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Does the Madden-Julian Oscillation modulate stratospheric
gravity waves?

Andrew C. Moss', Corwin J. Wright', and Nicholas J. Mitchell’

TCentre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, UK

Abstract The circulation of the stratosphere is strongly influenced by the fluxes of gravity waves
propagating from tropospheric sources. In the tropics, these gravity waves are primarily generated by
convection. The Madden-Julian Oscillation (MJO) dominates the intraseasonal variability of this convection.
However, the influence of the MJO on the variability of stratospheric gravity waves is largely unknown. Here
we examine gravity wave potential energy at 26 km and the upper tropospheric zonal wind anomaly of the
MJO at 200 hPa, sorted by the relative phase of the MJO using the Real Multivariate MJO indices. We show
that a strong anticorrelation exists between gravity wave potential energy and the MJO eastward wind
anomaly. We propose that this correlation is a result of the filtering of upward propagating waves by the
MJO winds. The study provides the first observational evidence that the MJO contributes significantly to
the global variability of stratospheric gravity waves in the tropics.

1. Introduction

Gravity waves play a very important role in the dynamics of the stratosphere. The waves can propagate
upward from their sources in the troposphere upward to greater heights, resulting in a vertical flux of energy
and horizontal momentum. When the waves dissipate, this energy and momentum are transferred to the
mean flow.

Gravity waves can be generated by a variety of sources, including winds blowing over mountains and the
adjustment of jet streams. In the tropics, deep tropospheric convection associated with cumulus clouds is the
main source of gravity waves [e.g., Alexander et al., 2008; Wright and Gille, 2011]. Such tropical waves drive
important features of the tropical stratospheric circulation, including the quasi-biennial oscillation (QBO) and
semiannual oscillation (SAO) [e.g., Hamilton et al., 2004]. Measurements of the fluxes and variability of gravity
waves and how these are related to their sources are thus essential in efforts to understand the dynamics of
the stratosphere and in efforts to develop numerical weather prediction and climate models [e.g., Fritts and
Alexander, 2003; Alexander et al., 2010].

Tropical cumulus convection itself varies significantly on intraseasonal time scales (i.e., time scales of
~10-100 days). The largest component of this variability is the Madden-Julian oscillation (MJO) [Madden and
Julian, 1972], which is the most prominent intraseasonal oscillation (ISO). The MJO is a large-scale repeating
pattern of coupled circulation and deep convection that originates in the Indian Ocean and then propagates
eastward to the western/central Pacific. It has a period of ~30-90 days and typically travels at ~5 m s
[e.g., Zhang, 2005]. While the convection of the MJO is largely confined to the Eastern Hemisphere, its dynam-
ical influence is apparent on a global scale [e.g., Salby et al., 1994]. The MJO is known to be closely associated
with convectively coupled Rossby and Kelvin waves [e.g., Matthews, 2000; Sperber, 2003; Khouider et al., 2011].
Anomalies in tropospheric zonal wind are observed toward the MJO center close to the surface (850 hPa) and
away from the MJO center in the upper troposphere (200 hPa), as presented schematically in Figure 1. In light
of the known role of the MJO in modulating tropical convection, we can thus ask the question does the MJO
act to modulate the variability of stratospheric gravity waves?

To date, there have only been a very limited number of attempts to determine the influence of the MJO on the
variability of gravity waves in the tropical stratosphere. In particular, Horinouchi [2008] used a cloud-resolving
model to investigate convectively generated gravity waves and their propagation into the stratosphere. He
found that upward propagation of gravity waves was significantly increased during the inactive phase of the
MJO (when there is actually reduced convection). This apparently counter-intuitive result is a consequence of
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Figure 1. Schematic diagram showing some characteristics of the Madden-Julian Oscillation. Adapted from

Zhang [2005].

the modeled gravity waves generated in the inactive phase of the MJO having (i) higher phase speeds and
(ii) longer vertical wavelengths than those gravity waves generated in the active phase. This arises from the
greater convective cloud rain-top heights associated with the inactive phase of the MJO [e.g., Morita et al.,
2006]. These gravity waves of higher phase speed and longer vertical wavelength are better able to propagate
into the stratosphere where they account for the increased gravity wave fluxes.

In contrast, Karoly et al. [1996] considered radiosonde data from Santa Cruz (10°S, 165°E) in the South Pacific
recorded during the 4 month Tropical Ocean Global Atmosphere-Coupled Ocean-Atmosphere Response
Experiment campaign of 1992-1993 when the MJO had significant amplitude. They reported significant cor-
relations between gravity wave activity in the lower stratosphere (17-24 km) and proxies for convective
activity including outgoing long-wave radiation (OLR), thus suggesting a positive correlation between the
MJO convection and gravity wave activity in the lower stratosphere.

There is some evidence that ISOs in tropospheric convection, including the MJO, modulate the fluxes of grav-
ity waves and/or nonmigrating tides in the tropical mesosphere and lower thermosphere (MLT). Eckermann
etal. [1997] reported that gravity wave variances and MLT winds both display fluctuations at ISO periodicities.
They proposed that ISOs, including the MJO, may be modulating the generation of gravity waves and nonmi-
grating tides that then subsequently propagate through the stratosphere to the MLT where their modulated
momentum fluxes drive fluctuations in the winds at ISO periods when the gravity waves and/or tides dissi-
pate. This suggestion has received support from other observations of fluctuations in MLT region winds at ISO
and MJO periodicities [e.g., Davis et al., 2012; Rao et al., 2009]. However, other studies have argued that non-
migrating tides drive the MLT region ISOs, and so the role of modulated gravity wave fluxes remains unclear
[e.g., Isoda et al., 2004].

We thus see that there is great uncertainty regarding the magnitude and phasing of any connection between
the MJO and stratospheric gravity waves. However, establishing the nature of any such modulation is impor-
tantin attempts to understand the coupling of the tropical troposphere and stratosphere. These uncertainties
highlight the need for studies to determine the magnitude and relative phasing of any MJO influence on the
field of convectively generated gravity waves.

Here we present observations of gravity wave potential energies (GWPE) made in the tropical lower strato-
sphere from Constellation Observing System for Meteorology, lonosphere, and Climate (COSMIC) radio
occultation satellite observations. GWPE at 26 km and zonal wind anomalies at 200 hPa pressure level are
examined to investigate their intraseasonal variability. The fundamental novelty of our analysis is to sort our
observations of stratospheric gravity waves by the phase of the MJO defined by the Real Multivariate MJO
(RMM) indices [Wheeler and Hendon, 2004]. This is the first time this analysis has been applied to stratospheric
gravity waves. Finally, we propose and provide evidence for a mechanism by which this stratospheric gravity
wave variability is caused by the MJO.
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2. Data and Analysis

2.1. COSMIC GPS-RO Gravity Wave Observations

The COSMIC mission was launched in April 2006 and consists of six low-Earth orbiting satellites that track GPS
satellites as they rise or set over the horizon. The radio signal received by these satellites is influenced by the
atmospheric limb. Vertical profiles of temperature and pressure can be computed from the phase delay of
the signal [Liou et al., 2007]. COSMIC data have been extensively used for a number of gravity wave studies
[e.g., Alexander et al., 2008, 2009; Wang and Alexander, 2010; Wright et al., 2011; McDonald, 2012; Faber et al.,
2013; Hindley et al., 2015].

Here we use COSMIC level-2 dry atmospheric temperature data from September 2006 to December 2012.
GPS radio occultation (GPS-RO) measurements have sub-Kelvin temperature precision [Tsuda et al., 2011],
horizontal resolution in the stratosphere of ~270 km [Kursinski et al., 1997; Hindley et al., 2015], and features
with vertical scales greater than 2 km can be distinguished from noise [Marquardt and Healy, 2005; Tsuda
et al., 2011]. Thus, we interpolate all COSMIC profiles to 2 km resolution prior to analysis and as a result will
only observe gravity waves with vertical wavelengths greater than 4 km. In addition, limb sounding instru-
ments, such as COSMIC, are most sensitive to mid-and low-frequency gravity waves (i.e., inertia-gravity waves)
that have short vertical and long horizontal wavelengths [e.g., Wright et al., 2015]. Hence, our results are only
representative of this part of the wave spectrum.

For each day of data, the COSMIC temperature profiles are binned onto a 10° x 20° latitude-longitude grid,
stepped in 1° x 1° increments. Zonal mean and planetary-scale features of zonal wave number 0-6, such as
Kelvin waves, are calculated at each latitude and height. The resulting local background temperature profile, T,
is removed from each original temperature profile by interpolating to its latitude-longitude position to reveal
the temperature perturbations due to gravity waves alone. We next apply an S Transform [Stockwell et al.,
1996] to each temperature perturbation profile, T/, to determine the largest resulting wave amplitude at each
height. This amplitude is used to calculate the potential energy, E,, [Tsuda et al., 2000] for each height using
equation (1), where the acceleration due to gravity, g, is assumed to be constant and N is the Brunt-Vaisala

frequency.
2
_ 1 g 2 T
EP_Z(N) <T) (M

The GWPE for each day is then defined as the average E,, for each 10° x 20° latitude-longitude cell at a height
of 26 km. The time series of GWPE in each cell is then bandpassed with a 201-point Lanczos filter [Duchon,
1979] with half-power points at 20 and 100 day periods to reveal any intraseasonal variability in the data.
This bandpassing method closely follows the methodology of the CLIVAR Madden-Julian Oscillation Working
Group [2009], who presented a standardized method of identifying MJO signals in atmospheric data.

2.2, ECMWF Zonal Wind

European Centre for Medium Range Weather Forecasting (ECMWF) operational analysis data are used to cal-
culate zonal wind anomalies at the 200 hPa pressure level. The data used are from the 1.125° resolution data
set and are bandpassed for each grid point in the same way as GWPE to filter for intraseasonal variability.

2.3. RMM MJO Index

The Real-time Multivariate MJO (RMM) index of Wheeler and Hendon [2004] defines the daily variation in ampli-
tude and phase of the MJO for eight specific phases. The index is composed of a combination of equatorially
averaged anomalies of OLR and zonal wind at 850 hPa and 200 hPa projected onto the leading pair of empirical
orthogonal functions [Wheeler et al., 2009].

Here we use the MJO index to create composite maps for our data for each MJO phase. Data are only used
in the composite average for each phase if they fall within that phase, and the amplitude of the RMM index
exceeds 1 (i.e,, a strong MJO is present). This analysis results in maps of 20-100 day bandpassed GWPE and
200 hPa zonal wind anomalies for each MJO phase. It thus provides an appropriate tool to investigate the con-
nection between stratospheric gravity waves and the MJO. This 20- 100 day period range is specifically chosen
because it is that used to evaluate MJO simulations in the consistent framework of CLIVAR Madden-Julian
Oscillation Working Group [2009]. We will refer to the 20— 100 day period range as the “MJO period range” from
here onward.
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Figure 2. Composite mean plots of gravity wave potential energy (GWPE) for (left column) boreal summer (May to October) and (right column) austral summer
(November to April). (top row) The mean GWPE for each season. (middle row) The variance of GWPE in the intraannual bandpass (2-180 day) for each season.

(bottom row) The variance of GWPE in the intraseasonal bandpass (20-100 day) for each season. The units for Figure 2 (top row) of mean GWPE are in J kg

=1

For all other panels showing the variance of GWPE, the units are in J2 kg—2.

3. Results

The geographical and seasonal variability of GWPE is presented in Figure 2. Figure 2 (left column, from top to
bottom) shows mean GWPE, the variance of 2—180 day bandpassed GWPE, and the variance of MJO period
range GWPE as composites averaged over boreal summer months (May to October). Mean GWPE is enhanced
over Africa, the Bay of Bengal, and Central America. The variances of the 2-180 day and MJO period range
GWPE are more widely distributed around the tropics.

Figure 2 (right column) shows the same analysis but averaged over the austral summer months (November to
April). There are enhanced regions of mean GWPE over southern Africa, Indonesia, and South America, and the
variance of bandpassed GWPE is more uniformly distributed. Lower energies are observed in austral summer
compared to boreal summer, and the largest values tend to be in the summer hemisphere, as is especially
evident in the panels showing mean GWPE. Comparison of the intraannual and intraseasonal gravity wave
variances shows that there is a significant proportion of variability associated with I1SOs.

The RMM indices of Wheeler and Hendon [2004] provide a method of identifying whether the ISOs in observa-
tional data exhibit a correlation with the MJO. Figure 3 presents mean composites of MJO period range GWPE
(filled contours) and MJO period range zonal wind anomalies at 200 hPa (colored lines) for each phase of the
RMM indices where a strong MJO is present (where the amplitude of the RMM index is greater than 1). Purple
solid lines indicate regions of increased eastward zonal wind, and green dash-dotted lines indicate regions
of increased westward zonal wind. The number of days noted on the right axis of each phase composite
represent the number of days used to calculate that particular composite mean.

A clear eastward movement of both GWPE and zonal wind anomalies around the entire tropical
belt is observed as the phase of the MJO progresses. The amplitude of the GWPE anomalies are ~0.15 J kg~'.
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Figure 3. Composite plots of 20— 100 day bandpassed zonal wind anomalies and 20-100 day bandpassed GWPE
averaged over all days for each phase of the RMM MJO Index where the amplitude exceeded 1 (number of days
indicated on the right axis of each panel). Zonal wind data are shown as purple solid (+ve) and green dash-dotted (—ve)
contours in intervals of +2 m s=! from 1 m s='. The black crosses on the panels for phases 3 and 6 indicate two
locations where wave filtering was compared (see Figure 4). Units of GWPE are in J kg~'.
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Figure 4. Nonbandpassed ECMWF zonal wind profiles for the two locations indicated by crosses in Figure 3 for MJO
phase 3 and phase 6. The dark blue shaded region on each plot shows the range of winds encountered as waves ascend
between 10 km and 26 km. The total range of winds encountered between these heights is illustrated by the black bar
at the top of each panel.

This amounts to approximately 5-10% of the total GWPE evident in Figure 2. This is in contrast to the con-
vective signature of the MJO (see supporting information Figure S1), which is mostly confined to the Eastern
Hemisphere.

There appears to be a very close correlation between GWPE and these zonal wind anomalies. Specifically,
stronger eastward winds appear to occur at the same time as a depression in GWPE and stronger westward
winds when GWPE is increased. This suggests that the dynamic response (i.e., the zonal wind anomalies at
200 hPa—see Figure 1) of the MJO has a stronger influence on the stratospheric GWPE than the source
variability evidenced by OLR.

To quantify the relationship between the MJO characteristics and GWPE, we correlate the MJO period range
GWPE and the MJO period range 200 hPa zonal winds. A strong anticorrelation of ~—0.8 is observed between
GWPE and the 200 hPa eastward wind anomalies at ~—20-0° longitudinal lag (see supporting information
Figure S2). This demonstrates that the modulation of stratospheric GWPE at 26 km is strongly correlated with
the dynamic variability of the MJO as measured by the 200 hPa zonal wind anomalies.

We propose that this correlation is a result of the filtering of upward propagating gravity waves by the MJO
wind anomalies, which impose an MJO modulation on the GWPE. To investigate this mechanism, we will now
consider the range of absolute winds (i.e., background plus anomaly) encountered by such waves at different
points in the MJO phase and consider the filtering effects on the waves of these winds.

First, we will illustrate the concept of the proposed mechanism by considering the winds encountered by
upward propagating gravity waves at two different locations during MJO phase 3 and phase 6. The locations
are (170° E, 10°S) and (60°W, 10°S). They are arbitrarily chosen to represent regions of increased and reduced
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Figure 5. Bootstrapped distribution (1000 samples) of nonbandpassed ECMWF zonal wind absolute range between 10
and 26 km (i.e,, the height range considered in Figure 4) against longitude for the QBO westward phase at 10°S. The
shading shows the 95% confidence interval on the mean (thick line) of the bootstrapped distribution for MJO phase 3
(blue) and phase 6 (orange). In both panels the vertical black dotted lines highlight the locations indicated by crosses
in Figure 3.

GWPE. Each location is indicated by black crosses in Figure 3. The composite mean unfiltered ECMWF zonal
wind speed from 5 to 30 km at these two locations in MJO phases 3 and 6 is presented in Figure 4. In each plot
the range of winds encountered between 10 km and 26 km is bound by the dotted vertical lines and filled by
the blue shading. The thick horizontal black bars indicate the total range of winds encountered between 10
and 26 km in each case.

Figure 4 (left column) shows the range of winds for (170°E, 10°S), where reduced GWPE and stronger eastward
wind anomalies occur in phase 3 and vice versa in phase 6. Examination of the figure shows that a wider range
of winds is encountered by upward propagating waves in phase 3 (=14.1 m s~' t0 6.19 m s~') compared to
phase 6 (—14.0 m s~ to 1.14 m s~"). This wider range results from the winds in phase 3 being more eastward
in the upper troposphere and peaking around 13 km, which is approximately 200 hPa. In contrast, a smaller
range of eastward winds are encountered in phase 6, when GWPE is greater.

Figure 4 (right column) shows the range of winds for (60°W, 10°S). Here greater GWPE and stronger westward
wind anomalies occur in phase 3 and vice versa in phase 6. A wider range of winds is observed in phase 6
(=158 ms™'t00.25 m s~') compared to phase 3 (—=15.7 ms~! to —2.63 m s™'). This increase in range is due to
a shift eastward in the upper tropospheric winds in phase 6, where reduced GWPE is observed.

The spectrum of gravity wave phase speeds is known to be centered at low values [e.g., Fritts and Alexander,
2003]. The winds in Figure 4 will thus progressively filter out such gravity waves as they propagate to heights
where their zonal phase speeds equal the local zonal wind and where they are then absorbed at a critical level.
As the local wind includes the MJO anomaly, this process can thus imprint a signature of the MJO anomaly on
the field of upward propagating waves. The variation of winds and GWPE at the points considered in Figure 4
is thus consistent with this proposed filtering. However, the data presented in the analysis of Figure 4 are only
for the two arbitrarily selected locations. We will therefore now generalize this analysis to consider the winds
encountered by gravity waves at all longitudes. Further, it is known that the stratospheric GWPE is modulated
by the phase of the QBO [e.g., Alexander et al., 2008], so we will also sort the data by QBO phase.

In this second analysis, we examine the range of zonal winds encountered between 10 and 26 km by upward
propagating waves at all longitudes for each QBO phase. We use bootstrapping [e.g., Efron, 1979; Wright
et al., 2012] to calculate, as a function of longitude, the distribution of zonal wind ranges and their various
percentiles, for increments of 2° longitude. This bootstrapping provides a measure of the uncertainty of the
winds. The bootstrapping is done by randomly sampling days from the time series 1000 times for days sorted
by both QBO phase and MJO phase.

To illustrate the results of this analysis, we will consider the case where the QBO is westward and the MJO is
in phase 3 and phase 6. We present in Figure 5 the magnitude of the range of winds encountered between
10 km and 26 km range for MJO phase 3 (solid blue line) and MJO phase 6 (solid orange line). Also indicated by
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shading is the 95% confidence interval from the bootstrapping. Finally, the two vertical dashed lines indicate
the longitudes of the two arbitrary locations considered above.

From Figure 5 it can be seen that the zonal wind range was generally larger in phase 3 than phase 6 at longi-
tudes between approximately 120°E to 170°W (i.e., where the GWPE was smaller during phase 3 than phase
6—see Figure 3). Conversely, the zonal wind range was smaller in phase 3 than phase 6 at most other
longitudes (i.e., where the GWPE was larger during phase 3 than phase 6—see Figure 3). An examination of
the absolute values of the winds reveals that the variability occurs largely in the eastward component of the
winds. Similar results are found comparing the winds and GWPE for the other MJO phases. Similar results are
also observed for the QBO eastward phase but are less clearly defined (see supporting information Figure S3).
The confidence intervals shown in the figure indicate that this result is statistically significant to at least 95%
confidence level. The MJO period modulation of GWPE, as presented in Figure 3, is observed more clearly during
the westward phase of the QBO compared to the eastward phase (see supporting information Figures S4 and
S5, respectively). Thus, our results provide clearer evidence of MJO modulation of GWPE by the MJO zonal
wind anomalies during the QBO westward phase and a reduced effect during the QBO eastward phase. This
is most likely a consequence of the larger amplitude zonal winds in the westward phase [e.g., Baldwin, 2001].
Collectively, our results show that at a given latitude, the larger range of wind speeds encountered between
10 km and 26 km as a result of the MJO is associated with reduced GWPE at 26 km and vice versa.

4. Discussion

There are two principal methods whereby the MJO might modulate the field of stratospheric gravity waves.
First, the modulation of convection by the MJO might modulate the excitation of gravity waves. Second,
the MJO wind anomalies in the troposphere might modulate the wave propagation environment through
critical-level filtering. Both of these mechanisms might thus modulate the field of gravity waves that reach the
stratosphere.

There exist very few studies investigating the influence of the MJO on stratospheric gravity waves. However,
Horinouchi [2008] suggested that the reduced convection during the inactive phase of the MJO would nev-
ertheless generate larger fluxes of stratospheric gravity wave energy and momentum than the active phase
because of the longer vertical wavelengths generated being better able to propagate vertically. Our results
indicate a strong correlation between GWPE and the anomalous zonal winds of the MJO, suggesting that
wave critical-level filtering plays an important role. However, these results are not necessarily contradictory
because the waves considered by Horinouchi [2008] are of significantly shorter horizontal wavelength and
higher frequency than those accessible by COSMIC RO measurements.

Here we have proposed that the MJO wind anomalies cause the GWPE anomalies of Figure 3. However, we
should note that this mechanism will be sensitive to the horizontal phase speed distribution of the gravity
waves. In particular, the mechanism assumes that a significant fraction of the waves have eastward phase
speeds such that the waves will be filtered out by the eastward wind anomalies of the MJO. Our COSMIC RO
measurements provide no information on wave horizontal phase speeds, and our assumption cannot there-
fore be tested with this data set. Nevertheless, our results suggest that the MJO plays a significant role in
modulating the stratospheric gravity wave field.

5. Conclusion

The MJOis the dominant driver of intraseasonal variability in the tropical troposphere. Our observations show
a strong correlation between stratospheric GWPE and the anomalous tropospheric zonal winds of the MJO
when the observations are sorted by MJO phase. We have proposed that this correlation is a result of a filtering
of the gravity wave field by these winds which removes primarily eastward propagating waves during the MJO
eastward wind anomalies. These results highlight the importance of tropospheric processes in controlling the
stratospheric gravity wave field.
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