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Abstract — This paper uses the energy hub concept to 
holistically model future energy infrastructure in domestic 
buildings, including energy storage. The developed model allows 
the deployment of a novel bi-criteria optimization algorithm for 
minimizing both the cost and emissions of energy hub operation 
whilst taking advantage of dynamic tariffs. Unlike the 
traditional flat rate tariffs, the dynamic tariffs employed in this 
paper reflect variations in the wholesale energy market, and are 
used as commercial inputs to drive the storage operation and 
reduce both costs and emissions. The developed algorithm and 
hub model are used to optimize an example energy hub against 
four 24 hour periods of loads and dynamic tariffs, one from each 
season. Annual savings are estimated and compared against a 
base case, with no storage or management, of a typical house in 
the UK, showing significant cost and emissions savings.   

Index Terms-- Cost Benefit Analysis, Energy Hubs, Energy 
Storage, Green buildings, Microgrids. 

 

I. INTRODUCTION  

Like many regions and states worldwide, the EU has set 
legally binding targets for the reduction of carbon emissions to 
mitigate climate change. These are a reduction of 20% below 
1990 levels by 2020 and a further reduction of 80% by 2050 
[1]. Domestic buildings are responsible for at least 30% of a 
developed society’s energy use, particularly through heating, 
cooling, lighting and hot water use [2]. As electric vehicles 
achieve higher market penetration the increase in domestic 
electrical load will mean households use even more energy. 

In future, the shortage of fossil fuels and the penetration of 
renewables in the generation mix will mean that energy prices 
are increasingly volatile.  

Against such a landscape of volatile pricing, domestic 
energy storage offers a means of cost avoidance – energy may 
be bought at times of lower price and discharged to meet loads 
when the price is higher. Moreover, if a building has local 
micro generation such as PV or solar hot water, times of high 
load in the morning and evening will not coincide with peak 
generation. Storage also offers a way to time-shift the use of 
this low carbon energy so it may be used where it is generated, 
saving distribution losses.  

At present however, the domestic pricing structures are 
largely limited to flat and 2-rate tariffs. They are not 
sufficiently dynamic to reflect the cost variation in the supply 
system at different locations and over time. Real-time price 
(RTP) is the most direct way of reflecting dynamics of 
wholesale price variations.  Being able to reflect the dynamics 
of wholesale energy prices is critically important for demand 
response and storage operation, particularly in a low carbon 
system as changes in fuel prices, in demand and in the 
availability of renewable generation are likely to be more 
frequent and significant. The traditional flat rate tariff on the 
other hand, cannot provide the appropriate economic 
environment against which storage can offer cost avoidance 
[3].   

The operational optimization of energy storage is a 
complex task. The decision to charge and discharge storage 
must take into account future loads and carbon emissions 
factors, which requires weather and building occupancy 
prediction. Locally, energy itself is not saved by using storage 
because there are always charging, discharging and standby 
losses. In certain circumstances local storage may yield an 
energy saving by avoiding distribution costs, although this is 
rare. The optimization criteria should therefore be for 
minimizing monetary costs or emissions costs or as suggested 
here, a combination of both. The operation of storage must 
save more emissions and costs than are used over its full 
lifecycle, including manufacture and disposal, so a lifetime 
cost per charge cycle should also be factored in. 

In order to reach a global optimum, building energy 
infrastructure should be treated holistically taking into account 
all energy carriers, taking advantage of any redundant 
pathways built into the infrastructure. This offers the ability to 
meet loads with different supplies depending on which offers 
the lowest instantaneous emissions and monetary cost. Whilst 
redundancy is not current practice in building energy services 
it may be economical in future with rising energy costs and 
cheaper technology. The Energy Hub concept offers a 
versatile way of holistically modeling building’s energy 
infrastructure.  

This paper presents an algorithm for holistically 
optimizing energy storage using energy hub modeling, taking 
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advantage of  time-varying dynamic tariffs. This development 
is compared against a typical house in the UK, showing 
significant cost and emissions savings over the status quo.  
The rest of the paper is as follows: section 2 discusses energy 
hubs in detail and then proposes a new storage model. Section 
3 describes the optimization algorithm. Section 4 reviews the 
dynamic pricing from [4] and describes how this price is 
combined with emissions to provide a cost proxy. Section 5 
compares the energy optimization algorithm used in an 
example hub against a base case to demonstrate cost and 
emissions savings, followed by the conclusion in Section 6. 

II. ENERGY HUBS 

The Energy Hub concept offers a versatile way of 
modeling the steady state power flows in the energy 
infrastructure around any bounded geographical area. 
Originally developed by ETH Zurich [5], Energy Hubs 
comprise of incoming energy carriers at the input ports and 
outgoing loads at the output ports, with energy conversion and 
storage technologies between them. Fig. 1 shows an example 
energy hub. An energy hub can be used to model a domestic 
building’s energy infrastructure, including local storage, 
renewables and micro-generation. The redundant pathways 
within a hub offer the chance of ongoing operational 
optimization, that is, selecting the combination of input 
supplies that will meet the loads whilst incurring the lowest 
emissions and costs.  

An energy hub may be modeled mathematically using the 
hub equation: where L is the column vector of different load 
types, P is a column vector of supply powers and C is the 
converter coupling matrix. In matrix form this may be written: 
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Where in (1) each Greek letter denotes a type of energy 
carrier. Each term is C is the steady state efficiency of  the 
converter technology as it converts from one energy type to 
another, or the same carrier but changing its quality in some 
way. So for example, the coupling Cαα  could denote the 
conversion efficiency of transformer converting electrical 
energy from one voltage to another. Cαβ  on the other hand, 
could be the efficiency of an electrical heater converting 
electricity to heat.  

However, when modeling buildings, it is often the case the 
instantaneous load is known or future loads can be predicted 
with a reasonable degree of accuracy. In these situations it is 
more useful to express the supplies in terms of the loads, using 
the backwards coupling matrix.     

 
Figure 1.  Example energy hub with electrical transformer, resistive heater, 
gas boiler, solar heat exchanger and battery storage. 

 

This may be written in matrix form: 
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This technique was developed by Fabrizio [6]. Consider a 
fully connected hub shown in Fig. 2. This represents the most 
complex hub topology where every load can be supplied from 
every supply via any converter. Whilst technologically not 
feasible, this is the most generic case. In practice, for real 
world hubs, most terms in the in the backwards coupling 
matrix will disappear since there is no pathway between 
vectors and so no coupling. 

In general each term in the backwards coupling matrix is a 
quotient of two dimensionless units, ε  and η. The dispatch 
factor ε  denotes the portion of the total load that is supplied 
by the energy carrier via a converter. For example, 

n

yx

K
LP →ε  

would denote the portion of load Ly supplied by carrier Px via 
converter Kn.   

 
Figure 2.  A fully connected energy hub with n converters, K1 – Kn and 
storage on the input ports SPα − SPω, and on the output ports SLα − SLω.  

 



 

 η is the efficiency of each converter and must be written 
with subscripts to denote the energy it is converting, for 
example,  

n

yx

K
LP →η  

is the efficiency of converter Kn when converting load Px 
to load Ly . Equation (2) may be multiplied out where the first 
term is a way of expressing supply Pα  in terms of all the load 
vectors.  
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There exist similar equations for each energy carrier down 
to Pω. 

Now consider energy storage technology, shown in the 
generic hub in Fig. 2, with storage technologies positioned at 
both the input ports or the output ports. The behavior of 
storage must be considered in the time domain. In each time 
step the flows may change resulting in a changing level of 
energy in each storage and affecting the overall flow through 
the hub. 

With the addition of the vector of storage flows on the load 
side of the hub SL, and SP, the vector of storage flows on the 
supply side, (2) becomes 

 SPSLLDP ++= )(    (4) 

Where for storages charging,  
 

0>SL  and 0>SP  

 
for storages discharging,  
 

0<SL  and 0<SP  

 
for storages on standby,  
 

0=SL and 0=SP  

 

III. OPTIMISATION ALGORITHM  

It is clear from the previous section that for the energy hub 
containing storage and time dependent loads, its flows must be 
optimized for each time step. Each individual time step will 
add up to a total time horizon, over which the minimum total 
hub cost must be found. The behavior of storage must be 
considered over this entire time window. The following 
section describes a method of achieving this.  

Loads for the entire time window are required in advance, 
which may be predicted with a reasonable degree of accuracy 
with a combination of weather and occupancy prediction.    

First it is necessary to determine, for each time step, a 
backwards coupling matrix that meets the loads with the 
lowest cost without exceeding the maximum power of each 
converter. This is dependent on the price and emissions 
multipliers and the availability of renewable resources. A 
proxy variable known as “cost” is chosen to represent both 
price and emissions factor of one unit of each supply.  (The 
normalized price and normalized emissions factor are 
calculated by dividing each price in that time step by the sum 
of all supply prices). These normalized values can then be 
weighted as desired and averaged to produce a proxy for each 
supply known as “cost”. In this paper, emissions and price 
were weighted equally. From here, a merit order of hub 
converters for each load is obtained from the unit cost divided 
by the converter efficiency. Dispatch factors ε  should then be 
chosen to route the flows through the converters according to 
the merit order, i.e. the most cost efficient converters are 
loaded first up to their maximum power, followed by the next 
most cost efficient and so on. If all the loads can be met with 
the most efficient converters for each load type, this time step 
is referred to as “unconstrained”. If a lesser cost efficient 
converter is used, it is referred to as “constrained”.  

Secondly, storage flows must be calculated for each time 
step. Storage is only charged when the hub is in a 
unconstrained time step, such that the flows plus the storage 
flows are the maximum that the hub will allow without 
becoming constrained. If the hub is constrained, storage is set 
to discharge in an attempt to reach the unconstrained 
condition. This ensures as much as possible that the lowest 
cost converters are used to meet loads. Storages cannot exceed 
their maximum flow rates and are subject to standby losses 
and a charging and discharging efficiency penalty. In addition, 
storage may not be discharged when storage levels are empty 
or charged when full. 

IV.    REAL TIME PRICING  

As mentioned earlier, one of the benefits of storage can be 
cost avoidance. This is only possible against a dynamically 
varying tariff for at least one of the hub’s energy supplies, 
differentiating periods of high-cost energy supply from those 
of low-costs. The present electricity tariff structures in the 
UK are however mainly flat and 2-rate tariffs, they are not 
sufficiently dynamic to reflect the variation and uncertainties 
in the supply system. Real-time price (RTP) is the most direct 
way of reflecting dynamics of wholesale energy price [4] as 
they vary as a result of minute to minute change in load and 



renewables, and price variations over time. The dynamics of 
RTP will allow the storage device in the energy hub to take 
advantage of lower energy prices, and mitigate purchase at 
high prices through the use of stored energy. RTPs are most 
common in the whole-sale energy market, reflecting the cost 
of energy generation. In this paper, RTPs are converted to 
real-time tariffs (RTT) to also reflect the cost of energy 
delivery, using the ratio between wholesale energy cost and 
transmission/distribution/retail costs [7].  

The introduction of RTT into the “cost” proxy described in 
the previous section produces a time varying cost in both the 
electricity and gas supply, as shown in Fig. 3. This is because 
although the absolute price of gas is fixed, its normalized cost 
relative to electricity will change. In this paper solar energy 
has no associated price, (only a time independent emissions 
factor, due to lifecycle emissions) so its cost relative to the 
other supplies does not change. It is worth noting that 
although a fixed emissions factor was used here, this 
methodology could also handle a dynamic emissions factor, 
such as that caused by fluctuating levels of renewables in the 
electricity generation mix.  

 

V. EXAMPLE OPTIMISATION  

Fig. 4 shows an energy hub containing various conversion 
technologies and battery storage and a hot water tank 
connected to the output side electricity and heat ports 
respectively. Using the algorithm presented in section 3, the 
operation of this energy hub was optimized for four 24 hour 
periods, using scripts written in MATLAB 2012b. The key 
parameters of the converters and storages are in the appendix. 
These periods were single days in winter, spring, summer and 
autumn. Heat and electrical loads for these time periods were 
generated using software described in [8] and [9] 
respectively. The time step of the optimization was 30 
minutes. The carbon dioxide equivalent factor of gas and 
electricity was based on values published by defra/DECC in 
2012 [10], being 0.184 and 0.493 kgCO2/kWh respectively. 
The carbon emissions of solar energy was based on the  

 

 Figure 3.  Time series of variation in costs.    

 
Figure 4.  Hub optimized in example. Converters from top: transformer, 
electric heater, micro-CHP, gas boiler, solar heat exchanger, PV panels. 
Storage from top: battery and hot water tank. 

 
Figure 5.  Base case energy hub (typical UK house).    

average lifecycle equivalent CO2 cost at 0.07 kgCO2/kWh. 
The maximum input power of the solar converters was their 
absolute maximum multiplied by the sunlight available, a 
factor between 1 at midday and 0 at midnight.  The hub in 
Fig. 4 was compared to a base case energy hub, typical of a 
house in the UK, shown in Fig. 5, under the same real time 
tariffs. Fig. 6 shows the 24 hour time series over the day in 
winter of the optimized hub’s inputs against demand and 
storage levels. The time series of other seasons are omitted 
for brevity.  
 

 
Figure 6.  Winter: this shows the time series of the supplies consumed 
against the demand for a typical 24 hour period in winter. The storage energy 
levels are also plotted against the right hand y-axis. 



Table 1 shows the annual savings compared against the 
base case. Annual savings were calculated by assuming each 
seasonal day represented a typical day, and multiplying each 
of the four 24 hour costs by 91, the average number of days 
per season. When managed with the algorithm presented here 
against the base case, the energy hub in Fig. 6 is able to make 
annual savings of £635 (60%) and 1025 kgCO2 equivalent 
(25%). 

VI. CONCLUSION 

An algorithm has been presented to manage domestic 
energy hub storage taking advantage of real time dynamic 
tariffs, resulting in 60% annual cost savings and 25% carbon 
savings. Although pure cost savings are unlikely to pay for 
the storage and converter infrastructure over its lifetime, if 
the emissions savings can be monetized and the ancillary 
functions of storage are leveraged, for example network 
support, this may well yield a positive investment case – 
although this is an area for further work. Also, applying a 
penalty lifecycle price and emissions factor to the converters 
and storage is an important future improvement to the 
algorithm. 

 

TABLE I.  SEASONAL AND ANNUAL EMISSIONS AND COST SAVINGS 

 
 Base Energy Hub 

Optimised Energy Hub 
with storage 

  
Price 
(UK £) 

Emissions 
(kgC02 
equivalent) 

Price 
(UK £) 

Emissions  
(kgC02 
equivalent) 

Winter 
day  3.49 14.3 1.97 11.61 
Spring 
day 3.18 12.01 1.3 10.99 

Summer 
day 2.03 7.18 

(storage 
surplus)-

0.86 1.9 
Autumn 
day 2.91 10.88 1.37 8.61 
Annual 
Total 1057 4038 422 3013 

  

Annual 
saving on 
base  

635 
(60%) 1025 (25%) 

 

VII. APPENDIX: CONVERTER AND STORAGE DATA 

 

Converter 

Output 
Electrical 

Efficiency (%) 

Output Heat 
Efficiency 

(%) 

Maximum 
Input Power 

(kW) 
Transformer  97 Null      10 

Electrical 
Heater Null 90 5 

Micro-CHP 30 60 8 
Gas boiler Null 90 30 
Solar Heat 
Exchanger Null 70 5 

Photo 
Voltaics  15 Null 2 

 

Storage 
Capacity 

(kWh) 

Discharging 
Efficiency 

(%)  

Charging 
Efficiency 

(%)  

Standby 
Losses 

 % of level 
per Δ t 

Battery  20 60 60 5.6 x 10-5 
Water 
Tank 30 90 90 1.32 x 10-3 
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