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RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND
BOLTZMANN EQUATIONS

KARSTEN MATTHIES AND FLORIAN THEIL
MAY 29, 2018

ABSTRACT. We study the long-time behavior of symmetric solutions of the nonlinear Boltzmann equa-
tion and a closely related nonlinear Fokker-Planck equation. If the symmetry of the solutions corre-
sponds to shear flows, the existence of stationary solutions can be ruled out because the energy is not
conserved. After anisotropic rescaling both equations conserve the energy. We show that the rescaled
Boltzmann equation does not admit stationary densities of Maxwellian type (exponentially decaying).
For the rescaled Fokker-Planck equation we demonstrate that all solutions converge to a Maxwellian
in the long-time limit, however the convergence rate is only algebraic, not exponential.

1. INTRODUCTION

Symmetric solutions play a very important role in materials sciences. The reason is that the fun-
damental laws of physics exhibit many symmetries such as translation and rotation invariance, those
symmetries lead to the existence of time-dependent solutions that are invariant under the action of a
Symmetry group.

The term ‘objective solution’ has been coined in [I5] for the case where the symmetry group is a
subgroup of the Euclidean symmetry group. We will study objective solutions in the case where the
symmetries consist of translations. For the purpose of this paper we say that a function f : R™ — R is
S-objective if f(&+mn) = f(€) for all n € kerS, or equivalently requirement f(&) = g(S &) for some g.
We will be mostly interested in the kinetic setting where € = (z,w), z being the position and w the
velocity. It is important to realize that translation invariance implies that the configuration space is
unbounded, therefore extensive thermodynamic quantities such as energy are automatically infinite.
Moreover as we are dealing with open systems, it is not necessarily the case that local energy densities
are conserved even if the equation of motion are conservative.

The properties of the symmetric solutions depend strongly on the choice of S. If n = 2d, Id € R4*4
is the identity matrix and S = (Id,0) € R%*24 one obtains solutions that are independent of £ and the
choice S = (Id, £Id) yields expanding and contracting flows where w = Fz. We will study Couette
flows/shear flows where

S=(—pa®pg,Id),

with ;¢ € R being the shear parameter, o, 3 € R¢ being orthonormal. To see that S corresponds to
shear-flows observe that
ker(S) = span{(a, 0)7 (57 n a)}
so that
fetratyB,w+pya)=f(z,w).
One of the key obstacles to studying the long-time behaviour is the fact that stationary solutions do
not exist as the energy density of symmetric solutions increases with time. A popular approach to
overcome the problem of energy growth is to consider rescaled objective solutions [17} [8, 9, [15] and in
particular [19]. We revisit the concept of rescaled objective solutions for the Boltzmann equation and a
Fokker-Planck equation with similar properties. Our results are based on the notion of anisotropically
rescaled solutions. We analyze the corresponding rescaled equations and obtain the following results
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for the nonlinear Fokker-Planck equation (A) and the Boltzmann equation with hard sphere collisions
(B).
A) Characterization of stationary solutions and sharp estimates of the convergence rate (Theo-
rem [B). The convergence rate is algebraic.

B) Characterization of the collision invariants and a rigorous proof that stationary solutions are
not Maxwellian (Theorem [13)).

The main difference between the nonlinear Fokker-Planck equation and the Boltzmann equation is that
the former has a purely local dissipation term whereas the Boltzmann equation involves a nonlocal
and nonlinear collision operator. As a result we can obtain much more detailed information about the
long-term behaviour of rescaled objective solutions of the Fokker-Planck equation than the Boltzmann
equation. In the conservative case it is well known that the Maxwellian is the unique stationary solution
of the Fokker-Planck equation and the Boltzmann equation. Moreover solutions of the linear Fokker-
Planck equation and the nonlinear, homogeneous Boltzmann equation converge to the equilibrium at
an exponential rate, cf. [10] and [24]. For the inhomogeneous Boltzmann equation the problem of
establishing exponential convergence to the equilibrium is closely linked to Cercignani’s conjecture,
an overview can be found in [12].

The behaviour of the rescaled objective solutions is quite different. In the case of the Fokker-Planck
equation the equilibrium after the anisotropic scaling is still a Maxwellian, but the rate of convergence
is only algebraic. While it is not known whether the rescaled Boltzmann equation for hard spheres
admits stationary solutions our results imply that even if one exist it is not of exponential type. In
particular, Maxwellians are not equilibria. We point out that existence of renormalized stationary
solutions of the Boltzmann equation with Maxwellian interaction has been established in [19].

The main method to analyse the long-term behaviour of the Fokker-Planck equation is an adaption
of hypocoercivity in a non-autonomous setting. Convergence to equilibria in degenerate dissipative
equations preserving mass has attracted major interest starting with the use of logarithmic Sobolev
inequalities, entropies and other tools functional analytic tools [25, 22]. These methods could be
applied to Fokker-Planck equations [I, [5] as well as some Boltzmann equations [4) [I1]. A general
abstract approach for evolution equations consisting a (possibly) degenerate dissipative part and some
conservative part was introduced by Villani with his concept of hypocoercivity [29]. This method
has successfully been adapted in many contexts like a linear operator in some vorticity formulations
[16], a wide class of dissipative kinetic equations [14], a generalized Langevin equation [26] and the
meta-stability of bar states in Navier-Stokes equations [3]. Recent extensions of the theory include [13]
for classes of linear kinetic equations, [23] for kinetic Fokker-Planck equations, and [2] for a modified
general approach using a generalised Bakry—Emery calculus.

Our methodological contribution is an adaption to non-autonomous nonlinear equations by com-
bining the abstract hypocoercivity result for a limiting problem in a Duhamel formula with a priori
estimates for higher derivatives of the full equation. These a priori estimates are indeed obtained using
a calculus inspired by hypocoercivity.

2. OBJECTIVE FUNCTIONS

Definition 1. Let S € R™*" a matriz. A function f € L (R") is called S-objective if f(€+m) = f(€)
for all m € kerS.

A classical result for functions which are invariant under the action of a symmetry group is the
Hilbert-Weyl theorem which states that the ring of invariant polynomials has a basis, cf. e.g. [I§].
We require a closely related result for measurable functions.

Proposition 2. Let f € L%OC(R") be a measurable function. The following are equivalent:
(1) f is S-objective.



(2) V- (fT) =0 if T € R™ has the property that range T = kerS.
(3) There ezists a measurable function g : range(S) — R such that f(&) = g(S§).

The proof is standard, we include it for the convenience of the reader.

Proof. (1) implies (2):
It suffices to show that [ f V-nd€ = 0 for each 1 € kerS and each smooth and compactly supported
testfunction ¢. As f is S-objective one finds that

0= Jim & [ (F(€ +Tm) — F(€)o(€) d = lim 1 [ (ol€ ~ k) — (©) 1(6) a6 =~ [ (V- m) 1 e,
which is the claim.

(2) implies (1):
As range T = kerS there exists a € R! such that § = T'a. Then

1 1 1
ferm =1 = [ i€t ds= [ i€+ nas= [ V- (fe+mTads o

(1) implies (3):
Define the operator S : range(S*) — range(S) by S = S |range(s+)- Observe that S is invertible and
define g(§) = f(S7'€).

(3) implies (1):
If n € kerS, then

f(E+m) =g(S(E+n)) = g(S€) = f(&).

We are interested in a shear flow setting where o, 3 € R% are orthonormal vectors, n = 2d and
S =(—pa®p, Id) e R
As ker S = span{(«a, 0), (3, pcx)} any S-objective function f satisfies
(1) flz,w)=f(z4+za+yB,w+pya) for all z,y € R.
Moreover, by Proposition 2] part (2)
V.fra = 0,
Vaf B+ pVuf-a = 0,
or equivalently
(2) Vef == (Vuf-o)B.

Our results are based on the observation that the representation of objective functions as in Propo-
sition 2] is not unique because S is not fully determined by the null space. A careful choice of the
representation can lead to interesting results.

Definition 3. A function f is rescaled objective if it admits the representation

3) f(&) = detn G(nS¢€)

Rdxd

for some density G, where n € RgZT.



In the shear flow setting one obtains the scaling relation
(4) p=rn(w+pa® Bz),
and the corresponding differential relation
(5) Vuwf =nVpG.

Rescaled solutions for the Boltzmann equation in shear flow settings have been considered in numerous
publications, in particular [§] and [I7]. Our main contribution to this topic is the consideration of a
renormalization operator 1 which is non-isotropic, i.e. n # A1d for all A € R.

3. THE FOKKER PLANCK CASE

The Fokker-Planck equation is typically considered as the Kolmogorov forward equation of a Brow-
nian particle in a fluid. It has also been proposed as an approximation of the Boltzmann equation,
[211[7]. Normally the temperature 6 is a fixed parameter in the Fokker-Planck equation. In our setting
we assume that 6 depends on the density f, as a result the structural properties of the solutions are
very similar to the solutions of the Boltzmann equation. In particular mass, momentum and energy
are conserved, however energy conservation only holds for = 0. Let £ = (z,w) € R??

(6) Ocfe(€) = Lfi(€) €€ Rt >0,
fo(€) =g0(S€) € eR¥ =0,

with go € L*(R%), go > 0,

Lf = = Vaf + Auf + 55 V0 (7lzw) (w0 = 2o(2),
and
p(z) = [ iz w) dw (density),
0z =5 [l 0@ iz w) dw (temperature),
vi(2) = / w f,(z,w) dw (momentum).

The motivation for (6l) is that it is similar to the classical Boltzmann equation as it has comparable
conservation properties. To see this we define the standard thermodynamic quantities m; = py(0)
(mass), v; = v4(0) (momentum) and 6; = 94(0) (energy).

Proposition 4. Let f be a solution of (G) and (@) such that supy<,.7 E[fi] < co. Then there exists
gt such that fi(€) = gi(S&). Furthermore, mass m and v are conserved.
If 1 = 0, then energy 0 is also conserved. If fM is a Mazwellian, i.e. f™(w) = exp(h(w)) and

h(w)=a+b w+clw?

for some a € R, b € R?, ¢ < 0, then f is a stationary solution. Any spatially homogenous f with
FOM+ %) € LY(R?) converges to some fM with an exponential rate as t — oco.

The proof is a standard calculation, we include it in the appendix.

Equations (@) do not admit stationary solutions if p # 0. We now aim to characterize the
asymptotic behavior of objective solutions for non-zero p. The main result of this section states that
there exists a time-dependent rescaling operator 7; such that G; converges to a Maxwellian as t — oo.
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Theorem 5. Let d = 2. There exists n; € C’l([O,oo),ngxn%) such that the rescaled Fokker-Planck
equation

(7) { 0Gy =V- (Gt(p) (Gt_lld — Ft)p + T]?VGt) s t>0,pe R2,

Fy =(—pmpaB)n t>0,

admits a global solution Gy if Go € L' N L™ and [z2 Go(p)(1 + |p|?) dp < co. The density f, which

is defined by @), satisfies ({@).
Furthermore, assume [g, Go(p) dp = 1 and [z Go(p)p dp = 0. The density G, converges to the

Mazwellian GM (p) = (471)_% exp(—1|p[?) for large t in the L' sense with an algebraic rate, i.e. there
exist A_, Ay > 0 such that

(8) lim sup t~ || Gy — GMHU(Rz) < oo for all Gy
t—o0

and

9) liﬂinf MGy — GMHL1(R2) > 0 for some Gj.

Furthermore, for t — oo the rescaling operator n; admits the asymptotics:

(10) n = %(ﬂa@a—i—i%(a@,@—kﬁ@a)+2utﬁ®ﬁ).
pt2 4+ 0(t)
Remark 6. (1) The assumption that d = 2 is not necessary. The same result can be obtained if
d > 2 at the expense of more complicated notation.
(2) If u # 0 the energy is not conserved. As a result (@) is nonlinear, hence even long-time
existence and uniqueness of solutions is not completely trivial.
(3) The fact that Mazwellians are global attractors of the dynamics is typically attributed to the
observation that the entropy is a Lyapunov functional. We show in the appendix that the
functional

(11) sG] = [ (108G + 5lpl?) Gl) ap

decreases for solutions of Fokker-Planck equation under shear boundary condition. However,
this observation is not sufficient for the solutions to converge to the minimum of S as the
dissipation operator V - (n?V.) degenerates for t — oo as in (I0).

(4) The algebraic order A\_ > 0 follows from proposition [11] is not explicit as we use an abstract
result of [29] to obtain it. Similarly the constant for the lower bound A\ is relatively crude.

3.1. Reformulation and regularity. The proof will take up the rest of this section. To minimize
the notation we will assume that [ Go(p) dp =1 and [Go(p)p dp =0, ie. m =1 and v = 0.
If f; is an objective solution, i.e. fi(z,w) = g(w + pa ® Bz) then by (@) and (2)) g; satisfies
g = u(Vwg o) (B w)+ Awg+ 6! Vi - (9(w) w)
(12) = V- (9(w) (07'1d + pa ® B) w) + Aywg.

A rescaled objective solution G¢(p) = det nt_l gt(nt_lp) with p = nw satisfies

%Gi(p) = 0O (9(n;'p) detn; ")
= (019 — Vg 1; iy p— tr (n; ') g) detn;
= (&sg —Vw: (g 77[17'715 w)) det 7715_1

= (Vo (905 ') (07'1d + pa @ B) w) + Awg — Ve - (g7; ' w)) detry; !
5
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Now observe that V,, = 17;Vp. Continuing the above calculation we obtain

Gy = (Vp-m (Gulp) (07'1d + pa® B) 0, 'p) + Vp(ge 1y 'p)) detn; ' + Vp - 07 VpGy
= Vp (Ge(p) (07'1d = (1 — pm @ B) m; " )p + 07 VpGe(p))

which is ().

Next we show that equation ([7]) admits unique solutions for arbitrary times. It suffices to consider the
case 1; = Id because for a general function 7, € C*(]0, 00), R?*?) the density G(p) = det nt_l g(nt_lp)
satisfies (7)) if g solves (I2).

We formulate the underlying regularity result as a proposition.

Proposition 7. Let go € L'(R?) N L>®(R?). If [go go(w)(1 + |w|?) dw < oo, then ([I2) admits a
unique solution for all t > 0 such that [gs g¢(w)(1 + |w|?) dw < oo. Furthermore g, is smooth for
t>0.

Proof. The diffusion term A,,g is the generator of the strongly continuous semigroup on L?(R?) via
|-?

convolution with the classical heat kernel ®(-) = ﬁ exp <_E) for t > 0. By Holder’s inequality,

we have gy € L3(R?), i.e. the space of integrable function that satisfy [p. g3 (w)(1 + |w|?) dw < occ.
Following e.g. [20], this generates equispectral semigroups on weighted LP spaces like L3(R?).

Due to 0 the equation (I2) is nonlinear in g, furthermore the factor w makes the divergence terms
unbounded. Hence we need to take care to define a mild solution to (I2]) in the form

(13) gt = [(I)t * 90] + /Ot (I)t—s(') * (NV : (gs(') o ®/3) + 9_1 V- (gs(') ) ds.

We will obtain this via an approximation scheme, let
w, if lw| <n
Xn(w) = .
nw/|w|, otherwise.

and 0y = 1, we define recursively for n € N as a non-autonomous Miyardera perturbation, see e.g.
[27], the following mild solution

(14) g = [t go] +/0 () % (V- (95() @ ® Bxn() + 0,11 V- (g5() xn (1) ds.

By the properties of the convolution, we see that g™ is smooth for ¢ > 0 and gives a classical as the
second convolution in (I4]) is well-defined. For a fixed time 7' > 0 standard a priori estimates give
uniform bounds in L°°((0,7T), L3(R?)) and L2?((0,T), H*(R?)). Differentiating 6,, with respect to ¢
gives

dé,, 1 _
Do [ PRV e pw)+ Agt 0.1,V (g w)) du
t 2 Jr2
= 1/ |w|2Agt d'w—,u/ (w-a)(B w)g dw — Hgil/ |w|2gt dw
2 RZ RZ RZ
Nl —
=2 =20,

2

n—1

Thus with a Gronwall estimate, 6,, and 6,, remain bounded. Similarly

| .
G007 = e[ w8 w)g dw -0,
—2 2 .
< _Z
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which also shows that 6, and %(ﬁn)_l remain bounded on (0,7).

All bounds combined give a subsequence such that g, — g weakly in L2((0,7), H*(R?)), g» — g
weak star in L>((0,7), L4(R?)), 6, — 6 strongly in C°(0,T), such that the nonlinear term will
converge weakly to #71 V,, - (g(.).). Standard arguments as in [28, chap 2] give then that g satisfies
(@3). To show uniqueness consider two solutions g, h and a priori estimates of %(g —h,g — h) and
% (6lg)~' — 6[r] ") together with the Gronwall inequality show g = h. O

The next step is to study the evolution equations of the moments of g and G.
A careful analysis of the moments of g and G will deliver

(1) The rescaling operator 7, by requiring that
1
(15) g/G(p)p®p dp=1d

holds for all ¢ > 0.
(2) Tightness of p? G(p).

An easy calculation shows that (I5]) holds if
(16) n=T"%,

where

is the Cauchy stress tensor for g. Indeed,

det n;
2

%/G(p)p@mdp: /(mw)®(mw)G(mw) dw =0 T'n;

as required.
1
Finally we characterize the long-time behaviour of Gy if n, = T~ 2. The result are summarised in
the next proposition, which is proved in the appendix.

Proposition 8. Let G be a solution of ([l with initial data as in Theorem [3, then the following
asymptotics hold for t — oco:

A = — (Vawa+t3aoptBoa)tutses)
ptz +O(t)
R 2 6 3
(187! = t+O(1)((ut)2a®a+ﬁ(a®ﬁ+ﬁ®a)+2ﬂ®ﬁ>’
(199~" = O(t™),
(20) F = (ﬁt—,uma®ﬁ)77t_lZ—m(O(l/t2)a®a—|—\/§(a®ﬁ—ﬁ®a)+4ﬂ®ﬁ).

Furthermore there exist ¢, \, \' > 0 such that for all permissible Gy € Lé(Rz) we have that
2 [ 1(G =G ol ap = 001+ )

and for almost all permissible initial data Gy € Lé(R2) there exists ¢ > 0 such that for sufficiently
large t

(22)

/R (G~ GV (p) lpl* dp| > et

7



3.2. Lower estimates using higher moments. The estimates on the higher moments in the last
proposition yield the lower estimates (@) in the following way for almost all initial data.
Let Bp the ball of radius R in R?, we first note that for all R > 0 using (1))

[(€®)~ 6" ) ol dp

<R / G(p) — G (p)| dp + R~ / G(p) — G (p)]p|° dp
Br R2\Bgr
C
<R' | |G(p)—G"(p)| dp+ —5t".
o R

Note that R may depend on ¢ in the above estimate.
Then 22) implies with the choice R = R(t) = t**"/2 that
| (@)~ M wipl* ap

C
(23) > 2ﬁt)‘

for t large enough as the right hand side is O(t_”‘/). Then we obtain that

liminf t55‘+2XHGt - GMHLl(R2) = liminf tS\R4”Gt - GM”LI(RQ)
t—»00 t—ro0

> lim inf £ [

t—o0

/RZ(Gt(P) — GM(p)) Ip|* dp' R t’\'}

71
> liminf =
—00

[ Gt = M@)ot ap| >

where the penultimate estimate is due to (23]) for sufficiently large ¢.

3.3. Asymptotics of shape equation and hypocoercivity. With the asymptotic information on
the coefficients we can study the shape equation ().

Lemma 9. The Mazwellian GM(p) = ;- exp(—3|p|?) is a stationary solution to (7).

Proof. Substituting G™ into (7)) and observing that VGM (p) = —%GM(p)p one finds that GM is
stationary if and only if

_ 1 1 _ 1 o1
(24)  tr (9 d—-F - 577?) GM(p) - 5P (9 Td - S(F+F) - 577?) pGM(p)=0.

Next, recall that by (I3 the covariance matrix of G is constant, i.e. % [p®@pG(p) dp = 0. Hence,

after multiplication of ([7]) with %p ® p and integration by parts one obtains that

(25) F+F+n} = 207'1d

Clearly both terms on the left-hand side (24]) vanish thanks to (25]). O
Although Lemma [@ provides a candidate for the attractor of the evolution it is not obvious that

lim oo Gt = GM holds (in any norm). The reason is that by (7)) the coercivity constant of the

dissipation operator V - 77t2V diverges as t — co. To show the convergence we use a nonautonomous

perturbation to the theory of hypocoercivity [29] combined with a priori estimates for the full equa-

tions.
It is advantageous to rescale time by defining

Gs = Gexp(s)’
Ast =exps and % — t the density G satisfies the rescaled equation
(26) 18,G = 8,G =1V - (é(p) (0~'1d - F)p + nfvé) :

8



The coefficients in (26]) are controlled by proposition 8l Next we rewrite (26]) as a density with respect
to GM, then we obtain for Gy = u; GM,

(27) Osu=Vp- (T7'Vu)+Vu- (07'1d—F-T"")p

We split the last equation into an autonomous main part using (I8]),([I9) and (20) that provide bounds
on some decaying perturbation.

(28) Osu = 4tr(,8®ﬁv2u)+Vu-(?(a@ﬁ—ﬁ@a)—lﬁ@ﬂ)p

+exp(—s){Vu-(C’la®B+C’2B®a+03,8®,8+04a®a)p
+(Cs (@@ B+B®a)+Cf® B+ Crexp(—s)a @ a) V) |

for some appropriate uniformly bounded non-autonomous coefficients C; for : =0,...,7.

For the long-term convergence of solution of the shape equations we use Villani’s concept of Hypoco-
ercivity [29]. Consider a separable Hilbert space H with inner product (-, -), which will be L2(R?, dGM)
in our case. Let A = (Ay,...,A,) be an unbounded operator for some m € N with domain D(A) and
let B be an unbounded antisymmetric operator with domain D(B). The theory reduces the conver-
gence to equilibrium of the nonsymmetric operator L = A* A+ B, which is not coercive in our case, to
the study of the symmetric operator A* A+ C*C using the commutator C' = [A, B]. Under appropriate
conditions this operator is coercive, which then implies convergence in the abstract Sobolev space H'
with norm ||h||3{1 = (h,h) + (Ah, AR) + (Ch,Ch), in our case this will coincide with H'(R?, dGM).
The simplest form of the theory is enough for our example and it is stated next.

Theorem 10. [29, Theorem 18] With the above notation, consider a linear operator L = A*A+ B
with B antisymmetric, and define the commutator C' := [A, B]. Assume the existence of constants
o, B such that

(1) A and A* commute with C; A; commutes with each A;;
(2) [A, A*] is a-bounded relatively to I and A;
(3) [B,C] is B-bounded relatively to A, A%, C' and AC

Then there is a scalar product {{-,-)) on H'(R? dGM)/K, which defines a norm equivalent to the H"
norm, such that

(29) vhe H'/IC, ((h,Lh)) > K(||Ah||* +[|Ch|*)
for some constant K > 0 depending on o and B. If in addition
A*A+ C*C is k -coercive

for some k > 0, then there exists a constant X\ > 0, such that

Vhe HY/K, ((h,Lh)) > X{(h, h)).
In particular, L is hypocoercive in H' /K, there is a ¢ < oo

| exp(—tL)|| 1y mrjc < cexp(=At),
where both A and ¢ only depend on upper bounds for o and 8 and lower bounds on k.

The last theorem is used to show that the leading order of (28]), i.e. its autonomous part, is
hypocoercive. Then we use the similar splitting Ly = A} As+ B, for the full equation to obtain a priori
estimates. Both ingredients will then combined via a Duhamel formula to provide the convergence
result for (28]).



Proposition 11. The autonomous part of [28]) given by
2 V3
(30) Osu = 4tr (B ® BV*u) + Vu - 7(a®ﬁ—ﬁ®a)—2,@®ﬁ P

defines a contraction in time in H'(R%, dGM)/K, where K = span{1}, i.e. there exist c,\ > 0 such
that

(31) [ exp(—=sL)|| a1 k-1 < cexp(—As).

Proof. Consider L?(R?, dG™) with inner product (u,v) = [z u(p)v(p) GM (p) dp. We are now writing
0) in Villani’s notation

(32) dsu + Lu = 0 with L = A*A+ B and B antisymmetric in L*(R?, dGM).

Choosing coordinates and identifying the canonical basis vectors e; es with a and 3 respectively, we
let

(33) (Au)(p1,p2) = 202u(p1, p2) (Bu)(p1,p2) = —g(malu(pl,m) — p102u(p1,p2))

Then we obtain the adjoint A* of A in L2(R2, dGM) by integration by parts in the inner product.

(34) (A%u)(p1,p2) = —202u(p1, p2) + pau(p1, p2),

while B is antisymmetric, such that (32]) is a reformulation of (30]). We now check the assumptions of
theorem [[0l We observe C := [A, B] = —v/30; and then (i) A and A* commute with C. Furthermore
(i) holds as [A, Ax] = 2I. The commutator [B,C] = —30, is relatively bounded by A, hence (i)
holds. The general results imply then K = KerL = KerA N KerB consists of constants only. In
addition A A+ C % C = —403 + 2pa0y — 307 is coercive on L?(R?, dGM) using a Poincaré inequality
as in |29 Thm A.1]. Then Theorem [I0] implies there exist positive constants A and ¢ such that (31
holds, completing the proof. O

To obtain a priori estimates, equation (28] is rewritten in the form of the last proposition with
time-dependent operators A and Bs.

(35) Osu = —Lsu = —A Asu — Bgu
where
(36) As =nsV
. 1
(37) As. ==V (05:) + 5P
1
(38) Bsu = —Vu - (9‘1Id —F - 5T—1> p.
Then by (24])
Biu = Vu- (9‘1Id —F— %T‘1> p+ %p <9—11d —F — %T‘1> p = —Bgu,

such that By is anti-symmetric.

Lemma 12. Let ug be the solution [28)) obtained from rescaling the solution in prop. [T, then there is
K, > 0 such the a priori estimates holds for all s > 1.

(39) s | 1 2,y + Vsl 1 e,y + 1V us || gz gy < K.
10



Proof. Using the form in (B5]) we estimate the time derivative of the L? norm

Os(us, us) = — 2(Lsug, us) = 2(— A% Asus + Bsus, us)
=2(Asus, Asus) < 0.

The derivatives of 0ju and dru with respect to p; and po satisfy equations similar to (B5]).

(40) 0s01us = —A;AsO1us — BsOius + Vus - (0_1Id —F - T_l) e
(41) Os0aus = —ALA0ous — BsOoug + Vs - (07'1d — F —T7) ey

This yields with the anti-symmetry of By

0s(Vug, Vug) = 05 ({O1us, O1us) + (Oaus, Oaus))
= 2(As01us, AsOrus) + 2(Vus - (07'1d — F — T71) ey, 01us)
+ 2(As0ous, Adous) + 2(Vus - (07'1d — F — T71) 9, dou)
<2(Vug- (071d — F — T ") er, 01us) + (Vus - (07'1d — F — T7') es, Oous)
=2(Vu, - (07'1d— F — T71), Vuy)
< Cexp(—s)(Vus, Vuy)

where autonomous terms in (28)) either cancel or have a sign, the form of the non-autonomous first-
order terms yields the remainder. Then the Gronwall inequality shows that

(Vus, Vug) < exp (C’ /100 exp(—o) da> (Vui,Vuy) = exp (C/e) (Vuy, Vuq)

remains bounded for all times s > 1. A similar argument also holds for higher derivatives. We derive
differential equations for higher derivatives:

(42) 0s0tus = — AL A 07us — BsOfus +2V0ius - (07 1d— F — T ') e

(43) 0502015 = — AL A;0201us — BsdoOrus + Voius - (07'1d — F — T 1) ey
+ Voou, - (07'1d—F —T7 ") e

(44) Os05us = — AL A 05us — ByO3us + 2V 0aus - (071d — F — T ) ey

These equations yield due the properties of A; and By

%as (07 us, OFus) + 2(201us, D20 us) + (D3us, Daus))
<2Voiu - (0711d — F —T7Y) , Voius) 4+ 2(Vdau, - (071d — F —T71) , Voouy)

< Cexp(—s) ((valu& Va1us> + <V82u37 va2us>) )
where the autonomous terms in (28] again either cancel or have a sign, the form of the non-autonomous
first-order terms yields the remainder. Using the Gronwall inequality yields a bound on the second

derivatives after an initial regularisation, e.g. for s > 1. Deriving similar equations for third derivatives
and estimating

s ((OPus, O us) + 3(0501us, 0301us) + 3(0207us, 020Fus) + (Dus, Oyus))

yields the final required estimate. O
11



3.4. Completing the proof of Theorem [Bl The statements on the regularity of G follow from
proposition [l The properties of the rescaling operator 7; are given in proposition B The lower
estimate (@) was given in subsection

It remains to establish the convergence of Gy to GM in L'. It suffices to show that us — 0 in
L?(R2%, dGM) /span(1). Indeed, we show convergence of u in the stronger H'(R?, dGM) norm. Using
the Duhamel principle for the equation

(45) Osus = —Lus — (Ls — L)us

with L as in (32) and L, as in ([B5). We starting from the positive time 1 for s > 1 to guarantee
uniform bounds for higher derivatives as in Lemma

us = exp(—Ls—1)u; — / exp(—Ls—¢)(Ly — L) uy do
1

Then using the error estimates of L, — L in (28]), Lemma [I2] together with the contraction property
of L in H'(R?, dGM) as in proposition [l yields for s > 1

[usll g1 (w2, acm)

t
<exp(=A(s — 1)) lur || g1 (w2, agm) +/1 | exp(—Ls—o)ll gt mt (Lo — L)uol| g1 (r2, agyy do

¢
<exp(—A(s — 1)) lur || g (w2, agm) —l—/ exp(—A(s —0))C exp(—o) K* do
1
< Csexp(—min{\, 1} s)
for some bounded C only depending on the L' N L® norms of the initial data due to initial regulari-
sation. Undoing the change of time from t to s we also see the rate of convergence is bounded by any
algebraic order greater than min{1, A}.
4. THE BOLTZMANN CASE
Now we consider the case where f satisfies the Boltzmann equation
(46) atf+vsz:Q[f] for Z,’LUER2,

together with the boundary conditions ({). For simplicity the collision operator @ is assumed to be
the hard-sphere kernel

Qlflv) = / / (fufi=Ff) (w=2") vy do dv
St JR2
We repeat the reduction steps in Section Bl and obtain the equivalent of equation (I2):
{ g =pV-(ga®pw)+Qlgl,

(47)
g \tzo = 4o-

where ¢, = g;(w) and @ is unchanged (acts on w). As before we define the kinetic energy by

olo] = / w[? g(w) duw.

The energy 6 is conserved if and only if u = 0. A quantitative version of this observation delivers the
existence and uniqueness of solutions for all time.
For some time-dependent transformation 7, € R?*¢ we repeat the notation @) and define

D= e w,
G(p) = det; g(n; ' p).
12



Then the collision operator () can be written in terms of a rescaled collision operator

Qu[G] = det n; Qlgl,

where

Q6] = [ [ (CC-GE o p—ps apl

p, = p—nwavy ' (p-p),
p. = p+nvevy(p-p).

The function G satisfies the equation
(48) G = @y, [G] = Vp - (GFp),

with F = (1, — pmra @ B)n; " as before.

Our results for the Boltzmann case are less detailed than for the Fokker-Planck case. Although it
is not know whether (48)]) admits a stationary solution we can demonstrate that there is no stationary
solution of exponential type.

Theorem 13. Equation @) admits a global solutions if Go € L', which preserve mass and the
renormalized Cauchy stress tensor

1
Iy, = 5/ p®pG dp.
RQ

The collision invariants of Q, are 1, nt_lp and \nt_lp\2. The solutions Gy do not converge to a function
of exponential form K exp(h(p)) with h(ap) = o"h(p) Ya > 0,Yp € R? and a fived r > 0 as t — oo.
There exists a Goo € L' with ||Goo||z1 = 1 and a sequence t; — oo as j — oo such that Gy, converges
weakly in L' to Gu.

Remark 14. The question whether (48]) admits a Lyapunov functional appears to be open. It is not
hard to see, if

SiG) = G log G dp,
R2
that we have
ds 1 ) (GG — G*Gfk)2 » / /
4 — < = ) B R
) dt ~ 4/R4 /s i e T —sc.a M PPl dvdpdp—tr

However the behaviour of F , which will be linked to the stress rates P in (54]) below, cannot be
determined. Note that the first term in ({A9) is analogous to the standard entropy production in the
case where p = 0. In particular, it is non-positive. However tr P is not necessarily negative and in
contrast to remark[8 we cannot conclude that S is Lyapunov functional.

13



Proof.

a5 = / (1+1logG)0:G dp
dt -
= [, 0+18G)Qu — V- (GFP) dp= | (Qu =V (GFp)) logG dp
R2
= / Qn log G dp+/ VG- GFpdp
= G.G. GG logGv-m; ' (p—p))+ dv dp/dp —tr F
Sd—1 t
B i/ / (GG, — GG') (log G +1og G’ —log G —log G.) [v - n; '(p — p/)]4 dv dp'dp — tr F
- i/ / (GG, — GG') (log GG’ —log G.G.) [v - ;' (p— P')) dv dp'dp —tr F
(GG — G.G.)? " , ,
< = _ _ B
- /R4 /Sd I SGE T (1960 - (p—p)ls dv dp'dp —tr F,
as required. .

4.1. Collision invariants and stationary solutions. If we ignore tr F' in ([49)) it is well known that
the numerator vanishes if G depends only on collision invariants k,, (p) which are characterized by

k4+k =k, + k.

We determine the collision invariants below, but |p|? is not a collision invariant for general 7;. Note
that every collision invariant k generates a stationary solution G' = exp(k) for @,,, but not in general
for the full equation ({8]).

Lemma 15. If G is a zero of Qy,, i.e. Qy,[G] =0, then there exists a,c € R, b € R? such that
G(p) =exp (a+b-n;'p+cly 'pl?).
Let ky,(p) = p - Kp,p with K,, = (n})"'n; ' € ngxn% Then k is a quadratic collision invariant.

Proof. Recall that

(50) Qn[Gl(p) = Qlgl(n; '),

where G(p) = detn; *g(n;'p). Tt is well known (e.g. [6], Sec. 3.2) that Q[g] = 0 if and only if
g = exp(k(p)) where k is a collision invariant, i.e.

k(p) =a+b-w+ cw|’.
Thus, Q,,[G] = 0 if and only if G = a +b- 5, 'p + c[n; 'p|?, which is the claim. O

4.2. Choice of rescaling. It is not hard to see that collisions do not conserve standard kinetic energy
of p and p’. Indeed

2+ P = lp—mvovmp—pP)+ 1P +mv vy (p—p)P
= pP+1pP-20—p) nwevy ' (p-p)+20-9) n vovnive vy (p—p)
(51) = [pP+1pP+(-P) Culp-p),
where

Cy = [(v-niv)n v @ vn = @ v sym:
The stress rates are given by

1
P, = 5/ P RpQy, dp,
RZ

14



so that

tr P, = %/sz /S1 pI* (GG — GG ) [v - (p — p')]+ dv dp dp
= 1L, LR+ P GG =G o= v i ap
= 1L, L) 66 i o= )L v g dp,
1 | | pR R 66 b0 o= ) v ' ap
(52) = /w /51 p-9)-C,(p—p)GG [v-n " (p—p)]sdv dp dp.

The first equation holds because the order of integration can be exchanged, the last equation follows
from (BI)). In particular one finds that

(53) tr Pig = 0.

Our aim is to construct a time-dependent transformation 7, € Rgl;;f such that the renormalized Cauchy

stress tensor

1
Ty, = §/RQp®pG(p) dp

is constant. We have already seen in section [3 that 7}, = Id if

1
; :§/w®wgt(w) dw

and g is a solution of (@7T). Differentiating the Cauchy stress with respect to ¢ and using 7T, = %Id
gives

dT, 1
T 5/ P@p(Qy — V- (GFp))dp="P+ 7 (F+F*) P+ Feym.
R2

Thus, we have obtained a non-autonomous system of ordinary differential equations

Obviously (B4) is the analogue of equations (25]).

4.3. Are there stationary solutions that are of exponential form? Assume that G is of the
exponential form , i.e. there exist h € C1(R? \ {0}) and homogeneity exponent r > 0

GM(p) = K exp(h(p)), with h(Ap) = A\"h(p) VA >0,Vp € R%.

Note that by integrability of G this implies h < 0 on R?. Now @ is substituted into the differential
equation (48)). Note first that

(55) Ve (GW(p) - Fp) = (tr F + Vh - Fp) G™ (p) = ky(p) G(p)

where k is the sum of a constant and homogeneous function of order r in p.
Furthermore in the collision term we denote

p.=p-—nwevy ' (p-p), p.=p+nveovy(p-7p),
15



then it has the form
Qn[G(p)
= K2 /R2 /Sl{exp (h(p*) + h(p;)) — exp (h(p) 4 h(p'))}[u . 77t_1(p . p/)]+ dv dp,

= 120 [ [ fexp (hp.) + 1) = h®) — 1) ~ 1) exp (1(p) [ (p =2 v ap

= K2eh(p)/ eh(p—q)/
R2 st

(exp (h(p —mv @ vn;'q) + h(p—a+mv®@vn;'q) — h(p) — h(p — q@)) — 1) [v-n; 'ql+ dv dq.

=j(q)
To cancel the expression in (53)), the integrals over j are necessarily O(|p|") as |p| — oo. First we
consider the case when ¢ = p. Then the exponent can be simplified to

i(v) = h(p — v @ vy, 'p) + h(nw @ v p) — h(p) — h(0)
If there are v and p such that
(56) i(v) >0,

then j(q) grows exponentially for a sector of g in R%. Due to continuous dependence of these sector
on v, the integral | ga—1J(q) dv still grows exponentially on some sector in R2. By choosing p in such
a sector, we obtain constants ci, ¢y such that

Qn [Gl(p) = (c1(p) — c2)G(p),

which cannot equal to a term k;(p)G(p) as in (B3], where k is bounded by a polynomial.
We now establish the existence of some v such that (56) holds. For t = 0 we have 7, = Id and by
B3) and (B4) tr F' = 0, then equations (@8] and (B3] imply for p = 0 that

0= Qn[G™] = Q[G™)]
= K? / M- / (exp (h(—v @ vq) + h(—q +v @ vq) — h(—q)) — 1) [v- q]+ dv dq.
RZ Sl

Unless r = 2, when h is a collision invariant, this implies that the exponent attains positive and
negative values. By exchanging the roles of p and p’, we hence obtain that (G6]) will hold for some p
and v, hence ruling out any h with homogeneity exponent r > 0, r # 2.

Now consider the only remaining case h(p) = —d|n; 'p|? for some d > 0. The collision invariance of
h implies Qy, [G™W] = 0. Furthermore 7; = Id is constant as G(*) is constant, i.e. 9;G"™ = 0. Hence
we obtain the equation

Y, (GW(p) - Fp) = (tr F + 2dp - Fp)G™ =0,

For ny = 1d, then F = —ua ® B, which is incompatible with tr ' — 2dp - Fp = —2dp - F'p = 0, thus
ruling out the collision invariant.

4.4. Completing the proof of Theorem [I3l The regularity of the solution follows from the regu-
larity proposition below.

Proposition 16. If [4. go(w)(1 + |w|?) dw < oo, then @I) admits a unique mild solution for all
t>0.

Proof. The transport term zv 9,9 is the generator of the strongly continuous semigroup X; : L3 (R?) —

L3(R?) on the space of integrable function that satisfy [p2 go(w)(1 + |w|?) dw < co. The semigroup

is given explicitly by (X:g)(w) = g((Id + pta ® B)w). Furthermore by Povzner’s inequality @ is a
16



continuous nonlinear operator on L3(R?). This gives the existence of the unique mild solution to (7))
given by

t
(57) 9t = Xt9o0 +/ Xi—sQ(9gs, gs) ds.
0

We show that we can continue this solution globally by showing that [ps g¢(w)(1 + w|?) dw < oo for
all times. First recall that

53) |,k la] dw =0,

hold for any density g with 8[g] = 3 [ |w|* dw < oo because |w|? is a collision invariant. Differentiating
0 with respect to t gives

dé 1
G = 3 L PV ga s sw)+ Qi) du
RZ
1
= —/ !wIQQ[g]dw—u/ gw - a® Pw dw
2 R2 R2
=0 by (G8)
< b [ g dw= ol
RQ

Thus, 0[g] < el#f[go]. By a similar argument, [po g:(w) dw = [po go(w) dw, so [g, ge(w)(1 +
|w|?) dw remains bounded for bounded times, such that (57) defines global mild solution, which is
unique by a Gronwall argument. ([l

Then we transform the mild solution g as in the paragraph preceding (48]) to obtain a global solution

G of ({@g).

The choice of 7; in subsection give the preservation of mass and energy for Gy, this immedi-
ately gives the weak convergence of subsequences to some limit points. The collision invariants are
characterised in lemma The shape of possible equilibrium is analysed in subsection 43l

5. APPENDIX: PROOFS OF PROPOSITIONS 4] AND [§, AND REMARK

Proof of Proposition [§]. Assume that h(w) = a+ b - w is affine. Observe that (IJ) implies for each w
that

V.f(zra,w) - aa=0
Vof - B=-uVuf «

Consider now the quantity

H = h(w) Oy f (v @, w) dw
R2

= /R2 hw) (Awf+p0 ' Vi - (flza,w) (w—p '9)) - V. f(ra,w) w) dw

= /R2{(Awh—p0_1Vh-(w—p_lv)) f(:na,'w)—l—u(vwf-a)(w-ﬁ)} dw

Clearly Ah =0 as h is affine. Moreover [, b (w — p~'wy) f(w) dw = 0 by the definition of wq and
finally [p»(Vwf(za,w)- o) (w-B) dw = 0 by partial integration. This implies that

t h(w) fi(x a,w) dw is constant,
R2

for all x € R and by (1) this is constant and thereby the first claim.
17



Next, assume that p = 0 and h(w) = 3|w|?. Repeating the previous calculation we obtain
H = / h(w) 0 f(z a, w) dw
R2

1
= / 2 - 607w f(za,w) dw :/ (2p(za) =207 'pb(z ) dw =0.
R2 0

Finally we demonstrate that f™ is a stationary solution. One finds that

; b : bRy, b
=——c¢ a— — wy = — ¢ a— —— =—¢ a— —
p c P 4c )’ 07 92 *P 4c )7 2c2 P 4c )’

in particular p§~' = —2c and p~lwy = —%b. Then
LI = AufM+p07 V- (Y (w — p~'wo)) = V- w

= <WMF—kAh—4c—2thhw-(w%—%ﬁ))fM

1
= <4c2 |w|? + |b]? +4cb - w + 4c — 4c — 2¢(2cw + b) - <w+%b>> ™
= ((4c® —4*) |[w|* + (4cb—2c(b+ b)) -w + [b]* — [b]*) fM =0.

To prove convergence for general spatially homogeneous initial datum fy, we rewrite the equation in
a spirit similar to subsection 3.3 and equation (27)). Using that mass p, momentum w, and energy 6
remain constant along solutions, choose f™ such that its triple p, wo, 6 coincide with the of fy. Then
write f = uf™ with v € L*(R?, dfM). To show L! convergence it is enough to show that u — 0 in
L?(R2, df™)/span(1) by Hélder’s inequality. The relative profile u satisfies the equation

Ou = Au+ (b+ 2cw) - Vu = —A* Au,
where A = Vu and A*. = —V. — (b+ 2cw). is its adjoint operator in L2(R?, dfM)/span(1) with inner
product (.,.). Then
Op(u,uy = 2(0pu, u)y = —2(Au, Au) < —2C(u,u)
using a Poincaré inequality as in [29] A.19], which then gives the required exponential convergence of

u to 0 in L2(R2, dfM)/span(1).
O

Proof of Remark[6l. We calculate %S [G] along solutions of (7)), noticing that G is smooth with respect
to p as ¢ is smooth for £ > 0, so we can perform integration by parts etc.

s

= [ (m S
dt/ Gi(p YY) dp = /R2 (1 D (—Ip22) + 1> d,G(p)dp

Gi(p B B
2 2 <ln m + 1) Vp - (Ge(p) (07'1d — F) p+ T 'VG(p)) dp

ibp N Gi(p) . -11q — -1
= /R2 \v4 (1 —exp(—|p|2/2) + 1> (Gt(p) (9 Id F)p+T VGt(p)) dp

— [ L Ve + GupIp) - (Gulp) (6711 — F) p + T-'VGy(p)) dp
r2 G¢(p)
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Next we split F' into its symmetric and its anti-symmetric part, which are given by %(F + F*) and
%(F — F*) respectively. For the symmetric part we use (25]) and find that

1
r2 Gy p)

(
- /R2 th(p) (VGi(p) + Ge(p)p) - T~ (Ge(p)p + VGi(p)) dp

(VGi(p) + Gi(p)p) - (Gi(p) (67 '1d — F) p+ T~ 'VGy(p)) dp

+3 /Rz th (VGi(p) + Gi(p)p) - Gi(p) (F — F*)p dp

(p)
1 1 *
=~ [ gt I Galplp+ VGup)P dp 5 [ VG)-(— Fp dp
+%/RQP'(F—F*)th(p) d
1

-~ L. )Im (Gi(p)p + VGi(p))® dp,

the other two integrals are zero, the middle one by integration by parts and the final one due to the
anti-symmetry of F' — F™.

Hence S[Gy] decays unless Gy(p)p + VGi(p) = 0, the only differentiable solution in L!(R?) are
multiples of the Maxwellian GM . O

Proof of Proposition [8. We will first establish formulae (I7)), (I8), (I9) and 20) by carefully analyzing
the second moments. Formulae (2I)) and (22]) follow from cruder estimates of higher moments.

Second moments
The stress tensor T' = % J g1(w) wRw dw satisfies a simple ordinary differential equation. Multiplying
([I2) with %'w ® w and integrating by parts yields

dT 2

To characterize the asymptotic behavior of T as t — oo we deﬁne the rescaled moments a, b, ¢ by the
requirement

T=t?aa@a+t’b(BRa+a@B)+tcBc M.
Then (B9) reads

d db
3t2aa®a+2tb(ﬁ®a+a®ﬁ)+cﬁ®ﬁ+t3£a®a+tza(6®a+a®ﬁ)

dc
—i—tEB@ﬁ
= a®a+ﬁ®ﬁ—u(2t2ba®a+tc(a®ﬁ+,3®a))

(FPaawa+t?b(Boa+a®B)+tcB®p)

S atd fct
The equations for the individual components read
da 2aet?
a@a: 0=3t%a+t2— —1+26%ub+ ———,
at R
db 212
© o 0=2tb+ t*— + pute + ——,
x®p * dt+“c+at3+ct
2ct

de
: —ept S
paB: O=ctigp -1+ 50
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After rescaling time as well so that ¢ = exp(s) and -5 = exp(—s)-- equation (5J) takes the form
a exp(—2s) a
d 2
— - M b | = 0 +——| b
ds exp(2s)a+c
c 1
with
3 24 0
M = 0 -2 —u
0 0 -1
As the spectrum of M is given by Ay = —1, Ay = —2, A3 = —3 with corresponding eigenvectors

vy = (1,0,0),v9 = (—2u,1,0),v3 = (u?,—p,1) a simple application of the variation of constants
formula delivers the asymptotic result

a 0 %,uz
b | =M1 0 | +O0(exp(-s))=| —ip | +O@).
c 1 1

This implies that the stress tensor admits the asymptotic result
(60) T=0t+001))Tyx, t—
where
1 1

Tw=3tpfava-stu(@aeB+Boa)+B3 0
We can bootstrap this step by plugging (€0) into (B9). This shows that the function ¢t — T — t T is
differentiable and satisfies
d
dt
These asymptotics give results for n, n, ! and T~1. Then as §~! = (tr 7)1, this implies (I8) and
one also has the asymptotic result for F.

(61) (T —tTs) =0@1t™Y), t— oo

Fourth and sixth moments

We are now assuming that the related initial data for G satisfy go € L{(R?) and using (I3) we can

see that higher moments up to order 6 are well-defined for finite times, these moments satisfy similar

ODEs. These will later allow us to choose suitable initial data for lower estimates on the rate of decay.
Letting

(62) it = [ (Guw) ~ 6 @) dp

we obtain ordinary differential equations, which only depend on modes of the same or lower order.
The moment of order 0 and 1 (mass and momentum) are preserved by Prop. M for the evolution of g,
in the same way this also follows for G, where the momentum is assumed to be 0, i.e

(63) hoo(t) =0 = hio(t) = ho1(t) =0

The rescaling 7, is defined such that (I3 holds, i.e.

(64) hao(t) = ho2(t) = hi1(t) = 0.

For the higher moments h;; with 7 + j > 2 we obtain using integration by parts

65)  ohyl) =~ (5
+i(i = 1) ()11 himzj +ij (2 + (F)21) him1j—1 + 3G = 1)(0F)22 hij—2,
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where we assumed without loss of generality that a = (1,0) and 8 = (0, 1). Using the information on
the coefficients in prop. 8l we write the moment equations in matrix notation:

d _
(66) PP hij(t) =t IZ Nijet + O(t™") hygy > 1,

where the operator N is defined by

3 (i,]) (k:+1 1—1),
Nijk = i i (4,5) = (k — 1,1+ 1),
2j(j+1) f(z’,]) (k: l+2)
0 else.

with the convention that h;; = 0 if ¢ +¢ < 2. The moments of odd order can all be chosen to be 0,
which is preserved by (63]). Now rescaling time ¢t = exp(s) and % = exp(—s)% equation (G6) becomes

(67) (% - N+ O(e_s)> h=0 s>1,
where the operator N if a lower triangular form. Consider now the truncated operator
0 2V3 0 0 0
—/3/2 -2 33/2 0 0
(Nijkl)itj=kti=a = 0 -3 —4 V3 0
0 0 —-3v3/2 -6 32
0 0 0 —-243 -8

It has only eigenvalues with negative real parts by the Routh-Hurwitz stability criterion. Using the
variation of constants formula we obtain

(68) (hij)itj=1 = O(exp(—Xs))

for some A > 0, where the remainder term allows for lower exponential estimates

(69) lim inf exp(As) [(hij)itj=a| >0

for almost all initial data in (65]). Transferring this back to time ¢ gives the algebraic estimate (22I)

for some ¢ > 0 which depends on the initial value and all ¢ large enough.
A less detailed calculation for the vector h of sixth moments gives then

d 1
el N©) (¢
dth ()h+0(1+t°‘)
where o > 1 and |[N©) (t)|| = 0(1_+t) as t — oo. After transforming to time s as above we obtain a

constant matrix plus some exponentially small error terms, this is enough using Gronwall’s inequality
to conclude that h grows at most exponentially in s and after transforming back to time ¢ that h
grows at most algebraically with rate ' such that —without loss of generality— X' > 0, this then yields

@1). O
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