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PREFACE

‘It 48 my personal conviction that if we knew more about the
nucleus, we should find it much simpler than we suppose. I
am always a believer in simplicity, being a simple fellow
myself.

LORD RUTHERFORD (Gottingen Locture—Dec. 14, 1931)

DuriNG the decade that has passed since the appearance of the second
edition of this book nuclear physies has grown to such a size that it is
quite impossible to write a comprehensive treatise on the subject
except in the form of a multi-volume handbook. The difficulties of
collecting all available material in a single volume have been aug-
mented by the discovery of practical methods for the large-scale
liberation of nuclear energy which led to a deluge of mostly semi-
technical studies, many of which are, however, quite important also
from the purely scientific point of view. Under these circumstances
it has become again necessary to rewrite the book practically anew,
as well as to increase its volume. Taking into consideration the
limits of human endurance, this could be done only by doubling the
authorship; thus (. Gamow of the first two editions becomes (3.
(lamow and C. Critchfield of the present one.

Despite the enormous increase of the factual knowledge concerning
the properties of atomic nuclei, comparatively little progress has been
made in actually understanding the basic properties of nuclear struc-
ture; in fact, it seems that during these ten years we have cven un-
learned a little about the mogst fundamental question of the nature
of nuclear forces. Thus, there arose the question of whether it wauld
not be better to delay the book until the fundamental principles of
nuclear physics are finally settled. The authors have decided, how-
ever, to go ahead with the book on the basis of the superstition that
whenever a new edition of this book nears publication a new major
discovery is made in nuclear physios (discovery of neutrons after the
first edition; theory of the ‘compound nucleus’ after the second
edition), making the book out of date. If this happens again, the
contribution to the progress of science will certainly justify the short
‘up-to-date-ness’ of the edition.

As to the actual composition of the book, the following remarks can
be made. It was attempted to write the book in an induetive way,
starting from the properties of elementary particles from which the
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vi PREFACE

nuclei are made and working up to more and more complex nuclear
properties. A considerable space has been devoted to thermonuclear
reactions and their application to cosmological problems (Chapter X),
since, at the present time there is no book on astrophysics in which this
class of problem receives an adequate treatment. On the other
hand, comparatively little is said about the large-scale energy libera-
tion of nuclear energy by means of chain reactions in fissionable sub-
stances, since it is felt that this class of problem belongs more to
what can be called ‘nuclear technology’ rather than to pure science.
Consequently Chapter XI, which treats the problem of nuclear chain
reactions, is limited to purely schematic descriptions of the processes
involved. New important findings, which appeared during the printing
of this book, are included in the appendixes at the end of the
volume.

It may be added in conclusion that the authors certainly hope that
the fourth edition of the book will represent the final version of the
theory of the atomic nucleus.

G. G.
C.L.C.
September 1947
LOS ALAMOS.
NEW MEXICO.
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I
GENERAL PROPERTIES OF THE ATOMIC NUCLEUS

1. Atoms, nuclei, nucleons

IN its incessant effort to become adjusted to the immense complexity
of the phenomena of nature, the human mind strives to analyse these
phenomena and to reduce them to the smallest possible number of
elementary notions and laws from which the entire picture of the
physical world can be derived by the method of purely logical deduc-
tion. This desire to reduce the observed complexity of nature to the
logical simplicity of basic postulates represents the main driving force
in the development of science, and the degree of simplification thus
achieved (as characterized by the number of elementary notions and
laws necessary for complete deduction) can be used as a measure of
the progress of science towards its final goal.

It goes without saying that this search for basic elementary postu-
lates results sometimes in over-simplification of the theoretical picture
thus obtained, and that the notions that at a certain epoch of scientific
development were considered as being elementary often turned out to
be quite complex when some previously neglected or later discovered
empirical facts were taken into consideration. However, studying the
history of science for the few thousand years of its existence, one can
hardly escape the conviction that, in spite of all these ups and downs,
the reduction of the complexity of nature to a comparatively small
number of basic postulates represents a converging process.

At the dawn of the scientific study of matter, the desire for basic
simplicity underlying the apparent complexity of different forms of
matter led the philosophers of ancient (ireecc to the recognition of
four basic elements from which the world was supposed to be made;
these are stone, water, air, and fire. According to the ideas first
formulated by Democritus, these four elementary substances werc
made up of a large number of essentially indivisible particles, the
atoms which, being mixed in different proportions, were deemed
responsible for the formation of all the variety of known substances.
Thus the soil was considered as being a mixture of stone- and water-
atoms, wood as a mixture of the atoms of stone, water, and fire,
whereas various metals were looked upon as stone- and fire-atoms

mixed in different proportions (more fire in gold, less in iron).
3596.61 B
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Further development of science extended and amplified these
ancient views without, however, changing essentially the funda-
mental idea. The three ‘material’ elements, stone, water, and air,
were replaced by ninety-two chemical elements, whereas the atoms
of fire evolved into the notion of radiant energy, and later into the
modern idea of light quanta. This transition from only a few atomic
species, as proposed by the ancient philosophers, to a much larger
number of distinct elements which are required to establish the science
of chemistry represents a typical ‘forced retreat’ on our way towards
the reduction of the complexity of nature.

However, this largely increased number of distinct elements from
which matter was supposed to be built led immediately to attempts
at a new reduction ; and early in the nineteenth century the French
chemist Prout formulated an hypothesis according to which the
different chemical elements represent just different degrees of ‘con-
densation’ of a single basic element, viz. hydrogen. Prout based his
views on contemporary estimates of atomic weights which seemed to
indicate that the weights of different atomic species relative to
hydrogen were always represented by integers. This far-seeing
hypothesis was ‘disproved’, however, and thrown into oblivion by
more precise chemical measurements which showed that ‘Prout’s
integer rule’ held only in first approximation, and that in some
cases (as in chlorine with chemical atomic weight 35-5) it did not
hold at all.

The difficulties standing in the way of Prout’s original hypothesis
were removed almost a full century later by the discovery of sotopes,
and by recognition of the fact that the so-called chemical atomic
weights represent, in general, only the weighted means of the weights
of various isotopes of the element. Furthermore, it became clear that
the small deviations from Prout’s integer rule (mass-defects) which
are observed even in the cases of single isotopes must be interpreted on
the basis of the relativistic mass-energy relation as due to the internal
energy that binds the atoms of hydrogen into the more complex
atoms of various heavier elements. Thus the very same objections
that caused the early downfall of Prout’s original hypothesis of con-
densation became instrumental in the ultimate interpretation of the
structure of the atom.

Already at an early stage in atomic studies it had become clear that
atoms must be considered as some kind of complex mechanical
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systems built of positively and negatively charged parts; and the
discovery of the electron by J. J. Thomson led him to propose an
atomic model in which the positively charged material, representing
the major part of the atomic mass, was assumed to be distributed
more or less uniformly throughout the body of the atom, whereas the
light, negative electrons were scattered through this material as the
seeds in a water-melon. According to this picture, the condensation
of several hydrogen atoms into more complex atomic species would
be visualized as the fusion of the spherical positive charges of the
original atoms into a single, larger, spherical charge and followed by
a redistribution of the electrons within the new domain.

This Thomson atomic model, which for a while dominated the
theory of atomic structure, was, however, disproved in 1911 by the
classic experiments of E. Rutherford, who studied the scattering of
beams of a-particles passing through thin foils of different materials.
It was found, in fact, that the large deflexions suffered by individual
a-particles in their collisions with the atoms of the scattering material
could not possibly be explained under the assumption of a uniform
distribution of the positive charge (and its mass) through the entire
body of the atom ; and that in order to obtain electric forces that are
strong cnough to account for the observed deflexions one must
assume that the positive charge of the atom, as well as most of its
mass, is concentrated within a very small region around the atomic
centre. This heavy, positively charged part of the atom was given the
name of atomic nucleus, and the old Thomson model gave way to
the new Rutherford model of the atom in which, instead of moving
inside a spherical positive charge, atomic electrons move around
the positively charged centre under the influence of the inverse square
Coulomb attraction. Rutherford’s experiments on «-scattering in
different materials also permitted a direct estimate of the electric
charge on the corresponding nuclei or, what is the same thing, the
number of electrons composing the outer atomic envelopes, and led
to the important result that the number of atomic electrons coincides
with the ordinal number (atomic number) of the clement in question
in the natural sequence of elements arranged in order of increasing
atomic weights.

In the light of Rutherford’s atomic model one would be inclined
to reformulate Prout’s original hypothesis by applying it directly to
the nucles of different atomic species, and by saying that the atomic
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nuclei of various elements are formed by the ‘condensation’ of
hydrogen-nuclei, or protons as they were called because of their
fundamental importance in the problems of the structure of matter.
Such a formulation would be, however, only partially true since, as
it is easy to see, building a composite atom from a number of hydrogen-
atoms requires a redistribution of the electric charge between the
nucleus and the outer envelope. Thus, for example, considering the
atom of the principal isotope of oxygen (with atomic weight 16) as
constructed from sixteen hydrogen-atoms by direct fusion of their
nuclei, with all outer electrons retained on the outside, we should
arrive at an element with atomic number 16 instead of 8. Thus, in
order to retain the principal feature of Prout’s elementary hypothesis,
we must assume that in the ‘condensation’ process leading to the
formation of an oxygen atom from sixteen hydrogens, only eight of
the original electrons remain on the outside. The other eight are,
so to speak, ‘assimilated’ by the nucleus, the positive charge on which
is reduced accordingly.

We could imagine the electrons that are assimilated by the nucleus
either as retaining their individuality as components of the nuclear
structure or as being ‘swallowed’ by the corresponding number of
nuclear protons which thus lose their positive charge and turn into
neutral particles. The serious theoretical difficulties which arose in
early attempts to consider individual electrons as permanent mem-
bers of the nuclear structure, as well as the empirical fact that neutral
protons, known as neutrons, are ejected from nuclei with the same, or
often greater, ease as are ordinary protons in experiments on atomic
bombardment, force us to accept the second possibility. Assuming
the neutron-proton hypothesis for the constitution of nuclei, we find
that the number of protons in a given nucleus is given directly by its
atomic number Z, whereas the number of ncutrons must be computed
as the difference between the total number of constituent particles
(nucleons) and the number of protons. It will be noticed at this point
that the number of nucleons forming a given nucleus and known as
its mass-number A must not be expected to coincide necessarily with
the integer nearest the exact atomic weight, since the value of tho
mass-defect of a composite nucleus may exceed the mass of one
nucleon. In fact, following the values of mass-defects we find that
they become larger than one m.u. for all elements heavier than Sn.
Thus, expressing relative atomic weights on the basis of hydrogen as
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exactly unity (instead of oxygen exactly 16),1 we should not get a
clear-cut ‘integer-rule’ and the correct values of the mass-number 4
could be obtained only by studying the continuity of the variation of
atomic masses throughout the whole system of the elements. How-
ever, referring atomic weights to oxygen we avoid this unnecessary
complication since in this case the deviations from integers happen
never to exceed one-half. Nearly integer atomic weights would be
obtained as well if we used (12 as the standard with the value exactly
12, or if we used He? as exactly 4. As we shall see later, this result
is due to the fact that the major part of the nuclear binding energy
is contained in the so-called a-shells (a combination of two constituent
protons and two constituent neutrons), and that the nuclei, Het, C12,
018, etic., represent saturated systems of such shells.

It must be emphasized also from the very beginning that, in con-
sidering the nuclei of different elements as built of protons and
neutrons, we do not consider neutrons as some composite systems
formed by two ‘really’ elementary particles, e.g. a proton and an
electron, or, conversely, consider protons as composite systems of
elementary neutrons and positive electrons. It is, in fact, much more
rational to assume in this matter a symmetrical point of view first
formulated by W. Heisenberg and fo consider the proton and the
neutron as two possible electrical states of a single heavy elementary
particle which was given the name of nucleon.} The transition of a
nucleon from one of its states into another is accompanied by the
emission of the corresponding charge-difference in the form of a free
electron (positive or negative). The reverse of this process corre-
sponds to the change of the electric state of the nucleon caused by the
absorption of an electron from the outside. Processes of the type just
described are usually known as B-transformations and represent the
means by which nuclei, in which either the number of neutrons or
the number of protons is relatively too large, adjust their electric
charge to the value corresponding to the most stable state (least total
mass for the given number of nucleons).

1 In this case, for example, the atomic weight of the heavier U-isotope would be
929Q.
1‘_33;;73 = 23597, giving 4 = 236 instead of 238.

1 It may be pointed out here that it is consistent with this view of the heavy
elementary particle that there exist other states of the nucleon, such as the state with
a negative electrical chargo (the hypothetical negative proton) or states with multiple
charges of either sign. However, such particles have not been detected hitherto.
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The detailed study of energy-liberation in the various B-transforma-
tions revealed an unexpected and alarming discrepancy in the total
energy-balance connected with these processes: it seemed that a part
of the energy (as calculated from the difference in masses of the
isotopes, cf. § 5) is always mysteriously lost whenever an electron is
emitted from a nucleus. In order to explain this discrepancy it was
necessary to assume that, in each process of this kind, a hitherto
unknown energy-carrier, escaping all known means of observation, is
emitted from the nucleus simultaneously with the electron. This new
hypothetical particle, which had to be considered as carrying no
electric charge and as possessing a much smaller mass (if any) than
the electron mass, was given the somewhat romantic name neutrinot
(denoted by v). It was found necessary to ascribe to this particle the
ability to carry mechanical momentum, and spin, so that it became
a full-fledged member in the society of elementary particles of
physics. Taking into account the existence of neutrinos, we can write
various possible transformations of the nucleons in the forms:

n—>pte+v
p—>n+tettv
n+-et - p+4v
pte-—>ntv
n+v—>pte-
p+v—>n-tet.

Some of these transformations, as for example the first one, are exo-
thermic and can take place spontaneously, whereas the others require
a supply of external encrgy in excess of a certain threshold
value. We shall return to the problem of neutrinos in the chapters
discussing the nature of nuclear forces (Chap. III) and the process
of B-transformations (Chap. V).

We cannot finish this introductory survey of the elementary
particles without mentioning the newly discovered brand known as
mesons.] These new particles, which were first introduced by Yukawa
for the purpose of explaining nuclear forces, are supposed to possess

t As originally introduced in 1930 by W. Pauli, it was known by the name of
‘neutron’. When two years later J. Chadwick used the same name for the chargeless
protons ejected from beryllium by «-particles, the controversy of names was settled
by E. Fermi, who said that Pauli’s particle ‘is not a neutron but & neutrino’ (neutrino
and neutretto being the corresponding diminutives in the Italian language).

} Also sometimes called ‘mesotrons’ in violation of Greek syntax.
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a mass (or masses) intermediate between that of the proton and that
of the electron, and can carry either a positive or a negative charge,
or be neutral. Whereas the role of these particles in the theory of
nuclear force is surrounded at the present moment by a rather dense
fog (cf. Chap. III), there is no doubt that they (at least the charged
ones) do exist in nature in the free state. The study of cosmic rays
indicates that the positive and negative mesons are being produced
(by a process which is probably similar to the ordinary electron-pair
production) in the upper layers of the terrestrial atmosphere by the
fast primary particles (protons ?) which come from interstellar space.
In fact, about 75 per cent. of the total ionization produced by cosmic
rays at sea-level is due to the action of these charged mesons. The
mass of these particles was found to be about 200 electron masses,
and we also have convincing evidence that they are intrinsically
unstable, breaking up into an electron (positive or negative) and a
neutrino with a mean lifetime of about 2 microseconds. Very little
evidence as yet has been found for the existence of neutral mesons.
If such existed it could be considered as an energy-rich system
of positive and negative electron.t (Compare Appendix I.)
Although electrons, neutrinos, and various types of mesons un-
doubtedly play important roles in both the transformations and the
attractive forces that occur between nucleons, thus securing the
stability and even the existence of the composite atomic nuclei, they
should not be considered as full-fledged constituent parts of the
nuclear structure, and to a certain extent fall outside the scope of
nuclear physics proper. The situation is somewhat similar to that
which existed in the kinetic theory of gases where various properties
of the gas as a whole could be obtained by considering the mole-
cules as rigid spheres of a certain diameter and interacting with each
other according to certain empirically established laws. Tn fact, it
is possible to develop the theory of the fundamental nuclear proper-
ties and the various nuclear reactions essentially on the basis of
empirically determined interaction-laws between the nucleons from
which the composite nuclei are built. Here lies a convenient, even
though not very sharply defined, boundary between nuclear physics
t Since the neutrino, like electron and positron, is supposed to havo spin }, the
mesons just described would have integral spin-values, i.e. either 0 or unity. The
spin of the cosmic-ray meson has not been determined experimentally. If it should

turn out to be }, the decaying meson would produce a light quantum simultaneously
with the electron, and there would be no connexion with g-decay.
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proper, and the next, as yet rather unexplored, division of the science
of matter which can be called tentatively the physics of elementary
particles.

2. Nuclear radii

We shall start our study of atomic nuclei by describing first their
external characteristics, i.e. the properties that can be investigated
without disturbing the internal nuclear structure. This includes the
study of nuclear radii, their moments of momenta, their magnetic
dipole, electrical quadrupole moments, and finally such information
about the internal energy of nuclei that can be obtained from their
measured masses.

The first information concerning the gcometrical dimensions of
atomic nuclei was supplied by the very same experiments on the
scattering of a-particles that were responsible for the origin of the
idea of the atomic nucleus itsclf. It was, in fact, noticed by Ruther-
ford that in the case of large-angle scattering of particularly fast
a-particles by light elements the observed angular distribution of the
scattered particles deviates from the classical scattering formula:

1(0) = (%%;)zcosec4 30, (1)

where 0 is the scattering angle in the coordinate system bound to the
common centre of gravity, Z the atomic number of the scattering
nucleus, and » and M the velocity and the reduced mass of the
incident a-particle.t Since the above formula was derived under the
assumption that the nucleus and the incident a-particle interact as
two electrically charged points, and since the above stated conditions
under which the ‘anomalous’ scattering was observed correspond to
a close approach of the incident «-particle to the nucleus, it was
natural to assume that the observed deviations are caused by some
new kind of force acting on the particle when it comes close to the
outer boundary of the nucleus. Even the earliest theoretical treat-
ment of the ‘anomalous’ scattering of «-particles, based on the laws
of classical mechanies,} led to the result that, in order to explain the

1 This formula, originally derived by Rutherford on the basis of classical mechanics,
is about the only classical formula that remains unaltered by wave-mechanics, a fact
which used to be to Rutherford a source of great pride and satisfaction.

1 K. 8. Bieler, Proc. Camb. Phil. Soc. 21 (1923), 686 ; P. Debye and W. Hardmoior,
Phys. Zeits. 27 (1926), 196.
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observed deviations, one must assume the existence of some short-
range attractive forces acting on the particle as it approaches the
nucleus. The distance at which these attractive forces become larger
than the forces of electrostatic repulsion can be assumed tentatively
to characterize the actual dimensions of the nucleus, an assumption
which, of course, holds better for heavier nuclei where the radius of
the actual distribution of nuclear substance becomes large as com-
pared with the range of nuclear forces. Whereas in the classical

u

do

~——

o

Fia. 1.

theory of ‘anomalous’ scattering the potential energy of the -
particle in the neighbourhood of the nucleus was represented usually

in the form
272
22¢_ B (n > 1),

the wave-mechanical treatment, which is influenced not so much by
the details of the force-anomalies on the outer slope of the potential
barrier as by the penetration of the wave through the barrier, usually
employs the simplified potential distribution shown in Fig. 1. Such
a potential distribution is characterized by two numbers: the critical
distance d, (which for large heavy nuclei approaches the nuclear
radius r,) and the depth of the potential well U,,.

Using this model for the interpretation of the observed ‘anomalous’
scattering of a-particles in hydrogen,t Taylor] came to the conclusion
that the interaction between the proton and the a-particle can be

1 J. Chadwick, Proc. Roy. Soc. A 128 (1930), 114.

1 H. M. Taylor, ibid. A 134 (1931), 103; A 136 (1932), 605. The modern

intorpretation of tho proton a-particlo intoraction involves the theory of resonance
scattoring (cf. Chap. VIII).
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described by a potential well with d,= 0-45%x 1012 cm. and
Uy = —6 M.e.v. The method of ‘anomalous’ scattering of «-
particles fails to give any information concerning nuclear radii of the
heavier elements since, in this case, the electric repulsive forces
become too large to permit the penetration of the incident particles
into the region of nuclear forces. Thus, for example, Rutherford’s
experimentst on scattering of «-particles in uranium, in which no
deviations from predictions on an inverse square law of force were
observed, could only lead to the conclusion that the radius of the
uranium-nucleus must be smaller than 3x 10-12 cm., which repre-
sents the distance at which the Coulomb energy of the «-particle-
nuclear system becomes equal to the kinetic energy of bombardment
(classical distance of closest approach).

The first indications concerning nuclear radii of the heavier
elements were supplied by the quantum theory of a-decay which
considers this process as the wave-mechanical penetration of nuclear
a-particles through the potential barrier formed by the short-range
attractive forces on the inner side and the Coulomb repulsion on the
outside. Assuming the simplified potential distribution, where in the
case of heavy nuclei we can put d, = r, with sufficient accuracy, one
obtains for the theoretical value of the decay constant A the expressiont

logoh — 21-67—1-19. 109?-1);-2--}-4-08. 10%((Z—2)r),  (2)

where & is the reduced velocity of the emitted a-particle. Using the
measured values of A and @ for various radioactive elements, one can
calculate the values of the nuclear radii r,. One finds thus the values
ranging from 0-7x10-12 for polonium (lightest «-emitter) to
0:9Xx 1012 ¢m. for uranium 238 (heaviest natural a-emitter).

The most general method of measuring nuclear radii is to measure
the reduction in the intensity of a beam of fast neutrons caused by
passing through several centimetres of the material being studied.
Each nucleus in the material presents its geometrical cross-section
(or rather #d3) as an obstacle in the path of a very fast neutron. If
the neutron hits such an obstacle its energy is degraded, or converted,
so that it is effectively absorbed from the beam. Even if the neutron
is not absorbed, however, it may be deflected from its original trajec-

1 E. Rutherford, Phil. Mag. Ser. 7, 4 (1928), 580.
1 Compare Chapter VI.
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tory by diffraction caused by the obstacle. Each of these processes
presents a cross-section #d3 so that the total cross-section for removal
from the beam is 27d} per nucleus.t

In Fig. 2 we give the results of such measurements carried out by
Grahame and Seaborg} with neutrons of 13-7 M.e.v. (empty circles)
and by Sherr§ with neutrons of 25-4 M.e.v. (filled circles). In the
same graph we give the values of nuclear radii of the radioactive
elements as calculated from the known decay constants (asterisk).
The values of d, are plotted against 3/A
(4 = atomic weight) and they fall on a o doxl0%cm.
straight line described by the equation. ) Hg

dy == | 1T+1223/4]10-B cm.  (3)

The constant term, 1-7 X 1013 em., in
the above equation can be interpreted
as the range of nuclear forces, whercas
the second term, which depends upon
the atomic weight, must represent the
‘actual’ radius of the nucleus. The fact
that the nuclear radius is proportional
to the cube root of the nuclear mass
indicates that the mean nuclear density remains constant throughout the
whole periodic system of elements. This result suggests that, in contrast
to the situation existing in the atomic model, the material forming
atomic nucles must be considered as rather similar to ordinary liquids
where the individual particles are packed closely together maintaining
a constant density independent of the size of the sample. We may
thus speak of the universal nuclear fluid which forms small droplets
of various sizes and mostly spherical in shape. Using the observed
nuclear radii, we find for the density of the nuclear fluid the value
2:2X 10 gm./em.?

3. Nuclear spin and magnetic moments

The suggestion that certain atomic nuclei must be regarded as
possessing mechanical angular momentum (spin) as well as a mag-

t Compare Chapter VIII. Since tho diffraction is mostly in the forward direction
not all of the diffracted (scattered) neutrons are removed in an actual experimental
sot-up and a correction must be applied.

} D. C. Grahame and G. T. Seaborg, Phys. Rev. 53 (1938), 795.

§ R. Sherr, ibid. 68 (1945), 240.
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netic dipole moment was first introduced by Pauli in connexion with
the explanation of the so-called hyperfine structure of spectral lines.
The simplest way of estimating the nuclear spin lies in the study of
the relative intensities in the band-spectra of the element in question.
For a homonuclear diatomic molecule the wave-function describing
a given quantum state may be either symmetrical or antisymmetrical
with respect to the spins of the two nuclei. Since the nuclei are
indistinguishable (e.g. the same isotope, if there are several) they must
obey cither Kinstein -Bose or Fermi-Dirac statistics. Thus the sym-
metrical spin states are allowed only if the rotational quantum
number is even for Einstein-Bose statistics or odd for Fermi-Dirac
statistics, and the antisymmetrical spin states are allowed in the
alternate possibilities for the orbital quantum number. Given two
nuclei of spin 7 in units of # the number of states that are symmetrical
in the spins is larger than the number that is antisymmetrical, and
simple considerations show that the ratio of these numbers is

Wiym __ i+1
Wa.ntl %

(4)

Thus, in a gaseous state in which many rotational levels are excited
the number of molecules with symmetrical spin-states and even (odd)
rotational quantum numbers, divided by the number of molecules
with antisymmetrical spin-states and hence odd (even) rotational
quantum numbers, will be this same ratio. Consequently, since
transitions involving a change of molecular symmetry type do not
occur in any appreciable amount, the corresponding electronic emis-
sion lines in the spectra of such molecules must show this ratio of
intensities. Since the lines in a band-spectrum belong to consecutive
values of the rotational quantum number, this means that the intensi-
ties of the lines should alternate, the ratio of neighbouring lines being
given by the relation (4). Thus the study of intensity ratios in the
band-spectrum of hydrogen leads to the important result that the
proton has the spin ¢ = }. Since, however, this measurement cannot
be carried out with very high accuracy, the method can be applied
satisfactorily only when the nuclear spin is small. Also, in the case
of heavy elements the separation of individual lines becomes so small
that the structure of the band fuses into a continuum making any
such measurements impossible.

A more satisfactory method of measuring nuclear spins as well as
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magnetic moments is to study the hyperfine structure of spectral lines
for which these notions were originally introduced. This structure
is due to a splitting of the atomic energy-levels caused by the magnetic
interaction between the nuclear moment and the field created by the
orbital electrons. The very small separation of the levels found
experimentally in the normal hyperfine-structure pattern must be
ascribed to the smallness of the nuclear magnetic moment, as com-
pared with Bohr’s electron-magneton: p, = ek/2me. Nuclear mag-
netic moments are usually expressed in terms of the nuclear magneton
tnue = efi[2Mc (M being the proton mass) which is 1,840 times
smaller than the electron-magneton. (However, as we shall see later,
Mnue 18 Not equal to the magnetic moment of a proton which is about
2-8 times larger.)

The value of the nuclear spin can be derived directly from the
number of hyperfine components of the spectral term provided the
angular momentum in the electron system is large enough and is
known. Let j be the total angular momentum of the atomic electron
configuration (resultant of orbital momentum and clectron spin) and ¢
the angular momentum of the nucleus. Then the resultant momen-
tum f will have different possible values corresponding to the various
relative orientations of the vectors j and 7. Applying the rules of
addition of quantum vectors we see that f may take the values:

f02.7+7’3 f1=.7+7'~]1 vey sz:J_@ (.7>7’)’

fo = @'Jf‘.?’ fl = i+.7._1’ () f‘.'.j - "“J (’; 2.}),
so that, on account of the nuclear spin, each elcctronic energy level
will split into 2i+4-1 or 2§41 sub-levels according to whether 7 < j
or ¢ > j. The relative separation of these sub-levels may be calcu-
lated also if it be assumed that the additional encrgy due to the
magnetic interaction of nuclear and clectronic moments is propor-
tional to the scalar product of the two momenta, i.c. proportional
to cos(z,j):

(8)

) IS D=+,
Inserting the possible values of f as given in eq. (5) we find that the
relative energy-differences between neighbouring hyperfine levels are
given by the ratios:

Jorfiforeifoim (G 21),

Jorfrifarnifoja G 27)

(i

(6)
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fr being defined by the equations (5). This is the so-called interval
rule, first proposed by Landé.

As an example of the application of this method we give here an
analysis of the hyperfine structure in the Pr spectrum, for which the
energy-level 5K, corresponding to j = 7, is known to be split into
six components with relative energy differences, 19:0, 16-7, 14-4,
12-7, 10-4. As the number of sub-levels is less than 2j+1 (= 15) we
conclude that in this case 7 < j, and the relation 2i+1 == 6 gives
t = 5/2 directly. For these values of ¢ and j the relative separations
predicted by (6) become 19:17:15:13:11 in good agreement with
the observed values. Historically, the first determinations of the
hyperfine splitting of atomic levels were made as deductions from the
optical, interferometric spectra. Recent advances in the high radio-
frequency techniques, however, make it possible to induce and detect
transitions from one member of a hyperfine multiplet to another
member of the same multiplet, thereby determining the radio-
frequency spectrum of the lowest states of the atom directly (the wave-
lengths of the radiation range from 2-5 cm. to 200 em.). The method
of detection used in this workf is closely related to the molecular
beam magnetic resonance method of measuring magnetic moments
which is described below and relies on the transitions being made in
an external magnetic field. In this way the Zeeman effect and
Paschen—Back effect are observed for the radio-frequency spectrum.
The method is one of extremely high accuracy and resolution.

The value of the magnetic moment of the nucleus can be estimated
from the absolute values of the hyperfine structure separation. For
this, however, one must know the electron current density near the
nucleus and this is difficult to evaluate. Hence the values so obtained
are inaccurate and this method has been superseded by more direct
measurements of the magnetic moments.

A direct measurement of the magnetic moment of the proton was
first effected by Stern and his associates] by deflecting a beam of mole-
cular hydrogen with an inhomogeneous magnetic field. The accuracy
obtainable with the molecular beam method has been greatly enhanced
by the resonance technique developed by Rabi and his co-workers.§

1 P. Kusch, S. Millman, I. I. Rabi, Phys. Rev. 57 (1940), 765.

t O. Stern and R. Frisch, Zs. f. Phys. 85 (1933), 4; O. Stern and I. Esterman, ibid.
86 (1933), 132.

§ I I. Rabi, J. Kellogg, J. Zacharias, Phys. Rev. 46 (1934), 157; 1. I. Rabi, 8. Mill-
man, P. Kusch, J. R. Zacharias, ibid. 55 (1939), 526.
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The method is to pass a beam of neutral molecules having no elec-
tronic magnetic moment through three magnetic fields. The first
is a long, inhomogeneous field that accelerates the molecules in a
direction perpendicular to the beam by reason of the nuclear
magnetic moments. This causes the beam to fan out a little because
various molecules have their nuclear spins and nuclear rotations
lined up differently relative to the field (see Kig. 3). The third field
is of the same type and accelerates the molecules in the direction
opposite to that in the first field so that the third field refocuses the

B —
:% : Hﬁ,; ﬂ///

* :?“—" B
| A magnet |Hl Bmag_rnT l

Fic. 3.

N

beam if all molecules retain the orientation they had in the first
acceleration. Between these magnets is placed the second, homo-
geneous field. In this second field each molecular spin simply pre-
cesses with the Larmor frequency characteristic of the g(i) of the
molecular system, where

9(6) = magnetic moment
angular momentum’

and of the strength of the homogeneous magnetic field H, viz.

By inserting a small loop of wire into the sccond field and sending
an oscillating current through so as to generate a high-frequency
magnetic field at right angles to the homogeneous field the molecules
can be made to change from one orientation to another. Since the
amount of energy received from the high frequency is very small in
one cycle of the Larmor precession, the effect is not noticeable unless
the high frequency is in almost exact resonance with the Larmor
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frequency. In resonance, however, many molecules pick up enough
energy from the perturbing field to change their orientation. Thesc
molecules are then removed from the path on which they would have
been focused by the third field and are, consequently, lost to the
detector. By correlating dips in the intensity of the beam with the
radio-frequency or, more practically, with the strength of the homo-
geneous field, the ratio of magnetic to mechanical moments can be
determined. Relative comparisons between nuclear moments are
limited in accuracy only by the time spent in the homogeneous field
and are highly precise. Absolute measurements are limited by abso-
lute measurements of the strength of the field. It is an adaptation
of this method that was applied to the measurement of the radio-
frequency spectrum of atoms, alluded to above.

Quite recently an entircly new method for measuring nuclear
magnetic moments has been worked out by Bloch, Hansen, and
Packardt and is based on the phenomenon that they call nuclear
magnetic tnduction. When a sample of some material is placed in a
strong magnetic field, and is subjected in addition to a weaker radio-
frequency field directed at right angles to the strong field, the total
magnetic polarization will be subject to a forced precession about the
direction of the constant field, thus giving rise to a measurable
polarization in the direction perpendicular to both fields. The ampli-
tude of this component is expected to show the phenomenon of
resonance when the Larmor frequency of the nuclear magnet coin-
cides with the applied radio-frequency. This opens a simple way for
determining nuclear magnetic moments. This new method has the
advantage of permitting the determination of nuclear magnetic
moments in the ordinary (solid or liquid) state of matter. In Table I
we give the values of nuclear spins and magnetic moments obtained
by the various methods.

The table does not contain nuclei for which both Z and 4 are
even numbers (even number of protons and even number of
neutrons). Although most of the nuclei in the universe are of this
type, and the spins have been determined in many cases, the spins
are always found to be zero. They can have no moments of any
kind, therefore. Nuclei having spin 1/2 cannot have a quadrupole
(or higher) moment and this fact is indicated by the dashes in the

t ¥. Bloch, Phys. Rev. 70 (1946), 460; F'. Bloch, W. W. Hansen, and M. Packard,
ibid. 70 (1946), 474.



Chap.T,§ 3 NUCLEAR SPIN AND MAGNETIC MOMENTS 17

TasLe I
Nuclear spins and moments

Magnetic Electric Magnetic ilectric
Spin | moment moment Spin | moment moment
Nucleus | (k) (nue) (1024 ¢m.2) | Nucleus | (fi) (Pnue) (10—2 em.2)
Neutron | 1/2 | —1-9103 —_ Agl0® 1/2 | —0-19 -
H! 1/2 2:7896 — Cdu 1/2 | —0-65 ~—
H2 1 0-85647 | 0-00273 Cd113 1/2 | —0-65 —
Ho 12 | 29754 — Ints | 9/2 | 548 .
Li¢® 1 0-8213 v Inits 9/2 549 0-8
Li? 3/2 3-2532 .. Sn11? 1/2 | —0-89 —
Bo? 3/2 | —1176 .. sne | 172 | —0-89 —
B 1 | (©0597) .. sbr | 52 | 87
Bu 3/2 2:682 N Sh12s 72 2-8
o 12 | o701 — Iz 52 | 28 ..
N1 1 0-4023 .. Xe | 1/2 | —08 —
N1 1/2 0-280 —— Xet3t 3/2 0-7 07
Fe 1/2 2:6248 —_— Csl33 7/2 2:572
Na?2 3/2 2:2148 .. Ba!3s 3/2 0-836
A127 | 52 3-628 .. Ba®? | 3/2 | 0935
P 1/2 . — La® | 7/2 | 28
Cles 5/2 1-368 . priet | 5/2 . ..
C137 5/2 1-136 .. Eu't 5/2 3-4 1-2
K?® 3/2 0-391 .. Eu | 5/2 15 2.5
Ko 4 | —1-290 .. Tbwe | 3/2
K# 3/2 0-215 . Hows | 7/2
Sces 772 | 48 . Tutee | 1/2 .. —
Vit 7/2 .. .. Ybr7t 1/2 0-45 -=
Mnss 5/2 3-0 .. Yb173 5/2 | —0:65 39
Cob? 7/2 2-3 .. Lut™s /2 2:6 59
Cut? 3/2 2-43 —0-1 T 7 3-8 6
Cu® | 3/2 | 254 —01 Talst | 7/2
Zn% | 512 | 09 . wies | 12 .. —
Gas? 3/2 2:11 1 Re'ss 5/2 33 2-8
Ga™ 3/2 2-69 0-5 Ret#? 5/2 33 2:6
Asg™ 3/2 1-6 0-3 Os'®® [ 1/20r ..
Se?? 1/2 .. — 3/2
Br® | 32 | 26 . et | o1/2 . —
Brst 3/2 2-6 .. Tr193 3/2 .. ..
Krss 9/2 | —1-0 0-15 Pt1e6 1/2 0-6 —_
Rb#s 5/2 1-345 .. Au!?? 3/2 0-23 ..
Rb%7 | 3/2 | 2741 .. Hg»e | 1/2 | 055 —
Srs? 9/2 | —11 . Hg2t | 3/2 | —0-62 05
Cb® | 92 3.7 . TI2es | 1/2 1-45 -
Mo?®s 1/2 .. — 1208 1/2 1-45 —
Mo?7? 1/2 .. — Pp2o? 1/2 0-60 -—
Pdros 3/2 small .. Bi2o? 9/2 3.60 —0-4
Ag? | 172 | —o010 — Pa®t | 3/2

table. It will be noted also that very few of the measured spins
are integer. The nuclei having integer spins have an odd number

of protons and an odd number of neutrons, and, in general, such
3595.61 c
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systems are not stable. These points are discussed more fully in
Chapter 1IV.

4. Nuclear shape and quadrupole moments

Further study of the hyperfine structure of spectral lines, as pur-
sued principally by Schiiler and his collaborators, has produced two
new types of information regarding nuclei in addition to information
about spins and magnetic moments. The first of these is the so-
called isotope displacement of spectral lines which was first observed
in the spectrum of thalliumt and has since been shown to be a pheno-
menon of fairly frequent occurrence among the heavier elements. It
consists in a rather small displacement separating the lines due to the
different isotopes of the element under investigation. Obviously the
various components of this isotopic hyperfine structure have intensi-
ties proportional to the relative abundances of the corresponding
nuclear species in the mixed element. They may or may not exhibit
magnetic hyperfine structure also, and when, as is often the case,
different components show different degrees of structure, a very
complicated pattern may result.

As a characteristic example of this phenomenon we may consider
the structure of the mercury green line, A5,461 A.U. which is due to
the transition 63P, — 738,.1 This structure is shown in Fig. 4 with
intensities of the various components indicated by the lengths of the
lines. According to the analysis of Schiiler, the components f, g, %,
and ! must be ascribed to the isotopes of even mass-number, 5, Hg'%8,
soHg2%, 5, Hg?%%, and 4 Hg?*, which presumably possess no spin (i = 0)
since they give rise to single lines, whilst 5 Hg!'%? is responsible for the
three components ¢, k, and p and g,Hg?? for the eight components
a,b,d,e, f,m,n, and o. The nuclear spins of these species with odd
mass-number have been shown to be given by ¢ = 1/2 and 1 = 3/2
respectively. Fig. 4 shows the components due to the even-numbered
isotopes together with the ‘centres of gravity’ of those due to the
odd-numbered species. The total intensities in the corresponding
hyperfine structure patterns are represented in this figure. We see
that the relative intensities due to the different components arrived
at in this way, 12:11:27:10:32:8 (per cent. of the total intensity),

1 H. Schiler and J. Keyston, Zs. f. Phys. 70 (1931), 1.

1 H. Schiiler, J. Keyston, and E. Jones, ibid. 72 (1931), 423; 74 (1932),
631.
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are in good agreement with the relative abundances of the isotopes
as determined by Aston, namely,
80 HngS . snglﬂB : 80H82°° : BngZOl : 80Hg202 : SOHg204
= 9-89:16:45:23-77:13-67:29-27: 6-85.
Fig. 4 also shows that the isotope displacement is a monotonic

function of the mass-number concerned, though the components
due to the odd-numbered isotopes do not fall quite symmetrically

k

wd']

Fic. 4.

between those due to the isotopes of even mass-number. The average
wave-number separation for successive even-numbered isotopic com-
ponents (AM = 2), in this particular case, is 28 X 103 cm.~!
Turning now to the theoretical aspect of the problem it soon
becomes evident that we must look for an explanation of isotope
displacement in terms of deviations from the simple Coulomb law of
force in the immediate neighbourhood of the nucleus. An explana-
tion in terms of nuclear motion alone (compare the original calcula-
tions concerning the spectra of hydrogen and singly ionized helium)
was shown to be quite inadequate to cover either the magnitude of
the effect or the rather particular conditions in which it is observed.
A complete discussion of the phenomenon, however, is rather compli-
cated and entails a certain amount of arbitrariness concerning the
nature of the modification produced by reason of the finite size of the
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nucleus on the forces acting on the orbital electrons. The first
calculations in this direction are due to Bartlett,} but by reason of
the very rough approximations employed—neglect of relativity cor-
rections and the screening effects of other atomic electrons—they
could not be expected to lead to an accurate result. Somewhat more
detailed calculations have since been made by Racahf on the basis
of Dirac’s equation for the motion of the electron and taking count
of screening ; independently, calculations of a similar nature have
been carried out by Breit and Rosenthal.§ The method is to assume
a reasonable form for the modification of the Coulomb field inside

||
']

the nucleus, estimate the consequent effect on the wave-functions of
the atomic electrons, and compute, from the perturbation of the wave-
functions, the effect on the electronic energy-levels. Although the
accuracy of the results of such calculations is not very great, it is
adequate for comparison of the effects of nuclear size among isotopes
of the same element and, in fact, Breit finds that the interpretation
of the isotope shift in this way is in good agreement with the hypo-
thesis of constant nuclear density.

The second result of further study of the hyperfine structure of
spectral lines is the discovery, by Schiiler and Schmidt,|| that the
shape of the nucleus is not spherical in certain isotopes. This shows
up in the observations on the term system of the atom’s hyperfine
levels as deviations from the interval rule of Landé (p. 14). Fig. 5
represents the structure of the line 16,865 (a®S,,—2'Py,) of europium
as measured by these authors. The distribution to be expected from
the interval rule (6) is plotted in the lower part of the diagram and’
we can see clearly that there are systematic deviations between the
two sets of components. Schiiler found from measurements on this

1 l ' observed

|

Fia. 5.

[ |
]

/ -g cn!

cos-law

+ J. H. Bartlett, Nature, 128 (1931), 408.

1 G. Racah, ibid., 129 (1932), 723.

§ G. Breit and J. Rosenthal, Phys. Rev. 41 (1932), 459.

| H. Schiiler and T. Schmidt, Zs. f. Phys. 94 (1935), 457; 95 (1935), 265; H.
Schiiler, J. Roig, and H. Korsching, ibid. 111 (1938), 165.
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and other spectral lines that the deviations in evidence are rather
closely proportional to the square of the cosine of the angle between
i and j, so that the complete interaction between the atomic elec-
trons and the nucleus includes a contribution to the energy of the
form a cos(t,7)+ B cos?(z,5),
where « is a constant depending upon the magnetic effect in the
electron orbit considered and B is a new constant inserted to account
for the departures from the interval rule for the first term. These
constants have different values for different atoms and for different
electron waves in the same atom.

The accepted interpretation of the cos?(i,j) term, i.e. in terms of
a departure of the nucleus from spherical shape, may be illustrated
as follows. Suppose a certain nucleus has a spin (in excess of 3%) and
that the surface of the nucleus forms a prolate spheroid with the
major axis along the direction of the spin-vector. Since the protons
in the nucleus are probably fairly uniformly distributed throughout
the nuclear fluid, and since the latter is assumed to be uniform in
density, the electric field arising from our prolate nucleus will be
slightly stronger in the direction of the spin-axis than in the plane of
its equator. Consequently, the binding energy of an orbital electron
will vary as the angle between its ‘orbital plane’ and the axis of
nuclear spin is varied, first by reason of the magnetic interaction
which has been discussed in the preceding section and which leads
to the cosine term, and secondly by reason of the dependence of the
nuclear electric field on angle. ¥From the symmetry of the latter it is
readily seen that its contribution will vary with cos?, in first
approximation. Quantitatively, the angular dependence of the
electric field is expressed by mecans of the well-known expansion of
the field due to a finite, non-spherical charge in terms of the fields of
various clectric multipoles. The field arising from a non-spherical
nucleus is then adequately approximated by adding a quadrupole
potential to the monopole potential:

Ze  3cos?f—1
Veow = 7+ ) qe,

where 6 is the polar angle relative to the axis of spin, and ¢ is called
the quadrupole moment of the nucleus. In the example chosen above,
of a prolate nucleus, q is positive, for an oblate nucleus it is negative.
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As thus defined, ¢ has the dimensions of length squared and is
usually expressed in units of 10-24 cm.? Its value for a given nucleus
is then determinable from the observed hyperfine separations through
the expression for V., and [|? for the electron states involved.
A number of such determinations have been made and the results
appear in Table I.

One of the most striking and most important facts concerning
quadrupole moments is the result that even the deuteron has one.
1t was discovered by Rabi and co-workerst in the course of their
work on the molecular beam magnetic resonance method of deter-
mining magnetic moments, as described in the previous section.
The magnetic moments of the proton and the deuteron, as well as
certain molecular constants, can be obtained from work on the H,
and HD molecules. From these, one can predict the resonance peaks
for the D, molecule in the rotational state, J == 1 (para-deuterium).
The resonance peaks actually measured for D,, however, appeared
at markedly different values of the homogeneous (second) field than
those predicted. The deviations were found to be proportional to
the square of the cosine of the angle between the nuclear moment
and the molecular axis. Such deviations can be accounted for if the
deuteron has an electrical quadrupole moment which interacts with
the non-uniform electric field at each nucleus in the molecule. By
computing the strength of the clectric field, and using the experi-
mental results, Nordsieck found the value of ¢ for the deuteron to
be 0-00273 X 10~% ¢m.? This highly significant discovery has a direct
bearing on the nature of nuclear forces and will be discussed at greater
length in the following chapter.

The geometrical interpretation of q can be derived at once by going
back to potential theory and its expression in the form of V.. It is
then seen that ¢ is just the mean value of }Z(322—r?), averaged over
the charge density in the nucleus.

5. Nuclear binding energy

A valuable collection of information concerning nuclear structure
is presented by the high-precision determinations of many of the
nuclear masses. As has been stated already in the beginning of this
chapter, one should not expect that the mass of an atom, formed by

+ J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and J. R. Zacharias, Phys. Rev.
55 (1939), 318; 57 (1940), 677.
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the ‘condensation’ of N hydrogen atoms, must be exactly equal to N
times the mass of the hydrogen atom. Infact, the formation of astable
configuration of this type must be accompanied necessarily by the
liberation of a certain amount of energy (binding energy) which makes
the mass of the composite system somewhat smaller than the com-
bined masses of its components. This difference in mass is usually
called the mass-defect, Am, and is connected with the binding energy,
BE (which is essentially negative) by the relativistic relation:

—am=2E, (1)
whereo ¢ is the velocity of light in vacuum.

The notion of a mass-defect is, of course, quite general and can
be applied also in the case of composite chemical molecules as built
from individual atoms. But, whereas in this case the defect of mass
(equal to the total dissociation-energy of the molecule divided by c?)
is negligibly small as compared with the total mass of the molecule,
atomic mass-defects represent a measurable fraction of the atomic
mass, thus affording a valuable method for the direct experimental
determination of the binding energies of the various atomic species.
Strictly speaking, mass-defects determined by the measurement of
the relative masses of different atoms are composed of two parts,
corresponding to the internal binding enecrgy of the nucleus and the
binding energies of electrons in the atomic envelope; since, however,
the binding energy of the atomic electrons is negligibly small com-
pared with the nuclear binding, the experimental results may be
interpreted in terms of nuclear energy alone. In speaking of the mass-
defect of a composite system it is necessary to have clearly understood
with respect to which structural units the mass-defect is to be calcu-
lated. Thus, for example, if we defined the mass-defect of helium as
the mass-difference between the helium atom and four hydrogen
atoms, we should get the binding energy of the helium nucleus as
formed from four protons and two electrons. Since, as we have seen
above, it -is more rational to consider this nucleus as built of two
protons and two neutrons, we should speak rather of the part of the
energy responsible for the binding together of these particular struc-
tural units. This can be done arithmetically either by subtracting
from the quantity defined in the preceding sentence the (negative)
mass-defects of two neutrons (relative to their proton-electron
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constitution), or more directly by calculating this mass-defect as
the difference between the mass of the helium atom on one side and
two hydrogen and two neutron masses on the other. In general, tho
nucleus of an isotope with atomic number Z and mass-number 4
consists of Z protons and 4—Z neutrons, so that the conventional
mass-defect of the atom of this isotope is found by subtracting the
mass of the atom from the sum of (4 —Z) neutron masses, m,,, and
Z hydrogen masses, my:

Am = Zmy+(A—Zym,—m 4, (8)

where m,, , is the atomic mass in question.

The accepted convention in nuclear physics is to express relative
atomic masses on an arbitrary scale in which the neutral atom of the
O*-isotope has the atomic weight exactly 16:0000.+ The unit of this
system is called the mass-unit (m.u.) and is equivalent to 1-483 x 10-3
erg or 932 M.e.v.

Relative masses of naturally occurring isotopes with atomic weights
less than 50 can be obtained with great precision by comparing atomic
and molecular ions of almost equal masses in a linear-scale mass-
spectrograph. An important example of the operation of this ‘doublet’
method in mass-spectroscopy is given by the work of Bainbridge and
Jordanj in determining the masses of H!, D2, and C'2 relative to 0.
This was done by comparing the deflexions in their spectrograph of
the almost equally heavy ions:

CHS with O+
Hj with D+
Dy with C++,

The results of this comparison, and of many others of the same type,
are included in Table 1I. With such direct measurements as a basis
it is then possible to compute the masses of the light, radioactive
species by simply adding the mass-equivalents of the energy released
in the transmutation. These results are given also in Table II (the
content of which is taken mostly from the article by Fligge and
Mattauch, ‘Isotopenberichte 1942°, Phys. Zeits. (1943) 181). Among
the masses deduced from radioactive energies are those for the

t This differs slightly from the conventional chemical system of atomic weights
whero the atomic weight 16-00000 is ascribed to the natural mixture of oxygen
isotopes.

1 K. T. Bainbridgo and E. B. Jordan, Phys. Rev. 51 (1937), 384.
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Tasre II
Atomic Masses and Binding Energies
Binding Binding
energy Linergy
Isotope Mass (M.ew.) Isotope Mass (M.e..)
n 1-008945 — Mg2? 26-99167 223-48
H! 1-008131 — Alze 25-99467 211-73
D2 2-014724 2-18 Al2? 26-98980 22446
UK 3:017004 8-39 Al2s 27-99017 232-27
He? 3-016988 7-65 Al?® 28-98739 243-36
Het 4-003860 28-20 Rt 26-99509 218-78
He? 501543 25-76 Si28 27-98663 234-97
He® 6:0209 28-99 Siz® 28-98469 245-12
Li¢ 6016917 31-94 Siso 29-98310 254-92
Li? 7-018163 39-11 Sist 30-98449 261-96
Li® 8-024967 41-10 p2e 28-98969 239-70
Be? 7-019089 3749 pse 29-98740 250-16
Bos 8:007807 56-31 pst 30-98256 262-99
Be? 9-014958 57-98 Ppae 31-98275 27114
Beto 10016622 6476 S3t 30-98783 257-33
B 9-016104 56-16 S32 31-98089 27212
Bte 10-016169 64-43 S 31-98014 281'14
Bt 11-012901 75-80 St 33-97699 292-40
312 12:0168 80-49 Sas 34-97897 298-88
cre 10-02086 59-30 Clss 32-98568 275-23
cn 11-015017 73-07 CI3 33-98083 2867
C2 12-003880 91-76 Cl3s 34-97884 298-25
ce 13-:007561 96-66 Cl3e 35-97865 306:75
Cu 14007741 104-82 CI37 36-97769 315-97
N 13-:009904 93-72 Ciss 3797997 322-18
N 14-007530 104-26 A% 34-98465 292-08
N1 15-004870 115-08 Ass 35-97790 306-69
Nte 160118 117-10 A7 .. ..
Q1 15-0078 111-58 Ass 37-97461 32641
e 16-000000 127-20 A3 .o .o
o 17-:00450 131-30 A 39-97549 342-214
(910 18:00485 139-30 A 40-97740 348:79
O 19-0127 140-49 K9 38-9750 333-6
i g 17-00758 127-68 K40 39-9756 3414
s 18:00670 136-82 K 40-9730 352-1
Je 19-00454 147-16 Ke 41-9745 359-1
K20 20-0072 153:63 Cat? 39-9749 3413
Net? 19-00798 143-20 Caft 40-9747 349-8
Ne20 19-998895 159-98 Cuf? 41-9717 360-9
No2t 21-00000 167-28 Cat? 42-9737 367-4
No?2 21-99858 176-93 Catt .. .o
Ne2s 23-00080 183-19 Cats 44-9685 3889
Na22 22-00032 174:65 Sct’ 42-9752 365-2
Na? 22-9964 186:53 Scts 44-9675 389-0
Na2t 2399779 19356 Sc1é 45-9670 397-8
Mg 23-00052 181-94 Sct? 48:96676 423-1
Mg2 23-99211 198:09 Tits 44-96976 368-2
Mg 24.99373 20491 Tide 45-9655 3986
Mg?¢ 25-99037 216-36 Tir? 46:96474 4075
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Binding Binding

Energy Energy

Isotope Mass (M.ew.) Tsotope Mass (M.ev.)
Tit8 47-9634 417-1 |83 RaE 210-0547 1635-05
Tit® 48-9648 424-1 AcC 211-0580 1640-28
Tis0 49-9623 434-7 ThC 212-0631 1643-85
v 50-9579 446-4 RaC 214-0820 1642-88
A 51-9561 456-4 |84 Pouo 210-0526 1636-22
Crb2 51-95424 457-6 AcC’ 211-0565 1640-90
Mnbs 54-9607 4756 ThC’ 212-0599 1646-04
Mnb8 55-9602 484-4 RaC’ 214-0678 1656535
Fef® 559571 4865 [84 AcA 215-0722 1669-57
COs? 58-9510 5164 W ThA 216-0758 1664-53
Cot0 59-9514 524-4 L RaA 218-0844 1673-27
Nise 57-9597 499-2 |86 An2® 219-0836 1680-83
Niso 59-9498 526-1 Tn?220 220-0865 1686-34
Nist 60-9540 529-5 Rn?222 222:0942 1695-89
Nie2 61-9496 542-0 |87 AcK 223-0959 1701-91
Ni# 63-9474 5606 |88 AcX 223-0937 1702-20
Cu®t 60-9562 526-7 ThX 224-0967 1708-75
Cu® 62-9488 550-3 Ra?26 226-1030 1719-51
Cu® 63-9493 558-2 MecTh I 228:1098 1729-83
Zn® 62-9524 546-2 89 Ac?27? 227-1052 1725-01
Zn* 63-9486 568-0 MTh 2 228-1089 1729-87
90 RdAc 227-1042 1725-24

81 AcC’ 207-0469 1618-83 RdTh 228-1065 1731-43
ThC” 208-0526 1621-86 Jo230 230-1120 1742-94
RaC” 210-0622 1629-60 Uy 231-1156 1747-91
82 RaG 206-0429 1613-42 Th?232 2321183 1753-74
AcD 207-0445 1620-30 UX1 234-1253 1763-81
ThD 208-0465 1626:79 |91 Pa23t 231-1146 1748-07
RaD 210-0655 1634-98 UX 2 234-1243 1764-01
AcB 211-0603 163887 |92 UII 234-1210 1766-35
ThB 212-0646 1643-23 AcU(US) | 235-1244 1771-53
RaB 214-0739 1651-20 Ul 238-1337 1787-80

heaviest elements, the naturally radioactive species. Althoughthe rela-
tive masses of the heavy elements are quite accurate for comparison
of one heavy isotope with another, there is still some uncertainty in
the comparison of these masses with that of Q6. In other words, the
absolute values of the masses and binding energies given for the heavy
atoms are not as accurate as those given for the light atoms.
Considerable progress has been made in recent years in determining
the masses of isotopes-heavier than 4 = 50, principally by Aston,
Mattauch, and Dempster. Except for the noble gases, however, the
precision of measurement does not compare with that obtained on
the lighter elements. A typical determination in this region is the
comparison of La®®® with Ti.t The threefold ionized La atom falls

t A. J. Dompstor, Phys. Rev. 53 (1938), 869 ; also ibid., p. 74.
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between the singly ionized Ti¢ and Ti*’. By using the separation of
the latter as a standard scale the deviation of the La mass from its
integral value of 139 is determined from the known deviations of the
Ti isotopes. It is readily seen that this method measures most
directly the fraction f in the equation:

myy = A(1+f).
Hence the experimental results are customarily tabulated in terms
84 | Fxi0*

’_.U

A
20 40 60 8 100 RO 140 160 180 200 220 240

g, 6.

ui f, known as the packing fraction, in the form of 10%f. The binding
energy of a nucleus may then be computed by taking the mass-
oxcess of neutron and proton into account, viz.

BE = A (f —0-00853)—0-0004 (4 —2Z%) 9)
in mass-units. Hence, except for the relatively small and uniformly
increasing term in 4-—2Z, the packing fraction plotted as a function
of A gives the variation of the average binding energy per nucleon.
A graph of 10%f as a function of A4 is shown in Fig. 6 for elements
heavier than Q6. The curve is drawn through the lowest value of f
for those isotopes for which several values have been determined.
Besides the prominent irregularities in the curve, which are partly
due to experimental errors and partly significant, there are several
features of the dependence of f on 4 that are of fundamental impor-
tance to the theory of nuclear structure. From the connexion between
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f and the binding energy per particle, eq. (9), we see at once that the
average binding energy per nucleon is practically the same in all
nuclei heavier than 016, Starting at O'8, with an average binding of
—8:53 M.m.u., the binding energy decreases to a minimum of about
—9-6 M.m.u. at Cr52 (or thereabouts) and then rises with increasing A
to about —8-1 M.m.u. at U238, The binding of nucleons in a large
nucleus is then quite similar to the binding of molecules in a con-
densed phase, such as a crystal or a liquid, i.e. the total energy of
binding is proportional to the number of units, in first approxima-
tion. This fact, plus the constant value of nuclear density discussed
in section 2, forms the foundation of the liquid droplet model of
the nucleus. Despite these, and other, points in analogy between
nuclei and liquids it must always be borne in mind that nuclei are
composed of relatively few particles, so that most of the component
particles are on the ‘surface’ of the droplet. Moreover, the nucleons
condense to such a high density that they form a degenerate gas,
whereas degeneracy is of no importance to liquids excepting liquid
helium ; and finally, some of the nucleons carry a permanent electric
charge.

The characteristics just mentioned are reflected in the packing-
fraction curve, Fig. 6. The decrease of f as 4 increases from 16 to 52
is evidently due to the fact that a nucleon is more often surrounded
by others in the heavier nuclei, i.e. the positive surface energy pes
nucleon diminishes with increasing 4. In ordinary liquids, f would
decrease uniformly and approach asymptotically the value for an
infinite volume. In the universal nuclear fluid, however, the binding
cnergy per particle is weakened by the electrostatic cnergy of the
protons. Since the Coulomb energy of a nucleus is proportional to
Z(Z—1)[3/A and the cohesive energy (neglecting the surface effect)
varies only as — A4, the electrostatic effect becomes of major impor-
tance in the known heavy nuclei. This accounts for the rise of f with
A as A increases above 60. There is, consequently, a most stable
finite size of droplet for the nuclear fluid (perhaps Cr%2). Furthermore,
the elements heavier than U238 are so unstable relative to subdivi-
sion into smaller nuclei, i.e. fission, that they do not oceur in nature.
Considering energy alone, practically all the heavy nuclei are unstable
against fission (and light nuclei unstable against fusion), but the
reaction rates for these processes are so low as to be effectively zero.
The exceptional cases of neutron induced fission in uranium and of
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thermally induced fusion of hydrogen at the centre of stars are dis-
cussed in detail in Chapters IX and X.

The gross aspect of the binding energy of a nucleus may be expressed
formally as the sum of three terms:

1. The negative volume energy which is due to the cohesive forces
between nucleons and is partially balanced by the zero-point
kinetic energy; both effects are directly proportional to the
volume, or weight, of the nucleus.

2. The positive surface energy which represents a deficit in the
volume energy due to the fact that the particles located on the
surface do not have a complete set of neighbours; this energy
must be proportional to the free surface of the nucleus, or
(because of the constant density) to the 2 power of its weight.

3. The positive electrostatic energy discussed previously.

The rough formula then becomes:

BE = —ad+bdt o200, (10)
where a, b, ¢ are positive factors, the same for all A. With properly
chosen values of the constants the initial drop and subsequent rise
of BE as a function of 4 and Z can be matched reasonably well. Tt
is evident, however, that eq. (10) is not completely satisfactory as it
‘predicts that for a nucleus of given 4 the lowest energy is obtained
with Z = 0. This contradiction to observation is removed by taking
the Pauli exclusion principle into account in the considerations of the
volume energy and is taken up more fully in Chapter 1V.

It is evident also that a formula of the simple type of eq. (10) can-
not account for the marked fluctuations and kinks in the packing-
fraction, or mass-defect, curve. Two kinds of such fluctuations can
be distinguished. The first kind shows up as a regular, periodic
variation of binding energy having a period of four mass units in the
light elements and a period of two in the heavy elements. This is
related to the especial stability of a-particle ‘shells’ mentioned in § 1
and can be predicted when the exclusion principle is taken into
account. The second kind of kink is represented by an occasional
sharp bend in the general trend of the mass-defect curve. Except for
the one that occurs at 0!8 the masses are not well enough known near
these kinks to evaluate their true meaning.

Particularly good information about relative atomic masses is
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available for the naturally radioactive elements where the energy-
differences between the members of the same radioactive family are
calculable directly by the energy-liberation in the corresponding
a- and B-transformations. Thus, plotting the energies of «-particles
emitted by various radioactive substances against the correspond-
ing values of atomic number and against the neutron-protons ratio,
N|Zt (Plate Ta), one obtains an energy surface (Plate Ta) which
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shows a sharp peak near Z = 84, and also a suggestion that a similar
peak exists in the region of the transuranium elements, somewhere
near Z = 100. These facts prove beyond any doubt that in the case
of nuclear structure we encounter the formation of saturated
nucleonic shells, similar to the familiar electronic shells which are
responsible for the periodic properties of atoms. Owing to the absence
of exact data concerning the binding cnergy of intermediate nuclei,
it has been necessary to try to establish possible proton and neutron
numbers for which closed shells are formed on the basis of other data,
mostly connected with the relative numbers of neutrons and protons
in the nuclei of stable isotopes.

If the values of neutron-proton ratios N/Z{ == (4—Z)|Z} for all
known stable isotopes are plotted against the corresponding mass-

1 W. Heisenberg, Rapport du VII™ Congrés Solvay, 1934.
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numbers A4 (Kigs. 7 and 8, which are constructed for even and odd
atomic weights, respectively) one notices a well-expressed undulation
indicating that at least six or seven shells are being completed between
the light and heavy nuclei.t The phenomenon can be represented in a
still more striking way by plotting the relative (per cent.) abundances
of the isotopes of the even elements as the height of a mountain range.
A plot of this kind is shown in Plate I b, where the range is mapped in
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the [N ; N—Z] plane running from N = 30 to N = 128, and from
N—% =6 to N—Z = 44. The peculiar nature of the neutron
numbers 50 and 82 is quite evident from the plot. It is probably also
significant that the fragments of the fission of heavy elements
cluster about these neutron numbers rather than about the midpoint
for the division. In the casc of protons, the numbers 50 and 82 also
play a prominent role which is emphasized by the extraordinary
isotopic variety of Sn (Z = 50) and the location of the Heisenberg in
the energy-plot of Plate 1a. Many authors have proposed that
nucleonic shells are closed at these numbers, as well as other less
marked numbers. On the other hand, there is at present no adequate
theory of the nuclear shell-structure. We shall return to these ques-
tions briefly in Chapter IV.

t G. Gamow, Zs. f. Phys. 89 (1934), 592.



II
THE FORCES BETWEEN NUCLEONS

1. The forces between protons

As we have seen in the preceding chapter, studies of the general
properties of atomic nuclei indicate that they existas stable mechanical
systems due to attractive forces acting between individual nucleons.
A more detailed knowledge of the laws of these forces, which is
important for the understanding of their intrinsic nature as well
as for the development of the complete theory of composite nuclei,
can be obtained best from the experimental study of the colli-
sions between individual nucleons. Thus the scattering of a hbeam
of protons by hydrogen gas, which is measured as the scattered
intensity as function of angle of scattering, will deviate from pre-
. dictions made on the basis of electrostatic forces alone. An analysis
of the deviation then gives information concerning the nuclear
forces exerted between two protons. The forces between neutron
and proton can be evaluated directly from the observed scattering
of neutrons by hydrogen and by analysis of the stable state of
the deuteron. Unfortunately, direct experiments on neutron-
neutron collisions lie far outside the limits of possibility, because
of the negligibly small collision-probability in the intersection of
two neutron beams, as now obtainable. Thus, the only way of
evaluating the neutron-neutron force lies in the study of nuclear
binding energies; for example, the fact that the binding energies
of H® and He? differ only by 0-74 M.e.v. (sec Table II), which is
a reasonable estimate of the additional Coulomb energy in the He3
nucleus, indicates that the n-n forces are essentially equal to the p-p
forces.

The existence of strong, short-range forces between two protons
was first demonstrated by the scattering experiments of Hafstad,
Heydenburg, and Tuve,{ who showed that there were significant
deviations from the scattering as expected for a pure Coulomb field.
In Fig. 9 we give the ratios of the observed scattering to that expected
from the Coulomb interaction alone (classical Rutherford’s formula

1 L. Hafstad, N. Heydenburg, M. Tuvo, Phys. Rev. 49 (1936), 402; 50 (1936), 806 ;
51 (1937), 1023 ; 53 (1938), 239 ; 55 (1939), 603. The energy of collision was extended
by the work of R. Gi. Herb, D. W. Kerst, D. B. Parkinson, and G. J. Plain, Phys. Rev.
55 (1939), 603, 998.



PLATE 1T

The “Heisonberg’. A plot of the energies of w-deeay in the [Z, N|Z] plane, showing
a maximum near Z = 84, and indicating the pe sibility of another maximum some-
whero beyond 7 - - 96,

)
A plot of the percentage abundance of isotypes in [N, N-Z] plane showing the distinct
maxima at N = 50 and N = 82, and the rise towards the maximunm at N = 126.
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modified by Mottt to take into account the quantum mechanical
symmetry of the wave-function for the two protons making a colli-
sion) for different scattering angles, and for different energies of
incident protons.}

It is evident from Fig. 9 that the observed differential cross-
sections at low energies (~ 700 k.e.v.) and small angles of deflexion
(~ 20°) are smaller than expected from electric forces alone. This
indicates that when the nuclear forces between protons first come into
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play they are attractive and partly annul the repulsive electric forces.
At larger angles of deflexion and at higher energies of collision the
effect of the nuclear forces predominates and gives rise to differential
cross-sections much larger than those due to the Coulomb force
alone. Furthermore, if we consider this excess scattering from a frame
of reference in which the centre of gravity of the colliding protons is
at rest, we find the scattering is nearly isotropic, as compared with
the distinctly forward (axial) scattering in a Coulomb field. Thus we
conclude from the results shown in Fig. 9, not only that the nuclear

t The formula, oq. (1) of Chapter I, is the correct expression for the differential
cross-section for scattering in the Coulomb field alone, if the colliding particles are
not indistinguishable. In considering proton-proton scattering, however, the quan-
tum mechanical effect of symmetry must be taken into account, as mentioned above.

! In studying nuclear collisions, the distribution of intensity as a function of tho
angle of scattering is & most valuable source of information concerning tho scattering
process. This intensity distribution is customarily expressed in terms of the differential
cross-section, which is defined as the number of particles scattered per unit solid angle,
in the direction of scattering being considercd, when the incident beam contains one
particle per cm.? The total cross-section is then the intogral of the differcntial cross-
section over all solid angles. In the case of the Coulomb field this integral diverges,
bocause the field represents forces of infinite range, and ono must use the differential
cross-section in application to nuclear problems.

3505.61 D
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forces are attractive between protons, but also that they are ‘short-
range’ forces, since apparently only head-on collisions, i.e. S-waves,
are affected by the nuclear forces. The inference is that proton colli-
sions in which the orbital angular momentum is more than zero are
too distant for the nuclear forces to be operative, hence the spherical
symmetry of the nuclear part of the scattered intensity. This inter-
pretation is borne out by the fact that for very high energy of bom-
bardment, especially for the neutron-proton collisions, the spherical’
symmetry gives way to a decided backward scattering of the beam,
indicating that the higher angular momenta are in evidence in the
operation of the nuclear forces.

Since the effect of the nuclear forces between protons evidently
depends upon the absolute value of their relative angular momentum,
it is no longer possible to interpret the scattering results on classical
theory alone. As an introduction we present a brief sketch of the
quantum treatment of scattering due to electric forces between
particles of charge e, mass M, and relative velocity v when the
particles are infinitely distant. If we define the quantities

Mv e?

kZTzz: "'IZ%; (1)

the Schrodinger equation in the relative coordinates of the two
particles (considering electric forces only) takes the form: '

Y8
S P P &
Let the coordinate z be the axis of the bombarding beam. We are
interested in the solution of eq. (2) that behaves for large z as ef*=.
Now it is readily secn, by direct substitution, that eq. (2) has a solu-
tion of the form Y .

¢ ¥ = CeikF(r—z), (3)
where (' is a constant, » is the radial separation of the particles of
which z is the component along the axis of bombardment, and F(q)
is a function that obeys the differential equation:

qF(q)"+F(q)' —ikqF(q) —knF(q) = O, (4)

where primes indicate differentiation in the usual way. This eq. (4)
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may be solved immediately by going over to the ‘momentum’ space
for the variable ¢, i.e. let

d . d i r .
G 1=ig o - f fpemdp, ()

and replace ¢ and derivatives with respect to ¢ in eq. (4) accordingly,
giving: d
ip (kp—p*)f(p) = —(p-+ikn)f(p),

which can be integrated at once to give

Jp) = (k—pympi-in,
Fg) = [ (k—p)mp-r-ineiva dp, (6)

The functional form of the desired wave-function is then obtained
by finding (6) as an explicit function of ¢ = r—2z == r(1—cosf). A
rigorous treatment of these solutions is beyond the scope of this
book,T but the asymptotic behaviour of F(q) is readily determined
by the residues at p = 0 and p = k which may be evaluated by ex-
panding the integrand in integral powers of p, or (p—Fk), respectively.
This may be done by using the appropriate form of the Laurent

series for efre (
m+

L - 2 (Ui(L,
11 (m—+¢ -I-

where { is, in general, a complex number so chosen as to obtain
integral powers about the branch-point being considered. Then by
applying Canchy’s theorem in the usual way, F(q) is found as the
sum of two (descending) power series in Aq. one for each branch-point.
For very large r (more exactly, k(r -2) > 1) we need only the leading
terms in these expansions, and one easily obtains the result by the
method just outlined:

. eim In k(r—z) o tk(r—2)~i In k(r—z)
F(r—z) -> ime=im { =" }

D(14in)  PA--ink@r -2)f
]“()T' (‘(lllV(‘rlli(‘]l(?(‘: in nnrmahzatl(m we Ch()()S(‘

o . —i+in)
m

1 Sco N. F. Mott and H. S. W. Masscy, Atomic Collisions, Oxford, 1933, for moro
thorough discussion and further references.
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and obtain, for the asymptotic form of the desired solution, equa-
tion (3):

1 _{__i,))efkr—i'q In k(r—z) e
T(I—ip)k(r—z) "

The first term is to be regarded as the incident beam of charged
particles, normalized to one particle per unit volume; the second
term is the scattered wave at large distances from the scattering
centre, i.e. from the centre of gravity of two protons.

The wave-mechanical solution, as developed thus far, applies
directly to the Coulomb interaction of non-identical particles (if 3 M,
in eq. (1) for £, is interpreted more generally as the reduced mass of
the colliding particles) and hence, must be equivalent to Rutherford s
classical derivation, eq. (1) of Chapter I. From the asymptotic
expression, eq. (7), we find the intensity of the scattered part of the
beam, at large 7 and in the direction § = cos~! (z/r),

_ r
Y s eiks+in In k(r—-z)__.,) (

I "’
eat = (1 con B
The differential cross-section is numerically equal to the intensity
per unit solid angle (i.e. 72I,,,) when the incident beam is normalized
per unit volume; hence
0 . .)72 e2 \2 4%0
o(0) = P(1—cos0): (W) 00966727,
in agreement with the classical result. The equivalence ot the classical
and quantum theoretical results for the scattering is made possible
by the fact that the Coulomb field alone does not introduce a charac-
teristic length, since the forces are of infinite range.

Before considering how the Coulomb cross-section is atfected by
symmetrizing the proton waves, we now introduce a short-range
potential in addition to the electric potential and sec how it influences
the unsymmetrized, asymptotic form of solution, eq. (7). The cus-
tomary procedure in such a study is to follow the method of Faxen
and Holtsmark and express the wave-function as a superposition of
eigenfunctions of orbital angular momentum. The effects of the
short-range forces in the states of different angular momentum are
then considered independently. In fact, for the experimental work
being discussed in this section, it is sufficient to evaluate the effect
of the nuclear forces only for the S-wave part of the wave-function.

t H. Faxen and J. Holtsmark, Zeits. f. Physik, 45 (1927), 307.
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The S-wave component of ¥ in eq. (3) can be obtained by averaging
this expression (with F substituted from eq. (6)) over all §. The
resulting integral can then be evaluated by the method used in
deriving eq. (7) and leads to the asymptotic expression for the
S-component, ¥;:

¥, - %;sin(kr—n In 2kr4-B), (8)

where B is defined by the relation

o2 — I‘(1—+—i'q“).
I'(1—in)
The expression, eq. (8), for ¥, at large distances is to be considered
as the sum of an incoming spherical wave and an outgoing one of
cqual intensities. The incoming part, (kr)-lexp{—i(kr—nln2kr)},
remains unaffected, of course, by the short-range forces. As the
particles approach to within the range of the nuclear forces, however,
both incoming and outgoing parts of the wave will be refracted
differently than by the Coulomb field alone. The net result on the
asymptotic form of the outgoing part will appear as a certain constant
addition to the phase of that wave at large » which we represent by
the factor 2K, The angle K is called the phase-shift for S-waves
and its magnitude is a function of the energy of collision. The
.modified form of ¥, is, therefore,
e(B+Ko)

yim sin(kr— In 2kr+B+K,). (9)

The effect of the nuclear forces on the asymptotic expression for the
complete wave-function may then be taken into account by adding
the difference between eq. (9) and eq. (8) to the form in eq. (7). The
result may be written:

() _y. gifkr cos 0+n I kr(l—cos 0)} __

2kr

1f the colliding particles are distinguishable, the differential cross-
scelion is 72 times the absolute square of the expression in curly
brackets. In classical theory, the cross-section for indistinguish-
able particles is the sum of cross-sections, o(f)+o(n+0), due to
the inability to tell particles that are scattered from those that
arc knocked on. But in quantum theory there is an additional

: .
_{’7 cosec 1+ 0 ei nsnlko}ei(lsr—nln2kr+2ﬁ)_ (10)
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consideration to be made. If ono proton is at r, and the other at r, the
properly symmetrized wave-functions for the two protons are

Wy(r) () + (7)) W)
in the singlet spin state, and

W) Fa(ry) — i (rs) Fa(ra)
in the triplet. Since r,(6) = r,(7+0) for particles of equal mass, and
since the scattering at =—0 is the same as at =4-0, the scattered
wave at w—0 interferes constructively with that at 6 in singlet
collisions, i.e. } of the time, and interferes destructively in triplet
collisions, i.c. 3 of the total number of collisions. Tf we denote by f(6)

f(0) = —{1) cosecX 1+ —eiBogin K},

the differential cross-section then becomes:

o(0) = 31fO)+f(m—0) 12431 f(0) —f(m—0) 2. (11)
This interference effect was first predicted by Mottt and proved
experimentally by Chadwick] for the case of the scattering of
a-particles in helium (in this case all waves are symmetrical in the
two alphas since their spin is zero). The differential cross-section for
scattering of protons by the angle 6 in the centre of gravity system
of coordinates is then:

2
a(8) = ( ) [cosect L64-sect 10—sec? 16 C()Se(f‘ 10 cos(nIntan2 16)|—

ﬂ;;z sin Ko[cose(, 16 cos(nInsin2 464 Ky)+

+sec? 16 cos(n In cos? §0+ K, ]+§m *Ko . (12)

The first term in the above expression, eq. (12), is the pure Coulomb
scattering, the third term the purely nuclear scattering, and the
second term the interference between them. To get the cross-section
for the scattering between 8 and 64-df, in the centre of gravity
system we have to multiply the expression for ¢(6) by the solid angle
27 8in 8 d§. The corresponding expressions for the laboratory co-
ordinates (in which one of the protons is initially at rest) are obtained
by replacing every 6 by 20. The largest effect of the short-range

t N. ¥. Mott, Proc. Roy. Soc. 126 (1930), 259.
t J. Chadwick, ibid. 128 (1930), 114.
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forces comes at 90° in the centre of gravity system (45° in the
laboratory), and at this angle:

a(éw)——‘l(M 2) {1_ 'n Yeos(Kp—nn 2) 0Kl (1)

sin%kK, }
Usually when discussing the scattering of indistinguishable particles
the differential cross-section is expressed as a ratio of the observed
scattering to that predicted for Coulomb forces alone (denoted by
L5/ Imots in Fig. 9) and is commonly referred to as ‘the ratio to
Mott Scattering’, Ry (6). Thus, R,;,(3n) expressed in terms of an
S-wave phase-shift for protons wave is given by the quantity in the
curly brackets in eq. (13). At one million electron volts, in the
laboratory frame of reference, the value of % is about 1/6 and it
becomes smaller as the energy increascs. The effect of the phase-
shift due to nuclear forces is therefore greatly amplified at these
energies. Further, due to theinterference, the sign of K, is determined.

The application of the formula, eq. (12), to the experimental curves
for p-p scattering shown in Fig. 9 has been carried out principally
by Breit and his associates.t The procedure is to determine the value
of K, that must be used in eq. (12) to account for the experimental
results at each energy of collision and each scattering angle that has
been observed. It was found that the experimental results at various
angles of scattering, but for a given energy of bombardment all corre-
spond to one and the same value of K,; this result substantiates the
assumption that, for the energies used in the above experiments, the
nuclear, short-range forces influence only the S-wave} (since only
this wave was modified in derivation of the formula).

From one point of view, the nuclear forces in S-waves are adequately
specified by giving K, as a function of the energy of collision. This
viewpoint has been elaborated, in recent years, in the theory of the
scattering matriz. For the present it is useful and instructive to inter-
pret the observed values of K, on the basis of a particular model for
the short-range forces. Following the work of Breit (loc. cit.) we
adopt the simplest form of model, viz. the rectangular well potential

1 . Yost, J. Wheeler, and (. Breit, Phys. Rev. 49 (1936), 174; G. Breit, E. O.
Condon, and R. D. Present, ibid. 50 (1936), 825; G. Breit, H. M. Thaxton, and L.
Eisenbud, ibid. 55 (1939), 603, 1018.

1 It may be noticod that for highor proton-energies modification of the P-waves,
as well as of the interferenco botween 8- and D-waves will play an essential part. The
analysis for the genoral case is presentoed in Chaptor VI1L.
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illustrated in Fig. 1, p. 9. The complete specification of the potential
acting between two protons is then given by

U= -0

bp for r<a,

2 14

=% for r >a, (14)
r

where a is the ‘range’ of the nuclear forces. The positive constant,

U ,»» measures the depth of the proton-proton interaction at small
distances. Inside, r == a, therefore, the Schrodinger equation becomes

V2W+élf[1g+ U,,]¥ = 0. (15)

The §-wave solutions of eq. (15) that are bounded at the origin are

well known to be
; ] Y
¥ g Sin rJ{M(lj+ Um,),/ﬁ. (16)

The amplitude, 4, is determined from the continuity of this solution
with the solution for » > a. For r > a the Schrodinger equation is
given by eq. (2) as before, if we identify k% with M E/#? of eq. (16).
The complete solution is then available, in principle, from eqs. (3)
and (6) above. Instead of the asymptotic forms at large argument,
however, we now need the forms near r = 0. If we evaluate the
spherical part of the bounded solution, eq. (3), without approxima-
tion we get a certain function which we shall denote by Fy/kr. This
function goes over into (sin kr)/kr as y — 0, and is the proper S-wave
solution if the Coulomb field extends unchanged to the origin. Since,
however, we are interrupting the Coulomb field at » = @ the solution
outside must fit smoothly on to the solution inside, eq. (16), and
this means, in general, that the solution outside will be a linear
combination of Fy/kr and the companion, improper solution, G,fkr,
corresponding to (cos kr)/kr in the absence of a Coulomb field. Hence
we may write the solution for » > a in the form
F, cos Ky+ G, sin K,
kr ’
where K, has the same meaning as before. The logarithmic deriva-
tives of the functions (16) and (17) must be equal at r = @ and this

determines tan K, as a function of ¥, U,,, and a:

[‘Ijé _ Fy+Gotan Ig,]
W Fyt+Gotan K, | _°

‘Fout = (17)

(18)
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where primes mean differentiation with respect to ». Taking into
account the general relation between F,, G,, and their first deriva-

tives:
Yo Fo—F, Gy = £,

we can write eq. (18) in the form:

i k
NIM(E+ Uy, } i cot a{M (B + U, )}l = T, F, G+ Ficob K,
(r=ua). (19)

Except for very high energy of bombardment, E, the correct func-
tions, K, G,, and Fy differ very appreciably from their field-free

og] [Un=10512
0-5-
044

01
=02 4
-0-3 1
-0-41
-054

Fi1a. 10.

counterparts, sin kr, etc., and they have been computed in the papers
cited by Breit et al. for various values of k and ». From these tabu-
lated functions, and the experimental values of K, the right-hand
side of eq. (19) can be computed for the energies at which each K,
was observed and for an arbitrary choice of the range of forces, a.
The corresponding values of U, can then be determined by solving
the left-hand side of this equation.

The values of U,, computed from the experimental results at
different energies are plotted as U, £% in Fig. 10 for three different
ranges of force: a = §(e?/mc?), viz. £ = 0-75, 1-00, and 1-25. It is
apparent from this plot that U,, is practically independent of energy
if £=1, i.e. a = e?/mc?, whereas for a Ze%/mc?, U,, respectively
increases or decreases with encrgy. Therefore, @ = e2/mc? is the only
range of forces consistent with a velocity independent, square-well
potential. Assuming a = e?/mc? = 0-283 X 10-12 cm. we obtain:

U,, = 10-5 M.e.v. a = ¢*/mc? (20)

»p
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as the most acceptable representation of the short-range forces
between two protons. In the following section we shall compare this
value with similar deductions from the neutron-proton interactions.
In making the comparison, however, it must be remembered that
the results expressed in eq. (20) are derived by cutting off the
Coulomb field altogether at » = a. If we add to U,, the (volume)
average of the Coulomb repulsion inside the nuclear potential well:-

ra «
ez(J rdr/f r2 dr) = 0-8 M.e.v. we get U,, == 113 M.e.v. for the
0 0
effective depth of the nuclear potential well.

2. Forces between neutron and proton

The most direct manifestation of attractive forces between neutron
and proton is the formation of the stable deuteron. This nucleus is to
be regarded, from the point of view of quantum mechanics, as a
stationary state formed by the mutual attraction between neutron
and proton in somewhat the same way that the normal hydrogen
atom is a stationary state formed by the Coulomb forces between the
proton and the electron. The nature of nuclear forces appears to be
quite different from Coulomb forces, however, as evidenced in the
preceding analysis of proton-proton scattering data.

We shall approximate the nuclear potential by the same type of
rectangular well that we used for the interpretation of the proton-
proton forces. In fact, we shall assume the range of the forces, i.e.
the radius of the well, to be the same as for the p-p forces and use the
known binding energy to determine the depth of well in the deuteron.

Let r be the coordinate of the proton relative to the position of the
neutron, M the mass of a nuecleon (assuming proton and neutron to
have the same mass), and # the energy of the system. Then the wave-
equation for the relative motion becomes:

BT, 0,8)+ BV O)¥(r,0,4) = 0,
V(r) = -0 r<a, (21)
Vir)=0 r>a.

Since the potential that has been assumed has spherical symmetry
the state of lowest energy will be an S-state. In fact, due to the short
range of the potential, states of higher orbital angular momentum
would be hardly affected by the potential if their wave-lengths are
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long compared with a. It is for the same reason, of course, that the
physical results of the caleulation are not particularly sensitive to the
shape of potential well assumed. Accordingly, we let

(r,0,8) == “T’)

and the wave equation becomes:

Pu M
— 2
o [—,I (E—V)u — 0. (21a)
Outside r — a, V(r) = 0 and the bounded solution for « is
u(r) = Ae\p{ \/(_éw](l)r} r>a. (22)
Inside r — a, V(r) = —¥; and the bounded solution is
u(r) = Bsin[rJ{M(E+V)}/h] r < a. (23)

In eqs. (22) and (23), 4 and B are constant factors. The value
of ¥} is then determined as a function of K, which is known to be
B = —2-18 M.e.v., and of @ = e2/mc?, which is assumed on the basis
of the proton-proton results, through the fact that solutions (22) and
(23) must join smoothly at r == a. Equating logarithmic derivatives
of u(r),:

[M(E-+V)/2)icot ol M(E-+V)/B2)} = —(— M E/h?)} (24)
determines the value V] == 41mc? = 21 M.e.v.

The value of ¥ thus obtained is about twice as great as the corre-
sponding value, U, for the forces between protons, even though the
range has been assumed to be equal. The disparity is well known to
be connected with the fact that the protons interact in S-collisions
only when they form the singlet spin-state (because of the Fermi—
Dirac statistics), whereas the spins of the neutron and proton forming
the deuteron must be parallel (triplet statc) since the angular
momentum of the system is unity. Hence the difference between
the values of ¥} and U,, is a manifestation of the spin-dependence
of nuclear forces. Furthermore, the wave-function of the ground
state is spherically symmetric so that no electrical quadrupole
moment can be obtained. In spite of this defect, however, the simple
rectangular well assumption will now be extended to the calculation
of the scattering of neutrons by protons in order to determine how
the forces between neutron and proton in the singlet state fit into
the picture.
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Scattering by short-range forces alone is easier to compute than
when combined with the Coulomb field and it may be deduced from
the results of § 1 by going to the limit of e - 0. Nevertheless, we
shall sketch the customary treatment of the problem for the sake
of completeness. The wave equation is eq. (21) and we are looking
for appropriate solutions with positive values of E. Consider a plane
wave e'kr 30 describing neutrons falling upon protons. We need be
concerned only with the part of this wave that is spherically sym-
metric about the centre of gravity, since this part alone will be
influenced by the nuclear forces if, as we assume, the ‘wave-length’,
k-1, is long compared with the range of forces, a. The spherical
component of the planc wave is readily found by averaging over all 6
sin kr

kr

Owing to the nuclear forces this wave will become strongly refracted
inside » = a, and the effect on the wave at large r will be a certain,
constant phase-shift, 8. Since the incoming half of ¥ cannot show
the effect of the refraction, the general form of the spherical wave
as influenced by the nuclear forces is then:

WY =

vy = eisﬂ‘lg‘k:i@. : (25)

The difference between ¥?, eq. (25), and ¥} is the scattered wave of
the form S(e'*"/kr) with
S = e®sin§.
Since the incident wave is normalized per unit volume, the total
cross-section for scattering will be the number of scattered particles
per unit radius,
o, = dmr? [P0 4w!§r = 7 s, (26)
k k?
The determination of the phase-shift, 8, as a function of energy is
made as follows. Outside r = a the wave-function is given by eq. (25),
inside r = a by eq. (23) as before, except that E is now positive.
Equating the logarithmic derivatives at r = a

%J{M(E+Ig)}cot%¢{M(E+z)} — kcot(ka+-8), 27)

analogous to eq. (24) in which E stands for the binding energy of the
deuteron, —e. At low energies of bombardment, E, ¥, is much larger
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than both E and e so that the left-hand sides of eqs. (24) and (27)
are equal, in first approximation. At low energy, also, ka may be
neglected as compared with 8. In this approximation we get, equating
the right-hand sides of eqs. (24) and (27), the rough estimates:
(M) LR
cotd ~2 el UIZTM.
For more careful work, one solves eq. (27) for 8§ using the correct
bombarding energy (in centre of gravity system, so this value is
one-half the laboratory energy of the neutrons) and substitutes in
eq. (26). Using the latter method with V; = 21 M.c.v. and @ = e2/mc2,
we find a total cross-section for very slow neutrons, i.e. £ = 0,
01(0) = 4-43x 1024 om 2 (29)
This result, eq. (29), is to be compared with the observed cross-
section for the scattering of thermal neutrons by hydrogen,t viz.
o(0) = 20X 10-2* ecm.2 By way of interpreting the discrepancy
between the observed value and that calculated from the theory of
the stable deuteron, Wigner pointed out that the calculation is based
upon what is known about the triplet state of the deuteron only,
and that it is possible to choose a value of |¢| for the singlet state in
such a way as to account for the experimental results. Let the
cross-section for the singlet state, and vanishing energy of collision,
be 0,(0). Since there is no correlation between the spins of the
colliding particles, three out of four collisions will form the triplet
state, on the average, and one out of four the singlet. The formula
for the total cross-section is then

(28)

0(0) = 20,(0)+}04(0). (30)
Substituting 20 X 10- for o(0) and 4-4 x 1024 for o,(0),
0y(0) = 67X 102, (31)

which is 15 times larger than 0,(0). From the rough formula eq. (28),
putting E = 0, one would say that the ‘binding energy’ in the
singlet state must be one-fifteenth the binding in the stable deuteron,
or around 140 k.e.v. However, it is impossible to tell from the simple
scattering formulae whether this binding energy is negative, as in the
triplet case, or positive, in which event the singlet energy-level is
‘virtual’ rather than ‘real’. In either case the value of ¢’ is so small
that the depth of the singlet well can be estimated at once from

t V. W. Cohen, H. H. Goldsmith, and J. Schwinger, Phys. Rev. 55 (1939), 106.
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eq. (24) by setting E = 0, replacing V| by ¥, and putting a = e2/mc?.

This gives 72
Vy =2 (3m)? = 25mc?.

The nature of the S-wave scattering at low energy is most readily
illustrated by solving eq. (21a) for the simple case of vanishing K.
The solution at radii larger than a is then a straight line, i.e. a wave
of infinite length, and at radii smaller than a is the sinc wave,

ro] ¥

NGE OF/FORCES

64

RADIUS
A (ine:/mc units

1 é\ 3

Fic. 11. Wavo-function (times 7) for n-p triplet state
and zero energy.

sinr{(— M V)/h}. InTFig. 11 we show the graph of such a solution for
the triplet state collisions. The straight-line part of the solution
intersects the r-axis at the distance a, from the origin. The distance
a, is obviously the limiting value of warve-length divided by 2m times
phase-shift as the wave-length is increased indefinitely. Since in this
case, however, a given phase of the wave is shifted to larger » the
value of § in eq. (25) is negative. Hence

. A .8
a; = —lim§,— = —lim-1. 32
! Ao L 27 k0 ke (32)
From eq. (26) we see that also in the limit of vanishing K
0,(0) = 4mal. (33)

In Fig. 12 is shown the analogous solutions for the singlet inter-
action. Both possibilities for the sign of ¢’ are represented. If there
should exist a bound state for the singlet state, the wave inside the
radius @ would be curving downward at the range of forces and the
intercept a, will be positive. The actual situation with the deuteron
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is the opposite, viz. the nuclear forces are not quite strong enough
to advance the phase of the inside wave past 90°. No bound state
can be formed and the intercept @, is on the negative axis. This
means that the phase shift, §,, is positive. The fact that the singlet
cross-section is 15 times larger than the triplet then means:

ay = —3-9a,. (34)

The extraordinarily large value of a, is obviously connected with the
‘accident’ that the straight-line solution has to be joined to the sine

—".
e

a, for real bound state>~_  RADIUS
e ——— UL LA L)
~— - y v . -

a, For virtual state 2 4 6 8 .

F1a. 12. Wave-function (times ) for n-p singlet state and zero energy.

wave 80 close to a maximum in the latter at 90°. This is the simplest
illustration of the importance of wave-mechanical resonance pheno-
mena to nuclear physics, but by no means the most striking example.
The nearness to resonance in the singlet interaction between slow
nucleons plays some part, also, in the proton-proton scattering.
1t was stated that the phase-shift in the singlet collision is known
to be opposite in sign to that in the triplet, as expressed in eq. (34).
In other terminology, the singlet state of the deuteron is ‘virtual’
rather than ‘real’. This has been very beautifully demonstrated by
scattering slow neutrons on hydrogen. If hydiogen molecules are
bombarded by neutrons that have encrgies characteristic of liquid air
temperatures (0-012 e.v.), the wave-length of the neutrons will be
10 times as long as the separation of the protons in the molecule.
The scattered wave will thus be the coherent superposition of ampli-
tudes from the two protons (assuming elastic scattering). In the
particular case of scattering from para-hydrogen the proton spins
form the singlet state and, if the neutron spin is parallel to the spin
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of one of the protons, thus forming the triplet, it forms half-triplet
and half-singlet with the other proton. In terms of a, and «,, the
cross-section for inelastic scattering from a molecule of para-hydrogen
will be proportional to

0y ~ (30,+a,)2. (35)

Hence the size of this cross-section, o,,, is vastly different, depending
upon which sign @, has, relative to a,.1 For a, and a, of opposite
sign, as given in eq. (34), the value of ¢,,, is only one-sixtieth as large
as if the a’s had the same sign. The decisiveness of this comparison
thus results from the fact that the singlet cross-section is so much
larger than the triplet that a, almost cancels 3a,.

The experiment consists in scattering liquid air neutrons (0-012e.v.)
from para-hydrogen which is mostly in its ground state of zero rota-
tion (J = 0). The energy required to raise the molecule to the ortho-
state, J = 1, is 0-023 e.v., hence the scattered neutrons must leave
the hydrogen in the para-state. The scattering observed under these
conditions is then compared with the scattering from normal
hydrogen (} ortho and } para). The result found is that the scatter-
ing cross-section per molecule in the usual mixture is many times
greater than that in para-hydrogen alone. This proves conclusively
that the singlet state of the deuteron is virtual.

Knowing that the singlet state is not stable the depth of the
singlet well can now be computed unambiguously. For a range of
forces, e2/mc?, the depth ¥, turns out to be

¥V, — 23mc? = 11-6 M.e.v.

in very good agreement with the depth of the singlet well for two
protons, after the correction for the Coulomb energy is applied. This
result suggests that nuclecar forces are independent of the electric
charge of the nucleon.

An analysis of the scattering of neutrons in ortho- and para-
hydrogen has been made, by Schwinger, under the assumption that
the spin of the neutron is 3/2% instead of }%. The level of the deuteron
that lies near zero would then be a quintet. In this case, however, the
fortuitous cancellation of terms does not occur and all cross-sections

1 This theory is due to J. Schwinger and E. Teller, Phys. Rev. 52 (1937), 286, and
the experiments have been carried out by F. G. Brickwedde, J. R. Dunning, H. J.

Hoge, and J. H. Manly, ibid. 54 (1938), 266; W. F. Libby and E. A. Long, ibid. 55
(1939), 339, and by L. W. Alvarez and K. §. Pitzer, ibid. 58 (1940), 1003.
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of molecular hydrogen are of the same order of magnitude. Thus, the
experiments prove also that the spin of the neutron is }#.

3. Non-central nuclear forces

The theory of the deuteron that has been developed in the preced-
ing section iy generally satisfactory except that it does not predict
an electrical quadrupole moment for the ground state (see Chap. 1).
This defect arises from the assumption that the potential energy of
the nucleons depends only on the separation, », so that the lowest
quantum state is an S-state. On the other hand, we have found that
even such central forces depend upon the relative spin ovientation of
neutron and proton in the sense that the potential wells for the two
spin-states must be given different depths for the same range. In
Yukawa’s description of the nuclear potential, as a generalization of
the electromagnetic potential (cf. Chap. III), this simple type of spin-
dependence would be expressed by choosing different strengths of
source, g, for singlet and triplet states.

By generalizing the electromagnetic field a much more interesting
and satisfactory possibility for introducing the spin-dependence
presents itself, viz. to assume that each nucleon carries a mesic
dipole moment parallel to its spin o,

m == -;-6, (36)

in addition to its monopole strength g. In eq. (36) f has the same
dimensions as g but is not necessarily equal to g numerically. The
forces between nucleons will then depend not only upon their separa-
tion but also upon the orientation of the dipoles relative to each other
and relative to the radius vector joining the positions of the nucleons.
In electromagnetic theory, the potential energy due to two dipoles,
m, and m, separated by the radius vector » takes the form

3(mq, 7) (Mg, 7)— (Mq, M0,)72 .
_I/;_z: ( 1 )( 2,‘2 (7 1 -) .. ('57)

The formula (37) contains the well-known fact that bringing two
parallel dipoles together along a line perpendicular to their orienta-
tion, (my,7) = (my, 1) = 0, creates the repulsive potential m, m,/r3;
and bringing them together along a line coinciding with their axes
develops an attractive potential of — 2m,m,/r®. Under such forces

alone, therefore, dipoles with parallel moments find their state of
3595,01 B
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lowest energy by lining up on an axis containing the moments. Under
combined central forces and dipole forces there will be a tendency for
the nucleons to be lined up along the axis of their resultant spin, i.e.
the ground state of the deuteron should be somewhat ‘ cigar-shaped’.
This is precisely what is required to account for the electrical quadru-
pole moment of the deuteron.

_ Although dipole-dipole nuclear forces follow naturally in asso-
ciating nuclear forces with mesons of spin # and assuming that
the nucleons carry mesic dipole moments, an exact application of
the results of meson theory to the deuteron is not possible because the
dipole potential diverges to minus infinite values with r=3, cf. eq. (37).
Given a (cigar-shaped) wave-function that falls to zero at r > a, the
average potential energy in that state will be proportional to —a=3,
whereas the average kinetic energy will be of the order %2/ Ma®. Thus
the total energy becomes lower the smaller a is chosen and there is
no solution for a lowest energy, at least for the Schrodinger equation.
Since the dipole potential must, therefore, be modified at small 7 and
since it falls off exponentially at large 7, in meson theory, we shall
approximate the radial dependence of this part of the potential by
the rectangular well. Let the radial dependence be J(r) and the
dependence on the angles included between the vector  and the spins
of the nucleons be designated by Sy,. The spin-dependent potential

is then Uy, = —dJ(r)8,5 (spin, angles)

. = 3(ay, 7)(0g, 7)— (01, G)7% [’ (38)
Bl = 2

and the wave equation for the relative motion of neutron and proton
becomes: P

|57+ E+R0+-T 0 ¥ =0, (39)
where .Jy(r) is the part of the potential that does not depend upon
angles, i.e. proportional to g2. If the neutron and proton spins form
the singlet state, S;, can be set equal to zero (since there can be no
spin versus r correlation in a singlet state) and the equation solved
as before. In the triplet state, let us start by assuming a wave-
function with spherical symmetry in its space dependence:

y(r)e(n)u(p),

where «(n) designates the state of upward spin for the neutron, and
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so on. B will be used to designate the state of downward spin compo-
nent. Operating on this function with S,, leads to:

Sy (r)a(n)a(p) = y(r){(3 cos§—1)a(n)x(p)+
+3 cos 8sin feit[a(n)B(p) +-B(n)a(p)]+
+3sin%0e%4B(n)B(p)}
= y(r) B0, ¢, o, B), (40)

where 0 and ¢ are the usual spherical angles with the spin-axis as
pole. The result, eq. (40), can be shown easily to be a 3);-wave.
The wave-equation for y(r) is coupled, therefore, with the wave
equation for the radial dependence of a D-wave which we may
assume to have the form: w{r)Py(0, ¢, «, B). Putting this form in the
wave-equation (39), the dependence on spin and angles in P is
preserved in all terms except that containing 8;, which mixes it with
a spherical wave, in addition to reproducing the same function with
the coefficient —2J(r). The wave-function for the triplet state of the
deuteron must be considered as the sum of two components, an
S-wave for one and a D-wave for the other. We get the differential
equations that the radial functions y(r) and w(r), introduced above
for the S-wave and D-wave, must obey by substituting in eq. (39)
and factoring out the dependence on angles and spin:

dr a+ ﬁzlE+Jo(7’)]./+ \/8 J(r)w =0,
d>w 6w (41)

T BT — 2T () Vs 3 Ty

Part of the D-wave, cf. eq. (40), has the same spin polarization as
the S-wave, viz. a(n)a(p), and these parts will interfere to give the
cigar-shape to the deuteron (provided, of course, that the sign of
interaction is such that this is the state of lowest energy). The
density distribution in the D-wave alone is readily computed by
squaring the independent terms in the angular distribution, and
adding, and is seen to be proportional to 5-—3 cos®§ which is decidedly
oblate. The amount of D-wave in the ground state of the deuteron
turns out to be so small, however, that the interference between S-
and D-waves far outweigh the effect of the D-wave alone. Rarita
and Schwinger{ have solved the equations (41) assuming J(r) and

1 W. Rarita and J. Schwinger, Phys. Rev. 59 (1941), 436.
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Jy(r) to be square wells of range 0-28 X 10-12 em. and with depths in
the ratio y = [J(r)/Jy(r)],<- They find that the binding energy and
the observed value of the quadrupole moment are accounted for by
choosing y = 0-775 and Jy(r) = 13-89 M.e.v. (r < a).T The intensity
of the D-wave in their (numerical) solution is only 4 per cent. The
amplitude is then about 1/5 as large as that of the S-wave and has
the same sign, so that the interfering terms produce a charge density
proportional to 3 cos?0—1 as required.

+ Slightly different values of J, were used for singlet and triplet interaction. If
tho range of force had been taken just a little smaller (5 per cent.) the values would

have come out oqual and tho entire spin-dependence would be contained in tho
dipole-dipole interaction.
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THEORIES OF NUCLEAR FORCES
1. Various hypotheses concerning nuclear forces

In the chapter just preceding this one we have dealt with the forces
between nucleons by describing such forces essentially in terms of
‘action at a distance’ and by choosing the functional dependence of
force on separation of the nucleons solely on the basis of convenience,
i.e. using ‘square well’ potentials. Certain characteristics of the
nuclear forces are put into evidence in the, rather empirical, methods
of that chapter, namely, the short-range and great strength of these
forcest and also their dependence upon spin orientation, especially
the dipole-dipole nature of the interaction between neutron and pro-
ton. In this chapter we shall review the attempts to ‘explain’ the
nuclear forces in the sense that one explains the forces between two
electric charges by introducing the concept of an electric field. There,
instead of the charges acting directly on each other, when they are
not in contact, one charge acts as a source of electric field strength by
distorting the field at a certain point in space ; this distortion is then
transmitted by the field, which is to be considered a separate physical
system, to the position of the other charge. The interaction between
the field and the second charge then produces the observed accelera-
tion. Hence we are concerned with possible field theories of the
nuclear forces.

A field theory of nuclear forces must be able to account for the
characteristics of the interaction between two nucleons, mentioned
above, and it must also lead to the formation of complex nuclei in
which the binding energy is simply proportional to the number of
nucleons and in which the density is roughly independent of the
number of nucleons. This feature of the heavy nuclei has been pre-
sented in Chapter I and discussed in its relation to condensed phases
of ordinary matter. It is readily seen that one cannot assume attrac-
tive potentials between all pairs of nucleons, of the type used in
Chapter II, and at the same time account for the structure of the
heavy nuclei. Forces between nucleons that obtain if the same poten-
tial applies between all possible pairs of nucleons in a complex nucleus

1 Tt will be recalled that the depth of the nuclear potential between two protons
was 11:3/0-8 =~ 14 times tho average potential due to their electrostatic repulsion.
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are called ordinary forces.t If all nuclear forces were ordinary forces,
the average potential energy per nucleon would be proportional to
the number of other nucleons that are to be found within the little
sphere described about that nucleon with a radius equal to the range
of nuclear forces. Consequently, the greater the density, the greater
the (negative) potential energy, V ~ p. As the density increases,
however, the volume available to each nucleon becomes less, and the
average kinetic energy must increase also. Effectively, if the density
increases from p, to p, the average wave-length of a nucleon decreases
by a factor (py/p,)t and the average kinetic energy (non-relativistic)
increases by the factor (p,/p,)!. This is to be compared with the
decrease in energy duc to nuclear forces by the factor p,/p,. Thus,
with ordinary forces, the energy of the nucleus can always be made
lower by increasing the density (the Coulomb encrgy increases only
as (py/po)t) up to the point at which all nucleons lie within the range
of nuclear forces of each other. The radii of all nuclei would be sub-
stantially equal to the range of forces and the binding energy would
be proportional to the square of the total number of nucleons. This
is in complete contradiction to the observed properties of nuclei, the
radii of which increase with 4% and the binding energy of which
increases only with the first power of the total number of nucleons, 4.}

It is evident from the arguments just given that the nuclear forces
must have the additional property that a given nucleon will be
attracted to only a limited number of other nucleons at onc time, i.e.
the nuclear forces must show a saturation character. The saturation
of nuclear forces could be accounted for in a number of conceivable
ways, for example, by supposing that the depth of the attractive
potential decreases as the velocity of the nucleons increases (at least
as the first power), or by supposing that the attractive potential gives
way to a very strong repulsive potential as the distance between
nucleons is decreased. Neither of these possibilities is indicated by
the study of the two-body systems presented in Chapter II, but data
on S-wave scattering alone (i.c. relatively low energy) is hardly suffi-
cient to exclude them. The tendency in developing a theory of the
nuclear forces, however, has been to avoid these mechanisms as too
arbitrary and too complicated to enter into the description of so
fundamental and so simple (?) a phenomenon. This philosophy was

1 Ordinary forces in nuclei are sometimes called Wigner forces.
1 This argument is due originally to Heisenberg, Solvay Congress, 1933.



Chap. ITL,§1 HYPOTHESES CONCERNING NUCLEAR FORCES 55

somewhat more tenable when it originated than it is now, since the
discovery that the forces between nucleons depend upon angles indi-
cates that the nucleons are not inspired particularly by simplicity.
The real foundation of the doctrine of simplicity was, of course, the
paucity of experimental results. Extension of the study of forces
between protons and between neutron and proton to higher energy
and high accuracy, now in progress, will produce the real basis for a
description of the saturation character, as well as the other properties,
of the nuclear forces. Such studies might lead to the necessity for
giving the nucleon a ‘structure’, for example, that leads to a repul-
sion when two particles are too close together but to attraction when
they are at certain separation in analogy to the forces between mole-
cules that form an ordinary liquid.

The theory of the saturation character of nuclear forces that has
been pursued with greatest vigour since the discovery of the neutron
is based essentially on Heisenberg’s (loc. cit.) original suggestion that
when a neutron interacts with a proton the single electric charge
jumps from one nucleon to the other so that, in the first such jump,
the original proton changes into a neutron and the neutron into a
proton. In this way, a neutron may interact with only one proton at
a time and the forces have a saturation character that is somewhat
related to ordinary chemical valence. This simple form of the idea
of exchange forces does not give an adequate account of the equality
of proton-proton and neutron-proton forces, since the former requires
a double jump which is not only less probable but leads to a repul-
sion, but we shall use it to introduce the concepts underlying this
approach to the saturation character.

A simple, atomic example of the exchange forces is found in the
ionized molecule of hydrogen Hy. This is a stationary state of two
protons, numbered 1 and 2, and one electron, and we shall consider
in particular the state in which the molecule is not rotating. In an
attempt to get an approximate description of this stationary state
we may think of the electron being in the normal Ls orbit ,(x) about
proton number one and proton number two being bare, and call this
state H(1)p(2), with the obvious meanings for H(1) and p(2). A
second approximate state of exactly the same energy would be
p(1)H(2). Neither of these is a stationary state, so that if at a certain
time the configuration is given by H(1)p(2) the electron will subse-
quently ‘jump’ to the second proton, forming the state p(1)H(2),
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then jump back, ete. The stationary states in this case, as is well
known, are either of the functions:

H(1)p(2)£p(1)H(2). (1
In this approximation, the forces holding the ion together can be
computed by first finding the total energy of the electron plus the
electrostatic repulsion of the protons as averaged in each of the
states (1). This energy is then the effective potential for the ionic
forces and usually is denoted (C'+A4)/(148), the 4+ sign being deter-
mined by choosing one of the two states. Let V' = kinetic energy
of the electron+Coulomb attraction to each proton+ Coulomb
repulsion of protons; then for given positions of the protons, and
writing H(1) = p(1)fs(x),

8 = [ fy(xWu(x) dx,
¢ = f Py (X)2V dx = f Pa(X)2V" dX,

A = [ fu(x)py(x)V" dx.

Weo are particularly interested in the exchange part of the potential,
A, which depends upon the symmetry of the wave-function. The
part C'is an ordinary potential. If we choose the plus sign in eq. (1),
A represents the extra potential due to the fact that y,(x) and g,(x)
interfere constructively in the region betwcen the two protons. Thig
enhances the electron density in the region of most attraction (and
also gives a relatively long wave-length to the electron state so that
the kinetic energy is lowered) and, in fact, accounts for the binding
of the Hy ion. If we had taken the minus sign, the electron waves
interfere destructively, reduce the negative charge density in the
most favourable region, and elevate the average kinetic energy of the
clectron with the result that, in this state, a hydrogen atom and a
proton repel each other and there is no bound state of this type.
Heisenberg’s proposal for nuclear forces abstracts from the elemen-
tary example given above, formally replacing hydrogen atoms H by
neutrons # in eq. (1), considering only the exchange part of the inter-
action, and (what is the same thing) simplifying the interaction
between the nucleons and the field. This proposal is of the general
type of those that would have been made in atomic theory if a know-
ledge of molecular structure, band-spectra, ctc., had been acquired
far in advance of the structure of the atom. Then, being ignorant
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of the intrinsic electromagnetic origin of the forces in the Hy ion, one
would account for the dependence of the potential between proton
and hydrogen atom by supposing that when the potential acts, an
electric charge jumps from atom to proton, thereby effectively
exchanging the positions of atom and proton. From further informa-
tion about the intrinsic angular momenta of H-atom and proton plus
the observation, say, that H-atoms can be transformed into protons
by irradiation which ‘creates’ electrons simultaneously, one would
conclude that the atom-proton forces are characterized by exchange
of a single electron. The electron in this case is the field particle, and
since we are supposing that both the H-atom and the proton are
elementary particles, i.e. we are disregarding the true structure of the
atom, we should describe the interaction by saying that the atom
‘creates’ a free electron momentarily, and on borrowed energy, which
is subsequently annihilated by the proton. In this process the atom
changes to proton and the proton to atom and we have a simple
manifestation of an exchange force which makes no reference to
structural details except that different assumptions about the amount
of energy that has to be borrowed will lead to different effective
ranges of the force.

In applying the simple, general description of unknown forces to
neutron and proton, we start with the facts that both these particles
have spin 1% and that neutron can change into a proton by simul-
taneous emission of an eclectron and a neutrino (and proton can
change into a neutron by emitting a positron and neutrino, i.e. the
B-decay). Thus Heisenberg suggested that nuclear forces are exchange
forces in which electrons (positrons) and neutrinos act simultancously
as the field particles. In this event, however, the strength of the
nuclear forces can be determined from the observed probability of
B-decay. In Chapter V we shall see that the interaction between
nucleons and the clectron-neutrino field which will account for
B-decay is characterized by the ' Fermi constant’, g ~ 2 X 104 erg cm.?
The potential energy between two nucleons will then be proportional
to the square of g, will depend upon the separation of the nucleons, ,
and, since the electron states involved are mostly in the extreme
relativistic region, the potential will be independent of the rest-mass
of the electron. Exact calculations of this potential were first made
by lvanenko and Tamm, but we shall consider here only an analysis

1 D. Ivanenko and I. Tamin, Nature, 133 (1934), 981.
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on the basis of physical dimensions. The problem is simply to con-
struct a function of the dimension of energy out of ¢ and certain
powers of r, #, and ¢, # and ¢ being the universal constants other
than g that enter into the B-decay theory. Except for a dimensionless
proportionality factor o« we findt
P! ;

U(r) = %78 (2)
for the potential energy that is proportional to g2. The exact calcula-
tions give a = 1/16#3. Substituting the known values of g, #, and ¢
and choosing a value of r = 10-13 cm. we obtain

—U =~ 2x10"¥erg ~ 107 e.v.

as compared with a value of the order of 107 e.v. that would be
expected at this separation, according to Chapter LI. Nuclear forces
that should arise from electron-neutrino exchange are then weaker
by a factor ~ 10-1% at r = 10-13 cm., than required by a square well.
On the other hand, the potential, eq. (2), is by no means a square
well but rather diverges as -5 as r — 0.

In Chapter II we found that if one has an attractive potential that
diverges as r—2 near the origin there is no lowest stationary state of
the interacting particles and it is necessary to ‘cut-off’ the potential
at a finite radius. This result holds a fortior: for a r-5 attractive
potential and means that, despite our best intentions, the ‘structure’
of the nucleon must affect our considerations in order to produce a
sensible result. Suppose, for example, that the potential (2) becomes
modified at r = a in such a way (and by unspecified physical forces)
that U(r) becomes constant at r smaller than a. Then the average
potential energy of a neutron-proton system in an S-wave of lincar
dimensions @ will be roughly {/(a) and the average kinetic energy
will be of the order of Zc/a (since @ turns out to be much less than
the Compton wave-length of a nucleon, so that the relativistic formula
must be used). The radius of the deuteron will be that value of a for
which 7icja ~ |U(a)|, and this leads to

ag = fm? A/(%) ~ 16 10-7 ¢m. (3)

The range of force indicated by (3) is smaller by the factor 0-6x 104
than the range found necessary to interpret scattering data, etc., in

t We have [¢*h%cVr?] = [erg]; or [erg.L3)2.[erg. T}*.[L.T—1}V.[L*] = [erg] which
gives z = —1,y = —1,2 = —5.
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Chapter II. Finally, the neutrino-electron hypothesis for nuclear
forces gives no forces between two protons (or two neutrons) in the
approximation proportional to g2, since this approximation is charac-
terized by a single exchange of charge, and the equality of all nuclear
forces does not follow at all from the simple content of the theory.
In fact, the terms in the potential proportional to g* give repulsion.

Owing to the failure of the attempt to describe nuclear forces in
terms of electron-neutrino fields, numerous alternative proposals for
the nature of the field particles have been made. These proposals fall
naturally into two categories according to whether the field particles
have half-integral spin and obey Fermi-Dirac statistics or the field
particles have integral spin and obey Bosc—Einstein statistics.

Tn the first category, to which the electron-neutrino theory belongs,
the ficld particles must be created and absorbed by the nucleons in
pairs in order to conserve spin and statistics. An alternative theory
in this category, proposed by Wentzel,T and independently by Gamow
and Teller,] assumes that nucleons exchange electron pairs (ete~),
and possibly neutrino pairs, as well as electron-neutrino pairs. If the
nuclear forces are characterized by the exchange of electron pairs
the value of g, is no longer related to the Fermi constant and may
be chosen arbitrarily in eqs. (2) and (3). We may choose this value
80 as to obtain an acceptable value of 7, say @,, at which the r—3
potential should be cut off. Such a value is ¢; = €*/mc?, and, since
nucleon waves of this length represent kinetic energies in the non-
relativistic region, we set —U(a,) equal to %%/ Ma3; this gives
g2~ 1 (nn-’l:;’a'{a ~ 3 X 10,
i.e. a value of the interaction constant that is 10* times the Fermi
constant. Thus, although the quantitative difticulty found for the
electron-neutrino theory may be removed in this way and one should
expect neutron-proton, neutron-neutron, and proton-proton forces
to be equal in the electron-pair theory, the cut-off trouble remains
and the original idea of introducing exchange forces, to obtain satura-
tion through the exchange of electric charge has been lost entirely.
We shall return to the pair-theories (including meson-pair theories)
briefly in a later section.

+ G. Wentzel, Helv. Phys. Acta, 10 (1936), 107.
1 G. Gamow and K. Teller, Phys. Rev. 51 (1937), 289.
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The only well-established ‘elementary particle’ having integral
spin is the photon which has spin % and zero rest-mass. The photon is
the field particle for the retarded interaction between moving charges.t
The motion of a charge ¢, may be thought of as creating a photon
which travels over to, and becomes absorbed by, another charge e,.}
Formally, a similar description of the electrostatic interaction of two
charges can be made by inventing ‘longitudinal photons’, but this
description just leads back to the classical formula for the electro-
static potential ¢,. For a point-source of strength e at the origin of
coordinates, the classical equation is

V24, =0, 7 >0, (4)

with the well-known solution
¢c = = (5)

As pointed out in Cliapter I, electrostatic forces are of infinite
range. In order to produce forces of finite range between nucleons,
Yukawa§ suggested that these forces be derived from a potential
(static) that obeys the differential equation

Vip—a? =0, r >0 (6)
instead of eq. (4). The solution of eq. (6) for a point-source of
strength g is readily seen to be||

$ = Je-er. (1)

IR

From the relativistic extension of Yukawa’s theory (cf. § 3) we find
that the parameter @ is related to the rest-mass of the field particle m by

me = fee. (8)

1 W. Heitler, Quantum Theory of Radiation, chaptor iii (Oxford, Clarendon Press,
1936).

1 The frequency of the tomporary, or virtual, photon may take any value since tho
energy for its creation is ‘borrowed’. Tho energy of the intermodiate state, ;, is then
higher than that of the initial and final states, ¥y(= Ey). Let Ii,; be the matrix
clement of the interaction energy botween the charge e, and the radiation field that is
represented by one photon of energy iv;. Similarly, let H;; be the matrix element for
the charge e, interacting with the same quanturn. According to perturbation theory,
the retarded potential botwoen the two charges is then obtained by summing over all
possible intermediate states:

Hqi Hyy
E,—E;’

§ . Yukawa, Phys. Math. Soc. Japan, 17 (1935), 48.

|l The reader may recognize this form of potential as that which occurs in other
physical problems, e.g. the Dobye-Huickel theory of eloctrolytic solutions.

V =
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In other words, the range of nuclear forces, -1, is just the Compton
wave-length of the field particle. Substituting e?/mc? for the range
of forces we obtain for the mass of the particle m =~ 137 electron
masses. Hence, Yukawa proposed the existence of an entirely new
hypothetical particle, of mass intermediate between electronic and
nucleonic rest-masses.t The subsequent discovery of such a particle
in cosmic radiation by Anderson and Neddermeyer] stimulated a
major interest in Yukawa’s theory. However, the more detailed
experimental investigations concerning the properties of cosmic-ray
mesons seem to throw again the monkey-wrench into the elegant
theory of the meson-exchange forces. In fact, if the mesons interact
with atomic nuclei strongly enough to give the rise to the observed
nuclear forces, one would expect that a beam of mesons passing
through the matter will be subject to a strong nuclear scattering ; it
turns out, however, that the observed scattering of cosmic-ray
is much smaller than would be expected on the basis of such mesons
theory.§

Another still more striking piece of evidence is provided by the
experiments of Conversi, Pancini, and Piccioni, and others,|| on the
absorption of cosmic-ray mesons by various nuclei.

‘When a beam of cosmic-ray mesons is slowed down in some material
we should expect that the positive mesons, being electrically repelled
by the atomic nuclei, will decay as free particles into the positive
electrons and a neutrinos. And, indeed, the observation has estab-
lished the presence of high-energy positive electrons resulting from
such a process.

In the case of negative mesons the situation is, however, expected
to be entirely different. Being attracted by the nuclear electric field,
these particles must be strongly absorbed by the nuclei leading to
violent nuclear excitation. According to the calculations of Fermi,
Teller, and Weisskopff,t1 and also of Wheeler,}} the mean life of a
slow negative meson against nuclear absorption must be of the order

t In the years just following its introduction this particle was variously dubbed
heavy electron, heavy quantum, barytron, yukon, Japaneso clectron, mesotron, and
moson. As indicated in Chapter I, we use the last mentioned namo.

} C. Anderson and 8. Neddermeyer, Phys. Rev. 51 (1937), 884.

§ R.F. Christy and 8. Kusaka, ibid. 59 (1941), 414.

|| M. Conversi, E. Pancini, and O. Piccioni, ibid. 71 (1947), 209 ; T. Sigurgeirsson
and A. Yamakawa, ibid. 71 (1947), 319; R. Valey, ibid. (in publication 1948).

1t E. Fermi, E. Teller, and V. Weiskopff, ibid. 71 (1947), 314.
11 J. A. Wheeler, ibid. 71 (1947), 320.
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of magnitude of 10-18 sec. (if the sufficiently strong interaction, neces-
sary for the explanation of nuclear forces, is assumed). Since the
mean decay-time of a free meson amounts to only a few micro-
seconds, we must expect that all slow negative mesons would be
captured by the nuclei, and no emission of the negative electrons
should be observed. The above-mentioned experiments indicate,
however, that whereas this theoretical expectation is actually fulfilled
in the case of heavy elements like iron, a comparatively small number
of captures takes place in such light clement as carbon. This
seems to indicate that the probability of nuclear capture is of the
same order of magnitude as the probability of free decay, being
somewhat larger in the case of iron and somewhat smaller in the case
of carbon (such variation of the relative capture probability is to be
expected on account of the difference in nuclear electric charge). Thus,
unless one would be able to give to this observation some other inter-
pretation,t we should be forced to admit that the interaction between
the negative (and most probably also the positive) mesons and the
nuclear particles is too small by a factor of 102 to explain the nuclear
exchange forces.

An alternative solution (comp. Appendix I) is to admit the exis-
tence of two different kinds of charged meson (one kind for cosmic
rays and another for nuclear forces) with rather different properties,
or as a possible remaining avenue of escape ascribe nuclear forces
to the exchange of hypothetical neutral mesons, which must be sup-
posed to interact with the nucleons 10'% times stronger than the
charged ones. Such an assumption, which is in principle not very
different from the above-mentioned hypothesis of electron-pair
exchange (Gamow and Teller, loc. cit.), would, however, lead again
to the difficulties in explaining to saturation phenomenon of nuclear
forces.

Inasmuch as none of the proposed field theories are satisfactory
and an exposition of all of them would fill a book twice the volume of
this one, the main objective of this chapter is to introduce the reader
to the language and methods used in approaching such theories.
With this in mind we turn, in the section immediately following, to
the language that has been used most in those attempts. As field

t It was, for oxample, suggestod by V. Weiskopff (Phys. Rev. 72 (1947), 155),
that the failure of carbon nuclei to capture nogativo mesons 1s due not to the small
probability of that process but rather to the unfavourable energy balance.
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theories, these attempts belong to the second category mentioned
above, i.e. the field particles have integral spin. At the same time,
however, we shall develop the more general character of exchange
forces to a degree that will be useful in Chapter IV. This general
theory emphasizes the effect of the symmetry of the wave-functions
of the nucleons on the sign of the potential and is rather independent
of the particular field theory except that the meson theory used below
provides many useful examples of what might be going on physically.

2. The formalism of meson theory

In this section we shall go on the simplifying assumption that there
is just one kind of meson, i.e. a unique mass, spin, and half-life, inde-
pendently of whether the meson occurs in cosmic radiation or in
nuclei, but that the electric charge can be positive or negative (one
electronic charge) or, perhaps, even zero. It is reasonable to hope
that this assumption is also fact, but that is certainly not established
at the present time when there is not even a single determination of
the spin of a meson. Regarding the spin, we shall assume first that
the spin is zero and see to what trouble the assumption leads. This
is also the assumption originally made by Yukawa, as evidenced by
the fact that the wave-equation (6) contains only a single component
for the ¢-function of the meson. With regard to electric charge, we
Shall assume first that a meson carries either a positive or negative
charge of one unit. Introduction of neutral mesons will be made at
the end of this section.

The assumption of charged mesons has three theoretical advan-
tages. One is the possibility of obtaining saturation of nuclear forces,
through exchange of charge, as discussed at length in the preceding
section. In connexion with that discussion, it will be noted that the
potential (7) does not have to be ‘cut-off’; unfortunately, this is not
gencrally true of meson theories. The second point is that, owing to
the observed instability of the meson against decay into an electron,
one automatically includes the possibility of B-decay of a nucleon.
This comes about because the ¢-function of eq. (7) represents, in a
certain sense, the presence of a free meson (g2/Ac of the time) which,
if the energy balance is right, yields to its natural propensity to dis-
integrate. This phenomenon is considered quantitatively in Chapter V
with the regrettable conclusion that the agreement with observation
is not good. The third point is that if the ¢-function for the meson is
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generalized to unit spin, and finite magnetic moment for the meson,
the ‘anomalous’ magnetic moments of neutron and proton might be
accounted for as contributions from the meson field.}

For the present, we concern ourselves with the exchange nature of
the forces between neutron and proton. Let the two nucleons be in
orbits @ and b and let 1 denote the proton and 2 the neutron. The
potential, V, between them will then be some function of radius J(r)
times the exchange character. If the nucleons are ‘symmetrically
coupled’:

Vla(1)b(2)+a(2)b(1)] = —J(r)]a(2)b(1)-+a(1)b(2)], ()

i.c. the effective potential is —J(r). On antisymmetrically coupled
particles, however,
V[a(1)b(2)—a(2)b(1)] = —J(r)[a(2)b(1)—a(1)b(2)]
= J(r)[a(1)b(2)—a(2)b(1)] (10)
and the effective potential is +J(r). Hence, a potential that is attrac-
tive in symmetric states becomes repulsive in antisymmetric states.
The exchange nature of the neutron-proton interaction is sub-
stantiated by recent experiments on the scattering of high-energy
neutrons by hydrogen. If the nuclear forces were not of the exchange
type one would expect, as the energy of bombarding neutrons is
increased, that the scattering should become predominantly forwards
owing to the persistence of momentum. At 17 M.e.v., however, there
is a slight back scattering of the neutrons. At this energy one must
take into account not only the S-wave collisions but also the P-wave.
If the forces are attractive in both states the scattering will be
forward. The observed backward scattering thus indicates that the
forces in the P-wave are repulsive, since the forces in the S-wave are
attractive (Ch. II). The exchange effect may be pictured as follows:
the incident, high-energy neutron beam will be expected to go mostly
forward, but if in the interaction with the hydrogen these neutrons
are changed to protons, by meson exchange, it will appear as it the
incident particles are scattered backward. In general, the potential
energy of neutron and proton colliding in a state of orbital angular
momentum, L%, will be (as far as the considerations to this point go)

Vo = —=(=1)"J(r). (11)

+ This point was made first by Wick, Accad. Lincei Atti, 21 (1935), 170, the clec-
tron-neutrino theory of nuclear forces.
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Forces derived from a potential of this type are called Majorana
forces, after their inventor.

The situation is actually a little more complicated. Consider the
interaction of the neutron and proton in the 38 state of the stable
deuteron. In both spin and space coordinates this state is symmetric
to the exchange of the two nucleons. On the other hand, if the
nuclear forces are accompanied by mesons jumping from one nucleon
to the other, for certain short intervals of time there will have to be
two protons present in this state (negative meson jumping) or two
neutrons (positive meson), in violation of the exclusion principle. It
was to avoid this contradiction that Heisenberg proposed that
nucleons be given an additional coordinate which, like the spin-
coordinate, can take one of only two possible values. Because of the
formal similarity to the ordinary spin, the new coordinate is called
the ¢sotopic spin. The required antisymmetry of the nuclear wave-
function, even during meson exchange, can then be achieved by
making all wave-functions antisymmetric when considered as func-
tions of space, spin, and isotopic spin. The triplet deuteron is then
thought of as made up of nucleon 1 and nucleon 2 in the S-wave:
S8(12), and in the symmetric spin state, a(1)a(2), but in the anti-
symmetric isotopic spin state, (1/v2)[%(1)p(2)—p(2)n(1)]. This means
that we write a function of space and spin for particle 1 as the
neutron and particle 2 as the proton and subtract the same function
with particle 1 as the proton and 2 as the neutron.

", = S(12)a()e(2) s [n(1)p(2)—p(Dn(1)} (12)

In a similar way, the wave-function for the singlet state of the
deuteron is deduced to be
Wy = 38'(12)[«(1)B2)—(2)B()][n(1)p(2)+p2)(1)]  (13)
In the course of the exchange of a meson between them, the
nucleons 1 and 2 remain at relatively fixed positions and, since
the meson we are considering does not have a spin, the spins remain
thesame. The effect of the exchange potential on the wave-functions
(12) and (13) is then simply to interchange » and p. Hence, if we
choose a potential that is attractive in the singlet S-state it will be
repulsive in the triplet S, and Yukawa’s original proposal is unsuited
to account for the observations.

It is evident from the structure of the wave-functions (12) and (13)
3595.61 -
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that one can obtain negative potentials simultaneously in these states
if both charge and spin are exchanged when the meson jumps. Since
all wave-functions are antisymmetrical, the potential in this case may
be described uniquely in terms of the Majorana potential, eq. (11).
There is a convenient formulism for expressing the exchange proper-
ties of the various potentials which is based on the fact that the
scalar product of the Pauli spin-vectors for particles 1 and 2, viz.
*(6,,0,) has the eigenvalue —3 for the antisymmetric, singlet state
and 41 for the symmetric, triplet state. Therefore, the expression,
314 (oy,0,)] is +1 for symmetric spin-states and —1 for anti-
symmetric spin-states. We define an analogous, formal expression
for the isotopic spin (of course, the three components of the isotopic
spin-‘vector’ do not refer to axes in ordinary space), i.e. {14 (v, %,)],
where t is the isotopic spin-vector. The type of potential just
described as equivalent to the Majorana potential may then be
written:

Vo = =P J(r) = §[1+(0y, 03) [[1+(71, %) | (7). (14)
The symbol P, is customarily used to denote this particular type
of exchange, —% (etc.). Potentials that involve an exchange of
charge alone, i.e. proportional to {1+ (ry,7,)}, are known as Heisen-
berg potentials, and those in which the spin alone is exchanged as
Bartlett potentials; both are obviously of opposite sign for symmetric
and antisymmetric spin-states (holding the orbital angular momen-
tum the same) and may be used to account for the spin-dependence
of nuclear forces. It is often useful to apply these central forces as
an approximation even though one is sure that the spin-depen-
dence arises from the non-central forces discussed in the preceding
chapter.

In order to make the meson carry angular momentum, as well as
electric charge, it is necessary either that the meson have an intrinsic
spin, or that it be emitted into a P-state. In Yukawa’s theory the
latter possibility is formally forbidden by the conservation of parity,
but this difficulty is circumvented by calling the meson wave-function
an antisymmetrical tensor of rank four (relativity theory) instead
of a scalar. The theory is called the ‘pseudoscalar meson theory’.
The other possibility, of giving the meson a spin of %, leads to the
‘vector’ theory. This theory is just the generalization of electro-
magnetic theory in which the light quantum is replaced by a particle
of finite mass, i.e. the meson. The vector meson field may be
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described in terms of a four-vector potential A, analogous to the
electromagnetic four-potential. The time component of A, is
governed by the static source-strength p and obeys eq. (6). This
equation may be written formally for every point, including » = 0,
by defining a singular source-density gd(r), where 3(r) is Dirac’s
(three-dimensional) d-function:

V2A,—2%A, = —4wgd(r). (18)
In a similar way, we define a singular current density in terms of the
mesic dipole moment, viz.

i= —icurl [o8(r)]. (16)
®
The equation for the space components of A, then becomes:
VEA— %A = 4n£curl [e3(r)]. (17)

Green’s functions for eqgs. (15) and (17) are of the form of e-#7/r; the
solutions are therefore,

f r— ) emrrde = Jeom,

A = ___ curl[c 8("' )]e_wlr_rq dr’ — —iclll‘] [ce—&’r].
' r

@ fr—7r"| &

(18)

The potential energy of interaction between a nucleon with mesic
charges, g,,f; and a nucleon with mesic charges g,,f, is then, in
analogy with electromagnetic theory:

V - 91Q2P_10r+f1f2(

v

o,,curl A,)

3(ay, )0y, 1) —7%(0y, 0p)

— {mantut| - =?) e i)+

+3(oy, 0'2)]}~-—r for r # 0. (19)
The corresponding calculation for the pseudoscalar theory leads to

V[‘)s = qg{s(al’ T)(Oe, 7‘) 7'2((71, 02)( + +

r2

z)“Ha‘(Ul’ 02);0,; i
for r £ 0, (20)

where g, and g, are the mesic charges on the nucleons.
The forms of potential, eqs. (19) and (20), give the predicted space

a2
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and spin-dependence of the interaction of two nucleons if the field
particle is a meson of spin one, or spin zero, respectively. It will be
noted that the non-central forces discussed in Chapter II appear in
both cases. As pointed out in that section, however, the fact that the
tensor forces diverge as -3 near the origin means that there are no
stationary solutions for two nucleons in such potentials. This may
be averted by arbitrarily ‘cutting off’ the potentials at some small
value of r. Actual calculation shows, however, that the necessary
cut-off radius is of the order of (and generally a little larger than) 1/z.
Hence the field aspect of the theory is seriously compromised and
must be considered unsatisfactory. In order to avoid the r—2 terms,
Mogller and Rosenfeld proposed that one set q equal to { and use the
sum of ¥, and V,,. Thus, the nucleon interacts simultaneously with
two kinds of meson-fields. The difficulty with this proposal is that
the entire tensor force is subtracted out in this way, and there is no
direct way of accounting for the quadrupole moment of the deuteron.
Schwinger further proposedt that the r—2 alone be subtracted away
by choosing different masses for the vector and pseudoscalar meson
and assuming
I (21)

Mys My,

Required values of the mass ratio m,/m,, and of the coupling con-
stants can be determined from the deuteron states. Using these
values,I and taking m,, = 177 electron masses, the quadrupole
moment can then be computed. The result is only one-third the
observed value, even when no static force is assumed, i.e. g = 0,
and becomes smaller when g is finite. The limiting case in which
m, —> m,, as f—>co has been investigated also,§ but with not much
improvement. Hence the present status of this development of the
meson theory, in which the nucleons are supposed to carry mesic
charges and dipoles, is completely unsatisfactory with regard to
quantitative results. The field-theoretic aspects of Yukawa’s pro-
posal will be reviewed in § 3.

It has been assumed, in the preceding discussion of the nuclear
forces in the deuteron, that the mesons are charged and that the
resulting potential is of the Majorana type. The mechanism by

1 J. Schwinger, Phys. Rev. 61 (1942), 387.
1 J. M. Jauch and Ning Hu, ibid. 65 (1944), 289.
§ L. L. Foldy, ibid. 72 (1947), 125.
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which the forces are attended by the exchange of a charged meson
fails, however, for the interaction between two protons or between
two neutrons. A purely charged meson theory gives no attraction
between like nucleons in the first approximation, i.e. according to
eq. (4), and leads to repulsion in the second approximation. The
observed equality of nuclear forces in the singlet interaction of all
possible pairs of nucleons suggests, therefore, that there exist ordinary
forces in addition to the exchange forces. The ordinary forces may be
thought of as accompanied by the exchange of electrically neutral
mesons. Thus a proton may emit not only a positive meson but also
a neutral one; and the relative probability of emission of the two
kinds is open to choice. A representative mixture of this type that
is commonly considered is that due to Kemmert in which the ordinary
forces and the Majorana forces are present in equal amounts. This
assumption is known as the symmetrical theory. Finally, Bethe} has
worked out the theory for the assumption that all mesons connected
with the nuclear forces are neutral. In this neutral theory the nuclear
forces are strictly ordinary forces, and the saturation feature is
absent. Even in the symmefrical theory the exchange nature of the
forces is not sufficient to give saturation, for, as we shall see in
Chapter IV, the ordinary forces may not be stronger than one-fourth
the strength of the Majorana forces in order to achieve saturation.
Nevertheless the three theories, neutral, charged, and symmetrical,
provide a convenient reference system for discussing the possible
mixtures of ordinary and exchange forces. The most general forms
of potential for the three cases (not relating to any particular meson
field) are summed up in Table III.

TasLEe IIT
Forms of potential
Neutral theory —[Jo(r)+ (01, 02)p(r) +S1a J3(r)]
Charged thoory 31+ (7, )N Jo(r) + (04, 0) Ty(r) -+ S22 Jy(r)]
Symmotrical thoory o) Jo(r) | (04, 0)Jy(r)+ 819 Jy(r)]

The operator S,, is defined in eq. (38), Chapter II.

3. Field theories of elementary particles
Although the meson theory of nuclear forces is in a completely un-
satisfactory state at the present time, its development has established

1 N. Kemmer, Proc. Camb. Phil. Soc. 34 (1938), 354.
1 H. A. Bethe, Phys. Rev. 55 (1939), 1261.
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certain general aspects of field theory of elementary particles that
are of considerable interest in themselves. In particular, electrons
and mesons connected with nuclear and cosmic-ray phenomena
usually have energies far in excess of their ‘rest energies’, so that a
relativistic treatment of their wave-equations is essential. This part
of the theory has been greatly developed in recent years.

An elementary particle that is subject to no forces whatever is
assumed to obey the relativistic energy relation:

E? = c*p2-f-m2c4, (22)
where m is the rest-mass of the particle. From this equation we
derive the Klein—-Gordon equation

0%
V& — — T 2 = () 23

b= o= = (23)
by making the familiar substitutions:

) . 0 . mc

E = zﬁa, p = —ifigrad, ==
If the free, elementary particle has a spin s there will be 2s--1
independent components to its y-functions each of which obeys the
eq. (23). The question then arises whether these 2s+1 compo-
nents are completely independent, as they would be if each had only
to satisfy eq. (23), or whether there are, for example, some relations
between their first derivatives. A classical example of this question
may be posed by choosing m = 0 and considering the six equations
of type (23) for the components K,, E,, E,, H,, H,, H, of an electro-
magnetic field without sources. In addition to the second-order
equations, Maxwell has shown that these vectors obey the relations:

divE = 0, curl E+H = 0,
divH = 0, curlH—E = 0,
where the dot over £ and H indicates differentiation with respect to

ct. These equations may be regarded as the wave-equations for the
photon, and the photon density per unit volume is

E2+H2

87hy

(24)

2

where v is the frequency of the radiation. In this case, as in all cases
where the ‘particle’ has zero rest-mass, there are only two indepen-
dent states of polarization.
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Dirac has argued that all relativistic wave-equations must be put
in the form of first-order differential equations so as to define the
first-time derivatives of the y-functions. He met this requirement
for a particle of finite rest-mass by the well-known relativistic
equation for the electron wave which has the four components
P, Yo, Y3, P

c[(pz_'lpy)‘l"i'}—pz‘/’a] = (E_m’cz)lﬁl’

0[(px+ipy)‘/’a—17z ‘/’4] = (E—mc2),,

c[(p.c_ipy)‘l’z’}“p:‘/’l] = (E+mc?)s,

o[ (D, 41D W —Dsa] = (B+me)hy.
Tt has been shown by Diract that the form of the equations (25) is
invariant under Lorentz transformations. Under rotationsin ordinary
space the new i and ;, representing the two directions of the spin
(3%) are linear functions of the old ¢; and i, only, similar to the
situation with the polarization of light. Under such rotations, also,
the components i3 and ¢, are functions of i3 and ¢, alone. Under
acceleration (i.e. transformation to a moving frame of reference)
) and ¢} are linear functions of ¢;; and ¢, as well as of ¢, and i,.
In this respect the two components, i, and i,, are analogous to the
threc components of the electric field vector, E,, E,, E, and 43, ,
analogous to H,, H,, H,. The analogy extends in a way to reflections
of the coordinate axes. From eq. (25) it is evident that the compo-
nents ¢, and iy, acquire a different sign than do i3, ¢, under the
inversion ' = —2z, ¥’ = —y, 2’ = —=z. In fact, if we suppose ; to
be a spherically symmetric state (S-state), i3 and i, are first deriva-
tives with respect to z and x—iy, hence they are P-states. The space
dependence of these states is even and odd, respectively, so that
there is a difference in parity similar to that for the axial and polar
vectors, H and E. The behaviour under reflections of the spin-part
of the wave-function is not so simply interpreted.

As is well known, eq. (25) has plane-wave solutions for all values
of E > mc? and also for all values of E < —mc?. In order to prevent
electrons with positive energy making radiative transitions to states
of negative kinetic energy, Dirac proposed that normally all such
states of negative energy are completely occupied by electrons.
In the perfect vacuum all negative energy-levels are filled and all

(25)

t P. A. M. Dirac, Principle of Quantum Mechanics (Oxford, Clarendon Press, 1935),
chap. xii.
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positive energy-levels in the universe are empty. Then if an electron
is added it must be put in a state of positive energy and it will be
forbidden to make a transition to a state of negative energy because
of the Pauli exclusion principle. If an electron is subtracted from the
vacuum it is removed from a state of negative energy. The ‘hole’ in
the vacuum then appears as a particle of positive energy and also of
positive electric charge. It was by such a line of reasoning that Dirac
-predicted the existence of the positron.

The Dirac theory is of interest to nuclear theory for several reasons.
In the first place, the relativistic theory of electrons and positrons
is of direct importance to the interpretation of B-activity. This is
discussed further in Chapter V. In the second place, the nucleons
have spin 1% and must ultimately be described relativistically by an
equation of the Dirac type. Finally, the spin of the meson is still
unknown, and if it turns out to be % the same form of equation will
be applicable to them: Some study of nuclear forces for which the
field particles are mesons of spin 3% has been made and will be
referred to at the end of the chapter.

Throughout the preceding section, i.e. in line with Yukawa’s
theories, we have considered the meson to have an integral spin,
either s = O or s = 1. In the general case of integral spin, the com-
ponents of the wave-functions are components of vectors, tensors, etc.,
in four-space, which are familiar from the usual tensor caloulus. In
the case of the half-integral spins one must resort to some form of
the spinor calculus.t Again, the most familiar example of integral
spin is afforded by the Maxwell equations, eq. (24), which, however,
are specialized to vanishing rest-mass. The simplest example with
finite rest-mass is that for the ‘scalar’ meson for which we express
eq. (23) as two first-order equations:

x*=D% &% = Dgxb, (26)
where repeated indices are to be summed from 1 to 4 and
D= D, — ‘a%"" ote, Di— —Dj=— £§

The pseudoscalar’ meson alluded to in the preceding section obeys

essentially the same equations, for a free particle, although formally

one should replace the scalar function ¢ by the tensor of fourth rank

x*B73 that is antisymmetric in every pair of indices (i.e. a scalar
1 O. Laporte and G. Uhlenbeck, Phys. Rev. 37 (1931), 1380.
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times the dual tensor), and replace the vector x* by the antisymmetric
tensor of rank three, $*B7.

For mesons of spin one, or vector mesons, the appropriate first-
order equations have been found first by Procat and may be written
in terms of the vector ¢* and the antisymmetric x*8. As remarked
before, these equations are the generalizations of the Maxwell
equations for finite rest-mass.

x*B = Degf— DB
(.e2¢nz - I)B xo‘ﬂ.

By going over to the dual tensors one gets the ‘ pseudo-vector’ meson
equations.

Generalizing this procedure, one can assume an antisymmetric
tensor of rank, s+4-1, and relate it to a tensor of rank s by taking the
divergence, and in this way construct wave-equations for any spin.
The form of such equations is extraordinarily simple when written
in the spinor notation. Although some attention has been given to
the equations for higher spin (the equations for spin 2 and vanishing
rest-mass apply to weak-field gravitational quanta), the attempts to
account for nuclear forces have centred around spins 0, §, and 1.
These attempts are characterized by various assumptions about the
nature of the interaction between the waves of the mesons and those
of the nucleons.

Before taking up the specifically nuclear interactions we should
note the effect of ordinary electric forces on the relativistic wave-
functions. If the four-potential of the clectromagnetic field is
A, A, A, V,and the electric charge on the elementary particle is e,
the interaction between particle and field is inserted into the wave-
equations by the replacements:

(27)

bj N o e
ox  ox ke ©
0 a e
oy oy el
Y Y (28)
0 0 e
—_——> ———— A,
oz oz fic
10 10  ie
— 1 V.
c6t903t+ﬁc

1 A.J. Proca, J. de Radium et Physique, 7 (1936), 347.



74 THEORIES OF NUCLEAR FORCES Chap. 111, § 3

Putting A =0 and V == —Zefr, where r is measured from the
position of a heavy nucleus of charge Ze, one obtains from eq. (25)
the well-known equations for the electron in the atom. Solutions
of this equation for positive energy will be considered in more detail
in the discussion of-the B-decay (Chap. V). Similarly, one can find
the stationary states of a meson of spin zero by inserting (28) into
eq, (26) and solving for ¢.

If the Coulomb potential is inserted into the equations (27) for
the meson of spin one, the acceptable solutions of the equations do
not form a complete set of eigenfunctions.t This comes about,
apparently, because the meson spin interacts so strongly with the
magnetic field owing to its orbital motion that a »-3 law of attractive
potential results. As shown in § 2, there is then no finite state of
lowest energy. Thus, in principle, the charged meson-proton inter-
action presents an insoluble problem in quantum mechanics. If
mesons of spin one exist, therefore, the 1/r? attractive potential must
become modified at some radius or other. Landau and Tamm have
pointed outt that if the attraction is ‘cut-off’, by some means or
other, at a distance of ~ (e?/mc?) stable meson-nucleon systems will be
formed under the action of such forces. The forces between nucleons
could then be understood as electromagnetic interplay, just as in the
case of the formation of molecules from neutral atoms. On the other
hand, the physical nature of such a cut-off, and the details of the
interaction in case such states exist, are by no means clear at the
present time.

4. General theory of interaction

In the preceding section we have considered the field theories for
free particles, with a few remarks on the interaction of charged
particles with a central Coulomb field. In this section we take up the
more general question of interactions which must be interpreted
quantum-mechanically by the emission and absorption of particles.
The prototype of all such theories is the quantum theory of electro-
magnetic radiation which has been formulated successfully in terms
of the quantization of the wave-equation and of relativistic invariance.
It is beyond the scope of this book to deal extensively with these two
doctrines, but we shall give brief sketches of them in order to present

1 I. Tamm, Phys. Rev. 58 (1940), 952; H. C. Corben and J. Schwinger, ibid.,
p. 9563; L. Landau and 1. Tamm, ibid., p. 1006 (L).
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some of the attempts that have been made to account for nuclear
interactions. It must be borne in mind, however, that there is at the
present time no satisfactory theory of nuclear forces. And in the
light of this realization §§ 2, 3, and the present section are intended
as an introduction to current parlance, rather than as an exposition
of an established theory.

We have been describing nuclear forces, and B-activity, in terms
of the emission and absorption of mesons, ete. The creation and
annihilation of particles is a quantum-mechanical concept having no
parallel in classical theories. As stated above, the introduction of the
purely quantum-mechanical feature was effected in the theory of the
emission of light quanta. In this theory, the combined wave-functions
of all the light quanta in the radiation field are written as a single
‘functional’ which, because of the Bose—Kinstein statistics, is sym-
metric to the interchange of any two quanta. The functional is
therefore uniquely specified by giving the number of quanta in each
‘individual particle orbit’, iy, ,,..., ..., etc. (there being no inter-
action betwcen the ‘particles’). The functional may then be desig-

ted:
nate X == XN, Mgyer, Ngyenr), (29)

corresponding to n, quanta in the state ,, n, in ¢, and so on.

The number of quanta per ‘individual particle state’ (considered
ag a dynamical variable) has, therefore, the same eigenvalues as does
the action variable in the theory of the harmonic oscillator, except
for a factor #i. Furthermore, the creation or annihilation of a quantum
in a given state corresponds exactly to the transition from one
quantum level of the oscillator to an immediately ncighbouring level.
Accordingly, Dirac in the ‘second quantization’ and Jordan and
Pauli in the ‘quantization of the wave equation’ invented the
operators £, and £ that cause a decrease by one and an increase
by one, respectively, in the number of quanta in the normalized,
individual particle state i,. The operators are then similar to
p—imwgq and p+imwq of harmonic oscillator theory. The operators
¢, and ¢} then produce

Ea X (Mgy Mggueey M) == Ay X (N, Mgy, My —1,.00),
EX X (Mg, Ngyeesy Bgyent) = /(g 1)x(1y, gy Ty +1,000),

where the factors ¥n, and /(n,+1) take account of the fact that the
x are normalized and thus represent a sum of »! terms for every state

(30)
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containing n-particles. The symmetric character of the functionals
is also illustrated by the commutation rules for the £’s:
fafb“‘fbfu =0,

& —&HEd =0, (31)

€u bt & €0 = Sups
which follow from eq. (30) and state that the order in which particles
are added to, or subtracted from, the states i, and ¢, (¢ # b) is
immaterial. This symmetry is characteristic of all particles that
obey Bose-Einstein statistics, so that this formulation may be
generalized at once to include the description of mesons of spin zero
and spin one.

The ¢,, introduced above, obey the same equation of motion and
the same transformation laws as the ¢, to which each belongs.¥
The energy-operator for the functional y is then related to the
Hamiltonian function for individual particles by

Ex = azbfc}"ﬂabfb X (32)

The H,, are the matrix elements of the Hamiltonian between the
states i, and i, of the individual particle description. In the general
application of the theory the Hamiltonian function for the individual
particles is usually expressed as a function of the coordinates and
their derivatives. Tn such a representation the operators ¢ refer o
a particular point in space, i.e. the )’s are 8-functions. These func-
tions are written simply as i(x) and the form of the Hamiltonian
for the functional of all particles is then

[ )+ Hy(x) dx x = Ey. (33)

Jordan and Wigner discovered the method of quantization of the
wave-equation for particles obeying Fermi-Dirac statistics.] The
functional for these particles is antisymmetric to the exchange of any
two particles so that 0 and 1 are the only allowed occupation numbers
for individual particle states. The characteristic values for the
number of particles in a given state are then the same as those of
3(1—o,) of quantized spin theory. The operators giving rise to

1 Proof of these properties will be omitted, but the reader is referred to Dirac’s
Principles of Quantum Mechanics, 2nd ed. (Oxford, 1935), chaps. xi and xiii, or to the

originnrl papers: P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), 243, 710; P. Jordan and
W. Pauli, Zs. f. Phys. 47 (1928), 151.

} P.Jordan and E. Wigner, ibid, p. 631.
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creation (£t) and annihilation (£) in a particular state are then
equivalent to 4(o,+%¢,) and }(o,—ia,), respectively, and we have

fafrt +£t—l+§(l =L (34)

Furthermore, the creation of a particle in state i, followed by the
creation of one in i, leads to a functional of opposite sign to one
formed by creating one in i, first and then one in ¢, (since the
particles are effectively interchanged in this way). Hence

Ea §b+gb fa =0
aby +&7€d =0
Also, it was proved that the £’s in this formulism obey the same
wave-equation and transformation laws as the individual particle
functions to which they belong. The construction of a Hamiltonian
function for a system of many particles then proceeds as for the case
of Einstein—~Bose particles.

In the theory of the quantization of the wave-equation it is
assumed that the individual particle states are independent of the
number of particles present. This assumption is certainly admissible
in the case of light quanta, for which the theory was developed, but
in the case of charged particles it must be considered as an approxi-
mation only. The customary procedure in considering the interaction
between meson waves ¢(z), say, and nucleon waves, J(z), is to assume,
in zeroth approximation, that the Hamiltonian functions for each
particle has no interaction terms of any kind. Thus the Hamiltonian,
Hy, for a nucleon may be deduced at once from the wave-equation
(25) for a free electron by changing the rest-mass and solving for Ey,.
We shall write the result in the usual shorthand notation in which
the four components of i, are considered as the components of a
vector (in the algebraic sense, not the relativistic sense). The coupling
between the various components in eq. (25) is then represented by
the linear operators o, a,, a,, the elements of which are made up of
0, +1, 4¢, in such a way that eq. (25) takes the form

Ey, = c(o‘zpr+aupy+‘xzpz+BMc)vu'l’y.
or Hy = c(a,p)+BMc2.

(@ # b). (35)

(36)

For the methods of constructing Hamiltonian functions for par-
ticles of integral spin, the reader is referred to the articles of Kemmert

1 N. Kemmer, Proc. Roy. Soc. A 166 (1938), 127,
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and of Pauli.f The simplest example is the familiar one for light
quanta for the H in eq. (33) becomes (E2-+H?2)/8x. In the following,
the explicit form of the unperturbed Hamiltonian functions is of no
direct interest, and we shall symbolize this part of the energy of a
system of two kinds of particles by

H, = f W (x)+Hy W(X) dx - f $(x)H,, $(x) dx (37)

and turn our attention to questions of relativistic invariance and the
possible forms of interaction between the fields.

From the usual interpretation of a wave-function, plus the fact
that the operators, ¥(x), etc., appearing in eq. (37) have the same
space dependence and transformation properties as wave-amplitudes,
the integrands in the terms on the right-hand side of eq. (37) represent
energy densities. In relativity theory, therefore, the integrands must
have the transformation properties of the 44-component of a sym-
metric tensor, viz. the stress-energy-momentum-density tensor, 7};.
The left-hand side of eq. (37), being encrgy, transforms like the
4-component of a polar vector. Thus, the differential dadydz (which
is formally the 123-component of an antisymmetrical tensor of rank
threo) must be regarded as the 4-component of a polar vector. In
general relativity, this would be accomplished by including the factor
\/(—Ig’“,|), where |g,,| is the determinant of the metric coefficients
in the integrand. Moreover, it is evident from transformation theory
of special relativity that the right-hand side of eq. (77) should include
terms of the type f Ty, dydzdt+ f T,y daxdzdt+ f Ty dxdydt in order to
be properly covariant. In the case of light quanta, for example, this
would represent, f (£ X H)dSdt. In any case, it is just the time integral
of flux of energy out of the volume being considered. In eq. (37) all
space is included in the volume considered so that this term does not
appear, but if a finite volume were considered, any contribution to
H, coming from this term would be properly interpreted as energy
carried by particles that have left or entered the volume.

The relativistic theory of the interaction between two kinds of
particles requires that they interact only if they occupy the same
position in space simultaneously.f Thus, for example, in the expres-

1 W. Pauli, Rev. Mod. Phys. 13 (1941), 203.

1 Even the static Coulomb interaction between charged particles may be formally
expressed as ‘point’ interactions betwoen charges and ‘longitudinal’ quanta. How-
ever, the phase relations between the waves representing the scalar potential and
those representing the longitudinal part of the vector potential are predetermined
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sion for the energy of a collection of nucleons and mesons, eq. (37), we
should represent the interaction by a term that contains the product
of W(x) and ¢(x) at each point z. The interaction energy per given
volume will then be determined uniquely by the integral over dx.
The form of the interaction term that is to be added to the energy,
such as eq. (37), is to be chosen so that the integrand is a relativistic
scalar (rather than a symmetric tensor). Interpreting dadydz as the
4-component of a polar vector, as before, the integral will then have the
desired covariance. Sincewe shallalwaysbe concerned with interaction
in which one of the interacting particles has spin 3%, we shall start
by writing down all the covariants that can be constructed as bilinear
forms from the four components of ¥+ and of ¢ which describe the
relativistic motion of such a particle. These are presented in Table IV
along with the shorthand notation in terms of the linear operators, o,
a,, a,, B, and their matrix products, and, in order to be more general,
the forms are given for the creation of one kind of particle, ¥'*, say a
proton, and the annihilation of another kind, @, i.e. the neutron. Inter-
actions in which the particle does not change charge are of the same
types, but with one kind of wave, ¥+ and ¥, say, instead of ¥+and O.
As pointed out at the beginning of this section, the prototype of
nuclear interactions is the clectron-photon interaction. The photon
field is described by the vector-potential A and taking the scalar
product of this vector with the current four-vector for the electron
(polar vector in Table IV) we get the familiar interaction energy

H =e j (%) * (o, AY(x) dX. (38)

Sinee A occurs linearly, the number of photons is either one greater or
one smaller after operation by H', whereas the number of electrons
remains the same (the electron is absorbed and then re-emitted, so to
speak). The same type of interaction applies to nucleons interacting
with neutral mesons of spin one except that one must add the 4-compo-
nent to the field vector and also allow for the possibility that the scalar
product contains the tensor form,in Table L'V, contracted on x*. Hence

4
Hy =3 o [ (F00 0, Y(x)$-(x)} dx+
+f g f P'(x)+r;;, W (x)x™*(x) dx plus terms in ¢(x)*, ete. (39)
in such a way that nothing new is added in the quantum theory (seo Heitler, Quantum

Theory of Radiation, Oxford, Clarendon Pross, 1936), so that the static Coulomnb
interaction is usually expressed in the classical form of action at a distance.
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TasLE IV
Covariant forms for particle of spin 3%

Covariant Matrix Product
Scalar B Ui+ da — U da—dd s
Polar vector e "/’fr‘f’a’l Ui s + Y dat-di &y
Y @y — iyt Bt iff Pa— (Y by +ith] ¢y
oy i ds— Y3 da— Y bt Y3y
1 Vb1t U dat Y bt Y by
Tensor —7_3“‘11 oy '/‘1+ b2l */‘a+ é1— Y dy— .'/'«1" és
Tik —ifozay — " bat- i By iy pa— it b
"’Lﬁ"m"‘y ) 11— ! i by — M és+ "/‘i"‘ﬁu
+"ﬁ°‘z W o+ s — i o — i ¢,
{-ifi, Ui Ui b= Wbt W b
. + B, " Py— ity da+ it ba—iths $y
Axial vector —day oy P dat Yd it U ot Py
8k — oyt — iy batiths by — i ot 1Y By
— iy Wb Ut bt 05 o e
0 0y s I Y ot Y1+ ¥ e
Pseudoscalar Borgy o,y i st py—ihs by — W by

If the meson has a positive charge, the terms in ¢(x) and ¢(x)* have
to be treated differently, i.e. ¢ must occur only in products of the
type W+® (W+ for proton, ® for neutron), ete., in order to conserve
electric charge. The corresponding expressions in neutral scalar and
pseudoscalar theories are:

H, = g, [ W(x)*BF®)[$(X)+$(x)*] dx,

(40)
=3 00 | w4 ax.

As a specific, and the simplest, example of a charged meson inter-
action, there will be two kinds of scalar mesons, ¢, for positive
charge and ¢_ for negative, and the interaction will take the form

2= o [ {F)BOM[$-(0) "+, (%) +
+OX) Y (X)[$.(X)*+¢_(X)]} dx. (41)
If the meson has spin }#, rather than integral values, both the
nucleon and meson field covariants will be of the type presented in
Table IV. This means that such mesons must be emitted and

absorbed in pairs. Such meson theories have received a certain
amount of attention as sucht and the general form of the theory is

1 R. E. Marshak, Phys. Rev., 57 (1940), 1101; C. L. Critchfield and Lamb, ibid. 58
(1940), 46 ; also 59 (1941), 48.
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of interest in other connexions. Thus, if instead of assuming the field
particles to be mesons we take them to be electrons and neutrinos
and such that the interaction with the nucleon gives simultaneous
creation (or absorption) of an electron and a neutrino, we get the
formulation of the theory of 8-decay as originally presented by Fermi.
If the interaction constant is chosen so as to account for the observed
B-decay, however, the resulting forces between nucleons are too small
by a factor 10-'2, This result, plus the fact that there are attractive
forces between like nucleons, led Gamow and Teller (loc. ecit.) to
suggest that nuclear forces are accompanied by an exchange of
electron-positron pairs. In order to achieve saturation of nuclear
forces in this theory (which obviously does not give ‘exchange
forces’) Tellert suggested that, instead of emitting the particles in a
d-function at the position of the nucleon, the field particles are
emitted in a state of finite extension u(x). This assumption com-
promises the relativistic invariance of the form of the theory but it
presumably has the merit of approaching the whole subject of diver-
gent self-energies, ete., more directly. The state u(x), having a finite
radius, has a finite kinetic energy. It is then possible to choose the
interaction energy to be much stronger than this kinetic energy and
thus guarantee that the state u(x) is almost perpetually filled with
electron-positron (or meson) pairs. Calculation of the energy of the
interacting system may then be done by perturbation methods
treating the coupling as the main energy and the kinetic energy of
the emitted particles as the perturbing term. This procedure applies
as well in the integral spin meson theories, if one assumes a source-
function, and all such theories are referred to as strong coupling
theories. In the weak coupling theories the kinetic energies of the
emitted particles are the large terms and the coupling energy is con-
sidered as a perturbation. This is the method used in the customary
treatment of emission of light quanta, retarded interaction of electric
charges, ete.f It ignores the divergences predicted for point charges,
as they do not enter directly into the calculations. Applying this
method to the vector, pseudoscalar, or pair theory of mesons, how-
ever, one runs into divergences at once, as illustrated above, and it is

t C. L. Critchfield and E. Tellor, Phys. Rev. 53 (1938), 812.

1 If an eloctron is given a finite radius 7, the coupling with the electric field is
essentially the self-energy e?[r,, and the average kinetic energy of the ‘emitted
photons’ is hc/r,. The ratio of coupling to the kinetic energy is then e?/fic which is
much less than unity.

3595.61 a
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generally necessary to ‘cut-off’ the forces between two nucleons.
Thus (except for the scalar theory and the ‘mixtures’) even the weak
coupling approximation does not avoid the question of the structure
of the elementary particles.

It is beyond the scope of this book to continue into the field of
methods of solution for the various types of meson theory. With the
introduction that has been given, however, the interested reader is
referred to the pertinent articles in the archive journals.t By way of
comment, we can only repeat that none of the theories is satisfactory.

1+ ‘Recent Research in Meson Theory’, G. Wentzol, Rev. Mod. Phys. 19 (1947), 1;
‘Strong Coupling Mesotron Theory of Nuclear Forces’, R. Serber and 8. M. Dancof,
Phys. Rev. 63 (1943), 143; ‘On the Interaction of Mesotrons and Nuclei’, J. R.
Oppenheimer and J. Schwinger, ibid. 60 (1941), 150; ‘Electron—Positron Theory
of Nuclear Forces’, E. P. Wigner, C. L. Critchfield, and E. Teller, ibid. 56 (1939),
530; ‘Meson Theory of Nuclear Forces (Neutral)’, H. A. Bethe, ibid. 55 (1939),

1261; N. Kemmer, Proc. Roy. Soc. A 166 (1938), 127; for general presentation of
integral spin, weak coupling theory.
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GENERAL THEORY OF NUCLEAR STRUCTURE

1. Statistical nuclear model

THE universal features of nuclear systems such as the evidence for the
saturation character of the forces of attraction, the (roughly) con-
stant nuclear density, and the absolute magnitude of the average
binding energy due to nuclear forces can be understood only on the
basig of a complete theory of the forces between nucleons. There is
no adequate theory of these forces at the present time. Neverthe-
less, on the basis of these features as empirical facts, a great deal can
be understood through further application of quantum mechanics
and statistics to nuclear systems. It is not even necessary to adopt a
particular ‘model’ for the nuclear structure to systematize both the
general trend of the binding energy as a function of the number of
constituent particles, 4, and the short period fluctuations of the
binding-energy curves for the ground states of nuclei. This general
theory of nuclear structure is similar in its content to the general
theory of the lowest terms of atomic wave-functions.

There are three main steps, of decreasing importance to the energy
of binding, in the estimation of the lowest term for electronic wave-
functions in atoms: (1) the electrostatic interaction between electron
and the nucleus, (2) the electrostatic repulsion between electrons,
and (3), the spin-orbit interaction. The first step accounts for the
bulk of the binding energy of the electrons and is based on the well-
known theory of the motion of an electron in the field of a point
charge. The second effect decreases the magnitude of the binding but
by different amounts according to whether the space-part of the
electron waves are symmetrically or antisymmetrically g¢oupled.
Since the total wave-function for electrons must be antisymmetric to
the interchange of any two, the states that are antisymmetric in their
space-dependence are symmetric in spin-dependence, and vice versa.
Now a wave-function that is antisymmetric in the positions of two

eloctrons, e.g. bl (ra)—dulra(ra),

vanishes for coinciding electrons and, in general, the average distance
between electrons in such a state is greater than in the correspond-
ing symmetric state in which the minus sign is replaced by a plus
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sign. The electrostatic repulsion between electrons is therefore less in
antisymmetric space wave-functions or, what is the same thing, in
symmetric spin states. For this reason the lowest states of atomic
wave-functions are as symmetric in electron spins as is compatible
with conditions (1) ; hence the deepest lying state has the largest spin
quantum number that can be obtained with those conditions. This
is the familiar rule for the order of the multiplets. Finally, (3), the
magnetic interaction between the spin-state thus determined and the
orbital motion of all electrons is taken into account and the order
of terms in the fine structure determined.

In setting up an analogous series of approximations for nuclear
systems, it is first of all evident that the first step for electron func-
tions has no counterpart in nuclei. There is no central field so that
the bulk of the binding energy must arise in, (1), the interaction
between nucleons due to nuclear forces. As a first approximation it
is assumed that these forces are the same between all nucleons, i.e.
independent of spin-orientation and electric charge. Then as step (2)
for the nuclei we shall take account of: 2(a), the electrostatic repul-
sion between protons, 2(b), the spin-dependence of the nuclear forces
and, 2(c), the neutron-proton mass-difference. For step (3) we take,
again, the spin-orbit coupling. This method of approach to the study
of nuclei has been developed principally by Wigner{ and is commonly
referred to as the theory of the symmetric Hamiltonian because of
the assumed symmetry of forces in step (1).

Since the forces between nucleons give a net attraction, instead of
repulsion as in step (2) for electrons, the rule for multiplets will be
reversed and we shall expect nuclei to form as many symmetric
space-wave couplings as possible so that the average distance
between interacting nucleons is as small as possible. Thus, in adding
two neutrons to the ground state of 0'¢ to form 0'® we should predict
that the space part of their wave-functions is symmetric, hence the
spin part is antisymmetric, forming the singlet state. In fact, it
would appear reasonable that the two extra neutrons in 08 not only
have opposite spins but occupy the same orbit. Since, however, there
is no satisfactory way of specifying orbits for nucleonic wave-
functions it is not, in general, possible to label the orbits with definite
quantum numbers even in the approximation that assumes symmetry
of forces. Exceptions to this rule are provided by the nuclei of mass 4

t E. Wigner, Phys. Rev. 51 (1937), 106, 947.
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and lower, where, if the spin-forces are disregarded, the orbits are
almost certainly of the ls type. Other possible exceptions may be
provided by ‘closed shells’ in which all orbits of certain quantum
numbers are filled. Thus 0'¢ is probably a closed system of 1s and
2p orbits.

In this general theory of nuclear structure it is assumed that the
average effective interaction between a pair of nucleons depends
critically upon the symmetry of their orbital wave-function. If the
forces are of the ordinary type we shall designate the average poten-
tial energy between two nucleons in the nucleus A4, disregarding
symmetry for the moment, by —L,. Since nuclear forces are short-
range and since nuclei have constant density, the value of L,
decreases as A increases roughly as A-1. To this average potential
must be added a correction depending upon whether the pairs of
particles considered are symmetrically or antisymmetrically coupled.
This correction is just the exchange part of the ordinary forces and
will be designated by Lg%, which is defined to be a positive energy.
Then for symmetrically coupled pairs the average potential is
—L,— L and for antisymmetrically coupled pairs —L,4-L$*. A
basic assumption of this theory is then that LZ* is comparable to
(though always smaller than) L,.

There is convincing evidence that ordinary forces do exist between
ntucleons. On the other hand, as proved by Heisenberg, they cannot
be the only forces because they do not show saturation (assuming
that the attraction does not give way to a shorter range repulsion,
in which event, of course, there will be no difficulty with saturation).
In addition to ordinary forces, therefore, we assume the existence of
nuclear exchange forces that are attractive for symmetrically coupled
nucleons and repulsive for antisymmetrically coupled ones. These
forces, known as Majorana forces, have been discussed in Chapter 111
on the basis of an exchange of charge between neutron and proton.
Here, however, it is important to extend the principle to the inter-
action between like nucleons as well, thus retaining complete sym-
metry of the Hamiltonian. Between two neutrons, for example, the
Majorana, forces cannot be expressed in terms of exchange of electric
charge but may be regarded in other ways, such as a special type
of velocity dependent interaction.t Since the overall sign of the
potential depends upon the nature of the coupling, the sum of

t J. A. Wheeler, ibid. 50 (1936), 643.
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interactions between all pairs of nucleons contains contributions of
both algebraic signs and it will be seen that, for large nuclei the
repulsive interactions predominate. The Majorana forces therefore
give saturation.

In determining the average effect of Majorana forces between a
pair of nucleons we have, again, to take account of the fact that the
average distance between nucleons will depend upon the symmetry
of their coupling, i.e. the exchange part of the Majorana forces must
be represented. Let L,, be the average (positive) magnitude of these
forces and let LgX be the magnitude arising from the exchange
integral. For symmetrically coupled nucleons we get an average
potential of —L,—LS and for antisymmetrically coupled pairs
+L,,— L. Combining these results with those for ordinary forces
we note that the contributions due to L,, and L¢* change sign with
symmetry while those due to L, and Lg are independent of sym-
metry. Hence, it is convenient to define two new parameters

L = L,+Lg,
L' = L+ LT,
for the purpose of discussing the effect of symmetry on nuclear bind-
ing. The results for the average potential energy between pairs of
nucleons are summarized in Table V.
TABLE V
Average potential between pairs of nucleons

Types of forces

Coupling Ordinary Majorana Total
Symmetric — L, — L& — Ly~ L —L—1'
Antisymmotric — L, g Ly, — 5 L-L'

With these definitions of average interaction between pairs of
nucleons we are now prepared to write down an expression for the
total potential energy in a nucleus. The part that is independent of
the symmetry of coupling contributes —L’ times the number of
distinct pairs of particles, viz. $4(A4—1), in a nucleus of 4 particles.
The part contributed by L, however, will be —LE where E is the
number of symmetric couplings minus the number of antisymmetric
couplings in the nucleus. In general, the number E is to be computed
from the theory of the permutation group (cf. ref. to Wigner above).
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For most of our purposes, however, the value of Z can be derived
from the physical content of the Majorana forces. For example, in
the helium and hydrogen nuclei all nucleons may be considered to be
in the same orbit, so that all couplings are symmetric and = equals
1 for H?, 3 for He?, and 6 for He®. Let us designate this orbit by the
letter @ and write subscripts as follows:

a, neutron with spin up,

a, mneutron with spin down,

az proton with spin up,

a, proton with spin down.
The wave-function for He* may then be symbolized by

a 0,050, (He?),

The exclusion principle forbids putting any more nucleons in this orbit
and we shall call such orbits closed. To write a wave-function for

He®, therefore, we choose a new orbit b and put a neutron in it with,
say, its spin up: a,ay0,0,0, (Hed).
Majorana forces acting between this neutron and any of the nucleons
in @ are accompanied by an exchange of subscripts. However, the
operation of the exclusion principle in orbit a forbids the exchange of
the subscript 1 with those of the a’s except with a,. Otherwise, after
the exchange, there would be two neutrons with spin up in orbit a.
Hence the contribution to E vanishes for the interactions between b,
and the a’s except for a,. Since the spin-states of these two neutrons
are the same, the space wave-functions must be antisymmetric, so
that this interaction contributes —1 to E. The Z for Heb is 5,
consequently. Using the same arguments, the wave-function for Be$
may be written o a.b,bbyb, (BeH).
There are six symmetric couplings in each of the closed orbits a and
b, and four antisymmetric couplings, one for each subscript. The =
is then 8. It is to be noted that symmetric couplings come from within
the same orbit, whereas antisymmetric couplings arise between dif-
ferent orbits. It isone of the basic assumptions of this approximation
that the magnitude of the interaction is the same, but differs in sign,
Modifications of this assumption will be considered when specific
models of nuclei are taken up in the next section.

The formula for E that applies to closed orbits can be generalized
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at once. If there are k closed orbits, there are 6% symmetric couplings
and 4 X }k(k—1) antisymmetric couplings. The &, for k closed orbits,
i.e. for the a-particle nuclei, is therefore

B = 8k—2k2,
Any heavy nucleus with an even number of protons and an even
number of neutrons can be considered as composed of }Z closed
orbits and }(4—2Z) pairs of excess neutrons. For reasons that will
be evident presently the number of pairs of excess neutrons is called
the {-component of the isotopic spin and designated

T, = ¥(A—22).
Every even-even nucleus can be characterized by its mass-number A
and an integral value of T;. The greatest potential encrgy for such
a nucleus, due to nuclear forces, will then be obtained if the particle
waves are grouped into & closed orbits and T} half-filled orbits con-
taining two neutrons each. Under these conditions the number of
symmetric couplings will be 6k--T}; and the antisymmetric couplings
will be k(k—1) between protons and (k+Ty)(k+Ty—1) between
neutrons. Substituting }(4 —27Y) for k, the value E for the greatest
potential in an even-even nucleus becomes

Boo = 24—3A2—3Ty(Ty+4).

We can find the Z,, for the lowest state of a given odd-odd nucleus
by changing one of the neutrons in a half-filled orbit into a proton
and putting the latter into another (half-filled) orbit. The value of
Ty then decreases by unity, the new proton contributes 2—k to E,
and the loss of the neutron contributes k+Ty—1. The formula for

Zoo I thon oo = 2A—J AP §T(Ty+4)—4.
By similar arguments, the ground state E for odd-even nuclei can be
shown to be oo = 24— A2 YTY(Ty+4)— 1.
Collecting these derivations and adding the ordinary forces we may

write the total potential energy due to nuclear forces in the lowest
state of a nucleus as

PE = —}4(4—-1)L'—EL
o —}A(A—1)L'—[24— 342 JTy(Ty+4)— 33 41L, (1)
84 = 0 for even-even nuclei,

{11

Il

where

= 1 for odd-even nuclei,
= 2 for odd-odd nuclei.
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The assertion that the greatest nuclear binding will occur in those
states that have as many orbits occupied by four nucleons as is
possible and the remaining nucleons paired off, two to an orbit, has
been made only on intuitive grounds. It can be proved, however, by
application of the theory of the symmetric group to this problem,
that the couplings so chosen do lead to the lowest potential. Some
of the more general results of the theory may be summed up as
follows. Given a set of orbits, not necessarily filled and all coupled in
some definite way, it is usually possible, i.e. not a violation of the
exclusion principle, to change the spin directions of the nucleons
and to change neutrons into protons, or vice versa, and keep the
same symmetry in space wave-functions. In the approximation
that the energy does not depend upon charge or spin, all these states
obtained by such changes belong to the same energy. A complete
collection of the states that are consistent with a given symmetry
is called a supermultiplet in analogy to the (2S-1) states of an
atom that have the symmetry characterized by the spin quantum-
number 8. In atomic theory the multiplet is characterized by the
largest value of the z-component of the spin alone. In nuclear
theory, different members of the same multiplet may be reached by
three operations:

. 1. Rotation of axes so as to obtain the largest consistent value of
S,. This gives a quantum number S.

2. Transformation of protons into neutrons so as to obtain the
largest consistent valuc of 7. This gives a quantum number
called 7', the isotopic spin. This operation corresponds to posi-
tron B-radiation obeying Fermi selection rules.

3. Simultancous transformation of protons into neutrons and
change of spin direction, so as to obtain the largest consistent
value of 8, Ty. This gives a quantum number Y. The operation
is positron emission obeying Gamow-Teller selection rules.

A nuclear supermultiplet is then characterized by the three numbers
(8T'Y) instead of just S as a result of the fact that four particles may
occupy the same orbit in the nuclear case instead of two in the elec-
tronic case. Furthermore, spins may be exchanged for isotopic spins
without changing the symmetry. Hence, if we denote by P the largest
of the three numbers, S, 7', Y, by P’ the next largest, and by P”
the remaining one, the multiplet is characterized by the partition
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quantum numbers’ (P P’ P"). In terms of these numbers, the general
formula for E had been shown by Wigner to be
E = 24—}A2—}[ P(P+4)+ P'(P'4-2)+ P

In addition to the potential energy, PE, due to nuclear forces we
have to take into account the kinetic energy of the nucleons and also
the electrostatic repulsion of the protons. These quantities will be
designated KE and CE, respectively. Both of these energies will be
estimated on the assumption that the density of nuclei is a constant.
An estimate of KE can then be made by applying the well-known
theory of a degenerate Fermi gas to free particles at the same
density. The actual kinetic energy is probably somewhat higher. It
is convenient at this stage to adopt the ‘milli-mass-unit’ as the unit
of energy in which to express PE, KE, and CE.

The kinetic energy will depend upon the symmetry of the nuclear
wave-function. If, for a given wave-function, one changes as many
protons into neutrons (with and without change of spin) and as many
downward spins into upward spins as possible, one gets the composi-
tion of four independent Fermi gases with

A, ncutrons with spin up,

A, neutrons with spin down,

Az protons with spin up,

A, protons with spin down.
The kinetic energy is then calculated for each number of particles
moving in the nuclear volume and the sum taken. This has been

done by Wigner and expressed as an expansion in the partition

quantum numbers:
P = YA +A—A3—A)Y),

= JA —As+Ag—A,),
= 2(/\1——A2—A3+A4).
The result, in milli-mass-units, is:
2 ’2 )
KE = @utp(io a1 LT, )
The Coulomb energy will also depend upon symmetry to some
extent, but the dependence will be neglected along with other minor

effects such as non-uniform distribution of protons and a possible
deviation from the 1/r law for protons. The estimate is then just the
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electrostatic energy of a uniformly charged sphere of radius Adr,,
and n M.m.u- CVE — 6()0_f2_-. 'Z_(‘Z;l)' (3)
roMc*  Ad
2 . e?

7o Mc® 0 fM2r0mc2'

The numerical coeflicient of K ¥ is then 36-4C%. In the stable nuclei,
we may assume P == T with P’ = P"-= 0 and find for the total
binding energy of these nuclei

BE == PE4+KE--CE
4L'— L
8

Let C, = 600

= —4°

+(36-4C2—LL+2L)A+

2

FOLOI TN O, Z(Z )AL LT T+ )33, ()
Application of this formula to nuclei will be discussed in detail in the
next section, but there are several general features of the result for
BE that are apparent without evaluating the parameters C,, L, and
L', The main part of the nuclear binding must come from the first
term, since at constant density the L’s should decrease as A4-1,
approximately. This means that, under the conditions existing in

nuclei : L' > L.

On the other hand, if the nuclear density be increased so that all
particles interact simultaneously, the L’s become independent of 4
and the coefficient of A2 must be positive in order to preserve the
saturation character. Under these collapsed conditions, however, the
forces are no longer sensitive to the average distance between
nucleons (all couplings are within the range of the nuclear forces),
80 that the exchange integrals in L and L’ vanish. This means that
in order to guarantee saturation:
Ly <},

under collapsed conditions ; or, in other words, the ordinary forces are
not more than one-fourth as strong as the Majorana forces between
pairs of particles.

The second gencral point is that, if we consider all possible nuclei
of a given value of 4 (isobars), the binding energies are quadratic
functions of Z or Ty alone, except for the term $L8,. For odd values
of A this is a constant term, so that BE as a function of Z, for given 4,
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is a parabola. The nucleus with this 4 that has the greatest binding
energy will then have the value of Z that lies closest to the minimum
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Fia. 13. Energy diagram for 4 = 64. The exact
expressions for &, and values of C; and L derived in
§2 were used in computing potential and kinotic
energies. The theory predicts Zn® and Ni® to be

stablo as observed. The zero of the mass-scalo is
arbitrarily chosoen.

in the parabola. The most stable nucleus of given 4, on the other
hand, is determined by the minimum in the mass curve,

BE+ (MH_MII)TQ’

which is also a parabola. In principle, all other isobars can transform
by B-emission into the one with the most stable value of Z.

For even values of 4, §, = 0 if Z is even and §, = 2 if Z is odd.
Hence the binding energy-curve, or the mass-curve, must be repre-
sented by two parabolas, one displaced along the energy axis by
approximately 3L compared to the other. In general, certain odd-
odd nuclei will be less stable than either of its even-even neighbours
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(see Fig. 13). Among the heavy nuclei, therefore, no odd-odd
nucleus is stable against 8-decay. An even-even nucleus can trans-
form into another even-even nucleus of the same A only by simul-
taneous emission of two B-particles, and this is such an extremely
improbable event that if both are more stable than the intervening
odd-odd nucleus, both will be found in nature. There are, in fact,
fifty-three such isobaric pairs known and at least three cases of iso-
baric triples.

2. Comparison with observation

Application of the general theory of the previous section to the
observed atomic masses has been made by Barkas} and by Wigner.]
It is assumed that r,, ie. Cy, is the same constant for all nuclei.
The constant is evaluated by comparing the binding energies of
nuclei having one more proton than neutron with those having one
more neutron than proton, but with the same total mass-number.
Pairs of these (Nordheim) nuclei are known for every odd 4 up to 27
(except 4 = 5) and, of course, one of each pair is B-active. From the
energy of the B-radiation one can derive the difference in binding
energy. Since A and the partition quantum numbers are the same
for members of a pair, the expression (4) for the binding energy
djffers only in the Coulomb contribution and a value for C,; can be
computed for each case. The best value for C; obtained in this way is

0, = 0-635,

corresponding to r, = 145X 10-13 em. This is a little larger than
values of r, indicated from scattering data, etc., as presented in
Chapter I, and might be taken as evidence for the protons having a
tendency to concentrate near the surface.

With a definite value for C; the kinetic energy is calculable and
the value of L can be deduced from comparison of isobars for which
the partition quantum numbers (P P’ P") are known. This has been
done for two series of nuclei among the light elements, viz. pairs of
the type 02— B2, having quantum numbers (000) and (110), respec-
tively (and pairs of the type Na?—Ne?, with numbers (44%) and
(3 3 1), respectively). Using the exact expressions for PE and KE,

+ W. H. Barkas, Phys. Rev. 55 (1939), 691.

1 E. Wigner, University of Pennsylvania Bicentennial Conf. (1941), Univ. of Penn.
Press, Philadelphia.
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the difference in the former is 4L (which is readily seen by counting
couplings) and the difference in the latter is 65/4. Then computing
the difference in Coulomb energies, the value of L is determined from
the experimental mass differences in each pair. In this way, very
good agreement with experiment is obtained by setting

L— %i’i (M.m.u) (4 < 40).

As A becomes large, say over 100, the values of E become of the
order of —1,000 and the exact dependence P, P’, and P” becomes of
minor importance. In this region, therefore, the neglected effects
such as spin-dependence and the influence of the Coulomb forces on
symmetry may cause mixing of many states belonging to different
partition numbers. Nevertheless, we may assume the general form
for BE of the last section and compute values for L at higher 4 from
isobaric pairs, one of the pair being radioactive. The values for AL
obtained for five nuclei (Wigner, loc. cit.) together with E and 7} for
each is given in Table VI.

TaBLe VI
A Ty = AL
12 0 6 43
20 0 —10 43
50 3 —225 55
116 8 —1500 7
197 19} — 4850 89

It will be noted that A L increases with 4 so that for gold it is twice
as large as for the light elements. Most of this behaviour is probably
due to a surface effect. In the light nuclei very few nucleons are
completely surrounded by other nucleons at a given time, but in the
heaviest nuclei about half of the particles are completely surrounded.
With short-range forces acting, the effective nuclear potential per
particle will then be greater for larger A. The ratio of the surface
contribution to the volume contribution will be A%/A4 = A-¥ and
the results for L in Table VI are fairly well represented by the

empirical formula

152

L= ~[1 2-4

A A4
Finally, we consider the absolute magnitude of the binding in the

nuclei shown in Table VI in order to estimate the magnitude of L’.

] (4 > 50).
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It will be seen that it is necessary to make L’ as large as reasonable
to account for the observed binding. Hence, we assume the ordinary
forces to be just one quarter as strong as the Majorana forces, the
maximum allowable by the saturation requirement. Further, we
assume as a reasonable upper limit to the ratio of the exchange part of
the forces to the average part, the value 0-6, i.e. L3, = 0-6L,, ,. Then
L' ~ 3. The comparison with experiment is shown in Table VII.

TasLE VII

A —BE CE KE —PE,, | —PE,
12 98 8 175 282 200
20 171 21 293 485 285
50 465 76 737 1,278 775
116 1,056 320 1,713 3,089 2,325
197 1,740 675 2,683 5,008 4,350

It is evident that the general theory does not give an adequate
account of the absolute binding energies. In order to make the
theory fit the data one must assume larger values of L’ than those
deduced above as reasonable upper limits. An empirical formula for
L’ that fits the data in Table VII for A > 50 is

, 96 1-28
L= Z[l_-ﬁ] (4 > 50).
Thus the surface effect in L' is quantitatively different than in L. If
we substitute the empirical expressions for L and L’ into eq. (4) for
BE we get one form of a ‘semi-empirical’ formula for the binding
energies of heavy nuclei. Such formulae have been presented in a
variety of forms and are generally useful for studying questions of
relative stability and particularly for the interpretation of fission.
If we add to the considerations above the fact of the spin-depen-
dence of nuclear forces, the manner in which stable nuclei may be
formed by successive addition of one nucleon can be understood in a
qualitative way. In the series H'-He* all nucleons may be considered,
in first approximation, to occupy the same s-orbit. The deuteron is
the most stable two-nucleon system, mainly because it alone can
exist in the triplet state and thus get benefit of the greater potential
energy in that state. He?® is more stable than H3, although it has
greater Coulomb energy and hence less binding, simply because the
mass of the neutron is greater than that of the hydrogen atom. And
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He* is probably the only stable system of four nucleons since it is
the only nucleus in which all nucleons can occupy the same orbit.
For each value of 4 up to 36 there is just one stable nucleus and
the binding energies show a marked period of four. This is evident
in Fig. 14, in which the minimum energy required to remove one

£ (mev)
20-

[

A
0 4 8 12 b 20 24 28 2 3

F1c. 14. Binding energy of ‘last’ neutron.

neutron from the stable nuclei is plotted as a function of 4. The
neutron is most tightly bound in the a-particle nuclei and least bound
in nuclei that are just one heavier than a-particle nuclei. This is what
one would expect from the symmetry of the couplings in these nuclei.
Although the period of four is perhaps the most prominent feature of
the binding of stable nuclei up to Ca?, it is instructive to divide these
nuclei into two groups. The first group includes the nuclei from Heb
to 016, Of these, He5 and Be® do not exist because their potential
energy is not great enough, but counting them as the most stable
systems of 4 = 5 and 8, this series of nuclei is built up by adding one
neutron and one proton alternately. Starting with He4, one gets a
more stable system by adding a neutron and forming He? than by
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adding a proton (Li®) because the electrostatic energy of the proton
more than offsets the neutron-hydrogen mass-difference. To He?,
however, it is more advantageous to add a proton, to form Lié. The
reason for this is characteristic for nuclei lighter than O and is
based on the spin-dependence of the nuclear forces. Since the triplet
interaction between two nucleons is so much stronger than the singlet
interaction there is more binding in Li® than in He® in spite of the
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N ¥:§
124 Mg
8]0
4] Be o
90—4
L N=A-Z
024 8 R 16 220 24 28 332 3% 40
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larger Coulomb energy of the former. The neutrons in He® must be
in the singlet state. There are four examples of this phenomenon,
H2, Lié, B, and N4, and the interpretation is borne out by the fact
that each of these nuclei has spin 4. It will be noted also that each
of these nuclei has an odd number of neutrons and an odd number of
protons. They are the only stable nuclei of this type and they appear
to constitute exceptions to the general rule discussed at the end of the
preceding section. That rule does not apply here as it was derived
for heavy nuclei in which the odd neutron and odd proton must ocecupy
different orbits in the state of lowest potential energy.

In the region between O and Ca®® the binding to be gained by
forming triplet, odd-odd nuclei, is evidently not great enough to offset
the Coulomb repulsion of the proton. The nuclei in this region can
be built up, therefore, by adding two neutrons in succession, then two

protons, and so forth (Fig. 15). This leads to the obvious result that
3695,61 H
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every even element in this interval has three stable isotopes and every
odd element only one. Conversely, there are three elements for even
neutronnumbers. Thenn, pp, nn, pp, ete., sequence continues through
A36 and then breaks down, presumably because of the increasing
importance of the Coulomb energy. According to the rule that holds
below A3 one should expect A37 to be the next stable nucleus, but it

—B, (mev)

5 A

4 8 R b 2D 2 B 32 % 40
F1c. 16. Binding energy (negative) per particle, as the
function of 4.

is preferable to break up one of the a-units and form CI* instead, for
which the value of E is —102 as compared with —99 for A%. The
change-over at this point may be partly influenced by the possi-
bility that a system containing twenty neutrons is particularly stable,
i.e. a closed shell. This possibility is substantiated by the fact that
there are five adjacent elements with this neutron number (838, CI%7,
A3%8 K3 and Ca?). Furthermore, the proton number 20 appears to
be particularly stable, also, since there are six known isotopes of Ca as
compared with three, at most, for lighter elements. Among the lighter
elements, in addition to the obvious case of He4, there is strong evi-
dence that a shell is completed at O¢. This is shown by the break
in the slope of the curve for total binding as shown in Fig. 16.
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For nuclei heavier than Ca the dominant effect in deciding the
most stable nuclei among isobars is the Coulomb repulsion. This is
apparent for several reasons. In the first place, the period of four is
abandoned, it often being energetically more favourable to add four
neutrons in succession than to follow two neutrons by two protons.
The Coulomb effect overbalances the tendency of the nuclear forces
to reach maximum symmetry. This is illustrated in Fig. 13 and, as
pointed out in § 1, the effect will entail a number of cases of stable
isobaric pairs of even A. Isobaric pairs are very common above
Ca. Finally the Coulomb repulsion becomes so important that it
reduces the average binding energy so that only 5 M.e.v. is required
to remove a neutron from the very heavy elements (above lead)
as compared with 9-5 M.e.v. from elements in the neighbourhood
of calcium. It is this reduction in binding energy, of course, that
accounts for the a-radioactivity and the fissionability of the very
heavy elements.

It would be wrong to leave the impression that above Ca the
behaviour of the elements can be accounted for by the orderly
influence of the Coulomb energy. There are, for example, neutron and
protons numbers for which no stable nuclei exist (therc are no nuclei
with 61 of either). Also, the phenomenon of five adjacent elements
having the same neutron number occurs for the numbers 50 and 82
as well as for 20. Other evidence of the peculiar nature of these
neutron numbers has been presented in Chapter I. The present
theory does not account for these irregularities.

Of course, in an assembly of a rather limited number of particles
there is a finite probability that there will be accidental anomalies.
Councrete examples of such are afforded by the existence of four or
five pairs of neighbouring isobars. These all have odd 4 and so far
as experiment can decide both members of the pair are stable. An
example is Sn!*5-[n'!5, According to very general arguments, such
as presented in §1, it is not possible for both of these nuclei to
be stable, since there is no intervening nucleus to block single
B-decay. If the masses of the atoms are accidentally equal, or
nearly so, however, both will appear to be stable because of the
extremely long lifetime for the B-decay at low energy. There are
also four cases of isobaric triples, A = 96, 124, 130, and 136, which
must be considered as accidental or, perhaps connected with ‘shell-
structure’.
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3. The more detailed nuclear models

The model of the nucleus that has been adopted in the preceding
sections is essentially that of a degenerate Fermi gas enclosed in a
sphere. It is not expected of such a model to account for the finer
features of nuclear structure such as magnetic dipole and electric
quadrupole moments, positions of excited levels, and the shell struc-
ture. In fact, it fails to give a satisfactory quantitative result for the
absolute binding energy of heavy nuclei even with the considerable
freedom allowed in the choice of the parameters L and L’. The
quantitative deficiency regarding absolute values amounts to a
disaster if one tries to calculate L and L’ from nuclear forces. Never-
theless, the underlying principles of the statistical model are valid
enough to give a general accounting of nuclear stability, or lack of it,
as in the example of fission.

The objective of a nuclear model is to be more explicit in the
definition of the individual particle orbits that have been alluded to
in discussing the theory of the symmetry of nuclear wave-functions.
There are two principal methods of approach to a more definite model
which we shall call the independent particle model and the «-particle
model. The former is the more intimately related to the theory of the
symmetric Hamiltonian as it places no restrictions on the motion of a
nucleon throughout the nucleus. It assumes that every nucleon
moves in a constant potential field created by the other nucleons and
extending to the radius of the boundary of the nucleus. The indivi-
dual particle orbits are then essentially the quantum states of a
particle moving freely in a spherical cavity with impenetrable walls.
The wave-functions for this motion are well known to be the half-
integral order Bessel functions times r—}, and times the angular
dependence appropriate to s-, p-, d-waves, etc. The energy of these
states is then the average potential, which is the same for all, plus
the kinetic energy, h%2/2M. Here k is the ‘ wave-number’ for which
the Bessel function has a node at the nuclear radius, R, J;,,(kR) = 0.
The three quantum numbers corresponding to the three degrees of
translational freedom of the nucleon may then be taken, in the usual
way, to be n, I, m,. If k is determined by taking the rth root of Jj,,
the principal quantum number n will be defined by n = I+r. The
kinetic energy then depends upon both » and ! but not upon m, so
that there are 2I-+41 orbits of the same energy. The lowest cleven
(degenerate) orbits, together with their values of kR and the maxi-
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mum number of neutrons that can be accepted, i.e. the total neutron
number if a closed shell is completed at each orbit, is shown in
Table VIII.

TaBLE VIIT
Independent particle orbits
Orbit 1s | 2p | 3d | 2s | 4f | 3p | Bg | 4d | 6h | 3s 5f
kR 314|448 585 | 6:28 | 6:97 | 7-70 | 8-17 | 9-08 | 9-34 | 9-41 | 10-42
Total N
(or Z) 2 | 8 |18 | 20 | 34 | 40 | 58 | 68 | 90 | 92 | 106

Tt is to be noticed that the model is successful in predicting closed
shells at N and/or Z equal to 2, 8, and 20. The possibility of shells at
50 and 82, however, is not included. Many attempts have been made
to modify the model so as to include the more obvious shells. The
least objectionable prescription, perhaps, is to exchange the places
of the pairs of orbits: 3p with 4f, 4d with 5¢, and 5f with 6h. This
gives the shell-number sequence above 20: 26, 40, 50, 68, 82, etc.,
which has much in its favour. On the other hand, the correct
physical grounds on which to modify the independent particle model
so as to exchange the order of the levels as indicated has not been
found. Modification of the shape of the well or penetrability of its
walls, for example, has little cffect.

* The independent particle model (also called the Hartree model of
nuclei) has been extensively investigated and used in attempts to
calculate finer features of nuclei, mainly because of its great simplicity.
But for nuclei heavier than He® it appears to be far from a good
approximation. Numerous attempts to compute the average inter-
action between nucleons moving in 1s and 2p orbits have all led to the
result that, if the two-body forces are the same as evidenced in scatter-
ing and in the deuteron, the predicted binding energy in the nuclei
between He and O is only a small fraction of the observed binding
energies. Or, in the terms used in § 1, attempts to calculate L and L’
from the known forces between two nucleons, on the assumption
that the nucleons are moving on independent orbits, lead to values
that are much smaller than those found empirically. Higher-order
perturbation calculations help but little. The origin of the discrepancy
would appear to be in the possibility that the positions of the
nucleons are appreciably correlated, e.g. the two extra neutrons
in He® are much more likely to be found on the same side of the
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a-particle core than would be computed on the basis of chance and
assuming each neutron moves in an independent p-orbit.

The a-particle model goes to the opposite extreme in the matter
of correlation of positions of the nucleons and assumes that each
closed orbit of four nucleons forms a relatively stable sub-nucleus
which occupies a certain position in the whole nucleus. The prin-
cipal part of the binding in the nucleus is then automatically con-
tained in the closed orbits. In addition, these alpha-particles are
bound to each other by relatively weak forces of the van der Waals
type, i.e. arising from a slight polarization of the saturated orbits.
The model for Be® would then be a ‘dumb-bell’ with two alphas
touching at one point, for (2 an equilateral triangle with three bonds,
for 0!8 a tetrahedron with six bonds, and so on. Now the total
mass of four helium atoms is 4 (4:00388) == 16-01552, and dividing
the excess over the 06 atom by 6 we get 2-59 M.m.u. per bond. The
masses of the ‘«-particle’ isotopes, the number of bonds, and the
calculated and observed excess binding due to the bonds are shown
in Table IX.
) TanLr TX

! Euxcess obs. | Excess calc. | Diff.
Element!| Bonds Mass M.m.u. M.m.u. M.m.u.

Het 0 4:00388 — -— -_
Be® 1 8-:00777 - 001 2:59 2-60
Ct2 3 12-00398 7-66 777 011
01 6 16-00000 15-52 15-52 0-00
No2¢ 9 19-99881 20-59 23-31 2:72
Mg 12 23-9924 309 311 0-2
Si28 16 27-9866 40-6 41-4 0-8
S32 19 31-9823 47-8 49-2 1-4
A3 22 35-9780 56-9 56-9 0-0
Cat® 25 39-974 65 65 0-0

In general, above O the addition of an a-particle adds a tetrahedron
to the structure already existing and so three bonds are allotted per
addition. Somewhere in the neighbourhood of the seventh or eighth
addition, however, a closed ring can be formed, hence the addition of
an extra bond at Si?. It is evident from Table IX that, except for
Be® and Ne®, the agreement with experimental values is extremely
good; in fact, somewhat better than might be expected considering
that the method of counting direct bonds does not allow for the long-
range Coulomb repulsion between alphas not in direct contact. The
agreement must therefore be fortuitous for the heavier isotopes in
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Table IX, since beyond Ca the Coulomb effect is so important
that the simple a-particle nuclei are no longer stable. The main
gignificance of the success of the a-particle model in accounting for
the absolute values of binding ig the indication that the positions
of the nucleons that are symmetrically coupled, i.e. in the same
orbit, are probably highly correlated. Consequently, the assump-
tion made in §1 for the statistical model—that only the sign but
not the magnitude of average interaction depends upon the sym-
metry of coupling—is not as close to the actual situation as could
be desired.

Hafstad and Tellert have applied the a-particle model farther, by
methods analogous to the theory of molecular structure, to describe
nuclei having one more, and also to those having one less, nucleon
than the o-particle nuclei. The simplest case is He?, in which the
extra neutron is placed in an orbit that has a plane node through the
a-particle core, just as in the independent particle model. This
neutron will be antisymmetrically coupled with the neutron of parallel
spin in the core and will be repelled by it. In the a-particle model
the average interaction is evaluated to be b = 1-3 M.m.u. between
the extra neutron and an «-particle. When there are several o-
particles the extra neutron will interact directly with only one at a
time so that b is the same. On the other hand, the alphas polarize
each other and lead to indirect and exchange effects on the binding
of the extra neutron which is designated by R-+@ per bond, in the
notation of Hafstad and Teller, if the wave-function of the neutron
has one plane node through all alphas. Hence this description applies
directly to Be? and C'® in which a neutron wave with a plane node can
be made orthogonal to the wave-functions in the alphas. The bind-
ing in these nuclei can then be represented by R+@Q = —3-4 M.m.u.
For 07 the alphas are thought of as forming a tetrahedron, so it is
impossible to pass a single node through the centres of all alphas
simultaneously. One has either to choose a neutron wave with a
single spherical node (s-wave), or one with two plane nodes (d-wave).
In any case, the kinetic energy of such a wave will be higher than one
with a single plane node and hence the smooth trend in binding
energy will be broken at O'¢. Thus the a-particle model predicts a
bend in the binding-energy curve, as shown in Fig. 16, and previously
interpreted on the independent particle model as evidence of the

t L. R. Hafstad and E. Teller, Phys. Rev. 54 (1938), 681.
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closing of the 2p shell. Nuclei of the type 4n—1 are also considered
using the theory of ‘holes’ as applied to molecular wave-functions.

There is no satisfactory derivation of the constants b, R, and Q of
this theory from the theory of nuclear forces. In fact, attempts to
make such derivations have been as discouragingt as the correspond-
ing results for the relation of nuclear forces to the average interaction
in the independent particle model.

Even for the nuclei on which all models agree—H3, He3, and Het—
the derivation of the energies of binding from nuclear forces is not in
a satisfactory state at the present time. The reason for this state of
affairs is to be found in the dipole-dipole nature of the forces. The
existence of such forces tells us that the wave-functions of H? and
He? are not pure s-waves but, like H2, will be s-waves mixed with
waves of higher orbital angular momenta. The true wave-functions
then become extremely complicated. Of course, one might replace
the effect of coupling between s- and d-waves, say, by assuming
different strengths of interaction in the triplet and singlet states of
nucleon pairs, as was done rather successfully for the deuteron, and
use only s-waves. The difficulty is that the relative strengths will be
different in the different nuclei. A very careful calculation of the
depth and range of forces that give the proper bindings in the two-
and three-body nuclei has been made by Rarita and Presenti
assuming the space-dependence of forces between pairs of nucleons
to be of the form Ae-"/b, The result is

A= —242 me® and b = 1-73x10-13 cm.

with A’ for the singlet interaction equal to 0-64. But when these
same constants are used in a variational calculation of the binding
energy of He* they lead to 20 per cent. too much binding. Since a
variational calculation should always lead to too little binding, this
result shows that it is not admissible to approximate the dipole-
dipole forces by an average spherical potential. In particular, the
effects of coupling might be relatively less in the saturated orbit of
Het than in the unsaturated nuclei, thus requiring a smaller value of
A. The complexity introduced by the dipole-dipole interaction is so
impressive that the hope of deriving the details of nuclear binding
from our knowledge of nuclear forces seems rather remote.

1 H. Margenau, Phys. Rev. 59 (1941), 37.
1 W. Rarita and R. D. Present, ibid. 51 (1937), 788.
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The two models discussed above have been studied most in their
relation to the light nuclei because they are tractable. Except for
quite general results, such as they are, which are mostly the same for
both models, they are cvidently too over-simplified to be acceptable
nuclear models. In a notable effort to strike a compromise between
tractability and acceptability, Wheelert has proposed a quite general
attack which he calls the method of resonating group structure. We
shall discuss this model briefly as an improvement on the a-particle
model, although the method is much more general. In the «-particle
model the wave-function of the nucleus is, in first approximation, the
product of wave-functions for He? each centred about a fixed point.
Thus, in the wave-function written above for Be8 (§ 1) ¢ and b are
cssentially the same s-waves but with centres separated by R,,.
Wheeler’s proposal is to elaborate on this function in two ways:
the first is to include the wave-function describing the motion of the
centres of the alphas, F(R), as a factor; the second is to allow for
the possibility that the composition of the alphas may change, i.e. the
particles may dissolve their former partnerships and form a new set
of alphas around different centres, in general. The new set may then
dissolve into a third, or go back to the first, and so on. The lowest
state of a nucleus is then described as a superposition of a number of
complexions, all of the same symmetry and mostly of the same eigen-
values of energy, among which the nucleons ‘resonate’. In the
example of Be®, the two neutrons in ¢ may form a new a«-wave a’
with the protons in b, and the remaining nucleons form a new state
b'. The new «-waves will have different centres, separated by the
radius vector R, and the total wave-function would look like:

W o F(R,).aya,a3a,b,b,b50, + F(R,,).a1a5a5a,b1b,b3b,.

The generalization of this method to groupings of all kinds (not only
alphas), to more than two sub-groups at a time, and to cases including
spin has been presented by Wheeler. The wave-equations for the
various F(R,,) are then obtained by minimizing the total energy
(applying the variation principle) and assuming that the shapes of the
sub-groups are not sensitive to their separation. This means that the
polarization of one sub-group by another is neglected. If the nucleons
did not change places with one another the method would amount to
determining the motion of each centre in the average field of force

1 J. A. Wheeler, ibid. 52 (1937), 1107.
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created by the others. With the jumping about of the nucleons that
characterizes the resonating group structure, the kinetic and poten-
tial energy of the centres will have integrals that contain the wave-
functions # that describe different groupings, since it is, after all, the
motion and forces in the nucleus that cause one grouping to change
into another. Instead of a simple differential equation for the F’s
one gets an integro-differential equation, the integrals containing the
overlap contributions to the energy. Since the value of the integral
is sensitive to the relative velocity of the groups, the contribution to
the forces represented in it are referred to as the ‘velocity dependent
forces’. This connotation is not to be confused with the possibility
that the nuclear forces between pairs of elementary nucleons may
depend upon velocity.

The main simplification assumed in the method of resonating
group structure is the neglect of polarization of the sub-groups by
the presence of others. Kven so, it is probably somewhat more
adequate than tractable. It is the natural method of solving problems
in which exchange of partners has important consequences, as in the
scattering of neutrons by deuterinm. For more complex nuclei,
however, further simplifications must be made for detailed applica-
tion. On rather general lines, parallel to those followed in dealing
with molecular structure, Wheelert has shown how the model may be
used to interpret excited states of light nuclei and also how it is
related to the liquid drop model for heavy nuclei.

4. Spins and moments

The influence of the spins of the nucleons on the forces between
them is reflected most sensitively in the resultant spins, magnetic
dipole, and electrical quadrupole moments of the composite nuclei.
All that can be expected from the rough nuclear models proposed
hitherto is a qualitative description of these finer features, with more
quantitative deductions concerning spin than concerning the
moments. On the other hand, current experimental techniques in
comparing magnetic moments make this property the most accu-
rately known among the unquantized properties of nuclei. It is not
known at present whether it is feasible to elaborate the nuclear
models, or make new ones that can utilize the precise information
given by these experimental results. The formidable nature of the

1 J. A. Wheeler, Phys. Rev. 52 (1937), 1083.
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general problem is sufficiently illustrated by one of the simplest
examples, viz. the theory of the magnetic moment of the triton
(nucleus of H3). In order to account for the rather curious result that
the magnetic moment of the triton is larger than that of the proton,
Sachst has found it necessary to mix the 28-wave with the 2P-, 4P-,
and D-wave of the three-nucleon system. This is indicative of the
inherent complications that go with attempts to apply details of the
theory to the complex nuclei.

So far as the nuclear models that have been discussed in this chapter
are concerned, it is possible only to make some quite general state-
ments about spins and moments. For example, one can account for
the fact that all nuclei containing an even number of neutrons and
an even number of protons have no spin, and hence no magnetic
moment. Tnasmuch as the state of maximum (negative) potential
energy in such a nucleus is one in which the nucleons are com-
pletely paired off with opposite spins, the intrinsic moment of the
nucleons certainly vanishes. This leaves the possibility that their
orbital angular momenta might contribute to the nuclear spin. It
turns out, however, that the state of lowest encrgy is also the state
of lowest net orbital angular momentum. If the nucleon orbits are
of the type postulated in the a-particle model, i.e. localized in space,
this result is obvious since a net orbital angular momentum would
mean that one of the alphas was circulating about and thus contribut-
ing more kinetic energy to the system than necessary. In the inde-
pendent particle model, or the description of additional particle
wave-functions in the a-particle model as proposed by Hafstad and
Teller, where the orbits are labelled with an orbital quantum number
the result holds, but in different form. Suppose the nucleons that are
not in completely closed orbits are found in p-orbits. For a given
number of such extra nucleons there are, in general, several ways of
constructing a wave-function with the maximum number of sym-
metric couplings. As a simple cxample: He® has two extra ncutrons
that may be considered to be in p-orbits. From two p-waves one
can construct symmetric S- and D-waves and one antisymmetric
P-wave. In our first approximation, the S and /) have the same
energy. However, by calculating the average distance between the
neutrons more exactly, it has been shown by Feenberg and Philips]

+ R. G. Sachs, 1bid. 71 (1947), 457.
1 E. Feonberg and M. Philips, ibid. 51 (1937), 597.
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that the neutrons are a little more closely correlated in positions in
the S-wave. The same authors calculated all the low terms in the
series from He* to 0% and found that the lowest states have lowest
total orbital angular momentum. This may be inferred to be a
general rule and so account for the lack of spin in even-even nuclei on
the basis of all models.

The second broad result on measurements of nuclear magnetic
moments refers to nuclei with odd values of 4. The results differ,
however, depending upon whether it is the number of protons or the
number of neutrons that is odd. Among the stable nuclei having an
odd neutron the magnetic moments are known for about a score.
These range from + 1 nucl. magn. to —1 nucl. magn. with an average
just about zero. About twice as many nuclei with odd proton have
moments ranging from slightly negative values to 6:4 (In11%). The
average of these is around 2-5 nucl. magn. Furthermore, the magnetic
moment increases markedly with the value of the spin in case there
is an odd proton, but there appears to be little correlation between
total spin and magnetic moment in the case of an odd neutron. Of
course, the number of data is not sufficient to provide good statistics,
but reasoning from what data there is one would say that the net
magnetic moment averages about the value that would be obtained
if the spin of the nucleus were accounted for by the orbital motion
of the odd partiele, i.e. zero for an odd neutron and plus something
(the average nuclear spin in the above data is also 2-5) for an odd
proton. On the basis that the average value of the orbital angular
momentum is the nuclear spin, Schmidtt has advanced a proposal for
accounting for these regularitics. The spread about the average
value, according to this theory, is due to mixing of the individual
particle orbits with ! = ¢4+1. However, two individual particle
orbits differing in orbital quantum number by unity differ in parity,
so that either parity is not a good quantum ‘number’ in nuclei, or
waves of the other nucleons are affected by the mixing. This point,
together with the experimental finding that odd isobaric pairs, such
as in Cu, Re, and In,] have nearly equal moments, are not by any
means adequately elucidated by the present form of nuclear theory.§

+ F. Schmidt, Zs. f. Physik, 106 (1937), 358.

1 H. Schiilor and H. Korsching, ibid., 105 (1937), 168.

§ For further discussion of the application of the theory of the symmetric Hamil-
tonian see H. Margenau and E. Wigner, Phys. Rev. 58 (1940), 103.
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The potential complexity of interpreting spin effects in nuclear
structure is illustrated in a convincing way by examples among the
very light nuclei. There are two typical cases in point. The first of
these concerns odd nuclei, say Li?. According to the general argu-
ment, we should suppose that Li? is formed by adding a neutron in a
p-wave to an S-state of Li®. The question then arises whether the
spin of the proton will be parallel to or opposite to the direction of
its orbital angular momentum (the spins of the neutrons are pre-
sumed to form a singlet), i.e. whether the lowest state is a 2P} or 2F,.
If the splitting of these two states were due to electromagnetic forces,
we should expect the F; state to lie lowest, just as in the atomic
electron case. It has been pointed out by Inglis,} however, that the
accelerations experienced by a nucleon are mostly induced by the
nuclear forces, so that the extra energy due to the Thomas precession

AE = fic.wy, W, = —Y%Ea—,

where a is the acceleration, v the velocity, of the nucleon, is propor-
tionately much larger than in the atomic orbits of electrons (where
it is just one-half of the electromagnetic effect). Since the Thomas
effect is of the opposite sign to the electromagnetic effect, and over-
rides it, the order of states as split by spin-orbit coupling will be
reversed for nuclei. According to this picture, therefore, the lowest
state of Li? should have the angular momentum $#, in agreement with
the experimental value. Asin the case of electronic orbits, if a shell is
more than half-filled the order of the fine-structure levels is reversed.
Thus, in the individual particle model the lowest state of C'3 (nucleus)
would be 2P,. On the o-particle model, C!3 is pictured as three o-
particles with the extra neutron in a P-wave that has a plane node
through all three alphas. According to Inglis’s theory, therefore, the
spin of the extra neutron should be parallel to its orbital angular
momentum and the total spin of C!? should then be 3. The experi-
mental value is }#, thus favouring the individual particle picture.
This might be considered a conclusive indication that the individual
particle picture is better than the a-particle one if it were not for the
ubiquitous complication of the dipole-dipole forces between the
nucleons.

The strongest evidence for the importance of the dipole-dipole

1 D. R. Inglis, ibid. 50 (1936), 783.
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forces is found in the stable odd-odd nuclei. Sachst and others have
made a study of the magnetic moments of H2, Lié B9, and N4,
The magnetic moments of these nuclei might be expected to be
nearly the same. Instead, they decrease rapidly with increasing 4,
indicating that the mixture of S-waves with D-waves, and so on,
becomes of major importance even in such light nuclei as B0 and
N4, Tt is estimated that in N14 there is at least a 50-50 mixture of
S- and D-waves, as compared with a 20-1 mixture in H2 The
influence of this type of coupling among heavier nuclei is entirely
unestimated, but may be imagined to be considerable ; and the rela-
tive importance of such couplings and effects of the Thomas preces-
sion are not clear, at present, even for light nuclei. Thus, although
calculations of the theoretical magnetic moments have been attempted
for both the independent particle model} and the «-particle model,§
nothing like an adequate accounting for the several spin-effects can
be inserted into the present theoretical approach.

The most striking evidence of the dipole-dipole forces is, of course,
the development of quadrupole moments on the part of the stable
nuclei. Wave-mechanically, the non-spherical charge distributions
are formed by interference between waves of different orbital angular
momentum, say S- and D-waves, as in the deuteron. Physically, this
is interpreted as a predilection the nucleons have for lining up on an
axis parallel to their spins. A simple description is possible in the
case of the deuteron, as given in Chapter IT, but for heavier nuclei
only general statements can be made. The most general statement
is that the nuclear spin must be at least A for the nucleus to have a
quadrupole moment. This follows from elementary considerations
to the effect that a quadrupole moment has the symmetry charac-
teristics of an ellipsoid of revolution, i.e. rotation by 90° may change
its value along a fixed axis from a maximum, say, to a minimum. If
the nuclear spin is 3#, there are only two quantum states and these
correspond to rotation by 180° under which the quadrupole moment
does not change. The effect of a quadrupole moment can be noticed
quantum mechanically, thercfore, only if there are at least three
polarizations of the nucleus, i.e. one polarization corresponding to
quantization at 90° to the other two. Hence, the nuclear spin must

1 R. G. Sachs, Phys. Rev. 72 (1947), 91; 312.
1 M. E. Rosc and H. A. Betho, ibid. 51 (1937), 205, 993.
§ R. G. Sachs, ibid., 55 (1939), 825; D. Inglis, ibid. 60 (1941), 837.
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be at least unity for a quadrupole moment to be evident. About
two-dozen values of quadrupole moments are known, and these have
been included in Table I of Chapter I. However, new methods are
being brought to bear on the determination of quadrupole moments,
and these results will undoubtedly play an increasing role in our
interpretation of the stable nuclei.

T W. A. Nierenberg, N. ¥, Rensey, and S. Brody, ibid. 71 (1947), 466.
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THE PROCESS OF B-TRANSFORMATION

1. General features of S-transformation

THE most characteristic feature of the spontaneous -transformation
of a nucleus is the continuous distribution in energy of the emitted
electrons.t This is in sharp contrast to the line spectra observed for
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Fia. 17. B-spectrum of In',

a-rays, y-rays, and the B-particles emitted by internal conversion
of y-rays. Similar to a-radiations, however, the B-radiations have
characteristic half-lives, and all parts of the spectrum decay with
the same period. If the disintegration leads to just one state of the
daughter nucleus the spectrum is said to be simple. The shapes of
the simple B-spectra are essentially the same for all nuclei (with a
few possible exceptions), and in Fig. 17 is shown the experimentally
determined spectrum of In!''* which is probably the best known.}
Other examples of the simple spectrum differ in the maximum energy
of the spectrum and in the half-life. The very low energy region in
Fig. 17 is shown dotted because the experimental errors due to scatter-
ing and absorption in the source are too great at low energies to give
reliable measurements (comp. Appendix 1I).

The large amount of experimental work on B-disintegrations has
firmly established that one electron (or positron) is emitted in the

1 First demonstrated by J. Chadwick, Verh. d. D. Phys. Ges. 16 (1914), 383.
1 Determined by J. L. Lawson and J. M. Cork, Phys. Rev. 57 (1940), 982.
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disintegration, that there is a definite upper limit to the energy of
the electron in a given spectrum,} and that the energy of the nucleus
decreases by an amount just equal, or very nearly so, to the maximum
energy of the emitted spectrum. This last property of the B-transi-
tions is evidenced by the fact that y-rays emitted when a nucleus
may emit B-spectra of two distinet maximum energies are sharp lines
which just make up the difference in maximum energy. Also, the
mass differences between parent and daughter nucleus have been
determined independently in several cases and found to agree with
the maximum energy of the B-spectra. An interesting example of
the latter type of experiment is afforded by the capture of a slow
neutron by N4, The resulting nucleus, N5, emits, among other
things, a proton of 0-58+0-03 M.c.v. energy? resulting in (4. Allow-
ing for the difference between the mass of neutron and H atom,
0-75 M.e.v., the C14 atom lies 0-174-0-03 M.e.v. above the N1 atom.
The observed upper limit of the S-spectrum of C4 is 0-145 M.e.v.§
From this we should conclude that the disparity between the upper
limit of the B-spectrum and the energy released by the transition
lies between zero and 0-06 M.e.v.

The evidence cited in the last paragraph points strongly toward
some form of conservation of energy in B-processes even though,
most of the time, the B-particle carries away only part of that energy.
For this reason, plus several others, the proposal of Bohr to dis-
regard the principle of conservation of energy in making a theory
of B-decay has been abandoned. The earlier suggestions that the
continuous spectrum arises from secondary effects of scattering or
absorption of the B-particles or that a light quantum is emitted
simultaneously are ruled out by the calorimetric measurements of
the energy of B-radiation.| In the experiment of Ellis and Wooster,
the total heat produced by a known amount of RaE was determined.
This element has a very weak y-radiation, so that the rate of energy-
production, divided by the number of atoms disintegrating per unit
time, gives the average energy of disintegration per nucleus. The
result was found to agree with the average energy of the RaE g-
spectrum, whereas, if the continuous spectrum were produced by

T This was first shown by B. W. Sargent, Proc. Roy. Soc. A 109 (1925), 541.

1 T. W. Bonner and W. M. Brubaker, Phys. Rev. 49 (1936), 778.

§ S. Ruben and M. D. Kamen, ibid. 59 (1941), 349.

|| These measurements were first carried out by C. D. Ellis and W. A. Wooster,
Proc. Roy. Soc. A 117 (1927), 109 and have been verified repeatedly.
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secondary effects, the result should agree with the maximum energy.
Thus it appears that the difference between the total energy released
and that carried by the electron escapes detection in the calorimeter.

As pointed out in Chapter I, the accepted explanation of the con-
tinuous B-spectrum is due to Pauli and postulates that the energy
released by the nucleus is the maximum energy of the B-spectrum
but that this energy is shared between the electron and a neutrino
which are emitted simultaneously. The neutrino is defined as an
uncharged particle that is very hard to detect, i.e. it has a low ioniz-
ing power. There are many advantages to Pauli’s hypothesis in addi-
tion to the conservation of energy. The neutron-proton model of
atomic nuclei requires that nuclei with an odd number of heavy
particles have a spin that is an odd multiple of 3% and obey Fermi-
Dirac statistics. Since 8-decay does not change the number of heavy
particles, the emission of a single electron from a nucleus would
change the spin from an odd multiple to an even multiple of }% in
contradiction to the model. It would also change the statistics of the
nucleus from Fermi-Dirac to Bose-Einstein. This can be rectified by
postulating that the neutrino also has an intrinsic spin of {4 (or an
odd multiple thereof), obeys Fermi-Dirac statistics, and is emitted
simultaneously with the electron. The same argument holds for
even nuclei, of course.

Certain properties of the neutrino can be bracketed experimentally.
Attempts to detect neutrinos by ionization have been made by
Nahmias, who reported that a neutrino produces less than one ion
per 5X 10% km. in air. Bethe has calculatedt that this result requires
the magnetic moment of the neutrino to be less than10-4 that of the
electron. The mass of the neutrino must also be small compared
with that of the electron. This is evidenced in the shapes of B-spectra
as predicted by the Fermi theory and also by the experimental
agreement between energy released by nuclei and the maximum of
the electron spectrum. The case of C cited above would allow
a neutrino mass of {5 an electron mass, at most. The scarcity of
neighbouring isobars in the system of isotopes also speaks for a small
mass for the neutrino. It is generally assumed that there is only one
kind of neutrino and that its rest-mass is zero.

Some evidence for the momentum of the emitted neutrino has been
obtained. Cloud chamber recoil tracks have been observed and

1 H. A. Bethe, I’roc. Camb. Phil. Soc. 31 (1935), 108.
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evaluated f)y Crane and Halpern,} who conclude that there is evidence
of the momentum of the neutrino in the recoil of the daughter
nucleus. The most recent evidence of this general type is the detec-
tion of Li? recoils from the K-capture in Be’.} Since y-rays are
emitted in this transition there will be recoils due to them as well as
to neutrinos. However, the energy of the recoiling nuclei is 16 e.v.
when the 0-45 M.e.v. gamma is emitted as compared with 58 e.v.
when a 0-87 M.e.v. neutrino is emitted. By having the Li recoils
take place from a Pt surface the atoms were ionized and could be
detected in an electron multiplier tube. It was shown that the
apparent energy of the recoils lay between 40 and 50 e.v. and that
there was no appreciable coincidence between thesc recoils and the
emission of y-rays. Since there are no charged particles emitted by
Be7 the recoils must be due to neutrinos, and the fact that the energy
of recoil is somewhat less than expected can be attributed to the
extreme difficulty in preparing a non-absorbing source.

According to the Dirac theory of the electron, positrons and elec-
trons have identical properties except for their different sign of
electric charge. It is to be expected, therefore, that the S-radiations
have the same characteristics, whether electron or positron is emitted,
except in so far as the electric charge of the nucleus influences the
process. The obvious effect of charge is that nuclei, especially heavy
nuclei, repel positrons whereas they attract electrons. This may be
expected to inhibit positron emission by nuclei whose potential
barrier is larger than the B-energy. Positron emission by heavy
nuclei is further made improbable by the ability of a radioactive
nucleus to absorb one of its planetary electrons. This is the K-cap-
ture alluded to above and is so called because, in all known cases, it
is an electron in the K-shell that is absorbed.§ That absorption of an
electron is equivalent to the emission of a positron is a prediction of
the Dirac theory of the electron and is emphasized by the fact that
in some nuclei the two processes compete.

There are a few nuclei, for example CI3¢ and As?, that have an
odd number of neutrons and an odd number of protons and are
unstable against both electron and positron emission with K-capture

+ H. R. Crane and J. Halpern, I’hys. Rev. 53 (1938), 789.

1 J.S. Allen, ibid. 61 (1942), 692.

§ This process was prodicted by H. Yukawa and 8. Sakata, ibid. 51 (1937), 677,
and first observed by L. W. Alvarez, ibid. 52 (1937), 134.
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competing with the latter. Furthermore, in As%, as in easily half of
the known B-activities, the various B-radiations are followed by
y-radiation. The latter come about either because a transition to the
ground state of the daughter nucleus is forbidden by some selection
rule so that the transition goes more readily to an excited state, or
because several states of the daughter nucleus are cqually available
in the decay period.

Altogether over 150 B-active nuclei have been identified, their
maximum energy or energies and lifetimes determined. Of these
hardly a dozen are found among the natural radioactivities. The
others are artificially radioactive nuclei that are formed by bombard-
ment with neutrons, protons, deuterons, alphas, and gammas, and as
products of fission. Many of the artificial nuclei are made in several
different ways as a means of positive identification. Fermi and his
collaboratorst first established the radioactivity due to neutron
irradiation. Slow neutrons are captured by nuclei to form either a
stable isotope or one that has too few protons to be stable. In the
latter event the number of protons is increased and the number of
neutrons decreased by the emission of an electron in -disintegration.
Fast neutrons that eject protons or a-particles from the bombarded
nucleus produce similar activities. Bombardment with deuterons
often increases the ncutron number, in a d, p reaction, and leads to
subsequent negative electron emission. On the other hand, the use of
protons or a-particles as projectiles in nuclear bombardment is more
apt to produce overcharged nuclei that decay by positron emission.
This phenomenon was first observed by Curie and Joliot] in the -
bombardment of light elements. Very fast neutrons can also pro-
duce positron emitters by knocking out two or more neutrons from
the compound nucleus.

It was first pointed out by Sargent§ that there is a significant
correlation between the characteristic lifetime of a B-disintegration
and its maximum energy. This is demonstrated by plotting the
logarithm of the decay-constant against the logarithm of the maximum
energy. The relation between these quantities is of the same general
type as the relation between energy and decay-constant of a-emitters ;

1 K. Amaldi, O. D’Agostino, E. Fermi, 3. Pontecorvo, ¥. Rasetti, and E. Segre,
Proc. Roy. Soc. 146 (1934), 483; 149 (1935), 522.

} I. Curic and I. Joliot, C.R. 198 (1934), 254.

§ B. W. Sargent, Proc. Roy. Soc. A 139 (1933), 659.
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but the range of maximum energies found in B-emission is much
greater than the range of energy of «-rays, whereas the range of
observed lifetimes is generally much smaller than for a-activities.
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The Sargent relation for the natural and artificial -emitters is
shown in Fig. 18(a,b). In that figure there is included the correla-
tion for a few of the positron emitters that have one more proton than
neutron, i.e. N3, 015, and F7. The reason for emphasizing this class
of nuclei to the exclusion of the bulk of the data available will be
more apparent in § 4; briefly it may be said that the similarity
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between nuclear wave-functions of parent and daughter nucleus is
expected to play a part in the correlation, and for the positron
emitters represented in Fig. 18 (b) this factor should be particularly
favourable since the daughter nucleus is obtained from the parent by
interchanging neutrons and protons. The comparison is compli-
cated, however, by the influence of the nuclear electric field which is
much stronger for the natural emitters than for the light, positron
emitters.

It is significant that the natural activities form two groups in
Fig. 18 (a). The decay rate in the lower group appears to be slower by
a factor 100 than in the higher group at the same energy. This effect
in the natural B-activities is readily understood if it is supposed that
the transitions in the lower group entail ‘forbidden’ spin or parity
changes in the nuclear wave-function. Thus the f-radiations may be
classed into various multipole radiations just as in the description of
forbidden optical spectra and for the same reason, namely, that the
wave-lengths of emitted particles are large compared with the
emitting region. The principal difference between the two cases is
that the wave-length of a photon is generally 1,000 times the radius
of an atom but the wave-length of B-particles is only 10 times the
nuclear radius as a rule. With these factors, nuclear wave-functions,
Coulomb forces, and the possibility of forbidden transitions coming
into the relation between lifetime and maximum energy it will be
easily appreciated that a Sargent plot of all known B-disintegrations
would be relatively useless.

2. Elementary theory of 8-disintegration

The neutron-proton model of nuclear structure does not include
electrons, positrons, and neutrinos as elements of the structure in the
sense that it may include «-particles as such elements. It is much
more natural to think of the S-particles being created at the instant
of emission in the same way that a light quantum is created in an
atomic transition. B-radiation then becomes analogous to electro-
magnetic radiation, but with some complications. In the first place,
instead of the radiated energy consisting of a single uncharged
quantum it is distributed in all possible proportions between the
electron and the neutrino. Consequently the radiating particle in
B-decay changes its electric charge as well as its energy in the process.
Upon the discovery of the neutron, however, the way for a complete
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analogy between the two emission processes was open and a satis-
factory theory of B-disintegration was developed by Fermi.t

Fundamental to Fermi’s theory is the hypothesis, originally due
to Heisenberg, that neutron and proton are two states of the same
particle. This hypothesis amounts to something more than a con-
venient way of describing B-disintegration, as we have seen in Chapter
1V, where we considered the Pauli exclusion principle in its applica-
tion to nuclear wave-functions. The Fermi theory then postulates
that neutron and proton interact with the combined fields of elec-
trons and neutrinos in such a way that an electron and a neutrino
are created and radiated when neutron changes to proton. Conversely
a positron and a neutrino are radiated when a proton changes to a
neutron. Thus Fermi’s theory by-passes any possible connexion
between mesons and B-radiation. The modern view of the process
analyses the radiation of the B-particles in two steps: a neutron
changes into a proton, say, and emits a negatively charged meson
into a virtual state, i.e. on borrowed energy, and the meson subse-
quently disintegrates into electron and neutrino, and returns the
borrowed energy balance to the nucleon. The same picture applies
with a positive meson when proton changes into neutron. This point
of view will be elaborated in § 3. The net effect is the same as if
nucleons interact directly with the electrons and neutrinos, and, in
this section, we retain this point of view. Since the total energy is
assumed to be conserved and since the wave-lengths of the emitted
particles are large compared with nuclear dimensions, the number of
B-disintegrations per second may be written as a generalization of
radiation formula

w = 2a/h)g* ML . py, (M

where M is the matrix element calculated from the waves of neutron
and proton. The interaction constant, g, takes the place of e in
electromagnetic theory. i, and i, are the amplitudes of electron and
neutrino waves at the nucleus, so that y2y¢? is equivalent in the
formulism to E2 in the electromagnetic case. p, and p, are the
numbers of available electron and neutrino states per unit energy.

The formula for w contains three factors: a numerical factor, one
depending only on the nuclear particles, and one depending upon
the strength of the emitted waves at the nucleus. The separation of
the last two factors is an approximation that comes from assuming

+ K. Formi, Zs. f. Phys. 88 (1934), 161.
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that the wave amplitudes of the emitted particles, electron and
neutrino, do not vary appreciably over the region occupied by the
heavy particles. In this section we shall consider the case in which
both electron and neutrino can be emitted without orbital angular
momentum, i.e. in S-waves, corresponding to the most favourable
decay rate. At first we shall not differentiate between the contribu-
tions of the various spin components of the relativistic form of the
electron and neutrino waves and we shall disregard the influence of
the Coulomb field of the nucleus. For light nuclei, the S-waves of
electrons are not greatly affected by the Coulomb field if the electron
has several million volts energy and we are justified in approximating

elr) as (r) = sin(p7/B)ry(2m R), (2)
where we have normalized y,(r) in a sphere of radius R and P, is the
momentum of the electron.

Let the total energy liberated by the nucleus be W and let the

energy of the electron be E. Then the normalized wave-function for
the neutrino, of zero rest-mass, is

,(r) = sin[ (W — E)r[hc)/r,)(2n R). (3)
The numbers of S-states of electron and neutrino per unit energy are:
pe = Rjntiv = RE|nkictp,, p, = R|mkc. (4)

Evaluating eq. (1) at » = 0 we get
2

w = oo IMp, B(W— B (5)
The dependence of w on the energy of the electron is the con-
tinuous B-spectrum. The procedure used in comparing the form of w
with experimental results is to divide the experimental distribution
in energy by p, E, or its equivalent in the Coulomb field for heavy
nuclei, and plot the square root of the resulting function against Bt.
Such a plot is known as a Kurie plot, after its inventor, and if the
B-spectrum is simple the plot should be a straight line the intercept
of which determines the maximum energy, W. It will be noted that
W includes the rest-energy of the electron. Many such plots have
been made, especially for light nuclei, and so far only two cases of
convineing deviations from the predicted spectrum have been
detected, The cleanest Kurie plot that has been obtained is that for

t Moro commonly tho distribution in eloctron momentum is determined directly
and the corresponding divisor is p?.
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In!4, the spectrum of which is shown in Fig. 17. Thus the experi-
mental results confirm the assumed dependence of w upon the ampli-
tudes of the light particle waves and also the assumed vanishing
rest-mass of the neutrino.

Offhand it is a little surprising that practically all the observed
spectra can be explained on the assumption that the electron and
neutrino are emitted without orbital angular momentum. The wide
variations in lifetimes would lead one to suspect that in many transi-
tions the light particles are emitted in P-waves and D-waves which
should introduce higher powers of the electron energy into the
distribution function. Further consideration of the nature of for-
bidden transitions and of the more exact wave-functions for higher
angular momenta leads to an understanding of this result and will
be taken up in § 4.

Since w is the number of processes per second per unit energy
range, the probability of disintegration per second is the integral of
w dF over E from mc? to W. This leads to

250t w
R DA LAL ®)
with  Iy(x) = (a2 —1)}(22t— 92— 8) +Jx In[z 4 (22— 1)}]. (7)

If W is large compared with mc?, i.e. the maximum energy, including
rest energy, is 2 M.e.v. or more, a very good approximation for A is
~ 9 MpEws :
N ot MW, (8)
Thus the Sargent plot should approach a straight line of slope 5, at
least for the light clements. This law is very closely obeyed by the
positron emitters shown in Fig. 18 (b).

An independent and ingenious check on the fifth-power law in the
formula for the decay constant is provided in the energy distribution
of a-particles emitted by the B-decay of Lis:

Li® > Het+-He*+B+v+Q.
The «-particles are emitted with equal energies, but the sum of their
energies varies from zero to the maximum cnergy of the reaction,
@ = 15:8 M.e.v. Let U be the energy of one of the alphas, then the
energy in the B-radiation is Q—2U. The probability of emission of
alphas with energy U will then be proportional to the product of
MQ—2U) and a statistical factor for the alphas which is U} if they
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are emitted in an S-state and U! if they are in the D-state. The
frequency distribution was measured} and found to agree closely
with the factor U}Q—2U)5, showing conclusively that the B-
disintegration follows the law derived from Fermi’s theory and also
that the alphas are emitted in an S-state. This proof which was
suggested by Gamow and Teller was the first indication that the
original Fermi theory was correct and the modification introduced by
Uhlenbeck and Konopinski was unnecessary.

The modification of the theory that was introduced by Uhlenbeck
and Konopinski was to replace the wave-function of the neutrino, in
the expression for w, eq. (1), by the first derivative of the neutrino
wave-function. This introduces an additional factor proportional to
the square of the energy of the neutrino and gives a better fit to the
early experimental results on B-disintegration spectra. A critical
analysis} of these early results indicates that the apparent agree-
ment was due to the circumstance that most of the measured
spectra were really composite, i.e. two activities were present with
the same period.

Coulomb forces between nucleus and the B-particle influence the
lifetime of the disintegration appreciably. Their effect on the spec-
trum itself is generally slight except in the region well below 1 M.e.v.
where the measurements are also difficult to make. In the very heavy
elements and in all forbidden spectra the Coulomb cffect is charac-
teristic of the relativistic motion of the electron, but in the allowed
spectra of light elements the effectissimply toincrease the amplitude of
electron waves at the nucleus and to decrease the amplitude of positron
waves. Negative elcctron emission is, therefore, more probable and
positron emission less probable than given by the formulas above for
wand \. A very satisfactory method of correcting the expressions,
eq. (5) and eq. (6), for elements in the lower half of the periodic system
is to insert the factor

— 27 Ze2 K
— = o— 9
e—2m—1’ K 7> R @

in eq. (5), where Z is the charge of the daughter nucleus in the case
of electron emission§ and minus that charge for positron emission.

+ L. H. Rumbaugh, R. B. Roberts, and L. R. Hafstad, Phys. Rev. 54 (1938), 657.

1 H. A. Bethe, F. Hoyle, and R. Peierls, Nature, 143 (1939), 200.

§ This result may be derived from the solutions of the wave-equation for the
motion in a Coulomb field as given in Chapter IT, eq. (6), otc., by computing the ratio
of amplitudes at largo r and at r = 0.
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In eq. (6) this factor should be included in the integrand, but it is
such an insensitive function of E, except when p, is small, that it
may usually be considered a constant factor and taken out of the
integral. The correction to eq. (6) then becomes the factor (9) with
n = aZ, where « is the fine structure constant.

The probability of K-capture admits of a similar clementary
discussion. Here the electron is absorbed from a state of definite
energy, namely the K-shell of the atom, so that the ncutrino is
emitted with a definite energy equal to the change in nuclear energy
plus the rest-energy of one electron. The spectroscopic term is
negligible. The same theory of transition probability then applies,
but with the electron density of the K-shell in place of y2 p, in eq. (1).
The electron density at the nucleus, as calculated from the theory of
the hydrogen atom, is

P? = Z3|mad, ay = fi2[me2. (10)

The Z in this formula is the ‘effective’ charge of the parent nucleus.
Substituting in the transition probability we get, for K-capture:

g2m3
o

So far, our discussion of the Fermi theory has been primarily con-
cerned with the dependence of spectral distributions and decay
constants on the energy of the emitted particles. The evidence is
fairly conclusive that the theory fits the experimental results and
thus substantiates the form of eq. (1). The third factor in eq. (5)
appears to be verified. Of the other two factors, the first is simply
a number that should be the same for all spectra and which deter-
mines the value of the fundamental constant, g, which we shall
interpret further in terms of meson theory in the following section.
The second factor is the absolute square of the matrix element of the
emitting system and, in general, may be expected to be different for
different disintegrations.

According to the perturbation theory, on which eq. (1) is based,
the matrix element, M, depends upon the initial state of the nucleus
YV}, the final state ¥}, and the perturbation operator H’, as

M= f YHH'Y, dx, (12)

A M [2(aZ)3( W +me2)2. (11)

where the integral extends over all configuration space. This amounts
to integrating the coordinates of every heavy particle in the nucleus
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over the volume of the nucleus. The states '¥; and '¥; are normalized
to the integer, 4, the total number of nuclear particles. In the case
of emission of electromagnetic waves, the operator H' is essentially
the electric dipole, ex. Although eq. (1) is a generalization of the
electromagnetic case, it turns out that for the theory of f-decay the
dipole operator is of importance only to forbidden transitions and
allowed transitions involve the zero moment of position, i.e. they are
monopole radiations. This circumstance is a result of the more general
nature of the fields that describe S-radiation. On the other hand, the
operator H' does contain operators, @, for every nuclear particle
such that @, changes the kth proton into a neutron in positron
emission or changes the kth neutron into a proton for electron
emission. If H’ induces no other change in the wave-function we

have H = Q+Qy+...4+Q, = Q(), (13)

where Q(1) is introduced for the sake of brevity.

The form of H' in eq. (13) is actually the form that applies in
allowed transitions if Fermi’s original theory is used. The fact that
H’ is invariant to rotations and inversions of the space coordinates
is consistent with our assumption that the electron and neutrino
are emitted in S-waves. Thus this form requires that the angular
momentum of the nuclear states ‘¥; and ¥} be identical so that the
spin of the emitting particle is unaffected by the disintegration and
the electron and neutrino must be emitted in the singlet state.

In this theory, therefore, the value of M is just a sum over &k of
integrals of WFW¥ in which the superscript k indicates that the
identity of the kth particles has been changed by the operator @.
Thus, if the Pauli exclusion principle did not apply to nuclear
particles, and all neutrons and protons were in the same state, the
value of M would be Z for positron emission and 4— Z for electron
emission. Since the exclusion principle does apply, however, changing
the identity of a particle in ¥ usually leads to a state of very high
energy that is not very similar to the ground state, ¥}, of the daughter
nucleus or is completely forbidden by the exclusion principle if the
particle is in a closed shell. Hence the contributions to the g-disinte-
gration of heavy particles that are in closed shells, or nearly so, are
negligible, and it is generally sufficient to consider only such heavy
particles that may be in unsaturated orbits. In particular, the
positron disintegration of nuclei having just one more proton than
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neutron must be mostly contributed by the extra proton.t These
nuclei have small charges, Z << 21, so that the wave-function of the
extra neutron in ¥, should be very much the same as that of the
extra proton in ¥;. The value of M will then be practically unity.

In the language of spectroscopy, the form of H' in eq. (13) leads
to the selection rule Ai = 0 for allowed transitions, where 7 is the
spin of the nucleus. This rule appears to be violated, however, for
several of the nuclei discussed above, having one more proton than
ncutron, have composite spectra. In the particular case of Be?, for
example, the capture of the K-electron leads to the ground state of
the Li"-nucleus most of the time but to the 0-45 M.c.v. excited state
part of the time. The most likely explanation of these two levels
of the Li-nucleus is that they represent the spin-orbit splitting of the
extra neutron, the spin § belonging to the ground state and 1 to the
excited state. The ground state of Be? should have one or the other
of these spins (probably 3), and the fact that transitions to both
states of Li” compete in an allowed K-capture violates the selection
rule A = 0. The need for a change of spin in allowed B-disintegra-
tions was first presented by Gamow and Teller} following a study of
the branches of the ThC radioactivity. Another very convincing
argument for change of nuclear spin in B-disintegration is found in
the electron emission of He®. This is an allowed transition and since
He® has two neutrons more than He? its spin is almost certainly O,
but it decays to the ground state of Li® which has unit spin. A similar
analysis probably applies to the activity of ¥18. In all these cases
the change of spin can be carried away by emitting the electron and
neutrino in the triplet S-state.

In order to permit the change of spin in allowed transitions,
Gamow and Teller (loc. cit.) proposed that the Fermi interaction be
modified to include the spin-operator 6. Thus the perturbation, H’,
is replaced by the vector, H", where

H" = Q0,1 @y0,+..+Q 6, = Q(0) (14)
and o, is the vector spin-operator of the kth particle. The Gamow-
Teller selection rules are then Az = 1 or 0 (0 — 0 not permitted). This
revised selection rule is the most important consequence of the
interaction H”. In general, it is impossible to apply these operators

1 Thesc considerations wero first put forward by L. W. Nordheim and F. L. Yost,
Phys. Rev. 51 (1937), 942.
} G. Gamow and E. Teller, ibid. 49 (1936), 895.
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to nuclear wave-functions and obtain a numerical value for [M|?
because the nuclear wave-functions are not known. For the very
light nuclei, however, approximations are possible, and perhaps the
most useful of these is Wigner’s theory of the symmetric Hamil-
tonian discussed in Chapter IV. Tn this theory the forces between
nuclear particles are assumed to be independent of ordinary spin and
isotopic spin. It is then possible to classify the nuclear wave-func-
tions into definite ‘supermultiplets’ the members of which have the
same space-dependence and differ only in spin and character coor-
dinates. In this approximation, therefore, B-transitions take place
only between members of a given supermultiplet and the integral
over coordinates in M is unity. The calculation of [M|? is then a
matter of summing over spin and isotopic spin-coordinates alone.
These sums have been computed by Wignert for certain simple cases
and applied to nuclei for which one can be reasonably certain about
the orbital angular momenta of the particles. Four of these values for
|M]|2 are shown in Table X.

TasLe X
Parent Term | Daughter | Term | |[M(1)[? | |M(a)|? ft'
He S, Ho?® 8; 1 3 4,230
Ho® So Li® 8, 0 6 6,960
Fis 8, o So 0 2 11,700
Net? 85 K1 8, 1 3 5,520

The values [M|? for both the Fermi selection rules, |M(1)|2, and the
(Gamow-Teller rules, | M(o)|2 are given; and the last column, labelled

S, is Jt' — | M(o) 2. [y(W|mc?)r,, (15)

where 7; is the observed half-life of the disintegration and J; is the
function defined in eq. (7). The value of ft' should be the same for all
transitions if H" is the correct operator and if the theory of the
symmetric Hamiltonian were exact. Variations in ft' are probably
representative of the crudeness of the approximations made.f The

1 E. Wigner, Phys. Rev. 56 (1939), 519.

1 Tt has been recently pointed out by K. J. Konopinski (ibid. 72 (1947), 518)
that a possible difference botween the theoretically predicted and the observed
value of the B-decay constant of H? can be interpretod in torms of tho finite mass of
the neutrino. Tn fact, assuming that tho rest-mass of noutrino is zero, and taking
for the matrix element of the transition in question the theoretical plausible value
|M|2 —= 3, ono calculates the mean lifo of H? to be about 200 years as compared with
the observed value of only about 30 years. Konopinski points out that, because of the
very sinall total enorgy of this B-decay (K, — 15 kv. = 0:021 mc?), a comparatively
small mass of tho neutrino would change quite considerably the energy partition
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variation can obviously be reduced in Table X if a combination of
H' and H"” were used in place of H” alone, and there is no a prior:
reason for not doing so, but the uncertainties do not justify the
attempt. It is possible that with more accurate data and a better
understanding of the wave-functions of light nuclei a quantitative
analysis of this kind can be made and a decision reached as to whether
the selection rules are purely (tamow-Teller or whether there is an
admixture of the original Fermi interaction.

An analysis of the form of the true interaction would also be pos-
sible with accurate information on the complex spectra, such as K29
and Be?, where the nucleus decays to states of two different spins.
The information required is the relative strength of the two spectra,
their maximum energies, and a knowledge of the nuclear wave-
functions. An analysis of this type has been made with existing
data by Gronblom,} the principal result of which is substantial
evidence for including the operator H”.

The values of ft" occurring in Table X determine four values of the
interaction constant g, according to the formula,

s 20%7In2
=
Just what the natural units should be for g is not known, but the
four numerical values obtained in this way from the data in Table X
are: 1:72, 1-34, 1-03, and 1-51 all times 10-%°. About the nearest
nuclear quantity of the correct dimensions is the square of the
nuclear magneton times the fine structure constant au? —= 1-8 X 1049,
but there is no theory to connect this quantity with g.

The difference between the elementary theory presented in this
section and the more complete theory of the following section is
merely that we have not used the correct relativistic forms for the
waves of the electron and the neutrino. So far as allowed spectra are
concerned the results are essentially the same for the light nuclei.

between the two emittod particles, thus leading to a different value of total A for the
same upper limit of B-spectrum. With the finite mass u of the neutrino the integral
standing in the expression for tho decay constant takes the form:

By

JBy) — [ dB(+ E)RE+ B)Ey - p— B)(By— EY(2p - B— o)\,

0
[n order to bring the theoretical valuo of the lifetime of H3 to the observed value by
1sing this formula, it is necessary to assume the rest-mass of the neutrino to be about 35
if the electron mass. A more definite answer can bo given, however, only by the direct
neasuremont of the enorgy distribution in the B-spectrum of H3, ¢f. Appendix 111,

1 B. Gronblom, Phys. Rev. 56 (1939), 508.
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There are important differences, however, in the effect of the
Coulomb field on allowed transitions in the heavy elements and in
almost all forbidden transitions.

3. Field theories of f-decay

Fermi’st original theory of B-decay employs the major doctrines
of the theory of interactions between fields, viz. the requirements of
relativistic invariance and the quantization of the wave-equations
for the electron and neutrino. The fundamentals of this theory are
sketched in Chapter III, so that we can review the Fermi theory
briefly in the language of that chapter. The interaction giving rise
to B-decay takes place between the nucleon on the one hand and
the combined electron neutrino field on the other. All the particles
involved have spin 34, so that the various covariant quantities that
can be formed are the same as those presented in Table II of Chapter
III. Fermiassumed that the interaction takes the form of the scalar
product between the polar vector formed by neutron and proton
waves with the polar vector formed by electron-neutrino waves. If we
let ¥ be the wave-function of the proton, @ that of the neutron, and
¢ and ¢ those of electron and neutrino, as in the preceding section, the
relativistic form of Fermi’s proposed interaction may be written:

H' = g [ {{¥(x)*a®(x). h(x) 'ab(x)]— ¥ (x) D)) *$(x)+
H[O(x) ra¥'(x), $(X) Fah(x) ] —D(X) " (X)b(x) h(x)] dx.  (16)
This particular form was chosen in direct analogy to the form of

interaction between an electron and the potential four-vector of an
electromagnetic field, (A, 4,), as given by Dirac’s theory:

H, = e [ [p(x)*ap(x), A|—h(x)p(x)4o(x)} dx.  (17)
As is well known, the emission of light quanta is effected only by
the term in A. In this respect, the B-decay interaction is more
general since, in the latter, the time components in the product of
vectors also gives rise to particle emission.

We may interpret H' in eq. (16) in terms of the quantized wave-
equation. The first set of terms corresponds to the simultaneous
creation of a proton and an electron, through the appearance of the
operators V' (x)* and (x)*, and at the same time that a neutron and
a neutrino are annihilated, as expressed by the operators ®(x) and

1 E. Fermi, loc. cit.
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$(x). All these events take place at the same point in space, X.
Hence these terms give negative electron B-radiation. The latter
half of the integrand in eq. (16) causes the disappearance of a proton
and an electron at the same time and place that a neutron and a
neutrino appear. The electron may disappear from the K-shell of
the atom (K-capture) or from a negative energy state (positron
emission). The ‘hole theory’ of negative energy states is extended
to neutrinos also. If we had insisted that both electron and neutrino
be created in the negative B-emission, both would be absorbed in
positron radiation, and the components of the four-vector operator,
(0z @tys 5, 1), a8 applied to the light particle waves, would be multi-
plied by the factor —iB«,. The components would then be (—Ba,, i8,
Bo,, —iBay,) in the same order.

It will be noted that, by quantizing the nucleon waves as well as
the light particle waves, one has automatically expressed the opera-
tor @ which changes neutron into proton and vice versa.

Fermi’s theory can now be generalized to include scalar products
of any of the five covariant functions of two nucleon waves with the
corresponding contravariant functions of electron-neutrino waves, as
outlined in Chapter III. In principle, therefore, the theory admits
of five independent values of g, one for each invariant form. Generally
speaking, the components of the invariants can be divided into large
and small components. The large components are independent of the
velocity of the nucleons, whereas the small components contain a in
an odd power. The small components can be neglected, consequently,
except when the large components do not contribute because of
a ‘forbidden’ change in spin or parity. Among the five covariants,
the pseudoscalar has no large component. The forms of the five
possibilities and their large components are presented in Table XI.
In that table we make use of the spin-vector operator:

¢ = —(})axXa. (18)
TABLE XI
Relativistically covariant operators
Interaction Matriz element Large component
Scalar 1
Polar vector a,l 1
Tensor +Bo, +1ifa o
Axial vector o, #(o, a) 4
Pseudoscalar $B(o, @) 0

3685.A1 1’4
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It is evident that from the point of view of allowed transitions there
are only two distinct types of matrix elements, 1 and o, which are
the forms discussed in § 2 as leading to Fermi and to Gamow-Teller
selection rules, respectively.

We now turn to the interpretation of the B-process in terms of the
meson theory. This will lead to two results in addition to those
above: (1) a decomposition of the factor g into other interaction
constants, and (2) a specialization of the forms of interaction, so that
only certain covariants in Table XI are required. In addition one
would like to be able to connect this interpretation with the observed
mean life of the cosmic-ray meson (2-15 microseconds), thus fixing
the ability of the meson to disintegrate into electron and neutrino by
an independent measurement. We shall see that this leads to a
contradiction, at least with the weak-coupling meson theories.

For simplicity, we consider first the case of the negatively charged
scalar meson (spin 0), with the wave-function U. The invariant form
of interaction between meson and electron-neutrino will then contain
the product of the scalar U with the scalar function *8¢:

H =g [ Up(x)Bp(x) dx+g' [ Ux)*$(x)*Bh(x) dx. (19)

The first term in H' gives the disappearance of the negative meson and
the neutrino, coincident with the appearance of an electron. The
second term gives the reverse process. The wave-function represent-
ing one free meson per unit volume (Chap. III) is, for wave-number £:

Ux) = (i;ﬁ_c

)%e"(“-"—"oc‘), k= k2t a2, = % (20)
Hence, for a meson at rest (& = 0), the factor U in eq. (19) is simply
equivalent to (47h2/m)}. The transition probability due to (19) is then

0

27
w = |H' |, (21)

where p,, is now the density, per unit energy, of final states represent-
ing an electron and a neutrino flying apart in opposite directions and
with total momentum zero. The momentum of each is, therefore,
$me, and p,, becomes (we consider here all plane waves, rather than
expand in states of angular momentum as before):

_ 4mp® dp _ 1[mc)\? R
o= oy = ) W= 22
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The plane-wave solutions of Dirac’s equation, belonging to the
energies + K are four in number, comprising both signs of the
energies and both orientations of the spin. The four components of
the four solutions form the elements of the matrix

E+mc*+c(a, p)B
VEE(E+me?)}

If we let u, be these components for the electron wave and u, for
the neutrino, each belonging to the positive energy 3 W and a definite
spin-component, the expression for H’ becomes (taking the integral
over unit volume)

(23)

, (4t
=g ()
m
and the expression for w becomes

2 ,24frﬁ2 1 m2c2 a1
ﬁ +9 m ﬂ(’ 167 2h2 Z l{ue ﬁuvl

where > means summation over the two spin orientations of the
8

electron (or neutrino which must have the same orientation). In the
high relativistic energy region for the electron its rest-mass is
negligible, so that its wave-function, (23), is essentially the same as
that of a neutrino, but for the reverse sign of p. But, according to
(23), one can obtain the wave-functions of positive energy and
reversed momentum by simply multiplying « by B. Therefore,
uS Bu, = uju, —= 1, and the sum over spins is just 2. The final value
of w is then P
me? g .
W= (24)
Substituting 200 electron masses for m and 2-15 usec. for w1, we
find a value of ¢’ in units of the electronic charge e

g = 2x10-%, (25)

In order to apply this theory to the B-disintegration of nucleons
we use the wave-function U(X) that is attached to the nucleon rather
than the plane-wave (20). As seen in Chapter III, this wave-function
is determined by the nucleon-density through

Ux) = o I(‘l’+,3<b (26)
Jh=
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Substituting for U(x) in the first member of eq. (19) we get

—a [T (%ﬁ@), (4+B$), dr'dr
| e—‘x—mﬁ o [ (P4BO) ) dr

=y j (¥+BD) (4 B4) dr, (27)

where we have assumed that there is a negligible error in evaluating
the light particle waves at ' instead of at r. This is a valid assump-
tion for light particle waves that are long compared to 1/, i.e. light
particle energies small compared with 100 M.e.v. Now eq. (27) is
precisely the same form of interaction as in Fermi’s theory, if the
scalar form of the theory is assumed and if we write for Fermi’s
constant g: 4

g= 96 (28)

The values of ¢ and ¢’ are determined from the results on B-decay
and the spontaneous disintegration of the meson, respectively, and
thus serve to determine a value for g, the mesic source strength of a
nucleon. Substituting 1-8 x 10—#® for g and 2 x 108 for ¢’ we find g

to be g = 80e. (29)

The value of g as determined from the B-activity is thus over 10 times
larger than that required to account for the nuclear forces. In other
words, to fit with the meson theory of forces and the observed mean
life of the meson at rest, the ordinary B-decay would have to be 100
times less probable for a given encrgy than now observed. This
represents a fundamental inconsistency in the meson theory of
nuclear forces and B-decay, at least as originally proposed by Yukawa.

The same type of calculations as those just made have been
carried through for the vector meson instead of the scalar.t This
means that in place of the scalar wave-function U(x) one introduces
the polar vector ¢ and the antisymmetric tensor x*# which describe
the meson of spin unity. In this case, two independent forms of
interaction may be chosen, one of which is formed by contracting ¢~
on the polar vector of Table XI, the other by contracting x*# on the
tensor of that table. Through the latter interaction this theory will

t H. A. Bethe and L. W. Nordheim, Phys. Rev. 57 (1940), 998.
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lead to the Gamow-Teller selection rules. Except for a factor of the
order of unity, the numerical results for the vector meson theory
are the same as for the scalar meson theory and the discrepancy in
the two ways of estimating g persists.

4. Theory of the forbidden B-spectra

A general, relativistically invariant formula for the probability of
B-radiation may now be obtained by considering the wave-functions
of proton, neutron, electron, and neutrino as having four components
each, as required by Dirac’s theory and then selecting a particular
set of covariants from Table XI. If we select a particular, bilinear
covariant form with components M, and designate the correspond-
ing contravariant components by M, the perturbation theory leads
to the transition probability:

) = 352 3| [ o) My 0004083 ) i oI W —B),
(30)

where p,(#) and p,(W—E) have the same meaning as in § 2. It is
to be kept in mind, however, that the integral appearing in eq. (30)
originates as an operator in the theory of the quantization of the
wave-equation and thus really symbolizes a sum over all possible
light particle states. Application of the formula is greatly simplified,
therefore, when the wave-lengths of the electron and neutrino are
long as compared with the radius of the nucleus. In this case, the
infinitely many possibilities for the product (x)*M}¢(x), which
appears in the integrand, may be classified according to whether
there are 0, 1, 2,..., etc., nodes at » == 0. In general, a product with
n-nodes passing through the origin will have the angular dependence
of a Legendre polynomial of order » and will approach the origin
roughly as 7*. If we let R be the radius of the nucleus, the magnitude
of a product with n-nodes will be of the order (W R/fic)* ~ (R/A).
Since we have postulated R < A, this means that the higher the
value of n the less probable is the transition.

We may now obtain an approximate formula for the transition
probability by, (1) computing w(E) only for the lowest value of n that
gives a non-vanishing contribution, and (2) neglecting the variation
of Y(x)*M},$(x) with radius. Let L} be the ith possible product of
the light particle waves (with M;) having the angular dependence
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characteristic of an associated Legendre function, P74(6,4). Our
approximate expression may then be written:

w,(B) = 2g2 > (R M $(R) o D)o (W — ) X
L,k
><| [ WM, Liow) ax ', (31)

where one sums over the (relatively few) possible combinations of the
given n. y(R) means the radial part of J(x) evaluated at R.

Formula (31) is now of the same form as eq. (1), but generalized
to the use of relativistic wave-functions and with a more explicit
formulation of the ‘matrix element’. Tf n = 0 the matrix element is
of the same type as considered in § 2 and will be designated by M.
This matrix element will not vanish (in general) if the orbital angular
momentum of the nucleon docs not change in the B-radiation, and
if the spin does not change. In case the M, are the tensor components
or the axial vector components, the spin of the nucleon may change
also. Under these conditions, we may use the approximate forms
(large components) in Table XI; and substituting the normalized
Dirac wave-functions for the electron in the field of a nucleus of
charge Z in eq. (31) we obtain the formula for w, that was presented
originally by Fermi:

l+s 52671 L8y +47) |2
walB) = L 1M, P, (W — Epap, By L, (39)

as expressed in the ‘rational system’ of units such that

fi=c=m=1
and with = oZ(E|p,), 8 = J(1—a2Z?).
If we neglect a2Z2 compared with unity, in eq. (32), we get a working
formula for the lighter nuclei:

A (33)

—27n

' wo(H) = 2 53
in agreement with the result of the elementary theory of § 2. These
formulae are derived on the assumption of zero rest-mass for the
neutrino. In § 2 the formula was derived on the further assumption
that electron and neutrino are emitted in S-waves, and this is
essentially the significance of setting » = 0. Even in this case,
however, the relativistic formula is a little more involved than the
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non-relativistic one. Let us consider the relativistic form of the
electron wave for which the ‘large’ components are S-waves, u,/r.
According to general considerations, Chapter III, the small compo-
nents must then be P-waves with the radial function u,/r, say.
Except for a common, normalizing factor, the functions %, and wu,
belonging to the energy £ may be written as the series:

_ /{E+1
w= (5
uy, = )\/(___1’]2;]1)7:.—1{%&2(1@_[_ 1)r+3p2r2 — %szr"...}.

Let us denote the electron wave-function just described, for which
the functions u, and w, in eq. (34) give the radial dependence of the
large and small components, respectively, by the symbol (S; P),.
When Z = 0 the functions «, and u, become simple S- and P-wave
radial functions. In fact, if we replace E+1 by W—E-+-pu, where p
is the ratio of the rest-mass of the neutrino to the rest-mass of the
electron, and set o = 0, we get the (8; P), for the neutrino. Inaddition
to these waves, however, the related waves, (P; S), and (P;8),, in
which the large and small components have been exchanged, contri-
bute to wy(E). Hence, the sum over ¢ in the general formula, eq. (31),
extends over the two terms:

[(8; P) My(S; P) 34 |(P; 8)e Mi(P; 8) |3
= [(8;0), M3 (S; 0)|5+1(0; 8) My(0; S) 3,

)r’l‘l{pr——aZp 5E;— L $piri— },
(34)

U
= 2V —BP| L gt | (35)

If we set the mass of the neutrino equal to zero, u = 0, the result (35)
is exactly the same as in the elementary theory for yZ 42, except for
numerical factors. It will be noted also u,/r (cf. eq. (34)) cannot be
evaluated at » = 0, as in the elementary theory, because this function
diverges as r+~! at the origin. Hence, even the S-waves have to be
evaluated at the nuclear radius, R.

In the computations of eq. (35) it has been assumed that M
representé products of the ‘large components’ of the electron waves
with the ‘large components’ of the neutrino waves, so that, in terms
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of the approximate forms in Table XI, M; may be either 1 or o.
Consequently M, may be either 1 or ¢ and, since the L} are unity,
the ‘matrix element’ in eq. (31) is the same as that discussed in § 2.
For this matrix element not to vanish, therefore, the orbital angular
momenta must be the same for the neutron state and the proton state,
and, in the case M), = 1, the spins of neutron and proton must also be
the same, giving the Fermi selection rules. If M, — o the spin of the
nucleon may turn over during the transition and we get the Gamow-—
Teller selection rules.

If the orbital quantum number of the transforming nucleon must
change during the B-radiation, i.e. if there is no quantum state of the
daughter nucleus at lower energy and with the same orbital waves,
the matrix element M vanishes identically and the transition is said
to be ‘forbidden’. If the orbital quantum number changes by unity,
the transition is said to be first forbidden. Consider the particular case
that the initial neutron is in an S-state, i.e. the large components are
S-waves and the small components are P-waves, which may be
designated, (S; P)y, and the proton into which it transforms is in the

Py-state, (P; S)p. Then the matrix element, M,,, vanishes

My, = [ (P;8)p My L, (8; P)y dx (36)

if we set L, = Ly =1 and M, =1 (or o), since then we get an
integral over all directions of the product of an S-wave with a P-wave.
There are two possibilities for obtaining a non-vanishing integral M, ,,.
One way is to retain L, = L; == 1 and select a matrix element M,
that forms products between large and small components. Such
matrix elements appear in Table II in the space-components of the
polar vector, the space-time components of the tensor, the time
component of the axial vector, and the pseudoscalar. Since, however,
the amplitudes of the small components of the nucleonic waves are
smaller by the factor v/c than the large components, where v is the
average velocity of a nucleon in a nucleus, the transition probabilities
of such transitions will be smaller than of allowed transitions by the
factor B% = v%/c®. Of course, the large components of the electron
waves will be multiplied by small components of the neutrino wave:

(P; 8), Mi(S; P)I%,

etc., but at the usual B-energies, large and small components are of
the same order of magnitude, and we get essentially the same product
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of S-waves (L, = L,). Hence, if the invariant form of interaction
between nucleons and the electron-neutrino field contains compo-
nents M,., that are odd powers of the a-operators, there will be first
forbidden transitions due to the finite velocity of the nucleons. The
energy distribution of the electrons will be given by eq. (32), as before,
only multiplied by a factor of the order B2 (provided also that the
rest-mass of the neutrino vanishes). Presumably the factor p? is
relatively insensitive to the cnergy of the B-radiation. Referring to
Table XTI, it will be seen that the spin-selection rules for these transi-
tions will be the Fermi rules, Ai == 0, for pseudoscalar and axial
vecetor, Gamow-Teller rules, A7 = +1 or 0 0 - 0 excluded, and com-
pletely forbidden for the scalar interaction.

The second possibility of obtaining a non-vanishing matrix element
(36) is to go back to those M, that do not mix large and small com-
ponents but to choose L, = L, —= P{. For these the effective wave
of one of the emitted particles is a P-state, the other an S-state.
This introduces the first surface harmonic into the calculation of the
nuclear matrix element. The matrix element so obtained is, there-
fore, of the same type as those calculated in the emission of light
quanta, and the radiation may be called dipole radiation. Let us
represent the surface harmonic by the unit vector x;:

|M,|? = f W(x)*M, x, O(x) dx|".

The approximate forms of M, in Table XI may be applied, so that
when M, = 1 the matrix element is of the simple dipole type and
the GGamow—Teller spin-selection rules are obeyed. When M, = o,
however, the symmetric tensor may be formed from o and X, (as well
as the vector and scalar) and a total spin change of 24 is possible.
The cmission of one of the particles in a P-wave also changes the
dependence of w on the electron energy, at least in principle. The
square of the neutrino wave is proportional to (W—E)*R? if it is in
the P-state, and the square of the electron wave is a more compli-
cated function. From eq. (34) we see that, owing to terms in «Z, the
P-wave component, u,, approaches the origin in the same power of r
as the S-wave. At the nuclear radius, R, the ratio of the first term
to the second, in the series for u,, is 3aZ/2(E—1)R, and, in rational
units, 2R = aAt. Hence this ratio becomes of the order of unity
for quite light nuclei, and much greater than unity for heavy
nuclei. We thercfore evaluate both terms in computing w;. In the
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approximation a?Z2 < 1, we may write the shape of the spectrum
in dipole radiations in the general form:

y 2 . 2
wy = Cy(B, 2). B} My P p, BOW— B =,

(37)
272  oZ pg]

4R* 3R E

with p?2 = K%*—1 and p2 = (W—E)%. The o/, b', and ¢’ are small
integers, the values of which depend upon the form of invariant
used.t Suffice it to remark that ¢’ = 1, except when A:¢ = 2 and
then ¢’ = &’ = 0. Since for most B-emitters the term o2Z%/4R? is
much the largest term in Cj, the value of (] is a very insensitive
function of the electron energy and the shapes of the dipole spectra
will be essentially the same as for the allowed spectra. This is a
consequence of the peculiar nature of the relativistic wave-function
of the electron in a Coulomb field. The exceptions to this rule occur
for Ai = 2, when the spectrum becomes modified by the factor
(p2+p2), and for nuclei of small Z and rather high B-energies so that
all terms in C, arc comparable in magnitude.

We may summarize the results on allowed and forbidden spectra
as follows. In an allowed transition, the main light particle waves
have no node at the origin, n» = 0, and the nuclear matrix element
contains the zero surface harmonic (1). Such transitions might then
be called monopole transitions. The spectral distribution is of the
normal type, eq. (32), and for certain nuclei, as discussed in § 2, the
nuclear matrix element is of the order unity. These are the transi-
tions between two nuclear states belonging to the same supermulti-
plet. Henceforth we shall refer to these transitions alone as allowed.
More generally, the nuclear states for heavy nuclei will be mixtures
of states belonging to many different supermultiplets. The proba-
bility of a transition (which must take place between states in the
same supermultiplet since the B-interaction is symmetric in neutron
and proton) is then reduced by a factor € which represents the proba-
bility that a given supermultiplet is represented in the daughter
nucleus. Thus, even though these are monopole transitions that are
independent of the velocities of the nucleons we shall refer to them
as symmetry forbidden. The term ‘first forbidden’ introduced above

, 20" [aZ P21, .
C(E, Z) = 'l‘—s(p2+p5)+-3—1”v[;—g+§)ﬁ]+c [

1 The values of those integers and similar ones for second forbidden transition are
given by C. L. Critchfield, Phys. Rev. 61 (1942), 249,
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(for historical connexion) then becomes inappropriate and we shall
change this name to parity forbidden. Parity-forbidden transitions
are also symmetry forbidden and, as we have just seen, may be
divided into two classes: monopole and dipole. The parity-forbidden
monopole transitions are then less probable than allowed transitions
by the factor ¢82 and the dipole transitions by the factor ¢(WR)2 or
1ea®Z?, whichever is larger. Generally, the shapes of all these
spectra are expected to be of the Fermi type and, within a given class,
the total transition probability will increase with W5,

The case in which parent and daughter nucleus have the same
parity but differ considerably in spin requires at least what is known
historically as a ‘second forbidden’ transition. Since such transitions
are forbidden by symmetry also, the name is, again, not too good and
we shall simply call them spin forbidden. One way of accomplishing
such a transition is by choosing #n == 1 and mixing large with small
components of the nuclear waves. The radiations are then of a dipole
character, but without change of parity, and are therefore closely
analogous to the magnetic dipole radiations in forbidden optical
spectra. The general properties of these radiations are very similar
to the ordinary dipole parity-forbidden emissions, but with a further
factor B2 in the square of the matrix element. The spectral shape is
expected to be normal except when Ai = 2, or in very light nuclei.}

The other type of ‘second forbidden’ transition is by emission of
2k orbital angular momentum into the ficld, i.e. with n = 2 and using
the large components of the M. This is analogous to the electric
quadrupole radiation of spectroscopy.i

The half-lives of the various multipole radiations are obtained by
integrating the correct expressions for the corresponding w,, over all
electron energies from 1 to W.§ For changes of spin less than 2 these
integrals lead to a W? dependence of the decay constant, i.e. to the
Sargent law, even for the parity-forbidden transitions. This comes

T On the other hand, transitions of this type with Ai = -1 are of interest only if
Formi soloction rules apply to allowed spectra, since with Gamow-Teller rules
Aé == -1 can bo obtained with n = 0. In the latter case, the dipolo radiations
without chango of parity play a role only in 0 -> 0 transitions or if Ai = 2.

} The shapes of the forbidden B-spectra have been presented first by K. J. Kono-
pinski and G. E. Uhlenbeck, Phys. Rev. 60 (1941), 308. An explicit treatment in
spherical coordinates is given by C. L. Critchfield, ibid. 63 (1943), 417.

§ Expressions for these integrals are to be found in ibid, 61 (1942) in independent
articles by C. L. Critchfield, p. 249 (light nuclei only), R. E. Marshak, p. 431, and
E. Greuling, p. 568.
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about because of the curious effect of the Coulomb field on the P-
waves for the electron, mentioned above. The half-lives for K-
capture are subject to the same classification into forbidden spectra
and are of special interest because the ratio of probability of K-capture
to positron emission is independent of the value of the nuclear
matrix element. The complete form for allowed K-capture, corre-
sponding to eq. (32), is

Ko 2? 283 +1 g 148
N = Ll My s (W) (38)

5. Comparison of experimental results with theory

The lifetime of a B-active nucleus depends upon so many factors
that it is impossible at the present stage of the investigation to give
anything like a complete analysis of about 200 known B-activities.
The formulas derived in § 4 give the dependence of the decay con-
stant on maximum energy and nuclear charge only for a simple 8-
emission. Many, if not most, of the known spectra are complex, as
is evidenced by the emission of y-rays by the daughter nuclei. The
lifetime of such radiations is determined by the co-operation of all
the B-spectra that can be emitted. In addition to this, except for the
very simple positron emitters presented in § 2, the nuclear matrix
element, i.e. the integral over the nuclear wave-functions, is uncer-
tain in its value. Furthermore, the exact form of the B-interaction is
unknown, so that, even in those cases for which the matrix element
can be estimated with reasonable accuracy, the magnitudes of the
interaction constants applying to the five independent invariants are
not determined. The fluctuations in lifetime from nucleus to nucleus
arising from these unknowns may be expected to amount to some-
thing less than a factor 100, however, so that the influence of parity
and spin-changes should be evident in the main.

By far the best method of analysing the lifetime of a B-dis-
integration is to compare the observed decay constant with the
decay constant that would be predicted for an allowed transition
with the same maximum energy. The customary procedure is to
multiply the observed half-life by the function Iy(W, Z), the form of
which is essentially obtained from eq. (33) by integration

w

_ (27 ;0 =270z
I(W, Z) = f T U = 2raZ (W) (1 —e-t7e2),

1
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the approximate form holding only for the lighter nuclei. We shall
denote this product by ft. The principal shortcoming of this method
lies in the great sensitivity of f¢ to errors in the determination of W
(since I varies as W?5). This variation introduces further uncertainties
into the analysis. The product f2 is then equal to

ft = ﬁ— . ln 2.
Aobs
0y
20
101
Log ft.
030 40 50 60 70 80 90

Fia. 19. Frequency distribution of all known values of log ft.
The quantity y represents the number of activities per 0-5 in log f¢.

Obviously, the larger the value of ft the more forbidden the radiation.
A plot of the frequency distribution of all known radiations as a
function of logft from logft = 3 to logft — 9 is shown in Fig. 19.1
There are distinct maxima in the distribution at logft 3-6, 5-0, and
6+6; and a less convincing maximum at logft 7-8. The first maximum
contains all the nuclei that are suspected of having matrix elements
near unity, the really allowed transitions discussed above.

The highest maximum in the distribution appears for lives that are
longer by a factor 25 than those of the really allowed transitions. Inas-
much as this peak is, by far, the largest and represents an average
lifetime that is a little too short for parity-forbidden transitions it is
natural to suppose that most of the transitions falling in this region
of log f¢t are neither parity- nor spin-forbidden but simply symmetry-
forbidden. This would demand an average value of ¢ = 0-04, which
is a reasonable guess as to the amount of similarity that might be

t The values of these products are given in Konopinski's very good report on
B-decay, E. J. Konopinski, Rev. Mod. Phys, 15 (1943), 209.
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expected in complicated nuclei. The hypothesis that these are simply
inter-multiplet transitions, without parity or forbidden spin-change,
is substantiated by the fact that every known §-active nucleus having
one more neutron than proton (except H?), and also three more
neutrons than protons, is under this hump. For the most part these
nuclei would not be expected to be forced to make either parity or
forbidden spin-changes, but they are expected to belong to different
supermultiplets. The ‘allowed’ natural radioactivities are also in
this hump.

Assuming that the nuclear matrix elements for all transitions,
except the really allowed one under the first peak, are characterized
by the average value of ¢ under the main peak of Fig. 19, the third
peak should contain, for the most part, the transitions that are for-
bidden both by symmetry and by parity. The average lifetime in this
peak is 40 times longer than for the simply symmetry-forbidden
transitions. If the parity-forbidden transition is due to the small
components of the nuclear waves, 82 = 1/40, and the indicated value
of v/c is 0-15, in good agreement with expectation. If the transition
is of the dipole type, the ratio depends, in general, npon the form of
the interaction. For all but a very few nuelei, however, the term in
2,/A, that depends upon Z2 predominates and, as we saw in the pre-
ceding section, the ratio should be }(aZ)?, except when Ai = 2. The
indicated average value of Z is therefore about 40, again in agree-
ment with what is expected, especially when one considers that the
hump embraces a factor 4 in ft, either way. It seems justifiable to
conclude that this third maximum contains mostly those transitions
that are forbidden by both symmetry and parity. The ‘first for-
bidden’ natural B-emissions fall at the high fi edge of this hump.

The fourth peak on the frequency diagram is so small that a quanti-
tative analysis of its position is of doubtful value. The average life-
time in this hump is about 20 times longer than in the third maximum.
This suggests that the fourth maximum may contain the dipole
transitions without change of parity, and the factor 20 for }(«Z)?
instead of 40, may be due to the higher average Z for nuclei under
this hump. The transitions in this region would then be forbidden
by both symmetry and spin. RaE is the only natural activity definitely
under this maximum.

The general conclusion to be drawn from this statistical analysis
of the half-lives is that most radiations are not forbidden by either
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parity or spin-changes but are slower than really allowed transitions
because of other lack of similarity in the nuclear wave-functions.
This result is easily understood when it is considered that B-energies
are generally larger than the average spacing between energy-levels
of the lower excitations of most nuclei, so that there is a good chance
of there being an available level in the daughter nucleus of a desirable
parity and spin. The large number of y-radiations following B-
transitions further supports this view, as also does the experimental
fact that the highly forbidden radiations usually have very low energy.

The spectra of the B-radiations falling under the first and second
maxima should thus be the normal Fermi type. There is also an
appreciable number of transitions that are apparently forbidden by
both symmetry and parity. Because of the dominance of the Z2 term
in the spectral modification factor, C, of eq. (37), these radiations
should also exhibit a normal spectrum. Two types of exceptions may
arise to this general rule. If the energy of emission is sufficiently high
(or the charge of the daughter nucleus sufficiently low) the p2R?
terms will dominate. This also happens when A:¢ = 2 for which C,
has no terms in Z or Z2. In either case the nature of the deviation
from a normal spectrum should be the same. The electron, if it
carries the full energy of the transition, will have a shorter wave-
length than a neutrino of maximum energy, because the rest-energy
of the electron is subtracted from the latter. The factor in the squares
of the momenta thus enhances the high-energy region of the spectrum,
relative to the low-energy region, and the Kurie plot should be con-
cave to the axes at its high-energy end.

Two of the more carefully determined B-spectra are those of P32
and RaE which fall under the fourth maximum. There are significant
deviations of these spectra from the normal one, but in cach case
the high-energy end of the Kurie plot appears quite straight. If the
transitions were of the quadrupole type, or dipole with spin change of
2, there should be deviations, and Konopinski and Uhlenbeck (loc.
cit.) have analysed these spectra on that basis. They find that a
judicious mixture of the two types of multipole can fit the spectra
over a considerable range. The mixture of types is necessary because
the relative weights of electron and neutrino momenta are different
for the two, and a fit can be found by taking a linear combination of
them. It is possible, in view of the straightness of the high-energy
ends of the Kurie plots, that both these spectra are normal and the
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deviations are instrumental. A transition falling under the fourth
maximum in Fig. 19 can have a normal spectrum if it is a transition
between nuclei of zero spin, for example, and such might be the case
for RaE. It is also possible that P32 is a parity-forbidden transition
that really belongs to the third maximum,

There are a few well-established B-activities of much longer lives
than those included in the statistical analysis. Notable among these
are the naturally occurring K4 and Rb# and the artificially produced
Bel? and C'. A table of these four activities containing the spins
of the parent and daughter nuclei is given in Table XII. The spin

TaBLE XII
zZ Parent Spin | Daughter | Spin, w log T3 log ft
19 K40 4 Casto 0 36 16-656 17-88
37 Rb#? 3/2 Sr8? 9/2 1-26 18:78 16-68
4 Be'? 0? Bt 1? 2:1 13-0 12-78
(] Ccus 0 Nu 1 1-28 12 9-6

changes in K and Rb are known in so far as there is no detectable
y-radiation. Their values of 4 and 3, respectively, indicate rather
highly forbidden transitions. A careful study of these transitions has
been made by Marshak (loc. cit.) and by Greuling (loc. cit.), who con-
clude that both are ‘third-forbidden’, i.e. they are forbidden by sym-
metry, parity, and spin. The light nuclei, Bel® and C'4, are probably
in the spin-forbidden class, the extraordinarily large value of log ft
being due to the small charge and the low energy. But efforts to
account for their forbidden character have been completely fruitless.
The case of Be!? is very difficult to understand when one considers
(% which decays, by positron emission, to the same nucleus as Bel®
does and which differs from Be'® only by interchange of neutrons and
protons. The C!° activity is in the really allowed class. Evidently
C'0 can go to an excited state of B0 that is inaccessible to B10. It is
improbable that the Coulomb field of such a small nucleus could
cause a great difference in the states of Bel® and C1.}

In addition to the known, long-lived activities there are several
pairs of neighbouring isobars among the apparently stable elements.

1 Oppenheimer has suggested that the disparity in the predicted lifetimes of Be!®
and C'° could be understood if the neutrino that is emitted when there is a change of
spin has a finite rest-mass, so that the energy available to the electron in the low-
enorgy spectra is much smaller than in the normal Fermi theory.
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The pairs of this type are Sb'?*—Te!23, [n'3—(Cd3, Sn—In!15
and Os'8”—Re!®?. If the energy-difference between ground states of
neighbouring isobars is too small to permit electron emission it
should be possible for the nucleus of higher charge to absorb an
orbital electron. In principle, therefore, neighbouring isobars are not
both stable. Actually, the energy-difference may be so small that the
half-life of the unstable nucleus is too long to be detected, especially
if the transition is forbidden by spin or parity. Even for allowed
transitions, the activity is probably undetectable if the maximum
energy of the B-particle is 0-1 M.e.v. (plus rest energy) ; and since the
usual energy-difference is 2 or 3 M.e.v., it is not surprising that 5 out
of over 200 nuclei have neighbouring isobars.

3595.61 L



VI

SPONTANEOUS DISINTEGRATION OF ATOMIC
NUCLEIL

1. Energy considerations

WE shall now consider the processes in which an atomic nucleus splits
spontaneously into two or more distinct fragments.

The possibility of such a spontaneous division of a nucleus is
determined by the ditference between the binding energy of that
nucleus and the sum of the binding energies of the fragments into
which it divides. A rough analysis of the energies of binding can be
based on eq. (4) of Chapter IV which expresses the binding energy
in terms of the mass-number A and atomic number Z (using also the
isotopic spin 7y = }(4—2Z)). In order to make use of that equation
one should substitute the empirical expressions for L and L’ that
have been found in Chapter IV. This leads to a cumbersome formula
for BE which we shall simplify, in the usual way, by retaining only
those terms that are essentially proportional to 4 in higher than the
zero power and by approximating L as it occurs in §LTy(T;+-4) by
its value for the heaviest elements. Moreover, for the present dis-
cussion, it is convenient to convert BA to units of M.e.v., and we
obtain finally:

z: T}
BE = —14-64+ 14-6A3+0-60E+77.Z§, (1)

which is a simple generalization of eq. (10) of Chapter I.

Let us consider, as an example, the case in which the nucleus 4
splits into two parts with mass-numbers a4 and (1—a)4 and assume
that the electric charge is distributed on the fragments in proportion
to their masses. Then, the first and last terms of eq. (1) are simply
additive and the difference in binding energy may be expressed:

ABE = 14-6A![1—a!~(1—a)!]+o-6o§[1—aﬁ—(l—a)a]. (2)

If ABE > 0 a spontaneous division is possible, if ABE < 0 it is not.
Thus for each set of values of A and Z expression (2) determines the
range of fragment sizes for which the process is possible. The results
of such calculations are given in Fig. 20, from which we see that for
the elements of the first half of the periodic system a spontaneous
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break-up is impossible for any ratio of masses. For Z > 42 a divi-
sion into two fragments becomes possible, first for « = 0-5 (where the
expression for ABE has a maximum) and as Z increases for a wider
range of fragment ratios. Thus for tin (Z = 50) the smaller fragment
may contain as little as 15 per cent. of the original nuclear mass
(atomic weight > 18); for Yb (Z = 70) this limit falls to only 6 per
cent. (atomic weight > 10), whereas for the last few elements of the

Z fragm.

05 ‘

04

0-31 FISSION REGION
0-2

STABLE REGION
01
0-0 -

0 10 2 3 40 5 6 M 8 90

Fia. 20.
system the emission of fragments with the mass 4 (x-disintegration)
becomes energetically possible.}

In a similar way we may investigate spontaneous nuclear splitting
into three or more fragments, or the cases in which the electric
charge is not distributed among the fragments in proportion to their
masses. One finds, for example, that the heavy nuclei, like that of
uranium, can split exoergically into as many as fourteen fragments
of about equal size, and that the lower limit of Z necessary for such
multiple splitting increases rapidly as the number of fragments
increases.

There are two important cases of the spontaneous disintegra-
tion of atomic nuclei occurring in nature, viz. natural a-radiation and
the spontaneous fission of U2® first observed by Petrzhak and
Flerov.{ The reason for these phenomena being the important ones
is, of course, that their rates of reaction happen to be observable.

t The limit for the spontancous emission of lighter nuclei (He®, H3, and H?) lies
at considerably higher atomic numbers because of unfavourable energy-balance

resulting from abnormally low binding energies of these nuclei.
1 J. 8. Petrzhak and G. N. Flerov, J. Phys. U.S.S.R. 3 (1940), 275.



148 SPONTANEOUS DISINTEGRATION OF ATOMIC NUCLEI Chap. VI, §1

More details of the physics of the processes of fission and of a-
emission will be discussed in the ensuing sections. For the present
we shall illustrate some of the limitations of our rough energy-
considerations by studying further some of the properties of the
fission of the uranium nucleus.

According to the formula (2) the greatest amount of energy is
released if the two fragments are of equal size, o = }. Substituting
this value into eq. (2) we get

ABE, — —3-SAL}-0-222§;, 3)
which for U238 yields 156 M.e.v. This energy-release is mostly con-
tained in the kinetic energy of the fragments as they fly apart, but
some is retained as vibrational or other excitation of the fragment
nuclei (since eq. (1) is for the lowest state of a nucleus). Generally
speaking reaction rates increase with the energy release, so that one
should expect, on the basis of our rough analysis, that the most
favourable mode of division of the uranium nucleus would be into
two fragments of equal mass and that the statistical distribution of
fragment sizes would have a maximum at 4 = % 238 = 119. The
observed distribution of the masses of fragments from U236 is shown
in Fig. 21.7 It will be noted that the most favoured mode of division
is not into two fragments of mass 118 but rather into fragments of
masses 96 and 140. The proportionate proton numbers are 38 and
54 and neutron numbers 58 and 86. According to eq. (2) such a ratio
of masses would release only 143 M.e.v. From the nature of the neutron
and proton numbers involved in the asymmetric fission it would
appear that the ‘shell-structure’ in nuclei, particularly those shells
characterized by the numbers 50 and 82, so distorts the dependence of
binding energy on the number of particles that more energy is released
by dividing asymmetrically. Such effects are not included in eqs. (1)
and (2).

That possible neutron (and/or proton) shells influence the mass-
ratio in fission, as suggested above, is mere conjecture at the present
time. There is an interesting corroboration of the existence of neutron
shells at 50 and 82 in the fission process, however, which illustrates

1 From Rev. Mod. Phys. 18 (1946), 513. The curve given here corresponds to the
fission of the excited compound nucleus formed by the absorption of incident neutron.

However, one would expect that the distribution of fragments originating in spon-
taneous fission would be about the same.
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also another type of spontaneous disintegration of a nucleus. Con-
sidering the above example of the most favoured division of U236
we found the proton numbers belonging to Sr and Xe. The corre-
sponding necutron numbers, however, are 8 too many for the
heaviest Sr isotope and 4 too many for the heaviest Xe isotope. In
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. 21, Relative number of various frag-
moents produced in the fission of U238
(= U254 n) nucleus.

general, the fission fragments will have too many neutrons, propor-
tionately, to be stable, so that they will undergo several g-disintegra-
tions in series so as to attain neutron and proton numbers that are
stable for the given atomic weight. In a few of these f-decay series,
however, the mass-number does not remain fixed but decreases by
unity somewhere along the line. That is, a single neutron is emitted
by one of the daughter nuclei and this represents a third type of
spontaneous disintegration in which a single nucleon separates from
the main body of nucleons. If one uses eq. (1) to estimate the
neutron excess necessary to make it energetically possible to emit a
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single neutron one finds values much larger than those common in
fission fragments. It would appear, therefore, that neutron emission
by fission fragments (the delayed neutrons that are so important to
controlled chain-reactions, Chap. X) is made possible by the circum-
stance that certain neutrons are much more weakly bound to their
nuclei than eq. (1) predicts. Two of the isotopes that emit delayed
neutrons have been identified and these are:

wBIT > Kr¥7 — ((Krétin

531137 _ﬂ) 54}(6187 — 54X6136+n,

indicating that the 51st and 83rd neutrons are particularly weakly
bound (or not at all). It should be pointed out, however, that
disintegration of a nucleus 4 into one neutron and a nucleus 4—1 is
in a different class from «-emission or spontaneous fission since the
neutron emission should take place almost instantaneously, whereas
disintegrations involving charged fragments take many years. The
finite half-lives of the delayed neutrons are due to the B-radiations in
the series.

2. Nuclear potential barriers

In considering the relative probabilities of various modes of spon-
taneous nuclear disintegration it is important to remember that these
probabilities depend not only on the energy liberated in the process
but also on the masses and charges of the fragments formed. Thus
the most probable way of splitting will not coincide, in general, with
the most exoergic way and, in fact, we shall see that the splitting
of the uranium nucleus into the two heavy fragments formed in spon-
taneous fission is a million times less probable than the splitting into
an alpha-particle and the nucleus of UX I (natural «-decay) in spite
of the fact that the former process liberates 50 times greater energy
than the latter.

We shall discuss separately two extreme cases of nuclear break-
up characterizing the two important categories cited in § 1: the case
when one fragment is much smaller than the other, and the case in
which there are two fragments of approximately equal size. In the
former case one can assume to a good degree of approximation that
the separation of the small fragment from the large one is not accom-
panied with any appreciable deformation of the original nucleus, so
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that the problem can be treated in terms of the motion of a relatively
light mass point in the field of the undisturbed residual nucleus. The
potential energy of the system in this case will be represented by a
curve of the type shown in Fig. 22, where r, is the radius of the
resulting product-nucleus (= 1-22x 10-134%cm.) plus the radius of
emitted particle. Since in the ordinary o-emitters the height of
the potential barrier thus formed is several times the energy of the
a-particle, the principal part of the barrier, in its effect on the
a-particle, is determined by the Coulomb interaction and the exact
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shape of the rise of potential at the surface of the nucleus is rather
immaterial. For such a barrier we may assume:

U = U, = const. for r <r,,

Z'Z—7')e? (4)

U= . for » > 7,

where Z'(< Z) is the charge of the smaller fragment.

In the other extreme case of nuclear splitting into two almost
equal fragments, i.e. the fission process proper, the situation is
entirely different since, in this case, the splitting is preceded by a
severe deformation of the original nucleus. This process of deforma-
tion has been studied in great detail by Bohr and Wheeler in their
fundamental article on the theory of nuclear fission.t In Fig. 23
we give schematic pictures of various characteristic stages leading to
the fission of a liquid droplet. For the lighter elements, in which the
electric forces are small compared with the forces due to surface
tension, the final separation into fragments would not occur until
the deformation reaches the stage (d) in which the two parts are

1 N. Bohr and J. A. Wheeler, Phys. Rev. 56 (1939), 426.
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connected by a very narrow neck of liquid. Hence, in this case, the
critical energy necessary for separation (i.e. the height of the potential
barrier) can be calculated as the difference between the energy of the
original nucleus and that of the two fragments just tangent to each
other. One finds, writing the surface energy as 43, QA!,

3(3Ze)*  3(Ze)p | (3Ze)
Brog(}A)t  breg Al 2(FA)
(5)

AB = 2+dmrdy Q(3A) —4mrd, QAV 42

which can be written in the form:

ABosy .00 0.
- i = 0°260—0-2152, (6)
72/A
e e O

Thus we see that for the lighter nuclei the
critical energy of deformation is a linear
function of the parameter Z2/A4.

In the opposite case of very heavy elements, in which electric
forces play a predominant role, the complete separation of the
nuclear droplet is expected to take place already at an early stage
of the deformation since the repulsion between the charges carried
by the two halves of a slightly elongated droplet will be strong
enough to increase the elongation against the opposing tendency of
the surface tension. To study this process in greater detail we shall
represent an arbitrary deformation of the nucleus in terms of surface
harmonics of various orders. If we write #(0) for the distance from
the centre of the nucleus to a point on its surface at the colatitude 6,

an arbitrary deformation of the body, having axial symmetry, can
be expressed in the form:

7(0) = ro{1+ay+ag Py(cos 8)+wy Py(cos 8) 4oy Py(cos §)..),  (8)
where P, are the Legendre polynomials of the order 4.1 For any set
of vibration amplitudes, oy, ag, oy, etc., we have to choose «, in such
a way as to keep the volume of the nucleus the same. As can be seen
from Fig. 24 representing the various modes of vibration correspond-
ing to the various terms in (8), nuclear splitting into ¢ fragments
involves the action of the sth harmonic. Since we shall be interested

Fia. 24,

t The term corresponding to Py(cosf) is missing from the expression because it

represents a simple translation of the nucleus as a whole and is of no interest to the
procoss.
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here in the most important case of nuclear splitting into two frag-
ments, we shall consider primarily the effect of the P,-vibration.
Straightforward calculations on this model show that the change in
the combined surface- and electric-energies effected by the deforma-
tion (8) is given by the expression:

ABg,y; = 4mrlo AYQ[Fo3+Hod +Whod + od g+l —

3 (ZP) [1 2+105°‘g+58 4+§85°‘2a4+2—a4 J.(9)

This expression includes also the terms in «, which are necessary
because of the strong coupling that sets in between the second and
fourth modes of vibration for appreciable amplitudes. By minimiz-
ing (9) with respect to o, we find o, = —#2a2 which permits us to
express the minimum energy of deformation in terms of «, alone.
The negative sign in the relation between «, and o, emphasizes the
fact that in the later stages of its elongation the nucleus must
develop a cavity around its equatorial belt (cf. Fig. 23) in preparation
for the separation.

Inspecting the coefficient of the main term in eq. (9), i.e. that
proportional to o2, we find that it becomes negative for sufficiently
high values of Z; when this is the case the nucleus is intrinsically
unstable since an infinitesimal deformation will lead directly to
fission. Thus the condition for stability, ensuring the existence itself
of a given nucleus, can be written in the form:

2 _ 3 (Ze) 1
477'7‘(2,0/159-— > 5 r—ﬂ 5 (10)
or Z* _AomrQ (7P
A 3(’2 - A lnn-
Substituting numerical values, we find (Z2/4);,, = 47'8, as com-

pared with the value of only 92%/238 = 35-6 characterizing U23,
Assuming that for transuranic elements 4 is approximately propor-
tional to Z, we find that the limit of nuclear stability will be reached
in the neighbourhood of Z = 120. It must be remembered, however,
that the irregularities caused by nuclear shell-structure might shift
this estimate quite considerably towards smaller Z’s and better
agreement with observation (cf. also App. IV).

In a system close to the limit of nuclear stability, so that a com-
paratively small deformation brings the nucleus ‘to the upper rim’
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of the potential barrier, formula (9) may be used for the calculation
of the critical deformation. By direct calculation one finds that the
maximum value of AE is attained for a certain value of ay:

Qg = QXpcrits (11)
and that at this point:
AE = 4mrdy AYQ[R(1 —x )P —HiB(1—x)t...], (12)
Z3|A

where (13)

L=
(2% Aym
has the same meaning as in formulas (6) and (7). Thus, for example,
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we obtain for the U28-nucleus, AE;, ~ 6 M.e.v. The shape of the
potential barrier corresponding to the general case of heavy nuclear
fission is shown schematically in Fig. 25. Making a reasonable interpola-
tion between the expression (6) which gives the critical deformation-
energy for light nuclei, and the expression (12) which is applicable to
the heavy ones, one can construct the curve, Fig. 26, representing the
general dependence of AK,, on the parameter: x = (Z2/A4)/(Z%/4)ym.

The calculations above of the energy of a deformed nucleus are
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based entirely on the classical picture of liquid droplet deformation,
and it is important to see whether such an approach is valid, as an
approximation, from the point of view of quantum mechanics. The
possibility of using the classical picture depends essentially upon
the smallness of the ratio between the zero-point amplitudes for the
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oscillations discussed above and the nuclear radius. A simple calcula-
tion gives for the square of the ratio in question the values:

7 3
(« n)/uu point == = A xli 12 M7 ‘2)0 477009:,‘”‘(27L+])}X
X[ (n— L) (n+2)(2n+1)—20(n— )&t (14)
2
Nince [ .);’”*2 - Ay SZ]%: %’

this ratio is indeed a small quantity, and it follows that deformations
of magnitudes comparable with nuclear dimensions can be described
approximately classically by suitable wave-packets constructed from
the various quantum-mechanical solutions. In particular, it can be
shown that the critical deformations leading to fission of heavy
nuclei like uranium or thorium are large compared with the amplitude
of the zero-point vibrations, so that the entire fission process of these
nuclei may be treated in the classical manner as done above.

We may mention in conclusion that, from the practical point of
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view, the fission process of atomic nuclei is a nearly irreversible pro-
cess, and if we imagine the two fragments resulting from a fission
to be reflected without loss of energy and to run directly towards
each other, the electric repulsion between their charges would
ordinarily prevent them from coming into contact. In fact, the
difference in energy between two spherical fragments coming into
contact, and the fused single nucleus, is given for all atomic weights
by eq. (9), and we see from Fig. 25, in which this energy-difference
is shown by the broken line, that it always lies considerably higher
than the critical energy needed for fission. Thus the energy made
available in the spontaneous fission of a heavy nucleus is considerably
smaller than the energy that would be necessary to bring the two
fragments back into contact as spherical droplets (cf. Fig. 25). This
apparent paradox can be understood easily if we remember that the
fission process actually takes place in a configuration in which the
sum of surface- and electric-energies has a much smaller value than
that corresponding to two rigid spheres in contact, or even to two
globes distorted by the Coulomb forces. When the original nucleus
breaks up, the two fragments ordinarily will possess shapes very
different from spheres and must be considered, consequently, as in a
very high state of internal excitation. Thus, if we wish to reverse
the process of fission, we must take care that the fragments come
together again sufficiently distorted, and indeed with the distortion
so oriented that contact can be made between the bulges of the two
surfaces. The probability that two atomic nuclei in any actual
encounter will be suitably excited and possess the proper phase-
relations so that fusion into a single system is possible will be extremely
small. Hence the fusion of two fragments can be expected only if
they collide with an energy much higher than that corresponding
to the reverse, fission process.

3. Transparency of nuclear barriers

The phenomenon of spontaneous nuclear decay, in which the
metastable nucleus breaks up into two (or more) parts without any
external influence, is one of the most representative illustrations of
the validity of the wave-mechanics. The wave-mechanical theory
of processes of this type developed historically from an experiment
by Rutherfordt on the scattering of «-particles in uranium that led

t E. Ruthorford, Phil. May. Ser. 7, 4 (1927), 580.
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to an apparently paradoxical result. He found, in fact, that
although the spontaneous decay of uranium produces «-particles
with an energy of only 4 M.e.v., no deviation from the inverse
square law of scattering was observed when a uranium target was
bombarded by the «-particles of ThC’ which have an energy of
8:8 M.e.v. and which, because of this high energy, can approach the
nucleus within a distance of 3x10-2 ¢m. from its centre. The
absence of any deviation from the inverse-square scattering law
indicates with certainty that the outer slope of the potential barrier
surrounding the U-nucleus is formed by the pure Coulomb potential
down to the radius 3x 1012 em. where it reaches the height of 8-8
M.e.v. (14X 10-% erg). How is it possible that, in spite of such a high
barrier, the nucleus of uranium emits «-particles with an energy of
only 4 M.e.v.? This fact, which is completely incomprchensible from
the point of view of classical mechanics, can be understood easily
on the basis of the wave-mechanical theory as shown independently
by Gamowt and by Gurney and Condon.} In fact, the apparently
paradoxical behaviour of the nuclear particle in this case has a full
analogy in certain phenomena attending the reflection of light. It is
well known that if a beam of light falls on the boundary between two
media at an angle of incidence greater than the critical angle, then,
according to geometrical optics, the phenomenon of total reflection
will occur; all the light will be reflected at the surface and no distur-
bance will enter the second medium. According to the wave-theory
of light, however, the process of total reflection is much more compli-
cated. On this theory the disturbance in the second medium is not
everywhere zero, but within the space of a few wave-lengths decreases
exponentially to become entirely negligible at greater distances. This
‘forbidden’ penetration of the disturbance cannot be described in
terms of rays of light at all, the lines representing the directions of
energy-flow being curved and returning to the surface again. If, now,
the second medium be confined to a thin sheet, of thickness less than
tho range of penetration of the disturbance already considered, and
if it is backed on the far side by a further portion of the first medium,
a small fraction of the disturbance which has penetrated the sheet
will emerge from the far side. This transmission of energy is obviously

1 G. Gamow, Zs. f. Phys. 51 (1928), 204 ; G. Gamow and F. Houtermans, ibid. 52
(1928), 496.

1 R. W. Gurney and E. U. Condon, Nature, 122 (1928), 439, and Phys. Rev. 33
(1929), 127.
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in contradiction to the predictions of purely geometrical optics: it
is, however, established by experiment. The change from classical
mechanics to the wave-mechanics introduces an exactly similar pos-
sibility for the transmission of a particle through a potential barrier
which would otherwise be insurmountable. We describe the motion of
the nuclear particle in the present case by a quasi-stationary de Broglie
wave which gradually decreases in amplitude inside the nucleus on
account of the leakage transmission through the finite potential

Utx)

Fia. 27.

barrier. Obviously, this description predicts the possibility of observ-
ing the particle, eventually, outside the nucleus; the small trans-
parency of potential barriers in general provides the formal explanation
of the extremely long lifetimes exhibited by some «-ray bodies.

We proceed now to develop general formulac for the coefficient of
transparency of potential barriers, considering, first of all, the one-
dimensional case. Let a particle of total energy # fall (from the right)
on a potential barrier represented by an arbitrary potential energy
function U(z), as shown in Fig. 27. We suppose that in a certain
region (x; < < x,) the value of the function U(x) is greater than K,
and that for large distances from this region, on either side, constant
values, U_,, and U,,, respectively, are reached. We write the
Schrodinger wave-equation in the form

oxp(x,t) | 2mi af(x,t) 2m .
2w T o —F‘U('@)‘/’(-’f,t) =0, (15)

where m is the mass of the particle and /i (— &/27) is the quantum
constant. Since the potential energy U(z) is assumed to be inde-
pendent of the time, the solution may be written in the form

Pl t) = W (x)e ME, (16)
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in which ¥ satisfies the equation

‘fi:: 2"‘[15 U(x)|¥(x) = 0. (7)
Writing W(x) = estn), (18)
eq. (5) reduces to

d?s | [(ds\?

This equation can be solved by the method of successive approxima-
tions, so long as the first term is small compared with the second.
As we shall see later, this condition, namely
d?sjda®| _|d [ 1

(ds/dx)?| — |da\ds/dx
usually holds good for the potential barriers which occur in the theory
of radioactive disintegration. We proceed, therefore, by tho method
of approximations, and obtain the first approximation from

(%)2+2ﬂ~’:’[15— U(z)] = 0. (21)

Integrating, we have

<1 (20)

o = ix/(_‘j;’f”_) f [U(z)— B de-+C,. (22)

For the second approximation we substitute from (22) in the first
term of (19), writing s, for s. We have

() - Fve-nFLm e -m, e
or dsz__ :!:J(2m)[U( ) B — 1 (d/dz) [Ux)—E} . (24)

2 [U@)—E]

Integrating this expression, we obtain
&
o= 3G [ [06)BP de—{log U@ —BF-+C,. (20)

We may proceed in exactly the same way to the third approximation,
but already it is of no great importance. Thus we have, finally, with
sufficient accuracy

Y (@) = e.;g(:r) = Qy[U(x)—E]-* exp(ii%m_) f [U(x)—E)} dx). (26)

Ty
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This solution is valid only in those regions for which the condition
(20) is satisfied. Using the first approximation for s, we write this con-
fi

dition in the form
d 1 .
J(@m) zﬂ([[](x)—. E]s)l <L (27)

An estimate of the order of magnitude of the quantity occurring in
(27) may be made in terms of its approximate equivalent,

o1 AU (x)

J(@m) 2 BalU(2)— B
Remembering that, in nuclear potential barriers, we have to do with
energies of the order of 10-5 erg, and with changes of potential energy
of roughly this amount over distances of the order of 10-12 cm., we
substitute in (28) B ~ U(x) ~ AU(z) ~ 1075 erg, Ax ~ 10712 em,,
and obtain (for m ~ 6 10-24 gm.) the value ~ &;. Near the points
2, Z, (Fig. 27) the left-hand side of (27) becomes infinite, but other-
wise our numerical calculation shows that in practical cases the con-
dition (20) is usually satisfied. In order to carry out the integration
in the regions around z;, z, we need to know the analytical form of
U(z), and, having substituted this in (19), to obtain the exact solu-
tion of the wave equation. If, however, these regions (in which
[U ()~ E]-* varies too rapidly with x) are small enough, we can make
the solutions for the neighbouring regions on the two sides satisfy
the boundary conditions of continuity and thus deduce the complete
solution by exclusively approximate methods.

Let us return, for the moment, to the more physical aspect of the
problem in hand. We have postulated a beam of particles moving
from right to left and falling on the right-hand side of the potential
barrier of Fig. 27. Our mathematical solution must represent these
particles as well as those reflected, and so moving from left to right,
to the right of the barrier, and those transmitted (moving from right
to left, to the left of the barrier). In particular, at large distances to
the left of the barrier (where U -= U_,) the solution must represent
an harmonic wave travelling from right to left. Thus in the general
solution (26) we put U = U_, and choose the negative sign of the
exponent to secure the correct direction of motion (compare with
(16)). We obtain in this way

@

Wy = O~ U Voxpf Y& B0 ia—z,)], (29

(28)
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representing a wave travelling from right to left, in a region where
E>U.,.7

In the region z, <z < z, the difference [U(x)— E] becomes posi-
tive and both solutions, apart from the arbitrary constants, are real,
onc of them increasing and the other decreasing rapidly as « increases.
To make the solutions continuous at x = z, we must take inside
the barrier the general form with complex coefficients:

¥<an = OLE— U(x)]-*{mexp(‘/‘im’ [ we)—my dx)+

+b_exp(_i(_§iﬂ“_) f [U(@)—E]} dx)}. (30)

It is easy to see that tho boundary conditions at x = x, (continuity
of ¥ and d'¥/dx) require

b, = %(1—i>exp(—ii2ﬁ”i’ [ tr—ve dm);
" (31)
b= %(1+i)exp(—i‘/(—im—) [ m—v@y dx).
&9
At the other end of the barrier, where x = x,, the second term in

(30) is very small compared with the first. In that case the solution
reduces to

W, — 30— B— U(wal-*exp(—i—“/—(i—”” [ -v@y dx) x

y exp(‘/(im) f (U@@)—E]: da:). (32)

To join this function with the solution for z > x, we must again take
a linear combination of the solutions representing oppositely directed
waves,

Y,y = O[E— U(x)]-*{aJrexp(iﬁ/—(iﬂ f [E—U(x)} dl') +
+a_ exp(—i“/—(%—m) f [E—U(x)) dx)}, (33)

+ @, in (29) is a point at a great distance to the left of the barrier, i.e. z, < 2,.
3595,61 M
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and the boundary conditions give

- J}(l—i)b+exp(3/——(2,;7n—) f [U(x)—E]*dx);
. (34)
a“ = %(1+¢)b+exp(@ f [U(@)— B} dx).

If, now, z; is some value of  lying at a great distance to the right
of the barrier, the above solution may be written

Frrer = A, 0xpf[ V0B U el +

4 exp(—i ilm) Um)*(x—x;,)}, (35)
with

A, = —}C[E-U)]* exp{i%(—i T [E—U(x)]t de+

Xo

+ T[U(m)——E]i doti f[ﬁ;_ U @)} dx)},
“ o = (36)
= $C[E—U(z)] texp{\/(Q )( zf[E— U(z) ]t dee+

+ f |U(@)—E] de—i f [E—U(x)} dw)}
2

These two waves represent the incident and reflected beams of par-
ticles; they appear to have equal amplitude because we have neglected
certain small-order terms (the second term in (30)). In actual fact
a wave of small intensity has been transmitted by the barrier, and
carrying out the calculations to the next order of approximation an
expression representing the conservation of particles is obtained.

The coefficient of transparency of the barrier is given by the square
of the ratio of the amplitudes of transmitted and incident waves,
respectively. We have

4(g:gf:)%exp(—y%f [Ux)—E] dx). (37)

This is the formula which we shall employ in future calculations of the
transparency of nuclear potential barriers. When this transparency

( )
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Zg
is small (2/(2m) f [U@x)—ET dx > #), it is possible to show that

(20), (27), the conditions of validity of the formula, are fulfilled.

We may remark, at this stage, that in certain special cases the solu-
tion of the wave-equation may be found directly in an analytical form.
For the Coulomb potential barricr, for example, the solution may be
expressed in the form of confluent hypergeometrie functions. Thistype
of barrier is of great importance in the theory of nuclear disintegration,
but here the analytical form of solution does not lead to any greater
aceuracy in calculation and we shall not further be concerned with it.

urn)

Fia. 28.

We are now in a position to develop the general theory of the escape
of a particle from a region surrounded by a potential barrier—which
is just the process involved in the emission of an «-particle by an
atomic nucleus. We shall assume spherical symmetry for the dis-
tribution of potential energy around the centre of the nucleus and
imagine that the appropriate function U/(r), starting from a certain
finite value at the centre, increases to a large positive value at a
relatively small distance and vanishes for very large distances, as
indicated in the figure. The total energy of the particle considered is
supposed to be smaller than the energy corresponding to the peak
of the potential barrier, but larger than that corresponding to the
bottom of the potential ‘hole’ in Fig. 28. The wave equation for the
particle may be written in spherical polar coordinates as follows:

1 0,0 1 of. 50

;-é a—r(’%ﬁ) tiasind 5?0(*““" aié) +

' 1 &y 2map 2m

+m@§ S g UM =0 (38)
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If £ is the energy of the particle, the solution of this equation will

have the form i
g = W(r,0, qS)exp(—ﬁEt), (39)

where ¥ satisfies the equation

1 90 a\F 1 0 oV
;éar( 8r)+'rzsin030(m000)+

1 3 ‘F 2m
In so far as the potential energy of the «-particle in the neighbour-
hood of the nucleus is independent of the angular coordinates 6 and ¢,
¥ may be expressed in the form

¥ = 2P0 $)x(0) (41)

where P, is a spherical harmonic of order j (j = 0,1, 2,...) and x,(r)
satisfies the equation
2

Zxin), [F vy — 2 AED ] xi(r) = 0. (42)
Here j represents the azimuthal quantum number and the last term
within the brackets is to be interpreted as an additional potential
energy corresponding to the centrifugal force. Tn order that V" shall
remain finite at the centre of the nucleus, x(0) must be zero, as may
be seen by inspection of (41).

We may thus obtain a general solution to (38), but it should be
noted that not every particular case of such a solution represents the
process of spontaneous ejection of an a-particle from the nucleus—
which process we wish to describe. Tn order that any solution shall
do this it is necessary first to satisfy certain boundary conditions
appropriate to the physical interpretation in question. We may
specify these conditions, formally, as follows. Let us proceed to
construct solutions of (42) for some arbitrary value of ¥, inserting,
as above indicated, x(0) = 0. For large values of r we obtain in
this way

—(",E,exp( ‘/( )Eir)—{—CﬁE,exp( ‘/(zm)E’Sr) (43)

where C, and C_ are the complex conjugate functions of ‘£ and j.
Substituted in (39) and (41), the first and second terms of (43)
represent, respectively, divergent and convergent waves passing
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through the origin. Now the process of spontaneous disintegration
must be described in terms of a diverging wave, only, thus

Copy #0;  Copyy=0. (44)
At first sight it might seem that the conditions (44) were mutually
contradictory, since C, and C_, being complex conjugate functions,
might be thought always to vanish simultaneously. However, it can
easily be shown that this need not be so, if we allow complex values
for K; complex conjugate functions of the same complex argument in
general give quite different amplitudes. Postponing for a time the
physical interpretation of this procedure, we write, therefore

E - E—iF'. (45)

We find now that the conditions (44) define, for each value of the
azimuthal quantum number j, a discrete set of complex K values
which we shall distinguish by different indices » (n = 0,1,2,...). We
may refer to these as the principal quantum numbers for this set
of states. Here, as in the ordinary problem of electron motion in
the outer atom, we come upon a set of discrete proper values of the
energy, the only difference being that the values are now complex
quantities which on interpretation correspond to positive, rather
than to negative, total energy.

Proceeding now to the interpretation which is necessary to com-
plete the investigation, we must turn our attention to the time-
dependence of . Substituting from (45) in (39), we obtain as the
time-factor in the wave-function

exp(—%Et) = exp(——'-( —iE' )t) = oxp(—%E t)exp(—Et) (46)

Then the probability, yuJ, that the a-particle will be found in any
particular region of space, inside the nucleus or outside, becomes
aperiodically dependent upon the time:

o [oxo o =) [eafartere )
= exp(—2flt) = exp(—At). (47)

In this expression the quantity A (== 2E’/h) may be recognized as
the disintegration constant which should appear as a result of our

+ It may be shown that a divergent wave requires a negative sign in (45), a con-
vergent wave a positive sign.
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calculations. The complex values of the proper energies thus lead
to exponentially decreasing probabilities of finding a particle, of
given energy, in a finite region of space: they are characteristic of
the solution of any problem which deals with decay processes, the
imaginary part of the energy being immediately connected with the
rate of decay. We may also regard the imaginary part of the energy
from a slightly different point of view. The y-wave diverging from
the nucleus will not be strictly harmonie, the aperiodic factor result-
ing in a damping of the wave. In optics such a damped disturbance
would produce a broadened line in a spectrograph; with moving
particles we employ a mass spectrograph, or its equivalent, and here
the broadening of the line will be interpreted as due to an uncertainty
in the energy of the particles. Developing the damped wave-function
by Fourier expansion it may be shown that the uncertainty in the
energy (half-breadth of the line) has the value

AE ~X~ E'. (48)1

From this point of view the average energy of the emitted particles
is given by the real part of the proper energy, whilst the probable
deviation from the average is given by the imaginary part.

Having carried the interpretation so far, it is necessary now to
mention that the complexity of £ introduces an exponential term
involving the space-coordinate also. For large distances from the
nucleus, where U(r) - 0, we evidently have (B’ < E)

x(Q = C+er<p(i‘/(ﬂn~) E!r) = O, exp(i:/%@[}go_im]%r)

X i 5

= C, exp(i‘/(im) E},r)exp(% 2—71’;0 r). (49)
"This implies that the amplitude of the divergent wave increases with
increasing distance and tends to an infinite value at infinity; the
same general result is obtained in all solutions of decay problems,
for example in the classical solution for the radiation from a damped
oscillator. It need occasion no surprise, since it merely expresses tho
fact that the disturbance at a great distance from the origin, at any
moment, was emitted from the origin at a correspondingly distant
past time, when the rate of radiation was greater. In the radioactive

b

t Remembering that the mean time, T, for an a-particle to remain in the nucleus
is given by T' — 1/, (48) may ho written TAK ~ #, which is precisely Hoisenberg’s
uncertainty relation, oxpressed in terms of time and energy.
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decay problem the flux of particles at a large distance r, at a given
instant, must obviously correspond to the strength of the source at
a time r/v earlier. At that time the strength of the source was greater

by the factor exp()\ ) = exp()xr which is precisely the factor

o)
to be explained in (49), when it is remembered that (49) gives the
amplitude of the wave and the square of this amplitude enters
into the calculation of the flux. In order to appreciate the relative
magnitudes of the various quantities involved, we may take the case
of radium C’, for which E'/E, is larger than for any other element
concerning which full data are available. Here E; = 1:2x10-5 erg,
A = 10% sec.”!, thus E = E,—i}M = 12X 10-5—5-2x 10-24. The
uncertainty in the energy-value is only 4-3x10-17 per cent. of the
average energy, and, according to (49), the amplitude of the J wave
is not doubled until a distance of 2-8 km. from the nucleus is reached.

Although the method of complex E values, proposed by Gamow,
gives perhaps the most satisfactory representation of disintegration
processes, the necessary calculations are impossible except in respect
of very simple nuclear models, such as that represented by the
rectangular potential barrier discussed in detail by Kudar.t On the
other hand, real nuclei must be treated on the basis of a potential-
energy function for a-particles which at large distances is given by
the Coulomb inverse-distance law and at small distances is modified
by some unknown, rapidly varying, potential function which makes
the resultant potential energy negative inside the nucleus. In this
case it is possible to obtain a relation between the real and imaginary
parts of the proper energy-values—that is between disintegration
energy and decay-constant—without in the process determining
the values of E, (energies of disintegration) to which the more
complicated model leads. These values are very sensitive to the form
of the potential barrier inside the nucleus, but the E,—AX relation
may be obtained without exact knowledge of this form, as we shall
prosently discover. This relation may then very usefully be com-
pared with the empirical relation which has already been discussed.

Suppose that we start with the expression, in terms of the wave-
function i, for the conservation of particles; it is

f P dw 2mz [#’Zﬁ &Zﬁ] do, (50)

t J. Kudar, Zs. f. Phys. 53 (1929), 95, 134.
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the integral on the left being taken throughout a certain region of
space and that on the right over its boundary surface. In the expres-
sion on the right, moreover, » is measured along the outward normal
to the surface element do. In (50) p (= yf) is the probability density

relative to the particle in question and I, ( 3 [¢ l/; 3:/:]) the
mi

normal component of the flux of probability across the surface. In the
case of spherical symmetry, when we choose for the region to which (50)
applies a sphere of radius R centred in the nucleus, we can, by using
(39), (41), and (47 ), transform the conservation equation and obtain

0 0
il -M d — X X 51
f xe T= Zmz [xar xar]r=R (51)
0
h ox 0
u A _ _x_.. -._.& > . 5Y
or 2m@[x6r xar]r=1e/ofxx dr (52)

We have thus obtained a formula for the disintegration constant
which may be interpreted simply as showing that this constant is
just the ratio of the flux of particles across any large sphere to the
number of particles remaining within the sphere at the instant in
question. A completely analogous relation is often employed for
calculating the damping coefficient for any radiating oscillator in
classical electrodynamics. In using (52) in the radioactive case it
is quite unimportant what value of R we take, provided that it is
large in comparison with ,, the inner radius of the potential barrier.
In fact we have seen that the rate of flow, as determined by

i [ ox _o0x
2mz(xar X 61')’

is fairly constant, increasing by a factor 2, only, over a distance which
is almost always greater than 1 km. As concerns the denominator of
(52), to a sufficient approximation we may take the integral here
from 7 == 0 to r = r,, since y decreases so rapidly in the range
r, <r <7, (within the barrier) that the portion of the integral
corresponding to r >r; is negligibly small. For the radioactive
nuclei xx outside the nucleus is less than 10~ of its value inside, so
that for R = 1 em. the contribution of the extra-nuclear part of the
integral will not be more than 0-01 per cent. of its total value. As
we have seen above, the potential energy inside the nucleus may be
rogarded as approximately constant; consequently the solution for
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x (for r < r;) will correspond very nearly to harmonic oscillations of
amplitude 4 (say). Then, with sufficient accuracy,

Tt

f X% dr ~ LA%,. (53)

0
Also, for large r values we have previously used

tomer = CoxpiLE ) (54)

so that the probability flux becomes

i ox ox o [[2E o,
.’.mb(xdr —xé)r) ¢ A/ m| oo, (55)

where », is the velocity of the particle outside the nucleus. Substitut-
ing from (53) and (55) in (52) we obtain

20,(C\2 20,
= A [CN 2y 56
A 1 (A) "1 )

G being the transparency of the barrier, which may be taken over
from (37). Then

= 2;”64%zexp( 2(2m) f[U() B} dr)

Ty
_ %eXP(_MﬁE”Q f [U(r)—E} dr), (57)

in which expression v, is written for the velocity of the particle inside
the nucleus. Remembering that the de Broglie wave-length A; corre-
sponding to this velocity (mv;A; = h = 27#) must be an exact sub-
multiple of the nuclear diameter (kA; = 2r,), where k is the radial
quantum number), we have v; = wk%/mr,, and may write the expres-
sion for the disintegration constant in the final form

A . kb xp(_ 3«[(7?]2} f [U@r)— B} dr). (58)

mr?

4. Comparison with observation

We shall now compare the results of the wave-mechanical theory
of the transparency of nuclear potential barriers with the known facts
concerning the rates of various types of spontaneous nuclear dis-
integration.
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Spontaneous o-decay of various naturally radioactive substances
presents us with abundant observational material for comparison with
the theory. The three known radioactive families, that of thorium,
uranium, and actinium, contain altogether twenty-four a-decaying

+51

=101

—[5-

Th Ex
-204i— . v —

4 5 6 7 8 9 mev.

Fie. 29. Geigor-Nuttall diagram of radioactive
families (including the newly discovered a-emitters).

bodies for which the energies of emitted a-particles and the corre-
sponding decay-constants have been measured with great accuracy.

These data are shown in Table XIII, which also includes the
information concerning a number of a-unstable nuclei which do not
normally exist in nature but can be produced artificially by the
methods of modern alchemy.

The observed values of Ex and A were known to be connected
through the empirical law of Geiger and Nuttall (Fig. 29) according
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TasLe XIITt
Properties of known a-emitters
Z Name A Eo (M.ev.) Half-life A, sect
96 Curium 242 6-0 0-7y. 31x1078
s 241 6-256 30d. 2:7%x 1077
95 Americium 241 547 50y. 4-4x 10710
94 Plutoniwumn 239 516 2:4x10%y. 9-15%x 10713
, 238 552 60y. 3-65x 10710
93 | Neptunium 237 7 2:2x 100y, 1:0% 10714
92 Uranium I 238 4-18 45%x10°y. 4-88x 10718
Actinouranium 235 4-52 88x10%y. 2:5x 10717
Uranium II 234 476 2:5X 108 y. 8-8x 10714
233 4-82 16 x10% y. 1-3x 10713
232 531 30y. 7-3 x 10710
91 Protactinium 231 5-05 32x104y. 6-:85x 10713
90 Thorium 232 42 1-3x 10y, 1-3x 10718
Tonium 230 454 7-6x10%y. 2:9x 10718
229 50 5x10°y. 44%10712
Radiothorium 238 542 19y. 1-16x 1078
Radioactinium 237 6-05 18:9d. 4241077
88 Radium 226 4-793 1,590 y. 1-:373 x 1071*
Thorium X 224 5682 3-64 d. 2:20x 107¢
Actinium X 223 5719 1-2d. 716 1077
86 Radium Em, 222 5488 3-852 d. 2:097x107¢
Thorium Em. 220 6-283 54-5 8. 1-27x 1072
Actinium Em, 219 6-826 3-92s. 0-117
85 218 6-63 710 s. 9-75x 1074
216 763 50 s. 1-38 x 1072
211 594 75 h. 256X 10~
84 Radium A 218 6-112 3:05 m. 3:79%x 1073
Thorium A 216 6-776 0-145 s. 4.78
Actinium A 215 7-368 2% 1073 8. 350
Radium C! 214 7-68 1:5x 10748, 4-6x10%3
Thorium C! 212 878 3x1077s. 2-3x 10%¢
Actinium C! 211 7-43 5x1073s. 1-38 x 102
Polonium 210 5-300 136-3 5. 5881078
83 Radium C 214 5:507 o 1-78 x 1077
Thorium C 212 6-084 1 6-65x 1073
Actinium C 211 6-611 1 5-35%x1073
62 Samarium 148 2:0 1:6 x 101 y. 1-38 X 1071®

+ Tho data for this table are taken principally from W. B. Lowis and B. V. Bowden,
Proc. Roy. Soc. 145 (1934), 235. The data on new a-emitters are from 1. M. Cork,

Rad. and Nucl. Phys., Ann Arbor, Mich., 1946.

t Tn the caso of (-bodies A, are estimated from total A, and the branching ratios.
The ‘partial half-lives’ are not given as having no physical sense.
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to which the decay-constants of different elements within the same
family increase exponentially with increasing energies of emission.
Since, according to the wave-mechanical treatment, the decay-
constants for a-transformations are essentially the same as the corre-
sponding transparencies of the potential barriers involved, the
empirical relation cited above becomes immediately understandable
from the point of view of the theory.

* In order to derive an exact expression for the decay-constant as a
function of the energy of the emitted a-particle and of other charac-
teristics of the decaying nucleus, we shall use the approximate shape of
the potential barrier discussed in § 2 of this chapter and represented
graphically in Fig. 22.

We may notice here that the approximation which is to be adopted
will scarcely affect the value of the coefficient of transparency of tho
barrier, since the chief part of the integral in formula (37) is taken
over the region of the barrier where deviations from the Coulomb
law are very small. On the other hand, our model will give only very
rough results concerning the energy-levels for a-particles within the
nucleus, as the positions of these depend essentially upon the actual
shape of the potential-energy curve. With this warning, however,
we may proceed to calculate the proper-energies involved. The solu-

tion for r <7, is

— A,.;Jjﬂ{«/(?m)

(B mﬂ, (59)
where J;,; is a Bessel function of order j+3. If k, ;,; are the roots
of these functions, we have

k*h?
En, m 2+ 0 (60)

In the case of radial oscillations
Xio = Asin¥C" (5 (61)

and we have, simply,
7):2,&271‘2
} T e . 62
"0 2mr(2, + 0 ( )
In calculating the decay constant for our model we shall first examine
the case of radial motion; this is precisely what has already been
done in using (37) to obtain the expressions (57) and (568) of § 3.
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We may rewrite (58) with the new assumptions regarding U(r) as

follows: 2AZ—2)el/ K

[2(Z—2)e?[r— E]} dr), (63)

B T

Bmkhi (_2J(§m)

To
The integral in the exponent of (63) may be simply evaluated by
means of the substitutiont

0, _ TH 1
cosy = NI 7+ (64)
8mk# 4e? (Z—2),. .
We have Ap, = e BXP{_"IT — (2uy—sin Zuo)}, (65)
where cos?uy = To ro B (65')

™ AZ—2)t
In radioactive nuclei the value of ry/r* is small and the exponent of
(65) may be developed in powers of this small quantity. Taking the
first two terms only we obtain a simple formula which is very con-
venient for the calculation of decay constants,

_ kahexp(_4ﬂ62(Z—2)+Se;fm[(Z—Z)ro]’)- (66)

Y] fiv,
Tf the azimuthal quantum number differs from zero we must take
count of the additional potential energy corresponding to the centri-
fugal force, and obtain the expression for the decay constant in the

form
h? -Z(.]—j__l) _ E] idr),

7,3

-
8mkh 2,/(2m) 2Z—2)e?
Ap :-_2—01\})(—— 7 f[-— ; oy
To

7o

(67)

In radioactive nuclei (Z — 80 to 90; r, ~ 10-12 cm.) the potential
energy corresponding to centrifugal forces will, in general, be very
small compared with the Coulomb potential energy, the ratio ¢ being
givenby - # jj+1) AZ—2)e

2

om A ™ 0-002j(5+1) (68)

Thus, for caleulation of the integral (67) we may develop the square
root in powers of the small quantity o. We get, finally,

8k 4me® (Z—2) . 8ev .
s = mgexp( — 2 A B2 a1 (o0t

1 * is the so-called classical radius of the nucleus, i.e. the closest distance of
approach of the a-particle according to classical mechanics.
1 In subsequent calculations we shall always take & = 1.
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This shows that the azimuthal quantum number of the emitted par-

ticle must be assumed ‘responsible’ for a decrease (for the same energy

of disintegration) of the disintegration probability; if this angular

momentum amounts to several units the decrease may be quite appre-

ciable. As we shall see later, we may obtain interesting information

concerning the changes of spin of decaying nuclei on this basis.
Formula (69), which can be written in the form

8nh 4me2 Z—2  8ew
logyeA = IOgmM—“% T'*‘%\/(Z—z)‘/ro(l—g), (70)t

or, putting in numerical values, as

log,oA = 21-6693—1-191 X 109%_3_;_

+4-084 X 108,/(Z— 2)Vr[1—0-0015(j+1)], (71)

corresponds to the empirical relation found between the decay con-
stants and the energies (or velocities) of a-disintegration for different
radioactive bodies by Geiger and Nuttall (p. 170). We see from (70)
that log,,A depends actually not only on the velocity of the ejected
a-particle but also on the charge-number Z and the radius 7, of the
nucleus, and that therefore it cannot be represented on a two-
dimensional graph. The reason why Geiger and Nuttall could get
a smooth curve by plotting simply log,,A against & (or v) is due to
the fact that the variation of Z, £, and r, in a radioactive series is
practically monotonic as we go down the series. We should expect
certain anomalies in the Geiger—Nuttall graph at the points where this
regularity breaks down. Fig. 29 shows that such deviations actually
oceur; for example, for AcX the point does not lie on the curve—
and this is due to the fact that the velocity of the «-particles ejected
by this element is smaller than for the previous element RaAc,
whereas, generally, the velocity increases as we go down the series.
The values of log,, A as calculated from (70) for a chosen constant value
of 7, give already a good representation of the Geiger-Nuttall graph
because the small changes in radius from element to element (enter-
ing only in the last term) only slightly affect the results; a much
better approximation can be obtained, however, if we assume that
the nuclear radius varies proportionately to the cube root of the
mass number of the nucleus (see Chap. T).

+ Here I = 2-303 is the factor for converting natural logarithms to the base 10.
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Using experimental data for decay constants and energies of dis-
integration we can calculate from (71) the values of

Topr = 7o 1—0-0015(j+ 1) ~ rg[1—0-0025(j+1)], (72)

which we may call the effective radius of the nucleus. The effective

radius is the same as the true radius when the emitted «-particle

Fepe X 1% (cm) ZeplUy Ur Am
he'(?) Lrwod
0-91 AC'(?) 48, Z=85(?) m
\ \ oZ=
\ \
\ \
VY 9Z=85() g,
0-8
»
0-71 o
AcC
06 The
05 A
200 210 220 230 240

F1a. 30. Caleulated nuclear radix of various a-emitters plotted as

the function of atomic weight. The points for ThC’, AcC’ and the

now cloment Z - - 85 fall considerably off tho general curve which

may be duo to unreliability of measurements. (1t may be also

possible that m these cases the values of A, or £, were simply

estimated by means of old Geigor- -Nuttall curves.)

possesses no angular momentum ; (72) shows that in other cases it is
smaller than r,. The values of the effective radii for all known
a-emitters are given in Table XIV and are also plotted against the
mass number in Fig. 30. We see from this figure that effective
nuclear radii vary in general smoothly, increasing with the mass-
number. However, the ratio is not strictlyco nstant but increases by
15 per cent. from RaF to U, showing that in the region of radioactive
elements we have a slight decrease of nuclear density with increasing
mass ; this effect may be connected with the formation of a new shell
at this stage.
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TaABLE X1V
Calculated effective radit of o-decaying nucles

4n-type 4n+1 type 4n+-2 type 4n 3 type
g g g g
o o o o
a o o o ]
3 g E 2 3 = 3 g
s X S % g % 3 X
= :3 Z < = < “ .
9gU282 0-92 9eCm?241 0:91 | oCm242 092 | o,Pu2®® 0-91
eoLh232 0-83 osAm24l 093 | gPu2s® 092 | 5,AcU2s 0-89
soRaTh228 0-81 2sNp237 0-91 | 4 Uee 0-92 | 4, Pa?t 089
ss ThX224 0-79 92 U233 091 | U 092 | ¢,RaAc?¥ 0-73
seThEm?220 | 0-77 9o Th22? 0:90 | gol0%° 0-85 | ggAcX22 0-76
85216 0-83 ssRa220 0-81 | gAcEm® | 0-71
saThAZ2® 0-756 seRAEm?222 | 0-79 | 85211 0-89
s ThC’212 0-90 85218 0-87 | 4AcA2® 0-73
gaThC?12 0-60 ssRaA?s 077 | g4AcC21L 0-89
caSm1te 0-95 aRaC2t | 073 | gAcCut 0-63
saP0%10 0:71
ssRaCz 0-57

It is very important to notice that for all three C-products, as well
as for most members of the actinium family, the values of effective
radii are anomalously small. This, as was indicated by Gamow,T may
be due to the fact that in these cases a-particles are emitted with
angular momentum, different from zero. In order to explain the
deviations observed (~ 5 per cent.) we should, according to formula
(72), suppose that in those cases the angular momentum of the
emitted particles is about 4 or 5 quantum units, or, in other words,
that the spins of the disintegrating and product nuclei differ by about
as much. We will see in the next chapter that the effect of the spin-
change is of particular importance for the understanding of the
phenomenon of the so-called ‘fine structure’ which is typical for
C-products of all radioactive families.

In conclusion we may remark that there is known one a-decaying
element which does not belong to regular radioactive families, and
is located in the region of considerably smaller atomic numbers. This
is the samarium isotope &Sm!® which forms about 14 per cent. of
natural samarium mixture. The o-activity of Sm, which was first
discovered by Hevesy and later studied in some detail by Wilkins
and Dempster,} represents an interesting example of irregularities in

t G. Gamow, Nature, 129 (1932), 470.
1 T. Wilkins and A. Dempster, Phys. Rev. 54 (1938), 315,
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energy-balance caused by the formation of nuclear shells. The radius
of Sm-nucleus, as calculated from the known values of A and Ea,
comes out to be 0-95 x 10-12 ¢cm. as compared with 0-70 X 10-1% cm.
which should follow from the assumption of constant nuclear density.

Spontaneous emission of nuclear fragments heavier than « by various
radioactive elements is also an energetically possible process (cf.
Fig. 20), and the failure to observe the emission of C-particles (Carbon
nuclei) or O-particles in spontaneous decay of heavy elements must
be ascribed entirely to the low probability of such processes. To
illustrate this statement let us calculate, for example, the probabili-
ties of the following spontaneous disintegrations:

00l0%30 — o Ra A28 (12 (73)
001030 > L RaB214| O16, (74)
The energy of emission in these two examples can be calculated as the
difference between the sum of «-decay-energies between the initial and
the final nucleus, and the binding energy of the emitted particles rela-
tive to He atoms (i.e. a negative energy). In the first case we have:
Eg = [454+47945:4947-44] M.e.v. — 22:3 M.e.v.
and in the second:
Bo = [4:54+479+5:494-6-11+14-04] M.e.v. = 35:0 M.e.v.
Using these values for the energies, along with the corresponding

values of masses and charges of the emitted particles, we easily
obtain the pertinent decay-constants:

Ac(Io) == 107125 gec.~1(7T' ~ 1018 years)

Ao(lo) =2 10153 gec.~1(7T' = 1046 years).
The fact that there are only 10-112 carbon and 10-14° oxygen nuclei
emitted per one «-particle easily explains the failure to observe the
emission of the heavier nuclei.

Spontaneous fission of the U-nucleus has been mentioned already
in § 1 as first observed by Petrzhak and Flerov, who estimate that
there is one fission process per million a-decays; thus the value of
Ay is about 53X 10-2% sec.-1 Theoretical calculation of the fission
process was first attempted by Bohr and Wheeler (loc. cit.) and was
later elaborated by Present, Reines, and Knipp.t The fission process
is s0 complex dynamically, however, that the theories arc not ade-
quate to make quantitative predictions (cf. App. IV).

t R. D. Present, F. Reincs, and J. K. Knipp, ibid. 70 (1946), 557.
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VII
ELECTROMAGNETIC RADIATION OF NUCLEI

1. y-spectra and internal conversion

THE atomic nucleus, being a quantized system, is in general capable
of existence in any one of a number of states of different energy.
In its various excited states it may be characterized by definite
probabilities of transition to the various states which have smaller
energy than the state in question: when such a transition occurs it
will usually be with the emission of the excess energy in the form of
a quantum of electromagnetic radiation. This is the formal descrip-
tion of those nuclear processes which are involved in the emission,
in spontaneous and artificial transformations of nuclei, of a quantum
radiation to which the name y-radiation is generally given.

In so far as the energy-differences between nuclear levels are in
general much larger than the corresponding differences for the extra-
nuclear system, the wave-lengths of y-rays are much shorter than
the wave-lengths of atomic radiations and the ordinary methods of
spectroscopy using ruled gratings or crystals are hardly suited to
them. When these methods have been used—as originally by Ruther-
ford and Andrade—they have been successful only for the less
energetic components of the radiation. The usual method of y-ray
spectroscopy, worked out independently by Ellis and Meitner, is
based on the phenomenon of ‘internal conversion’ of yp-rays. This
phenomenon can be regarded, to some extent, as a special case of
the photoelectric effect, in that the y-ray quantum is absorbed in the
same atom from the nucleus of which it has just been emitted. Asin
the external photoelectric effect an electron is thereby ejected from
one of the atomic levels. That this description of the phenomenon is
imperfect need not concern us here, but we shall see later that there
is also another possibility—the direct mechanical transmission of
energy from the excited nucleus to one of the atomic electrons.
Because the internal photoelectric effect may happen for any
electronic shell in the atom, there will arise, for every line in the
y-ray spectrum of the nucleus, a number of secondary electronic
groups having energies hv—Ey, Ww—E;, hw—Ep, Ww—E;,,
hv—E,y,..., where Ep, E;, Ep,, E;., Ej,.. are the binding
energies corresponding to the different electron levels and v is the
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frequency of the y-ray line. Now it has been shown that the y-radia-
tion associated with any particle-disintegration of a radioactive
nucleus is in fact characteristic of the excited product of the dis-
integration; the binding energies above used must thus be under-
stood to refer to this nucleus and not to its immediate parent. The
method of Ellis and Meitner, therefore, consists in determining the
energies of the secondary electron groupst by magnetic analysis and
applying the above relations to deduce the energies and so the
frequencies in terms of which the primary y-ray spectra are to be
specified. As an example of the numerical procedure, the table below
contains the results of the work of Meitner on the natural B-ray
spectrum of actinium X and its analysisin terms of the y-rays
which are emitted from the nuclei left excited by the previous «-

disintegration, AcX > An.

TaBLE XV

Analysis of secondary B-ray spectrum emiited by AcX (Z = 88)
Energy of sec. Level of Energy of Eneryy of

B-group origin the level the y-ray Deviations

« 108 erg Intensity | for Z = 86 X 10% ery » 108 ery per cent.

0-0723 80 K 0-1554 0-2277

0-2003 50 1y 0-0286 0-2289 } 0-6

0-2204 25 My 0-0071 0-2275

0-0889 100 K 0-1554 0-2443

0-2159 60 Ly 0-0286 0-2445 } 0-6

0-2358 15 My 0-0071 0-2429

0-0950 40 K 0-1554 0-2504

0-2204 25 Ly 0-0286 0-2490 } 1-0

0-2407 15 M 0-0071 0-2478

0-1658 40 K 0-1554 0-3212 2.0

0-2860 15 Iy 0-0286 0-3146 -

0-2717 100 K 0-1554 0-4271 \ 02

0-3990 30 Ly 0-0286 0-4276 J -

Ashasbeen stated already, the phenomenon of internal conversion of
y-rays consists in the emission of an extranuclear electron in place of a
nuclear y-quantum. It would be erroneous, however, to consider this
phenomenon entirely as a two-step process consisting of the emission
of a y-quantum by the nucleus and the subsequent ‘internal’ photo-
effect in the electronic envelope of the same atom. In fact, one must
not forget that, due to the finite values of electronic wave-functions in

1 These may easily be distinguished from the distribution of primary -particles,
which have all energies between wide limits (see Chap. V).
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the region occupied by the nucleus, one must also take into account the
possibility of a direct transfer of energy from the excited nucleus to an
atomic electron. Transitions of that kind are analogous to collisions
of the second kind investigated theoretically by Klein and Rosseland.
Since in practice there is no means of separating the effects of these
two processes of absorption, it is more reasonable to consider the
phenomenon of internal conversion as a single process of transmission
of the energy of nuclear excitation to the atomic electrons through the
action of extra- and intranuclear fields of force. Only in the special
case (! = 0 - i = 0) is this action confined to one only of these fields;
in this case the periodic components of the extranuclear electromag-
netic fields vanish absolutely, y-radiation is completely forbidden, and
internal conversion is due entirely to the interaction of atomic electrons
and the excited nucleus in the region ‘within the nucleus’.

In the general case the total nuclear transition probability may
be written as the sum of two terms, for dipole radiation, in the above
notation, as x(w)+p(w), where u(w) denotes the probability of the
ejection of an atomic electron simultaneously with the nuclear
energy-change. In so far as the secondary electron may originate in
any one of the extranuclear levels of the atom, u(w) may be written
in the form p(w) = pg(w)+pr(w)+..., where successive terms on the
right-hand side refer to successive levels in order of decreasing energy
of binding. The ratio of the number of emitted electrons to the total
number of nuclear transitions involving the energy-quantum fiw is
defined as the coefficient of internal conversion for nuclear radiation
of the corresponding frequency. We have

a(w) = p(w)/{r(w)+puw)} or wuw)/kw) = alw){l—aw)}. (1)
Again, a(w) is the sum of a number of terms, ax(w), oz (w),..., corre-
sponding to the various u’s; these terms may be regarded as giving
the internal-conversion coefficients relative to specified electron levels
in the atom. In any case the value of the internal-conversion coefti-
cient depends upon the atomic electron level involved and upon the
symmetry characteristics of the nuclear transition in question.

Applying standard methods of wave-mechanical perturbation
theory the probability u(w) may be calculated from the equation

p) = 2 3| [ ledgtepsohlfo drf' )

where ¢, and ¢, are the wave-functions describing the orbital and
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free motion of the electron, 4, and A the scalar and vector potentials
of the radiative field of the nucleus, and p; and ¢ are the matrices
in Dirac’s theory. For the purpose in hand the relativistic form of
the equation for the electron must be used. Calculations on the
basis of (2) were carried out by Hulmet on the assumption that the
Xk
0014
ooz
000
0008 |
0006 |

0-004. o

0-002 F

mc?
0000 Tun >
00 02 0-4 0:6 08 hv
Fia. 31.

electromagnetic field of the nucleus is that of a dipole situated at its
centre. This field may be represented by the potentials

— Bloxplomi(T— 1l : s
A, Texp{ m( A vt)}cos 0( +qr)+ complex conjugate,

) [r p
A, == B;exp{:]m(x——vt)}, (3)
A, = A” =0,
with q = 2w _ o
c c

Having obtained p(w) as above described, x(w) is given by dividing
tho rate of radiation of energy by the field by 4w, the quantum
energy of the radiation. As is well known, the rate of radiation of
4 B*w

3 e
From p(w) and «(w) the internal-conversion coefficient a(w) is derived
by equation (1). The values obtained by Hulme in this way for the
internal-conversion coefficients relative to K-shell absorption in the
RaC’ atom (Z = 84) are plotted as a function of mc?/fw in Fig. 31

1 H. R. Hulmeo, Proc. Roy. Soc. 138 (1932), 643. Previous calculations by Swirles
and Casimir wero based on much loss exact approximations ; for that reason thoy will
not be further discussod at this stage.

‘o . 4 Bw?
energy by the field specified by (3) is 35 thus k(w) =



182

ELECTROMAGNETIC RADTATION OF NUCLET Chap. VIL, §1

(curve ED). The experimental values, also given in the following
table, are those of Ellis and Astont for the eight most intense y-rays

TasLE XVI
Internal conversion of y-rays of RaCC' and RaBC

(RaCC’) (RaBO)
Number of Number of
hv y-quanta per hv y-quania per
% 108 e.v. og digintegration X 108 e.v. ay disintegration
0-612 0-0061 0-658 0-243 0-364 0-116
0-773 0-0048 0-065 0-297 0-186 0-268
0-941 0-0061 0-067 0-364 0-117 0-450
1-130 0-0062 0-206
1-248 0-0057 0-063
1-390 0-0014 0-064
1-426 >01(=17?) (=07
1-778 0-0016 0-258
2-219 0-0013 0074

emitted by this nucleus. Five of these points fit with fair accuracy on
the theoretical curve for dipole radiation. The three points which do

Ay
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00 0S 10 15 20 F\;—
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not fit represent considerably
larger internal-conversion co-
efficients: as we shall see later
they must be explained on
the basis of nuclear quadru-
pole radiation. Internal-conver-
sion coefficients relative to the
clectronic L levels were also
evaluated by Hulme, with the
following result. In the limiting
case, fiw — oo, for RaC’,

Qe 0Ly P Oy s Oy
= 1:0-149:0-0013: 0-0066.
This is in satisfactory agree-
ment with the values experi-
mentally obtained.
Fig. 32 gives the internal

conversion coefficients for somewhat softer y-rays. They have been
calculated for Z == 83 in order to be compared with the values of

1 K. D. Ellis and G. H. Aston, ’roc. Roy. Soc. 129 (1930), 180.
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Ellis and Aston for the y-rays emitted after the S-particle change
RaB - RaC. The experimental values from the above table are to be
considered in relation to curve ED. It will be seen that experimental
values are all considerably greater than those given by this curve,
which may be taken to prove that the nuclear transitions in ques-
tion cannot be described by a dipole field.

In order to account for the large values found for the internal-
conversion coefficient in such cases, Taylor and Mottt carried out the
calculations for quadrupole radiation, in terms of the potentials

1 fr 3 3
Ay = — C’;exp{2m(x—vt)}{2P2(cos 0)[1 +€F‘_E‘§] + l} +
~+complex conjugate,

A, = —3C % oxp{ 2mi (_r& — vt)}cos 0( 14 q_zr) +complex conjugate,

A,=A,=0. (4)
. 12 6'20) Al

In this case w(w) = 5 e vy-quanta per sec. The curves EQ of
Figs. 31 and 32 give the results of these calculations. It is evident
that these curves go some way towards explaining the experimental
results, although the agreement for the soft y-rays of RaB—C is still
far from exact. This may be due in part to the lower accuracy of the
calculations for y-rays of small quantum energy and to the neglect
of the screening effect of the atomic electrons. Tt may be noticed
here that apart from the electric dipole and quadrupole radiation
discussed above there is also the possibility of magnetic dipole and
quadrupole radiation due to oscillations of the magnetic moments of
the system. Taylor] has shown that if some of the nuclear y-rays
have a magnetic origin the coefticients of internal conversion must
be considerably larger than is the case for ordinary electric radiation.
The theoretical values of these coefficients, in the case of magnetic
radiation, are shown in Fig. 32 by curves MD and M Q. We must
notice, however, that since the magnetic radiation possesses, in
general, very small probability, it has to be taken into acecount only
if electric dipole and quadrupole transitions are not permitted.

The calculations of Hulme and of Taylor and Mott are based on
the hypothesis of dipole and quadrupole moments localized in

t H. M. Taylor and N. F. Mott, ibid. 138 (1932), 665.
1 H. M. Taylor, ibid. 146 (1934), 178.
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extremely minute regions in the centre of the nucleus. By consider-
ing the effect of the finite size of the nucleus and the possibility that
the expressions for the various potentials, (3) and (4), may require
modification for values of r less than the nuclear radius, Fowlert was
able to show, however, that the value of the integral (14) changes but
slightly if these deviations take place inside the region  ~ 10-12 cm.
Only in the case of the prohibited radiative transition (i = 0 - i = 0)
do such considerations become all-important. In this case the direct
interaction of an atomic electron with the excited nucleus represents
the one method of the release of energy. The probability of this
process may be evaluated as to order of magnitude from the per-
turbation formula

B~ 2[4 ol OW O, @

where ¥ is the average interaction potential between electron and
nucleus for values of the separation of the order of r,. Using the
relativistic expressions for the wave-functions, we obtain, for a
transition energy of 10% e.v. communicated to a K-electron in an
atom of RaC’, u’ ~ 10" sec.~! If the interaction is greater than has
been supposed much larger values of 1’ become possible. These values
are of the same order as those calculated above for quadrupole
radiative transitions of the nucleus; they indicate that, whenever
the mean life of an excited nucleus is of the order of 10-12 to 10~ sec.,
internal conversion by direct interaction is an important mode of
transference of energy. At present the only well-established case of
non-radiative nuclear transition is that associated with the quantum
cnergy L-414x 108 e.v. in RaC-(¥'. Secondary electron groups corre-
sponding to this quantum are particularly intense, but no evidence
of the corresponding y-ray has been found in emission. Beforc the
above simple explanation of the results was advanced it was necessary
to assume that for this particular radiation an internal-conversion
coefficient of unity was applicable-—one formed the strange picture
of the K-electrons absorbing a large fraction of the outgoing quanta
and of the remaining electrons being able completely to absorb the
rest. Secondary electron groups were observed corresponding to
absorption in the K, L, and M levels, respectively. Assuming the
correctness of the present explanation, that we are dealing with a

t R.H. Fowler, Proc. Roy. Soc. 129 (1930), 1; sco also M. Delbriick and G. Gamow,
Zs. f. Phys. 72 (1931), 492,
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non-radiative nuclear transition, very important conclusions may
be drawn. We conclude that the two nuclear levels involved are
both Slevels, in other words that these two states of excitation possess
zero spin. Moreover, as will appear later, the observed correlation
between y-ray energies and the energies of the long-range «-particles
from RaC’ indicates that the transition in question takes place
between one of the excited states of this nucleus and the ground
state. We conclude, therefore, that in its ground state the nucleus
RaC’ has no spin: 7 = 0.

In calculations of the internal conversion coefficients for the y-rays
emitted by natural radioactive elements we must use the exact
expression for the motion of the orbital electron, and the final results
(such as those shown in Figs. 31, 32) can be obtained only by means
of rather lengthy numerical computations. In the case of lighter
elements (internal conversion of y-rays produced in artificial trans-
formations) the problem can be solved purely analytically, and
permits a more general study of the dependence of the internal
conversion coefficient on the multipole nature of the transition.
Calculations of that kind have been performed by Dancoff and
Morrisont (for K-shell conversion) and by Hebb and Nelson} (for
L-shell conversion). For the elements with Z < 30 (non-relativistic
K-electron) and for y-ray encrgies much higher than the binding
onergy of the K-shell, one obtains for the electric and magnetic
2-pole transitions the following expressions for the K-conversion

coefficients: . %Zﬁ@(z+3)"*[(’+1?72+4l] ©
(clu{;\t?-llc) y? v l-}-1 ?
9734 I\d+#
and gy — 2_Z._"_(Z't_) , (1)
(magncetic) Y b4

where y — hv/mc® and « is the fine-structure constant. Similar,
though somewhat longer, expressions are obtained for the conversion
of the electric and magnetic multipole radiations in the L-shell.

Comparison of the observed conversion coefficients with the
theoretical formulae affords a very convenient method for deter-
mining the changes in nuclear angular momentum that are associated
with the emission of different y-lines and for assigning azimuthal
quantum numbers to the corresponding energy-levels.

1 8. M. Dancoft and . Morrison, Phys. Rev. 55 (1939), 122.
} M. H. Hebb and K. Nelson, ibid. 58 (1940), 486.
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It was pointed out by Oppenheimer and Nedelskijt that a nucleus
that is excited by more than 1 M.e.v. can dispose of its energy of
excitation not only by direct y-ray emission, or by the ejection of one
of the atomic electrons, but also by creating a positron-electron pair
in the nuclear electric field. Calculation of the probability of this
process, known as internal pair-formation, can be reduced to the
evaluation of the matrix element of the perturbation due to radia-
tion. One can write Dirac’s relativistic equation for an electron in a
Coulomb field with the nuclear charge o*Z (« being the fine-structure
constant) in the form

i% = (@p+p+L—wsly, ®)
where § is the perturbation of the radiation field determined by the
scalar and vector potentials through the relations

$ = He 4 complex conjugate
H = V+4(a,A).
The potentials ¥V and 4 are given by:

9

V= e”"(@ — i) cos 6,
r kr
dipole . (10)
A, = tetkr; A4, = A, -
r

| . 3
V= Te"‘ l’P(ws())(l +k7’ L‘r2)+1}’
quadrupole

5 . (1)
= Zetkr[1 v 08 0 A -
A, ~e ( —|—kr)(os6, 1, = A

where all lengths are expressed in terms of the Compton wave-
length #/mec.

Applying the usual method of the variation of constants, the
solutions of eq. (8) can be expressed in terms of probability ampli-
tudes, a,(t), of the various states. At the time ¢ = 0 the electron is
in the negative energy-state, W, so that a,(0) = §,,. One finds from
(8) the probability |a, |2 that the electron will be in the state W, at the

time ¢: JSin2(W, — Wy— k)¢
(W, —Wo—k)?

1 J. R. Oppenheimer and L. Nedelskij, I’hys. Rev. 44 (1933), 986.

|a,|? == 4a|(n|H|0)|

(12)
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where all energies are expressed in units of mc? and Dirac’s notation
for matrix elements is used. It remains to sum |a,|? over the spins,
energies, and directions of the positive and negative electrons formed
in the process.

If one uses the exact solutions of Dirac’s equation for an electron
the computations can be performed only by means of numerical
integration. Exact calculations of that kind have been carried out by
Jaeger and Hulme,{ whose results for the total conversion-coefficient,
oy, for pair-formation in the case of dipole and quadrupole transitions

3
otp(d) X 10 % p(q) ¥ 03
34 B 34
. B
21 24
e Ex 14
Ex
S S
2 3456810 152025 2 34568Ig 152025
a

F1a. 33. The coefficient of internal pair formation
calculatod for dipole (a) and quadrupole (b)
transitions.

arc shown graphically in Fig. 33 a, b (curves marked Kx). One can
obtain reasonably close analytical expressions for the conversion
probabilities also by using one of the standard approximation methods
of the perturbation theory, as was done by Rose and Uhlenbecki
using two different methods of approximation (Born’s and Schro-
dinger’s). These authors obtained the following expressions for the
conversion coefficients:

(W) = —5 {2 p+ (Wi -+ W2)nb},

Born’s | o) = oz {8p, p (W W.— 1)+
method ) e

~+3x?(p% +p% )In b},
b — 14+W, vV—"}’P+P—;

K

(13)

L

1 J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. 148 (1935), 708.
1 M. E. Rose and G. E. Uhlenbeck, Phys. Rev. 48 (1935), 211.
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4873 Z2W, W_

o) = rsmazin, 1)1 —e-tretin-)’
Schrodinger’ 207322 [, 4
i | ) = 252 (14 ) w
o (Pt 42222

(e2meZlp+ —1)(1 —e—2maZjp_) ’

where W, W_, p.,, p_ stand for energy (in units of mc?) and momentum
(in units of mc) of the positive and negative electrons. Integrating
graphically for all possible partitions of energy between the two
me electrons one obtains the values of total
conversion coefficients shown by the curves
marked B and Sh in Fig. 33. We see that
the analytical expressions (13) and (14)
lead to fairly good agreement with the
results of the exact numerical calcula-
tions.
Fio. 34, Fnergy distribution The phenomenon of ‘internal pair-for-
of positive electrons from Mation’ was first observed by Chadwick,
Th(B+C-+C”) source. Points Blackett, and Occhialinit in the case of a
ﬂbwrved:ﬂ;‘;ﬁ;i solidlino— 'y, (B { (4-C”) source, and was reported
later by many authorsfor other radioactive
sources possessing strong y-radiation.i The most detailed study of
this process was carried out by Bradt, Halter, Heine, and Scherrer,§
who have measured the total number as well as the energy distribu-
tion of positive electrons emitted from a Th(B+C+-C")-source. This
was done with a magnetic B-spectrograph. Their measurements lead
to the value of 2:3x10-% pairs per decaying ThB-nucleus; the
observed energy-distribution of the emitted positive electrons being
shown graphically in Fig. 34. In order to find the theoretically
expected number of positive electrons, one must remember that the
source used in these experiments possesses two strong y-lines capable
of producing electron pairs. These are the quadrupole line at
2:62 M.e.v. belonging to the transition ThC” - ThD and the weaker
dipole line at 1-802 M.e.v. belonging to ThC —ThC'. Using the theory

A E}
Tl 05 10 15 mev.

1 J. Chadwick, P. M. 8. Blackett, and G. P. 8. Occhialini, Proc. Roy. Soc. A. 144
(1934), 235.

t ¥or a complete list of reforencos compare H. Bradt, H. (. Heine, and P. Scherrer,
Helvetica Physica Acta, 14 (1943), 492.

§ H. Bradt, J. Halter, H. G. Heine, and P. Scherrer, ibid. 19 (1946), 431.
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for internal pair-formation described above, we calculate the expected
number of electron pairs produced by these two y-rays to be 2 x 10—4
pairs per ThB disintegration, in excellent agreement with the experi-
ment results. The energy distribution expected theoretically is
shown by the solid line in Fig. 34 and is also in excellent agreement
with the results of measurement.

It may be mentioned in conclusion that the phenomenon of internal
pair-formation by an excited nucleus may be closely related to some
of the theories of the nature of nuclear forces discussed in Chapter I1I.
In fact, the experiments of Conversi, Pancini, and Piccionit on the
nuclear capture of cosmic-ray mesons and the theory of this process
as given by Fermi, Teller, and Weisskopf] and by Wheeler,§ seem
to indicate that the interaction between charged mesons and the
nucleus is too small to make these particles responsible for the
nuclear forces. Alternative possibilities are to ascribe nuclear forces
to an exchange of neutral mesons or, to the similar process, the
exchange of electron pairs. It was pointed out by Gamow|| that if
nuclear forces involve the exchange of electron pairs one should
expect that an excited nucleus will emit pairs through this mechanism
also and that the probability of such an emission may be comparable
to, if not larger than, the probability of ordinary pair-formation.

2. Emission probabilities and selection rules

If we attempt to treat electromagnetic radiation emitted by a
nucleus in a way similar to that used in the case of an atom, i.e.
by ascribing it to the motion of a single, charged particle (proton,
a-particle, . . .), the emission probability of the y-quantum can be
calculated in the conventional, simple way. The dipole transition
probability from a state m to a state n of the radiating system will be
given by the familiar formula:

IN 4 o?
=D _— 2 M, 15
2yl i 3 3’1631 nm] ’ (15)

where I‘y is the so-called radiation-width for a transition from one
level to one other energy-level, w the ‘barred’ frequency (fiw = hv)

+ M. Conversi, E. Pancini, and O. Piccioni, Phys. Rer. 71 (1947), 29; see also
T. Sigurgeirson and A. Yamakawa, ibid. p. 319.

t E. Fermi, E. Teller, and V. Weisskopf, ibid. p. 314.

§ J. A. Wheeler, ibid. p. 320.

| G. Gamow, ibid. p. 550.
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of the emitted radiation, and M,,, is the matrix element of the
electric dipole moment for the transition. For dipole radiation due
to the motion of a single proton one can write

= e%h

- mfmu* (]“)

| mn

where f,,, is the so-called ‘oscillator strength’ which is expected to
be of the order of unity for strong transitions, as in the case of
atomic radiations. From (13) and (16) we obtain:

&, == 1.‘7(/1) == —sz?‘f " (]7)
yd) ) 3 M) n

or numerically, expressing fw in M.e.v.:

sec.™! (18)

nn

oy = f;% = 80X 1055(hw)¥f,

In the case of quadrupole emission, the probability is expected to be
reduced by a factor (ry/A)%, where r,is the radius of the emitting system
(nuclear radius) and A the ‘ barred’ wave-length defined by A == A/2.

In general, for a 2--pole radiation, the emission probability will be
given roughly by the expression (calculated for the liquid droplet
model by Lowent)

3 Z2e? 1+1 (row/c)*

1 ¢ AMr 1R (21
In relating the order ! of the emitted radiation to the change Ai of
the nuclear angular momentum, one must take into account also the
parity of the nuclear states in question. From the reflection proper-
ties of the vector potential, we can see that the electric 2-poles have
parity (—1) the magnetic (—1)+1. Thus, to a given parity change
and At there corresponds a minimum electric and minimum magnetic
multipole, as shown in Table XVIT.

TarLe XVII
Minimum allowed mnultipoles for given parily chunge and Ai

(19)

(7’:7(1 ) =

Parity change Minimum allowed multipole
for A7 even for Ai odd
Bver electric  2At-poloe electric  2AtFl.pole
wven magnetic 284+ .polo magnetic 24i-pole
eloctric 284 L pole electric  2A%.polo
Odd s OA; o QA1
magnetic 28i-pole magnetic 24i+1.pole

t I. 8. Lowen, Phys. Rev. 59 (1941), 835.
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Turning now to the observed emission probabilities, we notice
first of all that in the case of nuclear y-spectra the dipole and quadru-
pole transitions seem to possess comparable intensities. In fact,
looking through Table X VI of the preceding section, we fail to notice
any systematic difference between the intensities of y-lines that,
according to their conversion coefficients, have sometimes to be
classed with dipole transitions and sometimes with quadrupole
transitions. Since the theoretically predicted ratio of intensities for
the two types of transitions, in this region of energy (v =~ 1 M.e.v.;
A~ 2x1071 em.) is (10713/2 X 10-11)% .= s we conclude that for
some reason the probability of nuclear dipole radiation is reduced so
drastically as to be brought down to the same order as the probability
of nuclear quadrupole radiation.

We come to the same conclusion on the basis of studies of the
experimental results on the absolute probability of nuclear y-emission.
As first indicated by Delbriick and Gamow,t these absolute magni-
tudes for transition probabilities can be found readily from a study
of the so-called ‘long-range’ a-particles which are emitted by certain
radioactive elements. When the nucleus of a natural «-emitter is
excited as the result of the transformation in which it was produced,
the excess energy may be released either in the form of a y-quantum,
or elsc it can be given to the x-particle which then leaves the nucleus
with a higher speed (‘long-range’). The relative frequencies of the
two processes are governed obviously by the relative probabilities
of y-emission and of a-particle emission with the surplus energy.
In the case of a-emitters which already possess very short lives for
normal «-decay, the probabilities of long-range a-emission may be
expected to be extremely short and to compete successfully with the
probabilities of y-ray emission. Such long-range groups of a-particles
have been actually observed in the case of the shortlived «-emitters,
RaC’ (A =~ 103 sec.”1) and ThC’ (A =~ 10° sec.~1);] their energies and
relative numbers are listed in Tables XVIIT and XIX. We see,
for example, that in the case of the first long-range group («;) of
RaC’ the probability of a-emission is 0-43 X 10-¢ per disintegration.
On the other hand, the study of the absolute intensities of the y-rays
emitted by this element indicates that the number of y-quanta of

1 M. Delbruck and G. Gamow, Zs. f. Phys. 72 (1931), 492,
1 K. Rutherford, F. Ward, and W. Lewis, Proc. Roy. Soc. A 131 (1931), 684;
142 (1933), 347.
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TaBLE XVIII
‘Long-range’ particles of RaC’

Energy of Nuwmber of particles
Name of disintegration Energy-difference per million
the. group X107 e.v. %10 e, disintegrations
a 7-829 .. 108
ot 8-437 0-608 0-43
all 9-112 1-283 045 (1)
oM 9-242 1-412 22-0
otV 9-493 1-663 0-38
oY 9673 1-844 1-35
oVt 9-844 2:015 0-35
Vi 9-968 2-189 1-06
VI 10-097 2-268 0-36
X 10-269 2-440 1-67
oX 10-342 2:513 0-38
oXt 10-526 2-697 112
X1 10-709 " 2:880 0-23
TasrLE XIX
‘Long-range’ particles of ThC’
Energy of Number of particles
Name of disintegration Energy-difference per million
the group %X 1078 e.v. X 1078 e,v. disintegrations
Normal ay 8-948 .. 108
of 9-674 0-726 34
ot 10-745 1-797 190

energy 0-608 M.e.v. (corresponding to the selected level) is 0-66 per
disintegration. Thus we have:

Ay _ 0431078

=

Lk 0-66
Using the formula (71) of Chapter VI we can calculate that, for the
«a-particles in question, A, ~ 2 10% sec.”! Thus we get:

I 2x 108

y . 2X107 s 101 ec. 1
L 067108 XY e

== 065X 10-6.

which is 1,000 times smaller than the value, 3 X 104 sec.~1, predicted
by the dipole formula (17).

Since the line Av == 0-603 is a typical strong dipole line of the
y-ray spectra, the result just obtained shows definitely that the
absolute probabilities of y-ray emission are closer to those that would
be predicted by the quadrupole formula. On the basis of the above
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considerations it is also easy to understand why one has failed to
observe any y-radiation corresponding to long-range particles from
ThC’. In fact, one can calculate that for the first long-range group
of ThC' (Ea; = 9-67 M.e.v., hv = 073 M.e.v.):

Ay, = 3x 10 gec.”! and %_! = 2X 10" gec."!

Thus, the expected intensity of the y-radiation must be only

2 x 101t
3X 1010
per disintegration, in this case, and this would escape detection.
This drastic reduction of the probability of dipole transitions can
be understood easily if we assume that the various ‘moving parts’
of the excited nucleus possess the same specific charge; in fact, in
this case the centre of gravity of the vibrating system would coincide
with its centre of charge and the dipole moment will be identically
zero. Such an assumption would seem reasonable for those light
nuclei (for which 4 = 2Z) which may be considered as built up
entirely from a-particles, but it is by no means self-evident for the
heavier elements which contain a large excess of neutrons. One can
assume, however, that also in this case the motion of nuclear particles
takes place in such a symmetrical fashion that the eentre of gravity
of the protons always coincides with the centre of gravity of the
neutrons. Such motions would obtain, for cxample, if we consider
the excited states of the nucleus as semi-classical vibrations of a
charged droplet of nuclear fluid in which the protons and neutrons
are rather tightly bound to one another.

X 34x10-8 ~ 2x104

3. Selection rules and metastable states

As was first indicated by Weizsicker,t there may exist nuclei in
which the angular momentum of the first excited state is very dif-
ferent from that of the ground state. Since in this event the emission
of a y-quantum, as well as the ejection of an atomic electron (internal
conversion), will be prohibited to a very high degree, the excited
state of the nucleus will be able to exist for a quite considerable
length of time. If the transformation which led to the formation of
this ‘metastable state’ of the nucleus, or nuclear isomer, is to be
followed by further transformations, there is also a possibility that

t C. V. Weizsiicker, Naturwiss. 24 (1936), 813.
3595.61 0
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in many cases the next transformation will take place before the
excess energy will be released through the emission of a y-quantum
or a conversion electron. A typical situation of that kind seems to
exist in the nucleus formed as the result of f-decay of UX,. In fact,
as was first observed by Hahn, the f-transformation of UX, appears
to lead to two different kinds of nuclei, known as UX, and UZ with
decay constants 1-01x 102 sec.~! and 2-87 X 10-5 sec.™!, respectively
(half-lives 1-14 min. and 6-7 hrs.). Through the emission of another
B-particle, with a maximum energy of 2-32 M.e.v. in the case of UX,
and of 0-45 M.e.v. in the case of UZ, both substances are transformed
into the nucleus of Uy which is a normal a-emitter. Since, according
to these data, the nuclei of UX, and UZ possess the same atomic
and mass-numbers and differ only in their energy content, this case
must be interpreted as a typical example of nuclear metastability in
which the state of higher energy is prevented from losing its energy
in the form of a y-quantum or conversion electron by the existence
of a large difference between the spin in this state and the spin in the
ground state.] The scheme of transformations pertaining to this part
of the uranium family has been investigated in great detail by Feather
and Bretscher and Dunworth§ and particularly by Bradt and
Scherrer,|| whose results are shown in Fig. 35. One finds that, whereas
the emission of the 2-32 M.e.v. B-particle transforms the UX, nucleus
directly into the ground state of Uy, the 0-45 M.e.v. B-emission by
UZ leads to the formation of an excited state of the Uy nucleus
which later goes over into the normal state by the cascade emission
of two y-quanta with a combined energy of 1-5 M.e.v.t From these
data we find that the energy-difference between UX, and UZ nuclei
is 2:32—[0-45+1-50] ~ 0-37 M.e.v.

And, in fact, observation shows that UX, possesses a strong +-line
with an energy of 0-394 M.e.v., which is strongly converted in K-, L-,
and M -shells of that atom. The observed fact that the conversion of

t O. Hahn, Ber. Dtsh. Chem. Ges. 54 (1921), 1131.

1 In the second edition of this book an attempt was made to explain nuclear
isomerism as duo to the presence within the nuclear system of an hypothetical
particle known as the negative proton. However, in view of the much simplor
explanation given below, such an assumption does not appear to be necessary any
more.

§ N. Feather and E. Bretscher, Proc. Roy. Soc. A. 165 (1938), 530; N. Feather and
J. V. Dunworth, ibid. 168 (1938), 566.

|| H. Bradt and P. Scherrer, Ielv. Phys. Acta, 18 (1945), 405.

1t One actually observes, in this case, & y-radiation with iv ~ 0-75 M.e.v., and the
intensity of about two y-quanta per transformation.
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thisline in L- and M-shells is much stronger than the conversion in the
K-shell indicates that we are dealing with radiation of a high-order
multipole. The absolute probability of this particular y-transition
can be estimated from the known decay-constant of 2-32 M.e.v.
B-transformations and the observed branching ratio of the forking

UX, % UZ and UX, % U,;. We find
&, = 0:12%1-01 X 10~28ec.”! = 1-2 X 10-3 gec.”1,

which corresponds to a y-half-life of 13 hours! In order to explain

oot

Fia. 35. Transformation scheme of UX,; and UZ.

this extremely small probability of y-ray emission we have to assume
that the spin difference between UX, and UZ-states is equal to five
units ; in fact, with [ = 5 and #iw = 0-4 M.e.v. the formula (19) leads
to the half-life of 15 hours. Since UX,, having even atomic number
and even atomic weight, must be expected with great certainty to
have zero spin, and since the transition UX, - UX, is a permitted
B-transformation, this large value of the spin must be ascribed to the
UZ-nucleus. This explains why no direct transition UX,; - UZ was
ever observed and also why the B-decay of UZ always leads to an
excited state of the U;-nucleus (which must also have spin zero in its
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ground state). Fig. 35 gives also other spin quantum numbers which
can be assigned to the various states involved.

Although the UX, nucleus affords an exceptional example of
nuclear metastability, a number of other cases have been established
in the study of nuclei produced in various artificial transformations.
A 50-hour emission in In!1* has been alluded to already in Chapter V
as a useful circumstance for the careful determination of the shape

.of the beta-spectrum that follows the isomeric transition. Long-
lived isomers in Rh, Ag, Cd, In, and Au have proved useful also for
the detection of excitation of these nuclei under bombardment by
X-rays.t Such excitation is the reverse process to y-radiation and is
carried out by varying the quantumenergy of a beam of X-rays, which
is falling on a specific target, until an energy is found for which the
target nuclei absorb the X-rays and jump to an excited state (line-
absorption). The energy of excitation is then re-emitted, but the
emission does not lead necessarily to the ground stateat once. Thereis
a certain chance that on re-emission the nucleus will find itself in a
low, metastable state instead of the ground state. The subsequent
radioactivity of the metastable state then provides a record of the
original absorption of the X-rays and this is the way the energies of
the line-absorptions are determined. The whole process is reminiscent
of that in the production of the Aurorae. In Table XX we give the
levels of the elements cited above as determined in this way by

Wiedenbeck (loc. cit.).

TasLE XX
Low-lying levels of excitation (M .e.v.)
Rhloﬂ Ag Cd lnllﬁ Aul!ﬂ
305 313
2-97

271 2.76

2-56 2:63 2-56
237 2-32
202 1-95 2:08 213 215
1-64 1-59 1-68 1:55 1-68
1-26 118 1-25 1-12 1-22
0-040 0-093 0-020 0-338 0-025 (metastablo)

45 min. 40-4 soc. 488 min. 4-42 hr. 7-5 soc. half-life

Another interesting example of nuclear isomerism is observed in
the case of iridium subjected to the bombardment by slow neutrons.

1 M. L. Wiedenbeck, Phys. Rev. 68 (1945), 1, 237.
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One observes in this case a delayed activity with the half-life of
1.5 min. which was originally ascribed to the B-decaying product
formed by neutron capture in one of Ir-isotopes. It was, however,
shown by Goldhaber, Muehlhause, and Turkelt that the electron-
emission associated with that period represents actually the result of
L-shell conversion of the primary y-radiation emitted by the nucleus.
They were able, in fact, to observe this primary y-radiation, and
measured its energy to be about 60 k.e.v. (leading to 47 k.e.v.
electrons in L-shell conversion). Thus it appears likely that we deal
here with a comparatively long-living isomeric state of Ir1®2 nucleus
which is formed as the result of neutron capture by the normal
Ir-isotope 191.

We shall mention here also the experiments of de Benedetti and
McGowan} who applied delayed-coincidence counters to look for
extremely shortlived metastable states of certain artificially produced
isotopes. They have found that the B-transformation of Hf?8! leads
to a metastable state of Ta!8! which has a half-life of 22 microseconds,
and that the B-decay of W% leads to a metastable Re'®” nucleus with
a half-life of about 1 microsecond. Both these cases were demon-
strated by observing the B-ray and then, a certain number of micro-
seconds later, counting the y-rays. The plot of the logarithm of the
number of coincidences obtained against the delay time gives the
half-life of the metastable product. Both these examples can be
understood as forbidden y-spectra if the difference in spin entailed is
three units.

4. Nuclear excitation by «-decay
In discussing processes of B-transformation we often encounter situa-

tions (as, for example, in the case of UZ _p; Uy, Fig. 35) in which the
emission of the electron corresponds to transitions to excited states
of the product nucleus because the transition to the ground state is
forbidden by spin (or parity) selection rules. This process is essentially
the same as that just discussed in connexion with metastable states,
the difference being that, in general, the excited state will emit a
y-ray in a normal time, comparable to 10-1! sec. and the B-ray and
y-ray will appear to be in exact coincidence. In fact, such coincidence
selection of the y-rays permits a thorough study of the level systems

+ M. Goldhabor, C. O. Muehlhause, S. H. Turkel, Phys. Rev. 71 (1947), 372.
1 8. do Benedetti and F. K. McGowan, ibid. 70 (1946), 569; 71 (1947), 380.
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in daughter nuclei, and in this way Deutsch and co-workers have
established a number of low-lying levels of excitation in the lighter
nuclei. An example is given by Fe%,} for which combining levels
were found at 0-845, 2-11, 2:65, and 2-98 M.e.v.

A situation similar to that for B-transformations may also exist in
the case of a-transformations with the difference that we may expect
this phenomenon to be limited to small excitation energies because
of the rapid decrease of the transparency of the potential barrier

Fia. 36.

with decreasing energy of the emitted a-particles. In these cases we
may predict that the spectra of a-rays will show several discrete
groups corresponding to the different quantum levels of the product
nucleus, as represented schematically in Fig. 36. The excited nucleus
will emit this excess energy in the form of y-radiation, which will
follow immediately (due to the very short period of life of nuclear
excited states) the emission of the a-particle. It is clear that the
y-rays originating in this way belong to the nucleus of the product
element although they are experimentally observed together with the
a-radiation of the original element. It is also clear that the energies
of these y-rays must fit in the level scheme of the product nucleus—
which may be obtained directly by turning upside-down a figure
showing the energies of the various groups of a-particles with respect
to the group of smallest energy. We may notice here that, in general,
the intensities of the slower a-components should decrease rapidly
1 L. G. Elliott and M. Deutsch, Phys. Rev. 64 (1943), 321,
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due to the increasing difficulty experienced by slower particles in
penetrating the potential barrier.

Such weak groups of a-particles with smaller energies than the main
group were first observed by Rosenblumt{ when investigating the
deviation of the o-rays from ThC in strong magnetic fields. It
appeared that there were actually five very close components referred
to by Rosenblum as the components of ‘fine structure’ of the a-rays.
The energy-differences and the relative intensities as measured by
Rosenblum are given in the second and third columns of Table X XI.

TaBrLE XXI
‘ Fine structure’ of the a-rays from ThC

Relative
Energy-difference Relative intensities intensities
a-group (Eag—Eoy) # 1078 e.v. o 0bs. Io,[Ls, theor. Io;[Ia,
aq .. 10 1919, 10
o 0-040 3.3 7709, 0-7
ag 0-330 0-1 2:29, 0-03
ag 0-477 0-01 0-29, 0-005
a 0-496 0-07 1-5%, 0-004
ag 0-626 ..

The level scheme for the ThC” nucleus obtained from these energies
is shown in Fig. 37, which also includes the y-ray lines from the
measurements of Ellis. It will be seen ThC” xi05e./
that these fit well into the scheme. Since o 0-626
the relative intensities of the different «-
components evidently fix relative values o 0496
for the partial decay constants corre- %3 o477
sponding to the different groups of par-
ticles, we see at once that the probability o Y ox30
of disintegration does not varyso regularly
(or, as we shall see later, so rapidly) with
energy as might be expected from simple
considerations ; in particular the intensity
of the group o, is greater than that of the «,_y v | ¥ 0-040
group «,, although the energy of the «- “om»”%o-ooo
particles is somewhat smaller. Fra. 37.

After the discovery of ‘fine structure’ with thorium C the same
phenomenon was found with a number of other elements. Rutherford

1 Rosenblum, C.R. 190 (1930), 1124 ; J. de Phys. 1 (1930), 438. For lator referencos
see Rosenblum in Reports of the Solvay Congress, 1933.




200 ELECTROMAGNETIC RADIATION OF NUCLEI Chap. VIL, §4

and his collaborators,} using first the differential counter for range
measurements, and later also the magnetic method, proved that
with radium C and actinium C there are at least two components of
comparable intensity; the corresponding level schemes and the
y-rays are shown in Fig. 38, (@) and (b). Further investigations of
Rosenblum, by the magnetic method, showed the presence of more
complicated and well-marked ‘fine structure’ with many members of
the actinium family ; he found three components with actinon, three
components with actinium X, and eleven components with radio-

AcC”  xwbe.l
=4} 0-34

RaC”  xw08el

Ot ey 017

7,000 o 7000

al (6
Fia. 38.

actinium. Very probably, also, such ‘fine structure’ exists in the
case of protoactinium, which, although not investigated by the
magnetic method, is known to possess rather strong y-radiation
which has to be explained by excitation through «-decay.

On the other hand, with all other elements so far investigated ‘fine
structure’ is either not observed at all (ThX, Tn, ThA, Rn, RaA,
RaF, AcA) or occurs in the form of an extremely faint component,
corresponding to a y-ray of small intensity (RaTh and Ra).

We shall investigate now in more detail the question of the relative
intensities of different ‘fine-structure’ components in relation to the
transparencies of the potential barrier for o-particles of the appro-
priate velocities. Using the formula (55) of the previous chapter and
accepting j = 0 (and r, = const.) for all components of the structure,
we can calculate the relative intensities which are to be expected.
The results of such a calculation for the groups of the ThC a-spectrum
are given in the last column of Table XXI. We see that in this case,
and it is equally true in other cases of strong ‘fine structure’, the
intensities of the components decrease much more slowly than would

1 E. Rutherford, F. A. B. Ward, and C. E. Wynn Williams, Proc. Roy. Soc. A. 129
(1930), 211; 139 (1933), 617.
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be expected theoretically—and notice even the inversion of order in
the special case of the oy and «, groups of ThC. On the other hand,
the faintness of the components with Ra and RaTh is in good agree-
ment with the theoretical expectation. In the same way we might
say that the failure to detect any slow components with other
elements must be due to their extreme weaknesst following the pre-
dictions of theory.

These considerations lead us to the conclusion that we must
consider the presence of strong ‘fine-structure’ components as an

ts
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Fic. 39.

anomalous effect and try to find some explanation of it in terms of
probabilities of different kinds of disintegration. The explanation
of this effect proposed by Gamowi is based on the dependence—
already discussed—of the probability of disintegration on the angular
momentum of the emitted particle. Let us consider the process of
a-disintegration of a nucleus possessing a spin ¢, when the product
nucleus possesses, in its normal and excited states, spins g, ¢7, ¢35, etc.
(Fig. 39). If the spins of the normal states of the original and product
nuclei are the same (¢, = 7,) the probability of normal disintegration
(i.e. without excitation) will be given by expression (71) of Chapter
VI with j = 0, as in this case the «-particle can be emitted without
angular momentum. Also, the intensities of disintegrations with
excitation of different levels of the product nucleus will be consider-
ably less than this on account of the smaller energy of the emitted
a-particle and the effect of the additional ‘potential barrier of

1 We say this, rather than ascribe the absence of ‘fine structure’ to an energetic
impossibility ; in fact one can feel perfectly sure that in radioactive nucloi there are
always levels with excitation energies less than than energy of a-particles amounting
to at least 4 x 108 e.v.

1 G. Gamow, Nature, 131 (1933), 618.
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centrifugal force’ for those states with spin different from ¢, This
represents just the above-mentioned case of very rapidly decreasing
intensities of fine-structure groups characteristic of those elements
for which a very faint structure or no structure at all has been
observed. Let us imagine now that the normal state of the product
nucleus possesses spin different from that of the original one. In this
case the probability of normal «-decay will be considerably reduced
as the emitted a-particle must take with it the spin-difference and
escape from the nucleus with angular momentum j = [¢,—ig|. On
the other hand, it might now happen that some of the excited states
of the product nucleus possess spin closer or equal to 3,, the spin of
the original nucleus. For transitions to these states the decrease of
disintegration probability due to the smaller energy of the emitted
a-particle will be partially balanced on account of the absence of the
additional ‘centrifugal barrier’ and the resulting intensity may
become comparable with, or in certain cases even larger than, that of
normal decay. These considerations, relating the existence of strong
‘fine structure’ with large spin-differences between the normal states
of original and resulting nuclei, throw some light on the question why
this effect is observed only for all three C products and for most
members of the actinium family. For, as we have seen above (Chap.
I), nuclear spins different from zero are to be expected only for
elements with odd atomic number (C products) or odd mass numbers
(actinium family). A glance at Fig. 30 shows us that it is just for the
elements possessing strong ‘fine-structure’ components that the
anomalously small values of the effective radius are observed, and
this, as has been already mentioned, should be considered as indicat-
ing the emission of an «-particle with angular momentum different
from zero. All these facts seems to prove, rather unambiguously,
that the proposed explanation of the ‘fine-structure’ effect has the
correct basis.

It is much more difficult, however, to give a quantitative treatment
of that effect, because the formula (71), Chapter VI, used for calcu-
lating the effect of spin on the probability of disintegration does not
take into account all the factors known to be concerned. In fact, in
deriving this formula, we accepted a simplified model of the potential
barrier with a vertical fall at r = r,, and correspondingly cut off the
potential barrier of centrifugal force at the same distance. In reality
the fall of potential near the nuclear boundary cannot be so abrupt,
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whilst the addition of centrifugal potential will somewhat change
the whole distribution and slightly decreaset the value to be accepted
for the nuclear radius ; this effect cannot be taken into account until
we know the exact form of the potential-energy curve near the nucleus,
The second effect neglected in the formula can be expressed as the
change in the number of collisions of an «-particle inside the nucleus
with the potential barrier: an a-particle possessing non-zero angular
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momentum will suffer fewer collisions with the ‘wall’ than a particle
of the same energy, but without such momentum. At present we
can only say that both these effects will act in the same direction as
the effect already taken in account, so that the actual decrease in
intensity due to spin-differences should be larger than that given by
our formula (71).

Anyhow we shall make the attempt to deduce nuclear spin-
differences from the relative intensities of ‘ fine-structure’ components
and we shall proceed in the following way. For each component we
calculate the partial decay-constant, using the experimental values
of total decay-constant and relative intensities of individual o-ray
components. Substituting these, and the experimental values for
the energies of the different components, in the formula (71), we

t Because it is necessary to come closer to the nucleus in order that the stronger

repulsion (Coulomb +-centrifugal forces) may be compensated by nuclear attractive
forces.
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obtain the effective radii corresponding to the components of ‘fine
structure’. These radii, as calculated by Gamow and Rosenblum,}
are shown in Fig. 40} plotted against the atomic weight of decaying
nucleus. We see that the points representing the effective radii for
the different a-components of the same element are spread over a
considerable region and that they show a tendency to accumulate in
pairs, triplets, or other groups. If we agree, as stated above, that
the reduction of effective radius is to be ascribed to the angular
momentum of the emitted a-particle we must conclude that, for a
given element, the disintegrations characterized by the same effective
radius take place with the same change of angular momentum and
those described by smaller radii with correspondingly large momenta.
For example, the groups a,, o, and o in RaAc must have equal
angular momenta and this momentum must be larger than that of
the groups o, and ag. In Fig. 40 are included, also, the points repre-
senting the effective radii for different j’s as calculated from the
formula (71). We see that, although there is a close similarity between
theoretical and experimental schemes, the experimental points are
situated somewhat farther apart from each other than are the
calculated points. This can be accounted for by the roughness of the
approximation used in obtaining formula (71)—as previously men-
tioned. For this reason it is difficult with certainty to assign values
of j to the different groups; for example, in the case of ThC we could
accept j(ay) = 0, j(y and o) = 1,§ and j(«g, og, and ag) = 2, although
the values 0, 2, and 3 or 1, 3, and 4 are also possible. If, however,
the above-mentioned correction can be taken into account it is not
at all impossible that this method will permit us to give quite
definite j-values to all components. In conclusion we must mention
that our considerations lead only to the spin-differences (j = 7—41)
between the nuclei, and, in order to assign values to the nuclear spin
itself, a knowledge of at least one spin in each family is necessary.
In the Th and U families it is very likely that the elements of the
main «-decay sequence possess the spin ¢ = 0, and for the Ac family
we can use the spin of Pa, which, according to Schiiler and Gollnow,
is equal to 3.

1 G. Gamow and 8. Rosenblum, C.R. 197 (1933), 1620.

} The values in Fig. 40 are slightly different from those given above (Fig. 30), as in
the new calculations somewhat improved experimental data have been used.

§ The difference between the points for «, and «; in ThC is within the limits of
experimental error.



Chap. VII, § 4 NUCLEAR EXCITATION BY a-DECAY 205

A serious difficulty with the spin-theory of fine-structure intensi-
ties arose as a result of the work of Chang,t who, by using a new
technique, was able to study the very weak components of the «-fine-
structure of polonium. The results of his measurements are shown in
Table XXII which gives the energy values for different a-groups as

TaBLE XXTI
Energy groups of Po a-particles

(roup energy Kxcitation | Relative
Group M.en. M.ev. intensity | 7.y X 1012 cm. J
'N 5303 .. 108 071 13
a 5113 0-190 (96) 0-58 15
y 5065 0-238 (126) 059 15
g 4-901 0-402 84 0-63 14
A 4-838 0-465 49 0-64 14
o 4749 0-554 64 0-67 13
g 4-640 0-663 70 0-70 13
oy 4449 0-854 79 0-77 11
o 4-303 1-:000 43 0-81 11
g 4-111 1-192 48 0-89 10
a0 4016 1-287 19 1-91 9
ay, 3-890 1-413 18 0-97 7
o9 3-685 1-618 21 1-08 0

well as their relative intensities. In the last two columns we give the
values of the effective nuclear radii calculated by the formula (71) of
Chapter VI, and the values of angular momentum which must be
ascribed to the various a-groups in order to account for the observed
changes in intensity on the theory described above. It goes without
saying that these extremely large values of j do not look real and
that, although the effect of nuclear spin may account for minor
variations of the observed intensities, the main increase of the effec-
tive nuclear radii with increasing energy of excitation in the product
nucleus must be given an entirely different explanation in this case.
The most straightforward way to account for these results would
be to assume that the radius of the nucleus actually does increase with
increasing nuclear excitation. It appears, however, that our present
knowledge of the laws of nuclear forces excludes the possibility of
such comparatively large changes in radius (it would, in fact, require
the nuclear density to become 3 times smaller for a state excited by
1-6 M.e.v. than for the normal state!). Another possibility lies in the
assumption of nuclear polarization produced by the Coulomb field of

t W. Y. Chang, Phys. Rev. 69 (1946), 60.



206 ELECTROMAGNETIC RADIATION OF NUCLEI Chap. VIT, § 4

the outgoing particle. In this case the emitted «-particle can cross
a good part of the potential barrier still going with a high velocity
and lose part of its original energy only when it is a considerable
distance from the original nuclear surface. An assumption of this
kind of interplay could readily explain the absence of a rapid
exponential decrease in the number of low-energy a-groups.j

t Calculations along these lines are being carried out by R. Peierls and M. A.

Preston (private communication) and they appear to lead to a satisfactory inter-
pretation.



VIII
NUCLEAR COLLISIONS

1. Properties of neutron beams

WE now come to the problems arising in nuclear collisions which
take place when a beam of particles of one kind pass through material
composed of particles of another kind. Historically, these problems
were first investigated in the case of the scattering of a-particles and,
in fact, the observed deviations from the Coulomb scattering supplied
us the first evidence of the dimensions of atomic nuclei. With the
development of experimental technique for producing artificially
accelerated beams these studies were extended to charged particles
other than a-particles. Since, however, the scattering of charged
particles is determined mostly by the external Coulomb field so that
specifically nuclear effects appear as deviations from the inverse
square scattering, much more direct information is obtained by the
use of neutron beams.

Since neutrons exist permanently in nature only as constituents of
atomic nuclei they have to be produced therefrom by bombarding
nuclei with other particles. The classical example of such a nuclear
reaction is the one by which neutrons were discovered, viz. the bom-
bardment of beryllium with fast a-particles:

Be®+He?* - C124-n. (1)
In the early experiments the alphas were obtained from the naturally
radioactive elements, e.g. Po. Since energy must be conserved, the
sum of the binding energies of Be® and He# plus the kinetic energy of
the He® must be equal to the energy of the resulting C!2 and neutron.
The latter consists of (1) the kinetic energy of the neutron, (2) the
kinetic energy of the C'2 atom, and (3) the binding energy in the C12
atom (relative to hydrogen atoms and neutrons). If the C'2 nucleus
is formed in its lowest energy its binding energy is known (cf. Table
II), and we can calculate the total kinetic energy of the particles
produced in reaction (1) to be

(KE),c = E,+ BE(Be®+Het—C?). (2)
Of this amount, # E, appears in the motion of the centre of gravity

of the system and one can readily obtain the energy of neutron, as a
function of the angle with which it is emitted, by a straightforward
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application of the laws of conservation of momentum. It is evident
that, in the general case, the energy of a neutron produced in a given
nuclear reaction will depend upon (1) the atomic weights involved,
(2) the difference in binding energies (with attention to the possi-
bility that the product nucleus need not be formed in its lowest
state), (3) the angle with which the neutron comes off, and (4), the
energy of the bombarding particle. With regard to the last point, if
the bombarding particles are charged particles they will also lose
energy to the atomic electrons in the target and, if in addition the
target is ‘thick’, the energy of bombardment will vary from its
maximum value to zero. Genecrally speaking, although by no means
necessarily so, neutrons produced through nuclear reactions have
kinetic energies of the order of millions of electron volts (M.e.v.) since
this is the usual order of differences in binding energy among nuclei.
The neutrons produced simultaneously with the fission of the heaviest
nuclei are also in this energy range. All such neutrons are referred
to as fast neutrons, and their energies are usually measured in M.e.v.

According to the fundamental laws of the quantum mechanics a
free neutron with kinetic energy K is represented by a plane wave-
function periodic with the wave-length

27h 0-286 .

A:m—F—J—)ZVE»,;XlOS(}m., (3)
where E,, means the value of the energy in electron volts. Thus,
even at very low energy, ncutron waves are not much longer than
the distances between atoms in a crystal, say, and are certainly short
compared with slit-widths and apertures used in optical experiments.
It is justifiable, therefore, to consider a narrow stream of neutrons,
that has been defined by a slit system, as a plane wave which, at a
given instant, varies with the distance z along the beam as

(,2'rrizl).

In fact, the wave-length region concerned is very similar to that
customarily encountered in ordinary X-rays.
The parameter that enters into calculations of scattering, etc., is
almost always A = A/27, and, for fast neutrons
4-55

A= —— x 10713 cm. (4)
meov

For fast neutrons, therefore, A is of the order of nuclear radii.
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It is possible to find nuclear reactions in which the difference in
binding energies is small, or negative, so that the emitted neutron
has a very low kinetic energy. For example, if the bombarding
particle is a y-ray of energy slightly greater than the binding energy
of the last neutron in the target nucleus, the resulting neutron will
be slow. Since the energy of a y-ray is not affected appreciably by
the atomic electrons, the neutrons produced in such a photo-neutron
source will be not only slow but mono-energetic (sometimes called
monochromatic) if the gammas have a sharply defined frequency
themselves. For the purpose of obtaining neutrons of low energy,
however, it is generally more efficient to take fast neutrons from an
ordinary nuclear reaction, or fission, and slow them down by colli-
sions with light nuclei. Obviously the most efficient atom for slowing
down neutrons is hydrogen, which has practically the same mass as the
neutron, so that, if the energy of the neutron is large compared with
the binding of hydrogen atoms in molecules, the neutron loses half
of its encrgy in each collision, on the average. If the energy of the
neutron is not large enough, so that the hydrogen can be considered
free, the mass with which it collides is effectively the mass of the
molecule. The loss of energy in this case is then a particular example
of general collision between a neutron with a nucleus (or molecule if
the neutron is slow) of mass 4. Let the angle by which the neutron
is deflected in the centre of gravity system be § and let the incident
energy be K, and the scattered energy be K,, then, in general

B, — B, {1_(1%1)2 (l—cosﬁ)}, (5)
which for 4 =1 becomes E, = }E,;(1+cosf). Thus a common
method of producing slow neutrons is to surround a source of fast
neutrons by paraffin in order to reduce the energy through collisions
with the hydrogen nuclei. In the chain-reacting pile the same func-
tion is served by collisions with the carbon nuclei of the moderator.
The natural limit of energy to which neutrons may be slowed by such
methods is determined by the thermal motion of the atoms in the
slowing-down medium, i.e. the velocity of the neutrons eventually
assumes a Maxwellian distribution characteristic of the temperature
of the slowing-down system. Neutrons that have come to equi-
librium with a medium at temperature T°K are called thermal

neutrons if T is in the neighbourhood of room temperatures, liquid
3595.61 P
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air neutrons if 7' is the boiling-point of liquid air, and so on. The
value of A is given by

A= 4—\/%% 10-8 em., (6)
so that thermal neutrons have wave-lengths comparable to the
diameters of atoms, or the distances between atoms in condensed
phases.

Except for the (very useful) property of neutrons that they may be
slowed down readily, neutron beams are similar in many respects to
electromagnetic beams (X-rays) of corresponding wave-length. The
phenomena of diffraction, scattering, refraction, reflection (total),
polarization, dispersion, and absorption are well established for
neutron beams by one method or another. In Chapter I we have
referred to the scattering of fast neutrons as a method of estimating
nuclear radii. According to eq. (4), neutrons of 25 M.e.v. have
A ~ 10-13 ¢m., whereas the radius, R, of a nucleus with 4 = 200 is
about 7x10-13 cm. The scattering of these neutron waves should
thus be similar to the diffraction of optical waves by an obstacle of
diameter 14 A, since the scattering of waves in such cases is largely
a matter of the effect of the principle of uncertainty. Applying the
diffraction equation of Kirchhoff, Bethe and P’laczekt obtain the
familiar formulae for the differential cross-section for a circular disk of
radius R
o) = R MR 0 <),

M
f a(0)d cos(0) = wR2.

Thus, counting up all rays that are bent by any amount whatsoever
leads to an integrated cross-section of wR% From the form of o(f)
as well as from the physical content of the problem, it is evident that
most of the scattered rays are bent only slightly from their incident
direction. In addition, all those incident rays that fall inside the
area mR? of the disk are either absorbed or reflected. Hence the total
cross-section of an absorbing (or reflecting) sphere of radius R is
2nR2,  Actually, because of the finite range of forces between
nucleons, the radius R is better estimated as the radius of the target
nucleus plus the range of forces. The more precise manner in which
nuclear forces influence the scattering of neutrons is not represented

1 H. A. Bethe and G. Placzek, Phys. Rev. 57 (1940), 1075.
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in eq. (7), of course, so that the formula is only approximate.
Attempts to measure the distribution of scattered neutrons as a
function of 8 indicate, however, that the relation is roughly correct.

The diffraction, or scattering, of slow neutrons by atoms is of great
interest because of the possibility of obtaining interference effects
between several scattering centres. In Chapter II we have discussed
already, in a semi-quantitative way, the interference between waves
scattered by the two protons in the hydrogen molecule. There we
related the scattered amplitudes to the ‘phase-shift’, §, produced
by a square potential well. For neutron energies approaching zero,
(6 -» 0), the scattered wave has the approximate form

o eirlk — o girlX (8)

T r

and the total cross-section is

o = 4m(8A)2 = 4mal.
Eq. (8) is equivalent to the definition of the scattering length a,.
The application to para- and ortho-hydrogen, made in Chapter II, is
not complete for three reasons: (1) the thermal motion of the pro-
tons was not taken into account in calculating A and §; (2) the
separation of the protons is not entirely negligible compared with A,
although it is nearly so for liquid air neutrons; and (3) the value of
& was assumed to be equal to that computed for collision between the
neutron and a single proton. The first point may be corrected by
considering the statistical distribution of H,-velocities, relative to the
neutron beam, and integrating the scattered intensity over the
Maxwell distribution. The second point merely requires a little more
care in the description of the interfering scattered waves.

The third point above, the relation between the phase-shifts caused
by free protons and those by protons that are bound to a heavier
system, may be elucidated further as follows. In singlet collisions of
a neutron with a free proton, for example, 3, is computed from the
refraction of a spherical wave that converges upon, and subsequently
diverges from, the centre of gravity of neutron and proton. The whole
phase-shift in this wave is produced in that part of the collision dur-
ing which neutron and proton are within the range of forces of each
other, i.e. within half a range of the centre of gravity, and amounts
to 28,. If, however, the proton had been assumed to be fixed at the
originof coordinates, asisthe case when it is chemically bound toa heavy
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molecule, the refraction of the neutron wave would begin when the
converging phase of the neutron wave is at the full range of forces
from the origin and continue until the diverging phase reaches that
radius. The resulting phase-shift of the neutron wave will then be
twice as great as for collision with a free proton, i.e. 43, and the
cross-section (when 3, is very small) will be 4 times as large. This
factor of four was first pointed out by Fermi.f Since the whole ques-
tion is one of converting the n—p phase-shift to the centre of gravity
motion, it is readily seen that if the proton is bound to a system of
total weight W (neutron masses) the phase-shift as calculated for a
free proton must be multiplied by 2W/(W4-1) and the cross-section
for slow neutrons will be multiplied by this squared. Hence, for the
scattering of neutrons by hydrogen molecules, W = 2, and the cross-
section presented by each proton for slow neutrons is individually
16/9 times that for a free proton.

The interference phenomenon, exemplified in the case of scattering
of slow neutrons by hydrogen molecules, can be extended to other
molecules as well as to solids and liquids for which the neutron wave-
length A is of the order of the interatomic distances.f Many of these
phenomena are so very similar to those occurring for X-rays of com-
parable wave-length that we shall refer to them only sketchily. In
particular, the Bragg law for reflection of waves by crystal planes,
separated by d: N

sinf = -2—d~,

where N is an integer, has been found to apply to neutron waves with
A < 2d, just as to X-rays. The selective reflection of neutrons of
definite wave-length has indeed proved to be a useful research tool
for producing highly monochromatic neutron beams, especially when
used with such copious sources of slow neutrons as the thermal
column of a chain-reacting pile. An interesting consequence of the
Bragg law is that neutrons of wave-length greater than 6-7 A are not
deflected by any of the planes in graphite (cf. Fermi and Marshall,
loc. cit.). Hence by filtering thermal neutrons (7' ~ 300° K) through
20 em. of graphite most of the wave-lengths shorter than 7 A have
been scattered out of the beam and only the longer wave-lengths,

1 E. Fermi, Ric. Sci. 7 (1936), 13.

1 A summary of early experiments along those lines is given by J. H. Van Vleck,
Philadelphia Centennial, 1939, and a great deal of the modern work with pile neutrons
is presented by E. Fermi and L. Marshall, Phys. Rev. 71 (1947), 666.

9
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ie. cold neutrons (7' ~ 20° K), remain. The theory of crystalline
refraction of neutron beams, including possibilities of absprption, has
been reported in a paper by Goldberger and Seitz.t

When the neutron wave-length is too long for Bragg reflection, or
if we are dealing with non-crystalline solids, we may simply compute
a refractive index for the medium. Suppose, for simplicity, that all
nuclei in the medium are equivalent, each producing a phase-shift of
23 in S-waves of the neutron, and let A be the wave-length over 2=
for the neutron beam in vacuo and A’ the value inside the medium.
The number of S-wave collisions per centimetre of path, and per
square cm. of cross-section of the beam will be 7n,A2 where =, is the
number of nuclei per cm.? in the medium. Each collision advances
the phase of the neutron wave by the (small) amount 25. By the
principle of superposition, the advancement of phase per unit length
of path is then 270, A28 and by definition, this is 1/A’—1/A. Setting =,
the index of refraction, equal to A/’ and using the collision length,
@y = —3A, we get n — 1—2magn, A2 (10)
Whether 7 is larger than or smaller than unity thus depends upon the
sign of 8, or of @,. This sign has been determined experimentally for
a number of nuclei by comparing the scattering from composite
crystals of various types of nuclei, and the sign of @, is found to be
positive for most cases (H, Li, and Mn have been found to have
negative a). Purc materials of this type will then produce total
reflection of neutron beams that impinge at a glancing angle from the
air-side of a polished surface, just as in the case of X-rays (where
n < 1, also). The total reflection of neutron beams has indeed been
demonstrated for a half-dozen elements (Fermi and Marshall, loc.
cit.) using neutrons of wave-length 1-87 A. The limiting angles of
reflection are about 10 minutes of arc.

Monochromatic neutrons have been produced also by the ‘time of
flight’ method. This method, originated by Alvarez, derives its
neutrons through a nuclear reaction from a high-voltage source of
protons, or deuterons, such as a cyclotron; the cyclotron is not
operated continuously, however, but in sharp bursts at regulated
intervals. So many microseconds after a burst of charge particles is
made and allowed to fall upon an appropriate target the neutron
counting equipment is activated, also for a very short interval of

1 M. L. Goldberger and F. Seitz, ibid. p. 294.
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time. In this way neutrons of rather sharply defined velocity are
recorded in the counters which are at a known distance from the
target. Both the ‘time of flight’ and Bragg reflection methods have
been applied to studying the absorption spectrum of various materials.
Many of these spectra are characterized by rather sharp regions of
energy in which there is high absorption, and the shape of the
absorption curve in such regions is very similar to that in the resonant
absorption of light. A typical example is shown in Fig. 41. The
energy at the centre of such a peak is called the resonant energy and
the half-width of the resonance is

gaergos specified in the usual way. Over fifty
24004 N such resonant levels have been found
2000 experimentallyt for neutron energies
1600, mostly in the range of zero to 50

12001 electron volts. They are found with

;‘gg rather uniform frequency in the range

* of atomic weights from 90 to 200, and

02040608 10 1 1416 I8ev the average spacing between neigh-

Fia. 41. Total cross-section for bouring levels turns out to be about

;io“;jng:::;:: E g‘d%’(ﬁl;:ftgr 10e.v. Such irregularities and group-

Bernstoin, and K. C. Poterson, ings in these levels as do occur are

Phys. Rev. 72 (1947), 109). probably related to the periodic
features of nuclear structure for which the current theory has no
explanation.

The existence of strong absorption lines in the spectra for
slow neutrons is one of the most important characteristics of the
interaction of neutrons with nuclei in this range (i.e. 4 > 90). In
interpreting the observed distribution of levels, however, it must
be remembered that the (negative) binding energy of the last neutron
decreases steadily from about 10 M.e.v. for 4 = 90 to about 7 M.e.v.
for A = 200 and to lower values for higher 4. We shall return to
the question of the distance between levels in Chapter IX.

Another salient feature of the interaction of neutrons with nuclei

t B.D.McDaniel, Phys. Rev.70 (1946), 83 (In) ; W.W.Havens, Jr , and J. Rainwater,
ibid. p. 154 (Sb, Hg); L. J. Rainwater, W. W. Havens, Jr., C. 8. Wu, J. R. Dunning,
ibid. 71 (1947), 85 (Cd, Ag, Ir, Sb, Mn); W. W. Havens, Jr., C. S. Wu, L. J. Rainwater,
and C. J. Meaker, ibid. p. 165 (Au, In, Ta, W, Pt, Zr); C. 8. Wu, L. J. Rainwater,
W. W. Havens, Jr., ibid. p. 174 (Os, Co, Tl, Cb, Ge); R. E. Lapp, J. R. Van Horn,
A. J. Dempster, ibid. p. 745 (Gd, Sm); W. J. Sturm, ibid. p. 757 (Rh, Ay, Ir, Gd,
Sm, Eu, Dy).
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is illustrated best by those absorption spectra in which no sharp lines
occur. For example, the absorption cross-sections for Li and B, for
neutrons in the range of energy up to 100 e.v., are represented by the
formulae:

o = | 174118 10-20 om 2
vE,,
(11)
118
— 10-2¢ 2
og '\/Eev X cm

This characteristic dependence of non-resonant absorption at low
energy on K-} is known as the 1/v-law; we shall take up its theo-
retical foundation in Chapter IX.

The analogy between neutron beams and beams of electromagnetic
radiation extends to include polarization. Both beams are capable
of two independent polarizations which, in the case of the neutron,
are associated with the two possible orientations of the spin-vector
along a chosen axis of reference. Physically, it is possible to define
a preferential direction in space by applying a magnetic field. Then,
since the neutron carries a magnetic moment, the two polarizations
of neutron beam will be refracted, or otherwise behave, differently
when passing through such a field. An ingenious method of putting
such an effect into evidence has been proposed and used by
F. Bloch.t This method is to pass the neutron beam through a
magnetized sheet of iron. Interference between scattering by the
iron nuclei and scattering by the atomic magnetic moments tends to
remove (scatter) one spin-polarization from the original beam more
effectively than the opposite polarization. The beam then emerges
from the iron partially polarized, and this can be demonstrated by
‘analysing’ the transmitted beam with a second sheet of magnetized
iron.

To illustrate the principles of Bloch’s method in more detail, con-
sider the scattering of a slow neutron beam by a single paramagnetic
atom or ion. The nucleus of the atom will scatter a certain, spherically
symmetrical intensity which determines the elastic cross-section, o,,
for nuclear scattering. In addition to these scattered waves, the
electron cloud about the nucleus will scatter the neutron waves
through the interaction of their resultant magnetic moment and
the magnetic moment of the neutron. If the resultant electronic

t F. Bloch, ibid. 50 (1936), 259 ; 51 (1937), 994.
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magnetic moment, {&,, could be visualized as a point dipole coincident
with the nucleus, the added potential would be

U, — (p.‘e’ !”11)72—3“1'1-’ l‘)(p.,,‘, l')
0 — P .

Actually, the neutron interacts at each point in the electron cloud
with the magnetic polarization, due to electrons, m,(r,), at that
point, so that more exactly:

— (mm P‘n)rz_3(mc' r)(p.,,. l‘)
v, = | % dr, .

r=r,—r,
Since we are dealing with slow neutrons, and very small phase-shifts,

we may use the Born approximation which says that the perturbing
potential acts like a source of Huygens wavelets of amplitude

2M .
_h.z__ L,(r" )el(ko ~kn)Ty

where k, is the wave-number vector of the incident beam, and k,
of the scattered beam. At large distances from the atom, the scat-
tered wave has the form:

ikr ©
. “%ﬁ% eiko-kralJ(r, ) dr,. (13)

We are primarily interested in those waves originating from U(r,,)
that interfere with the waves scattered from the nucleus. It is
assumed that the spin of the neutron is not changed by interaction
with the nucleus, and since U(r) is a weak potential we may restrict
the calculation to those components of U(r) in which p., is diagonal.
Taking the spin-effects into account, one then substitutes (12) into
(13) and integrates to obtain the amplitude scattered by the magnetic
field of the atom. The integral is not elementary, however, because
of the singularity at r,—r, = 0.

Bloch (loc. cit.) has shown that, if one encloses the position of the
neutron by a small volume bounded by the surface 8, the angular
distribution of neutrons scattered both by the nuclei and by the
magnetic polarization of the electron cloud is given by the differential
cross-section

2 2
o(0) = | A/;’_ﬂi”_z”_ 2ot —0) (14)

where 6, is the angle included by the vector difference k,—k, and
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the vector _fme(r)ei(ko"‘-)' dr, y, is the magnetic moment of the
neutron measured in nuclear magnetons, and y, is the magnetic
moment of the electron measured in Bohr magnetons. The number C
is the result of the integration over the surface of the excluded volume,
and may be expressed in coordinates relative to the centre of that
volume as

zdS,
el (15)

1

‘=%

The value of C thus depends upon the ‘shape’ of the neutron. If §

is a needle-like volume such as one should use to enclose two mono-

poles forming a dipole in the z-direction, C' obviously vanishes; if S

is disk-shaped, presumably the case if the neutron’s magnetic moment

is due to a small Amperian current, ' = 1; if S is a sphere, C' = },
and so on.

The plus or minus sign in eq. (14) refers to one polarization, or
the opposite, of the neutron’s spin relative to the axis defined by
the electronic magnetic moment. It is evident that the differential
cross-section for a given angle of scattering will be larger or smaller
according to whether the waves scattered magnetically interfere con-
structively or destructively with the waves scattered by the nucleus.
Since, if waves of one spin-orientation interfere constructively, waves
of the opposite orientation interfere destructively, the scattered
intensities will be different and the scattered and transmitted beams
will be partially polarized. Experimentally, the degree of polariza-
tion appears to be about 10 per cent. This method of producing
polarized beams of neutrons was used in the first determination of
the magnetic moment of the neutron.}

2. Elastic scattering

In Chapter IT we have introduced the theory of scattering of one
nucleon by another, with special attention given to the effect of short-
range nuclear forces on the S-wave component of a plane wave. The
restriction to §-waves was made possible by the fact that A, for the
cases considered, was long compared with the range of forces. Since,
in general, the collision of particles in nuclear bombardment involves
scattering by short-range forces, it is evident that we have merely to
extend this theory to apply to scattering by complex nuclei. It is
usually convenient to think of the scattering nucleus as an effectively

1 L. W. Alvarez and F. Bloch, Phys. Rev. 57 (1940), 111.
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infinitely heavy object representing a refractive region for nucleonio
waves, which region extends to a definite radius R. In the mathe-
matics, one automatically expresses the proper approach by going
over to reduced masses. Let us imagine a plane through the centre of
the scattering nucleus and perpendicular to the direction of bombard-
ment, and let us draw circles on this plane about the centre and of
radii A, 24, 34,..., ete. If the radius of the refractive region, R, lies
wholly within the first of these circles it is sufficient, in good approxima-
tion, to consider only the head-on collisions, or S-waves. If R extends
into the second zone, however, collisions with orbital angular momen-
tum unity are affected appreciably and the P-wave refraction has to
be taken into account. It will be noted that the area presented to a
plane wave by the zone of orbital angular momentum [ is

(I 1)2—12] = (2+ V)mC.

The method of Chapter II is readily generalized to include refrac-
tion in the states of higher orbital angular momenta. The problem
considered here has axial symmetry about the direction of bombard-
ment which we shall denote by z or by rcosf.t It is then most
convenient to expand the bombarding plane wave in eigenfunctions
of angular momenta by the well-known formula:

gikreosd z (2L 1)t J (‘—2%‘).],,4(/61')11(00&1 0), (16)
=0

where J; 4 (kr) is the Bessel function of half-integral order that is
bounded at r = 0, and Fjcosf) is the Legendre polynomial. As
suggested above, only those states of angular momentum with zero
component about the direction of bombardment can occur in this
expression.

Ultimately, we are interested in the effect of a short-range region
of refraction, around r = 0, on the plane wave (16), but we first
concern ourselves with the net effect at large distances from this
region. We may then use the asymptotic expressions for the Bessel
functions:

Jysiller) > /("——ir)sinwr—w, a7

t The situation becomes less symmetrical in the case of polarized spins, in the
beam, or in the target or both, as, for example, in the scattering of neutrons by
magnetic iron discussed in § 1.
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and eq. (16) becomes:

o
. P(cos § .
gikr cos 8 = lzo (21+1) l2ilcr _)_[eikr__(__ l)le—lkf]. (18 @)
The trigonometric functions are expanded to put into evidence the
incoming partt of the incident wave, at large r, e~*", and the out-
going part, e®*. The short-range region of refraction will induce a
certain total shift in phase, 25;, which is represented by inserting the
factor 2% in the outgoing part for each I. The asymptotic form of
the refracted wave is then:

0

Z (2l+1) M[eﬂkr.}-z&)_(_ 1ye-ik], (18 b)

& 2ikr
Subtracting (18 a) from (18 b) we get the scattered amplitude,

l/’x'en- ->

sin §;

i (19)

S = z (21+1)B(cos f)ei®
=0
However, 2 times the scattered intensity is just the differential

cross-section for scattering into unit solid angle in the direction 6,
and this is o(0)

o(8) = Elé | sin 8, 3¢ sin 8, cos ...+ (21-+1)ePrsin 8, B(cos 6)... 2.
(20)
The fact that the sum of terms belonging to different ! occurs
inside the absolute square expresses the possibility of interference
between these waves, which must be possible since all scattered
waves originate from a single plane wave. Generally speaking, scat-
tered waves of the incident particle will interfere if the initial and the
final states are the same. Since we have been disregarding spin, a
final state may be completely specified as a plane wave travelling
in the direction 8 and will contain, for example, an S— P interference

term given by:

6 sin 3, sin §; cos(8,—8;)cos 0. (20 a)
The rule for interference permits one to treat the collision of par-
ticles with spin, as we did in Chapter 1I, by setting up independent
expressions for the differential cross-sections, one for each possible
+ This is the incoming part in accordance with the convention that the time-

dependent factor of the wave-function is e~**/%, whence a given phase progresses
inward with time.
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spin-combination, and then adding the o(f) with the statistical weight
appropriate to each. If the colliding particles have spins s and ¢,
there are (2s-+1)(2¢+1) possible polarizations of the system, and
these may be grouped into eigenstates of total spin, 7,

s+1 =>4 = |s—il.
In the general case, the phase-shifts will be different for different j
(double, or multiple, refraction!) and the combined scattering cross-
section must be written:
2j+1)
o=S__FtH ). 21
o) . @ar @510 1)
The total elastic scattering cross-section is then
0y = 2 j a(6)d cos . (22)

A complication arises if the forces that produce the refraction may
also turn over the spins. In this case the final states are not always
the same and non-interfering terms appear in the scattered intensity.
The treatment of this question is a part of the general theory of
transmutation that is considered in the next chapter, but a simple
example will be taken up at the end of this section.

For the sake of completeness, we write down at this point also the
analogous expressions for o(f) in case there are long-range forces, i.e.
Coulomb forces. As discussed in § 1, Chapter II, we find that the
particle waves are refracted everywhere and the analysis is more
complicated than for short-range forces alone. One can follow through
the method introduced in Chapter II for higher angular momenta,
however, with the general result:}

o(6) = ];15 _ Y ¢in1n(2/(1—cos 6} + e gin 8o+

1—cos @
12

+3 cos feidi+itigin §, ... (21 4-1)er+idi sin §; Py(cos 0)

_ZZ,e | (Lin)@tin).(tin)
=~ = T8 ). i)

for particles of charge Z, and Z, and with relative velocity v. For

high velocities and small charges, |n| < 1, and ¢, may be approximated
by

» (23)

where 7

¢ = 2n(1+%+%+-~%), (n<L).

1 W. Gordon, Zs. f. Phys. 48 (1928), 180.
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We turn now to the rather more specifically nuclear part of the
theory of scattering in which we attempt to evaluate the §,’s in terms
of the short-range forces between the incident particle and the scat-
tering nucleus. To take the simplest case, let us suppose we are
dealing with a slow neutron incident upon a heavy nucleus, so that
A > R, where R s the radius of the nucleus plus the range of force.
In Chapter 11, § 2, we had precisely this case for scattering of neutrons
by protons. But we shall simplify the present example further by
neglecting the spin of the neutron as well as of the scattering nucleus,
ifany. If we should represent the nucleus by a ‘square well’ of radius
R and depth A%Z/2M, the calculation of 3, would be formally the
same as in the case of hydrogen and we should obtain

kR
VTR oot B

and, since §; of higher [ are negligibly small, the total cross-section is:

3y = —hkR+arctan (24)

oy = T oints, (25)

k2
in accordance with eq. (20).

The feature of these formulae (24) and (25) that is most readily
checked against observation is the occurrence of resonant energies,
i.e. values of n2k?/2M for which 8, = (n+4)w, where n is an integer
and, therefore, for which the scattering cross-section reaches its
maximum possible value for an S-wave, 472A. From eq. (24) we may
readily estimate the distance (difference in energy) between succes-
%n; if we substitute n = 1,
R = 6x10-1% cm., as representative values for, say, Si®, we find a
value of D, to be 22 M.c.v.! This is to be compared with the observed
level distance in Si2® of about 0-030 M.e.v. (at an excitation of
10 M.e.v., p. 236). This obvious inadequacy of the ‘potential well
model’ springs from the fact that such a model assumes that the
impinging neutron moves in the average field of the other nucleons
while inside the radius R, and otherwise quite independently.
Actually, the strong, short-range forces between nucleons makes it
possible for the incident neutron to share quickly its energy witt
other nucleons in the nucleus. The energy of bombardment, plus the
potential energy (binding energy of the next neutron), is then distri
buted throughout the composite system formed by the neutron anc

sive resonance levels to be D, ~
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the target nucleus. This composite system is the compound nucleust
in the currently accepted terminology, and the term applies as well if
particles other than neutrons are used in the bombardment. Owing to
this sharing of the excitation energy in rather statistical fashion, the
neutron spends a much longer time in the field of the nuclear forces
than if it moved independently, i.e. it has to wait until all its original
energy has been restored to it in order to become elastically scattered.
By the uncertainty principle, the longer the duration of the com-
pound state the smaller the width of the resonant level. An essen-
tially equivalent physical picture is that the strong coupling between
nucleons splits the individual particle levels predicted by the poten-
tial well model into very many quantum states, the energy separations
of which is rather to be determined from statistical theory considered
in the following chapter.

We shall see later that the average distance between resonant
levels for neutrons in rather heavy nuclei is in the range of 10-100 e.v.
This means that 8, should go through = radians whenever the energy
of bombardment is advanced by this amount rather than by some
10 M.e.v. which eq. (24) would require. In order to take account of
the fact that resonant levels occur much more frequently than allowed
by eq. (24), we shall replace the argument of the cot, /(k*+k3)R, in
that equation by a much more rapidly varying function of the excita-
tion energy, U, viz. $(U).1 The phase-shift for scattering of neutrons
in S-waves is then

8y = —kR+-arctan k

K cot ¢

The new function, ¢ = #(U), is then a kind of ‘phase of neutron
waves’ at the radius R and has to be determined from the experi-
mental results on 3, as a function of the energy of excitation. It is
evident that for low energies of bombardment, for which kR is very
small, a resonant energy, E,, will correspond to ¢, = (n,+%)m. The
most fundamental type of information concerning ¢ as a function
of energy is then the location of the resonant energies, E,.. From these
one may then calculate the resonant excitations U, = E,+ B,,, where
B, is the binding energy for the neutron. Next in importance to
finding the positions of the levels is to determine the width of each

(K = J+1).  (26)

1 N. Bohr, Nature 137 (1936), 344.
1 This approach to a description of resonant scattering is essentially that presented
by H. Feshbach, D. C. Peaslee, and V. F'. Weisskopf, Phys. Rev. 71 (1947), 145.
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resonant level. The relation between the width of a level and the
function ¢(E) is evidently that the width I'* is proportional to
(dE[d$),. We shall now turn to the problem of expressing §, and
the cross-section for scattering in terms of the positions and widths
of the resonant levels.

Substituting (26) into eq. (25) and rearranging factors we obtain
for the total scattering cross-section:

Oy = i ' e*Rgin kR4 — (27)

1 2
i— (K cot ¢/k) ‘
If we are concerned with the neighbourhood of a resonant energy £,
(for which cot ¢ vanishes) and the width of this level is known, it is
convenient to approximate K cot¢ as a linear function:

K cot$ = (E—E,) [d(_KdE:F‘)w]

dd . 2k :
— —(E—E(fp) = —(E—E) T, (28)
where we define ‘the neutron width’, for the level »
. dd
e =2 /()
and, in these terms,
2
Oy = 2 |e'“‘~;111LR+ - %Ij:%zf‘" (29)

The resonant feature of the scattering is contained in the second term
under the absolute square in eq. (29). The first term is a ‘potential
scattering’ term of the type that would be obtained by assuming the
nucleus to be an impenetrable sphere. At low energies, kR < 1,
and this term may be disregarded, giving,
(72
""“kﬁ (E—E,)2+}(T2)?
At resonance, = E,, and o, takes its maximum value 47A%. It will
be noticed that in the more complete expression, eq. (29), the maxi-
mum cross-section does not occur exactly at E, because of the inter-
ference with the potential term. Nevertheless, it is convenient to
retain the definition of a resonant energy as that energy for which
cot ¢ vanishes. Equation (30) is a special case of the ‘dispersion
formula’ first derived by Breit and Wignerf for the description of
t G. Breit and E. P. Wigner, ibid. 49 (1936), 519.

(30)
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nuclear processes in the region of a resonant energy. In their deriva-
tion of this particular case it would be assumed that the compound
nucleus can get rid of its energy of excitation only by ejecting a
neutron. The probability of neutron emission is proportional to
I'? and this, in the original form of the theory, was calculated from
perturbation theory in the usual way as, I'® = 2n|H}|2, where H} is
the matrix element of the perturbation that couples the resonant
state » with the initial state ¢ (neutron incident upon the target
nucleus) which is normalized to unit emergy. Since, however, the
nuclear forces are so strong, it is not clear in what sense the H: may
be considered as matrix elements of a small perturbation. Conse-
quently many attempts have been made to formulate the resonant
phenomena without recourse to perturbation theory, in addition to
that followed above.f Certain features of these theories will be
returned to later.

So far as the development that we have been following goes,
eq. (29), or (30), holds only near a single resonance and in the event
of many resonant energies one must specify how the function K cot ¢
varies in the regions between them. Since, in all practical cases, the
excitation energy, U, is very large compared with the level distances,
we might expect the general behaviour of K cot ¢ to be quite similar
for a number of resonant energies in the neighbourhood of a given
excitation. In particular, we may note that n(dE/d¢) should be of
the order of magnitude of the level distance, for S-levels, and may be
represented by an average value over a region that embraces many
levels. Using such an average value, one sees also that the neutron

width dE . k dE

ElTKcow)'], C K4
will vary with the energy of bombardment essentially as k, or E*.
Hence, as E — 0, the scattering cross-section (41) approaches a
finite value.

The scattering formula for the more general cases of neutron waves
of higher angular momentum in their orbital motion, or waves of
charged particles in the Coulomb field of the nucleus, are readily
deduced along thelines of the foregoing calculation. We shall continue
to denote the phase-function for the internal wave by ¢, it being under-

1 P. L. Kapur and R. Peierls, Proc. Roy. Soc. 166 (1938), 277; A. J. F. Siegert,
Phys. Rev. 56 (1939), 750; E. P. Wigner, ibid. 70 (19486), 15, 606; E. P. Wigner and
L. Eisenbud, ibid. 72 (1947), 29.

I‘;bzzlc[
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stood that it may now depend upon the angular momentum and
charge of the bombarding particle, as well as the energy of excita-
tion, ¢ = ¢(U, I, ). Through this function we fit the internal wave
smoothly on to an external wave of the general form

%{F,m(r)cos 8+ Gy,(r)sin §;}F(cos 6),

where F,,(r) is the appropriate bounded radial wave-function (times r)
for the particular values of I and 7 concerned, and Gy,(r) is the
corresponding unbounded wave-function. Then, assuming that the
internal waves may still be approximated as simple sine waves, and

writing F' for [df’:ﬂ(@] and similarly for G', we get:
R

F'cosd4@G'sind

Fcosd+Gsind’

which we may readily solve for 8. The scattered amplitude is
proportional to

Kcotd = (31)

1 —i F'—FKcoté
cot8—i  F'—FKcot$+i(G—GKcotg)
Even for this more general ¢ we shall retain the notion of a ‘funda-
mental width’, I'?, for each resonant level » such that near resonance
K cot ¢ may be approximated linearly by

e¥gin § =

(32)

Kcotd ~ —(E—E,)i—’z. (33)

It is evident from eq. (32) that the scattered intensity will have its
maximum value whenever

G —GK cotd = 0,
E—E’T = —— - ) (34)

since, in any practical case, RG'/G < 1 and I'?/2kR is of the order
of the distance between neighbouring levels.

The observed width of the resonance at E, will not be I'?, which
is more closely related to the level spacing, but will rather be

I‘Z'm = Eir_E—}rs
where E;, means that value of the bombarding energy for which the

scattering intensity has just dropped to one-half its value at E,, as

energy is increased, and E_;, is the corresponding value on the lower
3695.61 Q



226 NUCLEAR COLLISIONS Chap. VIII, § 2

side of E,.. In these simple scattering formulae it is evident from
eq. (32) that E;, and E_;, correspond to cotd =1 and to —1,
respectively. Substituting these values of § into eq. (31), and the
resulting values of cot ¢ into eq. (33), we get

2IcR[E ]NR(F’-l-G')_R(F’——G')

S F+a F—q
__2R(F'G—G'F)

=T & m’

gince G2 > F? under the conditions of our approximations (a more
careful analysis shows the denominator to be G2+ F2). ¥rom this
calculation, therefore, we get the simple relation

7
Gty
For neutrons in S-waves, G = coskR =~ 1. For higher angular
momenta, however, and small kR

1k R)--%
= 7 )eem = )
kR
and I = I“’[l 5 5( ‘;l P kR <L 1. (36)
Thus, the width of a level of higher angular momentum is much
narrower, if kR < 1, than that of an S-level for the same spacing
between levels. Since I'° ~ k ~ v, the level width for neutrons of
angular momentum ! and small k£ varies as k¥+! ~ v%+! (v is the
velocity of the neutron outside the nucleus). This sharpening of the
levels may be said to be due to the fact that the neutron must
penetrate a potential barrier of centrifugal force in order to reach
the nucleus and, therefore, the probability is large only very close to
exact resonance. For high energy, and thus large k, the centrifugal
barrier is ineffective and I'"? — I'°, The correct expression for I in
intermediate ranges of kR may be derived from the more elaborate
theories (cf. Wigner and Eisenbud, loc. cit.), and we list here the
results for the I-values 0, 1, and 2:
M=T° (I=0)

(kR) -
14 (kR)? =1 (37)
o GRMIHGRF] o

[3-F2(kRyP+ (kR)®

T = . (35)

=I‘0




Chap. VIII, § 2 ELASTIC SCATTERING 227

In a Coulomb field, e.g. for protons instead of neutrons, G, depends
upon the value of n = Ze?/fiv, as well as upon [, and I becomes multi-
plied by an additional factor which is essentially the penetration
factor for a Coulomb barrier. For kR < 1, we have the approximate
expression -

- (kR)%

- ~——-—--—(1 +”—2)--.<1+n2) 2T 1o (3> kE)
[1.3.5...(21—1)]? 2 e2m—| ’
(38)
In the case of I = 0, i.e. S-wave collisions of protons on a resonating
nucleus, and for reasonably large 7, say of the order unity:
I'n == 2qme-27110, (39)
Hence, owing to the necessity for penetration of the Coulomb barrier,
resonance widths for protons, or a-particles, are much narrower than
for neutrons of the same value of k. As kR increases, its most impor-
tant effect appears first in the Coulomb penetration factor, and it
becomes appropriate to apply the more complete expressions for
barrier penetration presented in Chapter VI. According to the
calculations in that chapter, one would apply a further (energy-
independent) factor to eq. (38) and (39) of
eT4V@nkR) (40)

for protons; of course, » must be made twice as large in all these
formula when applied to «-particles. It will be noted, also, that if
1 > 1 then the factor in front of e-2m1+4/@1kE) in the general expres-
sion for I, will not depend sensitively upon v, since (kRn)2yI ~ ¢°.
This means that by the time the proton wave has penetrated to a
radius at which the centrifugal barrier is noticeable, the Coulomb
barrier has reduced its amplitude so much that the effect of the
centrifugal barrier is entirely unimportant.

Experimental material on resonant scattering is rather scarce, but
there is one highly interesting example, namely, the scattering of
neutrons by helium. The work of Staub and Tatel} shows that the
backward scattering of neutrons by helium is a sensitive function of
energy in the neighbourhood of 1 M.e.v. From egs. (20) and (20 @) we
expect preferential backward scattering to arise first as S—P inter-
ference. Referring to Chapter IV, we remember also that He?, which
would be the compound nucleus in this case, is not stable, but in its
lowest state the third neutron should be most likely in a P-state. We

t H. Staub and H. Tatol, Phys. Rev. 58 (1940), 820.
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should deduce, therefore, that what is being observed is a resonance
of the neutron with this P-state. In the simplest form of scattering
formula, then, we should include a resonant term for the P-wave
but none for the S-wave (since we do not expect any). For the
8-wave, we shall include a potential scattering term, but the possi-
bility of such a term for the P-wave will be disregarded. The
formula for the differential cross-section should then look like:

30y 2
1-}-%1,["

where E, is the resonant energy of the P-state and I'; its half-width.
The experimental results indicate, however, that there are two reso-
nant energies, rather close together. The natural interpretation of
this observation is that there is spin-orbit coupling in the resonant
states such that the P, and Py states lie at somewhat different energies.
Now the waves scattered from these two levels will interfere if the
spin-orientation of the neutron does not change, so that, for these waves,
we simply replace

o(8) = A% | eiosin §)-+3 cos 0

I 3T, AT
30030——~L—— by 2c sB 1t cosf P
Btpn 7 2B T BB T

(41)

where we allow for the fact that two-thirds of the scattered amplitude
will spring from the fourfold degenerate F;-state and one-third from
the doubly degenerate P;-state. But the mere existence of spin-orbit
coupling means that in some of the collisions the spin of the neutron
will turn over. The scattered amplitudes in such cases will not be
coherent with those above and their contribution should be discussed
more properly as a nuclear reaction.

We shall discuss the spin-reversing process here in the following
elementary way. Consider a neutron with spin ‘up’ colliding with
a He* nucleus in a P-wave. The partial wave of this neutron must
be of the form 3a cos 8, where « stands for spin ‘up’ (8 for spin ‘down’)
and the cos § comes from eq. (16). This form is not a pure component
of either a P;- or P-wave, but, as can be seen easily, is rather a
linear superposition:

acosf ~ [\/2 P+F)

m=%"

This means that % of the collisions may be considered as subject to
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the forces characteristic of a Pj-state and } to those of a P;-state.
These states, for m = }, look like:

P = V%{h cos 0—Beibsin 6} _ 1 42)
P, = acos 0+ Be#sin .
Hence, if the neutron enters the P,;-state there is one chance in three
that it will emerge as —Be#sin 6, i.e. with spin and sign reversed and
with its orbital motion changed (reoriented). Ifit enters the P, -state,
there is a two-thirds probability of its coming out in the wave
Bei#sin 6. These two possible paths will interfere with each other, but
not with the «-waves. To summarize: the incoming wave 3« cosf
overlaps the eigenstate P; (which is normalized to 47) by a factor v2
and may be scattered from this state with spin up as v2acosé
(cf. eq. (42)) and it overlaps P, by a factor unity and may be scattered
as acos0; this gives just the substitution noted in (41); in addition,
however, the neutron may emerge from the Pj-state in the wave

—«/2-;/15Bei¢sin0 = —Pei$sinf, and from the P;-state in the wave

Beitsin 6. Collecting these numbers, we find for the differential cross-

section, including the non-interfering elements:

o(0) = A2| eidogin §,4cos § 5y + LY } 2+

0 E—Ey+4ily " E—E 44T,

%Fi — %P} |2' ( 43)

E—E+4Iy E—E 44T

This theory was first presented by F. Bloch.t The analysis of the

data indicates Ky == 0-76, K, = 1-08 M.e.v. with [} = I} = 0-32. In

other words, although unstable, the Pj-state of He® lies lower and

with a ‘binding energy’ of 0-76 M.e.v., i.e. not bound. It will be

recollected also that the Li’-F; lies lower than the P, by 0-44 M.e.v.

1 F. Bloch, Phys. Rev. 58 (1940), 829.
} Cf. J. H. Williams, W. G. Shepherd, R. O. Haxby, ibid. 51 (1937), 888.

+-sin%




IX
NUCLEAR TRANSFORMATIONS

1. Energy-levels in nuclei

So far we have become acquainted with two general categories of
excitation levels in nuclei. The first category includes the levels of
daughter nuclei discussed in Chapter VII; these may be excited
by a-decay and B-decay and, in some cases, by direct bombardment
with X-rays. These levels correspond to the familiar excited states
of atoms with the characteristic difference that the quanta emitted
in transitions between nuclear states are usually of the order of
M.e.v. instead of the order of volts, as in atoms. The excitation in
such levels is generally lower than the binding energy of a single
nucleon and we shall refer to them as the low-lying levels. According
to the experimental results cited in Chapter VII, one may expect
such low-lying levels that enter into y-ray transitions to appear at
intervals of about 0-4 M.e.v., on the average, as one increases the
energy of excitation, and in nuclei with 4 > 100.

For nuclei with 4 < 100 the average distance between low-lying
levels gradually increases, roughly as 1/4% but in a way that is
rather strongly influenced by shell-structure, symmetry, etc.,
especially in the very light nuclei. Independent evidence of the
low-lying levels in light nuclei can be obtained, however, by study-
ing the energy-balances in nuclear reactions. As a first example,
consider the reaction, Mn?3(d, p)Mn3¢,

Mn55-+ H2 - Mn564H!, 1)

According to Table II, the neutron is bound in Mn?%® by 8-8 M.c.v.
and in H2 by 2-2 M.e.v. Except for small corrections due to the
kinetic energy of the Mn, the emitted proton will carry away the
original kinetic energy of the deuteron plus 6-6 M.e.v., provided
the Mn% nucleus is left in its lowest state. Actually, Martin observes
protons of six different energies, corresponding to six different states
of the residual nucleus, one of which is the ground state. The energies
of excitation of the other five states are 1-07, 1-:77, 2-48, 3-61, and
4-38 M.e.v., or an average spacing of 0-88 M.e.v. The (d, p) reaction

+ A. B. Martin, Phys. Rev. 71 (1947), 127.
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has been used on numerous other nuclei, for example Al**(d, p)Al128}
and on the separated isotopes of neon.f The average spacing found
in Al*® was 1-3 M.e.v. and in Ne?' and Ne?? about 0-9 M.e.v. The
(d, n) reactions also lead to information on excited levels, although
it is more difficult to measure the energy of an emitted neutron than
of a proton. For example, using proton recoils in a cloud chamber,
Bonner and Brubaker§ have studied the neutron energies from

Be®4-H2 —» B104-p (2)

and find excited levels of B10 at 0-5, 2-0, and 3-3 M.e.v.

a-Particle bombardment has been as useful as deuteron bombard-
ment in studying the low-lying nuclear levels. Here, again, we shall
only give representative examples, such as

Bed+Het > (1247, 3)

from which Bernardini and Bocciarelli|| determined levels in the C'2
nucleus at 3-0, 44, and 6-4 M.e.v., and

F19{ He* > Ne?4H?, (4)

which indicates excited levels of Ne?? at 0-6, 1-4, 3-4, and 4-5 M.e.v.}7
Needless to say, the energy-release, or @-value, for the lowest state
of the residual nucleus is useful for checking, or determining, the
differences in binding energy of the nuclei involved.

Perhaps the simplest type of ‘ nuclear reaction’ from which informa-
tion is obtained about excitation levels is that in which neither mass
nor charge of the target nucleus is changed but only its internal
energy. The bombarding particle is then inelastically scattered.
Quantitative work of this type has been done by determining the
energy lost by protons when scattered from various materials. In
Al%, for example,}} energy-levels appear at 0-87, 2:03, 2:70, and 3-5
M.e.v., i.e. an average spacing of 0-9 M.e.v.

The data acquired to date on the low-lying levels cannot be con-
sidered a priori as representative of the complete term systems of

+ E. M. McMillan and E. O. Lawrence, ibid. 47 (1935), 343.

1 F. K. Elder, H. T. Motz, P. W. Davison, ibid. 71 (1947), 917.

§ T.W. Bonner and W. M. Brubaker, ibid. 50 (1936), 308.

|| G. Bernardini and D. Bocciarelli, Accad. Lincei Atti, 24 (1936), 132.

+t J. Chadwick and J. E. R. Constable, Proc. Roy. Soc. 135 (1931), 48, and A. N.
May and R. Vaidyanathan, ibid. 155 (1936), 519. The reader is referred to M. S.
Livingston and H. A. Bethe, Rev. Mod. Phys. 9 (1937), 2486, for a systematic collec-
tion of the early data on reactions and excitation energies.

1t R. H. Dicke and J. Marshall, Jr., Phys. Rev. 63 (1943), 86.
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the nuclei; it is probably more justifiable to consider the levels
found thus far to be the ‘easy’ levels to excite, since, in the usual
nuclear bombardment, the particles that get close enough to the
target to make a transmutation have very low angular momentum
(8- and P-wavesin the orbital motion and spin-unity at most (deuteron
bombardment)). Hence there is little chance of exciting low-lying
states of high angular momentum, even though they exist. Offhand,
one might expect the number of low-lying levels with high angular
momenta to be quite large, especially in heavy nuclei, since the
moment of inertia is I = §M,, Abry (rpy = 1-45X 1013 cm., M, is the
nucleonic mass) and the kinetic energy of rotation is

_BJ(J+1)  26J(J+1)
AE = 5T = YT M.e.v.

for the rotational quantum number J. Thus, even in Al¥ there
should be levels spaced by a few hundred kilovolts, and in Pb the
spacing drops to a few kilovolts. Such a profusion of low levels is in
contradiction with many of the observed properties of nuclei, such as
rather high metastable states in heavy nuclei, and the existence of
strongly forbidden B-spectra, etc. This question has been taken up
by Teller and Wheeler,T who point out that a nucleus should behave
like a body of rather high spatial symmetry and that, consequently,
many states (especially with small values of J) will be forbidden by
the symmetrization of the wave-function, just as in the rotation of
molecules. In fact, they find that a nucleus behaves approximately
as though there were A} a-particles equidistantly disposed around
its equator. Then, if the lowest state of the nucleus corresponds to
J = 0, the next lowest state of rotation that is allowed by the
Einstein-Bose statistics is J = A% Substituting in the formula for
AE, we get an estimate of the first rotational level to be 25/4 M.e.v.
which is compatible with experiment. It would appear, therefore,
that the ‘easy’ levels give a more complete term system than might
be expected offhand but that there are several demonstrated cases
of low-lying, metastable levels that are excited only indirectly by
bombardment (cf. Chap. VII).

Although the term systems of nuclei have not been anywhere near
completely explored, one can detect a tendency of the average
distance between low-lying levels to decrease with increasing 4

1 E. Teller and J. A. Wheeler, Phys. Rev. 53 (1938), 778.
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approximately as 4-t. This tendency, as well as absolute magnitudes
of the spacings, substantiate Bohr and Kalckar’st interpretation of
the lower levels of a nucleus as characteristic of the vibrations of a
liquid droplet. The lowest lying levels of a liquid drop will be those
in which the energy of excitation is in surface vibration at constant
density. Suppose the surface radius, B,, moves according to the law:

B, = R{1+a, Py(cos f)sin wt}. (5)

We have seen in Chapter VI that the surface potential energy due
to such a distortion (from a sphere) will be

By, = %"QR% oZsin?wt,

and we shall disregard the change in potential energy of the Coulomb
field which is relatively unimportant in lighter nuclei. Then assuming
the radial velocity at r to be v,(r) = ayrwP;(cos 8)cos wt, the tangential
velocity for irrotational flow will be vy = —§a,rwsin 26 cos wt and
the kinetic energy

By = 2—?; o R3 w?A M, cos? wt.

In order that the sum of potential and kinetic energy be independent
of time, the coefficients of sin?wt and cos?wt have to be the same,

and we get . 3200
@ —

) 28

SAI’ fiw = T M.e.v.

Hence the magnitude of the quanta of surface vibration vary with 4-*.
Since there are five linearly independent surface vibrations of the
type (15), and since these are probably coupled rather strongly with
other modes, we should expect the average spacing between low-lying
levels to be of the order of %w/5 or 6/4% M.e.v., in reasonable agree-
ment with observation.

We turn now to the second category of excited quantum states in
nuclei which includes the resonant energies of neutron absorption
discussed in the preceding chapter. It will be recalled that the average
distance between such levels appears to be about 10 e.v. for nuclei
in the range 90 << 4 < 200. This level spacing is much smaller than
that for the low-lying levels, and the reason for this is that the nucleus
concerned is the nucleus formed by adding a neutron (of small kinetic
energy) to the original target nucleus. This temporary, composite

1 N. Bohr and F. Kalckar, Kgl. Danske Videnskab. Selskab. 14 (1937), No. 10.
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system is called the compound nucleus, and it is evident that the
energy of excitation, produced by adding one slow neutron, is just
the binding energy of the last neutron in the newly formed isotope
and this is usually in the range of 10 to 6 M.e.v. As we shall see, the
smaller spacing of these levels is due to the higher excitation, and
we shall refer to these levels as high-lying levels. In every practical
case the high-lying levels that have been determined experimentally
are also levels of a compound nucleus rather than levels of a product
nucleus.

It was first suggested by Gurney that if the energy of the bombard-
ing particles were close to one of the virtual energy-states of the
composite system there would be a resonance phenomenon resulting
in a large increase of the probability of a nuclear reaction. At that
time the neutron was unknown and one had in mind virtual levels of
nuclei that can emit (or accept) charged particles, such as the natural
a-emitters; such levels are relatively long-lived, and hence well
defined in energy, because a potential barrier has to be penetrated.
The first indication of a large increase in the yield of emitted particles
for certain discrete energies of the bombarding particles was found
by Pose]l in his experiments on the artificial transformation of
aluminium under bombardment by o-particles. In these experi-
ments Pose used thick layers of Al (~ 0-04 mm.), so that the incident
a-particles were gradually losing energy and were finally stopped
before escaping on the other side of the target. In such a case we
should expect that the protons produced by collision of a-particles
with Al nuclei at different depths would have different velocities, so
that their observed energy-distribution would be in the form of a
continuous spectrum extending from an upper limit determined by
the original energy of the a-particle to much smaller values. The
measurements indicated, however, that the ejected protons belonged
to several more or less discrete groups, as shown in Fig. 42, where the
number of ejected protons is plotted against their range. This
observation can be explained only on the hypothesis that the observed
groups of protons were produced at a number of particular depths
in the Al target, evidently the depths at which the «-particles
(continuously slowing down) have energies just corresponding to reso-
nance penetration. A somewhat more detailed study of the resonance

+ R. W. Gurney, Nature, 123 (1929), 565.
1 H. Pose, Zs. f. Phys. 30 (1929), 780; 64 (1930), 1.
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phenomena with aluminium was carried out by Chadwick and Con-
stable,t who found a still larger number of discrete groups than was
originally observed by Pose. It was shown that to each resonance-
level correspond several proton groups—as if the a-particle entering

i
A(,+a-—$;+/7

Region of high
Fam/oarengy

Resonance

Al + a-»&'-f/o

T
. |(excited
A (cz-(.evets)
A'(normal
8 | p-Level

-4}

'normal
a Level

Fia. 43.

the nucleus with a particular resonance-energy might be captured on
different inside levels and consequently give rise to an ejected proton
of one of a number of different energies. The results of more recent
investigations by Duncanson and Miller] are summarized in Fig. 43,

1 J. Chadwick and J. Constable, Proc. Roy. Soc. 135 (1932), 48.
1 W. Duncanson and H. Miller, ibid. 146 (1934), 396.
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where the resonance-levels and the stationary levels for the «-particle
are shown, together with the fundamental level of the proton before
its ejection. We see that an incident a-particle may enter the nucleus
through any one of six resonance-levels and that in each case four
distinet modes of capture are possible—the particle may, first of all,
occupy any one of the levels ag, oy, oy, Or ag. Thus, with a beam of
a-particles bombarding an aluminium target, four discrete groups of
protons are produced for each of six resonance-encrgies of the a-
particles. The shaded region near the top of the potential barrier in
Fig. 43 is the region of high transparency through which an a-particle
may enter the nucleus for a wide range of energies: the corresponding
feature of the protons ejected from a thick aluminium target bom-
barded by «-particles is a more or less continuous energy-spectrum.
This historical study thus illustrates the existence of low-lying levels,
the ‘excited a-levels’ of Fig. 43, resonance penetration due to high-
lying levels, and ‘over the barrier’, non-resonant, nuclear reaction,
all in one. The ‘over the barrier’ alphas still give four distinct groups
of protons corresponding to excitation of the residual nucleus at one
of the ‘a-levels’.

A somewhat simpler resonant reaction on Al is the radiative cap-
ture of protons .

Al +H! > Sji%4y. (6)

Investigating this reaction with very thin aluminium targets and
very well defined energies in the proton beam, Brostrém, Huus, and
Tangent have found thirty-six resonant levels of Si?® for proton
energies between, 0-2 M.e.v. and 1-4 M.e.v. This is an average level
distance of 30 k.e.v. at an average excitation energy of about
11-5 M.e.v. (binding energy of last proton plus 1 M.e.v.). The (p, y)
reaction has been studied in the same way on the other light mono-
isotopic elements Na,] F.,§ and Be.|| The apparent level distances are
87 k.e.v. for Mg? at an excitation of about 12:5 M.e.v., 46 k.e.v. for
Ne20 at about 13 M.e.v., and 400 k.e.v. for B at an excitation of
about 8 M.e.v.

For one target nucleus at least, viz. C2, resonances are observedt

1 K. J. Brostrém, T. Huus, R. Tangen, Phys. Rev. 71 (1947), 661.

t R. L. Burling, ibid. 60 (1941), 340.

§ W. E. Bennett, T. W. Bonner, C. E. Mandeville, and B. E. Watt, ibid. 70
(19486), 882.

| W.J. Hushley, ibid. 67 (1945), 34.
1t C. L. Bailey, G. Froeier, and J. H. Williams, ibid. 73 (1948), 274.
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for (d, ») and (d, p) reactions. These results indicate an average
spacing of the order of 150 k.e.v. in N at an excitation of about
11-5 M.e.v. Finally one has a suggestion of the level density in radio-
active nuclei of the natural series at excitations of the order of
3 M.e.v. from their y-spectra. Thus, Ellis and F. Oppenheimer have
assigned levels to the RaC’ nucleus that would account for the y-rays
of that nucleus, Fig. 44. At 3 M.e.v. the average level spacing would
appear to be about 30 k.e.v. in this nucleus for which 4 = 214.

The excitation energy in the high-lying levels is most probably
shared among a large number of nucleons, at any given time, as a
consequence of the strong short-range forces acting between them.
The theory of the level density among these high states is then appro-
priately treated by the methods of statistical thermodynamics. The
average number of levels per M.e.v., p, will then be proportional
simply to the thermodynamic probability which is, in turn, eS,
where S is the entropy of the nucleus measured in units of k. The
entropy is a function of the energy of excitation, U, and this relation
serves to define a temperature of excitation, 7', by

28 1

oU T
If the excitation is sufficiently high so that all A-particles participate
in sharing it, the entropy per particle will be some function of U/4,
say s = a(U/A)*, and the total entropyt will be of the form

S = aA*=U".

The value of v depends upon the particular model adopted for the
nucleus. If we assume that the 4 nucleons are independent particles
in a Fermi gas near degeneracy, the specific heat of the nucleus will
be proportional to 7', as in metals at low 7', the entropy S ~ T, and
the energy U ~ T2; hence v = % and

(M)

pm ~ XA} (Fermi-gas model).

On the other hand, if the nucleus be considered more like an ordinary
solid, for which the specific heat and entropy vary as 7%, then
U ~ T%and v = %. This leads to

p(U) ~ ea4tU?  (solid-body model).

+ This argument is due to E. Teller, private communication.

1 H. A. Bethe, Phys. Rev. 50 (1936), 332; this theory plus making allowance for
correlation (which results in replacing A by $4, effectively) has been worked out also
by J. Bardeen, ibid. 51 (1937), 799.
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Bethe has developed the theory of statistical thermodynamics in
its application to find level densities in general. The method is to
construct the thermodynamic potential that pertains to definite
values of the volume of the nucleus, V, temperature,{ 7', proton
activity A, neutron activity, Ay, and free energy of rotation about
an arbitrary axis, {,; = T'In);,. This potential is then 7' times the
logarithm of the grand partition function =:

S NG e R = o, ®)
k' 2'ym’
where the sum runs over all possible energy-levels of the nuclear
systems, K, over all neutron numbers, n’, proton numbers, z’, and
components of angular momentum, m’. If we write

Ly = Tlnky,
Iy =Tln)y
= T,

we may define the lovel density p(E’,n’,2’,m’) by expressing (8) as
an integral:

€97 — f f f f o(E' 0,2 ,m')e~E~nly—Ls—mllT B dn'dz'dm’. (8 @)

We now impose the conditions that the total energy have the average
value U, total angular momentum M, neutron number N, and proton
number Z. In a sufficiently large system, the integrand in eq. (8 a)
will have a sharp maximum about E' = U, »' = N, 2’ = Z, and
m’' = M, and it is convenient to write (8 a) in the form

€T = p(U,N, Z, M)e~V-Nly-2L-MiIT \(U, N, Z, M), (8b)
where
p(E' 0,2 m)
w.v.zn = [[ [ 8550550
(U—E")+(N—n")Yy+-(Z—2") 54 (M —m'){;y %

X exp T

X dE'dn'dz'dm’. (8¢)
From the general theory of statistical thermodynamics§ we know

1 H. A. Bethe, Rev. Mod. Phys. 9 (1937), 81.

1 In keeping with the usual practice in nuclear physics we shall measure tempera-
ture in M.e.v., i.e. T' takes the place of kT in the familiar form of the equations.

§ Cf.R.H.Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge,
1939), especially chap. vi.
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that the entropy S of the system is related to ® and the average
values, U, N, Z, and M through:
8T = O+ U—~N{y—Z{;— MC,,. (8d)
Hence, in good approximation,
p(E',n',2',m’)
p(U,N,Z, M)

Substituting (8 ) into (8 ¢), A (U, N, Z, M) may be evaluated in
the usual way by expanding the exponent of e to second order in
a Taylor series (first non-vanishing terms) and integrating.

This theory has been applied directly to several models for nuclei
by Bethet (loc. cit.). We shall consider here only the simplest type
of nuclear model, viz. a degenerate Fermi gas of protons and ncutrons.
Nuclear excitations are then achieved by promoting relatively few
(~ YA) nucleons to higher orbits, and the entropies and derivatives
will be calculated approximately from the known theory of the
degenerate gas, e.g. the theory of metallic electrons. Moreover, we
are not interested in the density of levels for a given component, M
of the angular momentum, but rather the density for a definite total
angular momentum, J. The latter can be found by subtracting
p(U,N,Z, M) from p(U,N,Z, M+1). Inthis way Bethe finds for the
average number of energy-levels per M.e.v., and for given J, and
N+4+-Z=A4:

o S m)~S(UNZ,M), (8 e)

ps(U) = 21'.7‘;2: eS M.e.v.?
(9)
S = S(U,A) = n(‘i{?)* — J(4T/2-30),

where U is measured in M.e.v., and {,, the Fermi energy at 7' = 0,
is 22-75 M.e.v. Considering that nuclei are not really very extensive
statistical systems, the numerical factor in (9) is relatively meaningless.
The general dependence of p and of S on 4 and U appears to be quite
acceptable,however. The 8—-U relation may be used to define a nuclear

temperature: _1_ _ 3_§ , I3 _q 10)
T oU S

1 In Bethe’s work in Rev. Mod. Phys. 9 (1937), 91, the nuclei are assumed to have
‘large’ radii, i.e. 7 = 2-0X 10713 4% cm., and this leads to too dense level systems
in the free-particle model considered here. With these large nuclei it was found that
the entropy of the surface vibrations was practically sufficient to account for the
level density, but such is not the case for the radii adopted in this book, and now
generally accepted, viz. 1:45x 10718 41 cm. The theory presented here is essentially
that of Bethe’s original paper on the subject, Phys. Rev. 50 (1936), 332.
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Comparison between py(U) = p,(U)/2(2J +1) and the observed
densities for Si?8Al(p,y) and Eu'®2(n,y) are shown in Table X XIII.
In that table is included also the ‘nuclear temperature’ corresponding
to the excitations involved. It is evident that the values in the
column labelled p, are well within the reach of the values under
‘Observed’ considering the uncertainties in the numerical factor in
(9) and the fact that J remains unspecified. It is by no means clear
at the present time that the agreement between eq. (9) and the

TasrLe XXIII
Number of levels per M.ew.

A Observed | Uy,.,. N Ppolcalc.) T
28 33 115 11-8 6 2-0
152 50,000 8 22-8 11,000 07

observed density of levels is not partly fortuitous. In our model no
account has been taken of the contributions to the entropy due to
the specific interaction between nucleons, effects near the nuclear
surface, and so on.

In application of this theory to nuclear cross-sections we shall be
interested, in many instances, in the average distance between levels
of given J, M, and parity, D(U). The level density for given J and
M will be given by (9) divided by the degeneracy factor 2J+1 and
then again by a factor 2 to take account of the fact that (9) includes
both parities. The result is just the py(U) defined above; and D(U)
is the reciprocal of py(U):

D(U) =~ 38%=

(11)
8 = \J(AU/2:30).

2. The theory of nuclear reactions

The concept of nuclear reactions has been used repeatedly in pre-
ceding sections and chapters, especially in connexion with the
energy-balances involved, the determination of excited states, and the
occurrence of resonant phenomena. We shall consider the general
theory of such reactions further in this section. The first example of
an artificial nuclear transformation was discovered by Rutherfordt in
1919, who observed that protons are created by bombarding nitrogen

1 E. Rutherford, Phil. Mag. Ser. 6, 37 (1919), 581.
359561 R



242 NUCLEAR TRANSFORMATIONS Chap. IX, § 2

with the fast a-particles from RaC’. Wilson chamber photographs
of this (PL. II, facing p. 256), taken by Blackett,t show the tracks
of the bombarding particle, the ejected proton, and the recoil
nucleus—but no track corresponding to the original a-particle moving
away after collision. This nuclear reaction would then be written :

N4 Het — Q7+ H! 4@, (12)

where @ is the energy-balance.

The left-hand side of eq. (12) represents the reverse of a-disintegra-
tion, the right-hand side is the result of the disintegration of an
excited, compound nucleus, F18* by proton emission. In accordance
with the concept of the compound nucleus the reaction (12) is most
conveniently divided into two independent steps, the first of which is:

N¢4 Het — Fis*, (13)

The excited nucleus, F!*, may, in general, disintegrate in many
ways, and it is assumed that the probabilities of the various modes
of disintegration are independent of the particular method by which
the F18* was created. In other words, the F18* ig a radioactive nucleus
in the sense used in Chapter VI. The number of possible modes
depends upon the energy of excitation. If we suppose that the kinetic
energy of the a-particle supplies 8 M.e.v., its binding energy (cf.
Table IT) adds another 4 M.e.v., giving a total excitation of 12 M.e.v.
above the ground state of ¥'8. Such a highly excited state may
disintegrate in the following simgple ways:

F18% . N4 He# (8 M.e.v. kinetic energy) elastic scattering

— N14*{ He* (<< 8 M.e.v. kinetic energy) inelastic
scattering

— ditto—as many ways as there are available energy-
levels in N4

— OY-H* (6-5 M.e.v. kinetic energy)

— O¥7*4H! (< 656 M.e.v. kinetic energy) as many (14)
ways as there are available energy-levels in 07

—> K745 (3 M.e.v. kinetic energy)

— F17*4n (< 3 M.e.v. kinetic energy) many ways, etc.

— F18+hy (12 Mee.v.)

— F18* L hy (< 12 M.e.v.) many ways.

1 P. Blackett, Proc. Roy. Soc. A 107 1925), 349; P. Blackett and D. Lees, ibid.
136 (1932), 325.
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Owing to the fact that the residual nucleus may be left in one of a
variety of states of excitation, the number of possible reactions
increases very rapidly with the excitation of the compound nucleus.
Each type, ¢, of disintegration (14) is characterized by a definite
probability of emission, I'!/fi, so that the relative probability of the
kth type of emission is equal to

e TI*
Pk — ST=T (15)
ith r=>r*
% z

because of the assumption that the probabilities are independent.
The sum of all ‘widths’, T', is called the total width of the compound
state in question, and the individual I'? are called partial widths.

The absolute values of the various I'* are to be calculated for
neutrons, protons, and «-particles in just the same way as in the
preceding section on resonant scattering. Hach I'* is composed of
a ‘fundamental width’, I'°, which is related to the distance between
consecutive, quasi-stationary levels in the compound nucleus at the
excitation involved (12 M.e.v. in the case of (14)), and of a penetra-
tion factor, (7. From the discussion in the preceding section we
found a ‘fundamental’ particle width of the form

dF k(dE
0 ... ¢ — — 9 _{___
I 2R ey ¢)], K(d¢),

for the resonant level r for which csc?¢, == 1. Since ¢ advances by
= radians in going from one resonant level to the next, we may
approximate the mean distance between levels by
D= w(@) = D(U),
daéJz
where the bar over 7 indicates an average over levels in the vicinity
of the excitation energy, U; we then express the mean fundamental

width, I'%, in terms of D(U):
2k =
0
I = =2 D(U). (16)

The simplest partial width entering eq. (15) is that for the emission
of a neutron in an S-wave, for which the penetration factor is unity
and (16) is the complete expression. In such a light compound
nucleus one should appeal to experimental results for an estimate of
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D(U) when possible; otherwise, the statistical formula has to be used,
and with 4 = 18, U = 12 this leads to an average level distance
(between levels of same J, M, and parity) of about 1 M.e.v. Similarly,
the value of K, the wave-number (times 27) inside the compound
nucleus, may be subject to noticeable variations in light nuclei, but
we shall estimate it in the usual way from the average potential
energy per nucleon, viz. 2K%/2M ~ 23 M.e.v. Finally, the possible
values of k¥ must be estimated in the light of the binding energy of
the neutron, plus considerations of selection rules where possible.
In reaction (13) we shall assume that the «-particle enters the (even)
N nucleus in an S-wave, so that the F18* nucleus is an even state
with spin-unity (same as N¢). The ground state of F'7 has spin }
and is probably even. Consequently, it appears possible for a neutron
to be emitted with the maximum energy for such a reaction (3 M.e.v.
in this case) leaving the residual F'7 in its ground state. Then,
fi*k2/2M = 3 M.e.v., determines k. If there were an excited state, of
the same spin and parity, less than 3 M.e.v. above the ground state
of F17, say at U], a second mode of neutron emission would be with
#2k'2/2M = 3— U; M.e.v. The I for this mode will be somewhat less
than that for the former because of the smaller £. In fact, it seems
unlikely that there is an excited level of F'7 similar to the ground
state and within 3 M.e.v. of the latter, considering that the estimated
level distance at an excitation of 12 M.e.v. in F1# is around 1 M.e.v.
Individual neutron widths are of particular interest also to the
interpretation of the resonant capture of neutrons in nuclei with
A > 90. We shall return to this question when we consider the
accompanying y-radiation, but, using eq. (16) we estimate the
S-neutron widths at once from the observed fact that the level
distances seem to be about 20 e.v. Expressing the energy of the
neutron in electron volts, E,,, and estimating K as above, we find
'™ ~ 3x 10-3VE,; electron volts for slow neutrons on these nuclei.
If a compound nucleus is excited by an energy U above its ground
state, and if the absolute value of the binding energy of one neutron
is B (< U), the nucleus may emit a neutron of any kinetic energy
between zero and U — B, provided there are available quantum states
of the residual nucleus. In heavy nuclei, and for high excitations, the
number of available quantum states is enormous and the transition
probability into any one of them (including the ground state) is
negligible compared with the sum over all such transitions. In such
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cases it is convenient to replace the individual partial widths, of
eq. (18) for example, by an integrated width for neutron emission.
Then P* gives the relative probability that a neutron of any energy
was ‘evaporated’ from the nucleus, rather than the probability that
a transition was made to one particular state of the residual nucleus.
As an example, suppose a neutron of energy E falls on a nucleus and
forms a compound nucleus in which it gains the binding energy B.
The compound nucleus, which has an excitation B4 K, may now
emit a neutron of energy E’ (< E) leaving the residual nucleus in
a state of excitation E— E’. The probability of such an emission is
proportional to the density of nuclear levels at this excitation and
may be written in the form:

dP(E') = J (E)D(B+E)p(E—E') i, (17)

. . Fo w2 h2K?
where, instead of the K in eq. (16), we use K, = i
conditions postulated, the statistical formula for p(E—E’) may be
used, and since this increases so rapidly with its argument, the
maximum of (17) comes at very small values of E’. It is then
convenient to approximate p(£— E') by an exponential that has the
same value and same derivative as the correct statistical formula

when E' = 0, viz.
p(E—E') = p(B)e-HSW-8EIE

. Under the

D (18)
dP(E') = p&%}?@ NE' e-HSE-REIE JF’
“0

The expression (18) is a Maxwellian distribution of the ‘evaporated’
neutrons if the effective temperature is assumed to be related to the
excitation of the residual nucleus through
Tovap = —S(—;f}:—‘LM.e.v., (19)
i.e. a little higher than the thermodynamic temperature, 2E/S(E).
According to the evaporation model, therefore, practically all of the
neutron width is due to the emission of rather slow neutrons (pro-
vided always that K is large enough to justify the method just
outlined) and the integrated width may be found, with negligible
error, by integrating (18) from zero to infinity:
fa = TGP E 7, (20)
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In principle, the integrated width would be a useful concept also
for particles that have to go through a potential barrier, if the
excitation of the compound nucleus is sufficiently high. In most
practical cases, however, the penetration factor decreases so rapidly
with decreasing energy of the emitted particle (especially charged
particles) that the most probable transitions are those in which the
proton or a-particle carry away the most energy rather than those
that leave the residual nucleus with the most energy. The balance
between penetration and high-level density is probably intermediate
for the emission of neutrons with orbital angular momentum
(A > R), but no practical cases of this type have been established;
the principal example of this type of ‘penetration’ is afforded by
the emission of y-rays which we now consider.

In Chapter VII we found that the emission of a single y-ray from
RaC’ with an energy of 0-603 M.e.v. corresponded to the probability
3x 10! sec.~1 This corresponds to the partial width

3x 101 % 1-05 % 10-27

170603
1-6 x 10-12

~ 2% 10-%e.v.

In order to apply this measurement to estimating the partial widths
for y-rays in other nuclei and of other energies, we shall make two
assumptions: (1) that I'™, like the particle widths, is proportional to
D(U), since a partial width should not be greater than the distance
between neighbouring levels of the same J, M, and parity; and
(2) that I'* is proportional to the fifth power of Av,t since y-transi-
tions appear to be predominantly of the quadrupole type, and a fifth
power of the wave-length typifies the penetration of a D-wave. If
we estimate the D(U) pertaining to the low-lying levels of RaC’ on
the basis of the surface vibrations of the (charged) liquid droplet we
get about 1-5 M.e.v. and this leads to our estimate of an individual
y-width

I — (JE’__)S D) 410 ~ 2x 109k D(U),  (21)

0-603/ 1-5.106

where Av is measured in M.e.v. Essentially the same formula is
obtained by Weisskopf (loc. cit.) on the basis of observations of
(y,n) cross-sections.
Ordinarily, a compound nucleus may emit any of a large number
of y-rays which leave the residual nucleus in different states of
1 V. F. Weisskopf, Phys. Rev. 59 (1941), 318.
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excitation, so that one is again interested in the integrated width
rather than the individual y-width. The only question remaining is
whether the integrated y-width can compete favourably with the
probability of particle emission. Let p,(E) be the density of com-
bining levels at the excitation E of the residual nucleus, i.e. the final
state of the first y-transition. Then the integrated y-width for a
compound nucleus of excitation U is estimated as

U
T7 = 2% 10-°D(V) f (U—E)3p(E) dE. (22)
0

According to § 1, we may express p,(Z) in the form
pd ) = CS(E)*exp S(E),
where C is an average of (2J4-1)/3 over the combining final states,
and hence is a coefficient of the order unity. The integrand in (22)
has a maximum at a certain energy, £, such that
_[dnpdB)]  _ _ 5B,

"“LEEE“Em—%“Eﬂ—2—U_a; (23)

Equation (23) determines both the energy of the most probable final

state, E,,, and the exponent n which we may use to approximate the
functional dependence of p,(E) in the following form:

— U
o ary D(D) E\m
I = 2x10 30D(Em) (U—E) (Em) dE, (24)
0

in which we use also the relation p,(E,,) = 3C/D(E,,). Equation (24)
may be integrated readily, and, with the help of Stirling’s formula
for the factorials involved, we finally obtain:
U—E,)® D(U)
6U—E, D(E,,)
As mentioned above, the integrated y-width is of particular interest
for the elements with 4 > 90 that absorb slow neutrons. If we take
Eu?®! as an example, we see from Table X XIII that D(U) =~ 90 e.v.
(using the statistical theory) and from the solution of (23), setting
U = 8, we get B,, = 4-56. This value of E,, indicates that the (Av)"
factor has a strong influence on the spectral distribution and, in fact,
leads to a most probable y-ray energy of 3:-5 M.e.v. From E, we
find D(E,,) = 9000 e.v., and substituting into (25) we finally obtain

I7 = 0-08C e.v. (26)

I7 — 6 10-9C(102UE,) : (25)
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We note, first of all, that the result (26) is in satisfactory agreement
with the observed widths for absorption of neutrons which are
generally of the order of 0-1 e.v. Secondly, we should compare the
width (26) with that for the emission of the neutron which formed
the compound state: I'* ~ 3 x 10-3vE,, e.v. For neutron energies
< 1,000 e.v., I' > I'*, and the more probable process is the emission
of a y-ray thus leading to capture. For neutron energies > 1,000 e.v.
the more probable process is the re-emission of the neutron. At very
high neutron energies the residual nucleus will be left in an excited
state in the usual event, as cited above. These remarks are founded
on the further assumption that only neutron or y-emission is
important to the decay of the compound nucleus. Since the remain-
ing possibilities involve charged particles, this assumption is mostly
valid for heavy nuclei in which the Coulomb barrier is very high,
especially when the reaction is due to slow neutrons. One very
important exception is the nucleus U2 which, when a slow neutron
is added, may show fission as well as y-emission or re-emission of the
neutron. The probability of fission will be represented also by an
integrated width I' since the two fragments may be left with a great
variety of states of excitation. The fraction of disintegrations of the
U236* that are fissions will then be
T/

P M
P =ty

(27)

A preliminary study of the variations of I/, I'*, I'? with the energy
of excitation of the compound, U2%-nucleus has been carried out by
Bohr and Wheeler, T and the results of their calculations are shown
in Fig. 45. It can be seen from this figure that the fission width, I/,
is a much more rapidly increasing function of excitation energy
than I'?. The curves representing these two widths cross at a certain
energy, and at higher values of the energy the competition of the
y-radiation becomes of minor importance. It must be remarked here
that, whereas the Bohr—Wheeler curves give a fair qualitative picture
of the situation, they cannot be relied upon for quantitative results.

The foregoing discussion has been chiefly concerned with the
development of that part of the theory of nuclear reactions which is
exemplified by the second phase of reaction (12), viz. (14). We shall
consider now the first phase, i.e. (13), which we shall represent in

1 N. Bohr and J. A. Wheeler, Phys. Rev. 56 (1939), 426.
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terms of a cross-section for the formation of the compound nucleust
which we shall denote ¢**, the a-exponent indicating that in this
particular case the compound nucleus is formed by an «-particle.
Then the cross-section for a certain reaction («, k) may be expressed

k) = oux I 28
0’((1, ) =0 "iq—' ( )
For simplicity, let us assume that the incident a-particle has such an
T'ev)

10*° 4

I0*3 4 <<

0 A
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™

Io—z_ /

04

10~

107

107

1074 EXCITATION

0 2 4 6 8 10 I2mew

Fia. 45. The variation of I, I}, I}, and I, with

the excitation energy of the compound nucleus

after Bohr and Wheeler. (Neutron binding energy

is assumed to be 56 M.e.v.)
energy that the collision takes place close to a single S-resonant level.
We have seen in § 2, Chapter VIII, that if the compound nucleus
could do nothing but scatter the a-particle elastically it would lead
to the cross-section (disregarding the Coulomb and other potential
terms which are of no interest to the argument)
2(Tx)2
] (29)
| & — B+ 47
We now have to generalize this formula to take account of the fact
that the compound state, », may disintegrate in many ways in
t Cf. V. F. Weisskopf and D. H, Ewing, ibid. 57 (1940), 472.

aola, @) =
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addition to re-emitting the «-particle. According to Chapter VI,
this fact may be expressed by adding to the eigenvalue E, just
—3}¢ times the sum of the I'* for such additional modes of dis-
integration. This results, therefore, in replacing the I'* in the
denominator of (29) by the total width I'! The general, single-level
formula for elastic scattering of the a-particle is then
mAL3)?

[E— B3I
Comparing (30) with the expression (28) we obtain the desired cross-
section for the formation of a compound nucleus by an «-particle in
an S-wave: A2 ToT,

o0¥ — "o Tr
| B—E,+ 4L ?
This formula may be generalized at once to an arbitrary type, j, of
incident particle with orbital angular momentum I:
_ 1_T(2l+ 1)A2 Pj:!:_'
VA o
The immediately preceding considerations are limited to a single
resonant state of the compound nucleus. In order to extend them
to many such states we shall assume that each level contributes
independently to the cross-section} and that the spread in energy
of the incident particles is sufficient to cover a number of resonant
levels. We then integrate over E to obtain the contribution of each
level, 7, to ¢7* and call the contribution, A, a7*:

(30)

oo, o) =

J*

(31)

; r VT,

* 2 rr _dFR
A,of* = (214 1)mA} J.( A iI‘gdll 52)
= (20+1)7A? 2717,

But (204-1)nA7 is the maximum cross-section for the particle j to
form a compound nucleus. Hence 2#TY is, so to speak, the width of
the energy-band in which the particle j surely enters the level 7.
The probability that the incident particle will have an energy such
as to fall within this band, or within the similar band for any of the
neighbouring levels, defines an average transmission coefficient, 7'( £),

-0

t The intermediate situation in which just a few levels are important and in which
one might be interested in the phase relations between particles emitted from each
requires more detailed consideration. An example of this type is the scattering of
neutrons by He considered in § 2, Chapter VIII.
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for the formation of a compound nucleus as the result of a single
collision. If T' is the average particle width in this region of energy,
and U the resulting excitation, the transmission coefficient may be
written: 9T

DUy
On the other hand, the average transmission coefficient may be

calculated from wave-mechanical considerations, as presented in
Chapter VI:

TE) =

(33)

TE) = 41—;9 X (penetration factor)

1

E o (34)
= 4—1? Gi:
Combining eqs. (33) and (34) we get an expression for T'/
= 2k 5 -
P{.‘I] = ;FD(U)GLV]z’ (35)

which is just what one gets also by multiplying the average ‘funda-
mental width’ (16) by the penetration factor for the particle under
consideration.

We are now prepared to write expressions for the cross-section for
a general reaction (P, @), at least in certain limiting cases. Let us
assume first that a single resonant level is important to the reaction.
If the incident particle and target nucleus have no spins the cross-
section may be written: \
(2014-1)7A% T'PTQ
A o A

where I'? is interpreted as the partial width for emission of the
particle (P), with ‘wave-length’ A from the compound nucleus into
a normalized eigenstate of orbital angular momentum #%. For con-
venience in the comparison between states of general [ and S-states,
we shall normalize the angular dependence of these eigenstates to 4.
The angular dependence of a normalized state, with m = 0, is then
(21+1)tB(cos 6). The angular dependence in the incident plane wave
is (21+1)F(cos §), whence the intensity in the incident wave is 21+1
times normalized, thus accounting for the factor (2I41) in eq. (36)
and similar formulae. The interpretation of I'?, on the other hand,
depends upon the physical nature of the cross-section being sought.
We could ask, for example, for the cross-section for the process

(36)
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leading to the particle (@) in a particular stato of energy, spin, and
orbital angular momentum. In most cases the individual states of
spin and (especially) orbital angular momentum cannot be dis-
entangled, so that it is physically meaningless to ask for such particular
information. We have seen already a general emission probability
for inelastic scattering would be obtained by summing over all
possible energies of the emitted particles (neutrons, in particular).
In the same way, one would sum over all possible states of angular
momentum to obtain an over-all cross-scction. In some cases, how-
ever, one is interested in the angular distribution of the @-particles,
i.e. o(P, @, f) becomes a differential cross-section. Then one includes
in the individual I'#,, the transition probability from the normalized
eigenstate (I’,m) to a plane wave of direction 6, viz.

(2l’+1) {P"‘(cos() 12,

and sums over all I’ and m. The result cannot be a more complicated
function, i.e. a higher power of cosf, than that contained in the
square of the incident harmonic F(cos §). In the following the mean-
ing of I'@ will be understood to be determined by the nature of the
cross-section desired.

We shall retain the convention, however, that T'" pertains to the
emission-width for a normalized state. This complicates the formulism
a little if incident particle and target nucleus have spins. Let these
spins be s and j% respectively, and let the relative orbital motion be
1%. There are then (2s+1)(2§4-1)(2l+ 1) possible states of which 2J 41
may form a particular compound nucleus of ‘spin’J7%.§ Thus, if a single
compound nucleus of spin J# is involved, the formula becomes:

2J+41 aA3IF I'Q

(2s+1)(2j 1) (E—E,)>1T%

If the spins involved are high enough, the same compound level may
be formed by incident waves of different ! (but same parity). The
waves of @ belonging to indistinguishable final states will then not
interfere, since the incident partial waves will belong to different spin-
polarizations. However, those reactions that spring from the same
initial state and go to the same final state through different com-
pound nuclei produce interfering waves of @-particles, so that one

o(P,Q) = 37

t For the proof see H. A. Bethe and G. Placzek, Phys. Rev. 51 (1937), 450, or
@. Breit and B. T. Darling, ibid. 71 (1947), 402,
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should add amplitudes of emitted waves and then take the absolute
square to compute the cross-section. This implies taking the
(absolute) square root of each I'? which, in turn, admits an arbitrary
phase-factor. The theory described herein gives no information
about this new factor. In the example of elastic scatting (Chap. VIII)
I'Q itself appears. All these rules are exemplified in the theoretical
treatment of the angular distribution of a-particles from the Li?(p, «)-
reaction,t but they will not be considered further here.

The question of phase relations between waves emitted through
various compound states remains unsettled for the other limiting
case which we shall discuss, viz. that in which the resonant levels
are too close together to be resolved. In deriving eq. (32) it was
assumed that the phases were uncorrelated, so that the levels could
be considered statistically independent. We shall continue with that
assumption.f Disregarding spins (or rather, summing over all J) the
average cross-section for the formation of a compound nucleus, if the
orbital motion is restricted to %, is, using eq (32):

= 2m2(2l+ 1) A=

D(U) (38)

The reaction cross-section o( P, @) will be I'?/T times (38), and, in the
event that many values of / can contribute to the emission of @, the
effective cross-section may be written
> 9.2 Fl re
o2, Q) = 3 QDA 5 b
Since each I' contains D(U) as a factor, the expressions (38) and (39)
are essentially independent of the level density and are functions of
the particle velocities and penetration factors involved.

Returning to the cross-sections in the resonance region, say eq. (36),
it is interesting to note that in cxact resonance (£ = E,, not neces-
sarily the maximum cross-section) and supposing that I'” and I'®
represent the only possibilities of emission,

4723 PTQ
Ores( P, Q) = (TPI—)}—TQ)V

1 C. L. Critchfield and K. Teller, ibid. 60 (1941), 10.

1 A simple physical oxample of the importance of phase relations is given by the
collision of billiard balls. The collision excites numerous elastic modes which if they
were independent in phase would mostly warm up the balls. Actually the phase
relations are such as to restore most of the energy to relative motion. The situation
with the phases of the wave-functions in nuclei can be equally decisive, but there is,
as yet, no good evidence on this point.

(39)
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which shows that a reaction cross-section may never be larger than
(214-1)7A% (a8 compared with 4 times this for resonant scattering
where the scattered wave is coherent with the incident wave). From
eq. (36) also, one can deduce the behaviour of the cross-section for
the absorption of slow neutrons, if there is no resonance very close
to £ = 0, by taking I = 0. As we have seen above, the significant
emission probabilities for a heavy compound nucleus formed by an
incident slow neutron are I'* and I'Y such that I'? > I'*. Near zero
neutron energy, I'* ~ v,,, whereas I'? does not vary appreciably if the
excitation is changed by a few volts and neither does the denominator
in (36). In this case, therefore,

o(n,7) ~ K, ~ . (40)

vn

Equation (40) thus expresses the 1/v-law referred to in § 1, Chapter
VIII. The same law applies in any case where I'? is relatively insensi-
tive to the neutron energy, when the latter is low, for instance in the
B19(n, «)Li’-reaction, from which the a-particle carries over 3 M.e.v.,
the 1/v-law applies also.

The magnitude of the reaction cross-section o( P, @) for low energy
of bombardment, and for light elements (in which the resonant levels
will be widely separated in general), is approximately (cf. eq. (36)):
rere
~
where F, is the resonant energy nearest £ = 0. A reasonable estimate
of E, would be $D(U), and combining this estimate with eq. (33) we
get an expression for the cross-section in terms of the transmission
coefficient 7'(E) of the incident particle P: 0

(P, Q) = TP T(B) T
Substantially this form for the cross-section is used in the following
chapter on thermonuclear reactions. In the applications that have
been made of that work (to astrophysics) D(U) has been estimated
from the individual particle model, along lines pursued in § 2,
Chapter VIII, but allowing for the coupling between nucleons by
dividing the characteristic energy-interval, %%/ M R2, by the number

of nucleons,} 4: D(U) =~ W/ MAR®. (43)

t The formulae derived in this chapter and those that have been used in the
astrophysical work still differ by a numerical factor of the order of $Z, which, how-
ever, is both unimportant and uncertain.

o(P, Q) = n} (41)

. (42)
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Certain general rules are often useful in application of the simple
theory of the compound nucleus, especially for the heavier elements.
One of these rules is that the total width of a level, T, is often
dominated by a single type of integrated width. If the excitation of
the compound nucleus is below the threshold for neutron emission,
this dominant contribution is the integrated y-width, I' ~ I'?. Above
the neutron threshold the dominant width becomes the integrated
neutron width, I' ~ I'*. The region in which y-ray emission com-
petes with (very slow) neutron emission is discussed above. The
neutron width remains dominant so long as the nuclear excitation is
not sufficient to emit a proton ‘over the top’ of the Coulomb barrier.
At energies sufficient to emit such protons, the integrated neutron and
proton widths become equally important and at energies of excita-
tion over 20 M.e.v. a-particles may be emitted over the barrier, so that
they must be taken into account also.

These general rules do not apply well in very light nuclei because
the Coulomb barriers are not high enough to be decisive. It often
happens that «-particle emission is very important in light particle
reactions and, in fact, it is the (n, «) reaction on B that makes this
isotope such a strong absorber of neutrons. As the charge on the
target nuclei is increased, however, the (n, «) reaction becomes very
weak because a-emission cannot compete with neutron-emission and
it becomes detectable again (with the customary neutron sources)
only for the very heavy elements from which the o-particles carry
away an excess of energy.t

Another general rule is that the various expressions for the cross-
section of o(P, @) are essentially proportional to the factor A% ['PT'Q,
and this is well confirmed experimentally in cases where P or @, or
both, are charged particles. In such cases the I'’s contain penetration
factors that are such strong functions of the energy as to completely
dominate the variation of the cross-section with bombarding energy.
In Fig. 46 we compare the logarithms of the yields as observed by
Rumbaugh, Roberts, and Hafstad] for the reactions

Li®4+H! — He®4He*+3-7 M.e.v. (44 a)

Li"4+H! - 2He*+417'1 M.e.v. (44 )

1 Cf. R. Sherr, K. T. Bainbridge, and H. H. Anderson, Phys. Rev. 60 (1941), 473.

t L. H. Rumbaugh, R. B. Roberts, and L. R. Hafstad, ibid. 54 (1938),
657.
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The reaction (44 b), and the related

Li%+{-H2? > 2He?+-22:1 M.e.v. (45)
are illustrated in Plate III, as observed by Dee and Walton.t In the
reactions (44 a, b) the energy released by the transformation is so
large that the variation of the cross-sections with proton energy is
determined primarily by the penetration factor for the proton. And,
in fact, the slopes of the curves in Fig. 46 are given substantially by:

2m Ze? 10
1 ~ —
ny~— 10-4(KV)
(46)
log. N ~v 102
gl(] 25’\/Eko,,’

i.e. the principal term in the exponential of the penetration factor.
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Fia. 46.

An interesting feature of Fig. 46 is that the Li7 (p,a)a-reaction
is about 30 times less probable than the Lié(p, He®)«, despite the fact
that the former releases much more energy. This observation appears
to indicate, at least in part, the operation of selection rules in nuclear
reactions. According to the general results of Chapter IV, the
Li"-nucleus should have an odd, P wave-function. Hence, if the
proton collides with it in an S-state, the compound nucleus for (45)
will be an odd state also. It is impossible for two «a-particles, moving
about their centre of gravity, to form an odd state because they obey
Bose-Einstein statistics. Thus, for S-wave collisions, I'* = 0. The
a-particles emitted in (45) probably arise from an even compound
nucleus formed by collisions between the proton and the Li’-nucleus

+ P. Dee and E. Walton, Proc. Roy. Soc. 141 (1933), 733.
t M. Goldhaber, Proc. Camb. Phil. Soc. 30 (1934), 561.
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PLATE III

(0)

(@) Reaction 4Li7+ H! — 2,Het; (b) Reactions jLi8-f- 112 — 2,11c?
and gLt H2 > yLi7f- HL.



PLATE IV

®

(@) Reaction (H2 |- H2 > H!4H3; (b) Reaction ;B! H! — 3,Het;
(¢) Reaction ,NY4- n! — (B14-,Hes.



The tracks of two fission fragments originating in the aluminium-
supported uranium layer.

()
The fission track in low pressure hydrogen originating at the uranium-
covered wall of the chamber. In addition to many fine proton branchos,
the picture shows one branch resulting froma collision with oxygen nucleus.
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in a P-wave, and the proton width will be somewhat less (~ 0-3)
than for 8-wave collisions. There remains a factor 10, however, that
is not accounted for in this way.

The formation of compound nuclei by deuteron bombardment
occupies a special position among nuclear reactions because of the
very high excitation achieved. This comes about because the excita-
tion of the compound nucleus is equal to the sum of binding energies
of a neutron and a proton plus the kinetic energy and less only the
binding energy of the deuteron, 2-18 M.e.v. The high Q-value in
(45) arises in this way. Deuteron reactions on Li® are shown in
Plate IIIb. Owing to the high excitation, all deuteron-induced
reactions produce particles rather than y-rays. The (d, n) reactions are
valuable sources of high-energy neutrons, especially on Li?:

Li"+H?2 — 2He*+n-414-5 M.e.v. (47)
The energy-release in (47) is shared among the two o-particles and

the neutron, so that the latter is by no means ‘mono-encrgetic’. One
of the most useful sources of neutrons of well-defined energy is the

d-dreaction:  yo . pe | Hes iy 131 Me.v., (48)
which, on account of the small nuclear charges involved, has an

appreciable yield even at low deuteron energy. The reaction (48)
competes, however, with the alternative

H2{+H?2— H34{+H14-3-75 M.e.v. (49)
on a practically equal footing, i.e. half of the d-d reactions follow (48),
half follow (49). These reactions were produced first by Oliphant,
Harteck, and Rutherfordt and a Wilson chamber photograph of (49),
taken by Dee,} appears in Plate IVa. The longer tracks showing in
the plate are those of ordinary protons and the shorter tracks are
due to the isotope H3.

Deuteron reactions among light nuclei probably follow the simple
theory of the formation of a compound nucleus and subsequent,
independent disintegration of the latter. Among heavy nuclei, how-
ever, there appears to be an additional important possibility that the
deuteron is polarized by the target nucleus so strongly that only the
neutron is actually caught, the proton flying on. This process has
been calculated first by Oppenheimer and Phillips.§ The result is, of

+ M. Oliphant, P. Harteck, and E. Rutherford, Proc. Roy. Soc. A 144 (1934), 692,
1 P. Deo, Nature, 133 (1934), 564.

§ J. R. Oppenheimer and M. Phillips, Phys. Rev. 48 (1935), 500.

8595,61 s
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course, that a (d, p) reaction on heavier elements is somewhat more
probable than one would compute from complete penetration by the
deuteron followed by penetration by the proton. This effect has been
verified experimentally by Lawrence, McMillan, and Thornton.}

Among heavier nuclei, the yields of nuclear reactions are largest,
by far, when the bombarding particle is a neutron, since the neutron
is the only particle that does not encounter the Coulomb repulsion
(not counting the y-quantum as a particle). A photograph of the
first neutron reaction to be discovered:]

N4 n — Bl Het (50)
is shown in Plate IV¢. Equation (50) is an example of an (n, o) reac-
tion. Other, very common, types of reactions are (n, p) and (n, n)
(inelastic scattering). The (n, y) reactions for slow neutrons have
been discussed above. If the residual nucleus in an (n, n) reaction is
sufficiently excited it may emit a second neutron, giving rise to an
(n, 2n) reaction. For instance, for the detection of the fast neutrons
used in determining the radii of nuclei with 25 M.e.v. neutrons, Sherr
(Chap. I) used the reaction

C24-n — C114-2n—17-5 M.e.v. (51)
The intensity of the bombarding neutrons was then determined from
the intensity of the B-radiation due to the C'-nuclei.

Of all the reactions induced by neutrons the most spectacular is that
of the fission of the heaviest nuclei, (n, f) reactions. In Plate Va is
shown a Wilson chamber picture of a thin uranium foil (supported
by aluminium) from which two fission fragments are emerging from
a nucleus that has been hit by a neutron. In Plate Vb the details of
the track of a fission fragment, as revealed in low-pressure hydrogen,
are shown. In addition to many fine branches due to recoil protons
there is one branch resulting from collision with an oxygen nucleus.
These photographs were taken by T. Lauritsen.

Occasionally one finds nuclear reactions that lead simultaneously
to the emission of several particles. An historic example is given by

B H! > 3 He* 487 Mee.v., (52)
which is shown in Plate IV) as taken by Dee and Gilbert.§ Cur-
rently, however, many such reactions are being produced by the

t E. O. Lawrence, E. McMillan, and R. Thornton, Phys. Rev. 48 (1935), 493.
I N. Feather, Proc. Roy. Soc. A 136 (1932), 709.
§ P. Dee and C. Gilbert, ibid. A. 154 (1936), 279.
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ultra-high-energy particles of the Berkeley cyclotron. Since the exci-
tation of target nuclei hit by neutrons from that machine exceeds 100
M.e.v., the mechanism of nuclear reactions is quite different (com-
pare Appendix V).

3. Nuclear photo-effect

The excitation of nuclei through y-ray bombardment has been
discussed already in Chapter VII in connexion with the resonant
absorption of X-rays. The general theory of nuclear reactions applies
to such processes if we take for I'” the width for a single y-ray and
for I'? the sum over all possible y-emissions. The product of these
widths is so small, however, that an observable cross-section is
obtained only in the immediate neighbourhood of a resonance, and
it is this fact that was used in applying the method of X-ray excita-
tion to the determination of low-lying levels.

If the energy of the incident y-ray is greater than the (absolute
value) of the binding energy of the last neutron in the target nucleus,
on the other hand, the dominant width is that for neutron emission;
the most probable reaction then becomes (y, n), sometimes called the
nuclear photo-effect. There are several established cases of (y,p)
reactions which, in the range of y-ray energies used, are generally
much less probable than the (y,n) reactions but which represent a
nuclear photo-effect equally well. A systematic study of the cross-
section, o(y, n), has been made by Bothe and Gentnert using 12 M.e.v.
y-rays from B(p,y) and 17 M.e.v. rays from Li(p,y). Weisskopf] has
analysed these data and arrived at the conclusion that o(y,n) is
relatively independent of the size of the target nucleus and is propor-
tional to the cube of the y-ray energy (hv)3. The excitations of the
compound nuclei are quite high, in these cases, so that the cross-
section averaged over many levels, eq. (39), may be applied. It is
then readily seen that if o(y, n) varies as (hv)3 the individual width I'*v
is proportional to (hv)5 and to D(U). This is, in fact, the basis on
which the form of the individual y-width was chosen, eq. (21), and,
as remarked in § 2, the numerical factor as derived from the results of
Bothe and Gentner is practically the same as that derived from the
known emission probability of 0-603 M.e.v. y-ray from RaC’. It must
be emphasized, however, that this description of the interaction of

1 W. Bothe and W. Gentner, Zs. f. Phys. 112 (1939), 45.
1 V. K. Weisskopf, Phys. Rev. 59 (1941), 318.
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y-rays with nuclei is only semi-empirical, and it is to be expected that
further study of the action of y-rays in producing nuclear reactions
will lead to a more complete understanding of this interaction.
The particular example of photo-effect that is of greatest funda-
mental interest is the disintegration of the deuteron into a neutron

and a proton H2+hy — n+HL, (53)

first reported by Chadwick and Goldhaber,} who determined also
the energy-balance in the reaction and, thereby, the binding energy
of the deuteron. From the mass-spectrographic measurement of the
mass of deuterium one then obtains the mass of the neutron (cf.
Table II). Moreover, the reaction (53) is of great interest because it
should be possible to apply the usual theory of interaction between
electromagnetic radiation and charged particles to predict the angular
distribution, and total cross-section, in the reaction. In principle,
such a calculation is complicated by the fact that the wave-function
of the deuteron is not simple but is a mixture of S- and D-waves, due
to the existence of tensor forces. Typical examples for the exchange
nature of nuclear forces, i.e. the charged, symmetrical and neutral
theories of Chapter 111, have been assumed by Rarita and Schwinger]
and the corresponding angular distributions of photo-protons (or
neutrons) calculated. Such studies, combined with careful deter-
minations of the angular distributions at various energies of y-rays,
promise to be of great uscfulness to the final interpretation of the
nature of the forces between nucleons.

The complete theory, inc]udihg the small admixture of D-wave in
the ground state of the deuteron, will not be presented here, but we
shall sketch briefly the more elementary theory which assumes the
deuteron to be a pure S-state as originally worked out by Bethe and
Peierls.§ The part of the nuclear photo-effect that is due to the
electric vector will be expressed in the same form as the cross-section
for the ordinary photo-effect in the outer atom, in terms of the
frequency of the quantum, v, and the dipole matrix element, zy;:

8me?
op == |Zon|* (54)
C
2om = [ o b2 by dr. (55)
t J. Chadwick and G. Goldhaber, Nature, 134 (1934), 237; Proc. Roy. Soc. 151
1935), 479. W. Rarita and J. Schwinger, Phys. Rev. 59 (1941), 436.
(

§ H. A. Bethe and R. Peierls, Proc. Roy. Soc. A. 148 (1935), 146.
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Here 3}z is the projection on to the direction of polarization of the
displacement of the proton from the centre of mass of the neutron-
proton system, ¢, is the wave-function in the relative coordinates of
neutron and proton forming the ground state of the deuteron, and
¢, is the wave-function representing the system after disintegration
has been effected. We shall assume not only that i, is spherically
symmetric but also, since the main contribution to the matrix
clement (55) arises at rather large r, that i, can be represented in
the simplified (normalized) form having the functional dependence
of the ‘tail’ of the square-well deuteron function (cf. Chapter II):

=) (56)

. NeM

fi
and e is the binding energy of the deuteron. Since the transition is
induced by the dipole moment, 4z, the final neutron-proton state
must be a P-wave that varies as z/r -= cos§. The short-range forces
will have little effect on such a wave, so that 5 may be taken to
represent free particles having the correct kinetic energy, 4242/ M,
and normalized to unit energy interval (as required by the form of
eq. (64) in the usual way):

(87)

1 sin kr | V3cos 6
b= g g~ o9
k =3/{_J‘{(’;’_’:L)}_ (59)

Substituting the wave-functions (58) and (59) into (55) and (54) one
obtains the total cross-section due to the electric vector

o = L0 Myl
E =355 (o2 k)

—1)%
~ 1:25X 10—26(”_);32 cm.2 (60)

with Yy = lbl/ .

€
To obtain the angular distribution, one does not integrate over
angles. If we let ¢ be the angle included between the direction of

irradiation and the direction of the emitted protons it is readily seen
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that the differential cross-section (summed over the polarizations in
the incident beam) is

o($) = oy3sin’p,
i.e. there is a maximum in the directions at right angles to the y-ray
beam in agreement with what was found in the original investiga-
tions of Chadwick and Goldhaber (loe. cit.).

Under ordinary conditions the transitions due to electric dipole
moments are far more probable than those due to higher moments
and to the magnetic dipole moment. In the special case of the
deuteron, however, it must be remembered that there is a virtual,
singlet S-level lying just above zero energy and thercfore it is possible
to obtain resonant absorption of y-rays due to the magnetic dipole
transition. The energy of coupling with the radiation is then given
by the product of the magnetic field strength, H, with the magnetic
moments of neutron and proton, uy and pp respectively. The
calculation then proceeds along lines similar to those followed above
and the details may be found in the review by Bethe and Bacher,t
for example. The result may be expressed as the ratio of the total
cross-section for magnetic dipole transitions, o, to the total cross-
section for electric dipole transitions and in terms of kv, the binding
energy of the triplet deuteron ¢, and of the singlet deuteron,
€ = 0-11 Me.v.:

ou _ (pp—pn)lt  (Nek Ve )hw)E

og 4 (hv—e+€")Mc¥(hv—e)’
where py and up are measured in nuclear magnetons. For the
ThC’ y-ray, hv = 2-62 M.e.v., the ratio (101) is just about }, so that
even at this energy the magnetic effect is appreciable. The combined
effect is in reasonable agreement with the observed cross-section
of 6:7x10-28 ¢m.2

It is evident from the fact that the magnetic dipole transitions
lead to the 1S-state that the resulting angular distribution of protons
(or neutrons) is spherical. The complete differential cross-section for
this simple theory is then

o($) = oy sin® p+oy,. (62)

The more refined theories, including tensor forces, give a somewhat

different angular distribution, of course, and it is through careful

determination and comparison that one might be able to decide
1 H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8 (1936), 82.

(61)
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among various possibilities for the nuclear forces. It is evident also
that as hv is decreased towards the threshold value, ¢, the magnetic
effect far outweighs the electric effect, i.e. the emission of very slow
neutrons and protons is predominantly a magnetic effect. Con-
versely the capture of slow neutrons by protons is predominantly an
effect of the magnetic dipole transitions and, in fact, this mechanism
was introduced first by Fermit to account for the extraordinarily
large capture cross-section for neutrons in hydrogen.

Since the capture of neutrons by protons is simply the reverse of
the photo-effect on the deuteron the total cross-section is readily
computed from o(y,n) = oz+oy. Let o(d4, B) be the cross-section
for transformation of the particle system A4 into the system B, and
let g, and g be the statistical weights, and A, and A; be the wave-
lengths for systems 4 and B, respectively. Then, from the general
form of the reaction cross-sections derived in the preceding sections

we see at once: o(B,4) _ 0 ﬁz

U(ArB) - 9B Kﬁ!.
In our example, system A4 is a photon plus the stable deuteron;
the photon is capable of two polarizations and the deuteron of
three, so that g, = 2X 3 = 6. System B comprises one neutron and
one proton, cach of which has two possible polarizations, so that

gz = 2X2 = 4. The cross-section for capture of neutrons by pro-
tons is then:

(63)

2mv\2
o) = 1) (en-+ou) (64)
For thermal neutrons, eq. (64) leads to a cross-section of about
0-2% 102¢ ¢m.? in reasonable agreement with observation (Fermi,
loc. cit.).
1 E. Fermi, Phys. Rev. 48 (1935), 570.



X

THERMONUCLEAR REACTIONS AND ASTROPHYSICAL
APPLICATIONS

1. Reaction-rate formula

IN the previous chapter we have been considering nuclear transforma-
tions caused by the impact of a beam of fast particles against the
nuclei of the atoms forming the target material. We have seen that
the efficiency of bombardment with charged particles is generally
very low due to the fact that the incident particles lose their initial
kinetic energy through the electric interaction with the electronic
envelopes of the bombarded atoms.

It must be remembered, however, that violent nuclear collisions
can result also from thermal motion if the material is heated to a
sufficiently high temperature. Thus, for example, the reaction
Li’4-H! — 2He* can still be observed when the energy of the incident
protons is as low as 8 k.e.v.,} which is to be compared with the value
1-7 k.e.v. corresponding to the kinetic energy of thermal motion at
a temperature of 2x 107 °C. occurring in the interior of the sun.
We must expect, however, that such a thermonuclear reaction between
lithium and hydrogen would take place at an observable rate at
temperatures considerably lower than that. In fact, whereas the
densities of bombarding ion-beams, obtainable in electric accelerators,
are only of the order of magnitude of 104 g.cm.? (for a current
density of 1 milliampere per em.2), the effective density of the
‘isotropic’ bombarding beams in thermonuclear processes is com-
parable to the density of the material considered. In comparing
thermonuclear processes with the results of beam-bombardment
experiments it must be kept in mind, also, that in the former case
the bulk of the transformations is not due to particles that possess
the mean energy of thermal motion, but to much faster particlesin the
Maxwell distribution for which increased penetration effectiveness
over-compensates the decrease in relative number. In Fig. 47 we
give a schematic presentation of the relative number of particles
dN[dE and of their effective reaction cross-sections o as a function
of energy E. It shows that the number of disintegrations, which
is given essentially by the product o(#)(dN/dE), reaches a sharp

1 E. H. 8. Burhop, Proc. Cambr. Phil. Soc. 32 (1936), 643.
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maximum for a certain energy E,, well above the mean energy
corresponding to the given temperature. In order to estimate the
total reaction-rate one should integrate o(E)(dN/dE) dE over the
entire range of energies forming 0 to co. Caleulations of this type
were carried out for the first time by Atkinson and Houtermans,t
and were later improved by Gamow and Teller.}

In deriving the formula for the rate of thermonuclear reactions
we can assume that the atoms participating in this process are com-

* KFia. 47.

pletely stripped of their clectronic envelopes, since the collision
energies necessary for effective nuclear penetration are higher than
the total ionization potentials of the corresponding atoms. Thus,
even at very high densities, we may treat the material as an ideal gas
formed by bare nuclei and free electrons.

Consider a gas mixture containing two reacting elements with
atomic numbers Z, and Z,, and atomic weights 4, and 4,. Let
¢; and ¢, be the relative concentrations (by weight) of the two

1 R. Atkinson and F. Houtermans, Zs. f. Phys. 54 (1928), 656. These calculations
contained two errors which wore due to tho lack of knowledge concerning the theory
of nuclear reactions at this early stage of nuclear physics. The probability of radia-
tive capture of protons was calculated under the assumption of dipolo (and not
quadrupolo) radiation, thus leading to numerical values about 1,000 times too large.
On the other hand, the collision cress-section for thermal particles was taken to be
w7y (instead of wA?2). Since for thermal protons at the innor-solar temperature of
2x 107 °C. the offective de Broglie wave-length A is about 30 times larger than the
nuclear radius 7,, this error increased the numerical values by a factor of 1,000, thus
compensating the first error. Altogether the numerical values for the rate of energy-
production in the sun came gut approximately correct.

1 G. Gamow and K. Teller, Phys. Rev. 53 (1938), 608.
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elements in question, and p and T the density and temperature of
the gas. According to Maxwell’s theory, the number dN (per cm.3
per sec.) of reactive collisions between the nuclei of the two kinds,
with a collision energy between K and E+dE, is given by:
4¢, ¢y po
N — 102 PO —ElkT' 1
d JEHIA, A Jagm e L 4B, 1)
A.4,
A1+Az’
cross-section for the reaction. The effective cross-section o is given
as the product of the cross-section for penetration of the Coulomb
barrier, eq. (42), Chapter IX, and the ratio of the reaction probability
T'/% to the proper nuclear frequency #/M R*A. Thus we have
A —2me®(MA)Z, Z,  4eNM\(2AZ, Z, R) I‘MAR
= l E + h ] » (@)
where A = 2ni%/,/(2M AE) is the de Broglie wave-length, and R can
be taken to be equal to the radius 1-7-1:22X 10-13(A4,4-4,)* cm.
of the compound nucleus formed in the collision. Substituting (2)
into (1), we find that dN/dE has a sharp maximum at
(me*NMNA Zy Zy kT)}
(V212 T
the width of the maximum being given by
8 \{2ne*NMVA Z, Z, 2(KT)
3%T (Var)

Owing to the sharpness of the maximum, we can approximate the

where 4 =

M is the nucleonic mass, and o the effective

Eopt (3)

AE = ( (4)

integral f dN by the integral of the error-curve with the same height
0

and width, thus obtaining:

N~ micyc, MAZYZ3 Rz[‘ exp 4e(2MAZ, Z, R)z__
T3 AT} MPA A, A% %
weeA M AZ2 Z2\}
‘3( wk'.l'l‘“z) ] ®)
Introducing, for the sake of brevity, the notation
h? 6
= MAeZ, 7, (6)

w”Me‘AZ%Z%)*’ @)

and T = 3(‘2%%_7‘
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we can write (5) in the form:

4 cycypl

= -:;i mal{z@mmwtﬁe—f; (8)
or, numerically,
N = 5-3x10%pc, ¢, I'p, , 7%, ©)
T = 42'1(Z, Z,)}(A|T)}, (10)
1 8R
= e — | g8 Rla)}
¢'1,2 A1A2(Z1 ZzA)s( P )e , (11)

where p is measured in g./em.3, T in million degrees centigrade,
and I in electron volts.
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Fia. 48.

As the first example, we consider the application of the above
formula to the reaction:

H24+H? > H3+n (12)
in hot deuterium gas, which is evidently the fastest of all thermo-
nuclear reactions. We put here, Z, = Z, =1, 4, = 4, = 2, and
¢, == ¢y =% We also know that in this case, I' = 3x 105 e.v.
Assuming for p the value }g./em.?, which represents the density of
liquid deuterium, we calculate for different temperatures the reaction-
rates shown graphically in Fig. 48.f Remembering that each indi-
vidual process liberates an energy of

3:5 M.e.v. = 5:6 X106 erg = 1-3x10-13 cal.,

we can find also the rates of thermonuclear energy production which
t The calculation of this curve was performed by R. A. Alpher.
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are shown on the scale on the right-hand side of the figure. We see
that, whereas at a temperature of 5x 10° °C. the energy-production
is still quite negligible (10-7 cal./g.sec.), it rises to 300, 3 x 107, and
3 X102 cal./g.sec. when the temperature rises to 108, 3 x 108, and
107 °C. respectively. It goes without saying that the problem of
obtaining such extremely high temperatures on earth is of almost
unsurpassable technical difficulty.

2. Physical conditions in stellar interiors

Whereas the temperatures necessary for thermonuclear reactions,
even among the lightest elements, lie almost beyond any laboratory
possibilities on the earth, they are quite common in the cosmos and,
as a matter of fact, it is now quite certain that the principal sources
of stellar energy lie in various thermonuclear reactions taking place
in the hot interiors of the stars. Detailed information concerning
the physical conditions in the interior of stars is provided by the
theory of stellar structure, developed mainly by the work of Edding-
ton.t The comparative simplicity of the theory of stellar structure
is due to the fact that, under the conditions of very high temperature
such as obtain in stellar interiors, the material of the star is almost
completely ionized and thus can be considered, up to very high densi-
ties, as an ideal gas. All the physical properties of such an ideal gas
mixture formed by bare nuclei and free electrons can be predicted
with great accuracy and certainty by the present quantum theory of
matter.

The fundamental equation of hydrostatic equilibrium in the interior
of a star can evidently be written in the form:

dp __ GpM,
- (13)
where M, (the mass inside of the radius r) is subject to the equation
am,
' = 47r?p. 14
oy = e (14)

The total pressure p is composed of the gas-pressure pg,, and the
radiative pressure p,,q and can be written in the form

p= §PT+§GT4, (15)

1 A. S. Eddington, Internal Constitution of Stars, Cambridge University Press,
1926 ; see also S. Chandrasekhar, Introduction to the Study of Stellar Structure, Univer-
sity of Chicago Press, 1939.
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where R is the gas constant, a the Stephan-Boltzmann constant, and
i the mean molecular weight of the stellar matter. For a completely
ionized element of atomic number Z and atomic weight A we have
the obvious relation i@ = A/(Z+1). Thisgives ag+ = 3, iz = 4/3,
and a value close to 2 for all heavier elements. It is customary to
represent the heavier components of stellar constitution by the
so-called Russell mixture which contains the most abundant elements
found spectroscopically in stellar atmospheres. This ‘mixture’ con-
sists of 50 per cent. O, 25 per cent. Na and Mg, 6 per cent. Si, 6 per
cent. K Ca, and 13 per cent. Fe, and being completely ionized has
the mean molecular weight g, = 1-85. It may be noticed here that
the possible changes in relative amounts of elements forming the
Russell mixture have only a very small influence on the values of i,
Writing X and Y for the hydrogen- and helium-content of stellar

matter, we evidently obtain
_ 1
= X gV 0TI —X =T’ (16)
Another fundamental equation of the theory of stellar structure
pertains to the encrgy-transport through the body of the star. As
first indicated by Eddington, the energy originating in the interior
of the star is carried towards the surface mainly by radiation, i.e.
by diffusion of light quanta through the highly ionized stellar
material. The equation of radiative energy-transport can be written
easily if we remember that in this case the flux of momentum must
be proportional to the gradient of the radiation pressure. We have:

) ()

¢ padr
where J, is the radial flux of energy at the distance r from the centre,
and @ is the so-called opacity coefficient (per unit mass) of the stellar
matter. If L, is the total amount of radiation passing through a
sphere of radius » around the centre of the star, and equal to the
total energy production within this radius, we can rewrite (17) in

the form: ar _ §£PT_3 L '

dr 4ac 4mrr?

The theory of absorption of high-frequency radiation (at a tem-

perature of 2x107° C. the maximum of the black-body spectrum

lies at 1-2 A) was first developed by Kramers,} who has shown that
1 H. A. Kramers, Phil. Mag. 46 (1923), 836.

(18)
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the opacity-coefficient must be proportional to density and inversely
proportional to the 3-5th power of the temperature. It was later
indicated by Eddington that the original Kramer formula must be
corrected slightly by the introduction of the so-called guillotine-
factor t which performs a task similar to that of the famous machine
of the French Revolution by cutting off radiation frequencies at a
sharp absorption edge. Another correction factor g was introduced
by Gaunt on the basis of the wave-mechanical treatment of the
problem. On the basis of that theory we can write for the opacity
coefficient of stellar matter the expression:

& = 2y pT-%5, (19)

2
where &y = 723X 10%(14+-X)(1— X —Y) 2 wjlzi il, (20)
7 i

in which, as before, X and Y represent the hydrogen- and the helium-
content of the stellar matter, and w; is the relative concentration of
the element with atomic number Z; and atomic weight 4; in the
Russell mixture. For the Russell mixture which consists of the
elements in the ratios given above,

Z“-’A—Zj = 59,

i 12

Numerical values of the correction factor g/t have been calculated
for different densities and temperatures of stellar matter by Strem-
grent and, more elaborately, by Morse,f who investigated several
different mixtures of heavier elements. As in the case of the mole-
cular weight, the numerical value of &, is influenced very little by
uncertainties in the concentrations w;. For the temperatures and
densities occurring in the sun the tabulated values of t/g can be
represented with sufficient accuracy by the expression:

log“(t/g)’ = +0-6-+log p®2. (21)
Finally, we have the equation of energy production :
dder = 4nrpe dr, (22)

where e is the rate of energy production per unit mass of which the
dependence upon 7' and p, as well as on chemical constitution of the

1 B. Stremgren, Zs. f. Aphys. 4 (1932), 118.
1 P. Morse, Ap. J. 92 (1940), 27.
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stellar material, is determined by special assumptions about the way
in which energy is produced. Since the rate of a thermonuclear
reaction depends exponentially on temperature, and since the tem-
perature increases rather rapidly towards the centre of the star, one
can assume in first approximation that all the energy is produced at
the centre. This leads to the so-called point-source model and we can
put, in this case, L, = const. = obsérved luminosity of the star.
Making this assumption, we are left with four fundamental equations
of equilibrium, (13), (14), (15), and (18), which contain four unknown
functions of r: p, p, T, and M, (the quantity @ entering into (18)
being determined as a function of T' and p by (19), (20), and (21)).
Setting up the boundary conditions:

T=p=p=20

M, = M (observed mass) }at r = R (observed radius), (23)

we can integrate (numerically) our system of equations, with any
arbitrary set of values for i and =, all the way into the interior of
the star.

It may be noted here that, as first pointed out by Cowling,} the
solution of this system of equations which determine the radiative
equilibrium in the star becomes unstable with respect to convection
at a certain distance from the stellar centre where the temperature
gradient, given by (18), exceeds the adiabatic temperature-gradient
determined by the calculated gradient of the density p. Within this
radius radiative equilibrium is broken up and replaced by convective
equilibrium, so that, instead of (18), we must use the adiabatic
equation: 1dT . 1dp

Tdr (y— );3;,
where y is the ratio of specific heats. This so-called Cowling con-
vective zome extends up to 17 per cent. of the stellar radius and
contains 15 per cent. of the stellar mass.

Continuing the integration of the equilibrium equations all the
way to the centre of the star, we arrive at definite values of 7}, py. p,,
and M,. Gencrally speaking, the value of M, resulting from such an
integration comes out different from zero. Since, on the basis of the
physical picture, we must have M, == 0 (no ‘mass-point’ and no
‘vacuum’ in the centre) we must adjust the solution, by adjusting
the parameters i and #, used in the integration, so that the condition

t T. G. Cowling, M.N. 96 (1935), 42.

(24)
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M, = 0 is satisfied. Since these two quantities depend essentially
only on the hydrogen- and helium-content (equations (16) and (20)),
the internal boundary condition, M, = 0, establishes a definite
relation between X and Y. For each possible set [X,Y] we get
corresponding values of the central temperature, density, and
pressure.

The set of fundamental equations of equilibrium was integrated
numerically by Cowling (loc. cit.) under the assumption of constant #,.
Applying Cowling’s solution to the sun, and using the mean value of

7 Torl078C
0-50 12
0-57 / 14
067 16

0-73 /

ln
ot VAR
H He RM.
0-90 22
0-98 25
Fia. 49.

@, for the conditions inside the sun, we get with the assumption
Y = 0: X = 0-35; T, = 2X10°C,, and p, = 80g./cm.? More detailed
integrations, which take into account the variations in &, (guillotine
factor), were performed by Blanch, Lowan, Marshak, and Bethet and
also by Henrich} who obtain 7T} = 257 x 10° C., py = 110 g./cm.?, and
Th = 2:5 X107, p, = 100 g./cm.?, respectively.

If we abandon the arbitrary assumption, ¥ = 0, the problem of
the constitution of the star becomes indefinite, and, as indicated
above, the boundary conditions can be satisfied by various sets of
X and Y. This problem was investigated first by Stremgren,§ who
has found that the possible solutions range from a constitution of
almost pure hydrogen, with negligible amounts of helium and heavier
elements, through a more or less even distribution among the three
components to the solution with no helium, 35 per cent. hydrogen,
and 65 per cent. heavier elements. In Fig. 49 we give the results

t G. Blanch, A. N. Lowan, R. E. Marshak, and H. A. Bethe, Ap. J. 94 (1941), 37.

t L. R. Henrich, ibid. 96 (1942), 106.
§ B. Stremgren, ibid. 84 (1938), 520.
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of Stremgren’s analysis modified so as to fit the more recent integra-
tions of the equilibrium equations. The horizontal sections indicate
the relative proportions of H, He, and R.M., consistent with the
conditions of equilibrium, whereas the figures on the vertical axis
indicate the corresponding values of mean molecular weight 3, and
central temperature 7',

Which of the possible solutions shown in Fig. 49 corresponds to
reality is a question which cannot be answered on the basis of pure
equilibrium theory ; as we shall see later, the complete solution of the
problem of solar constitution can be given only on the basis of a
second relation between X and Y which is supplied by the nuclear
theory of the energy production in the star.

3. Thermonuclear reactions in the sun

Knowing the temperature and the density in the central region of
the sun, we can ask ourselves which particular thermonuclear reac-
tion can go under these conditions at the appropriate rate to secure
the necessary energy-supply. This question was first attacked by
Atkinson and Houtermans (loc. cit.) who came to the conclusion that
the only thermonuclear reactions that would proceed at reasonable
rates in the interior of the sun are those between hydrogen and
various light elements. They also have visualized this process as the
successive capture of four protons by some light nucleus resulting
in the emission of an a-particle (‘ wie kann man einen Helium-Kern im
Potenzial-Topf kochen’), thus introducing the notion of cyclic
nuclear reaction, the importance of which was proved only ten years
later. Considering the possible results of proton-penetration into the
nucleus of another element, we must take into account three different
possibilities:

1. The (p, o)-reaction resulting in the capture of the incident
proton and the emission of an a-particle.t For such processes the
reaction probability I'/# is comparable to the proper nuclear fre-
quency #/MR?, so that the transformation takes place almost for
every penetration. The exact values of I' for different reactions can
be estimated from the observed yields in bombardment experiments.

2. The (p, y)-reaction, or the radiative capture of the incident
proton, the probability of which is considerably smaller (by a factor

1 The (p, n)-reactions are excluded in our case owing to their endothermic nature,
and the fact that thermal protons have rather low kinetic energy.
8595.61 T
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10% or 10%) than that in the previous case, owing to the small proba-
bility of the y-ray emission.

3. The (p, B)-reaction,i.e. the capture of the incident proton through
the spontaneous emission of an electron. The probability of this type
of reaction is much smaller than in the case of radiative capture, due to
the fact that (for equal energies) the mean life for a B-transformation
exceeds that for y-emission by a factor of about 108, It was suggested,
however, by Bethe and Critchfield{ that one particular process of that
type, namely the reaction

Hl4+H! > H2}-¢", (25)
may be of importance for the problem of stellar energy-production,
since in this case the low probability of B-transformation can be
overcompensated by the very high probability for the mutual penetra-
tion of two thermal protons. Since, owing to its very small effective
cross-section, this reaction cannot be expected to be observed in the
laboratory, it is necessary to calculate the corresponding value of €
on the basis of the existing theory of 8-transformations.

Formally, the reaction (25) is a S-transition between He? and H2.
There is no stable nucleus for He2, so that one must consider the
parent nucleus in this case to exist momentarily during the collision
of two protons. The ground state of the daughter nucleus is the
deuteron, an even state with spin one. Two protons colliding in the
S-state form an even ‘nucleus’, but because of the exclusion principle
the spin must be zero. Hence the transition (25) is allowed only if the
spin of the nucleon may turn over, i.e. Gamow-Teller selection rules
are obeyed. If this is the case the transition will be ‘really allowed’,
by which we mean that the parent and daughter nucleus belong to
the same supermultiplet (100). Then the transition probability is
given by the formula, eq. (6), Chapter V. Substituting the indicated
value of the Fermi constant, as found in that chapter, this formula

may be written

1 .
N = ML e )

7o = 6,200 sec.
Although the binding energy of the deuteron is 4-3mc?, the energy
available to the positron emission (25) is only 1-8mc* = W, which
is the mass-difference between two protons and a deuteron. The
corresponding value of I is I,(1-8) = 0-132.
1 H. A. Bethe and Chas. Critchfield, Phys. Rev. 54 (1938), 248, 862.
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The distinguishing feature of this type of transition is contained in
the matrix element M which is essentially an overlap-integral between
the wave-function of the deuteron ¢; on the one hand and the wave-
function of colliding protons ¢, on the other. If we normalized i, to
unit incident current we get directly the expression for the cross-
section for the process which, with the numerical values above,

becomes: o = 22x1079 [ 4,y dal.

The wave-functions i, are essentially the same as those presented in
the discussion of proton-proton scattering, Chapter II, but, in the
present instance, we are primarily concerned with these functions
at very low energy and close to the origin. In this region, i/, may be
represented in good approximation as the product of a function of
radius, which is then integrated out after being multiplied by the
known wave-function of the deuteron, and a function of relative
velocity, which is retained as a factor in o (essentially the penetration
factor in a Coulomb field) and subsequently integrated over the
thermal distribution of the protons. Let v be the relative velocity
of the protons at large distance and b the radius of the deuteron
b == h(Mey)~t = 4-37x 10713 cm.
Then the expression for o turns out to be

a(v) = A2£'(l—-.§~) e 16772b8 e—2me’ho, (27)
T hv

where A? is the integral over the function of radius. If the range of

nuclear forces between the protons is taken to be e?/mc? and the

depth of the (square) well is 10-3 M.e.v., the value of A% has been

found by Bethe and Critchfield (loc. cit.) to be 8-08.

To obtain the number of reactions per cm.? per sec. in a gas of
N protons per cm.? we have to integrate vo(v) over the Maxwell-
Boltzmann distribution function ¢(v)dv. This integral will be
multiplied by the number of proton pairs, $N2. Other factors are:
symmetrizing the two-proton wave-function and the fact that either
proton may turn into a neutronf each introducing a factor 2, but the
product is just compensated to unity by the fact that only one-fourth
of the collisions between protons take place in the singlet state.
Substituting for o(v) and (v) we get p’ (per cm.? per sec.)

p = %” I, N2b3 Az( Ic£T )g 2%52”2 d e—@metiiv)—(Mv¥axT),

1 'This factor was inadvertently omitted in the reference cited.
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The integrand has a strong maximum very close to

v = (4mekT A M)},
so that the function may be approximated by fitting it to a Gaussian
‘error-curve’ at this maximum and integrated to give

, 32
p = g&: o(1-8) N 2b3A 272~

with T = 3(m2Met/4R2kT)L.
Or, if we measure 7' in millions of degrees, 7' — 10%
T = 33-8t}.

Substituting numerical values into p° we may now express the
number of processes per gramme per second in terms of the density p,
the concentration of hydrogen (by weight) ¢y and 7:

P —= 34X 107pc} T2
Each process leads ultimately to the formation of an «-particle
through the cycle:

H2+4H! > He+y
He®+He* -~ Be”+vy
Be? — Li%--e~

Li’4-H! - 2He*
releasing 4-3 X 10-% erg. The energy-production per gramme per sec.
is then:

(28)

€ = 1460pc3, 7% ~7 ergs/g.sec. (29)

Substituting in eq. (29) values appropriate to the centre of the sun:
p == 100, ¢y —= 0-35, 7 = 11:6 (T = 2-5x 107), we obtain

€ = 24 ergs/g.scc.
at the centre. Hence, if the B-transition in eq. (25) is an allowed
transition, it leads to an energy-production of the right order of magnitude
for our sun.

In Table XXIV we give theoretical results pertaining to various
thermonuclear reactions under the conditions existing in the sun.
These data are calculated on the basis of formula (10) on the assump-
tions: 7' = 2x107° C. and pX = 30 g./em.?} In the third column
we give the ‘mean reaction-times’ which are evidently independent
of the concentration of the heavy element involved. The fifth column

1 These data correspond to Cowling’s old integration which assumes Y = 0.

According to more dotailed integrations (cf. Fig. 49) the same central conditions are
obtained for X ~ Y =~ 0-4.
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TasLe XXIV

Mean reaction-times and rates of energy-production for
T =2x10"° C., p = 80 g./em.3, concentrations = 0-35

Rate of energy-
Mean reaction- production

Reaction Tov time QM.m.u.) erglg.sec.
H! 4+ H! — H? + et .. 1-5x 1010 yrs, 1-53 1-0t
H? + H! — He? 4 y 1 2 sec. 59 4x101°
He® -+ H! — He® + y 10 02 sec. 21-3 9x 1020
H? + H?2->He® + n 3 x 108 30 sec. 35 1x 108
Li¢ 4 H! -> He?® -}- Hot 5x 108 b sec. 4-1 3x10'8
Li? 4 H! — 2He* 4%x104 1 min. 186 1«10
Be® + H! — Li¢ 4 He* 108 15 min. 2-4 8x 1018
B0 | H! —» Cl1 4. o 10 1,000 yrs. 9-2 8x 108
B!t - H!.»> 3He! 108 3 days 94 9x 1013
C1 . H! —» N2  y 0-02 108 yrs. ‘04 3x 102
C!2 + H! — N13 4 y 0-6 2:5% 108 yrs. 2:0 6107
18 4 H! > N4 4 30 5% 108 yrs. 8:2 1x 108
NU 4 H! > O  y 60 4% 108 yrs. 78 1x 108
N6 4 H!. » C12 4 Het 107 20 yrs. 52 2% 1010
o1t | H! — F17 4y 0-02 1012 yrs. 05 4x1072
F1® 4 H! -» O 4 Het 108 3x 107 yrs. 8-8 1x10%
Ne?2 4- H! — Na?® + y 10 2x 1018 yrs. 10:7 2x10 2
Mg2é 4 H! — Al¥ 4 y 10 10'7 yrs. 8-0 3x107¢
Si30 + H! — P31 + y 10 3% 1020 yrs. 7-0 6x 10710
CI37 - H! — A38 4 10 2% 1028 yrs. 12:0 1x 10714
He* + He* — Be® 4 y 5x10° 1015 yrs. 0-05°? 1x1073
Li? + He®* — B! + y 1 4% 10 yrs. 9-1 2x1073
Be? + Het — C!1 4 y 1 2 x 1020 yrs. 8:0 5x107°
C12 + He* — O'®  y 1 10%3 yrs. 7-8 1x1072

contains the rate of energy-liberation calculated under the assump-

tion that the densities of both reactants are equal to 0-30 g./cm.3
Comparing the figures of Table XXIV with astrophysical evidence

we must remember that:

(1) since the mean energy-production of the sun is

4-10%3 erg/sec. = 2-1033 g. = 2 erg/g.sec.,

the rate of energy-liberation in the central regions, where the
energy is actually produced, must be considerably higher than

that figure;

2) since, as evidenced by the continuity of evolution of life on our
y y

globe, the sun must have been shining at approximately its

present rate for at least 10° years, the mean life of the process

1 This value is smaller than that given on p. 276, since the values of the table have
been calculated on the assumption of lower temperature and density in the centre

of the sun.
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responsible for the energy-production must be considerably
longer than that.

Looking through the figures of Table XXIV we notice first of all
that one possibility consists in the p—p reaction followed by the
sequence of reactions (28). Since the mean periods of the subsequent
reactions are much shorter than the solar life, we must suppose the
sequence to be in equilibrium and thus producing energy at the rate
calculated above. The estimated average energy production for the
sun is then 1 erg/g.sec., i.e. half enough to account for the entire

acce, radiation. Unfortunately, at the present time,
Q\\’\\" KL op s At oy .
ox W,  itisnot certain that the B-transition involved
S /'tiﬁ is allowed. If the transition is of the allowed
o &, type, the p—preactionis of primary importance
2 :; in the sun, and increasingly so for less massive
‘o

A~ stars.
P

&

~, N
//h." NN

Looking farther through Table XXIV we
may first get the impression that there is no
other reaction suitable for the energy-produc-
tion of the sun. In fact, the mean reaction-times for Li, Be, B, C, N,
and ¥ are much shorter than 10° years, and, on the other hand, the
calculated rates of energy-production involving O, Ne, Mg, Si, etc., as
well as those involving He, are much too low. This apparent difficulty,
however, is straightened out, unexpectedly, by the peculiar nature
of the reactions involving carbon and nitrogen. In fact, it was shown
independently by Weizsickert and by Bethei that the reactions
involving these two elements represent different links in a single
cyclic reaction-chain, in which the nuclei of C and N are regenerated
after each complete cycle. This reaction-chain, now known as the
carbon cycle, is represented schematically in Fig. 50, which shows
that the net result of each cycle is the transformation of four hydro-
gen atoms into one atom of helium. Since carbon and nitrogen nuclei
are not destroyed in this process, the comparatively short reaction-
times of the individual links do not play any role in determining its
duration, and the liberation of energy will continue uninterrupted as
long as there is hydrogen left in the star (or rather, in its internal
convective zone).§

Fia. 50.

1 C. v. Weizsicker, Phys. Zs. 39 (1938), 633.
1 H. A. Bethe, Phys. Rev. 55 (1939), 434.
§ We may note at this point that such a cyclic reaction proceeding in the solar
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Calculating the total energy-balance of the carbon cycle, we have:

C12 4 H! —» NI 4 2.0
N12 —. C13 4 ¢t 4 (neutrino) 056 = (§x1-35)
C® 4 Ht — NM 4 5 8:2
N4 Ht —> O15 4 o 7.8
0% —> N5 4+ e+ 4 (neutrino) 07 = (3 x 1-85)
NI 4+ H! —> C12 4 Het 5-2

Total 244 M.m.u.
or 366 x 1075 erg

Here, as also in the case of the p—p reaction, we have subtracted the
energy carried away by the neutrinos (§ of the total energy of
B-transformation) which amounts to about 7 per cent. of the total
energy-balance. Since the duration of a single cycle is the sum of
durations of the individual links, the cycle period will be determined
essentially by the sum of C'2 and N4 lives:

2:5X 10844 X 108 = 6-5x 108 years = 1-95 X 101 sec.
Thus the rate of energy-production (for pX = 30) becomes:

C, 1 erg
— 4 = 104C, —-, (30
12X 1-65x 10-24 1.95 X 1014 ‘g.sec. (30)

where C, is the concentration of carbon. Thus we see that even for
carbon concentrations as low as 1 per cent., we still have

€ = 4X10-8

e = 100 erg/g.sec.,

which is high enough to account for the energy-production in the sun.
Although the calculated rates of energy-production by the H—H

interior must necessarily establish a definite dynamie equilibrium between the species
of atomic nuclei participating in the process. In this state of equilibrium the relative
amounts of different nuclei must become directly proportional to the corresponding
mean poriods of the reactions. Using the data of Table XXIV we find that in such
an equilibriuin C'? and N'¢ must be present in the ratio
Cl12: N1 = 2-5x 10%:5x 10* = 5:8
whereas the relative abundances of their stable isotopes must be given by
C12:C'3 = 2.5 10%:5x 104 = 50 and NM:N!® = 4x10%:20 = 2x 10%.
Comparing these figures with the relative abundances of these nuclei on the earth
(C12: N4 = 3; C'3:C'? = 140 NU4: N = 250)
we fail to find any agreement, especially in the case of nitrogen isotopes. This is, of
course, not surprising in view of still larger disagreements in the case of such nuclei
as H?, Li, Be, and B which must be completely absent from the reaction region of the
sun, but are present in noticeable amounts in the solar atmosphere and on the earth.
This result suggests that the material forming our globe has never been a constituent
part of the interior of the sun.
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reaction and by the carbon cycle appear to favour the latter as the
main source of solar energy, it is of interest to make an independent
test based on the difference between the two processes with respect
to their dependence on temperature. The temperature dependence
of the rate of reaction, which is generally given by an exponential
function, can be approximated within a given temperature interval

by a power law: e~ e T, (31)

Comparing the derivative of this formula and of the exact formula
(10) we obtain: dlog(r%-")

n = “dlog T — $(r—2). (32)
For the H—H reaction near 2 x 107° C. this gives » = 3-5, whereas
for the carbon cycle we obtain n = 17.

Substituting the expression (31) for e into the fundamental equation
of energy-production (22), neglecting the variability of the guillotine
factor, and assuming that the radiation pressure is negligible com-
pared with the gas pressure (for the sun, and stars of comparable
mass, the former is only 0-3 per cent. of the latter),} we obtain a
system of five homogeneous equations, (13), (14), (15), (18), and (22),
containing nine independent variables T, p, p, L, R, M, {i, 2,, and ¢,.
This set of equations is invariant to homology (or similarity) trans-
Sformations in which the scale-factors of any five variables are deter-
mined as functions of those of the remaining four. Assuming g, ,,
and ¢, constant, and increasing the mass M by the factor a, we find
that the remaining characteristics of the star must be changed by
the following factors:}

L . . @B1+10n)((5-+2n)

R . . @l1-2B1+100)/(G+2n)

T . . @—10+2(31+10n)/(5+2n) (33)
o . . @—32+6(31+10n)/(5+2n)

P . . @—42+8(31+10n)/(5+2n)

Using the values of n derived above, we obtain the following

1 The ratio of the radiation pressure to the total pressure, usually denoted by
(1—B), depends essentially only on the mass of the star and is given by the following
table calculated by Eddington (loc. cit.).

Stellar mass (in sun masses) 1 5 10 20 40
(1—p) 0-003 0-5 0-15 0-30 0-45
1 G. Gamow, Zs. f. Astrophys. 16 (1938), 113.
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expressions for the dependence of stellar luminosity, radius, and
central temperature on the stellar mass:

H—H reaction C cycle

L ~ M5'5 L ~ M5‘2

R ~ MP®(const) R ~ M7 (34)
T~ Jro T~ MO4

In Fig. 51 a, b we give the plot of log L and log R against log M for
15 stars with masses between 0-4 and 2:5 sun masses.}

(%

Fia. 51

The lines marked H—H and C-cycle represent the theoretical
dependence for the H—H reaction and the carbon cycle, as given
by (34), respectively. Whereas the [log L, log M] graph does not
permit one to distinguish between the two possibilities, the [log R,
log M) graph shows beyond any doubt that for stars of these masses
the main part of the energy-production must be due to the carbon
cycle. 1t should be noted, however, that for less massive stars the
situation is reversed. In fact, since

rate of (C—H) 7TV
rate of (H—H) 735
and since for 2x 107° C. the energy-production by H—H reactions
amounts to a fraction of that for the carbon cycle, the two rates
become equal at some lower temperature which depends upon the
exact ratio of the two sources in the sun which, in turn, is not known.

t G. Gamow, Ap. J. 89 (1939), 130.

— s,
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If this ratio is 1 per cent., the central temperature for which the rates
are equal is Ty = 2x 107(0-01)1135 = 1.5x 107° C., and from (34) (for
the carbon cycle) the corresponding stellar mass is about 0-4 suns.
According to astronomical data, stars of this and still smaller mass
form the bulk of the stellar population of our galaxy, so that we can
say that, whereas the carbon cycle is used by comparatively few
exceptionally brilliant stars, the rank and file of the stellar popu-
lation quite possibly draws its life energy from the H—H process.

Having established that the energy production in the sun, and in
stars of comparable mass, is due to the carbon cycle, we can use
this knowledge for a more detailed analysis of the solar constitution.
In fact, we have seen in the previous section that purely astrophysical
evidence gives us one relation between the hydrogen content X and
the helium content ¥ (Fig. 49). Knowing the nature of the energy-
source, we can now get another relation between these two quantitics
that will permit us to estimate X and Y separately. Calculations of
this type have been performed by Schwarzschild.t He assumed, on
the basis of analyses of the solar atmosphere, that carbon represents
2 per cent. of the Russell mixture of heavier elements, so that
C, = 0:02(1—X—Y). Remembering thatat 7' -= 2x 107, pX = 0-30,
e = 10%C, erg/g.sec.. one can write for neighbouring temperatures
and densities:

. Xpf T \V
] = 2 T T e\ T 5 . :
e(p, T) 00(1- -X—Y) 0 (2)( 107) (35)
and calculate the total energy-production L as the integral

Tcouv
L= j e(p, T)4mr2p dr, (36)

0
where 7.,y i8 the radius of the convective core. The results of these
calculations are shown in Fig. 52, where the curve A represents the
[X,Y] dependence obtained from equilibrium conditions, whereas
the curve B gives the [X, Y] relation which follows from the con-
siderations of energy-production. The point of intersection corre-
sponds to

X = 047 Y = 0-41 R.M. = 0-12
i =076 T, = 1-98x107° C. p =112 g./lem .3
The lighter curves in Fig. 52 represent the effect of possible (rather
t M. Schwarzschild, Ap. J. 104 (1946), 201.
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liberally estimated) errors in X, and &, of the Russell mixture. It
seems certain that for the sun the value of X lies between 0-35 and
0-60, the value of Y between 0-25 and 0-50, whereas the total amount
of heavier elements is between zero and 0-30. This result is in excel-
lent agreement with the more recent results of spectroscopic analysis
of solart and stellar{ atmospheres which indicate 54 per cent.
hydrogen, 44 per cent. helium, and only about 1 per cent. of the
heavier elements.

0-55 1
0:50 4
" P\
"0 \ X
A
X

0-30

025

035 040 045 050 055 060 065

Fia. 52.

4. Thermonuclear reactions in other stars

Turning to the problem of thermonuclear energy-production in
other stars, we must first get acquainted with the stellar classification
as given by the so-called Hertzsprung—Russell diagram (Fig. 53). In
this diagram the logarithms of the observed stellar luminosities (con-
nected with ‘stellar magnitudes’ by the relation AM = —2-5Alog L)
are plotted against the logarithms of the observed surface tempera-
tures (determining the so-called ‘spectral class’ of the star). The
radius of a star is connected with the two quantities above by the
obvious relation: L = 4w R2T", and is increasing towards the upper
right corner of the diagram.

We see that the known stars can be classified into three major
groups:

1. The main sequence, containing the stars that fall within a narrow

band crossing the diagram from the region of very hot (blue)

1 D. H. Monzel, ibid. (in the press, 1948).
1 A. Unséld, ibid. 100 (1944), 110.
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and very luminous stars, to the region of cool (red) stars of
rather small luminosity.

2. The red giant group, containing the stars of low surface tempera-
ture, high luminosities, and very large radii.

3. The white dwarf group, containing the stars of very high surface
temperature, low luminosity, and very small radii.
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+5-0

Since our sun itself belongs to the main sequence, it would be
natural to suppose that all other stars of this group possess the same
general structure and have the same source of energy as the sun,
differing from it only with respect to mass. And, in fact, using the
homologic transformations (33) (with » = 18 for M > 0-4 M, and
n = 35 for M < 0-4 M) it is possible to account for the observed
luminosities and radii (or surface temperatures) of all the main-
sequence stars entirely on the basis of their observed differences

in mass.t
1 G. Gamow, Phys. Rev. 65 (1944), 20 (Fig, 1).
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The problem of the red giants, on the other hand, presents serious
difficulties which have not yet been overcome. If we assume that
these stars are built on the same plan as the sun, and the other stars
of the main sequence, the calculations lead to only a few million
degrees for the values of their central temperatures. Since neither
the H—H reaction nor the carbon cycle would produce significant
power at these low temperatures, it was suggested by Gamow and
Tellert that the sources of energy for these stars lie in the trans-
formations of light elements, Li, Be, and B. According to this
assumption, red giants would represent the early stages of stellar
evolution in which these light elements are being successively burned
out, preliminary to the star’s entrance into the main sequence. Since
the reactions involving these elements are not cyclic, the duration of
each evolutionary stage must be comparatively short, and a young star,
contracting under the force of gravity from a primary diffuse mass,
would stop in the corresponding regions of the Hertzsprung-Russell
diagram only long enough to ‘burn out’ the small amounts of these
elements which were originally present in the mass. A detailed study
of this assumption, at first sight very attractive, indicated, however,
that, although stars of such a description may exist in the sky, the
majority of the red giants certainly require some other explanation.}

A new bit of evidence concerning the nature of red giant stars is
presented by an analysis made by Chandrasekhar,§ who has shown,
on the basis of observational material, that red giants possess a much
higher central condensation of material than normal stars of the main
sequence. Thus, whereas in the normal point-source model 90 per
cent. of the stellar mass occupies about one-half of the stellar radius,
typical red super-giants like VV Ceph M or ¢ Aur I have 90 per cent.
of their mass condensed within 0-21 and 0-24 R from their centres.

An attempt to explain the properties of red giant and supergiant
stars by a change of model was made by Gamow and Keller,||
who proposed that these stars may represent later stages of stellar

1 G. Gamow and E. Teller, ibid. 55 (1939), 791; see also M. Greenfield, ibid. 60
(1941), 175.

I The difficulties of the Gamow-Teller hypothesis lay mainly in the fact that it
fails to account for the characteristic distribution of the red giants in the frame of the
Hertzsprung-Russell diagram, and also cannot explain their comparatively large
number.

§ S. Chandrasekhar, Introduction to the Study of Stellar Structure, loc. cit.

|| G. Gamow, Phys. Rev. 67 (1945), 120 ; G. Gamow and G. Keller, Rev. Mod. Phys.
17 (1945), 125; cf. also M. Harrison, Ap. J. 103 (1946), 193.
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evolution that follow the depletion of hydrogen in the central convec-
tive zone. In fact, it is easy to see that, as soon as the material of
this zone (which is being constantly stirred up by convective currents)
becomes finally deprived of hydrogen, the structure of the star must
change from the conventional point-source model to the so-called
shell-source model in which the energy is produced along the spherical
surface that separates the dehydrogenized material on the inside
from the hydrogen-rich material on the outside. Whereas, under
these conditions, the matter within the energy-producing shell must
be considered to be in a state of isothermal equilibrium (since no
energy is produced there), the outer portion of the star remains
subject to the equations of radiative equilibrium. The temperature
of the energy-producing shell, as well as that of the dehydrogenized
material inside of it, must be maintained, of course, at a level for
which the carbon cycle will operate, i.e. at about 2 x 107° C. As the
process of the H — He transformation progresses, the energy-
producing shell advances towards the outer surface of the star, and an -
ever-increasing fraction of the total mass of the star becomes included
in the isothermal core. Detailed analysis of the process shows that
the growth of the energy-producing shell leads to degeneracy of the
material near the centre of the star, so that the resulting stellar model
must consist of three regions: (1) the degenerate nucleus (similar to
the white-dwarf configuration), (2) the isothermal core of dehydro-
genized gas surrounding this nucleus, and (3), the outer envelope
containing the normal concentration of hydrogen. Calculations on
such composite stellar models are necessarily rather complicated,
and in spite of the fact that they seem to indicate that the growth
of the energy-producing shell in radius results in an unlimited increase
of the outer radius of the star, it has not yet been possible to find a
satisfactory correlation between the properties of such ‘overgrown-
shell’ models and the observed characteristics of the red giant stars.
It may be noticed here, however, that this point of view leads to an
interesting interpretation of the origin of the white dwarf stars,
which represent, as we shall sce later, degenerate configurations of
dehydrogenized stellar material. In fact, the proposed two-way
process in which part of the material of the star becomes concen-
trated into the central degenerate core, while another part forms an
ever-expanding envelope, must lead to the ultimate dispersion of the
outer material, thus revealing the hot, central body to the eye of the
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astronomer. This is in agreement with observational evidence which
indicates that many stars of this type possess composite spectra in
which high-temperature characteristics are mixed with those corre-
sponding to a much lower temperature. According to the so-called
Nutty—Menzel hypothesis, such composite spectra are due to the fact
that we see the light of the hot central body shining through the
comparatively cool outer envelope of the star. It may be added that
the temperature of the degenerate central condensation which is left
over after the dispersal of the envelope must be expected to be equal
to the temperature of the isothermal core within which it was formed,
i.e. to 2x107°C. (since the temperature of the isothermal core is
determined by the temperature of the energy-producing shell in which
the carbon cyecle is taking place), which is in perfect agreement with
the estimated internal temperatures of the known white dwarfs.
We may add that the problem of internal structure and energy
sources of red giants and supergiants is closely connected with the
important problem of stellar pulsations. It is observed that the stars
that fall within a certain narrow band in the Hertzsprung-Russell
diagram (‘pulsation-region’ in Fig. 53) are in a state of regular pulsa-
tion, their luminosities and radii varying in time with a period that
depends upon the total mass in each case. The dynamical theory of
pulsating gaseous spheres developed by Eddington leads to the
following relation between the period of pulsation I and the central

density p,: MR
Il — [Gy(3~~)f>o] ) (37)
Y.

(where @ is Newton’s constant of gravitation and y is the ratio of speci-
fic heats) which is in generally good agreement with the observed
facts.t It can be shown also that, due to the dissipation of energy, a

1 It may be remarked here that the observed stellar pulsations do not agree in
every detail with the simple theory of pulsating gas spheres. First of all, whereas
the simple theory requires a simple sine wave for the variation of the light emitted,
the observed luminosity curves do not rise and fall symmetrically but rise sharply
and fall slowly. Also, the simple theory predicts that the maximum luminosity is
coincident with the minimum stellar radius, whereas the observations are that the
maximum and minimum luminosities coincide with the maximum expansion and
contraction velocities of the stellar surface (as measured by means of the Doppler
effect). The asymmetry of the light curves and the 90° phase-shift of luminosity rela-
tive to radial motion suggest that the star does not pulsate as a whole, but that one
has to do with waves of compression which originate from a regularly pulsating
central body and travel through the outer envelope of the star. More detailed study
of this process is bound to give us valuable information concerning the internal
structure of these stars.
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pulsation of a star which is excited by some external cause must
die out in a few thousand years. Since this is certainly not the case
for the observed pulsating stars, it is necessary to assume that some
intrinsic instability exists which forces the pulsation to go on at the
cost of the general energy production in the interior. To explain the
observed distribution of pulsating stars in the frame of the Hertz-
sprung-Russell diagram, it must be assumed further that such an
instability occurs only for a definite relation between the luminosity
of the star and its radius.t One possible interpretation of the pheno-
menon of self-supporting stellar pulsations may lie in the notion of
the so-called superstability in stellar structure, first introduced by
Eddington. He indicated that, in such cases when the rate of energy-
production near the centre of the star depends very strongly upon the
temperature, the adiabatic temperature rise in the contracted phase
may cause the liberation of such large amounts of energy in a short
time that the body of the star will be ‘swung out’ to a maximum
radius larger than the maximum radius preceding the contraction.
The next contraction will then cause higher temperatures and will
liberate still larger amounts of energy, resulting in a still larger
subsequent expansion. Thus the pulsation of such a star will increase
rapidly in amplitude and must terminate in the ultimate disruption
of its entire structure. The problem of stellar ‘superstability’ was
carefully investigated by Cowling,f who formulated a relation
between the exponent % in the temperature dependence of the energy-
production, and the ratio of specific heats y of the stellar material
for which this phenomenon should be expected to take place. For
the value of y = 5/3, which is typical for the sun and all other stars
of not very large mass, the critical value of n is 450, i.e. much larger
than that corresponding to the carbon cycle or any other possible
nuclear reaction. However, for much more massive stars the situa-
tion becomes essentially different since, due to the ever increasing
importance of radiation pressure, the value of y must be compounded
from the value 5/3 for a perfect gas and the value 4/3 for the radiation.

~ 5B‘*‘4(1"B) — 4+B (38)
3 3

1 From Fig. 53 we find that the pulsation line is represented approximately by the
equation: Ly, = 4. T,(pu,,, Remembering that I. ~ R*T" we find that the necessary
condition for pulsation is Ly, ~ R3,,

} T. G. Cowling, M.N. 94 (1934), 768 96 (1935), 42.
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Forn = 17, superstability occurs when y = 1-43 which, according
to (38), corresponds to 1—8 = 0-71. Looking in the table given in the
footnote on p. 280, we find that this corresponds to stellar masses
larger than (17/u?) M, (100 M, for u = 0-76). This value is considerably
larger than the masses of the pulsating stars, but, on the other hand,
it must be remembered that it was arrived at on the basis of very
rough calculations, and that a detailed analysis might bring it
down. In any attempt to connect the phenomenon of stellar pulsa-
tions with the notion of superstability, one should, of course, account
for the fact that these pulsations do not exceed a certain maximum
amplitude ; this may be due, for example, to the difference between
homologically pulsating models for which the calculations are
usually made, and the more complicated motions that take place in
a pulsating gas-sphere. To sum up, we must say that the solution of
the riddle of red giant stars lies most probably in their structural and
dynamical aspects rather than in some peculiarity of their nuclear
energy-sources.

The study of white dwarf stars brings in an entirely new aspect of the
theory of matter: the problem of the superdense state. Infact, whereas
the masses of the two best known stars of this type, the companion
of Sirius and 40 Eridani B, are very close to our sun in mass (0-98 M,
and 0:45 M, respectively) their radii are only 0-020 and 0-018 of
the solar radius corresponding to mean densities of 1:7x 105 and
1:0x 10% g.Jom.? As first suggested by Fowler,T matter compressed
to such high densities must be considered as being in a state of com-
plete ionization (regardless of temperature) since, indeed, the nuclei
are brought so close together that there is no place’ between them
for the regular electronic orbits. Since at the densities of the order
of magnitude 10® g./cm.? the zero-point energy of free electrons is
of the order of 1-5x 10-7 erg,} we must conclude that an electron gas
resulting from such ‘pressure-ionization’ will be in a state of almost
complete degeneracy unless the temperature of the material is above
T = (1-6X10-7/3k) = 7x 108 ° C., which is much higher than the

+ R.H. Fowler, M.N. 87 (1926), 114.
1 The average volume available for each electron is, in this case
AM  2x1-66x107%
0z 108
8o that the average energy (in the non-relativistic case) may be estimated as
p? 3ne 3\t - _
= Wn(ﬁ) (3:3x107%0)# = 1.5 107" erg.

3505.61 o

= 33x107% cm.?,
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estimated internal temperatures of the white dwarf stars (only
2% 107 ° C.). Thus one can consider the structure of these stars as
determined entirely by the temperature-independent equilibrium
between the pressure of the degenerate electron gas and the forces of
gravity. The dependence of pressure on density in a degenerate
electron gas may be written in the form:

A 24 2’3 [1(21;2 3)(x2+1)t 4+ 3sinh—1z], (39)
3m2h3
where 23 = 7::303 n, (40)

and n, stands for the number of electrons per unit volume. For
comparatively low densities this expression goes over into

3t 3
» 3 208 — 965 10m2( R}, (41)
Hh m &
corresponding to the non-relativistic degenerate gas, whereas for higher
densities we obtain

P = —kcn* 123><1014( ) (42)
M

representing the case of complete relativistic degeneracy.
For a completely ionized element with atomic weight A and
atomic number Z, the number of electrons is evidently
pZ P .
n, = = N 43
where 1, (the mean molecular weight per electron) is equal to one for
hydrogen and two for helium (and approximately two for all heavier
elements). Thus we see that the equilibrium in a white dwarf depends
only on the hydrogen content X of its material (in contrast to normal
stars where Y is also important). Combining the equation of state,
(39), with the hydrostatic equation:
_dp, _ GpM,

—_ = r 44
dr r (44)

one can calculate the external radii (as well as the internal density-
distributions) for the degenerate white dwarf configurations of
various total masses and hydrogen content. Such calculations have
been performed by Chandrasekhar,t whose results are presented

1 S. Chandrasekhar, M.N. 95 (1935), 208; see also Introduction to the Study of
Stellar Structure, loc. cit.
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graphically in Fig. 54. These calculations were carried out under the
assumption, &, = 1; for other values of ,, M should be multiplied
by gg %, R by ., and p by f,.

We notice first of all that for degenerate stellar configurations the
radius of the star decreases with its mass and becomes zero for
My = 578 Mo/a2. Since it is reasonable to suppose that the
degenerate configurations represent the ultimate state of gravitational
contraction of normal stars which have used up their hydrogen, and
are therefore deprived of any source of nuclear energy, we may con-

R 02

5| Re

4.
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b M

0 . : . —\Me
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Fic. 54.

sider their material as consisting almost entirely of helium and put
fie = 2. This gives for the critical mass the value M, = 1:44 M
which is consistent with the fact that the masses of the known white
dwarf stars do not exceed the mass of the sun. Thus, whereas the
contraction of the stars with comparatively small mass must lead
ultimately to the formation of the degenerate white dwarfs (which
after cooling down become lifeless ‘black dwarfs’), the stars of larger
masses should contract, theoretically speaking, into a mathematical
point. It goes without saying that such a thing never actually
happens since, whenever the radius of the star becomes too small, a
number of other physical phenomena may take place. First of all,
the ever-increasing rotational velocity of such a contracting star may
ultimately lead to the formation of a sharp equatorial edge from
which excess mass will be ejected into the surrounding space. Another
reason for the ejection of stellar material can be found in the radia-
tion pressure which increases parallel with the surface temperature
of the contracting star and, at a certain stage of the contraction, may
be expected to overbalance the forces of gravity holding the stellar
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atmosphere together.t Finally, the extremely high temperatures
obtaining in the central regions of contracting gas-spheres will lead
to a peculiar type of nuclear process, which will be described in the
following section, and which may result in a catastrophic collapse of
the stellar body and the ejection of the major portion of its mass.

Returning to the sub-critical, degenerate configurations, we may
compare the results of the calculations given in Fig. 54 with the
observational data. Using the observed values of the M’s and R’s,
we can estimate the corresponding value of ji, and, since this value
depends only on X, deduce the hydrogen content of the star. The
result of such calculations is rather surprising, at least in the case
of the best known white dwarf, the companion of Sirius, for which
one obtains p = 1:5, which in turn means that about 50 per cent.
of the material of this star is formed of hydrogen. If this hydrogen
is assumed to be distributed more or less uniformly throughout the
star, this result is contrary to what is expected from the evolutionary
point of view, according to which the white dwarfs should represent
the final stages of stellar evolution and therefore must be deprived
completely of hydrogen, and it is in outright contradiction to our
knowledge concerning the thermonuclear reactions. Indeed, since the
internal temperatures of white dwarfs are known to be not very
different from that of the sun, and since their central densities are
several hundred thousand times larger, the energy-production due to
the carbon cycle would exceed the energy-production of the sun by
a factor of millions. Even if we suppose that, for some unknown
reason, carbon and nitrogen are completely absent in the bodies of
these stars, the H+4+-H — H2J-e+ reaction alone would lead to an
energy-production much higher than that in the sun!

A careful analysis of the temperature distribution in white dwarfs
led Marshak} to the conclusion that the internal temperature of the
companion of Sirius is 1-5x 107 °C. if it is formed entirely of Russell
mixture of heavier elements (an unlikely assumption), and 7 X 108°C.
in the case when the star is made of pure helium. Even for the latter
lower temperature, the hydrogen content may not exceed 0-1 per cent.

It is interesting to note that the conclusion concerning the negligible
hydrogen content in the interior of white dwarfs can be reached
independently of any knowledge of the temperature in the star if

t Cf. G. Gamow, Phys. Rev. 65 (1944), 20.
1 R. E. Marshak, Ap. J. 92 (1940), 321.



Chap. X,§4 THERMONUCLEAR REACTIONS IN OTHER STARS 293

the H—H-reaction is allowed. In fact, it can be shown that even at
zero temperature hydrogen-containing materials, compressed to a
density comparable to that in white dwarfs, will produce energy at
a rate inconsistent with the low luminosities of these celestial bodies.t
The point is that at these high densities the zero-point energy of
protons is high enough to produce a high rate of mutual penetration
leading to the formation of H2-nuclei.

The difficulty presented by the companion of Sirius may be
resolved by one of the following three assumptions:

1. The radius of the companion of Sirius is not 0-023 Re as deduced
from observations, but rather only 0-008 R which would follow
from theoretical calculations for M = 0-98 and g, = 2. It is
hard to believe that the measurement of the radius of this star
(based on the relativistic red shift of spectral lines) could be
wrong by a factor of almost three.}

2. The reaction H'4H! — H24-e+ is a strongly forbidden trans-
formation such as would obtain if Fermi selection rules applied
instead of the Gamow-Teller selection rules. We have seen, how-
ever, in Chapter IV, that the latter rule appears to be necessary
to explain the B-transformations observed in the laboratory.
Besides, this point of view would require also an explanation of
the mysterious absence of carbon and nitrogen from these stars.

3. The hydrogen is not uniformly mixed, but occurs only on the
surface and is completely absent from the hot interior.§ This
point of view is subject to further observational confirmation.

Other, less likely, explanations of the discrepancy include the
assumption that the companion of Sirius is formed almost entirely
of He? which possesses the proper mean molecular weight, i, = 1:5.]|
However, whereas comparatively large concentrations of He3 might
be expected in stars that obtained their energy from the H—H reac-
tion and burned up their hydrogen supply in less than 3 x 107 years
(the period of the He®+He* — Be7y reaction), it is hard to see how

t D. 8. Kothari, Nature 142 (1938), 916; W. A. Wildhack, Phys. Rev. 57 (1940), 81.

1 Nevertheless this explanation has been proved in 1948 to be correct. The point
is that the spectrum of Sirius B is strongly blended with that of the main star, which
affects tho apparent positions of its absorbtion lines. If allowance is made for this
blending, ono arrives at the valuo of radius consistent with the degenerated model
with zero hydrogen content.

§ C. L. Critchfield, 4p. J. 96 (1942), 1.
|| G. Chertok, Phys. Rev. 65 (1944), 51.
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any large amount of these nuclei could be produced in stars of solar,
or larger, mass which are known to live almost exclusively on the
carbon cycle. An alternative explanation lies in changing the funda-
mental relation, P = f(p), for the degenerate electron gas as sug-
gested, for example, by Eddington.t According to his theory, the
pressure of a degenerate electron gas is expressed by the formula (41)
no matter how high the density may be. For M = 0-98 and g, = 2
(no hydrogen) Eddington finds that (41) stands in a satisfactory
agreement with the observed radius of the companion of Sirius. It
would be, however, a very hard decision to make to accept all the
revolutionary changes proposed by Eddington in the present quantum
theory solely on the basis of the white dwarf trouble.

It may be remarked in conclusion that the difficulty arising in the
case of the companion of Sirius does not exist for the other white
dwarf, 40 Eridani B, for which the values of M and R are reasonably
well known. In this case, application of Chandrasekhar’s results
leads to a value ji, = 2, corresponding to complete absence of
hydrogen. Unfortunately we lack sufficiently exact knowledge of the
M’s and R’s for other known white dwarfs which could help us settle
the existing conflict with theory.

5. Urca-process and supernovae

In the preceding sections we have been considering thermonuclear
reactions taking place between two different (or identical) nuclear
species in material that is subject to sufficiently high temperatures.
We shall now turn our attention to reactions between stable nuclei
and the fast-moving particles of the electron gas. When the energy
of an incident electron is sufficiently high, it can attach itself to a
nucleus by ejecting a neutrino and forming the unstable (with respect
to B-transformation) isobar of the preceding element:

X4 -+4e~ —Y#_,-+neutrino. (45 a)
Obviously the threshold of this reaction (corresponding to zero
energy for the emitted neutrino) is given by the upper limit of the
continuous B-spectrum in the spontaneous B-transformation:
Y4_, — X#+e+anti-neutrino (45d)
of the product nucleus, if there is no y-ray in the latter.

+ A. Eddington, Fundamental Theory, Cambridge University Press, 1947, and
previous publications.
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If we should heat up the element X in an enclosure the walls of
which are impenetrable by any of the particles participating in the
reaction, there would exist for each value of the temperature a
dynamic equilibrium between processes (45 a) and (45b) with definite
percentages of X- and Y-nuclei, electrons, neutrinos, and anti-
neutrinos. Since, however, no walls, not even as thick as stellar
bodies, can stop the neutrinos, they will escape continuously into the
surrounding space and carry with them a certain amount of kinetic
energy. As a result, the electron gas within the enclosure will cool
down rapidly, and heat that may be flowing from outside into the
region where this process is taking place will disappear without
trace (so far as direct observation goes), being dissipated by the
escaping stream of neutrinos. This type of process was first studied
by Gamow and Schoenberg,t who called it the Urca-process because
of the evident similarity between the traceless disappearance of heat
by means of this nuclear reaction and the fate of the gamblers’
money in the crowded playrooms of the famous Casino da Urea in
Rio de Janiero.

To get a rough idea about the temperatures necessary for the
Urca-process, and about the corresponding rates of energy-loss
through neutrino emission, we must remember that, although in
principle this process will take place at any temperature due to the
fast electrons in the tail of the Maxwell distribution, it will run at
full speed only when the mean kinetic energy of thermal motion,
3T, approaches the reaction-threshold, W™**, Under these circum-
stances the atomic concentrations of elements X and Y become
comparable to one another, so that the rate of energy-loss through
neutrino emission will be of the order of magnitude:

~ Cz
W= jAZ, (6)
where @ is the energy of transformation and A is the decay-constant
of the process (45b).

Let us consider three typical examples of Urca-processes. We take

first the reactions:
He8+e~ — H3+4-neutrino,

H3 — He®-}-e-+4anti-neutrino.
The decay-constant of H? seems to be about 7-10-1° (mean life of
1 G. Gamow and M. Schoenberg, Phys. Rev. 59 (1941), 539.

(47)
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about 30 years), whereas W™2* = 154-3 k.e.v. The energy 15 k.e.v.
corresponds to a temperature of 1:2x108°C,, i.e. only 6 times higher
than that in the centre of the sun. According to (46) the rate of
energy-loss at this temperature is W = 2 X 108, erg/g.sec.
As our second example we choose the reactions:
Feb6 e~ — Mnb%-{neutrino
Mn?b¢ — Feb8 - ¢—tanti-neutrino.
—c= The maximum energy of the B-spec-
T trum, W™= for Mn5 is known to be
1-7 M.e.v., so that the temperature
s» needed for this reaction is about
10 Fe 1019°C. Since, on the other hand,
ok the Fe%®-nuclei (the most abundant
s» iron isotope) form about 13 per cent.
H= T\« of the Russell mixture or (assuming
¢y = 0:03) 0-4 per cent. of the stel-
lar material and, since in this case
Ve N A= T77X10-5 sec.”! (mean life 2-5
hours) we have

(48)

15 Lg[W] =

grec

Fie. 55. A diagram showing relative
importance of different elements for the W = 2x10° erg/g.sec.

energy-losses through neutrino emis- . .
sion. The fractionsgiven on the abscissa Finally, let us consider the reac-

axis represent the contraction of stellar tjong:
radius [for M = 5M(®)] for which the
corresponding central temperatures (164-¢— — N16-Lneutrino,
are attained. . . (49)
N6 . Q164 ¢--}-antineutrino.

Here Wmax — 6 M.e.v., A = 7-7x 10-2 gec.”! (mean life 9 sec.) and
co = 0-015. This gives for the necessary temperature the value
4x1010° C,, and for W = 10'% erg/g.sec.

Since every isotope of every chemical element gives rise to an
Urca-process, we have a large choice of different possibilities the
relative importance of which is determined by the corresponding
values of W™2%, A, and c¢. In Fig. 55 we give a schematic presentation
of different possible processes of that kind, showing the temperatures
necessary and the corresponding rates of energy-loss (calculated for
cpy = 0:03).

The exact expression for the rate of the Urca-process at different
temperatures can be obtained} by using the regular theory of

t G. Gamow and M. Schoenberg, loc. cit.
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B-transformation described in Chapter V. Consider a unit mass of
stellar material containing =, free electrons and n2 nuclei of atomic
number Z which can capture these electrons and go over into
unstable nuclei of atomic number Z—1. Since the material is com-
pletely ionized, we have

_Zp o p
"= am T e (50)
Similarly we have nd = %Zj—{} (51)

If the electron gas is not degenerate (compare the discussion at the
end of this section) and if the temperature is not high enough for the
thermal electrons to have relativistic velocities, the number of elec-
trons with energy between E and E+-dE is given by

n(B) dE = 2n~tn (kT)-e-EkTEt dF. (52)
The mean life of an electron against capture by the nuclei through
emission of a neutrino can be calculated to be

() = nlog 2.#%3/[g?n ,( E — W™ex)2], (53)

where g is Fermi’s constant. The number of electrons captured by
the nuclei in question, per unit volume per unit time, is:

0

Y. ;
N"*ff(E)d' e

Jy/max

Using (52) and (53) we get:

o

9q2
- ;ﬁi"?gg?Z;i (kT4 f e-EINT(B— ™R 4, (55)
Wmax
2g%*n,n oy WMex
— . i . 56
o N-= Siiog 2o KT\ o ) (56)
where the integral
T(@o) = [ e=(a—o)%t do (67)
is written with respect to the arguments:
E Wmnx
xzﬁ, xo———————kT . (58)

Estimating this integral by the saddle-point method we get:
J () = 2-15(xy+5)te=7o, (69)
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On the other hand, the number of electrons emitted by unstable
nuclei into the energy-interval E, E-+dE is, according to the
B-transformation formula (for non-relativistic energies):

AN+ -‘f/;” "s’;:c; (Wmex_ E)2 it (60)

and the total number of electrons per second per unit volume is:

9””771

N+ —015Z~/2 —3h38

(Wmax)i, (61)

In the case of equilibrium N+ = N_ which gives us:

Nz-1 — 292”‘1' 2 pymax g m max\f -1
n, [n’llog sesin 1) J( i) | |15 e W
(62)

1 —-n0
Or SInCe Ny 4Ny == Ny

Ny =

Wmax 5

3f-3mi(kT)2Mp? 2 maxy3 sy | Sz P
[H—G 4% 10-353mi(kT)2Mp ( o +2) (Wmaxye ]

(63)
and a similar expression for n,. The total energy taken away by

neutrinos ejected in the process of electron capture, per unit time
per unit volume, can be calculated easily and is found to be:

while the energy of anti-neutrinos accompanying electron-emissions
is WO = QM. (65)
Comparing (63) and (64), and bearing in mind the expression for (65)
ve get: Wo = 5. 5(W/I“T )W<2), (66)
so that for the total rate of energy-loss we obtain finally:

W= WOiWwe~ [1+5 5 ;3;,] wmaxxg .. (67)

In the case when, due to very high temperature, the particles of the
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electron gas have to be treated relativistically, and when also,
Wmax > mc?, similar calculations give:

Ry == { 1+ 12 X 10-i~%6=3 M p= 12(k T2+ 6 Wmsxk T - (Wmaxy2]
il

my ¢

) ](me)fre—W'"“/kT}"lzz_J& (68)

and [1 F )\n Z-1° (69)

8kT ] |
Finally for the mixed case when we have a non-relativistic electron
gas and a relativistic 8-emission, we obtain

Myeq == [140-98.10- 3h—ac—3Mp~1(Wm'“) (RT)- 3@k TAZE  (70)

and W~ [1+7 1 ]%’nz AW, (71)

"/max

Considering now the implications of the process described above
in the theory of stellar energy and evolution, we must note first of
all that it cannot be expected to play any important role in stars
producing their energy by regular thermonuclear reactions. Thus,
for example, the Urca-process in He?® will proceed at a temperature
of 2x107° C. at the approximate rate of

erg
sec’

. y er
2 X 10%8 X ¢y ’gsf:c = 5-10%¢y

Since, according to the figures given in (29), the concentration of He3
in stellar matter is expected to be
3x 107
CHes = Cpr i-é;ﬁ = 0—5,

the energy-losses through neutrino emission will amount in this case
to only ~ 10-2 erg/g.sec. Even if there exists an isotope of some
element with an ‘Urca temperature’ as low as 2 107° C.

(Wmax — 2:5 k.e.v.)
the corresponding decay-constant must be
A= Tx10"19(})¥ sec.~* ~ 1011 gec. 1,

and the rate of energy-loss at 2 x 107° C. is of the order of magnitude
10%¢ erg/g.sec. Since the concentration ¢ of such an element would
be probably rather small, and in any case smaller than the assumed
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concentration (0-03) of the Russell mixture, the effect will be again
negligible as compared with the rate of energy-production.

On the other hand, Urca-processes should be expected to play an
important role in the later stages of stellar evolution, when, being
ultimately deprived of its hydrogen content, a star begins to contract
under the forces of gravity. It is easy to show, on the basis of the
equilibrium equations corresponding to this case, that the central

149 1gW ((g_?ﬁ)

Fia. 56.

temperature of a gravitationally contracting star increases inversely
proportionally to its radius, and that at a certain stage of contraction
it is bound to attain the values necessary for Urca-processes in such
elements as iron or nitrogen. In Fig. 56 we give, as an example, the
rate of energy-loss by Fe-Urca-process in a contracting star of 5 solar
masses. These data are calculated on the basis of the above-derived
formulae (with the assumption cy, = 0-4 per cent.) and are plotted
against the radius of the contracting star (relative to its radius on the
main sequence). The broken line represents the liberation of gravita-
tional energy (luminosity) for a contracting star calculated according
to the standard stellar model. We see that for a contraction by
a factor of about ten the energy-loss through neutrino-emission
(in Fe alone) becomes larger than the energy-loss by radiation
from the stellar surface, and that at hundred-fold contraction the
former loss exceeds the latter by a factor 105, It follows that the
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later stages of stellar evolution (contraction) must be considerably
accelerated due to various Urca-processes that start in the star’s
interior.,

If the increased rate of contraction caused by the Urca-processes
becomes comparable to the rate of ‘free-fall’ of the stellar material
towards the centre, we may expect the process to end in a cata-
strophic collapse of the star. It is easy to calculate that the time, At,
of a free-fall collapse of a star of mass M, and initial radius R, is

iven by:

s M B L
(GM,)* — (Gp)
For a star of mean density 5 = 100 g./cm.?, this gives At ~ 103 sec.
(i.e. about half an hour). On the other hand, the total gravitational
energy liberated in a contraction to one half of the original radius

is given by: 1
5
2R,
For a star of, say, 5 solar masses and an initial density 100 g./cm.3,

this gives 10%° erg. Thus the rate of energy-loss necessary for such
a rapid collapse must be

_10% o o8
1034 x 103 g.sec.

(72)

AU ~ QM ~ GM?iph. (73)

and is not at all inconsistent with the rates of energy-loss by Urca-
processes discussed above. These considerations lead us to a possible
explanation of the vast stellar explosions known as supernova. In
these cosmic catastrophes a star increases its luminosity practically
overnight by a factor of the order of 10°, and this is followed by a
gradual decrease of luminosity lasting for a period of a year or more.
The total energy liberated in such explosions is of the order of magni-
tude 1050 erg, i.e. about equal to the total content of gravitational
energy in the body of the star. Spectroscopic studies of supernovae
indicate that these explosions are characterized by the ejection of hot
masses moving at very high speed. Later, these ejected masses form
a giant expanding nebulosity surrounding the remainder of the
exploded star and is illuminated by its light. Thus, for example, the
historically famous supernova recorded by Chinese astronomers in
the year A.D. 1054 gave rise to a large and somewhat irregular mass
of gas which is known at present as the Crab Nebula. This gaseous
mass is expanding still, at a rate of 0-23” per year (1,116 km./sec.)
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which is in good agreement with its age (of about 900 years) and its
present diameter. In the centre of this nebulosity one can observe
a comparatively faint, but very hot, starf which presumably repre-
sents a degenerate configuration of the type discussed in the preced-
ing section. However, this body is much hotter than the regular
white dwarfs, its surface temperature being estimated at about
500,000° C. It is of interest to note also that, whereas the mass of
the central star is presumably comparable to the mass of the sun, the
mass of the expanding nebulosity is of the order of 10 solar masses.

On the basis of this information, we can form a rather convincing
picture of what happens during stellar explosions of that type. Pre-
sumably we see here the result of some internal instability of the
stellar structure which causes a rapid gravitational collapse of the
entire stellar body (as evidenced by the amount of energy liberated).
A part of the material of the original star concentrates near the centre
while another, larger, part is ejected into the surrounding space.
The observed increase of luminosity must be simply due to the fact
that the gas masses ejected from the interior of the star are, so to
speak, saturated with radiation which then becomes free to stream
away. This phenomenon of rapid collapse is just what one would
expect as the result of a sufficiently fast Urca-process being switched
on in the late stages of contractive evolution. In fact, when the rate
of energy-loss through neutrino-emission becomes comparable to the
rate of energy-removal necessary for ‘free-fall’, the previously
regular contraction must be expected to give way to an irregular
collapse of the type described above. In particular, one would
expect that, due to the axial rotation which becomes of particular
importance in the later stages of contraction, the material of the
polar regions will fall in towards the centre, whereas the equatorial
material (being helped by the centrifugal force) will be thrown out into
space. This last conclusion is in agreement with the observational
evidence that the gaseous nebula ejected in the process of explosion
seems to possess an axial symmetry. However, more study is needed
to check the correctness of the point of view described above.

6. The origin of the chemical elements
We shall now turn our attention to the exciting problem con-
cerned with the origin of the chemical elements, and try to
+ W. Baade, Ap. J. 96 (1942), 188. t R. Minkowski, ibid. p. 199.
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understand the reasons for the widely varying proportions in which
different nuclear species are encountered in nature. One of the most
striking features of the chemical composition of the universe is its
high degree of uniformity. In fact, careful chemical and spectro-
scopic studies of the composition of the earth, the meteorites, the
sun, the stars, interstellar gas, and the distant galaxies indicate that,
apart from some exceptions which can be explained in most cases
by local conditions, the relative numbers of various nuclear species
are very nearly the same everywhere in the universe. Notable
among the local deviations mentioned above is the extremely low
terrestrial abundance of hydrogen and helium which are otherwise
the two most abundant elements in the universe (cf. p. 305). The
almost complete absence of hydrogen, helium, and other rare gases
from our planet (and presumably from all minor planets) can be
explained easily by the nature of the processes which were respon-
sible for the formation of the planetary system.t

Another example of local deviations is supplied by the observed
differences between the relative carbon and nitrogen contents in the
atmospheres of the hot Wolf-Rayet stars (the so-called CW- and
NW-stars) which can be interpreted, presumably, as a result of the
thermonuclear reactions (C-N cycle) responsible for their energy-
production.] Some differences have been observed also in the rela-
tive abundances of the various isotopes of the same element. Thus,
for example, helium samples obtained from atmospheric air were
found to contain a larger proportion of the He3-isotope than samples
extracted from rocks.§ This is probably due to the reaction

N4 7 — 3 Het |- H?

induced in atmospheric nitrogen by fast cosmic-ray neutrons, and
subsequent decay of the H3 into He®. It remains to be seen whether
the observed differences between H!/H2-ratios in the solar atmo-
sphere, and in terrestrial hydrogen, and the apparent excess of the
Ct3-isotope in the atmospheres of certain cool stars, can be explained
on a similar basis.

t Compare tho new theory of the origin of the planctary system by C. K. v. Woiz-
sacker, Zs. f. Astrophys. 22 (1944), 319. This theory is reviewed in English by G.
Gamow and J. H. Hyneck, Ap. J. 101 (1945), 249, and by S. Chandrasekhar, Rev.
Mod. Phys. 18 (1946), 94.

} G. Gamow, Ap. J. 98 (1943), 500.

§ L. W. Alvarez and R. Cornog, Phys. Rev. 56 (1939), 379, 613; L. T. Aldrich and
A. O. Nier, ibid. 70 (1946), 983.
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Neglecting these, in most cases minor, deviations we can say that
the chemical and isotopic constitution of the universe is remarkably
constant. In Fig. 57 is presented a curve based on the work of
Goldschmidt,} who has undertaken a most careful and painstaking
analysis of all existing geochemical and astrochemical data. The most
characteristic feature of the observed abundance is that, apart from
more or less significant ups and downs, the curve shows a rapid
exponential decrease of abundances for elements of the lighter
atomic weights followed by an almost constant value for the heavier
elements. It is difficult to escape the conviction that this striking
difference between the two parts of the abundance curve is somehow
characteristic of the processes which were responsible for the origin
of the elements. On the other hand, the smaller details of the empirical
curve must be related more or less directly to the individual stability
of the various nuclear species, and may not be valid criteria for
the validity of different theories of the formation of the atomic
nuclei.

Before we embark on discussions concerning the exact nature of the
processes responsible for the formation of various nuclear species, we
may ask ourselves whether the observed relative abundance of
elements require an explanation at all. In fact, if we should limit
our considerations to stable nuclei, and accept the hypothesis of a
permanent, non-evolving universe, the question of relative abun-
dances could be answered by a dull but perfectly logical statement
to the effect that some elements are very abundant while others are
very rare ‘because it was always that way’. However, the existence
of unstable, gradually decaying elements forces us to look more
deeply into the existing state of affairs and to assume that, at least,
the nuclei of the natural radioactive substances were formed ‘once
upon a time’ in the history of the universe. We can form some idea
about the epoch during which the formation of these radioactive
nuclei must have taken place from a study of their present relative
abundance relative to stable nuclear species of comparable atomic
weight. Thus, the fact that atoms of Th2?32 and U238, with mean life-
times of 18x10° and 44X 10° years, respectively, are about as
abundant as the stable atoms of Bi or Hg, indicates that their forma-
tion must have taken place not much earlier than a few thousand
million years ago. On the other hand, the comparative rarity of

1 V.M. Goldschmidt, Verteilungsgesetze der El te, Oslo, 1938,
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Actinouranium (U2¥) and K4°, with mean lives of 7x 10° and 4x 108
years, respectively, as well as the almost complete} absence of Np237
and Pu?*® (half-lives of 2-25x 10% and 2-4 X 10* years), strongly sug-
gests that the formation of these nuclei must have taken place at
least a few thousand million years ago, thus giving them a chance to
decay to a considerable extent.} Assuming for a moment that U238
and K4 were formed originally with abundances comparable to those
corresponding to the main isotopes, and remembering that their
present relative abundances are 7 x 10-2 and 2-5x 10-5, we find that
they must have been formed 3-5x10° and 4-5X10° years ago.
During the same period of time the abundance of U2 would have
decreased only by a factor two or three, whereas the abundance of
Th22 would have changed hardly at all. Considerations of this kind
lead us to the conclusion that all radioactive nuclei found in nature
must have been formed during a certain epoch a few thousand million
years ago, and it is quite natural to assume that the present propor-
tions among various stable nuclei were established during the same
epoch.

Since the possibility of thermonuclear reactions throughout the
entire natural sequence of elements requires temperatures that are
much higher than those encountered in the central regions of the
stars, we must conclude that at the epoch when the elements were
formed the thermal conditions in the universe were considerably
more severe than they are at present. Furthermore, the striking
uniformity of the chemical composition of the universe suggests
strongly that these conditions of extremely high temperature must
have been rather common for all points and masses of the universe.

The above conclusions concerning the past, based entirely on
arguments pertaining to abundances of unstable nuclei in nature,
find beautiful confirmation in the agtronomical studies of the uni-
verse. In fact, the observation of the red-shift in the spectra of the
distant galaxies§ can be interpreted in hardly any other way than
by the assumption that our universe is at present in a state of rapid,

1 Minute amounts of Pu?*® have been found in uranium ores (10~!* with respect to
uranium), apparently due to continuous production by neutrons arising from spon-
taneous uranium fission.

1 The negligibly small amounts of these elements found by Seaborg and Perlman in
natural uranium ores are due to continuous production from U2# by bombardment
with cosmic-ray neutrons.

§ E. Hubble, Proc. Nat. Acad. 15 (1929), 168.
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uniform expansion. Assuming as a first approximation that the rate
of expansion has remained constant and equal to its present value of
560 km./sec. per megaparsec (= 1:8 X 10-17 gec.~1), we find that the
expansion starts from a very dense phase about 5-5x 1016 sec. or
1-8 X 10° years ago. This figure for the age of the universe is in
reasonable agreement with the results of other estimates based on the
evolutionary features of massive stars, the rate of dissipation of
stellar clusters, and the lead-uranium-ratio in the oldest volcanic
rocks on our planet. It is about twice as long as the geological
estimates of the age of the oceans (from salt-content, and sedimenta-
tion process) which evidently represent somewhat later formations.
The astronomical picture of a highly compressed universe in the
early stages of its expansion is exactly what one needs for the
development of a theory for the origin of the elements, and the date
of this epoch as given by purely astronomical evidence is in reasonable
agreement with the figure derived above for the age of the radioactive
elements. We should expect that in this highly compressed initial
state the temperature of the material was very high. Unfortunately
we cannot get a very exact idea about the mean temperature of the
universe at different stages of its expansion by applying, for example,
the temperature-density relation for the adiabatic expansion of a
gas and comparing with the present heat content of the universe.
The point is that a large part of the present heat content in the uni-
verse is due to various nuclear transformations in the interior of the
stars, and there is no simple way of separating it from the heat
that could have been left from the original compressed state. One
can make, however, a simple estimate of the lengths of time which
must have been taken by the universe in passing through different
successive stages of expansion.} According to the general theory
of relativity] the time-dependence of any linear dimension [ in the
expanding universe is given by the formula:

dl (8@ ,, o
di~ J ("?r Pl “1&)’ (74)

where @ is Newton’s constant of gravitation, p the mean density and
R the curvature of space (real for closed spaces; imaginary for open
1 G. Gamow, Phys. Rev. 70 (19486), 572.

} Compare R. Tolman, Relativity, Thermody ics, and C. logy (Oxford
University Press, 1934).
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spaces). It may be noted that the expression (74) represents a
relativistic analogue of the simple classical formula

e

for the velocity for inertial expansion of a gravitating sphere of dust
with the total energy E per unit mass. To use definite numbers, let
us consider in the present state of the universe (assumed to be quite
uniform) a cube containing 1 gramme of matter. Since the present
mean density of the universe is pyreeent =~ 1073° g./cm .3, the side of
our cube will be I, ont =~ 10'° cm. Using the value given above for
the rate of expansion (1- 8% 10-17 sec. -1) we find that

(dl/dt) present = 1-8 X107 em.[sec.

Substituting numerical values we obtain
272
18X 10-7 = J(5-7 X 10—17—%%;—""1), (76)

showing that at the present stage of expansion the first term under
the radical (corresponding to gravitational potential energy) is
negligibly small compared with the second one. For a numerical
value of the (constant) curvature we obtain

R = 17X 10¥4(—1) ecm. —= 2X 10° imaginary light years.
The formula (74) gives us also a more exact value for the beginning
of the expansion. Writing p = 1/I* (according to the definition of 1

given above) and using for brevity, 4 = ¢l s0nt/ B, We can integrate
(74) from £ = 0, ] = 0 t0 ¢ = fyregent; I = lpposent Obtaining

= el sS04 1 (At @) - 1047E).
(17)
The first term in (77) corresponds to a linear expansion and the
second to the gravitational deceleration at the beginning of the
expansion. Numerically we get: f,sent = [1:8 X 10°—2-2 X 107] years,
which indicates that by taking into account the effect of gravitational
deceleration we change the estimated age of the universe by only
1 per cent.
We can now apply our formula to estimate the time intervals
required by the universe to pass through different stages of high
density. For p > 102! g./em.? the first term under the radical in
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(74) is of primary importance and deductions about the rates of
expansion become independent of the value of E. Using this
formula, we easily find that the times when the mean density of the
universe was 10°, 108, 103, and 1 g./cm.3, its density was dropping by
an order of magnitude in time intervals of 0-04 sec., 1 sec., } minute,
and } hour, respectively. These high rates of expansion are simply
due to the fact that, in the early stages of expansion, the mass of the
universe had to have extremely high velocities of recession in order
to overcome the forces of mutual gravitational attraction.

The considerations above lead us to the important conclusion that
the early stage of expansion of the universe, characterized by very high
densities and presumably correspondingly high temperatures suitable
for the formation of the whole variety of nuclear species, could have
lasted for only a very short period of time.

The earliest attempts to give a theoretical explanation of the
observed abundance-curve of the chemical elements were based on
the hypothesis of dynamical equilibrium between the various nuclear
species at a certain high density and temperature. Calculations of
that kind have been carried out by Stern,t Weizsicker,} Chandra-
sekhar and Henrich,§ Lattes and Wataghin,|| and by Klein, Beskow,
and Treffenberg.tt One can get a preliminary idea concerning the
temperatures and densities which could have been responsible for
the establishment of the present nuclear proportions by studying the
percentage abundances of several isotopes of a given element (Weiz-
siicker, loc. cit.). In fact, let us consider the equations of equilibrium:

S XAt 2 XA
ZXA+1+0n1 Z ZXA+2
between a neutron gas (which must have been present constantly at
sufficiently high temperatures because of the neutron-evaporation)
and the three isotopes 4, 41, and 442 of some element of atomic
number Z. According to the well-known formula of statistical equi-
librium we can write:
ngln, — g4 ( A )% (2w MET)} e—EanilkT (79)
,nél+1 g;i +1\ 4 +1 h3

t T. E. Stern, M.N. 93 (1933), 736.

t C.F.v. Weizsicker, Phys. Zs. 39 (1938), 133.

§ S. Chandrasekhar and L. R. Henrich, Ap. J. 95 (1942), 288.

I C. Lattes and G. Wataghin, Phys. Rev. 69 (1946), 237.

+t 0. Klein, G. Beskow, and L. Treffenberg, Arkiv f. Math. Astr. och Fys. 33B
(1946), 1.

(78)
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ndtlin, _ 2g;4+1(A+1)§(2rerT)3e_,ﬂﬂ,,ﬂ. (80)
nA+e gAT\ 412 73 ’

where ng, n#-1, ng-2, and n, are the number-densities of the three

isotopic nuclei and the neutrons, the g’s represent statistical weights,

E,_, and E,_, are the binding energies of the last neutron in the

corresponding nuclei, and 7' is tho absolute temperature of the

mixture. Eliminating », from (79) and (80) we obtain:

and

BT — , Eyio—E 44
ng'ngd V2 (g2 ([A+12\E]- (81)
[ (n+1)2 g g+ (T[A JF?]) J
Then from observed abundance ratios, a value of n, can be found.
The results of such calculations carried out for different stable
isotopic triples (Chandrasekhar and Henrich, loc. cit.) are shown in

TaBLe XXV

Calculated
neutron density

Isotopes_ Bbs. abumlantﬁ V’Iz"K. (cale.) N (g.cm.3)
o1 99-77
o 0-04 42 10° 5 102
(02 0-20
Ne?? 90-00
Ne?t 0-27 29 10® 8 10—
Ne?? 9-73
Mg 774
Mg?® 11-5 100 10° 8 10¢
Mg2e 11-1
Sie 89-6
Si2e 6-2 12-9 100 2 107
Sise 4-2
§32 95-0
S33 0-74 33 10° 2 1078
g3 42

Table XXV. We note that all five isotopic triples shown in that table
lead to consistently high temperatures with the mean value

T = (14+4)x 10° °K.,
whereas the neutron densities show considerably larger variations.
(This can be, of course, partially due to the fact that the formulae
(79) and (80) are considerably less sensitive to », than to 7'.)

In view of the above, at least partially, encouraging results, one
can try to interpret the entire abundance-curve as the result of a
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thermodynamical equilibrium at a certain high density and tempera-
ture. It can be done best by employing the powerful statistical
thermodynamical method of Gibbs which leads to the result that the
equilibrium concentrations n; (particle number per unit volume) of
the nuclear species made of N; neutrons and Z; protons is given by
the formula:

2e M, kT\# N;+AZ,—E,
— - 1 i 2 KAV T i
n; = (2s;+ )( 72 ) exp T , (82)
where 2s;-+1 is the multiplicity of the nucleus in question, M its
LgN
0p O A

6 v . -+ ———r A
16 18 2022 24 26 28 30 32 34 36 3840
Fra. 58.

mass, E; the total binding energy, and p and A the chemical potentials
of a neutron and a proton, respectively. Using the experimental
value of K, the formula (82) can be fitted best to the empirical
abundance curve, in the region of light elements, by setting
kT =1 M.ewv.,, p= —7-6 Me.v.,, and A = —11-6 M.e.v. (Klein,
Beskow, and Treffenberg, loc. cit.). This corresponds to a tempera-
ture of 7' = 10°° K., and to neutron- and proton-densities of
4-10% g./em.?, and 8-10% g./em.?, respectively. The large excess of
neutrons over protons results, of course, from the fact that the high
pressures involved favour the reaction p+e~ — n-+(neutrino). The
result of such calculations is presented graphically in Fig. 58, which
contains the calculated and the observed abundances for atomic
weights from 16 to 40 (Lattes and Wataghin, loc. cit.).

The evident success of the equilibrium theory among the light
elements of the periodic system turns into a catastrophe, however,
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when the same method is applied to the heavier elements. This can
be seen easily from Fig. 59, where the results of the equilibrium
calculations are compared with the actual abundance. It is clear

LgNa

~10-
_|2.
—144

-16-

A

T T T T 2 ]

50 100 150 200 250

Fi1c. 59. Comparison of the observed abundance curve

(shaded area) with three proposed theories.

Curve A: Equilibrium hypothesis.

Curve B: Aggregation hypothesis (with capture cross-
section proportional to atomic weight).

Curve C: Fission-hypothesis.

The curves give only the general trend with individual
variations being omitted.

-8

that the striking discrepancy between the calculated and the observed
curves cannot be removed by any reasonable modification of the
calculations, and lies in the hypothesis of equilibrium itself. In fact,
owing to the exponential dependence of the equilibrium concentra-
tion on the tatal binding energy of the nucleus and the approximate
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linearity of the binding energy as a function of atomic weight, the
equilibrium concentrations are bound to decrease exponentially for
all atomic weights, just as for the lighter elements. An attempt was
made (Chandrasekhar and Henrich, loc. cit.) to account for the
discrepancy by assuming that different parts of the periodic system
were formed at different stages of the expansion of the universe, and
hence under different physical conditions. One could assume, for
example, that the heavier elements were formed at higher tempera-
tures (earlier stages of expansion) and that their relative abundances
were ‘frozen’ at the lower temperatures when the transformation of
lighter elements were still taking place. This hypothesis does not
correspond to the physical situation, however, since at the tempera-
tures involved the transformation of the nuclear species is mostly due
to processes of neutron-evaporation and-neutron-absorption which
arepractically independent of theatomicnumberof thenuclei involved.

Thus it seems necessary to abandon altogether the hypothesis of
thermodynamical equilibrium, and to try to explain the observed
abundance as a result of some non-equilibrium process which may have
taken place in the early stages of expansion. Such an assumption
appears particularly reasonable in view of the extremely short
intervals of time allowed by the theory of the expanding universe
for the formation of various atomic species. It can be argued, of
course, that abandoning the equilibrium theory we shall lose the
beautiful, detailed agreement between calculated and observed abun-
dances in the region of the lighter elements. This may not be so con-
clusive an argument, however, since the peak-to-peak correspondence
between the two curves in Fig. 58 represents essentially the correlation
between abundance and intrinsic stability for individual nuclei and
may be common to non-equilibrium—as well as equilibrium—theories.

An attempt to formulate a non-equilibrium theory of the origin
of elements has been made by Gamow,} who suggested that the nuclei
of various atomic weights might have originated as aggregations of
neutrons formed in the early stages of the expansion of the universe.
It is reasonable to suppose that in the very early stages of expansion
matter consisted entirely of neutrons, since the high pressure obtain-
ing in the compressed primordial material must have literally

1 G. Gamow, Phys. Rev. 70 (1948), 572. More dotailed calculations on this non-
equilibrium process are being carried out by R. A. Alpher and will be published in
due course.
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‘squeezed’ all free electrons into the available protons.t As the
rapid expansion of the universe took place, this superdense, super-
heated neutron gas-cooled adiabatically to some considerably lower
temperature at which the formation of various neutral aggregates
(polyneutrons) could have started.f The formation of such neutral
aggregates is then followed by successive p-transformations through
which the newly formed polyneutrons are changed into atomic nuclei
of corresponding mass.

It must be remembered that a process of neutron-aggregation, as
described above, has to compete with the natural decay of the
neutron which should have reduced the number of neutrons prac-
tically to zero within the first few hours following the start of expan-
sion. According to this view, the scarcity of heavier elements is due
simply to the lack of time available for the formation of complex
neutron-aggregates, and the slope of the abundance curve is deter-
mined by this time interval rather than by the temperature existing
at that time. Detailed calculations of such a process of aggregation
in a cool neutron gas are necessarily very complicated since one has
to take into account the continual decrease in neutron-density (due
both to the expansion of space and the natural decay of the neutrons),
the variation of capture cross-sections with the rapidly decreasing
temperature, as well as the irregular variations of these cross-sections
from one element to another. One can, however, get a preliminary
idea of the general features by introducing a number of simplifying
assumptions. We may assume, for example, that the neutron-
density (N,) remains constant for a certain time =, and drops to zero
at the end of this period, and that the capture cross-section was
independent of time and was the same for all nuclei. Under these
assumptions we may write, evidently:

an;

a Nyv(o;y Niy—o; V), (1=1,2,3...) (83)

t We leave it as an oxerciso for tho reader to decide whether this highly compressed
state of matter resulted from a previous contraction of the universe, all record of
which is now completely lost, and whether the present expansion is simply a rebound
from that contraction.

} The reader is given fair warning, however, that such aggregates of neutrons alone
donot follow from the statistical theory of nuclear structure as prosontod in Chapter IV.
On the contrary, one can show that such aggregates are not bound if the Majorana
forces exist to the extent assumed there. On the other hand, that theory is by no
means perfect, so that the conjectures made here, and in the following pages, simply
express alternative views of the nature of nuclear forces.
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where N, is the number of nuclei with atomic weight ¢, o, is their
capture cross-section, and v is the (thermal) velocity of the neutrons.
The equations (83) can be integrated easily if o, = const. and lead to

i-1
N=N % e~Niovr, (84)
which gives a rapid decrease of relative abundance with atomic
weight. Adjusting the formula (84) so as to give the correct slope in
the region of the light elements, we find N, ovr = 30. Since ~ must be
of the order of magnitude 10® sec. (decay-period of a neutron), and
since the capture cross-section =~ 10-2¢ cm.2, we get N,;v = 1022,
Then if we assume that the neutron velocity was 104 cm./sec., the
mean density of the universe becomes p = 1018 x 10-2¢ = 10-8g./cm.3
According to formula (74) this state of the universe must have lasted
for about 2 weeks.

It will be noted that the expression (84), which is plotted in Fig. 59
also, does not explain the observed shape of the abundance curve any
better than the equilibrium theory. The possibility is not excluded,
howover, that the theoretical results can be improved considerably
by taking into account variation of the capture cross-section with the
size of the aggregate. Thus, for example, the observed curve of
abundance can be represented very well if one permits the cross-
sections to increase by a factor ten between the light and heavy
elements (compare Appendix VI).

We now turn to another, no less, fantastic picture of the origin of
the elements proposed recently by Goppert-Mayer and Teller.t In
contrast to the theory described above, these authors assume that,
in its most compressed state, the universe was filled with a neutral
nuclear flutd} which consists of neutrons held together by cohesive
forces. As expansion began this nuclear liquid must have broken
up into a number of drops of various sizes. Consider the behaviour
of such a drop, which may be 1 Angstrbm, 1 centimetre, or 1 kilo-
metre in diameter. It is clear that for the reasons that apply to

T The authors are grateful to Dr. Marie Géppert-Mayer and Dr. E. Teller for com-
municating their rosults provious to their publication.

1 Tho difference between this and the point of view discussed above evidently lies
in different assumptions about the original temperature of the universe. According
to Gamow this temperature was well above what could be called the critical tempera-
turo’ of the nuclear fluid, so that one had essentially a highly compressed gas, whereas

Goppert-Mayer and Teller assume that the temperature was below the critical
temperature, so that the nuclear fluid is essentially a liquid.
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ordinary nuclei having a neutron-excess, a large number of neutrons
will undergo B-transformation with the emission of negative elec-
trons. When internal equilibrium is finally established there will be
a large, positively charged drop of nuclear liquid (neutron-proton
mixture) with negative electrons partially dissolved in its large
body,} partially forming a thin atmosphere just above its surface.
More detailed calculations show that the thickness of this electronic
-atmosphere will be independent of the size of the drop, being of the
order of magnitude of 10-1! em. The important point concerning
these ‘overgrown atomic models’ is that the system may be expected
to possess a negative surface tension, because the mutual repulsion
between electrons forming the ‘atmosphere’ will be larger than the
surface tension due to nuclear forces. Thus, one can expect that the
surface will become ‘wavy’ and that a number of small droplets will
be separated from the surface of the large mother-drop. Following
this ‘budding-theory’ of nuclear formation, Goéppert-Mayer and
Teller were able to show that the masses of the newly formed nuclei
will be of the order of a few hundred proton-masses. It must be
admitted, however, that this point of view does not explain the
observed abundance-curve any better than any of the other theories,
since it leads to a broad Gaussian distribution of relative abundance
among the heavy elements (cf. Fig. 59), and offers no explanation
whatsoever for the extremely high abundance of the lighter elements
(compare Appendix VI).

t In fact, unlike the case for ordinary nuclei, the electrons can be completely
immersed in the giant nuclear bodies, since, in this case, their Compton wave-length
is smaller than the nuclear diameter.



XI
NUCLEAR CHAIN REACTIONS

1. Fast neutron chains

I~ the preceding chapter we have discussed thermonuclear reactions
caused by general thermal agitation of matter, and we have seen that
even the easiest reactions of this type require extremely high tempera-
tures. There is, however, another type of self-sustaining reactions in
which the transformation of each individual particle leads directly to
similar transformations of one, or several, particles of the material.
These so-called chain reactions take place when each elementary
transformation gives rise to one or several ‘active fragments’ which
induce new transformations of the same type as soon as they come
into contact with other particles of the material in question. Depend-
ing upon whether such a reaction is developed due to the emission of
a single active fragment, or to the emission of several such frag-
ments, we speak of linear, or branching, chains respectively. Familiar
examples of such rcactions in the field of ordinary chemistry are:
(1) the photo-induced linear chain in a mixture of hydrogen and
chlorine (Cly4-Av — 2 Cl; C14+H, — HCI+H; H4CL, — HCI+Cl:
Cl4-H, etc.), and (2) the thermally induced branching chains which
probably take place in many ordinary explosives

(TNT+NO; — H,0’s+CO’s+several NOy’s, etc.). (1)

It is clear that in the problem of nuclear chain reactions the role
of the active fragments can be played only by neutrons that are
emitted in the individual transformations. In fact, any charged frag-
ment (proton, o-particle, etc.) is bound to lose all its original kinetic
energy through electronic friction long before it has a chance to
collide with another nucleus, and will have no chance, consequently,
of penetrating the nuclear potential barrier when such a collision
finally takes place. On the other hand, neutrons are practically
unaffected by the electronic envelopes and they are able to pene-
trate into the nucleus even if their kinetic energy has been reduced
practically to zero. Thus chain reactions are possible only in the
case of such nuclear transformations which, being caused by the
impact of a neutron, result in the emission of one or several neutrons
of the next generation which are equally able to produce subsequent
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transformations. The only known nuclear transformations satisfying
the above conditions are the fission processes discussed in some
detail in Chapters VI and IX.

We have seen that, although the fission process becomes exoergic
for all nuclei heavier than silver, it becomes particularly efficient for
the elements located near the end of the periodic system. In fact,
for larger values of Z2/A the activation energy for fission becomes
smaller, whereas the reaction energy increases rapidly, resulting in
larger fission cross-sections and larger numbers of neutrons per
fission. Thus it is clear that the conditions for a self-sustaining chain
reaction must be met for some sufficiently high value of Z%/A4. It is
also clear that this condition will be satisfied by smaller values of
Z?/A in the case of odd 4 and even Z because energy of the captured
neutron is greater in such nuclei.

In order to formulate exact conditions that have to be satisfied by
a given nuclear species in order to make possible a self-sustaining
chain reaction,} we shall assume that we are dealing with an infinite,
homogeneous medium of this material for which we know] the cross-
section for fission, oy, for radiative capture, o,, for elastic scattering,
o4, and for inelastic scattering o;(E’) (as a function of the energy K’
of the emitted neutron) as well as the average number, of fission
neutrons emitted, v all expressed as functions of £, the energy of the
incident neutron. It is easy to see that if we introduce into this
material, N neutrons per unit volume, with an energy-distribution
/() the energy-distribution of the next generation (defined as the
neutron population produced by the first collision of all the neutrons
of the previous generation) will be given by the formula:

ol B)+o(B, B) 4o, (B B)_
,, B) = F/ e Al
FE) = [ B B (B, BB, ) B 4oy
(2)

in which it is to be understood that o (#, K') vanishes if £ £ E’ (i.e.
it is essentially a 8-function).§ Hence the first and second terms
represent the number scattered into the second generation elas-

+ In common parlance such nuclear species are called ‘fissionable’; it probably
would be more rational to call such nuclei ‘auto-fissionable’, reserving the word
‘fissionable’ to apply to all nuclei heavier than silver.

1 Compare Fig. 45 of Chapter IX.

§ We assume here that the clastic scattering does not result in loss of energy (due to
recoil) because the above considerations are applicable only to very hoavy elements.
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tically and inelastically, respectively, whereas the last term repre-
sents the v neutrons produced in the fission process. It can be
expected that after a comparatively few generations (i.e. iterations
of eq. (2)) the functions f®(E) will converge to a definite relative
distribution in energy but such that the total number of neutrons per
unit volume in a certain generation is & times that in the preceding
generation, FENE) = kf (). (3)
This defines the multiplication factor, k, which must be larger than
or equal to unity if the chain reaction is to be sustained. It has been
found empirically that, of all existing nuclear species, only U235
satisfies the above conditions, although one can build up other heavy
nuclei not existing in nature that also satisfy those conditions. Thus,

for example, another odd fissionable isotope of uranium may be
made by the transmutation

Th22n — Th238 {4’

Thass & paass 4)

B
Pa233 55 283

and one can also produce a fissionable isotope of the new element
plutonium through the transmutations:

U284 p > U299
U239 _B, Np2 (5)
Np2® £ Pu,

For samples of fissionable material of finite size a certain fraction
of the fission neutrons will escape through the surface, which, how-
ever, will not imperil the development; of the chain if k is substantially
larger than unity. One can introduce, in this case, the notion of the
‘effective multiplication factor’, &', which takes into account these
neutron losses. The value of %' will depend upon the geometrical
dimensions of the sample and will evidently drop below unity for
certain critical dimensions for which the neutron losses through the
surface become too large. These critical dimensions, known as the
‘critical size’, depend not only upon the properties of the material,
e.g. the value of £, but also upon the shape of the sample.

It goes without saying that in systems of finite size the neutron
distribution will be no longer uniform throughout the material due
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to the loss of neutrons through the surface, and the exact calculation
of the conditions for a reaction to be sustained becomes much more
complicated. It can be easily understood, however, that in the case
when % is not too close to unity the critical size will have linear
dimensions of the order of magnitude of the free path of neutrons.

It is easy to see that if the sample is of exactly critical size it is in
a state of indifferent equilibrium for which the neutron number
remains constant at any arbitrary value. Whereas for &’ larger than
unity the neutron number will increase exponentially with time. In
fact, if = is the mean lifetime of a generation and N, is the number of
neutrons at time zero, we obviously have:

N == Nye®-bir, (6)

In pure fissionable material the generation time, estimated as the
ratio of the free path to the velocity of fission neutrons: 4 cm.
(corresponding to the geometrical cross-section of a heavy nucleus)
divided by 10° cm./sec., becomes ~ 3x10-8 sec. Thus, unless
k' differs from unity by less than a few millionth of a per cent.,
the reaction will develop into an explosion in a negligible fraction of
a second ; it goes without saying that such mechanical precision in
preparing the sample of the fissionable material lies beyond practical
possibility.

The above considerations, however, are changed completely if one
remembers that a certain fraction of the fission neutrons are emitted
with a considerable delay (Chap. VI), since, in this case, the number
of prompt neutrons may be not enough to result in an exponentially
increasing reaction rate, whereas the delayed neutrons may take
considerable time to come into the picture. In the following table
we give the data pertaining to the various delayed neutrons emitted
from U235 and Pu?3®.

The way in which the delayed neutrons help to reduce the rate of
the runaway chain reactions can be understood on the basis of the
following simple considerations. Let us assume, for simplicity, that
there is only one single group of delayed neutrons emitted with a
certain delay, 8, and representing a fraction, B, of the total number
of neutrons emitted per fission. If we take a sample that is approxi-
mately critical with respect to the total number of neutrons emitted,
it will be well under-critical with respect to the prompt neutrons
alone. During the period of time preceding the appearance of the
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TaBLE XXVIt
Delayed neutron-groups from U?5 and Pu®® fission products

Element and Half-life Relative Neutron
group-number (sec.) amount energy (k.v.)
0 0-006 0-02 —_
1 0-43 0-116 420
pe] 2 1-52 0-330 620
3 4-51 0-291 430
4 22-00 0-228 560
b 556 0-035 250
1} 1-1 0-301 —
2 52 0-371 —_
Pu® 3 225 0-288 —
4 552 0-040 —_

delayed neutrons the reaction will proceed entirely on the basis of
the prompt neutrons. If the reaction is started with N neutrons, the
number of neutrons in the second, third, and subsequent generations
will be given, respectively, by N(1—p8), N(1—p)2,..., ete. The mul-
tiplication process is dying out and the total number of neutrons
produced in the burst is obviously

Nigo(l—ﬁ)i - %f )

This burst will produce (N/B)B8 = N delayed neutrons which will be
emitted after the time-interval 8 which is much greater than the time-
interval required for the burst.

Suppose now that, for some reason, the multiplication %' pertaining
to all neutrons becomes larger than unity, in such a way, however,
that k'(1—pB) < 1. In this case the total number of prompt neutrons
produced in the first burst will be

N

UL IE)) — 8

20— = ®)

This produces T—% delayed neutrons which in their turn will
produce a second burst of the strength (TTIZ%F)? which is 1—_—]'80_‘_—/3

stronger than the previous one. If k' is reasonably close to unity
(#’—1+PB) the multiplication factor per step, %", is less than %’

t+ D. J. Hughes, J. Dabbs, A. Cahn, and D. Hall, Phys. Rev. (in the press, 1949);
F. de Hoffrnann, B. T. Feld, ibid.

1 It seems very likely from the inspection of this table that the delayed neutron
emitters are largely the same in the case of U#% and Pu?® fission.

3595,61 v
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without delayed neutrons and, what is much more important, the
interval between successive bursts is of the order of magnitude of
seconds instead of microseconds as in the prompt neutron chains, so
that, even for substantial deviations from the critical size, the
increase of the rate of reaction becomes very low. These simple
considerations can be generalized easily to the actual case in which
there are several groups of delayed neutrons of different mean
delay.

2. Moderated neutron chains

In the preceding section we have discussed the case of a fast chain
reaction in pure fissionable material where the neutrons produced in
one-fission process usually induce another fission while still moving
with high velocity. Remembering that the effective cross-section for
fission increases with decreasing velocity of the neutrons, one can
expect that it may be of some advantage (in the sense that a smaller
amount of fissionable material will be needed) to slow down the
original fission-neutrons to the thermal velocities before they have a
chance to collide with another fissionable nucleus. This can be
achieved by mixing the fissionable material with some other sub-
stance (the so-called moderator) of comparatively small atomic weight
and low neutron-absorptivity that would slow the neutrons down
efficiently without capturing them.

When a neutron undergoes an elastic collision with a nucleus of
atomic weight A4 it transfers some of its energy to the recoiling
nucleus. For scattering by the angle § (in the centre of gravity
system), the laws of conservation of energy and momentum lead to
eq. (5) of Chapter VIII for the relation between initial and final
energy of the neutron. Averaging the logarithm of the ratio of
energies over all angles, we obtain

THy_,_ (A—1p A4
ng =l—"gg Iy )

The quantity on the right-hand side is usually denoted by ¢, and its
value for the light elements appears in Table XXVII. It follows, for
example, that in order to be slowed down from an initial energy of,
say, 1 M.e.v. to thermal energy (g; e.v.) a neutron must undergo on
the average 17 collisions in hydrogen, 86 collisions in beryllium, 108
collisions in carbon, or 470 collisions in iron. Among the light
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TanLE XXVII
Energy-reduction factor for various Moderators

Hydrogen . . . . 100

Deuterium ., . . . 0-752
Helium . . . . 0-426
Lithium . . . . 0-260
Beryllium . . . . 0203
Boron . . . . 0-178
Carbon . . . . 0158
Oxygen . . . . 0120
Iron . . . . . 0-036

elements there are two nuclear species, Li and B, for which the
absorption cross-sections in the region of low energy (cf. eq. (11),
Chap. VIII) are much larger than the cross-sections for elastic scatter-
ing;t it follows that these substances are completely excluded as
possible moderators. In the other light clements for which the
absorption cross-sections are very small as compared with the
scattering, the neutron can be slowed down into the region of thermal
energy provided the number of collisions required is not too large.
Since the cross-section for neutron absorption increases with increas-
ing atomic weight, in general, and the number of collisions neces-
sary to slow the fission neutrons down to thermal velocities also
increases the efficiency of moderators drops as the atomic weight
increases.

Let us now describe in greater detail the processes of slowing
down, diffusion, and subsequent capture of the neutrons in the
moderated chain reaction. Consider the stationary case in which
fast neutrons of given energy, E,, are produced at a given rate and at
some point within the infinite moderator, and are gradually slowed
down by elastic collisions while diffusing away from that point. At a
certain distance from the source we shall have a mixture of neutrons
of all possible energies, since, owing to the statistical nature of the
slowing-down process, some of the neutrons will manage to cover that
distance with comparatively small energy-loss, whereas others may
be slowed down quite considerably. The situation is represented
schematically in Fig. 60, where the abscissa corresponds to the space
coordinate while the ordinate represents the energies of the individual

t This is due to tho fact that, whereas in tho case of the other light elements the
neutrons can be lost only through radiative capture, the absorption in Li and B is
due to a break-up of the compound nucleus which is a much more probable process
than that of the emission of a y-ray.
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neutrons. In a sense, we may speak of the ‘diffusion of neutrons
along the energy-axis’, with the difference that, while diffusion along
a space-axis involves motion in both directions, the energy-coordinate
of the neutron can only decrease. The number of neutrons within a
certain four-dimensional element formed by the spatial element, dv,
and the energy-interval (B, E—dE), may change for two reasons:
(1) the difference in the number of neutrons of that energy entering
and leaving the space element, and (2) the difference between the
number of neutrons of that space element that are slowed down ‘into’

E

Eoq:.

1

|

l . * ., u.'-.- e
Etherm.4-— = - —-——---~- T“‘I"_“_"" SwesTT

the energy-interval (E, E—dF), and those that are slowed down
‘out of it’.

We shall introduce the quantity, (E, ), representing the number
of neutrons (per unit volume) at the coordinate position, , that are
being slowed down (per unit time) ‘across’ the energy-value, E. It is
clear that for the stationary case, the number (og/ OE)(dE/dt) of
neutrons which come into the energy-interval AE, by virtue of the
slowing-down process, must be equal to the number of neutrons
of that energy which escape per unit volume element by virtue of
ordinary diffusion. According to the elementary theory of diffusion,
the latter number is given by (\v/3)V2g, where A is the free path and
v the velocity of the neutrons in question. Thus we can write for the
stationary state: Z‘_’f Vi og dE

sVI=735 g (10)

We can now relate the energy, &, of the neutron to the length of time
elapsed since it was first emitted. In fact, since in each collision the
In of the neutron’s enerov decreases bv £ (cf. ea. (9)). and since the
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neutron suffers, on the average, v/A collisions per second, we can write,
obviously: _dnE) 7 a
X

Integrating, we obtain, o
A .
f = fgl«)d(ln B). (12)
i

It is customary to express this (mean) length of time necessary for
slowing the neutron from the original energy £, to the energy E, in
units of length squared, multiplying it by Av/3. The quantity:

E°A2
r= f 2 n E) (13)
E

thus obtained is known as the ‘age’ of the neutron. Substituting
it into the original equation (10) we get:

vy =2, (14)
which is the well-known Fermi’s age equation.

In the derivation of the above formulae we have assumed that the
number of collisions experienced by a neutron is a large number, and
also that the mean free path between collisions does not vary much
with the energy of the neutron. These assumptions, which are
necessary for the treatment of the slowing down as a continuous
process, are fairly well fulfilled for comparatively heavy moderators,
such as carbon, but may lead to considerable errors in the case of
hydrogen or deuterium.

The eq. (14) has the solution

e—rilar
T ar)Y

which is readily checked by substitution, and for which the integral
over all space is just Q. Therefore @ represents the number of
neutrons emitted per second at the point » = 0. For a given modera-
tor the ‘age’ of neutrons that have just become thermal may be
calculated from eq. (138). Thus the mean distance from the source at
which neutrons become thermalized may be calculated from eq. (15),
and we shall take for this distance the value of » for which the
exponential becomes e, i.e. ry, = 24/ry;,. Beyond this distance from
the source the neutrons diffuse in the ordinary way without further

(15)
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loss of energy. Properly speaking, fissions can be produced by
neutrons at any stage of their slowing-down process. Since, how-
ever, according to eq. (11) the time spent in the low-energy regions is
much greater than in the high-energy regions (factor Z-*) and since,
in addition, the fission cross-section increases with decreasing energy,
an overwhelming fraction of the induced fissions will take place after
the neutrons have been thermalized. If the moderator has no strong
regions of absorption in the encrgy-range between fission energy and
thermal energy of neutrons, which must be true of any good modera-
tor, the multiplication factor for an infinite medium, £”, will be given
essentially b
v K= L, (16)
o'/'Jf_o'u.bs

where all the cross-sections refer to thermal neutrons and o, includes
the effect of the moderator as well as the absorption by the material
itself.t

In the development of the detailed theory of the moderated chain
reaction it is necessary to use the ‘age theory’ combined with the
theory of the diffusion of the thermalized neutrons. The situation is
considerably simplified in the case when the fissionable material and
the moderator are distributed homogeneously over a region (size of
sample) that is very large compared with the slowing-down distance,
7y, as determined above. Then one can, in good approximation,
describe the distribution of the neutron density, n, by means of the
usual differential equation for diffusion:

X i (Voo t-@(r) = 22, 17)

where the first term gives the familiar effect of non-uniform density,
with the diffusion coefficient, Av/3 (A = mean path and v an average
velocity of the neutrons). The second term represents the loss of

+ Of particular practical importance is the possibility of a chain reaction in natural
uranium which contains only 0-7 per cent. of the ‘fissionable’ isotope, U?*, mixed
with the ‘non-fissionable’ U238 which possesses a strong neutron absorption lino. This
results in such a strong absorption of neutrons as they arc being slowed down through
the resonance region that no moderator is good enough to raise the value of &” above
unity. As is well known, tho situation can be considerably improved by distributing
the uranium in lumps, embedded in the moderator, so that most of the neutrons are
in pure moderator at the time they are going through the resonant-energy region.
However, the requirements on the moderator in such a system are so stringent that
only a fow, exceptionally good ones, such as deuterium and carbon can be used as
moderators for natural uranium.
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neutrons per unit time due to an effective absorption per unit volume
of No,,, and @(r) is the number of thermal neutrons created, per
unit time and unit volume, at the point r. Since the source of thermal
neutrons, Q(r), is primarily fission neutrons that have been slowed
down, the value of @(r) will depend upon the thermal neutron density
in a region, essentially of the radius ry,, surrounding the point r. In
good approximation, the average over this region can be replaced by

. Qr) = (Nvon(r), (18)

and eq. (17) becomes a homogeneous partial differential equation for
n(r). For the stationary case, the right-hand side of (17) vanishes
and the equation becomes a characteristic value problem that has to
be solved subject to the boundary conditions appropriate to the shape
and size of the sample. In general, the solution of the equation for
which » is everywhere positive will determine a certain minimum size
for this system, and this is the critical size. For large values of &”
(cf. eq. (16)) the critical size will have linear dimensions of the order
of a few slowing-down radii, 7, whereas for small values of %" the
critical size becomes very large, as in the case of the natural uranium
‘piles’.



APPENDIX I
HEAVY AND LIGHT MESONS

It has been discovered by Lattes, Muirhead, Occhialini, and Powellt that, in
addition to the ordinary, cosmic ray mcson of mass ~ 200 electron masscs
(called the p-meson) there exists a heavier meson which has been called the
a-meson. Their experimental technique involves the development and analysis
of tracks caused by the mesons in photographic cmulsions. Their analyses
show (1) that the 7-meson has a mass 3134-16m (m is the clectron mass), and
(2) the 7r-meson disintegrates into a charged neson of mass ~ 200m and with
kinetic energy about 4 mev, thus indicating the simultaneous emission of a
neutral meson of mass ~ 90m (the u°-meson). Presumably, the daughter
meson of mass 200 is the cosmic ray, u-meson. This discovery is corroborated
by the production of 7-mesons, 313m, by high-energy (380 mev) a-bombard-
ment with the Berkeley cyclotron.i The cyclotron bombardment appears to
produce the mesons of mass 200m simultaneously with the heavier ones. This
is apparently due to the decay of w-mesons stopped in the frame of the
cyclotron. Both the - and the p-mesons occur with cither sign of olectric
charge.

The significance of the various kinds of mesons relative to the theory of
atomic nuclei is unknown as yet, but current conjecture runs as follows: the
ar-mesons are supposed to be the field particles in Yukawa’s theory of nuclear
forces and thus to interact strongly with nucleons ; if this meson oboys Bose
statistics and if there is an electrically noutral state for it (#°) this supposition
fits very well with tho discovery by Breit§ and others that the nuclear
scattering of protons by protons can be accountoed for by a Yukawa type
potential if produced by & meson of mass 326m. On the other hand, the u-
mesons arc supposed to have practically no interaction with nucleons in order
to account for the great penetrating power of such mesons in the cosmic radia-
tion. In fact Marshak and Bethe|| anticipated the discovery of the 77-meson by
proposing just such a relationship between two kinds of mesons on theoretical
grounds. The primary cosmic radiation (containing energetic nucleons) quickly
produces 7-mesons*upon entering the atmosphere through the action of their
nuclear fields ; these 77-mesons then decay into g-mesons which can penectrate
the atmosphcre with easo.

1 Nature, 159 (1947), 694. .

1 E. Gardner and C. M. G. Lattes, Science, 107 (1948).

§ L. E. Hoisington, S. S. Share and G. Breit, Phys. Rev. 56 (1939), 884.

I R. E. Marshak and H. A. Bethe, Phys. Rev. 72 (1947), 506. See also: C. M. G.
Lattes, G. P. 8. Occhialini, and C. F. Powell, Nature, 160 (1947), 453, 486 ; Proc. Phys.
Soc. 61 (1948), 173; V. Goldschmidt, D. T. King, H. Muirhead, and D. M. Ritson,
ibid. 61 (1948), 183.



APPENDIX II
FURTHER DEVELOPMENTS IN B8-DECAY

RECENT refinements and improvements in measuring the energy-distribution
in the continuous B-spectra have raised new questions regarding the exact
form of the theory. In particular, the positron and the electron spectra
omitted by Cu® have been measured quite precisely down to kinetic energies
of 10 k.e.v. by Cook and Langer.t It appears that the upper part of the
spectra (from 270 k.e.v. to 657 k.e.v. for the positrons, and from 190 k.o.v.
to 6571 k.e.v. for the elcctrons) are accounted for very well by the Fermi theory.
The lower parts of these spectra, however, do not fit well with the theory, but
rather more B-particles (of both signs) are found than aro predicted. Further,
tho positrons are in greater excess than the clectrons (at the same energy) and
the ratio increases as the encrgy deereases. This confirms a previous measure-
ment of the ratio by Backus.} The significance of these new measurements is
not known, at present, but precise data of this type may be expected to have
an important part in the final construction of the theory.

A second source of information regarding B-spectra that should assist in
deciding upon the theory of B-decay is the angular corrclation between the
direction of the emitted electron and the direction of the recoil nuclcus.§
Even in the allowed transitions which may be considered as originating through
interactions with S-waves there will be an angular correlation between
olcetron and neutrino waves determined through the ‘small’ components of
these waves. If @ is the angle included between the paths of electron and
neutrino, p is the momentum and E the energy of the electron, the predicted
correlation factors for the various theories are

Scalar 1—(cp/E)cos b
Polar Vector 14 (cp/E)cosf
Tensor 1+ 3(cp/E)cos b
Axial Vector 1—3(cp/E)cosl
Pseudoscalar 1—(cp/E)cosf

From these, tho oxpected recoil of the nuclei can bo detormined. The corre-
sponding factors for the forbidden transitions have been determined.|| Experi-
ments for the determination of these factors are currently in progress.

1 C. 8. Cook and L. M. Langer, Phys. Rev. 73 (1948), 601.
1 J. Backus, ibid. 68 (1945), 59.

§ T. Bloch and C. Moller, Nature, 136 (1935), 912.

|| D. R. Hamilton, Phys. Rev. 71 (1947), 456.



APPENDIX III
MASS OF THE NEUTRINO

A roueH indication of the shape of the continuous 8-spectrumn of H? is given
by the experiments of C. E. Nielsen,t who has counted the number of ions in
the cloud-chamber tracks produced by tritium-containing water vapour. The
results of these measurements are compared in Fig. 61 with the theoretical
curves calculated for the neutrino masses: u = 0 and p == J%;.

In spite of a large experimental uncertainty arising from the small total
number of measured tracks, the results fit much better with the vanishing or,
at least, extremely small neutrino mass.

C. E. Nielsen, Phys. Rev. (in the pross, 1949).
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APPENDIX IV
NEW CALCULATIONS OF SPONTANEOUS FISSION

A DETAILED mathematical study of the fission process in the nuclear droplet-
model was carricd out recently by Frankel and Metropolist who used for this
purpose the electronic computer known as the ‘Eniac’. Assuming the value
1-5 for the ratio of coulomb energy to the surface tension energy in the U235
nucleus (this value, usually denoted by 2z, was originally calculated by Bohr
and Wheeler) they have obtained the values 2 X 102 gsec.~? for the vibration
frequency of that nucleus, and the expression G = 10~7"85A K for the penetra-
bility of the potential barrier (here AE is the energy-deficit at the saddle point
in M.e.v.). The mecan life of the U%¥-nucleus with respect to spontaneous
fission comes out to be 1028 years, in good agreement with the observed figure.

% S. Frankel and N. Metropolis, ibid. 72 (1947), 914.



APPENDIX V
NUCLEAR REACTIONS AT VERY HIGH ENERGY

THE 184-inch synchro-cyclotron at the Berkcley Radiation Laboratory has
been operating at such a frequency as to produco nuclear beams in which the
energy is about 95 M.e.v. per nucleon (deuterons at 190 M.e.v., or a-particles
at 380 M.e.v.). The production of mesons from the x-particles beam has been
discussed in Appendix I. When tho deuteron beam is directed upon a heavy
target, mesons do not appear, but a narrow beam of very high energy-neutrons
emerges from the target. The angular spread of the neutron beam averages
about 6° around the direction of the incident deuteron beam. This spread in
angle is just what one would obtain if the proton wero suddenly removed from
a deuteron (of energy E; -= 190 M.e.v.) without disturbing the neutron. When
neutron and proton are outside their range of forces in the ground state of the
deuteron the average kinetic encrgy of the ncutron is e (e = 2:18 M.e.v., the
binding energy of H2). Hence, if the proton is suddenly removed, the trajectory
of the neutron may be expected to lie at an average angle, 4/(¢/190) = 6°, relative
to the trajectories of the deutcrons. The mechanism by which the proton is
suddenly removed from the deuteron is, of course, the collision of the proton
with a target nucleus while the ncutron escapes collision. This process is called
stripping and has becn studied in detail by Serber.t The interpretation given
leads also to tho observed spread in energy of the neutrons, which should be

E, = }(E}.Leb)? ~ 95420 M.e.v.
Serber shows that the cross-scetion for stripping should be, approximately,

S 7hR
str = ——-—_—4,\/(M€)’
where R is the effective radius of the target nucleus. The same cross-section
applies to the production of protons (when neutron strikes and proton does
not) but the emergent protons are caught in the magnetic field of tho cyclotron
and have to be detocted inside the machine. The cross-section for tho process
in which neither neutron nor proton reaches the nucleus but the deuteron is
simply dissociated by the Coulomb field is considerably smaller.

The necutrons produced by ‘stripping’ have been used to study nuclear
reactions and scattering. For cxample, the 95420 M.e.v. neutrons have been
used} to determine nuclear radii by the method cited in Chapter I, as applied
by Sherr for 25 M.e.v. neutrons. Tho results are that the offective radii for
95 M.o.v. neutrons arc a littlo smaller than for 25 M.e.v. neutrons among the
heavy nuclei and considerably smaller among the light nuclei. This indicates
that nuclear matter bocomes somewhat transparent as tho energy of the
neutrons is increased. In other words, the cross-section for collisions between
nucleons decreases with the energy of collision. Thus, nuclear reactions
produced by the noutrons in very light nuclei should be caused mostly by a
single collision in the nucleus. The activation of C'? by (n, 2n)C!* supports

+ R. Serber, Phys. Rev. 72 (1947), 1008.
1 Cork, McMillan, Peterson, and Sewell, unpublished.
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this hypothesis because the cross-section increases with energy up to 30 M.e.v.
and then remains fairly constant up to 80 M.e.v. If, on the other hand, the
concept of the compound nucleus were applicable, one would expect that at
the higher energics the compound, C'**, nucleus could disintegrate in a large
varicety of ways, thus reducing the probability of formation of C'! through
competition.

The average momentum transfer in a single collision between a very fast
neutron and a targot neutron should be of the order of #i/a, where a is the range
of nuclear forces. Actually, since nuclei are degenerate quantum mechanical
systems, the recoiling nucleon must have a higher encrgy in order to reach
einpty orbits in the nuclous and Scrbert estimates that tho average energy
of recoil is 256 M.e.v. The free path of the 95 M.e.v. neutron is also estimated
at 4Xx 1072 em. in the nuclear fluid. Consequently, the effect of a collision
with a very high energy-neutron depends upon just where the bombarding
particle strikes the nucleus. If it strikes near the edge (of the projected area)
the probability is great that the single recoiling nucleon escapes or, if it recoils
towards the centre, it transmits 26 M.c.v. excitation to the whole nucleus.
The latter then disintegrates according to the ‘ovaporation’ model discussed
in Chapter IX. If tho bombarding particle strikes ncar the centre it may make
several collisions and result in an excited nucleus of correspondingly higher
temperature. Now, the production of a particular type of disintegration may
be expected to be most propable at a certain temperature, but the temperature
may range from that corresponding to 25 M.c.v. excitation to that correspond-
ing to the full energy of tho neutron. The probability of attaining a certain
tomperature will not chango rapidly as the neutron energy is increased, as
a rosult of this mechanism, and in this way one can account for the observation
that the yields of particular products from the bombardment of heavy nuclei
do not change very much as the ncutron cnergy is increased.

1 R. Serber, Phys. Rev. 72 (1947), 1114.



APPENDIX VI
THE ORIGIN OF ELEMENTS

In their recent work, Alpher, Bethe, and Gamowf arrive at a satisfactory
explanation of the observed abundance curve by integrating the system
of equations (83) with o;’s taken to be equal to the measured values of
capture-cross-sections for fast neutrons. According to the latest measurements
by Hughes,} these cross-sectiohs increase exponentially by a factor of about
one thousand whon atomic weight increases up to one hundred, and remain
more or less constant for heavier elements. Tho results of computations taking
into account these capture-cross-sections are shown in Fig. 62. For very
large pAt the process reaches the saturation and the number of various nuclei
becomes inversely proportional to tho corresponding capture-cross-sections,
whereas for very small pA¢ heavier nuclei do not have timo to build up to the
saturation point. We see from the figuro that for

pAt = 13100 L soo. (n, Ar = 08 10 2%)
cm.

the calculated curve stands in a very good agrcoment with the observational
data. The obtained agreement is amplified by the fact that thc observed
abundances show the abnormally high values for the isotopes containing the
completed shells of neutrons or protons; in fact, it is known that such nuclei
possess abnormally small capture-cross-scetions which would cause the accumu-
lation of the material at these particular atomic weights. Since the building-up
process must have been accomplished within a time period comparable with
the decay period of neutrons, we have A¢ =~ 30 min. = 10 sec., from which
follows that during that period tho density of matter must have been of the
order of magnitude 10~? g./cm.> On the other hand, since the temperature
must have been of the order of 10°° K., the mass-density of radiation a7'%/c?
was comparable with the density of watcr. Thus we come to an important
conclusion that at that time the expansion of the Universe was governed entirely
by radiation and not by matter. In this caso tho relativistic formula for the
expansion can be written in the form:

dl _ |(8nwG aT* s)

=5 % W
where [ is an arbitrary distance in the expanding space, and the constant term
containing the radius of curvature is neglected because of the high density
value. Remembering that for the adiabatic expansion of the radiation: T' ~1/I,
we can integrate (1) into the form:

4 3c? ) __ 214 x10v,
- (327rGa th K. @

1 R. A. Alpher, H. A. Bethe, and G. Gamow, Phys. Rev. 73, 803 (1948), compare
also: R. A. Alpher, ibid. 74, 15677 (1948) ; and R. A. Alpher and R. C. Herman, ibid.
74, 1737 (1948).

1 D. T. Hughes, ibid. 70, 106A (1946), compare also: M. G. Mescheryakov, C.R.
Acad. Sci., USSR, 48, 556 (1945); J. H. E. Griffiths, Proc. Roy. Soc. 170, 513 (1939);
H. von Halban and L. Kowarski, Nature, 142, 392 (1938).
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For the mass-density of radiation we have:
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For the density of matter wo must evidently write:
punst = £} @)

whore p, is to be determinced from the conditions of nuclear building-up process.
It can bo done in the simplest way by considering the building-up of deuterons
by proton-ncutron collisions. Writing X(¢) for tho concentration of noutrons
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(with X(0) = 1), and Y(t) for the concentration of protons (with ¥ (0) = 0)
we obtain the equations:

X Xy dy XY

—ﬁ = -—AX——WPDO‘, E = +AX—7 p‘l}o‘, (5)
where v is the thermal volocity and o the capture-cross-section which (for the
energies in question) can be sufficiently accurately represented by tho formula:

2tmethicl 1
= Tmies  EV )
€ = 2:19 M.e.v. being the binding energy of the deuteron. Expressing Vand &
through the temperature, and using (2). we can rewrite () as:
ax Xy day XY,

&= X e AEmeTs ™
213/2,,5[4027;¢5/2 Y141/ 4
where 7 = At and o = W Po+ (8)

In order that the equation (7) should yield ¥ = 0+5 for 7 — o (since hydrogen
is known to form about 50 per cont. of all matter) tho coefficient o must be
sot equal to 0-5. Assuming we find from equation (8) that py = 7-2Xx 10~3
which fixes the dependence of material density on the age of the Universe.

It was shown by Gamowt that tho knowledge of the temperaturo and
density in expanding Universe leads to very interesting cosmogonical conse-
quences. In fact, once we have prg and pmst, as the functions of time we can
follow the physical processes taking place during the further expansion of
the Universe, and in particular calculate the masses and sizes of the condensa-
tions of that primordial gas which must have originated sooner or later
according to Jeans’s principle of gravitational instability. Jeans’s classical
formula} gives the diameter D of the condensations which will be formed in
the gas of the temperature 7' and density p in the form:

107 3T, 9)

2 — 3
T 9mGp*®
Using the expressions (2) and (4) we get:
93857/4,;5/4¢7;5/4¢5/4

M = pD* = ~grp g GiRe (10)

(where a@ was expressed through other fundamental constants‘). Itisinteresting
to notice that the time-factor cancels out in the calculation of M, so that the
mass of the condensations come out the same, independent of the epoch when
they were formed. It seems, however, reasonable to assume that the effect
of gravitational instability became important only when the mass-density of
radiation became comparable with the density of matter, since it is hard to
imagine a ‘gravitational condensation of pure radiation’.' Using (3) and (4),

we find that prag = Pmat = 3-10—*«051' < for ¢ = 3+9 X 10% sec. = 1-3 X 10° years,

at which point 7' = 340°K. For this value of ¢ we obtain:
945/8551/4,77/437;3/4¢15/4
= G (an
+ G. Gamow, Phys. Rev., 15 Aug. 1948; Nature, 162, 680 (1948).
t J. Jeans, Astronomy and Cosmogany (Cambridge Univers'ity Press, 1929).
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Substituting numerical values we have:

M = 55104 g, = 2:7 x 107 sun-masses

D = 13X 10?2 cm. = 13,000 light-years (12)
which must represent the masses and the diameters of the original galaxies.

The above given estimate of galactic masses falls short by a factor of about

or.e hundred from the mass-values of galaxies obtained from astronomical data.
But it must be remembered that the simple Jeans’s formula used in these
calculations does not take into account the effect of radiation-pressure, and
also is applicable only to the gravitational condensations in the non-expanding
gpace. The effect of additional radiation pressure (which is quite important
according to the previous considerations) and the tearing force of expansion
will lead to considerably larger condensation masses. The detailed study of
this question will require, however, the extension of Jeans’s classical arguments
for the case of gas and radiation mixture in the expanding space. At the
present stage one should be satisfied with the fact that through such com-
paratively simple and rather natural considerations the masses and sizes
comparable to those of stellar galaxies can be expressed in terms of fundamental
constants, and the basic quantities of nuclear physics.

3596.61 7
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— — angular correlation in, 329.

— — effect of coulomb field on, 118, 122,
138.

— — elementary theory of, 118 ff.

— - field theories of, 81, 128 ff.

— — forbiddon, 118, 136 ff., 144.

- .- — half-lives of, 116 ff., 121, 139 ff.

— - — interaction constant, 57, 119, 127,
132.

~— — Kurie plot, 120.

— — meson theory of, 63, 119, 130 ff.

— — nuclear matrix elements for, 119,
123 ff., 133 fi., 140 ff.

— — ratio to K-capture, 329.

— — gelection rules, 89, 124 fi.

Disintegration, compound nucleus, 242 ff.

— meson, 7, 61, 328.

— spontaneous, 146 ff.

Dispersion formula, 223, 249 fi.

Electromagnotic radiation from nucloi,

178 ff. See Radiation.
Elementary particles, 8.
Klements, chemical, 1 ff,
— —- abundance of, 304, 334.
— — age of, 304,

See Particles.

Elements, chemical (cont.)

— — origin of, 302 ff., 336.

Energy, binding, 22 ff., 25, 53.

— -—— coulomb offect on, 28, 97 ff., 153.

— — offect of symmetry on, 83 ff.

— — isobars, 91.

— — nucleons in nuclei, 84, 93 ff.

— — radioactive series, 30.

— — surface effect on, 28, 94, 153.

— complex eigenvalues, 167, 250.

- levels, see Leovels.

— production in stars, 264 ff.

Evaporation, neutrons from nuclei, 245,
333.

Exclusion principle, 29, 87.

Fission, 28, 99, 116, 147, 209, 318 ff.

— fragments from, 148.

— spontaneous, 147, 177, 331.

— theory of, 150 ff., 177.

— width, 248.

Forces, Bartlott, 66.

— between nucleons, 32 ff., 42 ff.

-— coulomb, effoct on stability, 28, 99,
151.

— effect of symmetry on, 63, 86, 88.

— oxchange, 55, 64, 85 ff.

— Heisenberg, 66.

— Majorana, 65, 85 ff.

—- non-central, 49 ff.

— ordinary, 54, 56, 69, 85.

— saturation of, 54, 69, 81, 85 ff., 91.

—- short-rango, 9.

— spin-dependenco of, 43, 95 ff., 97.

— spin-orbit, 109.

— tensor, 49 ff., 104.

—- velocity dependence of, 54, 85, 106.

—— Wigner, 54.

Forces, theorios of nuclear, 53 ff.

— — olectromagnetic, 74.

-— — electron-noutrino, 57, 81.

— — electron-pair, 59, 81.

— —- meson, 49, 63 fi., 60.

—-— — gtrong coupling, 81.

— — weak coupling, 81.

Galaxios, formation of great, 336.
Gamma radiation, see Radiation.
Guillotine factor, 270.

Interaction, see Forces, see also Particles.
Interference of waves, 219, 252.
Isobars, 92, 99, 144.
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Tsomerism, 193, 196.
Isotope displacoment, spoctral lines, 18 ff,
Isotopes, 2.

K-capture, 115.
— ratio of positron emission, 329.
— theory of, 123, 129,

Level width, 225.

— dominant, 255,

— effect of potential barriers on, 226,
246, 251.

»— fission, 248.

— integral over, 250.

— neutron, 223, 244.

— partial, 243,

— radiation, 189, 192, 246, 259.

Levols of excitation, 230 ff.

— compound nucleus, 222, 234, 242 fi,

— density of, 222, 230, 237 ff., 243.

— evidence from alpha-disintegration,
197 ff,

— — beta-disintegration, 116, 198.

- - — inelastic scattering, 231.

— —'metastablo states, 193 ff.

—— — proton groups, 230 ff.

— — resonant reactions, 235.

— integrals over, 245, 247.

—- isomeric states, 193, 196.

— mean spacing of, 243,

—- rotational, 232,

=— ghort-lived isomers, 197.

~— very high, 334.

—- vibrational, 233.

— widths, see Lovel width.

Liquid drop model, 11, 28.

— excitation of, 233.

— fission of, 151.

— radiation from, 190, 193,

Magic numbers, 31, 101, 148.
Magneton, nuclear, 13.
Mass, atomic, 5, 22 ff., 25.
— defect, 23 ff.
— doublet method, 24.
— spectroscopy, 24, 26.
— unit, 5, 24.
See also Energy, binding.
Mesons, 6, 82, 321.
— absorption, 61.
— charged, 63 ff., 69, 80.
— discovery, 61, 328.
— disintegration, 7, 61, 321.
— electromagnetic interaction of, 61, 74.
—*formalism of theory of, 63 ft.
— heavy (=), 321.
— Meller-Rosenfeld theory, 68.
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Mesons (cont.)

— neutral, 62, 69.

— pair theories, 80.

— pseudoscalar, 66 ff., 80.

— Schwinger’s theory, 68.

— spin, 63, 66.

— symmetrical theory, 69.

— theory of beta-decay, 63, 119, 130 ff,
— thoory of tensor forces, 49, 68.
Metastablo states, 193 ff.

Models, nuclear structure, 83 fi.

— alpha-particle, 102 ff., 107

— independent particle, 100 ff., 107.
— liquid drop, 11, 28, 190, 233.

— resonating group, 105

--- Rutherford, 3.

— statistical, 83 fI.

Moment, mesic dipole, 49.

Moments, magnetie, 11 ff., 17, 106 fi.
— — field theory of, 64.

— — isotopic pairs, 108.

— — magnetic induction method, 16.
— — molecular beam methods, 14 ff.
— — neutron, 217, proton, 14, triton, 107,
Moments, quadrupole, 20 ff., 17.

—- —- definition of, 21, 22.

— —- deuteron, 22, 49, 50.

— — heavy nuclei, 110,

Neutrino, 6, 114.

— mass of, 135, 330.

— spin of, 7, 114,

Neutron, 4.

— absorption of, 214, 247 ff,, 254,

— age equation, 325.

— beams, 207 ff.

— capture by protons, 263.

— chain reactions, 317 ff., moderated,
322 ff,

— delayed, 150, 320 ff.

— diffraction, 11, 27, 210 ff,

— diffusion, 324, 326.

— 1/v-law, 215, 254.

— multiplication, 319.

— polarization, 215,

— reactions, 258.

— reflection, 212 ff.

— refraction by solids, 213.

— resonant scattering by He4, 227 ff.

— scattering from para-hydrogen, 47 ff.,
211.

— slowing down, 209, 322.

— spin, 48.

— thermal, 209, 322.

— velocity selection, 213.

Opacity coefficient (stars), 269.
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Packing fraction, 27.

Pair formation, internal, 186 ff.

Particles, elementary, 8.

— — interactions among, 57 ff., 74 ff.

— — quantum theory of, 69 ff.

Partition quantum numbers, 89.

Penetration of potential barriers, 150,
1566 ff.

Phase shift, 37 ff., 219 ff.

Photoeffect, nuclear, 209, 259 ff.

Pile, 209, 327.

Plutonium, 171, 176, 319.

Positron, theory, 72.

— beta-decay, 115, 122.

Proton, 4.

— capture, 236.

— combination, in stars, 274.

— groups (velocity), 230, 234.

— spin, 12.

Quantization of wave equations, 74 ff.,
128.

Radiation from nuclei, electromagnetic,
178 ff. ’

— internal conversion of, 178 ff,

— selection rules for, 189 ff., 193 ff.

— transition probability, 189 ff., 246,
259.

Radii of nuclei, 8 ff., 175 ff., 203, 210, 332.

— effect of angular momenta, 202.

— from coulomb energy, 93.

Radioactivity, artificial, 116.

— see also Disintegration, Radiation.

Radiofrequency spectra, 14.

Reactions, nuclear, 207, 230 ff.

— absorption of slow neutrons, 214, 248,

— angular distribution from, 251 ff.

— chain, 317 fi.

— cyeclic, 273.

— deuteron induced, 230, 257.

— dispersion formula, 223, 249 ff.

— energy balance in, 207.

— evaporation model, 245, 333.

— high energy, 330.

— level widths, see Level.

— neutron induced, 258.

— photoneutron, 209, 259 ff.

— resonant, 234, 251, 253.

— gelection rules, 256.

— theory of, 241 ff.

~— thermonuclear, 254, 264 ff.

SUBJECTS

Relativity, invariance of interactions,
78 ff.
— mass-energy relation, 23.

Saturation, nuclear forces, 54, 69, 81, 85,
86, 91.

Scattering, alpha-particles, 8, 10, 157,
249.

— angular dependence, 219 ff.

— coulomb field, 34 fi., 220, 225.

— effect of chemical binding, 211 ff.

— elastic, 217 ff.

— inelastic, 231, 242.

— length, 211. See also 46 ff.

— matrix, 39.

— proton on proton, 31 ff., 39 ff., 328.

— resonant, 221, 223, 227, 249.

— short-range forces, 9, 31 ff., 219 ff,

— slow neutron on hydrogen, 47 ff., 211.

— spin-dependence, 220, 252.

— spin-orbit effect, 228.

Shape of nuclei, 18 ff.

Shells, in nuclear structure, 29 ff., 85,
96, 98, 101, 148 ff.

Spin, isotopic, 65, 88 ff.

— nuclear, 11 ff.,, 17, 106 ff.

— states of deuteron, 65.

Spin-dependence, see Forces.

Stars (celestial), carbon cycle in, 278 ff.

— chemical composition of, 272.

— convection in, 271.

— energy production in, 264 ff.

— equilibrium conditions for, 268 ff.

— main sequence, 283.

— point-source model, 271.

— red giants, 284 ff.

— shell-source model, 286.

— supernovae, 294 ff.

— superstability of, 288.

— white dwarfs, 284, 289.

Statistical theory of excited states, 237 ff.

Statistical theory of nuclei, stable, 83 ff.

Structure, nuclear, 83 ff. See also Models.

Supermultiplets, 89.

Symmetric hamiltonian, 84, 126.

Thermonuclear reactions, 254, 264 ff.
Transformation, nuclear, 230 ff. See
also Reactions.

Universe, expanding, 307, 336.
Urca process, 294 ff.
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