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ABSTRACT

Alongside a mean global rise in temperature, climate change predictions point to an
increase in heat waves and an associated rise in heat-related mortality. This suggests a growing
need to ensure buildings are resilient to such events. Unfortunately, there is no agreed way of
doing this, and no standard set of heat waves for scientists or engineers to use. In addition, in
all cases, heat waves are defined in terms of external conditions, yet, as the Paris heat wave of
2003 showed, people die in the industrialised world from the conditions inside buildings, not
those outside. In this work, we reverse engineer external temperature time series from monitored
conditions within a representative set of buildings during a heat wave. This generates a general
probabilistic analytical relationship between internal and external heat waves and thereby a
standard set of events for testing resilience. These heat waves are by their simplicity ideal for
discussions between clients and designers, or for the setting of national building codes. In
addition, they provide a new framework for the declaration of a health emergency.

1 Introduction

The IPCC has confirmed that extreme weather events will be more severe and more
frequent in the near future (IPCC, 2014). Unfortunately, there exist little knowledge about how
these events, be they heat waves or cold snaps, will affect buildings. Common practice is to
evaluate the response (the internal conditions) of single buildings via the running of complex
simulations using typical, or near typical, weather (Jentsch et al. 2008; Guan 2009; Eames et al.
2011; Kershaw et al. 2011). Although this is relatively accurate for calculating annual energy
demand and general thermal comfort, it has little to say with respect to morbidity during an

extreme event like a heat wave.

Historically, heat waves that kill are by their nature infrequent and this makes statistical
analysis of their properties difficult. Unfortunately, their consequences can be extreme, with the
European heat wave of 2003 causing over 14,000 deaths in Paris alone (Stott et al. 2004), and
even more small-scale events like the July 2006 heat wave, which killed 107 in Porto, are of
growing concern (Monteiro et al. 2013). Considering that heat waves are going to become more
frequent and severe (Meehl and Tebaldi 2004), the understanding on how they affect buildings
is clearly not just an academic question, but important for accessing society-wide resilience, and

the scale of the response.



Very sensibly, different countries have defined heat waves in different ways. This
localised response makes sense as different locations have different: mean temperatures,
temperature time series, and levels of adaption amongst their population. For example, one of
the oldest definitions is that of A. T. Burrows who defined a heat wave as a period of three days
of more in which the daily maximum temperature exceeds 32.2°C. This would clearly not work
in Madrid, Spain where the average daily maximum temperature in August is 32 °C. Table 1

shows some of the resultant diversity.

Table 1. Example heat wave definitions. (Robinson 2001).

Country Temperature Time Definition Reference
Netherlands >25°C >=5 days More than 4 days with a mean (DMI 2013)
& >30°C punctual temperature higher than 25 and
reaching 30°C
Denmark Average maximum | >=3 days More than 2 days with mean max (DMI 2013)
>28°C temperature higher than 28°C
Sweden >25°C >=5 days More than four days with (SMIH 2013)
temperatures higher than 25°C.
US (Northeast) >32.2°C >=3 days Temperature reaches or exceeds (NWS, 2019)
32.2°C during three days
US California >37.8°C >=3 days Temperature reaches or exceeds (NWS, 2019)
37.8°C during three days
South Australia >35°C or >=5 days 5 days with a temperature higher (BOM 2013)
40°C Or 3 days than 35°C or three higher than
40°C

In the UK two definitions are in frequent use: (a) when the daily maximum temperature
on more than five consecutive days exceeds the average maximum temperature by 5 °C; (b) the
other is dependent on the region, but typically when the predicted temperature is 30 °C by day
and 15 °C overnight for at least two consecutive days. The definition given in (a) heavily

influences the thoughts presented in this paper.

Russo et al. (2015) developed a methodology that defines a heat wave as an intensity
factor based on the typical weather at the location (Russo et al.), which was then used to show
that in many areas of Europe heat waves are becoming more common (Zampieri, Russo et al.
2016). However, the health impacts of extreme temperatures depend on both the situation relative
to the historic norm, and to absolute values. It is worth noting that the absolute (i.e. non-relative)
limits give in Table 1 are still somewhat relative to the historic situation, with for example higher

values in southern rather than northern California.

In all these cases the heat wave is defined using external conditions. However, as the

Paris heat wave of 2003 showed, it is internal conditions that lead to issues of thermal comfort



failure, morbidity and death. It is therefore reasonable that we try to define a heat wave in terms

of the likely conditions within the building stock.

As different buildings respond differently to any external temperature time series, such a
definition would most likely be framed as the likely production of excessive conditions in some
fraction of buildings, for example at least 10% of buildings expecting to have a temperature
above 28 degrees during 3 days. In addition, it would be biased towards the types of buildings in
which vulnerable occupants struggle to deal with the thermal environment and die. However,
basing a definition of a heat wave on likely internal conditions forces us to find a way of relating
the external conditions to the internal conditions. Given the external time series it is possible to
find the internal temperature series using dynamic simulation of the stock. However, this process
is not reversible, as required here, where we need to find the external times series that led to
particular conditions within the stock. This paper investigates if it is possible to create a
methodology that achieves this and should be contrasted with work such as Coley and Kershaw
2010, which simply looked at how internal temperatures might rise in general as the climate

warms.

A definition based on likely internal conditions in a set fraction of the building stock
would be extremely useful to those wishing to justify the declaration of a heat wave in order to
mobilise a public health response. It would also be useful to those looking at ways to study the
resilience of the current stock, or the impact of heat waves on new designs, via the use of dynamic
thermal models of buildings. Such models need a description of the weather conditions they are
exposed to, typically represented in weather files that describe key information about the location
and the time series of relevant weather variables. For current weather, these weather files are
built using historical weather data, whereas for future weather two different approaches have
been proposed: morphing and weather generators. Morphing transforms historical weather data
according to a series of mathematical models that describe the expected changes in the climate
(Jentsch, James et al. 2013), whereas weather generators create synthetic weather by direct
weather simulation (Eames, Kershaw et al. 2011). Regardless of the approach, it has been shown
that weather files need to be specific to the location of a building to generate reliable performance

estimates (Eames, Kershaw et al. 2011, Liu et al. 2017).

Due to their very nature, cold snaps and heat waves are infrequent weather events, and
they may or may not be present in a location’s historical weather dataset. This is especially true
for those events associated with increased mortality. Assuming one or more instances of such

events are present in the weather records, they would be but particular realisations, unique in



their temporal signature. For instance, one heat wave might have been hotter in its maximums
around the central days of the event, whereas another might have developed equally hot days
over a longer period of time. This prevents in principle a robust characterisation or classification
of these events in terms of their likely impact to building occupants, which in turn precludes

systematic studies on how to deliver resilient buildings.

To solve this issue, it is necessary to first reflect on the purpose of the dynamic thermal
simulation of buildings. It is tempting to think that they predict future internal conditions,
however as the weather file (time series) used is historic, or synthetic, it will never match any
future real weather the building will be exposed to, and even if it did, it would be only one year
of the many the building will experience over its lifetime. In addition, as a dynamic simulation
produces results every time step, there is the need to summarize these results with a set of much
reduced metrics for the results to be of use, for example the maximum temperature reached or
the number of hours in a year above some set temperature. Once given such information, the
researcher or designer can reflect on the seriousness of the situation with respect to human health
or energy use, and then consider design alternatives. This suggests that the hour-by-hour fidelity
of a time series of weather is a poor way to judge a weather file. Rather, consideration should be
given to its usefulness in providing a metric. This utility-based argument is given further weight
by the many other hard-to-define time series that form inputs to any dynamic simulation, for
example occupancy, window use or electrical gains. These time series are different for every
household, rarely the same for each day, and the hour-by-hour future values for any building, let
alone a whole stock, unknown, as technology and preferences and occupants will change. In

these cases, modellers and practicing engineers typically use simple repeating functional forms.

These considerations suggest one possible approach to producing weather time series of
future extreme weather would be to identify a heat wave as a positive distortion of a oscillatory
base temperature. This could be done with a weather file that contains consecutive extrusions
that grow in intensity. Climate change projections could then provide the return period of any
particular event for that region. We term such files super-synthetic weather files as they are both
synthetically created and simplified to a simple oscillatory function. The main advantage of using
simple sinusoidal waveforms is that, when combined with the right models, they have analytical
solutions, providing direct equations that can be reversed to provide external conditions for a
given set of internal conditions. This means that rather than defining a heat wave in terms of
external conditions, it would be possible to produce a temporal time series that would, for
example, produce a temperature rise of greater than X for more than Y hours in Z percent of the

stock.



Several questions now arise, (i) what do we use to represent the base sinusoidal
temperature time series that reflect typical conditions, (ii) how do we estimate the size and length
of the heat wave excursions from this, (iii) how do we represent the other weather variables? To
answer these, data from real buildings (including gains and internal and external temperatures)
were combined with Lump Parameter Models (LPM) and inverse modelling (Madsen and Holst

1995).

2 Methodology

The central methodology of this paper consists of reverse engineering heat waves that
will have a given effect on the building stock. For this, the need for a general building model
capable of responding to a time series of temperatures, yet with an analytical solution, points to
the use of Lumped Parameter Models (LPMs). In order to define the parameters of these models,
which equate to U-values etc., one requires a measured time series of the response of the real
buildings to external driving forces. Finally, given such validated models and their parameters it
is possible to estimate the impact of a sinusoidal heat wave by analytical means. It is important
to understand that what is being suggested is not the creation of thermal models from a list of
construction details (such as U-values and infiltration rates), which may or may not be correct,
and assumed occupant behaviours, but the derivation of these from the measured times series of

temperatures etc. in the buildings.

2.1 Model topology

Lumped parameter models are linear dynamic models that are sometimes referred to in
building modelling as RC-networks. LPMs have analytical solutions when driven by simple
inputs such as impulses or sinusoidal time series. The LPM topology (i.e. the number of
components and the order of the model) can be fixed by considering the physics of the problem
at hand. It has been proven in the literature that third order LPMs (with three differential

equations) can be used to accurately represent buildings (Ramallo-Gonzalez et al 2015).

The parameters of the LPM can then be obtained using inverse modelling (as in Ramallo-
Gonzalez et al. 2018) using an observed time series of the inputs and the internal temperature
time series. In our case, we use data from dwellings monitored over a summer (2006) that
included a heat wave. The fact that the data used contained a heat wave is advantageous, as LPMs
are linear models and therefore could lose accuracy when being operated with inputs largely
different to those with which they have been trained with, particularly phenomena that are non-

linear (e.g. radiation or ventilation). For example, if an LPM was trained with an average



summer, then the outcome could be accurate in periods with “normal” temperatures, but possibly

become less accurate under a heat wave.

This approach should be contrasted with other methods that use approximate knowledge
of building components such as U-values etc. from architectural data to build models of existing
buildings. Although these methods have other advantages, such as the possibility of using more
complex simulations that represent more phenomena (e.g. separate thermal bridges, or moisture

transfer), they suffer from a lack of certainty of the actual U-values etc. found in the building.

For this paper a fully empirical approach was taken. Data recorded in 28 real domestic
buildings (of varying architecture, form, scale and occupancy—see Appendix 1—during the
summer of 2006 (May to October), are used to give a framework capable of finding the
parameters of 28 LPMs that fit the observed internal temperature time series. More houses and
more locations would have improved the study. However, our main focus is on demonstrating
the method. Additional homes can be added whenever the data becomes available. Hopefully the
introduction of the Internet of Things to buildings and the proliferation of smart meters will

ensure more data soon becomes available.

2.2 Real world data
The data (see CT, 2011 for a more detailed description), contain time series of internal
temperature, external temperature and electricity use at 5 minutes’ intervals in 28 UK homes

situated in Manchester (3 homes) Nottingham (2), Cambridge (5), Derby (1) and Belfast (17).

Solar radiation was not included in the data set. However, as it is an important factor to
evaluate the internal temperature of buildings in summer, the algorithm of Muneer was used
(Muneer 1990). With it, it was possible to generate hourly series of horizontal irradiance derived
from the MIDAS repository. The data generated with the Munner model, may not be as accurate
during a heat wave (as this is by definition an exceptional event). However, as the LPM of the
building is fitted to reproduce the real input data from the building, it is expected that when data

simulating a heat wave is passed through the LPM the results will be realistic.

2.3 Reduced model

The literature shows different LPMs for specific applications (Coley and Penman 1992,
Fraisse et al. 2002, Ménézo et al. 2002, Xu and Wang 2007, Malisani et al. 2010, Bacher and
Madsen 2011). As the problem at hand did not have specific requirements on model complexity,
but the sole goal of providing an accurate temperature response, a third order model, as the one

used by Ramallo-Gonzélez, was used (Ramallo-Gonzalez et al, 2018), Figure 1. ki, ko, k3, and k4



are heat pathways; C1,C> and Cs are heat capacitors; To(t) is the external temperature at time t,
Tw(t) is a virtual temperature of the interior of the thermal envelope (see Ramallo-Gonzalez et al
2013), Ti(t) is the temperature of the internal air, Ttwm(t) is the temperature of a virtual node
representing the internal thermal mass of the building (see Tindale 1993 for further details) and
ge(t) and gs(t) are heat sources (represented as current sources), being the electric gains and the
solar gains respectively. As the solar gains are given in terms of the global horizontal irradiance
at the location, an extra factor, f, is needed to account for the smaller fraction of incident solar
energy actually entering the building. A constant f value implies that the solar access to the
building and shadowing can be considered fixed, which is somewhat unrealistic. However, it
should be noted that heat waves in the UK are concentrated during a three-month period, during
which the solar trajectory changes little. In addition, it is hard to see how the method as it stands

could be expanded to include a variable f, hence this is a utilitarian assumption.

The experience of temperature within a space is a combination of the air and radiative
temperatures. In our case, we have only considered as an output the air temperature as this is the
one being captured by the sensors. Nevertheless, the rad-air temperature in within the LPM, but

it is not reported as an output.

k4
T() kK, T ) K, T kT
+
T, T T |[]%0 [|[*¢

_L_

Figure 1. LPM of the methodology of this paper. T represents temperature (degree), k admittance
(W/K), ¢ capacitance (Wh/k), t time (hour) and g gains (W). The subscripts o, w, 1, e, s and TM
represent outside, wall, inside, environmental, surface and thermal mass respectively.

This network can be represented mathematically with the so-called state-space matrix

equation (Eq. 1).

X(t) = A%(t) + Bi(b); Eq. 1
y(t) = Cx(t) + Du(t)




where A is the system matrix, B is the input matrix, C is the output matrix, D is the

feedthrough matrix, X represents the state vector, X is the temporal derivative of X, y the output

vector and U the input vector.

2.4 Estimation of model parameters

The primary aim of the LPM models used in this paper is not the identification of the
parameters (i.e. the resistances and capacitances of Figure 1), for thermal diagnostics of the
building (as in Bacher et al. 2014, or Ramallo-Gonzélez et al. 2018). Instead, we aim for models
that focus on the fidelity of the internal temperature time series. This is similar to the approach
found in (Coley and Penman 1998) and uses the Root Mean Square Error (RMSE) between the

observed and simulated internal temperature to drive the discovery of the unknown parameters.

For model fitting we use the observed external temperature, (derived) solar gains,
observed electrical gains and observed internal temperature and ignore other minor gains such
as occupants’ metabolism as they can be considered an order of magnitude smaller in traditional
buildings (de Wilde and Tian 2009). The parameters searched were the thermal conductivity of
the envelope ki, ko and ks; the thermal capacity of the thermal envelope Ci, the thermal
conductivity of the thermal mass ks, the thermal capacity of the thermal mass Cs; and the thermal
capacity of the space Cz The effect of solar gains was evaluated via f and gs. The values
discovered for each dwelling are given in Appendix 2. The RC-networks have been assumed to
be time-invariant, i.e. the values of the capacitances and resistances for any building do not
change during the simulation period. Since k4 includes ventilation losses and gains which might
vary as the occupants increase ventilation by opening windows further as a response to increasing
internal temperatures, then close them when external temperatures are very high, the assumption
of time-invariance will introduce an error in the model. Nevertheless, one has to take into
consideration the impossibility of guaranteeing occupants takes complex appropriate action, so
our stance is in some way precautionary. The effect of occupants in buildings can be seen for

example in Pilkington et al. 2011.

However, this can be seen as a conservative approach to the model, as it ensures
instances of high indoor temperatures will tend to be lower in reality than predicted by the model.
This conservative approach is also necessary since it is known that households most vulnerable
to high temperatures are also the least likely to operate windows, often due to mobility issues
(Vellei et al. 2018). Hence the assumption of stationarity represents an important precautionary
position. This assumption is also normal practice in RC-network modelling of buildings

(Ramallo-Gonzalez et al, 2018).



The accuracy provided by the network generated for each of the 28 buildings was
examined first using visual inspection (Figures 2, 3, 4 and 5 show examples for two buildings);
and secondly using Cooling Degree Hours (CDH) calculated over 18.8 degrees of the simulated
(fitted) and real internal temperature, as we are interested on quantifying the error in terms of the
difference in the temperature, and in terms of how much that difference is extended over time,
particularly for hot periods. In all cases the fitting was highly satisfactory with an average error
of'4.2% over the calculated CDH (See Appendix 2 for more details), and a worst case difference
of 13%. Appendix 2 gives the error and the parameters of the Empirical Cumulative Probability
Distribution (ECPD) for all 28 buildings.
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Figure 2: Three months of data for one building with a small daily temperature swing. Top,
temperature time series; bottom driving forces. The reader is referred to the online version of the
paper for colour graphs. Text is the external temperature; Tin the internal temperature (Sim
indicating simulated by the LPM, Real indicating the measured internal temperature).
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Figure 3: Building with a large daily temperature swing Top, temperature time series; bottom
driving forces. The reader is referred to the online version of the paper for colour graphs. Tex: is
the external temperature; Tin the internal temperature (Sim indicating simulated by the LPM,
Real indicating the measured internal temperature).
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Figure 5: ECPD of real and LPM-simulated internal temperature for the building with the least
good match between real and simulated.



2.5 Quantitative analysis of the impact of the gains on overheated homes

One of the reasons for modelling the buildings with a linear system is because the output
from a sum of driving forces is equal to the sum of the outputs from each independent driving
force. This allows one to estimate how much of any overheating is from any driving force

(electrical, solar, external temperature) for each of the 28 homes of the sample.

To achieve this, each one of the LPMs representing the real buildings was simulated three
times, each simulation using only one driving force i.e.: external temperature, electrical gains
and solar irradiance. The results are shown in Figure 6 and Table 2. This should be studied in
conjunction with the values in Appendix 2. There one can see how the parameters of the LPM
representing the conductivity of the envelope are in general orders of magnitude higher than the
solar factor. Also, the capacitance of the internal air of the dwelling (C») and the capacitance of
the thermal mass C3 provide a substantial smoothing of the driving forces applied to the internal

part of the house.

We see with this that the impact of the electrical gains and solar gains would be small
during the heat wave, and hence can only play a minor role in the additional rise in temperature
of the building during the heat wave. It should be mentioned here, that the houses under study
do not have electrical air conditioning and therefore higher temperatures do not imply higher
electricity consumption. Also, a heat wave of 5 or 7 days is not enough to have a significantly
different solar acceptance, which also points to the small effect that the two driving forces will

have on the internal temperature rise during a heat wave.
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Figure 6. Influence on the internal temperature of each main driving force on the Summer of
2006.

Table 2. Quartiles of ratios of influence from the three main driving forces on internal
temperature during Summer 2006 for the 28 buildings.

[No units] Outside Temperature | Electricity Solar Irradiance
Minimum 0.673 0.0171 0.0267

1¥ Quartile 0.770 0.0510 0.0799
Median (2" Quartile) 0.797 0.0905 0.106

3" Quartile 0.837 0.119 0.129
Maximum 0.882 0.203 0.278

This analysis has shown that approximately 80% of the internal temperature response of
the house is due to the time variant external temperature. Electricity and solar gains being only

responsible for 9% and 10% when averaged over the 28 homes.

2.6 Heat wave form

Having concluded that (a) it is possible to fit LPMs very accurately to the measured data;
and (b) that the internal temperature response of the buildings during a heat wave is dominated
by changes in the external air temperature, not changes in the solar or electric gains for a given
building, we now need to consider the form of typical heat waves. We use data from the UK, but
the approach could be used for other locations. We term the increase in internal temperature

during a heat wave the internal temperature anomaly (ITA). LPMs are linear systems, and



therefore, the period of any output has to be formed from an input with the same wavelength. It
is therefore necessary to understand the form of real external heat waves to make sure that the
ITAs we select are realistic. As stated previously, it is common in the UK to define a hot event
as one where the maximum daily temperature is greater than 5°C above the average maximum
summer temperature. Data from London Heathrow in the period from 1961 to 1990 was used to
extract heat waves using the previous definition. Although the definition is one of many, it was
believed to be sufficient to select the most significant ones, and with them, make a study about
the shape of heat waves. If we study the probability of the extracted heat waves using data from
London Heathrow (Met Office, 2006) (where the average summer maximum is the mean for the

period 1961-1990) we obtain Figure 7 and Figure 8.
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In total, 309 heat waves are found. These heat waves have a mean intensity of 28.3°C and a

mean duration of 2.6 days.

The London summer base temperature' is found to be 20.6°C (from the data previously
cited) between 1961 and 1990. The heat waves are then characterized by excursions above the

base of between 5.1°C and 16.7°C, with a mean of 7.7°C.

There remains the temporal form of the heat wave. Buildings are natural low-pass filters, so
for the methodology to be realistic the real heat waves do not need to be perfectly sinusoidal for
the method to work. However, they do need to still contain a smooth hill, particularly in terms
of skewness or sharpness. To evaluate that, we have extracted the form of 32 real heat waves.
Figure 9 plots 32 random one out of the 309 heat waves from the years between 1961 and 1990
derived from data from (Met Office, 2006). These real heat waves were normalized in time and
magnitude to keep only the shape of the actual lift. Once this was done, all of them were plotted
(Figure 10), and the average of all of them calculated and plotted (also in Figure 10). This shows
the average form of the 28 heat waves once the daily harmonic has been removed. It is clear that
the external heat waves are on average rather smooth functions (the black line in Figure 10).
Hence, we need a form of synthetic heat wave that also has a diurnal cycle and is smooth. This
fits well with the need to drive the LPMs with a simple function, such as a sine wave, in order to

arrive at an analytical solution.

! Mean temperature of the period between the two equinoxes
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Figure 10. In black, the shape of average heat wave anomaly once the daily harmonic is removed
and average temperature and length is normalised. The dashed portions of the black line represent
the 10% edges of the curve where transitional effects may come into play. The green lines are

each anomaly, and the red line is an example of the shape used in this paper as a synthetic heat
wave.



2.7 Selection of synthetic internal anomalies

For synthetic heat waves to be of use in any dialogue between designer and client, and to
have real meaning to the public when used to declare a health emergency, these heat waves need
to be describable in simple terms. For example, a heat wave of “5°C above normal for 5 days”.
The methodology though, needs to define the heat wave as a smooth rise in the temperature - as
seen in the previous section. Inconveniently, a half sine wave of height 5°C and a width of 5
days, is only momentarily at 5°C, and hence does not match the natural description. An obvious
solution that fits well with the need to (a) provide a form that gives an analytical solution under
an LPM, and (b) can be described in simple public-orientated terms is to describe/classify the
hump in terms of a rectangle that fits within it (see Table 3 for examples). This approach also
fits well with the data shown in Figure 9 and Figure 10 and with the UK Met Office description
of a heat wave given in the introduction. The sinusoidal chosen is the one that fully encloses the
pulse (defined for example as 5°C above normal for 5 days) yet has minimum area. This can be

achieved in all cases by multiplying the stated duration by 2.381 and the amplitude by 1.602.

Table 3: A selection of ITAs (the sinusoidal forms) and their public-orientated descriptors (the
rectangular forms).
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Table 4: Nomenclature for the ITAs shown in Table 3 and used in the results section.

Duration Intensity
A=H2K B=+4 K C=+6K
3 days A3 B3 C3
5 days AS B5 C5
7 days A7 B7 C7

Table 5: Consequences of the ITAs on complaints about overheating in commercial buildings
per square meter of floor area with ITAs being over imposed to the comfort limit of 24 Celsius
according to Federspiel (Federspiel et al 1998).

Duration Intensity
A=+2K B=+4 K C=+6K
3 days 0.19 0.83 2.16
5 days 0.32 1.39 3.60
7 days 0.45 1.94 5.04

Table 4 shows the targeted internal temperature anomalies. We now need to find the
external temperature anomalies or synthetic heat waves (SHWs) that would give rise to these
ITAs in buildings, i.e. to reverse engineer the external heat waves. This is the core of this work:
to reverse engineer heat waves, that give predefined internal conditions that might be of concern
to public health. That ITAs of this magnitude have a material effect on occupants is shown in
Table 5, which shows the impact of the ITAs on building occupants according to the model of
Federspiel (Federspiel et al 1998). In their study, Federspiel et al. performed a detailed study on
how absolute temperatures outside of the comfort limits for a given length of time represent
dissatisfaction in building occupants. The ITAs in this paper have been chosen in a way in which
they cover a substantial range of extreme events in the interior of the building. We checked the

range of discomforted people they generate according to the Federspiel model. The result showed



that the ITAs cover the range from very low dissatisfaction, to very high dissatisfaction. We used

this as a check for verifying that the ITAs chosen were adequate.

We undertake the reverse engineering using the 28 LPMs of the monitored homes. As
each one of the houses has a different thermodynamic response, each one of the houses will need

a different SHW to produce the same ITA.

Our ITAs (Table 3) are sinusoidal functions defined on the interval -n/2 to 3w/2, and

shifted by a positive factor equal to its amplitude to ensure that all the values are positive:

) 2mt s Eq.2
ITA(t) =1.602 x 05 xXA(1+ sm( )

2.381T 2

with 4 the amplitude of the ITA in kelvin, t time in hours and T the length of the ITA in hours.

In a dynamic linear system, a sinusoidal input has a sinusoidal output with the same
angular frequency but different amplitude and with a lag. The attenuation factor and the lag can
be obtained by the transformation of the transfer function to the Laplace domain. The Laplace
domain allows one to transform the differential equations governing the system into algebraic
equations defined on the frequency domain. However, this is only true if the system has been
given enough time to adapt to the given cyclic driving force. In our case, the excitation only
occurs for one cycle, this implies that the input for generation of the ITA, has to include a factor
accounting for the transitory effect. This is the transient component, and its magnitude is rather
small, and it can be found using systems theory (Ogata 2009). The models we use have order

three, meaning the transfer function that relates the outputs and inputs also has order three.

An LPM can be represented in the Laplace domain as a transfer function between an
input (the external temperature) and the output (the internal temperature). In the Laplace domain,
the frequency is the independent variable, and the attenuation of the transfer function and lag,
depend on it. The transfer function used is given by Eq 3. The transfer function is given in
fractional form, and the response of the system is highly conditioned by the values of frequency
at which the denominator is made zero. These are called the poles of the system and provide
information about the dynamic response of the system. . The poles with absolute values closer
to zero are considered the most dominating poles of the system as they have the biggest influence

on the response (Ogata, 2009).

_ K#(s—z1)*(s—2z3) Eq. 3
H(s) (s=p1)(s=p2)(s—p3)




In this equation z; and z> represent the frequencies that make the transfer function’s numerator

zero, and p1, p2 and p3 represent the poles of the system.

Knowing that a relationship between the most dominant pole and the error due to the
transitory effects in the model will provide a good adjustment, a correction factor was obtained
via the correlation found between the value of the dominant pole and the error due to the

transitory effects, via Eq 4.

Eq. 4

MAG = MAG,,, (0.9829 + 0.0021

|pole_min|>

Where MAGss is the magnification obtained from the Bode diagram and valid for the
stationary sinusoidal regime (SSR), and MAG is the magnification needed to produce an accurate

ITA.

The above was used to identify the magnitude modification that the transitory regime
may have on the SHW. However, when evaluating the lag that the SHW has to have to produce
the given ITA the method is simpler, as the time difference between input and output is not
affected by the transitory part of the response. It is therefore possible from the Laplace domain
to obtain the lag between the input and the output using the wave length of the ITA under study
and by calculating the phase of the transfer function.

From the above it is now possible to calculate analytically the magnification and lag that
is needed to generate an SHW that will produce a given ITA. If the ITA has the form shown in
Eq. 2. Then the SHW that will generate that ITA should have the form:

SHW(t) = 1.6027 MAG X 0.5 A (1 +sin (2n 228 2 )) Eq. 5

With PHA being the lag (in hours) between input and output obtained analytically from

the transfer function of the system.

3 Results

Each of the 28 buildings produces a different SHW for any ITA in Table 4. The aim of
this work is to create a methodology that allows one to obtain a single SHW or a small set of
SHWs that can serve as a resilience check of buildings. This suggests we seek SHWSs that would,
for example, give rise to temperatures of greater than X for more than Y hours in Z percent of
the stock. Plotting the amplitude of the SHWs generated by the above method for our stock of
28 buildings gives Figure 11.



Once it has been decided what increase in internal temperature is considered pernicious,
one can use the method presented here to create the heat wave that will give rise to this increase.
As different buildings will “suffer” differently in the event of a given heat wave, each building
will have a different synthetic heat wave that will produce a given ITA, it is therefore necessary
to also state what percentage of homes it is considered unacceptable to suffer the given internal
anomaly. These two parameters then allow the generation of a synthetic heat wave that will

produce at least that anomaly for that percentage of homes.

Referring to Figure 11, if one wants to find the SHW that would generate an ITA of
duration 4 days with an intensity of 2K in 75% of UK houses (assuming our sample of 28 is
reasonably representative), one begins by determining the magnification for 4 days in 75% of
the stock. This is achieved by following the red arrows in Figure 11, to obtain a magnification
of 1.42. This magnification will be the same regardless of the intensity of the ITA. Hence the
external temperature amplitude will be 1.42 times 2 kelvin. The equation for the SHW will then

be in this case:

t—6.48 s
HW = 1.42 X 1.6017 X 0.5 X 2[kelvi 1 i (2 ——)
SHW 6017 x 0.5 x 2[kelvin] ( + sin Lrrrae 96hours] _ 2 )

—h
©

—h
o

SSHW magnification [K/K]
~

—h
N

2 4 6 8
Anomaly length [days]

Figure 11. Chart to derive the SHWs’ amplitude (as a multiplier of the ITA amplitude) based on
the duration of the ITA. The percentage is the percentage of the building stock affected to at least
this degree.




In the same way it is possible to obtain the lag (the number of hours between when the
SHW peaks and the ITA peaks) that will be seen between the SHW and the ITA. This parameter
may be of interest to those designing actuation plans for heat waves as it provides a warning
period. For example, using Figure 12, and starting from the duration of the ITA on the x-axis, a
vertical line followed to the line that represents 75% of the buildings. The Y-axis then gives the
lag, in this case 0.27 days (6 and half hours). Table 6 gives example values for three of the ITAs
in Table 4. It should be noted in this table that the standard deviations are large in the case of the
magnification among buildings, but not in the case of the lag. This implies that different houses
will be affected by heat waves in different ways, and that the variability between homes will be
larger than the variability that an average home will have between different anomalies (A3, A5
and A7). This is why this study was interesting, it is crucial to understand the building stock in
its variability to have valuable findings. The lag however, is much more constant between homes,

and it is the different anomalies what produce different lags in their effects.

0.5
“ 95%
A TE%
0.4 R 55%
75 35%
< 5 15%
k1]
=
503
o <
=
=
=
g 0.2
=
oy
0.1 -
D. . 1 1
2 4 B 8

Anomaly length [days]
Figure 12. Chart used to derive SHWs’ lag based on the length of the ITA.

Table 6. Relationships between ITAs from group A and SHWs.
ITA SHW




Anomaly |Intensity Mean magnification |Standard Mean lag|Standard
K] Duration| (50% of homes) |deviation of|(50%  of deviation of
[days] [K/K] Magnification |homes) lag due to
due to homes|[days] homes
variability variability
[K/K] [days]
‘A3 +2 ‘3 1.3772 2.6307 0.36749 0.05108
‘AS +2 ‘5 1.1956 3.1486 0.61161 0.04963
‘A7 +2 ‘7 1.0899 4.0612 0.79203 0.05411

4 Validation of the method

As the results presented so far are based on measured data they are validated for the 28
homes considered. What remains to be confirmed is the correctness and utility of the method.
This is best achieved by applying the newly created SHWs to buildings as they would be
modelled by researchers or practicing engineers, using benchmark software tools. We chose to
test the A3 ITA as the process is the same for all SHWs. In order to do this, a suitable weather
file was created by superimposing the SHW given by A3 onto a synthetic weather file consisting
of a flat temperature signal with amplitude of 20°C and all the other weather variables made
constant (by setting them to their annual average) except for the solar gains that were set to zero,
as this gain will have no influence in this particular comparison. The Synthetic Heat Waves
Weather Files proposed here are to be taken as a definition per se of several heat waves. A
definition that is derived by the effect that they have in our population considering the current
building stock. And with this establish a benchmark in the same way as the 1990 figures of CO>
emissions stablish a baseline when discussing energy use. Our synthetic weather files would
contain a variety of Synthetic Heat Waves that have a given effect on the Building Stock of 2006.
This would could be updated as the building stock is (hopefully) improved.

We then created a SHW that would produce at least an A3 (i.e. a 2K rise for 3 days) in
50% of the dwellings (we term this A3/50). For that we use the graph in Figure 11 and Figure 12

so we can evaluate the lag that we would expect between SHW and ITA.

Each of the 28 buildings used to obtain the LPMs were modelled in Energy Plus (a
construction industry standard for thermal simulation - see the Appendix 3 for construction
details and modelling assumptions) under this SHW. The SHW was placed starting at day 30 of

the simulation to ensure a warm up period. The results are shown in Figure 13.
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Figure 13. Impact of the SHW A3/50 on the 28 buildings given by an A3 ITA when modelled in
EnergyPlus (genITA.E+) and modelled with LPM (genITA.LPM).

We can see in Figure 13 how the models from EnergyPlus also show a temperature rise
and duration similar to the ITA. This implies that the method produced similar results when used
within industry standard software, not just within LPMs. We see that 85.7% have elevated
temperatures of at least 2K for at least 3 days. This is more than the 50% required, indicating the
method is conservative. It is also worth noting that as the EnergyPlus models were created using
data from the SAP assessment of the buildings. This is known to be imprecise, so we would not

expect perfect fidelity.

Also, after consideration of this graph, one has to take into account that several works in
the literature where the European Energy Performance Certificate (a European equivalent with
respect to methodology of calculation and purpose) has failed to provide an accurate performance
evaluation with respect to overall heat transfer of the building (Tronchin et al. 2012), (Herrando
et al. 2016) or (Iman et al 2017). It is for this reason that we did not want to give too much
importance to the extract comparison between these two sets of models. It was just to show that
we are seeing similar responses between the two. The reader is invited to examine Appendix 1

and Appendix 3 to identify differences between the HTCs derived from the SAP evaluation



(visual inspection tests), and the conductivities derived from the data (therefore correct by

design) to find the reason for the discrepancies in the curves of Figure 13.

5 Example of the synthetic heat waves for practitioners

The temperatures found within a building during a heat wave will be a complex product
of the interaction of the architecture, the occupants and the local weather. Although it would be
easy to splice the SHWs into a time series of observed weather, or a test reference year (Eames
et al. 2010), this would raise questions of where exactly in the year to place it and what the impact
of the weather just before the SHW might be, and it would be hard to find a consistent solution
for all locations. For example, picking a date such as the 1% July would not work, as in one
location the week before might have been particularly hot, but in another not so. Hence we
suggest the use of totally synthetic weather during the run-up period based on simple functions
for all variables when trying to quantify the resilience of a building or a design to heat waves in
a robust and consistent way. Clearly this is an approximation, similar in some ways to the
admittance method (Clarke, 1985) but we are trying to rank-order the resilience of designs so it
would seem reasonable. The most critical time series would be the temperature time series and
we suggest that this is constructed using a sine wave with a 24-hour period, with the mean equal
to the summer time mean over a twenty-year period and the diurnal cycle also being the mean
over this period. As these numbers are known for future years from climate change modelling,
researchers should also be able to use the approach to look at resilience into the future. The other
weather variables are slightly more problematic, in that their forms are interlinked, for example
humidity is related in many locations to temperature. It is not known whether this interlinking is
material for this kind of work, but it is likely that all the necessary weather variables can be

represented by simple forms even if they are interrelated.

We term such a SHW embedded within a weather time series produced using simple
synthetic time series for all variables, a super synthetic heat wave (SSHW). Figure 14 shows the
A3/50 example for Nottingham with the mean and diurnal cycle based on the 20 years of
observed weather (astronomical summer) used to assemble the current test reference year for

Nottingham. As can be seen, the heat wave becomes an uplift to the normal diurnal signal.
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Figure 14. A3/50 SSHW for Nottingham.

If we assume ranges of possible heat wave durations of at least 3 to 7 days (as indicated
by Table 5) and the range of amplitudes to be 2 to 6 °C (as indicated by Table 5) we have 25
possible combinations, even if we restrict ourselves to integer values of duration and amplitude.
It is unlikely either researchers or practicing engineers would be interested in all possible
combinations, hence we suggest that the reduced escalating set of five SHWs shown in Table 7
might be useful for comparing the resilience of designs, however other sets could be used. This
set and its nomenclature has been picked to have resonance and simple meaning with architects,
designers, government and the public. The methodology presented here aims at providing the
scientific tools to create synthetic heat waves that will help with the analysis of resilience.
Depending on the application at hand, the professionals in charge of designing the synthetic
weather-files (policy makers or professional associations), will determine the ITAs, after
considering the effect in the population that they are willing to accept. This will include the effect
on occupants (ITAs) and the maximum percentage of homes that it is considered reasonable to
suffer a particular ITA. Here we provide two examples to illustrate the application, but each
application of the method can have a variety of approaches. In this case two percentiles have
been chosen. One (50%) indicating that half or more buildings will show such an increase above
typical for the time of year. The other, indicating 10% of buildings will show such an increase,

being more precautionary, as it is presumably often unknown in what housing vulnerable groups



might be resident. 10% will also be of use to those wanting to show that their design is

particularly resilient to heat waves, as it indicates that 90% of building fare worse.

Table 7. Suggested list and nomenclature of possible SHWs for studying resilience. For
example, the heat wave shown in bold would be referred to simply as “2/10”.

Rise (°C) | Percentile | Meaning of heat wave
2 10 A 2°C rise in temp above normal for 2 days in 10% of
buildings

2 50 A 2°C rise in temp above normal for 2 days in 50% of buildings
4 10 A 4°C rise in temp above normal for 4 days in 10% of buildings
4 50 A 4°C rise in temp above normal for 4 days in 50% of buildings
6 10 A 6°C rise in temp above normal for 6 days in 10% of buildings
6 50 A 6°C rise in temp above normal for 6 days in 50% of buildings
8 10 An 8°C rise in temp above normal for 8 days in 10% of buildings
8 50 An 8°C rise in temp above normal for 8 days in 50% of buildings
10 10 A 10°C rise in temp above normal for 10 days in 10% of buildings
10 50 A 10°C rise in temp above normal for 10 days in 50% of buildings

With future knowledge of return periods for such events, additional meaning could be
given to the SHWs, for example that in London SHW 4/10 has as return period of X years, now
and Y in 2080.

In practice, it is envisioned designers would apply the SSHW of interest, for example the
4/10, within a dynamic thermal model of their building, and if their design did not increase (in
this case) by 4°C for 4 days, then it is more resilient to such a heat wave than 90% of the domestic
stock, thereby providing confidence. The idea will be that the users of this methodology will
know that the effect of the synthetic weather is the one that would occur in a 2006 building stock.
The effects in current and future stock will have to be re-calculated, as is done in other

methodologies such as the future climate predictions for creating future weather files.



Alongside testing a design against the pre-existing stock, there is the need to test against
targets that reflect the potential to cause discomfort or harm. Hence, further work is needed to
understand the implications of maintaining vulnerable groups at high temperatures for differing

periods of time within buildings.

It is possible that 28 buildings might not be enough to statistically represent the full range
of domestic buildings that exist. However, this number could be increased at very low cost, and

there may already be larger data sets of internal temperature time series that could be used.

6 Summary and Conclusions

Previous definitions of heat waves have all been based on external conditions, yet it is
the conditions within buildings that kill people, often in large numbers. In this work, we have
developed a way of defining heat waves in terms of the impact they would have on conditions
within buildings and on their occupants. This was based on data collected in 28 dwellings during
a heat wave. The buildings used are from four different locations in the UK. The buildings’
characteristics are detailed in Appendix 1, and they have been picked randomly from a published
database. The buildings are representative of the UK stock, but the methodology that we present
can (and should be) applied world-wide, thereby giving synthetic heat waves that are truly
occupant-centric. Considering that many countries have initiatives to capture and record energy
consumption and other environmental parameters such as temperatures, one can anticipate that

the methodology could easily be applied internationally.

As part of this, we converted a problem that needs to be solved in a numerical way
building-by-building, into a general analytical problem. The final result is a set of super synthetic
heat waves that can be used to discuss and rank order the resilience of new buildings or pre-

existing ones, or to set alerts for public emergencies.

The work uses a methodology that employs data-driven models that have been created to
fit the behaviour of real buildings, this should be contrasted with models created from
architectural drawings—which are known to frequently not represent a building as-built
(especially with respect to air tightness and U-value), nor to contain a truthful description of how
the occupants really use the building. Although the models used are simpler than industry
standard models such as Energy Plus, they offer the certainty of fitting the real world by default.

More importantly, they also offer the advantage of having analytical forms that allow one to not



only obtain the output (internal conditions) for a given input (weather data, etc.) but also to

reverse the process.

The method used for this reverse engineering consisted of using systems theory and
Laplace domain modelling analysis to identify the external heat waves that produce a defined
internal temperature response within the buildings. The method was shown to be accurate and
produced results consistent with those from Energy Plus—which is important if the super
synthetic heat waves are to be adopted as one method of showing compliance to a regulatory
body. The method was also shown to be easy to use, as it can be reduced to consulting a graph,
or using an algebraic equation. We were then able to create synthetic heat waves that produce an
internal overheating defined by us within a set percentage of the building stock. This is the core

result of the paper, and it has the potential to alter the way we assess the resilience of buildings.

In addition, the form of the heat waves produced were shown to be similar to those from
observed heat waves. This suggests that they could also be of use to those wanting to look at the

resilience in other settings, for example cladding materials or agriculture.

By exchanging an external definition of a heat wave for an internal one, we believe the
method is a more human-centric way of evaluating the resilience of buildings, and could form

the basis of an early warning system for declaring a health emergency.

For those wishing to try the approach, SSWHs in epw format can be downloaded from
colbe.bath.ac.uk.
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9 Appendix 1. Building Narratives

District Fl. Area [m2] Archetype Year Wall Area [m2] Wall U-Value Glass Area [m2

1 Belfast 31.20 3rd floor of Mid Terrace 1904 67.84 3.26 7.7
2 Manchester 85.00 Mid Terrace 2006 57.77 0.20 19.7
3 Manchester 85.00 Mid Terrace 2006 57.77 0.20 19.7
4 Manchester 85.00 Mid Terrace 2006 57.77 0.20 19.7
5 Nottingham 93.91 Detached Cottage 1790 107.67 0.90 22.8
6 Nottingham 90.26  Semi Detached 1957 71.56 2.12 25.6
7 Belfast 77.17 End Terrace 1959 97.60 0.76 17.9
8 Belfast 65.62 Semi Detached 1924 missing missing 10.3
9 Belfast 64.86 3rd floor of Mid Terrace 1904 missing missing 9.9
10 Belfast 61.33 Semi Detached 1969 73.68 missing 4.3
11 Belfast 94.06 Semi Detached 2005 missing missing 20.1
12 Belfast 88.00 End Terrace 1964 88.46 1.63 14.0
13  Belfast 57.22 Mid Terrace 1904 missing missing 5.0
14  Belfast 88.80 End Terrace 1960 89.87 0.62 13.5
15 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.9
16 Belfast 77.80 Semi Detached 1964 108.00 0.46 18.2
17 Belfast 62.52 End Terrace 1969 96.50 0.46 13.3
18 Cambridge 95.81 Mid Terrace 2005 78.68 0.63 11.9
19 Belfast 67.27 3rd floor of Mid Terrace 1904 missing 2.20 7.1
20 Belfast 58.85 Mid Terrace 1969 86.20 0.76 13.5
21 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.9
22 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.9
23 Belfast 75.63 Terrace 1969 97.80 0.46 14.2
24  Belfast 38.66 Mid Terrace 1904 missing 1.20 8.5
25 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.9
26 Derby 41.80 Semi Detached 1970 25.65 0.52 14.0
27 Belfast 77.17 Mid Terrace 1969 97.60 0.76 17.9
28 Belfast 80.90 End Terrace 1959 119.60 0.76 15.2




10 Appendix 2. Lumped Parameter Models

Error on the fitting in CDH. Err = (CDH_sim — CDH_real)/CDH_real

ID | K1 c1 K2 2 K3 3 K4 SF Err
[W/K] | (wh/K] | [W/K] | [Wh/K] | [W/K] | [Wh/K] | [W/K]

1]191.06 | 91.13| 84.70| 143.09 | 84.18 | 4982.82 | 35.48 1.10 | 0.047731
2| 128.95 0.01| 69.35| 199.65 | 100.46 | 5135.95| 53.53 3.05 | 0.112375
3|166.88| 62.44| 000| 573.49 | 162.49 | 494520 | 118.30 4.90 | 0.008652
487724 | 143.03| 0.00]| 153.20| 9857 | 4866.32| 66.74 2.03 | 0.026029
5| 252.92 1.12 | 174.48 | 322,52 141.92 | 491955 | 84.10 2.71 | 0.043731
6| 352.51 | 3002.51 | 368.61 | 734.79 | 275.16 | 5169.91 | 412.54 7.35 | 0.00826
7120021 12158 78.74| 174.16 | 93.64| 4992.06 | 34.11 0.49 | -0.02726
81200.14 | 120.89| 78.81| 174.12| 93.90| 4992.16 | 33.96 0.95 | 0.066735
9 | 389.02 0.01 | 236.90 | 591.17 | 214.34 | 5204.82| 90.71 2.28 | 0.031665
10 | 609.32 0.18 | 380.08 | 844.13 | 563.41 | 4996.06 | 167.99 4.24 | 0.040354
11 | 146.85 | 284.72 | 23453 | 273.74 | 103.54 | 494787 | 82.43 2.31 | 0.060598
12 | 355.74 | 3005.74 | 371.84 | 746.72 | 278.39 | 5173.14 | 420.02 10.58 | 0.018903
13 | 451.05 | 286.63| 0.00| 495.80 | 199.70 | 5039.17 | 169.35 3.12 | 0.042976
14 | 390.77 0.00 | 148.70 | 590.50 | 223.15 | 5179.46 | 123.56 2.94 | 0.078082
15| 0.00 | 131.24 | 332.01| 65.45| 68.45| 120095 81.12 0.25 | 0.035857
16 | 500.28 | 1000.28 | 366.38 | 1000.28 | 272.93 | 5167.68 | 201.39 512 | 0.031342
17 | 255.71 | 2117.15 | 56.98 | 613.05 | 104.93 | 5294.83 | 151.89 1.65 | 0.024542
18 | 514.57 | 314.57 | 214.57 | 1014.57 | 614.57 | 50014.57 | 272.83 19.40 | 0.036825
19 | 566.67 | 47.30 | 157.61 | 203.25 | 116.12 | 4493.08 | 10.42 1.87 | 0.029433
20 | 268.20 | 314.90 | 180.29 | 266.49 | 105.15 | 5149.23 | 62.09 1.73 | 0.030092
21| 200.05 | 121.05| 78.05| 174.05| 93.05| 4992.05| 33.27 1.35 | 0.054055
22| 263.84 | 93.83 | 109.46 | 242.55|172.33 | 494535 89.21 1.00 | 0.044456
23 | 320.01 0.17 | 167.93 | 501.68 | 131.53 | 4921.23 0.00 0.96 | 0.095427
24 | 158.26 | 1593.63 | 247.37 | 900.80 | 236.58 | 5253.78 | 311.42 3.38 | 0.047512
25 | 413.89 0.00 | 277.80 | 631.60 | 233.23 | 5056.88 | 77.96 4.00 | 0.060017
26 | 461.74 | 45455 | 0.04| 112.78 | 104.64 | 4896.19 | 89.20 1.95 | 0.035728
27 | 452.64 0.00 | 156.79 | 1165.88 | 320.91 | 5016.19 | 234.87 1.41 | 0.082392
28 | 976.77 | 3158.21 | 342.28 | 205.38 | 378.36 | 2774.62 4.76 2.26 | 0.130374

11 Appendix 3. Energy Plus models

Three archetypes have been defined to accommodate the building types from which

data has been extracted. The three types are detached, semidetached and terrace. Depending on

the building type a different configuration will be adopted that will affect the number of walls

that are adiabatic and the facades in which windows are located. As shown in Appendix 1,

some of the parameters of the buildings are missing. In the case of having a missing value, the

average value from the existing values of the other buildings will be adopted.




The process of creating the different buildings have been automated. The floor area was
obtained from the building data and always considered that the building had an aspect ratio of

1.5, as there was no information about the aspect ratios.

The ventilation and infiltration of each building was obtained with the SAP Vent HL
that is reported on the data. Once transformed in ach considering the volume of the building, a

background constant infiltration was considered with that value.

As most of the construction types of walls were unknown, a generic construction with
an outer brick layer, and a sandwich configuration with plasterboard — insulation —plasterboard
was used. Adjusting the thickness of the insulation it was possible to generate a wall with a U-

Value equal to that reported in the data. The same was done with ground floors and roofs.

As no U-Values were provided for windows, generic single, double, and triple glazing

windows were used with wooden frame.

The simulation was done using 6 time steps per hour, and the simulation spanned from
the first of January to the first of September. Although the output of the simulation only was
considered beyond the first of June, the simulation was started from the beginning of the year

to make sure that thermal inertia from winter was taken into account in the summer response.

The output of the simulation was the internal temperature of the building that was then

used to evaluate and compare with the output from the LPMs.



