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Abstract

We consider two- and three-dimensional gravity and gravity-capillary solitary
water waves in infinite depth. Assuming algebraic decay rates for the free sur-
face and velocity potential, we show that the velocity potential necessarily be-
haves like a dipole at infinity and obtain a related asymptotic formula for the free
surface. We then prove an identity relating the “dipole moment” to the kinetic
energy. This implies that the leading-order terms in the asymptotics are nonvan-
ishing and in particular that the angular momentum is infinite. Lastly we prove
that the “excess mass” vanishes. © 2018 the Authors. Communications on Pure
and Applied Mathematics is published by the Courant Institute of Mathematical
Sciences and Wiley Periodicals, Inc.

1 Introduction
We consider the motion of an infinitely deep fluid region under the influence

of gravity that is bounded above by a free surface, including both gravity waves,
where the pressure is constant along the free surface, and gravity-capillary waves,
where it is proportional to the mean curvature. The fluid is assumed to be inviscid
and incompressible, and the flow is assumed to be irrotational. We further restrict
to traveling-wave solutions that appear steady in a moving reference frame and
are solitary in that the free surface approaches some asymptotic height at infinity,
normalized to zero.

Solitary waves in finite depth, where the fluid is instead bounded below by a flat
bed, have a long and celebrated history; see, for instance, the reviews [16, 19, 33].
This includes a wide variety of existence results for gravity waves in two dimen-
sions [4, 5, 17, 29, 32] and gravity-capillary waves in two [3, 8, 10, 24, 28] and
three [9, 11, 20] dimensions. The two-dimensional gravity waves are waves of el-
evation in that their free surface elevations are everywhere positive [14], while
some of the gravity-capillary waves are waves of depression with negative free
surfaces, and still others have oscillatory free surfaces that change sign. For three-
dimensional gravity waves, Craig [13] has ruled out waves of elevation or depres-
sion, while recent results for the time-dependent problem [39, 40] rule out suffi-
ciently small solitary waves.
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1942 MILES H. WHEELER

In infinite depth, gravity solitary waves are conjectured not to exist, regardless of
the dimension. Hur [22] has proved that the only two-dimensional solitary waves
whose free surfaces are O.1=jxj1C"/ as jxj ! 1 are trivial waves with flat free
surfaces. For three-dimensional waves, Craig has shown, as in the finite-depth
case, that there are no waves of elevation or depression [13]. Also, as in the case
of finite depth, sufficiently small three-dimensional gravity waves are ruled out by
global existence results [18, 42] for small data in the time-dependent problem.

Two-dimensional gravity-capillary waves in infinite depth were first rigorously
constructed by Iooss and Kirrmann [25] following the pioneering numerical work
of Longuet-Higgins [31] and Vanden-Broeck and Dias [38]. Their proof used
normal form techniques; Buffoni [7] and Groves and Wahlén [21] have subse-
quently given variational constructions. One distinguishing feature of these soli-
tary waves is their algebraic decay at infinity. In [25] the free surfaces were
shown to be O.1=jxj/ as x ! 1; Sun [36] later improved this to the expected
O.1=jxj2/. More generally, Sun proved that a O.1=jxj1C"/ free surface is auto-
maticallyO.1=jxj2/, and that in this case several integral identities hold. In partic-
ular, the “excess mass” vanishes so that no such wave can be a wave of elevation
or depression.

While there are no rigorous existence results in the literature for three-dimen-
sional gravity-capillary waves in infinite depth, we have been informed by Buffoni,
Groves, and Wahlén that their finite-depth construction in [11] can be extended to
infinite depth and moreover that there is an alternate construction in this case us-
ing the implicit function theorem. Three-dimensional capillary-gravity waves have
also been calculated formally [27] and numerically [1,34,41]. Interestingly, as the
amplitude of these waves approaches 0, their energy is predicted to approach a fi-
nite value [41, sec. 3.2.2]. This is consistent with recent global existence results for
small data in the time-dependent problem [15], which rule out solitary waves that
are small in a certain function space. We also mention that Hur [23] has recently
generalized one of the integral identities in [36] to three (and higher) dimensions.

In this paper we simultaneously consider infinite-depth gravity and gravity-
capillary solitary waves in dimension n D 2 or 3. We assume (2.2) that the free
surface is O.1=jxjn�1C"/ as jxj ! 1 while the velocity potential is o.1=jxjn�2/.
Our first conclusion is that the velocity potential behaves like a dipole near infinity
(2.3), which implies related asymptotics (2.4) for the free surface. We next give an
explicit formula (2.5) for the kinetic energy in terms of the “dipole moment” and
the wave speed. For nontrivial waves, this ensures that the leading-order terms in
our asymptotics are nonvanishing, which in turn implies that the angular momen-
tum is infinite (Corollary 2.3). A modification of the proof of (2.5) shows that the
“excess mass” vanishes (2.6).

We now briefly interpret our results in the context of the previous work men-
tioned above. The two-dimensional gravity waves we consider are automatically
trivial by Hur’s nonexistence result [22], so that our results are interesting only in
their method of proof. For three-dimensional gravity waves, on the other hand,

 10970312, 2018, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21786 by E

gyptian N
ational Sti. N

etw
ork (E

nstinet), W
iley O

nline L
ibrary on [12/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SOLITARY WAVES IN DEEP WATER 1943

our results are entirely new. Our nonexistence proof for waves with finite angular
momentum complements Craig’s nonexistence result [13], which only applies to
waves of elevation and depression, as well as the time-dependent results [18, 42],
which only rule out waves that are sufficiently small. For two-dimensional gravity-
capillary waves, we improve upon Sun’s asymptotic bounds [36] by proving as-
ymptotic formulas for both the free surface and velocity potential, with nonvan-
ishing leading-order terms. Given this dipole-like behavior of the velocity poten-
tial, somewhat formal proofs of our integral identities were given in this case by
Longuet-Higgens [31]. For three-dimensional capillary-gravity waves, even the
conclusion that there are no waves of elevation or depression, which follows from
either our asymptotics or from the vanishing of the excess mass, appears to be new.
Under the assumption that the dipole moment and wave speed are parallel, our as-
ymptotic formula (2.4) for the free surface is consistent with equation (5.6) in [27],
which is derived as part of a small-amplitude expansion.

The two-dimensional results [22, 36] both use conformal mappings to obtain a
problem in a half-plane. Hur goes on to write a nonlocal Babenko-type equation for
the free surface elevation as a function of the velocity potential, while Sun exploits
the existence of explicit Green’s functions. In three dimensions, these arguments
break down entirely. Instead of conformal mappings, we use the Kelvin transform.
This does not fix the domain, but does convert questions about the asymptotic be-
havior of the velocity potential near infinity into questions about the regularity of
the transformed potential near a finite point on the boundary of the transformed
fluid domain. We obtain this boundary regularity using standard Schauder esti-
mates for weak solutions to elliptic equations.

The existence of solitary waves with free surfaces that decay no faster than
1=jxjn�1 remains open. Fixing n D 2 for simplicity, we know only that such
waves can be neither gravity waves of elevation or depression [13] nor gravity-
capillary waves with � > jcj2=4g [36]. The difficulty in studying these (purely
hypothetical) solitary waves is the presence of periodic water waves in the same
parameter regime. In Appendix B, we consider an explicit family of solitary waves
with pressure forcing obtained by multiplying a linear periodic wave with a de-
caying envelope. The pressure forcing decays more quickly than the free surface,
and the gap in decay rates strongly suggests that linear bootstrapping methods of
the kind used in [14, 36] do not apply to waves decaying more slowly than 1=jxj.
Thus a new, presumably nonlinear technique is needed for further progress. This
is not unlike the state of the art for two-dimensional gravity solitary waves in finite
depth h > 0: We know only that a wave with subexponential decay is necessarily
subcritical (c2 < gh) and cannot be a wave of elevation or a monotone wave of
depression [14, 26]. We note that here too the issue is the presence of periodic
waves, and a family of forced examples suggests that new arguments are needed to
treat surfaces that decay more slowly than 1=jxj.
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1944 MILES H. WHEELER

This paper is organized as follows. In Section 2, we state our main results. In
Section 3, we prove Theorem 2.1 on the asymptotic behavior of the velocity poten-
tial and free surface near infinity. To streamline the presentation, some of the more
technical details are deferred to Appendix A. In Section 4, we prove Theorem 2.2,
which expresses the kinetic energy in terms of the wave speed and dipole moment,
as well as its corollaries. The proof involves applying the divergence theorem to a
carefully chosen vector field and then using the asymptotics from Theorem 2.1 to
deal with one of the boundary terms. Finally, in Appendix B, we discuss several
families of explicit and slowly decaying solitary waves with pressure forcing on
the free surface, and consider the implications for the linear bootstrapping meth-
ods used by other authors.

Since a preprint of this paper first appeared, parts of it have been generalized
by Chen, Walsh, and the author to waves that are not irrotational but instead have
localized vorticity [12]. In particular, precise asymptotics at infinity are proven for
the waves constructed by Shatah, Walsh, and Zeng in [35]. We also note that the
decay assumptions in (2.2b) on derivatives of the free surface are weakened.

2 Results
There are two distinguished reference frames for a solitary wave: a moving

frame where the motion appears steady, and another “lab” frame where the fluid
velocity is assumed to vanish at infinity. As is common practice, we measure po-
sitions in the first frame and velocities in the second. We set x D .x0; xn/ 2

Rn�1 � R, n D 2 or 3, with x0 the horizontal coordinate and xn the vertical coor-
dinate. Assuming that the free surface S is a graph xn D �.x0/, the semi-infinite
fluid domain is

� D f.x0; xn/ 2 Rn W xn < �.x
0/g:

Since the fluid is irrotational, the fluid velocity in the lab frame is the gradient of a
velocity potential '. The equations satisfied by ' and � are

�' D 0 in �;(2.1a)
r' �N D c �N on S;(2.1b)

1
2
jr'j2 � c � r' C g� D ��r �N on S;(2.1c)

�! 0 as jx0j ! 1;(2.1d)

';r' ! 0 as jxj ! 1;(2.1e)

where here g > 0 is the constant acceleration due to gravity, � � 0 is the constant
coefficient of surface tension, c D .c0; 0/ 2 Rn is the (nonzero) wave speed, and
N D N.x0/ is the unit normal vector to S pointing out of �.

Our main assumptions are that ' satisfies

' D o

�
1

jxjn�2

�
as jxj ! 1;(2.2a)
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SOLITARY WAVES IN DEEP WATER 1945

while � and its derivatives satisfy

(2.2b)

� D O

�
1

jx0jn�1C"

�
;

@�

@x0i
D O

�
1

jx0jnC"

�
;

@2�

@x0i@x
0
j

D O

�
1

jx0jnC1C"

�
;

as jx0j ! 1 for some " 2 .0; 1/ and all i; j . Note that (2.2a) follows from (2.1e)
when n D 2.

Our first result is that ' behaves like a dipole at infinity.

THEOREM 2.1. Let � 2 C 2.Rn�1/ and ' 2 C 2.�/ solve (2.1) with � � 0 and
suppose that the decay estimates (2.2) hold. Then there exists a “dipole moment”
� D .�0; 0/ 2 Rn such that ' satisfies

(2.3)
' D

� � x

jxjn
CO

�
1

jxjn�1C"

�
;

r' D r
� � x

jxjn
CO

�
1

jxjnC"

�
;

as jxj ! 1;

while � satisfies

� D
1

gjx0jn

�
c � � � n

.c � x0/.� � x0/

jx0j2

�
CO

�
1

jx0jnC"

�
as jx0j ! 1:(2.4)

Dipole asymptotics along the lines of (2.3) feature in Longuet-Higgins’s numer-
ical calculations of two-dimensional gravity-capillary waves [31, sec. 6] as well as
Benjamin and Olver’s discussion of conserved quantities in the two-dimensional
time-dependent problem in [6, sec. 6.5]. Compared to small-amplitude expansions,
the asymptotic formula (2.4) is consistent with equation (4.1) in [2] in two dimen-
sions and equation (5.6) in [27] in three dimensions when � and c are parallel.

For two-dimensional gravity-capillary waves, Sun proves, roughly, that the de-
cay � D O.jx0j�1�"/ forces � D O.jx0j�2/ [36]. Our result is stronger in that it
identifies the leading-order term in the asymptotics. On the other hand, Sun also
allows for a semi-infinite upper layer with a different density, and, in the important
special case when � > jcj2=4g, only needs to assume � D O.jx0j�"/. As men-
tioned at the end of Section 1, his proof uses conformal mappings and hence does
not generalize to three dimensions.

The decay rates in (2.2) also match those in Hur’s nonexistence result [22] for
two-dimensional gravity waves. While weakening these decay assumptions is of
course desirable, we have been unable to do so; see Appendix B.3 for a discussion
of the difficulties involved. We can make a slight improvement in Corollary 2.4;
see the remark in Section 4.

Our next result is an integral identity involving the dipole moment � from The-
orem 2.1.
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1946 MILES H. WHEELER

THEOREM 2.2. In the setting of Theorem 2.1, the kinetic energy, dipole moment �,
and wave speed c are related by

1

2

Z
�

jr'j2 dx D �
�n=2

2�.n
2
/
.c � �/:(2.5)

For two-dimensional gravity-capillary waves, Longuet-Higgins [31] gave a for-
mal proof of (2.5) assuming (2.3); also see equation (6.22) in [6]. For three-
dimensional waves, however, (2.5) seems to be new.

Theorem 2.2 implies c � � < 0 for nontrivial waves with ' 6� 0, and hence that
the leading-order terms in (2.3) and (2.4) do not vanish. For n D 2, solving (2.5)
for � and substituting into (2.4) yields

� D

�
�

g

Z
�

jr'j2 dx

�
1

jx0j2
CO

�
1

jx0j2C"

�
;

which, for instance, implies that � > 0 for jx0j sufficiently large. For n D 3,
we instead find that � takes both positive and negative values in any neighbor-
hood of infinity. This in particular rules out waves of elevation (with � > 0) and
waves of depression (with � < 0). For three-dimensional gravity waves, Craig [13]
has already ruled out waves of elevation and depression using maximum princi-
ple arguments, without imposing any assumptions on the decay rates of � and '.
For three-dimensional gravity-capillary waves, on the other hand, these maximum
principle arguments break down and the nonexistence of waves of elevation or de-
pression seems to be new.

Another consequence of Theorem 2.2 is the following dichotomy:

COROLLARY 2.3. In the setting of Theorem 2.1, either the angular momentumR
� x � r' dx is infinite or the wave is trivial, i.e., ' � 0 and � � 0.

For two-dimensional time-dependent waves, Benjamin and Olver observe that
�0 ¤ 0 causes the integral defining the total angular momentum to diverge [6,
sec. 6.5]. This motivates them to impose additional restrictions guaranteeing that
�0 D 0, but not necessarily �n D 0. Longuet-Higgins [31] explains for two-
dimensional gravity-capillary waves how dipole behavior for the velocity poten-
tial causes the horizontal momentum to be indeterminant in that, for instance,
r' … L1.�/.

A final corollary of the proof of Theorem 2.2 is that the excess mass vanishes.

COROLLARY 2.4. In the setting of Theorem 2.1, the wave has zero excess mass in
that Z

Rn�1

�.x0/dx0 D 0:(2.6)

An obvious consequence is that no nontrivial waves satisfying (2.2) are waves
of elevation or depression. For two-dimensional capillary-gravity waves, (2.6) was
derived in [31], and a stronger version of Corollary 2.4 was proved rigorously in
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SOLITARY WAVES IN DEEP WATER 1947

[36]. For three-dimensional waves, however, Corollary 2.4 appears to be new. The
nonexistence of three-dimensional waves of elevation and depression is new only
in the capillary-gravity case; see the discussion after the statement of Theorem 2.2.

3 Proof of Theorem 2.1
The main ingredient in the proof of Theorem 2.1 is the following lemma, which

states that (2.3) holds independently of the dynamic boundary condition (2.1c).

LEMMA 3.1. Let ' 2 C 2.�/ and � 2 C 2.Rn�1/ solve (2.1a)–(2.1b). If the decay
estimates (2.2) hold, then there exists � D .�0; 0/ 2 Rn (possibly zero) so that '
satisfies the asymptotic conditions (2.3).

PROOF. We apply the Kelvin transform, setting

zx D T .x/ D
x

jxj2
; z'.zx/ D

1

jzxjn�2
'

�
zx

jzxj2

�
; �� D T .� n B1/;

where B1 D fx W jxj < 1g is an open ball centered at the origin. Note that
T .T .x// D x. This change of variables converts asymptotic questions about '
as jxj ! 1 into local questions about z' in a neighborhood of 0 2 @��. For
instance, (2.2a) implies that z' extends to a C 0.��/ function with z'.0/ D 0.

Using the decay assumptions (2.2), we show in the appendix that �� has a C 2

boundary portion S� containing 0 and that z' 2 H 1.��/ is a weak solution to the
boundary value problem

�z' D 0 in ��;
@z'

@ zN
C ˛ z' D ˇ on S�;(3.1)

where ˛; ˇ 2 C ".S�/ are given up to a sign by

˛.zx/ D �.n � 2/.x �N.x//; ˇ.zx/ D jxjn.c �N.x//; on S� n f0g;

and ˛.0/ D ˇ.0/ D 0. Standard elliptic regularity theory (for instance, theo-
rem 5.51 in [30]) then implies that z' 2 C 1C".�� [ S�/. In particular, setting
� D .�0; �n/ D rz'.0/, we have an expansion

z'.zx/ D � � zx CO.jzxj1C"/; r z'.zx/ D �CO.jzxj"/(3.2)

as zx ! 0. Rewriting (3.2) in terms of ' and r' then yields (2.3) as desired.
Finally, plugging zx D 0 in the boundary condition in (3.1), we find

�n D
@z'

@ zN
.0/ D �˛.0/z'.0/C ˇ.0/ D 0: �

Theorem 2.1 now follows from Lemma 3.1 and the dynamic boundary condition
(2.1c).
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1948 MILES H. WHEELER

PROOF OF THEOREM 2.1. We have already shown (2.3), so it suffices to prove
(2.4). From (2.2b), we have r � N D O.1=jx0jnC1C"/. Solving the dynamic
boundary condition (2.1c) for � and plugging in (2.3) therefore yields

(3.3)
�.x0/ D

1

gjxjn

�
c � � � n

.c � x0/.� � x0/

jxj2

�
CO

�
1

jxjnC"

�
CO

�
1

jx0jnC1C"

�
;

where here x is shorthand for .x0; �.x0//. Since � ! 0 as jx0j ! 1, we can
replace each occurrence of x in (3.3) with .x0; 0/, yielding (2.4) as desired. �

4 Integral Identities
Let Br D fx W jxj < rg denote the open ball with radius r centered at the origin,

and let en D .0; 1/ be the unit vector in the vertical direction.

PROOF OF THEOREM 2.2. Consider the vector field

A WD

�
�
jcj2

g
.en � r'/C c � x C '

�
r'

C
jcj2

g

�
1

2
jr'j2 � c � r'

�
en C

�
jcj2

g
.en � r'/ � '

�
c:

A simple calculation using only the fact that ' is harmonic shows that r � A D
jr'j2. Thus we can apply the divergence theorem to A on the bounded region
Br \� to obtainZ

Br\�

jr'j2 dx D

Z
Br\S

A �N dS C

Z
@Br\�

A �N dS:(4.1)

Note that Br \S is the portion of the boundary of Br \� on the free surface while
@Br \� is the portion inside the fluid.

On the free surface S , we have

N D
.�r�; 1/p
1C jr�j2

; dS D

q
1C jr�j2 dx0;(4.2)

while the boundary conditions (2.1b) and (2.1c) imply

A �N D .c � x/.c �N/ �

�
jcj2�

g
r �N C jcj2�

�
.en �N/:
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SOLITARY WAVES IN DEEP WATER 1949

Thus the first term on the right-hand side of (4.1) can be rewritten asZ
Br\S

A �N dS D �

Z
Br\S

�
.c � x/.c � r�/C

jcj2�

g
r �N C jcj2�

�
dx0

D �

Z
Br\S

r �

�
jcj2�

g
N C �.c � x/c

�
dx0

D

Z
@Br\S

�
jcj2�

g
N C �.c � x/c

�
� �0 ds;(4.3)

where here the outward-pointing normal �0WT ! Rn�1 and measure ds are with
respect to the projection of @Br \ S onto Rn�1.

Plugging (4.3) into (4.1) we obtain

(4.4)

Z
�\Br

jr'j2 dx D
jcj2�

g

Z
S\@Br

N � �0 ds �

Z
S\@Br

�.c � x/.c � �0/ds

C

Z
�\@Br

A �N dS:

From (4.2) and (2.2b) we see that the first integrand on the right-hand side of (4.4)
isO.jr�j/ D O.jx0j�.nC"//, while the second integrand isO.jx0j�.n�2C"//. Thus
these first two integrals vanish as r ! 1. Thanks to the asymptotic conditions
(2.3) proved in Theorem 2.1, the remaining integral converges, as r ! 1, to the
constant valueZ

@Br\fxn<0g

�
.c � x/r

� � x

jxjn
�
� � x

jxjn
c

�
�
x

jxj
dS

D �n

Z
@B1\fxn<0g

.c � x/.� � x/dS D �
�n=2

�.n
2
/
.c � �/;

leaving us with (2.5) as desired. �

PROOF OF COROLLARY 2.4. We follow the proof of Theorem 2.2, but with A
replaced by the vector field

zA D �
jcj2

g
.en � r'/r' C

jcj2

g

�
1

2
jr'j2 � c � r'

�
en C

jcj2

g
.en � r'/c

obtained by dropping all of the terms in A without a factor of jcj2=g. A simple
calculation shows that r � zA D 0, and the boundary conditions (2.1b) and (2.1c)
give

zA �N D �jcj2� �
jcj2�

g
r �N
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1950 MILES H. WHEELER

on the free surface S . As in the proof of Theorem 2.2, we apply the divergence
theorem, first to zA in Br \�, and then again on S \ Br , obtaining

jcj2
Z
Br\S

� dx0 D �
jcj2�

g

Z
S\@Br

N � �0 ds C

Z
�\@Br

zA �N dS:(4.5)

The first term on the right-hand side of (4.5) vanishes as r ! 1 as in the proof
of Theorem 2.2. The second term vanishes since zA D O.jr'j/ D O.jxj�n/ by
(2.3). From (2.2b) we know that � 2 L1.Rn�1/, so taking r ! 1 in (4.5) yields
(2.6) as desired. �

Remark 4.1. Unlike in the proofs of Theorem 2.2 and Corollary 2.3, the above
proof of Corollary 2.4 does not make full use of the dipole asymptotics (2.3). In-
deed, the same argument can be applied to any solution � 2 C 2.Rn�1/, ' 2
C 2.�/ of (2.1) with � D 0 and r' D o.1=jxjn�1/ to show thatZ

Br\S

�.x0/dx0 ! 0 as r !1(4.6)

(it is no longer guaranteed that � 2 L1). The same is true with � > 0 under the
additional assumption that r� D o.1=jx0jn�2/. Note that the weaker conclusion
(4.6) still rules out waves of elevation and depression.

PROOF OF COROLLARY 2.3. For any r > 0, the asymptotic condition (2.3)
implies that the integral Z

�\@Br

x � r' dS

converges, as r !1, to the constant value

(4.7)

Z
@Br\fxn<0g

x � r
� � x

jxjn
dS D �� �

Z
@B1\fxn<0g

x dS

D
�.n�1/=2

�
�
nC1
2

� � � en:
Suppose that the angular momentum is finite. Then the right-hand side of (4.7)
must be 0, which forces � � en D 0 and hence �0 D 0. But then c � � D 0 so that
(2.5) gives r' � 0 and therefore ' � 0.

It remains to show � � 0. Plugging ' � 0 into (2.1c), we find g� D ��r �N .
At a positive maximum of �, this reduces to 0 < g� D ��� � 0, which is a
contradiction. Similarly, at a negative minimum of � we have 0 > g� D ��� � 0,
which is again a contradiction, and we conclude that � � 0. �

Appendix A Proof of Lemma 3.1
In this appendix we provide the remaining details in the proof of Lemma 3.1.
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SOLITARY WAVES IN DEEP WATER 1951

Setting S� D .Bı \T .S//[f0g � @�� for ı sufficiently small, we first claim
that S� is a C 2 graph zxn D f .zx0/, which will imply that S� is a C 2 boundary
portion. As an intermediate step, we define yet another variable

x� D
x0

jx0j2
;

which, on S� n f0g, is related to zx0 via

zx0 D
x�

1C jx�j2�2.x�=jx�j2/
:(A.1)

Our decay assumptions (2.2b) easily imply that jx�j2�2.x�=jx�j2/ extends to aC 2

function of x� in a neighborhood of x� D 0, which vanishes at x� D 0 together
with its first and second derivatives. Thus we can use the implicit function theorem
to solve (A.1) for x� as a C 2 function of zx0. Expressing zxn in terms of x�,

zxn D
jx�j2�.x�=jx�j2/

1C jx�j2�2.x�=jx�j2/
I(A.2)

(2.2b) similarly guarantees that zxn can be extended to a C 2 function of x� in a
neighborhood of x� D 0. Composing the C 2 mappings x� 7! zxn and zx0 7! x�

yields the desired equation zxn D f .zx0/ for S�.
We now consider the boundary condition satisfied by z' on S�. A calculation

shows that a C 1 unit normal zN on S� is given in terms of the normal vector N
on S via the formula

zN.zx/ D N.x/ � 2
N.x/ � x

jxj2
:

For simplicity assume that zN points out of ��; otherwise the definitions of ˇ and
˛ below are off by an unimportant sign. Differentiating the identity

'.x/ D
1

jxjn�2
z'

�
x

jxj2

�
and using the boundary condition (2.1b), we find that, on S� n f0g,

c �N D
@'

@N
D �.n � 2/

x �N

jxjn
z' C

1

jxjn
@z'

@ zN
:

Multiplying through by jxjn, we write this as

@z'

@ zN
C ˛ z' D ˇ on S� n f0g;

where ˛ and ˇ are defined on S� n f0g by

˛.zx/ D �.n � 2/.x �N/; ˇ.zx/ D jxjn.c �N/:

Clearly ˛; ˇ 2 C 1.S� n f0g/. Using our decay assumptions (2.2b), we check that
they extend to C " functions of zx0 vanishing at zx0 D 0. We remark that only this last
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1952 MILES H. WHEELER

extension of ˇ requires the full force of (2.2b); the other extensions only require
� D O.1=jxj"/, D� D O.1=jxj1C"/, and D2� D O.1=jxj2C"/.

Next we show that z' 2 H 1.��/. From (2.2b) we know z' 2 C 0.��/ \

C 2.�� n f0g/, so it is enough to show r z' 2 L2.�� \ BR/ for some R > 0.
Fix R small enough that B2R \ @�� � S�, let �0 2 C1c .R/ be a nonnegative
function satisfying �0.s/ D 0 for s < 1 and �0.s/ D 1 for s > 2, and for r < R=2
define

�.zxI r/ D �0.r
�1
jzxj/.1 � �0.R

�1
jzxj//:

Multiplying �z' D 0 by �2 z' and integrating by parts, we findZ
��

j�r z'j2 d zx D �2

Z
��

�z'r� � r z' d zx C

Z
S�

�z'.ˇ � ˛ z'/dS

� C.1C kr�kL2.Rn/k�r z'kL2.��//;(A.3)

where C depends on the L1 norms of z', ˛, and ˇ. Since

kr�kL2.Rn/ � C.1C r
n�2/ � C;

(A.3) implies an upper bound on k�r z'kL2.��/ independent of r < R=2. Sending
r ! 0, we obtain r z' 2 L2.�� \ BR/ as desired.

Finally, we claim that z' is a weak solution to (3.1). Certainly (after perhaps
changing the definitions of ˛; ˇ by a sign)Z

��

r z' � rv d zx D

Z
S�

.˛ z' � ˇ/v d zx(A.4)

for all smooth v 2 H 1.��/ vanishing in a neighborhood of 0. Such v are dense in
H 1.��/ (see, for instance, lemmas 17.2 and 17.3 in [37]). Since z' 2 H 1.��/,
(A.4) therefore holds for all v 2 H 1.��/ and the claim is proved.

Appendix B Forced Waves with Slow Decay
In this appendix we take n D 2 and 0 � � < c2=4g and consider forced solitary

waves, i.e., solutions to (2.1) with an additional source term on the right-hand side
of the dynamic boundary condition (2.1c) that enforces a nonconstant pressure on
the free surface.

B.1 Formulation
To keep the presentation brief, we will be somewhat informal, and in order to

simplify the calculations we switch to standard conformal variables. Identifying
.x0; xn/ 2 R2 with ´ D x0 C ixn 2 C,

w.´/ D ˆ.´/C i‰.´/ D ´ �
1

c
.'.´/C i .´//

is a rescaled complex velocity potential in the moving frame. Here  is the har-
monic conjugate of ', which, thanks to the kinematic condition (2.1b), can be
normalized so that  D c� on the free surface. As is well-known, w maps the
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SOLITARY WAVES IN DEEP WATER 1953

fluid domain y < � conformally onto the lower half-plane ‰ < 0. Writing the
inverse of this mapping as

´ D w C �.w/;

the asymptotic conditions (2.1d)–(2.1e) correspond to �; �0 ! 0 as jwj ! 1,
while the dynamic boundary condition (2.1c) becomes

(B.1) Re
�
c2

2

�
1

j1C �0j2
� 1

�
� ig� C �c2

i�00

.1C �0/j1C �0j

�
D p on ‰ D 0;

where here the right-hand side p represents pressure forcing. Since ˆ � x as
jˆj ! 1, the decay rates of � and p in ˆ coincide with their decay rates in x.

B.2 A Family of Explicit Examples
By our assumption � < c2=4g, there is a positive root k of the dispersion

relation

�c2k2� C c2k � g D 0;(B.2)

corresponding to the linear periodic wave �per D "eikw . Multiplying �per by an
algebraically decaying envelope, we set

� D "
eikw

.w � i/q
;(B.3)

where q 2 .0; 1� is the decay rate. Certainly � is holomorphic in the lower half-
plane and satisfies the asymptotic conditions �; �0 ! 0 as jwj ! 1. Choosing
" > 0 sufficiently small, there is no issue with the denominators on the left-hand
side of (B.1), which we then view as the definition of the pressure forcing p. Unsur-
prisingly, the elevation of the free surface decays like 1=jxjq , with the asymptotic
expansion

� D Im �.ˆ/ D "
sin.kˆC ı˙/
jˆjq

CO

�
1

jˆj1Cq

�
as ˆ ! ˙1 for some phase shifts ı˙ depending on q. By our choice of k,
however, the pressure disturbance decays more quickly:

p D ".��c2k2 C c2k � g/
sin.kˆC ı˙/
jˆjq

CO

�
1

jˆj2q

�
D O

�
1

jˆj2q

�
:(B.4)

To first order in " (i.e., for the linearized equations) the decay is still faster:

plin D O

�
1

jˆj1Cq

�
:(B.5)

 10970312, 2018, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21786 by E

gyptian N
ational Sti. N

etw
ork (E

nstinet), W
iley O

nline L
ibrary on [12/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1954 MILES H. WHEELER

B.3 Implications for a Class of Linear Arguments
A common method for improving the decay rates of solutions to nonlinear equa-

tions, used for instance in [14], can be roughly outlined as follows. First, the equa-
tion is written abstractly as

L� D N.�/C p(B.6)

where L is a linear operator, N represents the nonlinear dependence on �, and p is
the forcing term. Then a lemma is proved to the effect that an algebraic decay rate q
of plin D L� is automatically inherited (or improved on) by �, provided q does not
exceed some maximum rate qmax. Suppose first that the forcing term p D 0 and
that � decays at a rate q1 > 0. Then the nonlinear terms decay at twice this rate,
and so by the lemma q1 can be increased to q2 D min.2q1; qmax/. Continuing in
this way we eventually find that � decays at the maximum admissible rate qmax.
Clearly the same argument works with a nonzero forcing term p, provided it too
decays at the maximum rate qmax.

For the forced water wave problem considered in this section, (B.4) shows that
the above conclusion is false: � decays at the rate q 2 .0; 1� while the forcing p
decays at the faster rate 2q. Looking at (B.5), we see the reason: the lemma on the
mapping properties of L does not hold. Indeed, the best replacement lemma that
we can hope for is that a decay rate of 1Cq for plin D L� implies a rate of q for �.
But again, such a lemma applied to (B.6) (say with p D 0) would only improve
the decay rate q of � when q < 2q � 1, i.e., when q > 1.

This is why (at least for � < c2=4g) the arguments in [36] are limited to waves
with decay rate q > 1, although we do note that the appendix of that paper contains
some results on waves with a certain asymptotic expansion at infinity related to
(B.3) with q D 1.
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