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ABSTRACT 

Balanced laminates, with zero in-plane to out-of-plane stiffness coupling are optimised over a 
range of tri-axial (Nx, Ny and Nxy) critical design loadings for minimum normalised elastic energy; 
equivalent to optimising for minimum mass in the absence of matrix failure. Laminates comprising 
standard angle plies (0, ±45 and 90) are designed for either a fixed design loading with a 10% 
minimum ply percentage rule (current practice) or directly for an uncertain design loading. Results 
show that the 10% rule performs well for the majority of design loadings. Nevertheless, for 8% of 
design loads considered, significantly lower mass (>10%) designs are achieved with standard angle 
plies when designing directly for uncertain loading. Expansion of the ply envelope to include designs 
with continuous angles (0° ≤ θ ≤ 180°) under an uncertain loading allows maximum mass savings up 
to 16% over current design practice. However, when designing directly for an uncertain loading, no 
significant mass reductions are achieved through the use of continuous angles. 

1 INTRODUCTION 

Minimum mass aerospace laminate design is a multi-constraint problem. All relevant failure modes 
must be considered in order to produce a minimum mass design that delivers the required 
performance. However, in this paper, only in-plane strength is considered, and thus results are only 
applicable to thick pristine laminates where buckling and other geometry-driven failure is non-critical. 
Netting analysis, which ignores the support of the resin matrix and aligns fibres in principal directions 
to carry principal stresses, leads to laminate designs in which the stresses in fibres are limited to some 
value associated with failure i.e. fully-stressed fibre design. Verchery [1] has shown that Netting 
analysis, can be treated as a limiting case of Classical Laminate Theory. His approach indicates that 
designs with fewer than three fibre directions produce mechanisms when subject to small disturbances 
in loading.  This reveals the reasoning behind established aerospace laminate design practice of using 
four standard angles (SAs) (0°, +45°, -45° and 90°) and a design rule of a 10% minimum ply 
percentage to provide a level of redundancy against loading uncertainty [2]. In contrast, continuous 
angle (CA) designs permit the use of all possible fibre angles (0° ≤ θ ≤ 180°) providing greater scope 
for stiffness tailoring. However, a lack of specific design rules for CA laminates can lead to optimum 
designs for specific loadings that, in a Netting analysis regime, form mechanisms. Such laminates rely 
on the weak resin matrix to prevent collapse if the load state is varied. Here, to avoid this problem, 
both CA and SA laminates are designed considering an uncertain loading. This has the potential to 
remove the requirement for a 10% minimum ply percentage rule in SA designs and allows the use of 
CAs without drawbacks.  

In order to compare design approaches that use SAs and CAs, laminate in-plane elastic energy 
under tri-axial loading is used to assess minimum mass capability. Elastic energy minimisation or 
compliance energy minimisation is a computationally efficient technique that uses either topology or 
orientation of materials with directional properties, to produce the most efficient structure. Structures 
with optimum efficiency take advantage of directional material stiffness properties to produce a 
minimum global strain state. This requires the structure to have the greatest global stiffness for a given 
volume of material. Prager and Taylor [3] first outlined optimality criteria justifying the technique of 
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minimisation of elastic energy (subject to given loads) to produce a structure with optimal efficiency. 
Pedersen [4] subsequently applied this technique to composite materials to find analytical solutions for 
orientation of a single ply angle subject to in-plane loading. In this paper, solutions for multi-layered 
anisotropic laminates are provided for tri-axial design loadings. Minimisation of elastic energy in 
laminate design does not however directly imply maximisation of in-plane strength of a composite 
material. Nevertheless, it is assumed to be sufficient to capture the in-plane strength relationship as 
fibres are aligned to best carry the applied tri-axial forces, thereby coinciding with the maximum in-
plane strength design in a Netting analysis regime [5, 6]. 

In this paper, in-plane-strength limiting minimum-mass capabilities of design approaches using 
SAs and CAs are compared under uncertain critical design loadings. Design approaches optimise for 
minimum normalised elastic energy under a fixed design loading (current practice) or a worst case 
loading based on an uncertainty in secondary loading. The advantage of designing for an uncertain 
loading using both SAs and CAs is investigated and load combinations for which current laminate 
design practice can be improved are identified. 

2 MINIMUM MASS LAMINATE DESIGN  

In this section, optimum distributions of standard and continuous plies for maximum in-plane 
strength are identified through minimisation of elastic energy under fixed and uncertain in-plane tri-
axial loadings (axial, transverse, shear). Design constraints, in the form of stacking sequence rules, are 
also derived. 

2.1 IN-PLANE ELASTIC ENERGY 

The efficiency of a given volume of fibrous layers, is assumed to be given by its in-plane Hookean 
strain energy or elastic energy. Assuming a panel has fixed length-width dimensions, the magnitude of 
energy stored depends on; (i) the ratios of the in-plane loads N, (ii) their magnitudes, (iii) the in-plane 
laminate stiffnesses ࡽ, and (iv) the laminate thickness T. In order to isolate the effect of the laminate 
design (e.g. angles and ply percentages) and load ratios on the laminate in-plane elastic energy, the 
effect of the magnitude of the loads and thickness of the laminate is removed. 

-is independent of laminate dimensions. Assuming balanced laminates with zero in-plane to out ࡽ
of-plane coupling (i.e. ܳଵଷ, ܳଶଷ = 0 and Bij = ଵ

ଶ
∑ (ܳ௜௝)௞(ℎ௞ଶ௡
௞ୀଵ − ℎ௞ିଵଶ ) = 0, where n is the number of 

plies and k is the ply number) and a state of plane stress (ߪ௭, ߬௫௭, ߬௬௭ = 0), Classical Laminate Theory 
gives the in-plane stress-strain relationship as 
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where ߪ௫, ߪ௬, ߬௫௬ and ߝ௫  ௫௬ are the applied in-plane axial, transverse and shear stresses andߛ ,௬ߝ ,
corresponding laminate strains, respectively. ܳ௜௝ terms represent the individual in-plane stiffnesses. 

Given that the elastic energy for a linear elastic solid is 

 ܷ = 	 ଵ
ଶ∫࣌

 (2) ܸ݀	ࢿ்

Eq. (1) then implies 

 ܷ = 	 ଵ
ଶ∫࣌

 ܸ݀ (3)	ଵ࣌ିࡽ்

Working per unit volume allows for laminate geometry (thickness) to be ignored which further implies 

 ܷ௏ = 	 ଵ
ଶ
	ଵ࣌ିࡽ்࣌	 = ଵ

ଶ
൫ݍଵଵߪ௫ଶ + ௬ߪ௫ߪଵଶݍ2 + ௬ଶߪଶଶݍ + ଷଷ߬௫௬ଶݍ ൯ (4) 
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Division of Eq. (4) by the sum of the squares of the principal stresses normalises ܷ௏, removing the 
effect of the magnitudes of the loads/stresses, and allows for an equal comparison between loading 
states of the same magnitude i.e.  

 ഥܷ௏ =
௫ଶߪଵଵݍ + ௬ߪ௫ߪଵଶݍ2 + ௬ଶߪଶଶݍ + ଷଷ߬௫௬ଶݍ

૛(࣌૚૛ + ࣌૛૛)
    (5) 

Where  

 ࣌૚,૛ = 	
࣌࢞ + ࣌࢟

૛
± ඨቀ

࣌࢞ − ࣌࢟
૛

ቁ
૛

+ ࣎࢞࢟૛     (6) 

Substitution of Eq. (6) into Eq. (5) gives 

 ഥܷ௏ =
௫ଶߪଵଵݍ + ௬ߪ௫ߪଵଶݍ2 + ௬ଶߪଶଶݍ + ଷଷ߬௫௬ଶݍ

2൫ߪ௫ଶ + ௬ଶߪ + 2߬௫௬ଶ ൯
    (7) 

Eq. (7) gives an expression for normalised elastic energy (describing the efficiency of a design) in 
terms of applied stresses and compliance variables that is independent of the load magnitudes and the 
laminate thickness. A lower value of ഥܷ௏ relates to greater in-plane efficiency/strength and thus a lower 
amount of material required to support a certain load [5, 6]. If the length and width of the laminate is 
fixed, then since ܷ is now proportional to 1/T, the elastic energy stored within the laminate (Eq. (3)) 
scales linearly with laminate thickness i.e. σ = N/T and Q-1σ = TQ-1N and dV = TdA. Therefore, 
assuming a certain magnitude of in-plane loadings (Nx, Ny and Nxy) is to be carried and a certain 
magnitude of in-plane elastic energy is associated with failure, the most efficient design, 
corresponding to the optimum orientation and proportion of plies, would reach the in-plane elastic 
energy associated with failure whilst having a lower thickness than any other design. Thus a 
comparison of normalised elastic energies between designs reveals the lowest mass design.  

 
2.2 OPTIMISATION 

2.2.1 Problem Description 

The problem of designing thick, membrane failure dependent, laminates for minimum mass 
aerospace applications is considered here although other applications are conceivable. Current design 
techniques consider a fixed critical loading condition, relating to some worst case from various critical 
loads that could be applied to the aircraft structure. Any uncertainty in secondary loading is considered 
to be negated by enforcement of a 10% minimum ply percentage rule [2]. The new design strategy 
proposed here, optimises directly for maximum in-plane strength performance for a critical design 
load case in which secondary loadings are uncertain. To provide a comparison of the current and 
proposed design practices, laminates are optimised for minimum normalised elastic energy under 
either a fixed loading (current practice, 10% rule) or uncertain loading (proposed strategy). Strategies 
are compared under a worst case loading derived from the envelope of loadings created by a deviation 
in secondary loads of up to ±10% of the primary load. Laminate performance is assumed to be 
represented by ഥܷ௏, the normalised elastic energy (Eq. (7)). 

 
2.2.2 Laminate designs 

Laminates to be optimised contain either SAs or CAs, and are designed for a fixed or uncertain 
design loading as shown in Table 1. SA laminates are assumed to be balanced and symmetric and are 
described by two independent (and one dependent) ply percentage variables. To reduce the 
computation required in the optimisation of CA designs to a manageable level, discrete ply stacking 
sequences are discarded in favour of three integer angle variables (0 ≤ θ ≤ 30, 31 ≤ α ≤ 60, 61 ≤ φ ≤ 
90) and two independent ply percentage variables (%θ, %α) shown in Table 1. This has the advantage 
that all possible designs are assessed and a global picture of preferred design strategy is produced. 
However, there is a disadvantage in that some designs will not be discretisable into standard ply 
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thicknesses (depending on total laminate thickness) and thus results will be inconclusive for load cases 
where competing design strategies produce laminates with little difference in performance. Each of the 
three main angles (θ, α, φ) within a CA laminate is assumed to be made up of an infinite number of 
Winckler blocks [7]. Each block [+θ/-θ/-θ/+θ/-θ/+θ/+θ/-θ] is divided in half about the laminate mid-
plane creating asymmetry. This ensures ܳଵଷ	= ܳଶଷ = Bij = 0 but is not a requirement as long as other 
stacking techniques can be used to maintain this condition. To further aid computational efficiency, 
CA ply angles are given integer values (in degrees). Note that variables are defined such that SA 
designs are a subset of CA designs and so any SA design is achievable with a CA design strategy if 
required. 

 
Design 

strategy ID 
Load 

designed for 
Angles      

(integer °) Ply %’s 10% Rule Ply Unblocking 
Rule 

SA1 Fixed  0, ±45, 90 %0, %±45, %90    

CA1 Fixed  ±θ, ±α, ±φ  (±β) %θ, %α, %φ   

SA2 Uncertain  0, ±45, 90 %0, %±45, %90   

CA2 Uncertain  ±θ, ±α, ±φ  (±β) %θ, %α, %φ   
 

Table 1. Details of four design strategies considered in the laminate design optimisation, angle 
variables, ply percentages variables and active design rules. β is an optional ply unblocking angle 

explained in Section 2.2.3. 

2.2.3 Laminate design rules 

Design rules are applied to laminate design in order to account for non-design failure mechanisms 
and to ensure favourable deformation which may not be taken care of during the design optimisation 
[2]. The two extra design rules, on top of the requirement for ࡽ૚૜	= ࡽ૛૜ = Bij = 0 (considered in the 
optimisation), are: 

(1) Ply unblocking: To prevent the formation of large inter-laminar shear stresses that may drive free 
edge failure, and thermal stresses that could cause premature failure, a maximum of four contiguous 
plies of the same/similar orientation is allowed [2].  

In SA designs, compliance is ensured by requiring that the ply percentages of the non-dominant 
perpendicular plies (0°, 90°) and the ±45° plies sum to at least one quarter of the dominant 0° or 90° 
ply percentage, e.g. for every four dominant plies there is one ply that differs by at least 45°. 

In CA designs, ply groups of similar angles (±θ < 20° or > 70°) are assumed to be sufficiently 
separated by an angular separation of at least 20°. The optimisation is able to choose the superior 
option between two techniques: 

(i) Use of higher angles (> 20°) to unblock dominant lower angles (< 20°) and vice versa (< 70° 
unblock > 70°). As for SAs, a 4:1 ratio of dominant and non-dominant ply angles is maintained. 
The angles used to unblock are assumed to be placed in a fashion that is symmetric and balanced, 
maintaining ܳଵଷ	= ܳଶଷ = Bij = 0.  
 
(ii) The fixed ply unblocking angle β is considered where ply percentages of the two non-dominant 
angles are too low to implement unblocking as per (i). β = 20° and 70° unblocks ply groups 
containing angles < 20° and > 70°, respectively, e.g. for a set of dominant plies, one fifth of the ply 
percentage is switched out for β in a symmetric and balanced fashion. For instance [±5/5/5/±5] 

becomes [±5/5/20/5/±5/-20]. 
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(2) 10% minimum ply percentage: In current design practice a 10% minimum of each of 0º, ±45º and 
90º ply angles safeguards against uncertainty in loading in SA laminates (SA1, Table 1). No 
convention for enforcing rule (2) on CA designs exists. Instead the optimisation procedure in Section 
2.2.4 designs directly for uncertainty in loading. This procedure is applied in both SA and CA design 
strategies, see SA2 and CA2 in Table 1. 

2.2.4  Designing for an uncertain loading 
An uncertainty in secondary loads of up to ±10% of the magnitude of the primary loading is 

assumed. For example, for a wing skin with critical design loadings Nx/Ny = 9 and Nx/Nxy = 2 (Nx 
dominant), possible loading scenarios are: Nx = 9, Ny = 0.1-1.9 and Nxy = 3.6-5.4, where the 
magnitudes of the loads have no effect on the value of ഥܷ௏. Laminate failure depends on the worst 
loading case that could be applied. Hence, the design concept is to achieve maximum performance 
under the worst case loading taken from the loading envelope defined by the ±10% uncertainty. 

The worst loading case corresponds to the loading where a laminate has the highest normalised 
elastic energy, i.e. maximum mass/worst performance. However, this is dependent on the range of 
loadings and the laminate stacking sequence being considered. Individual worst loading cases within 
the uncertainty envelope and the value of normalised elastic energy associated with them, ഥܷ௏,ௐ஼ , can 
be determined using the Extreme Value theorem for two variables. By keeping the value of primary 
loading fixed (e.g. ߪ௬), a three dimensional normalised elastic energy surface with the two secondary 
loading variables (e.g. ߪ௫ and ߬௫௬) exists for each individual laminate design (fixed qij) and is 
described by Eq. (7). By finding the maxima of Eq. (7) (with fixed qij) both within the interior of the 
allowed range of secondary loads and on its boundaries, values of normalised elastic energy can be 
compared and the worst loading and corresponding normalised elastic energy ( ഥܷ௏,ௐ஼ ) can be found.  

 
2.2.5  Optimisation  

Laminated aerospace structures are, in general, subject to a combination of in-plane axial, 
transverse and shear load. As described in Section 2.1, optimal laminate designs will distribute fibres 
to meet these loads producing a laminate with minimum elastic energy. In order to find optimal 
laminate designs for each of the four design approaches in Table 1 and subject to design constraints in 
Section 2.2.3, a Matlab Genetic Algorithm (GA) function ‘ga’ [8] is used to manipulate ply angle and 
percentage to minimise the objective function ഥܷ௏ given by Eq. (7). The genetic algorithm optimises 
either two or five variables, describing the SA and CA designs (see Table 1) respectively, to produce 
minimum normalised elastic energy ( ഥܷ௏,௠௜௡) under multiple fixed and uncertain tri-axial design 
loadings. The optimisation processes for uncertain and fixed design loadings are described in the flow 
charts of Figs. 1(a) and (b), respectively. The GA creates an initial random population of candidate 
design variables, calculating a scored fitness value for each. The most energy efficient designs are 
chosen and used to determine the next generation/population of design variables. (Eliteness, crossover 
and mutation all feature in ga [8]. Iteration continues until the stopping criteria is reached.) For SA 
designs only, a nonlinear constraint algorithm is employed to ensure that each new generation of 
variables meets the set of design rules. In the results that follow material properties of E11 = 119 GPa, 
E22 = 8.9 GPa, G12 = 4.5 GPa, ν12 = 0.35 for M21/T700GC are assumed. 

3 RESULTS  

The tri-axial design loadings defining the horizontal and vertical axes of Figs. 2(a)-(d) are 
described by the two load ratios Nx/Ny and Nx/Nxy. In Figs. 2(a)-(d), there are 34 × 33 (Nx/Ny × Nx/Nxy) 
points. Individual points are coloured based on the magnitude of the normalised elastic energy 
achieved through optimisation of laminate design variables, under a worst case loading (within bounds 
determined by the loading uncertainty). Figures 2(a), 2(b), 2(c) and 2(d) provide such results when 
design strategies SA1, CA1, SA2 and CA2 (see Table 1) are employed respectively.  
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Figure 1: Optimisation procedure for design of a laminate for minimum elastic energy under (a) a 
fixed design loading and (b) an uncertain design loading.  

Positive Nx/Ny load ratios represent tension-tension or compression-compression, and negative, 
tension-compression or compression-tension. In Figs. 2-5, only |Nx/Ny| ≤ 1 is plotted (i.e. Ny is 
dominant) as |Nx/Ny| > 1, the inverse load ratio, constitutes an identical problem. Positive Nx/Nxy 
represents tension-shear or compression-shear which in Eq. (7), produces identical results, thus results 
for Nx/Nxy < 0 are not provided. Eq. (7) will, however, indicate any performance difference due to the 
relative sign of each of the loads. Log scales in Figs. 2-5 create nonlinear axes which equally 
emphasize the importance of load ratios above and below |Nx/Ny| = |Nx/Nxy| = 1. Load ratios below |0.1| 
(indicated by a white strip for Nx/Ny) and above 10 are not provided as it is assumed a single load 
component dominates, resulting in systems that are physically very similar. To guide the reader 
through the process for determining the value of individual points in Figs. 2(a)-(d) an example for 
determining a wing skin panel design is provided: 
 

The limiting design loading for the in-plane strength of a wing skin panel is assumed to be when 
Nx/Ny = 9 and Nx/Nxy = 2 (Nx dominant), which is identical to the design point Nx/Ny = 1/9 and Nx/Nxy = 
1/4.5 (Ny dominant), with Nx and Ny switched. The latter is used to allow brevity in plotting. A ±10% 
uncertainty in the secondary loadings (as per Section 2.2.4) produces a possible loading scenario of 
arbitrary magnitude where Nx = 0.1-1.9, Ny = 9 and Nxy = 3.6-5.4. (The single point, X1, for this design 
loading can be seen in Figs. 2-5). Under design loading (SA1, CA1) the original design load is applied 
to each candidate laminate; the laminate with the lowest energy, after one GA run, being optimal. 
However, the elastic energy used for comparison (and recorded in Table 2) is based on the load case 
(within the bounds defined by uncertainty) that produces maximum elastic energy in the optimal 
laminate e.g. an unexpected worst loading is assumed to occur. This is found using the Extreme Value 
theorem. In the case of direct optimisation for uncertain loading (SA2, CA2), for each candidate 
stacking sequence defined by the GA the Extreme Value theorem is employed to determine the 
loading (within the specified bounds) that produces the maximum elastic energy for that candidate 
laminate. The laminate design that produces the lowest of these maximum energies is considered 
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optimal. The specific laminate designs and normalised elastic energies achieved by each strategy from 
Table 1 for this example design case, and two other design cases (X2 and X3), are shown in Table 2. 

                

                

Figure 2: Laminate normalised elastic energies (Eq. (7)) under worst case loading for a range of tri-
axial design loadings, (described by Nx/Ny and Nx/Nxy). (a) SA1: 10% minimum ply percentage rule 

accounts for load uncertainty. (b) CA1: no load uncertainty considered. (c) SA2: no 10% rule, 
designed directly for a load uncertainty. (d) CA2: designed directly for a load uncertainty. 

 
Figure 2 shows plots of normalised elastic energy, for each design strategy (see Table 1), when 

laminates are subject to their individual worst case loadings. In all plots greater normalised elastic 
energies generally occur when Nx/Ny < 0. An individual peak (worst performance) occurs where         
Nx = -Ny = Nxy (design point X2). For Nx/Ny > 0, lower Nx/Nxy generally indicates greater normalised 
elastic energy. As elastic energy scales linearly with laminate thickness, the difference in magnitude of 
the normalised elastic energies between designs can be used to calculate a percentage mass saving, see 
Column 7 Table 2. Figures 3, 4 and 5 compare the potential of the various design strategies for mass 
reduction. In each figure, blue indicates mass saving is possible and green indicates little difference. 

Figure 3 compares SA1, the current industry design strategy, to the SA2 design strategy. SA2 
designs provide a significant mass saving in areas near Nx/Ny = 1 and Nx/Nxy = 0-1, and near Nx/Ny = 
0.1-0.25, Nx/Nxy = 1-4. Figure 4 compares strategies SA1 to CA2, showing CA2 designs provide a 
significant mass saving in the same areas as Fig. 3 but also in an additional area peaking at Nx/Ny = 
0.4, Nx/Nxy = 0.7 (design point X3). The values in Fig. 5 show the percentage mass saving when using 
the CA2 design strategy compared to the SA2 strategy. CA2 designs produce a small mass saving at 
load ratios in the region Nx/Ny = 0.4, Nx/Nxy = 0.7 only. The majority of all other load ratios have 
insignificant mass saving. 
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Design Point Design 
Strategy I.D.  θ α φ 

ഥܷ௏,ௐ஼       
(×10-12 m2/N) 

Mass 
Saving 

Wing Skin: 

Nx/Ny = 1/9 
Nx/Nxy = 1/4.5 

X1 

SA1 
Angle (°) 0 45 90 

10.72 Datum 
 Ply % 41 49 10 

CA1 
Angle (°) 24 N/A N/A 

9.98 6.9% 
Ply % 100 0 0 

SA2 
Angle (°) 0 45 90 

10.09 5.9% 
Ply % 45 55 0 

CA2 
Angle (°) 22 36 72 

9.89 7.7% 
Ply % 76 21 3 

Nx/Ny = -1 
Nx/Nxy = 1 

X2 

SA1 
Angle (°) 0 45 90 

14.21 Datum 
 Ply % 25 50 25 

CA1 
Angle (°) 8 48 73 

14.21 0% 
Ply % 31 38 31 

SA2 
Angle (°) 0 45 90 

14.21 0% 
Ply % 25 50 25 

CA2 
Angle (°) 21 47 73 

14.21 0% 
Ply % 43 19 38 

Nx/Ny = 1/2.5 
Nx/Nxy = 1/1.4 

X3 

SA1 
Angle (°) 0 45 90 

9.74 Datum 
 Ply % 10 61 29 

CA1 
Angle (°) N/A 58 N/A 

8.18 16.0% 
Ply % 0 100 0 

SA2 
Angle (°) 0 45 90 

8.93 8.2% 
Ply % 0 69 31 

CA2 
Angle (°) N/A 59 61 

8.12 16.6% 
Ply % 0 97 3 

 

Table 2. Angles and ply percentages of laminate designs for three design loading cases, optimised 
using the four strategies in Table 1. Normalised elastic energies and percentage mass saving based on 

worst case loading are presented. 
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Figure 3: Percentage mass saving under design loadings described by the load ratios Nx/Ny and 
Nx/Nxy, when using SA designs optimised directly for an uncertain loading (SA2) compared to SA 

designs optimised for a fixed design load with a 10% rule (SA1). Energies are based on the application 
of worst case loading. 

 

Figure 4: Percentage mass saving under design loadings described by the load ratios Nx/Ny and Nx/Nxy, 
when using CA designs optimised directly for an uncertain loading (CA2) compared to SA designs 
optimised for a fixed design load with a 10% rule (SA1). Energies are based on the application of 

worst case loading. 
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Figure 5: Percentage mass saving under design loadings described by the load ratios Nx/Ny and Nx/Nxy, 
when using CA designs optimised directly for an uncertain loading (CA2) compared to an SA strategy 
also optimising directly for an uncertain loading (SA2). Energies are based on the application of worst 

case loading. 
 
4 DISCUSSION 

Figure 2 shows the relationship between design loading and the minimum mass capabilities for all 
laminate design strategies considered for worst case normalised elastic energies in the range 5 - 15 
×10-12 m2/N. Normalised elastic energy, and therefore mass, are larger when Nx/Ny < 0, i.e. when the 
axial and transverse loads have opposite sign. This is because axial and transverse loads are applied in 
the same direction as the opposite load’s Poisson’s deformation. Thus greater straining is created 
within the laminates and greater normalised elastic energies are produced. The worst case normalised 
elastic energy peaks when Nx = -Ny = Nxy, i.e. where all design loads are the same magnitude and the 
axial and transverse loads have opposite sign. At this design point (X2) different design traits are 
required to efficiently carry all three loads equally (SA1, CA1) or close to equally (SA2, CA2) 
depending on the worst case loading designed for from the uncertainty. For example, in SA laminates, 
0° and 90° will best reduce deformation from axial-transverse loads of opposite sign (shear loading 
rotated by 45°), and ±45° will best reduce the deformation from shear. Therefore applying a worst case 
loading to a laminate which has been designed for neither of the loadings fully, produces the largest 
normalised elastic energy. SA and CA designs for this design point, X2, are shown in Table 2, where 
all designs are shown to perform just as poorly. For Nx/Ny > 0, the normalised elastic energies are large 
where there is a design loading with significant shear. In a Netting regime, a reduction in performance 
due to shear loading occurs because ±45° fibres carry shear loading with two times less efficiency than 
0° fibres carry the same magnitude of axial loading. 

 
Figure 3 shows that, SA1, the current design practice of designing for a fixed design loading using 

SAs with the 10% minimum ply percentage rule (to account for load uncertainty), has merit, even 
when subject to an uncertain critical loading. Designing directly for an uncertain loading with SAs 
(SA2) over design loadings of Nx/Ny < 0 provides mass savings of less than 5%. The potential for mass 
saving using an SA2 design strategy is only realised when Nx/Ny > 0, but is only significant (>10%) 
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when Nx/Ny = 1, Nx/Nxy = 0-1, and Nx/Ny = 0.1-0.25, Nx/Nxy = 1-4, where 8% of designs can achieve 
greater than 10% mass saving, with a maximum of 15% mass saving possible.  

 
In Fig. 4 CA laminates are designed for an uncertain loading (CA2) and significant mass saving 

over the current practice is again only seen at design load ratios of Nx/Ny > 0. However, the greater 
capacity for tailoring with CAs allows a greater range of loadings over which mass savings are 
significant (28% of designs) compared to the SA2 design strategy (8%). Peak savings of 16% occur 
near Nx/Ny = 0.4, Nx/Nxy = 0.7 (design point X3). The CA2 design strategy provides the greatest mass 
saving over current practice (SA1). However, Fig. 5 shows that the mass saving from using CAs 
compared to SAs when designing directly for uncertainty in both, is less than 10%. The green areas in 
Fig. 5 show that over all design loadings, there is little or no advantage to using CAs. A switch to use 
of CAs may therefore be considered unwarranted as the considerable cost from change and 
development of manufacturing processes would not be worthwhile. As there is no risk of increase in 
laminate mass when designing directly for an uncertain design loading with SAs, it is suggested this 
design strategy (SA2) could be employed in order to produce a mass saving.  

 
In Table 2 the CA2 strategy produces lower mass designs than a CA1 strategy. This is because 

CA2 laminates are designed to carry the worst case loading and CA1 only the design loading. 
However, despite not being designed for uncertainty CA1 designs still provide lower mass than SA2 
designs (although this mass saving is only significant for design point X3). The CA designs at design 
point X3 are orientated at approximately ±60°, which suggests a mechanism failure would need to be 
prevented by the resin matrix. This contradicts the original objective, as stated in the introduction, and 
so the stability of designs CA1 and CA2 for this design loading is a matter for further investigation.  

 
The following caveats to the discussion above should also be noted: 
 
As a consequence of the implementation of the 10% rule in current designs, fibres are spaced every 

45°. This prevents large deformations in all directions and reduces laminate Poisson’s ratio [2]. The 
Poisson’s ratios of the optimum SA and CA designs (without the 10% minimum rule) presented may 
be large. This makes compatibility between laminates forming different aircraft components 
potentially problematic. However, a constraint could be added to the optimisation to ensure the 
Poisson’s ratio is within reasonable limits. 

 
Results are based on a variation in secondary load of ±10% of the primary loading. This is thought 

to be realistic but mass savings will vary if percentage uncertainty is altered.  
 
It is noted that the minimum energy approach taken here is only applicable to thick laminates that 

would fail via a fibre based material failure mechanism. No attempt is made to account for geometric 
failures such as buckling, nor for damaged based failures, although both could be incorporated as 
constraints on the optimisation procedure. It is noted that CAs are likely to be more beneficial when 
buckling failure and damage tolerance are more critical.  

 
The continuous nature of the ply percentage variables chosen for the optimisation essentially means 

laminates with an infinite number of plies are being compared. As such, conclusions regarding the 
optimal design strategy hold more strongly for thicker laminates where ratios of ply percentages are 
more achievable. This is compounded for CA designs which rely on a Winckler laminate structure that 
requires at least eight plies of the same magnitude of angle to be stacked in a certain pattern in order to 
remove all relevant coupling terms [7]. However, the advent of thin-ply technologies will allow for 
greater stacking sequence design freedom in thinner laminates.  

 
Both SA and CA designs are assumed to feature ply unblocking that is symmetric about the mid-

plane. If designs are to be discretised large separations between the + and – angles used to unblock 
may occur. This could produce large bend-twist stiffness coupling terms (D13 and D23) that may have 
detrimental effects on buckling capacity and laminate strength under bending.  
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5 CONCLUSIONS AND FUTURE WORK 

Normalised elastic energy of laminates subject to a worst case loading, within the bounds of 
uncertainty, is used to compare design strategies for minimum mass. The current use of the 10% 
minimum ply percentage rule in standard angle designs (0, ±45 and 90) is compared to designing 
directly for an uncertainty in secondary loads of up to ±10% of the primary load. The use of 
continuous angles (0 ≤ θ ≤ 180°) is compared to the current use of standard angles.  
 

It is shown that designing with continuous angles for an uncertain critical design loading offers up 
to 16% reduction in mass over the current industry design practice; greater than 10% for 28% of 
design loadings considered. Where the latter designs for a fixed critical loading using standard angles 
whilst applying a 10% minimum ply percentage rule to account for load uncertainty. However, if 
optimising with standard angles for an uncertain critical design loading then mass reduction through 
the use of continuous angles is limited to less than 10%. Hence, given the additional cost and 
complexity of manufacture, in most cases a continuous angle design is unwarranted. Nevertheless, 
direct design for an uncertain critical design loading offers scope for improvement over current 
practice and the possibility of removal of the 10% minimum ply percentage design rule. 
 

The conclusions above only hold with certainty for laminates where laminate strength is not limited 
by resin dominated failure. Designs presented are formed from continuous ply percentages, however, 
realistic minimum mass comparisons will depend on discrete ply stacking sequences. Nevertheless, the 
methodology does give an indication of optimum fibre angle distribution. 

 
Future work will include incorporating constraints that account for geometry dependent failure 

modes such as buckling and impact damage driven failures. Maximum Poisson’s ratio and thermal 
stress constraints, associated with curing, will also be considered. 
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