimate, θn and θ̇n remain bounded. Similarly

dθn
dt

(θn)
−1 =

−1

θ2n
(2− µ

∫

R2

(w · α)(β ·w) gt dw − θ−1
n−12θn

≤ −2

θ2n
+ (|µ|+ 2

θn−1
) (θn)

−1,

6



which also shows that θ−1
n and dθn

dt (θn)
−1 remain bounded on (0, T ).

All bounds combined give a subsequence such that gn → g weakly in L2((0, T ),H1(R2)), gn → g

weak star in L∞((0, T ), L2
2(R

2)), θn → θ strongly in C0(0, T ), such that the nonlinear term will

converge weakly to θ−1∇w · (g(.) .). Standard arguments as in [28, chap 2] give then that g satisfies

(13). To show uniqueness consider two solutions g, h and a priori estimates of d
dt(g − h, g − h) and

d
dt

(
θ[g]−1 − θ[h]−1

)
together with the Gronwall inequality show g = h. �

The next step is to study the evolution equations of the moments of g and G.

A careful analysis of the moments of g and G will deliver

(1) The rescaling operator ηt by requiring that

(15)
1

2

∫

G(p)p ⊗ p dp = Id

holds for all t ≥ 0.

(2) Tightness of p2 G(p).

An easy calculation shows that (15) holds if

(16) ηt = T− 1

2 ,

where

T =
1

2

∫

gt(w)w ⊗w dw

is the Cauchy stress tensor for g. Indeed,

1

2

∫

G(p)p⊗ p dp =
det ηt
2

∫

(ηt w)⊗ (ηtw)G(ηt w) dw = ηt T η∗t

as required.

Finally we characterize the long-time behaviour of Gt if ηt = T− 1

2 . The result are summarised in

the next proposition, which is proved in the appendix.

Proposition 8. Let G be a solution of (7) with initial data as in Theorem 5, then the following

asymptotics hold for t → ∞:

ηt =
1

µ t
3

2 +O(t)
(
√
3α⊗α+ 3(α⊗ β + β ⊗α) + 2µtβ ⊗ β),(17)

T−1 =
2

t+O(1)

(
6

(µt)2
α⊗α+

3

µt
(α⊗ β + β ⊗α) + 2β ⊗ β

)

,(18)

θ−1 = O(t−3),(19)

F = (η̇t − µηtα⊗ β) η−1
t = − 1

2t+O(1)

(

O(1/t2)α⊗α+
√
3(α⊗ β − β ⊗α) + 4β ⊗ β

)

.(20)

Furthermore there exist c, λ̄, λ′ > 0 such that for all permissible G0 ∈ L1
6(R

2) we have that

(21)

∫

R2

∣
∣(Gt −GM )(p)

∣
∣ |p|6 dp = O(1 + tλ

′

)

and for almost all permissible initial data G0 ∈ L1
6(R

2) there exists c > 0 such that for sufficiently

large t

(22)

∣
∣
∣
∣

∫

R2

(Gt −GM )(p) |p|4 dp

∣
∣
∣
∣
> ct−λ̄.
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3.2. Lower estimates using higher moments. The estimates on the higher moments in the last

proposition yield the lower estimates (9) in the following way for almost all initial data.

Let BR the ball of radius R in R
2, we first note that for all R > 0 using (21)

∣
∣
∣
∣

∫

R2

(G(p)−GM (p)) |p|4 dp

∣
∣
∣
∣

≤R4

∫

BR

|G(p)−GM (p)| dp+R−2

∫

R2\BR

|G(p)−GM (p)| |p|6 dp

≤R4

∫

R2

|G(p)−GM (p)| dp+
C

R2
tλ

′

.

Note that R may depend on t in the above estimate.

Then (22) implies with the choice R = R(t) = tλ̄+λ′/2 that
∣
∣
∣
∣

∫

R2

(Gt(p)−GM (p))|p|4 dp

∣
∣
∣
∣
≥ 2

C

R2
tλ

′

(23)

for t large enough as the right hand side is O(t−2λ′

). Then we obtain that

lim inf
t→∞

t5λ̄+2λ′‖Gt −GM‖L1(R2) = lim inf
t→∞

tλ̄R4‖Gt −GM‖L1(R2)

≥ lim inf
t→∞

tλ̄
[∣
∣
∣
∣

∫

R2

(Gt(p)−GM (p)) |p|4 dp

∣
∣
∣
∣
− C R−2 tλ

′

]

≥ lim inf
t→∞

tλ̄
1

2

∣
∣
∣
∣

∫

R2

(Gt(p)−GM (p)) |p|4 dp

∣
∣
∣
∣
> 0,

where the penultimate estimate is due to (23) for sufficiently large t.

3.3. Asymptotics of shape equation and hypocoercivity. With the asymptotic information on

the coefficients we can study the shape equation (7).

Lemma 9. The Maxwellian GM (p) = 1
4π exp(−1

4 |p|2) is a stationary solution to (7).

Proof. Substituting GM into (7) and observing that ∇GM (p) = −1
2G

M (p)p one finds that GM is

stationary if and only if

tr

(

θ−1Id− F − 1

2
η2t

)

GM (p)− 1

2
p ·
(

θ−1Id− 1

2
(F + F ∗)− 1

2
η2t

)

pGM (p) = 0.(24)

Next, recall that by (15) the covariance matrix of G is constant, i.e. d
dt

∫
p⊗ pG(p) dp = 0. Hence,

after multiplication of (7) with 1
2p⊗ p and integration by parts one obtains that

F + F ∗ + η2t = 2 θ−1Id.(25)

Clearly both terms on the left-hand side (24) vanish thanks to (25). �

Although Lemma 9 provides a candidate for the attractor of the evolution it is not obvious that

limt→∞Gt = GM holds (in any norm). The reason is that by (17) the coercivity constant of the

dissipation operator ∇ · η2t∇ diverges as t → ∞. To show the convergence we use a nonautonomous

perturbation to the theory of hypocoercivity [29] combined with a priori estimates for the full equa-

tions.

It is advantageous to rescale time by defining

G̃s = Gexp(s).

As t = exp s and dt
ds = t the density G̃ satisfies the rescaled equation

(26) t ∂tG = ∂sG̃ = t∇ ·
(

G̃(p) (θ−1Id− F )p + η2t∇G̃
)

.

8



The coefficients in (26) are controlled by proposition 8. Next we rewrite (26) as a density with respect

to GM , then we obtain for Gt = utG
M ,

(27) ∂su = ∇p · (T−1∇u) +∇u ·
(
θ−1Id− F − T−1

)
p

We split the last equation into an autonomous main part using (18),(19) and (20) that provide bounds

on some decaying perturbation.

∂su = 4tr (β ⊗ β∇2u) +∇u ·
(√

3

2
(α⊗ β − β ⊗α)− 2β ⊗ β

)

p(28)

+ exp(−s)
{

∇u · (C1α⊗ β + C2β ⊗α+ C3β ⊗ β + C4α⊗α)p

+(C5 (α⊗ β + β ⊗α) + C6β ⊗ β + C7 exp(−s)α⊗α)∇2u)
}

for some appropriate uniformly bounded non-autonomous coefficients Ci for i = 0, . . . , 7.

For the long-term convergence of solution of the shape equations we use Villani’s concept of Hypoco-

ercivity [29]. Consider a separable Hilbert spaceH with inner product 〈·, ·〉, which will be L2(R2, dGM )

in our case. Let A = (A1, . . . , Am) be an unbounded operator for some m ∈ N with domain D(A) and

let B be an unbounded antisymmetric operator with domain D(B). The theory reduces the conver-

gence to equilibrium of the nonsymmetric operator L = A∗A+B, which is not coercive in our case, to

the study of the symmetric operator A∗A+C∗C using the commutator C = [A,B]. Under appropriate

conditions this operator is coercive, which then implies convergence in the abstract Sobolev space H1

with norm ‖h‖2H1 = 〈h, h〉 + 〈Ah,Ah〉 + 〈Ch,Ch〉, in our case this will coincide with H1(R2, dGM ).

The simplest form of the theory is enough for our example and it is stated next.

Theorem 10. [29, Theorem 18] With the above notation, consider a linear operator L = A∗A + B

with B antisymmetric, and define the commutator C := [A,B]. Assume the existence of constants

α, β such that

(1) A and A∗ commute with C; Ai commutes with each Aj;

(2) [A,A∗] is α-bounded relatively to I and A;

(3) [B,C] is β-bounded relatively to A,A2, C and AC

Then there is a scalar product 〈〈·, ·〉〉 on H1(R2, dGM )/K, which defines a norm equivalent to the H1

norm, such that

(29) ∀h ∈ H1/K, 〈〈h,Lh〉〉 ≥ K(‖Ah‖2 + ‖Ch‖2)

for some constant K > 0 depending on α and β. If in addition

A∗A+ C∗C is κ -coercive

for some κ > 0, then there exists a constant λ > 0, such that

∀h ∈ H1/K, 〈〈h,Lh〉〉 ≥ λ〈〈h, h〉〉.

In particular, L is hypocoercive in H1/K, there is a c < ∞

‖ exp(−tL)‖H1/K→H1/K ≤ c exp(−λt),

where both λ and c only depend on upper bounds for α and β and lower bounds on κ.

The last theorem is used to show that the leading order of (28), i.e. its autonomous part, is

hypocoercive. Then we use the similar splitting Ls = A∗
sAs+Bs for the full equation to obtain a priori

estimates. Both ingredients will then combined via a Duhamel formula to provide the convergence

result for (28).

9



Proposition 11. The autonomous part of (28) given by

(30) ∂su = 4tr (β ⊗ β∇2u) +∇u ·
(√

3

2
(α⊗ β − β ⊗α)− 2β ⊗ β

)

p

defines a contraction in time in H1(R2, dGM )/K, where K = span{1}, i.e. there exist c, λ > 0 such

that

(31) ‖ exp(−sL)‖H1/K→H1/K ≤ c exp(−λs).

Proof. Consider L2(R2, dGM ) with inner product 〈u, v〉 =
∫

R2 u(p)v(p)G
M (p) dp. We are now writing

(30) in Villani’s notation

(32) ∂su+ Lu = 0 with L = A∗A+B and B antisymmetric in L2(R2, dGM ).

Choosing coordinates and identifying the canonical basis vectors e1 e2 with α and β respectively, we

let

(33) (Au)(p1, p2) = 2∂2u(p1, p2) (Bu)(p1, p2) = −
√
3

2
(p2∂1u(p1, p2)− p1∂2u(p1, p2))

Then we obtain the adjoint A∗ of A in L2(R2, dGM ) by integration by parts in the inner product.

(34) (A∗u)(p1, p2) = −2∂2u(p1, p2) + p2u(p1, p2),

while B is antisymmetric, such that (32) is a reformulation of (30). We now check the assumptions of

theorem 10. We observe C := [A,B] = −
√
3∂1 and then (i) A and A∗ commute with C. Furthermore

(ii) holds as [A,A∗] = 2I. The commutator [B,C] = −3
2∂2 is relatively bounded by A, hence (iii)

holds. The general results imply then K = KerL = KerA ∩ KerB consists of constants only. In

addition A ∗A+C ∗C = −4∂2
2 +2p2∂2 − 3∂2

1 is coercive on L2(R2, dGM ) using a Poincaré inequality

as in [29, Thm A.1]. Then Theorem 10 implies there exist positive constants λ and c such that (31)

holds, completing the proof. �

To obtain a priori estimates, equation (28) is rewritten in the form of the last proposition with

time-dependent operators As and Bs.

(35) ∂su = −Lsu = −A∗
sAsu−Bsu

where

As = ηs∇(36)

A∗
s. = −∇ · (ηs.) +

1

2
pηs.(37)

Bsu = −∇u ·
(

θ−1Id− F − 1

2
T−1

)

p.(38)

Then by (24)

B∗
su = ∇u ·

(

θ−1Id− F − 1

2
T−1

)

p+
1

2
p

(

θ−1Id− F − 1

2
T−1

)

p = −Bsu,

such that Bs is anti-symmetric.

Lemma 12. Let us be the solution (28) obtained from rescaling the solution in prop. 7, then there is

K∗ > 0 such the a priori estimates holds for all s ≥ 1.

(39) ‖us‖H1(R2,GM ) + ‖∇us‖H1(R2,GM ) + ‖∇2us‖H1(R2,GM ) ≤ K∗.

10



Proof. Using the form in (35) we estimate the time derivative of the L2 norm

∂s〈us, us〉 =− 2〈Lsus, us〉 = 2〈−A∗
sAsus +Bsus, us〉

=2〈Asus, Asus〉 ≤ 0.

The derivatives of ∂1u and ∂2u with respect to p1 and p2 satisfy equations similar to (35).

∂s∂1us = −A∗
sAs∂1us −Bs∂1us +∇us ·

(
θ−1Id− F − T−1

)
e1(40)

∂s∂2us = −A∗
sAs∂2us −Bs∂2us +∇us ·

(
θ−1Id− F − T−1

)
e2(41)

This yields with the anti-symmetry of Bs

∂s〈∇us,∇us〉 = ∂s (〈∂1us, ∂1us〉+ 〈∂2us, ∂2us〉)
= 2〈As∂1us, As∂1us〉+ 2〈∇us ·

(
θ−1Id− F − T−1

)
e1, ∂1us〉

+ 2〈As∂2us, As∂2us〉+ 2〈∇us ·
(
θ−1Id− F − T−1

)
e2, ∂2us〉

≤ 2〈∇us ·
(
θ−1Id− F − T−1

)
e1, ∂1us〉+ 〈∇us ·

(
θ−1Id− F − T−1

)
e2, ∂2us〉

= 2〈∇us ·
(
θ−1Id− F − T−1

)
,∇us〉

≤ C exp(−s)〈∇us,∇us〉

where autonomous terms in (28) either cancel or have a sign, the form of the non-autonomous first-

order terms yields the remainder. Then the Gronwall inequality shows that

〈∇us,∇us〉 ≤ exp

(

C

∫ ∞

1
exp(−σ) dσ

)

〈∇u1,∇u1〉 = exp (C/e) 〈∇u1,∇u1〉

remains bounded for all times s > 1. A similar argument also holds for higher derivatives. We derive

differential equations for higher derivatives:

∂s∂
2
1us = −A∗

sAs∂
2
1us −Bs∂

2
1us + 2∇∂1us ·

(
θ−1Id− F − T−1

)
e1(42)

∂s∂2∂1us = −A∗
sAs∂2∂1us −Bs∂2∂1us +∇∂1us ·

(
θ−1Id− F − T−1

)
e2(43)

+∇∂2us ·
(
θ−1Id− F − T−1

)
e1

∂s∂
2
2us = −A∗

sAs∂
2
2us −Bs∂

2
2us + 2∇∂2us ·

(
θ−1Id− F − T−1

)
e2(44)

These equations yield due the properties of As and Bs

1

2
∂s
(
〈∂2

1us, ∂
2
1us〉+ 2〈∂2∂1us, ∂2∂1us〉+ 〈∂2

2us, ∂
2
2us〉

)

≤ 2〈∇∂1us ·
(
θ−1Id− F − T−1

)
,∇∂1us〉+ 2〈∇∂2us ·

(
θ−1Id− F − T−1

)
,∇∂2us〉

≤ C exp(−s) (〈∇∂1us,∇∂1us〉+ 〈∇∂2us,∇∂2us〉) ,

where the autonomous terms in (28) again either cancel or have a sign, the form of the non-autonomous

first-order terms yields the remainder. Using the Gronwall inequality yields a bound on the second

derivatives after an initial regularisation, e.g. for s > 1. Deriving similar equations for third derivatives

and estimating

∂s
(
〈∂3

1us, ∂
3
1us〉+ 3〈∂2

2∂1us, ∂
2
2∂1us〉+ 3〈∂2∂2

1us, ∂2∂
2
1us〉+ 〈∂3

2us, ∂
3
2us〉

)

yields the final required estimate. �
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3.4. Completing the proof of Theorem 5. The statements on the regularity of G follow from

proposition 7. The properties of the rescaling operator ηt are given in proposition 8. The lower

estimate (9) was given in subsection 3.2.

It remains to establish the convergence of Gt to GM in L1. It suffices to show that us → 0 in

L2(R2, dGM )/span(1). Indeed, we show convergence of u in the stronger H1(R2, dGM ) norm. Using

the Duhamel principle for the equation

(45) ∂sus = −Lus − (Ls − L)us

with L as in (32) and Ls as in (35). We starting from the positive time 1 for s > 1 to guarantee

uniform bounds for higher derivatives as in Lemma 12.

us = exp(−Ls−1)u1 −
∫ s

1
exp(−Ls−σ)(Lσ − L)uσ dσ

Then using the error estimates of Lσ − L in (28), Lemma 12 together with the contraction property

of L in H1(R2, dGM ) as in proposition 11 yields for s > 1

‖us‖H1(R2,dGM )

≤ exp(−λ(s− 1)) ‖u1‖H1(R2, dGM ) +

∫ t

1
‖ exp(−Ls−σ)‖H1→H1‖(Lσ − L)uσ‖H1(R2, dGM ) dσ

≤ exp(−λ(s− 1)) ‖u1‖H1(R2, dGM ) +

∫ t

1
exp(−λ(s− σ))C exp(−σ)K∗ dσ

≤ Cs exp(−min{λ, 1} s)

for some bounded C only depending on the L1 ∩ L∞ norms of the initial data due to initial regulari-

sation. Undoing the change of time from t to s we also see the rate of convergence is bounded by any

algebraic order greater than min{1, λ}.

4. The Boltzmann case

Now we consider the case where f satisfies the Boltzmann equation

∂tf +∇zf ·w = Q[f ] for z,w ∈ R
2,(46)

together with the boundary conditions (1). For simplicity the collision operator Q is assumed to be

the hard-sphere kernel

Q[f ](v) =

∫

S1

∫

R2

(f∗f
′
∗ − f f ′) (v − v′) · ν+ dv′ dν

We repeat the reduction steps in Section 3 and obtain the equivalent of equation (12):

(47)

{

∂tg = µ∇ · (gα⊗ βw) +Q[g],

g|t=0 = g0.

where gt = gt(w) and Q is unchanged (acts on w). As before we define the kinetic energy by

θ[g] =
1

2

∫

R2

|w|2 g(w) dw.

The energy θ is conserved if and only if µ = 0. A quantitative version of this observation delivers the

existence and uniqueness of solutions for all time.

For some time-dependent transformation ηt ∈ R
d×d we repeat the notation (4) and define

{

p = ηtw,

G(p) = det ηt g(η
−1
t p).

12



Then the collision operator Q can be written in terms of a rescaled collision operator

Qηt [G] = det ηtQ[g],

where

Qηt [G] =

∫

Sd−1

∫

R2

(G∗G
′
∗ −GG′) [ν · η−1

t (p− p′)]+ dp′ dν,

p∗ = p− ηtν ⊗ νη−1
t (p− p′),

p′
∗ = p′ + ηtν ⊗ νη−1

t (p− p′).

The function G satisfies the equation

(48) ∂tG = Qηt [G] −∇p · (GFp),

with F = (η̇t − µηtα⊗ β)η−1
t as before.

Our results for the Boltzmann case are less detailed than for the Fokker-Planck case. Although it

is not know whether (48) admits a stationary solution we can demonstrate that there is no stationary

solution of exponential type.

Theorem 13. Equation (48) admits a global solutions if G0 ∈ L1, which preserve mass and the

renormalized Cauchy stress tensor

Tηt =
1

2

∫

R2

p⊗ pG dp.

The collision invariants of Qηt are 1, η
−1
t p and |η−1

t p|2. The solutions Gt do not converge to a function

of exponential form K exp(h(p)) with h(αp) = αrh(p) ∀α > 0,∀p ∈ R
2 and a fixed r > 0 as t → ∞.

There exists a G∞ ∈ L1 with ‖G∞‖L1 = 1 and a sequence tj → ∞ as j → ∞ such that Gtj converges

weakly in L1 to G∞.

Remark 14. The question whether (48) admits a Lyapunov functional appears to be open. It is not

hard to see, if

S[G] =

∫

R2

G logG dp,

that we have

(49)
dS

dt
≤ −1

4

∫

R4

∫

S1

min
s∈[0,1]

(GG′ −G∗G′
∗)

2

sGG′ + (1− s)G∗G′∗
[ν · η−1

t (p− p′)]+ dν dp′ dp− trF

However the behaviour of F , which will be linked to the stress rates P in (54) below, cannot be

determined. Note that the first term in (49) is analogous to the standard entropy production in the

case where µ = 0. In particular, it is non-positive. However trP is not necessarily negative and in

contrast to remark 6 we cannot conclude that S is Lyapunov functional.
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Proof.

dS

dt
=

∫

R2

(1 + logG) ∂tG dp

=

∫

R2

(1 + logG)(Qηt −∇ · (GFp)) dp =

∫

R2

(Qηt −∇ · (GFp)) logG dp

=

∫

R2

Qηt logG dp+

∫

R2

1

G
∇pG · GFp dp

=

∫

R4

∫

Sd−1

(G∗G
′
∗ −GG′) logG [ν · η−1

t (p− p′)]+ dν dp′ dp− trF

=
1

4

∫

R4

∫

Sd−1

(G∗G
′
∗ −GG′) (logG + logG′ − logG∗ − logG′

∗) [ν · η−1
t (p− p′)]+ dν dp′ dp− trF

=
1

4

∫

R4

∫

Sd−1

(G∗G
′
∗ −GG′) (logGG′ − logG∗G

′
∗) [ν · η−1

t (p− p′)]+ dν dp′ dp− trF

≤ −1

4

∫

R4

∫

Sd−1

min
s∈[0,1]

(GG′ −G∗G′
∗)

2

sGG′ + (1− s)G∗G′∗
[ν · η−1

t (p− p′)]+ dν dp′ dp− trF,

as required. �

4.1. Collision invariants and stationary solutions. If we ignore trF in (49) it is well known that

the numerator vanishes if G depends only on collision invariants kηt(p) which are characterized by

k + k′ = k∗ + k′∗.

We determine the collision invariants below, but |p|2 is not a collision invariant for general ηt. Note

that every collision invariant k generates a stationary solution G = exp(k) for Qηt , but not in general

for the full equation (48).

Lemma 15. If G is a zero of Qηt , i.e. Qηt [G] = 0, then there exists a, c ∈ R, b ∈ R
2 such that

G(p) = exp
(
a+ b · η−1

t p+ c |η−1
t p|2

)
.

Let kηt(p) = p ·Kηtp with Kηt = (η∗t )
−1η−1

t ∈ R
2×2
sym. Then k is a quadratic collision invariant.

Proof. Recall that

(50) Qηt [G](p) = Q[g](η−1
t p),

where G(p) = det η−1
t g(η−1

t p). It is well known (e.g. [6], Sec. 3.2) that Q[g] = 0 if and only if

g = exp(k(p)) where k is a collision invariant, i.e.

k(p) = a+ b ·w + c|w|2.
Thus, Qηt [G] = 0 if and only if G = a+ b · η−1

t p+ c|η−1
t p|2, which is the claim. �

4.2. Choice of rescaling. It is not hard to see that collisions do not conserve standard kinetic energy

of p and p′. Indeed

|p∗|2 + |p′
∗|2 = |p− ηtν ⊗ νη−1

t (p− p′)|2 + |p′ + ηtν ⊗ νη−1
t (p− p′)|2

= |p|2 + |p′|2 − 2(p − p′) · ηtν ⊗ νη−1
t (p− p′) + 2(p − p′) · η−1

t ν ⊗ νη2t ν ⊗ νη−1
t (p− p′)

= |p|2 + |p′|2 + (p − p′) · Cν(p− p′),(51)

where

Cν = [(ν · η2t ν)η−1
t ν ⊗ νη−1

t − ηtν ⊗ νη−1
t ]sym.

The stress rates are given by

Pηt =
1

2

∫

R2

p⊗ pQηt dp,
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so that

trPηt =
1

2

∫

R4

∫

S1

|p|2 (G∗G
′
∗ −GG′) [ν · η−1

t (p− p′)]+ dν dp′ dp

=
1

4

∫

R4

∫

S1

(|p|2 + |p′|2) (G∗G
′
∗ −GG′) [ν · η−1

t (p− p′)]+ dν dp′ dp

=
1

4

∫

R4

∫

S1

(|p∗|2 + |p′
∗|2)GG′ [ν · η−1

t (p− p′)]+ dν dp′
∗ dp∗

−1

4

∫

R4

∫

S1

(|p|2 + |p′|2)GG′ [ν · η−1
t (p − p′)]+ dν dp′ dp

=
1

4

∫

R4

∫

S1

(p − p′) · Cν (p− p′)GG′ [ν · η−1
t (p− p′)]+ dν dp′ dp.(52)

The first equation holds because the order of integration can be exchanged, the last equation follows

from (51). In particular one finds that

(53) trPId = 0.

Our aim is to construct a time-dependent transformation ηt ∈ R
d×d
sym such that the renormalized Cauchy

stress tensor

Tηt =
1

2

∫

R2

p⊗ pG(p) dp

is constant. We have already seen in section 3 that Tηt = Id if

η−2
t =

1

2

∫

w ⊗w gt(w) dw,

and gt is a solution of (47). Differentiating the Cauchy stress with respect to t and using Tηt =
1
2Id

gives

dTηt

dt
=

1

2

∫

R2

p⊗ p (Qηt −∇ · (GFp)) dp = P +
1

2
(F + F ∗) = P + Fsym.

Thus, we have obtained a non-autonomous system of ordinary differential equations

(54) P + Fsym = 0.

Obviously (54) is the analogue of equations (25).

4.3. Are there stationary solutions that are of exponential form? Assume that G is of the

exponential form , i.e. there exist h ∈ C1(R2 \ {0}) and homogeneity exponent r > 0

G(h)(p) = K exp(h(p)), with h(λp) = λrh(p) ∀λ > 0,∀p ∈ R
2.

Note that by integrability of G this implies h < 0 on R
2. Now G is substituted into the differential

equation (48). Note first that

(55) ∇p · (G(h)(p) · Fp) = (trF +∇h · Fp)G(h)(p) = kt(p)G(p)

where k is the sum of a constant and homogeneous function of order r in p.

Furthermore in the collision term we denote

p∗ = p− ηtν ⊗ νη−1
t (p − p′), p′

∗ = p′ + ηtν ⊗ νη−1
t (p − p′),
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then it has the form

Qηt [G](p)

= K2

∫

R2

∫

S1

{

exp
(
h(p∗) + h(p′

∗)
)
− exp

(
h(p) + h(p′)

)}

[ν · η−1
t (p− p′)]+ dν dp′

= K2eh(p)
∫

R2

∫

S1

[
exp

(
h(p∗) + h(p′

∗)− h(p)− h(p′)
)
− 1
]
exp

(
h(p′)

)
[ν · η−1

t (p − p′)]+ dν dp′

= K2eh(p)
∫

R2

eh(p−q)

∫

S1

(
exp

(
h(p − ηtν ⊗ νη−1

t q) + h(p− q + ηtν ⊗ νη−1
t q)− h(p)− h(p− q)

)
− 1
)
[ν · η−1

t q]+
︸ ︷︷ ︸

=j(q)

dν dq.

To cancel the expression in (55), the integrals over j are necessarily O(|p|r) as |p| → ∞. First we

consider the case when q = p. Then the exponent can be simplified to

i(ν) := h(p − ηtν ⊗ νη−1
t p) + h(ηtν ⊗ νη−1

t p)− h(p)− h(0)

If there are ν and p such that

(56) i(ν) > 0,

then j(q) grows exponentially for a sector of q in R
2. Due to continuous dependence of these sector

on ν, the integral
∫

Sd−1 j(q) dν still grows exponentially on some sector in R
2. By choosing p in such

a sector, we obtain constants c1, c2 such that

Qηt [G](p) ≥ (c1j(p)− c2)G(p),

which cannot equal to a term kt(p)G(p) as in (55), where k is bounded by a polynomial.

We now establish the existence of some ν such that (56) holds. For t = 0 we have ηt = Id and by

(53) and (54) trF = 0, then equations (48) and (55) imply for p = 0 that

0 = Qηt [G
(h)] = Q[G(h)]

= K2

∫

R2

eh(−q)

∫

S1

(exp (h(−ν ⊗ νq) + h(−q + ν ⊗ νq)− h(−q))− 1) [ν · q]+ dν dq.

Unless r = 2, when h is a collision invariant, this implies that the exponent attains positive and

negative values. By exchanging the roles of p and p′, we hence obtain that (56) will hold for some p

and ν, hence ruling out any h with homogeneity exponent r > 0, r 6= 2.

Now consider the only remaining case h(p) = −d|η−1
t p|2 for some d > 0. The collision invariance of

h implies Qηt [G
(h)] ≡ 0. Furthermore ηt = Id is constant as G(h) is constant, i.e. ∂tG

(h) = 0. Hence

we obtain the equation

∇p · (G(h)(p) · Fp) = (trF + 2dp · Fp)G(h) = 0.

For ηt = Id, then F = −µα⊗ β, which is incompatible with trF − 2dp · Fp = −2dp · Fp = 0, thus

ruling out the collision invariant.

4.4. Completing the proof of Theorem 13. The regularity of the solution follows from the regu-

larity proposition below.

Proposition 16. If
∫

R2 g0(w)(1 + |w|2) dw < ∞, then (47) admits a unique mild solution for all

t > 0.

Proof. The transport term µ v ∂ug is the generator of the strongly continuous semigroupXt : L
1
2(R

2) →
L1
2(R

2) on the space of integrable function that satisfy
∫

R2 g0(w)(1 + |w|2) dw < ∞. The semigroup

is given explicitly by (Xtg)(w) = g((Id + µ tα ⊗ β)w). Furthermore by Povzner’s inequality Q is a
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continuous nonlinear operator on L1
2(R

2). This gives the existence of the unique mild solution to (47)

given by

(57) gt = Xtg0 +

∫ t

0
Xt−sQ(gs, gs) ds.

We show that we can continue this solution globally by showing that
∫

R2 gt(w)(1 + |w|2) dw < ∞ for

all times. First recall that

(58)

∫

R2

|w|2 Q[g] dw = 0,

hold for any density g with θ[g] = 1
2

∫
|w|2 dw < ∞ because |w|2 is a collision invariant. Differentiating

θ with respect to t gives

dθ

dt
=

1

2

∫

R2

|w|2(µ∇ · (gα⊗ βw) +Q[g]) dw

=
1

2

∫

R2

|w|2 Q[g] dw

︸ ︷︷ ︸

=0 by (58)

−µ

∫

R2

gw ·α⊗ βw dw

≤ µ

2

∫

R2

|w|2 g dw = |µ| θ[g].

Thus, θ[g] ≤ e|µ|t θ[g0]. By a similar argument,
∫

R2 gt(w) dw =
∫

R2 g0(w) dw, so
∫

R2 gt(w)(1 +

|w|2) dw remains bounded for bounded times, such that (57) defines global mild solution, which is

unique by a Gronwall argument. �

Then we transform the mild solution g as in the paragraph preceding (48) to obtain a global solution

G of (48).

The choice of ηt in subsection 4.2 give the preservation of mass and energy for Gt, this immedi-

ately gives the weak convergence of subsequences to some limit points. The collision invariants are

characterised in lemma 15. The shape of possible equilibrium is analysed in subsection 4.3.

5. Appendix: Proofs of Propositions 4 and 8, and Remark 6

Proof of Proposition 4. Assume that h(w) = a + b ·w is affine. Observe that (1) implies for each w

that

∇zf(xa,w) · α = 0

∇zf · β = −µ∇wf ·α
Consider now the quantity

H =

∫

R2

h(w) ∂tf(xa,w) dw

=

∫

R2

h(w)
(
∆wf + ρ θ−1∇w · (f(xa,w) (w − ρ−1v̄))−∇zf(xa,w) ·w

)
dw

=

∫

R2

{(
∆wh− ρ θ−1∇h · (w − ρ−1v̄)

)
f(xa,w) + µ (∇wf · α) (w · β)

}
dw

Clearly ∆h = 0 as h is affine. Moreover
∫

R2 b · (w− ρ−1w0) f(w) dw = 0 by the definition of w0 and

finally
∫

R2(∇wf(xa,w) · α) (w · β) dw = 0 by partial integration. This implies that

t 7→
∫

R2

h(w) ft(xa,w) dw is constant,

for all x ∈ R and by (1) this is constant and thereby the first claim.
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Next, assume that µ = 0 and h(w) = 1
2 |w|2. Repeating the previous calculation we obtain

H =

∫

R2

h(w) ∂tf(xa,w) dw

=

∫

R2

(2− θ−1|w|2) f(xa,w) dw =

∫ 1

0

(
2 ρ(xα) − 2 θ−1ρ θ(xα)

)
dw = 0.

Finally we demonstrate that fM is a stationary solution. One finds that

ρ = −π

c
exp

(

a− |b|2
4c

)

, w0 =
π

2c2
exp

(

a− |b|2
4c

)

b, θ =
π

2c2
exp

(

a− |b|2
4c

)

,

in particular ρ θ−1 = −2c and ρ−1w0 = − 1
2cb. Then

LfM = ∆wf
M + ρ θ−1∇w · (fM (w − ρ−1w0))−∇zf

M ·w

=

(

|∇h|2 +∆h− 4c− 2c∇h(w) ·
(

w +
1

2c
b

))

fM

=

(

4c2 |w|2 + |b|2 + 4c b ·w + 4c− 4c− 2c (2cw + b) ·
(

w +
1

2c
b

))

fM

=
((
4c2 − 4c2

)
|w|2 + (4c b− 2c (b + b)) ·w + |b|2 − |b|2

)
fM = 0.

To prove convergence for general spatially homogeneous initial datum f0, we rewrite the equation in

a spirit similar to subsection 3.3 and equation (27). Using that mass ρ, momentum w0 and energy θ

remain constant along solutions, choose fM such that its triple ρ,w0, θ coincide with the of f0. Then

write f = ufM with u ∈ L2(R2, dfM). To show L1 convergence it is enough to show that u → 0 in

L2(R2, dfM)/span(1) by Hölder’s inequality. The relative profile u satisfies the equation

∂tu = ∆u+ (b+ 2cw) · ∇u = −A∗Au,

where A = ∇u and A∗. = −∇.− (b+2cw). is its adjoint operator in L2(R2, dfM)/span(1) with inner

product 〈., .〉. Then
∂t〈u, u〉 = 2〈∂tu, u〉 = −2〈Au,Au〉 ≤ −2C〈u, u〉

using a Poincaré inequality as in [29, A.19], which then gives the required exponential convergence of

u to 0 in L2(R2, dfM)/span(1).

�

Proof of Remark 6. We calculate d
dtS[G] along solutions of (7), noticing that G is smooth with respect

to p as g is smooth for t > 0, so we can perform integration by parts etc.

d

dt
S[Gt]

=
d

dt

∫

R2

Gt(p) ln
G(p)

exp(−|p|2/2) dp =

∫

R2

(

ln
Gt(p)

exp(−|p|2/2) + 1

)

∂tG(p) dp

(7)
=

∫

R2

(

ln
Gt(p)

exp(−|p|2/2) + 1

)

∇p ·
(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇G(p)

)
dp

ibp
= −

∫

R2

∇
(

ln
Gt(p)

exp(−|p|2/2) + 1

)

·
(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp

=−
∫

R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) ·

(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp
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Next we split F into its symmetric and its anti-symmetric part, which are given by 1
2(F + F ∗) and

1
2(F − F ∗) respectively. For the symmetric part we use (25) and find that

−
∫

R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) ·

(
Gt(p)

(
θ−1Id− F

)
p+ T−1∇Gt(p)

)
dp

=−
∫

R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) · T−1 (Gt(p)p+∇Gt(p)) dp

+
1

2

∫

R2

1

Gt(p)
(∇Gt(p) +Gt(p)p) ·Gt(p) (F − F ∗)p dp

=−
∫

R2

1

Gt(p)
|ηt (Gt(p)p +∇Gt(p))|2 dp+

1

2

∫

R2

∇G(p) · (F − F ∗)p dp

+
1

2

∫

R2

p · (F − F ∗)pGt(p) dp

=−
∫

R2

1

Gt(p)
|ηt (Gt(p)p +∇Gt(p))|2 dp,

the other two integrals are zero, the middle one by integration by parts and the final one due to the

anti-symmetry of F − F ∗.
Hence S[Gt] decays unless Gt(p)p + ∇Gt(p) = 0, the only differentiable solution in L1(R2) are

multiples of the Maxwellian GM . �

Proof of Proposition 8. We will first establish formulae (17), (18), (19) and (20) by carefully analyzing

the second moments. Formulae (21) and (22) follow from cruder estimates of higher moments.

Second moments

The stress tensor T = 1
2

∫
gt(w)w⊗w dw satisfies a simple ordinary differential equation. Multiplying

(12) with 1
2w ⊗w and integrating by parts yields

dT

dt
= Id− µ (α⊗ β T + T β ⊗α)− 2

trT
T.(59)

To characterize the asymptotic behavior of T as t → ∞ we define the rescaled moments a, b, c by the

requirement

T = t3 aα⊗α+ t2 b (β ⊗α+α⊗ β) + t cβ ⊗ β.

Then (59) reads

3 t2 aα⊗α+ 2 t b (β ⊗α+α⊗ β) + cβ ⊗ β + t3
da

dt
α⊗α+ t2

db

dt
(β ⊗α+α⊗ β)

+t
dc

dt
β ⊗ β

= α⊗α+ β ⊗ β − µ
(
2t2bα⊗α+ tc (α⊗ β + β ⊗α)

)

− 2

a t3 + c t

(
t3 aα⊗α+ t2 b (β ⊗α+α⊗ β) + t cβ ⊗ β

)

The equations for the individual components read

α⊗α : 0 = 3t2a+ t3
da

dt
− 1 + 2t2µb+

2aet3

at3 + ct
,

α⊗ β : 0 = 2tb+ t2
db

dt
+ µtc+

2t2b

at3 + ct
,

β ⊗ β : 0 = c+ t
dc

dt
− 1 +

2ct

at3 + ct
.
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After rescaling time as well so that t = exp(s) and d
dt = exp(−s) d

ds equation (59) takes the form

(
d

ds
−M

)




a

b

c



 =





exp(−2s)

0

1



+
2

exp(2s) a+ c





a

b

c





with

M =





−3 −2µ 0

0 −2 −µ

0 0 −1



 .

As the spectrum of M is given by λ1 = −1, λ2 = −2, λ3 = −3 with corresponding eigenvectors

v1 = (1, 0, 0),v2 = (−2µ, 1, 0),v3 = (µ2,−µ, 1) a simple application of the variation of constants

formula delivers the asymptotic result




a

b

c



 = M−1





0

0

1



+O(exp(−s)) =





1
3µ

2

−1
2µ

1



+O(t−1).

This implies that the stress tensor admits the asymptotic result

(60) T = (t+O(1))T∞, t → ∞
where

T∞ =
1

3
(tµ)2α⊗α− 1

2
tµ (α⊗ β + β ⊗α) + β ⊗ β.

We can bootstrap this step by plugging (60) into (59). This shows that the function t → T − t T∞ is

differentiable and satisfies

(61)
d

dt
(T − t T∞) = O(t−1), t → ∞.

These asymptotics give results for ηt, η
−1
t , η̇t and T−1. Then as θ−1 = (tr T )−1, this implies (18) and

one also has the asymptotic result for F .

Fourth and sixth moments

We are now assuming that the related initial data for G0 satisfy g0 ∈ L1
6(R

2) and using (13) we can

see that higher moments up to order 6 are well-defined for finite times, these moments satisfy similar

ODEs. These will later allow us to choose suitable initial data for lower estimates on the rate of decay.

Letting

(62) hij(t) =

∫

R2

(Gt(p)−GM (p))pi1p
j
2 dp,

we obtain ordinary differential equations, which only depend on modes of the same or lower order.

The moment of order 0 and 1 (mass and momentum) are preserved by Prop. 4 for the evolution of g,

in the same way this also follows for G, where the momentum is assumed to be 0, i.e

(63) h00(t) ≡ 0 = h10(t) ≡ h01(t) ≡ 0

The rescaling ηt is defined such that (15) holds, i.e.

(64) h20(t) ≡ h02(t) ≡ h11(t) ≡ 0.

For the higher moments hij with i+ j > 2 we obtain using integration by parts

d

dt
hij(t) = −

( i+ j

θ
− iF11 − jF22

)
hij + jF12 hi+1 j−1 + iF21 hi−1 j+1(65)

+ i(i− 1)(η2t )11 hi−2 j + ij((η2t )12 + (η2t )21)hi−1 j−1 + j(j − 1)(η2t )22 hi j−2,
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where we assumed without loss of generality that α = (1, 0) and β = (0, 1). Using the information on

the coefficients in prop. 8 we write the moment equations in matrix notation:

d

dt
hij(t) = t−1

∑

k,l

(Nijkl +O(t−1))hkl(t) t ≫ 1,(66)

where the operator N is defined by

Nijkl =







−2j if (i, j) = (k, l),

−
√
3
2 j if (i, j) = (k + 1, l − 1),√
3
2 i if (i, j) = (k − 1, l + 1),

2j(j + 1) if (i, j) = (k, l + 2),

0 else.

with the convention that hij = 0 if i + i ≤ 2. The moments of odd order can all be chosen to be 0,

which is preserved by (65). Now rescaling time t = exp(s) and d
dt = exp(−s) d

ds equation (66) becomes

(67)

(
d

ds
−N +O(e−s)

)

h = 0 s ≫ 1,

where the operator N if a lower triangular form. Consider now the truncated operator

(Nijkl)i+j=k+l=4 =












0 2
√
3 0 0 0

−
√
3/2 −2 3

√
3/2 0 0

0 −
√
3 −4

√
3 0

0 0 −3
√
3/2 −6

√
3/2

0 0 0 −2
√
3 −8












.

It has only eigenvalues with negative real parts by the Routh-Hurwitz stability criterion. Using the

variation of constants formula we obtain

(68) (hij)i+j=4 = O(exp(−λ̄s))

for some λ̄ > 0, where the remainder term allows for lower exponential estimates

(69) lim inf
s→∞

exp(λ̄s) |(hij)i+j=4| > 0

for almost all initial data in (65). Transferring this back to time t gives the algebraic estimate (22)

for some c > 0 which depends on the initial value and all t large enough.

A less detailed calculation for the vector h of sixth moments gives then

d

dt
h = N (6)(t)h+O(

1

1 + tα
),

where α > 1 and ‖N (6)(t)‖ = O( 1
1+t) as t → ∞. After transforming to time s as above we obtain a

constant matrix plus some exponentially small error terms, this is enough using Gronwall’s inequality

to conclude that h grows at most exponentially in s and after transforming back to time t that h

grows at most algebraically with rate tλ
′

such that –without loss of generality– λ′ ≥ 0, this then yields

(21). �
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[5] J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A. Unterreiter. Entropy dissipation methods for degen-

erate parabolic problems and generalized Sobolev inequalities. Monatsh. Math., 133(1):1–82, 2001.

[6] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The mathematical theory of dilute gases, volume 106 of

Applied Mathematical Sciences. Springer-Verlag, 1994.

[7] CSW Chang, GE Uhlenbeck, GW Ford, and JD Foch. The Kinetic Theory of Gases. North-Holland, 1970.

[8] Kaushik Dayal and Richard D. James. Nonequilibrium molecular dynamics for bulk materials and nanostructures.

J. Mech. Phys. Solids, 58(2):145–163, 2010.

[9] Kaushik Dayal and Richard D. James. Design of viscometers corresponding to a universal molecular simulation

method. Journal of Fluid Mechanics, 691:461–486, 2012.

[10] L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating

systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1–42, 2001.

[11] L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the

Boltzmann equation. Invent. Math., 159(2):245–316, 2005.

[12] Laurent Desvillettes, Clément Mouhot, and Cédric Villani. Celebrating cercignanis conjecture for the boltzmann

equation. Kinetic and Related Models , AIMS, 4(1):277–294, 2011.

[13] Jean Dolbeault, Clément Mouhot, and Christian Schmeiser. Hypocoercivity for linear kinetic equations conserving

mass. Trans. Amer. Math. Soc., 367(6):3807–3828, 2015.

[14] Renjun Duan. Hypocoercivity of linear degenerately dissipative kinetic equations. Nonlinearity, 24(8):2165–2189,

2011.
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