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An Analytical Heat Wave Definition Based on the Impact on Buildings and 

Occupants 

 

Key words: heat wave, buildings, super-synthetic weather. 

ABSTRACT 

Alongside a mean global rise in temperature, climate change predictions point to an 

increase in heat waves and an associated rise in heat-related mortality. This suggests a growing 

need to ensure buildings are resilient to such events. Unfortunately, there is no agreed way of 

doing this, and no standard set of heat waves for scientists or engineers to use. In addition, in 

all cases, heat waves are defined in terms of external conditions, yet, as the Paris heat wave of 

2003 showed, people die in the industrialised world from the conditions inside buildings, not 

those outside. In this work, we reverse engineer external temperature time series from monitored 

conditions within a representative set of buildings during a heat wave. This generates a general 

probabilistic analytical relationship between internal and external heat waves and thereby a 

standard set of events for testing resilience. These heat waves are by their simplicity ideal for 

discussions between clients and designers, or for the setting of national building codes. In 

addition, they provide a new framework for the declaration of a health emergency.  

 

1 Introduction 

The IPCC has confirmed that extreme weather events will be more severe and more 

frequent in the near future (IPCC, 2014). Unfortunately, there exist little knowledge about how 

these events, be they heat waves or cold snaps, will affect buildings. Common practice is to 

evaluate the response (the internal conditions) of single buildings via the running of complex 

simulations using typical, or near typical, weather (Jentsch et al. 2008; Guan 2009; Eames et al. 

2011; Kershaw et al. 2011). Although this is relatively accurate for calculating annual energy 

demand and general thermal comfort, it has little to say with respect to morbidity during an 

extreme event like a heat wave. 

Historically, heat waves that kill are by their nature infrequent and this makes statistical 

analysis of their properties difficult. Unfortunately, their consequences can be extreme, with the 

European heat wave of 2003 causing over 14,000 deaths in Paris alone (Stott et al. 2004), and 

even more small-scale events like the July 2006 heat wave, which killed 107 in Porto, are of 

growing concern (Monteiro et al. 2013). Considering that heat waves are going to become more 

frequent and severe (Meehl and Tebaldi 2004), the understanding on how they affect buildings 

is clearly not just an academic question, but important for accessing society-wide resilience, and 

the scale of the response. 



Very sensibly, different countries have defined heat waves in different ways. This 

localised response makes sense as different locations have different: mean temperatures, 

temperature time series, and levels of adaption amongst their population.  For example, one of 

the oldest definitions is that of A. T. Burrows who defined a heat wave as a period of three days 

of more in which the daily maximum temperature exceeds 32.2ºC. This would clearly not work 

in Madrid, Spain where the average daily maximum temperature in August is 32 ºC. Table 1 

shows some of the resultant diversity.  

Table 1. Example heat wave definitions. (Robinson 2001). 

Country Temperature Time Definition Reference 

Netherlands > 25ºC 

& >30ºC 

 >= 5 days 

punctual 

More than 4 days with a mean 

temperature higher than 25 and 

reaching 30ºC 

(DMI 2013) 

Denmark Average maximum 

>28ºC 

>= 3 days More than 2 days with mean max 

temperature higher than 28ºC 

(DMI 2013) 

Sweden >25ºC >=5 days More than four days with 

temperatures higher than 25ºC. 

(SMIH 2013) 

US (Northeast) > 32.2ºC >=3 days Temperature reaches or exceeds 

32.2ºC during three days 

(NWS, 2019) 

US California > 37.8ºC >=3 days Temperature reaches or exceeds 

37.8ºC during three days 

(NWS, 2019) 

South Australia >35ºC or 

40ºC 

>=5 days 

Or 3 days 

5 days with a temperature higher 

than 35ºC or three higher than 

40ºC 

(BOM 2013) 

 

In the UK two definitions are in frequent use: (a) when the daily maximum temperature 

on more than five consecutive days exceeds the average maximum temperature by 5 °C; (b) the 

other is dependent on the region, but typically when the predicted temperature is 30 °C by day 

and 15 °C overnight for at least two consecutive days. The definition given in (a) heavily 

influences the thoughts presented in this paper. 

Russo et al. (2015) developed a methodology that defines a heat wave as an intensity 

factor based on the typical weather at the location (Russo et al.), which was then used to show 

that in many areas of Europe heat waves are becoming more common (Zampieri, Russo et al. 

2016). However, the health impacts of extreme temperatures depend on both the situation relative 

to the historic norm, and to absolute values. It is worth noting that the absolute (i.e. non-relative) 

limits give in Table 1 are still somewhat relative to the historic situation, with for example higher 

values in southern rather than northern California.  

In all these cases the heat wave is defined using external conditions. However, as the 

Paris heat wave of 2003 showed, it is internal conditions that lead to issues of thermal comfort 



failure, morbidity and death. It is therefore reasonable that we try to define a heat wave in terms 

of the likely conditions within the building stock.  

As different buildings respond differently to any external temperature time series, such a 

definition would most likely be framed as the likely production of excessive conditions in some 

fraction of buildings, for example at least 10% of buildings expecting to have a temperature 

above 28 degrees during 3 days. In addition, it would be biased towards the types of buildings in 

which vulnerable occupants struggle to deal with the thermal environment and die. However, 

basing a definition of a heat wave on likely internal conditions forces us to find a way of relating 

the external conditions to the internal conditions. Given the external time series it is possible to 

find the internal temperature series using dynamic simulation of the stock. However, this process 

is not reversible, as required here, where we need to find the external times series that led to 

particular conditions within the stock. This paper investigates if it is possible to create a 

methodology that achieves this and should be contrasted with work such as Coley and Kershaw 

2010, which simply looked at how internal temperatures might rise in general as the climate 

warms.    

A definition based on likely internal conditions in a set fraction of the building stock 

would be extremely useful to those wishing to justify the declaration of a heat wave in order to 

mobilise a public health response. It would also be useful to those looking at ways to study the 

resilience of the current stock, or the impact of heat waves on new designs, via the use of dynamic 

thermal models of buildings. Such models need a description of the weather conditions they are 

exposed to, typically represented in weather files that describe key information about the location 

and the time series of relevant weather variables. For current weather, these weather files are 

built using historical weather data, whereas for future weather two different approaches have 

been proposed: morphing and weather generators. Morphing transforms historical weather data 

according to a series of mathematical models that describe the expected changes in the climate 

(Jentsch, James et al. 2013), whereas weather generators create synthetic weather by direct 

weather simulation (Eames, Kershaw et al. 2011). Regardless of the approach, it has been shown 

that weather files need to be specific to the location of a building to generate reliable performance 

estimates (Eames, Kershaw et al. 2011, Liu et al. 2017). 

Due to their very nature, cold snaps and heat waves are infrequent weather events, and 

they may or may not be present in a location’s historical weather dataset. This is especially true 

for those events associated with increased mortality. Assuming one or more instances of such 

events are present in the weather records, they would be but particular realisations, unique in 



their temporal signature. For instance, one heat wave might have been hotter in its maximums 

around the central days of the event, whereas another might have developed equally hot days 

over a longer period of time. This prevents in principle a robust characterisation or classification 

of these events in terms of their likely impact to building occupants, which in turn precludes 

systematic studies on how to deliver resilient buildings.  

To solve this issue, it is necessary to first reflect on the purpose of the dynamic thermal 

simulation of buildings. It is tempting to think that they predict future internal conditions, 

however as the weather file (time series) used is historic, or synthetic, it will never match any 

future real weather the building will be exposed to, and even if it did, it would be only one year 

of the many the building will experience over its lifetime. In addition, as a dynamic simulation 

produces results every time step, there is the need to summarize these results with a set of much 

reduced metrics for the results to be of use, for example the maximum temperature reached or 

the number of hours in a year above some set temperature. Once given such information, the 

researcher or designer can reflect on the seriousness of the situation with respect to human health 

or energy use, and then consider design alternatives. This suggests that the hour-by-hour fidelity 

of a time series of weather is a poor way to judge a weather file. Rather, consideration should be 

given to its usefulness in providing a metric. This utility-based argument is given further weight 

by the many other hard-to-define time series that form inputs to any dynamic simulation, for 

example occupancy, window use or electrical gains. These time series are different for every 

household, rarely the same for each day, and the hour-by-hour future values for any building, let 

alone a whole stock, unknown, as technology and preferences and occupants will change. In 

these cases, modellers and practicing engineers typically use simple repeating functional forms. 

These considerations suggest one possible approach to producing weather time series of 

future extreme weather would be to identify a heat wave as a positive distortion of a oscillatory 

base temperature. This could be done with a weather file that contains consecutive extrusions 

that grow in intensity. Climate change projections could then provide the return period of any 

particular event for that region. We term such files super-synthetic weather files as they are both 

synthetically created and simplified to a simple oscillatory function. The main advantage of using 

simple sinusoidal waveforms is that, when combined with the right models, they have analytical 

solutions, providing direct equations that can be reversed to provide external conditions for a 

given set of internal conditions. This means that rather than defining a heat wave in terms of 

external conditions, it would be possible to produce a temporal time series that would, for 

example, produce a temperature rise of greater than X for more than Y hours in Z percent of the 

stock.  



Several questions now arise, (i) what do we use to represent the base sinusoidal 

temperature time series that reflect typical conditions, (ii) how do we estimate the size and length 

of the heat wave excursions from this, (iii) how do we represent the other weather variables? To 

answer these, data from real buildings (including gains and internal and external temperatures) 

were combined with Lump Parameter Models (LPM) and inverse modelling (Madsen and Holst 

1995).  

2 Methodology 

The central methodology of this paper consists of reverse engineering heat waves that 

will have a given effect on the building stock. For this, the need for a general building model 

capable of responding to a time series of temperatures, yet with an analytical solution, points to 

the use of Lumped Parameter Models (LPMs). In order to define the parameters of these models, 

which equate to U-values etc., one requires a measured time series of the response of the real 

buildings to external driving forces. Finally, given such validated models and their parameters it 

is possible to estimate the impact of a sinusoidal heat wave by analytical means. It is important 

to understand that what is being suggested is not the creation of thermal models from a list of 

construction details (such as U-values and infiltration rates), which may or may not be correct, 

and assumed occupant behaviours, but the derivation of these from the measured times series of 

temperatures etc. in the buildings. 

2.1 Model topology 

Lumped parameter models are linear dynamic models that are sometimes referred to in 

building modelling as RC-networks. LPMs have analytical solutions when driven by simple 

inputs such as impulses or sinusoidal time series. The LPM topology (i.e. the number of 

components and the order of the model) can be fixed by considering the physics of the problem 

at hand. It has been proven in the literature that third order LPMs (with three differential 

equations) can be used to accurately represent buildings (Ramallo-Gonzalez et al 2015).  

The parameters of the LPM can then be obtained using inverse modelling (as in Ramallo-

González et al. 2018) using an observed time series of the inputs and the internal temperature 

time series. In our case, we use data from dwellings monitored over a summer (2006) that 

included a heat wave. The fact that the data used contained a heat wave is advantageous, as LPMs 

are linear models and therefore could lose accuracy when being operated with inputs largely 

different to those with which they have been trained with, particularly phenomena that are non-

linear (e.g. radiation or ventilation). For example, if an LPM was trained with an average 



summer, then the outcome could be accurate in periods with “normal” temperatures, but possibly 

become less accurate under a heat wave.  

This approach should be contrasted with other methods that use approximate knowledge 

of building components such as U-values etc. from architectural data to build models of existing 

buildings. Although these methods have other advantages, such as the possibility of using more 

complex simulations that represent more phenomena (e.g. separate thermal bridges, or moisture 

transfer), they suffer from a lack of certainty of the actual U-values etc. found in the building. 

For this paper a fully empirical approach was taken. Data recorded in 28 real domestic 

buildings (of varying architecture, form, scale and occupancy—see Appendix 1—during the 

summer of 2006 (May to October), are used to give a framework capable of finding the 

parameters of 28 LPMs that fit the observed internal temperature time series. More houses and 

more locations would have improved the study. However, our main focus is on demonstrating 

the method. Additional homes can be added whenever the data becomes available. Hopefully the 

introduction of the Internet of Things to buildings and the proliferation of smart meters will 

ensure more data soon becomes  available.  

2.2 Real world data 

The data (see CT, 2011 for a more detailed description), contain time series of internal 

temperature, external temperature and electricity use at 5 minutes’ intervals in 28 UK homes 

situated in Manchester (3 homes) Nottingham (2), Cambridge (5), Derby (1) and Belfast (17).  

Solar radiation was not included in the data set. However, as it is an important factor to 

evaluate the internal temperature of buildings in summer, the algorithm of Muneer was used 

(Muneer 1990). With it, it was possible to generate hourly series of horizontal irradiance derived 

from the MIDAS repository. The data generated with the Munner model, may not be as accurate 

during a heat wave (as this is by definition an exceptional event). However, as the LPM of the 

building is fitted to reproduce the real input data from the building, it is expected that when data 

simulating a heat wave is passed through the LPM the results will be realistic.  

2.3 Reduced model 

The literature shows different LPMs for specific applications (Coley and Penman 1992, 

Fraisse et al. 2002, Ménézo et al. 2002, Xu and Wang 2007, Malisani et al. 2010, Bacher and 

Madsen 2011). As the problem at hand did not have specific requirements on model complexity, 

but the sole goal of providing an accurate temperature response, a third order model, as the one 

used by Ramallo-González, was used (Ramallo-González et al, 2018), Figure 1. k1, k2, k3, and k4 



are heat pathways; C1,C2 and C3 are heat capacitors; To(t) is the external temperature at time t, 

Tw(t) is a virtual temperature of the interior of the thermal envelope (see Ramallo-Gonzalez et al 

2013), Ti(t) is the temperature of the internal air, TTM(t) is the temperature of a virtual node 

representing the internal thermal mass of the building (see Tindale 1993 for further details) and 

ge(t) and gs(t) are heat sources (represented as current sources), being the electric gains and the 

solar gains respectively. As the solar gains are given in terms of the global horizontal irradiance 

at the location, an extra factor, f, is needed to account for the smaller fraction of incident solar 

energy actually entering the building. A constant f value implies that the solar access to the 

building and shadowing can be considered fixed, which is somewhat unrealistic. However, it 

should be noted that heat waves in the UK are concentrated during a three-month period, during 

which the solar trajectory changes little. In addition, it is hard to see how the method as it stands 

could be expanded to include a variable f, hence this is a utilitarian assumption.  

The experience of temperature within a space is a combination of the air and radiative 

temperatures.  In our case, we have only considered as an output the air temperature as this is the 

one being captured by the sensors. Nevertheless, the rad-air temperature in within the LPM, but 

it is not reported as an output. 

  

Figure 1. LPM of the methodology of this paper. T represents temperature (degree), k admittance 

(W/K), c capacitance (Wh/k), t time (hour) and g gains (W). The subscripts o, w, i, e, s and TM 

represent outside, wall, inside, environmental, surface and thermal mass respectively. 

This network can be represented mathematically with the so-called state-space matrix 

equation (Eq. 1). 

 

𝑥̇⃗(𝑡) = 𝑨𝑥⃗(𝑡) + 𝑩𝑢⃗⃗(𝑡); 
𝑦(𝑡) = 𝑪𝑥⃗(𝑡) + 𝑫𝑢⃗⃗(𝑡)   

Eq. 1 

 



where A is the system matrix, B is the input matrix, C is the output matrix, D is the 

feedthrough matrix,  𝑥⃗ represents the state vector, 𝑥̇⃗ is the temporal derivative of 𝑥⃗, y the output 

vector and 𝑢⃗⃗ the input vector. 

2.4 Estimation of model parameters 

The primary aim of the LPM models used in this paper is not the identification of the 

parameters (i.e. the resistances and capacitances of Figure 1), for thermal diagnostics of the 

building (as in Bacher et al. 2014, or Ramallo-González et al. 2018). Instead, we aim for models 

that focus on the fidelity of the internal temperature time series. This is similar to the approach 

found in (Coley and Penman 1998) and uses the Root Mean Square Error (RMSE) between the 

observed and simulated internal temperature to drive the discovery of the unknown parameters. 

For model fitting we use the observed external temperature, (derived) solar gains, 

observed electrical gains and observed internal temperature and ignore other minor gains such 

as occupants’ metabolism as they can be considered an order of magnitude smaller in traditional 

buildings (de Wilde and Tian 2009). The parameters searched were the thermal conductivity of 

the envelope k1, k2 and k4; the thermal capacity of the thermal envelope C1, the thermal 

conductivity of the thermal mass k3, the thermal capacity of the thermal mass C3; and the thermal 

capacity of the space C2. The effect of solar gains was evaluated via f and gs. The values 

discovered for each dwelling are given in Appendix 2. The RC-networks have been assumed to 

be time-invariant, i.e. the values of the capacitances and resistances for any building do not 

change during the simulation period. Since k4 includes ventilation losses and gains which might 

vary as the occupants increase ventilation by opening windows further as a response to increasing 

internal temperatures, then close them when external temperatures are very high, the assumption 

of time-invariance will introduce an error in the model. Nevertheless, one has to take into 

consideration the impossibility of guaranteeing occupants takes complex appropriate action, so 

our stance is in some way precautionary. The effect of occupants in buildings can be seen for 

example in Pilkington et al. 2011. 

 However, this can be seen as a conservative approach to the model, as it ensures 

instances of high indoor temperatures will tend to be lower in reality than predicted by the model. 

This conservative approach is also necessary since it is known that households most vulnerable 

to high temperatures are also the least likely to operate windows, often due to mobility issues 

(Vellei et al. 2018). Hence the assumption of stationarity represents an important precautionary 

position. This assumption is also normal practice in RC-network modelling of buildings 

(Ramallo-González et al, 2018).  



The accuracy provided by the network generated for each of the 28 buildings was 

examined first using visual inspection (Figures 2, 3, 4 and 5 show examples for two buildings); 

and secondly using Cooling Degree Hours (CDH) calculated over 18.8 degrees of the simulated 

(fitted) and real internal temperature, as we are interested on quantifying the error in terms of the 

difference in the temperature, and in terms of how much that difference is extended over time, 

particularly for hot periods. In all cases the fitting was highly satisfactory with an average error 

of 4.2% over the calculated CDH (See Appendix 2 for more details), and a worst case difference 

of 13%. Appendix 2 gives the error and the parameters of the Empirical Cumulative Probability 

Distribution (ECPD) for all 28 buildings. 

 

Figure 2: Three months of data for one building with a small daily temperature swing. Top, 

temperature time series; bottom driving forces. The reader is referred to the online version of the 

paper for colour graphs. Text is the external temperature; Tin the internal temperature (Sim 

indicating simulated by the LPM, Real indicating the measured internal temperature). 



 

Figure 3: Building with a large daily temperature swing Top, temperature time series; bottom 

driving forces. The reader is referred to the online version of the paper for colour graphs. Text is 

the external temperature; Tin the internal temperature (Sim indicating simulated by the LPM, 

Real indicating the measured internal temperature). 

 



 

Figure 4: Example of ECPD of the real and LPM-simulated internal temperature for the building 

with the smallest error in CDH over 18.8 degrees between real and simulated. 

 

Figure 5: ECPD of real and LPM-simulated internal temperature for the building with the least 

good match between real and simulated. 



2.5 Quantitative analysis of the impact of the gains on overheated homes 

One of the reasons for modelling the buildings with a linear system is because the output 

from a sum of driving forces is equal to the sum of the outputs from each independent driving 

force. This allows one to estimate how much of any overheating is from any driving force 

(electrical, solar, external temperature) for each of the 28 homes of the sample.  

To achieve this, each one of the LPMs representing the real buildings was simulated three 

times, each simulation using only one driving force i.e.: external temperature, electrical gains 

and solar irradiance. The results are shown in Figure 6 and Table 2. This should be studied in 

conjunction with the values in Appendix 2. There one can see how the parameters of the LPM 

representing the conductivity of the envelope are in general orders of magnitude higher than the 

solar factor. Also, the capacitance of the internal air of the dwelling (C2) and the capacitance of 

the thermal mass C3 provide a substantial smoothing of the driving forces applied to the internal 

part of the house.  

We see with this that the impact of the electrical gains and solar gains would be small 

during the heat wave, and hence can only play a minor role in the additional rise in temperature 

of the building during the heat wave. It should be mentioned here, that the houses under study 

do not have electrical air conditioning and therefore higher temperatures do not imply higher 

electricity consumption. Also, a heat wave of 5 or 7 days is not enough to have a significantly 

different solar acceptance, which also points to the small effect that the two driving forces will 

have on the internal temperature rise during a heat wave. 

 



 

Figure 6. Influence on the internal temperature of each main driving force on the Summer of 

2006. 

 

Table 2. Quartiles of ratios of influence from the three main driving forces on internal 

temperature during Summer 2006 for the 28 buildings. 

[No units] Outside Temperature Electricity Solar Irradiance 

Minimum 0.673 0.0171 0.0267 

1st Quartile 0.770 0.0510 0.0799 

Median (2nd Quartile) 0.797 0.0905 0.106 

3rd Quartile 0.837 0.119 0.129 

Maximum 0.882 0.203 0.278 

 

This analysis has shown that approximately 80% of the internal temperature response of 

the house is due to the time variant external temperature. Electricity and solar gains being only 

responsible for 9% and 10% when averaged over the 28 homes.  

2.6 Heat wave form 

Having concluded that (a) it is possible to fit LPMs very accurately to the measured data; 

and (b) that the internal temperature response of the buildings during a heat wave is dominated 

by changes in the external air temperature, not changes in the solar or electric gains for a given 

building, we now need to consider the form of typical heat waves. We use data from the UK, but 

the approach could be used for other locations. We term the increase in internal temperature 

during a heat wave the internal temperature anomaly (ITA). LPMs are linear systems, and 



therefore, the period of any output has to be formed from an input with the same wavelength. It 

is therefore necessary to understand the form of real external heat waves to make sure that the 

ITAs we select are realistic. As stated previously, it is common in the UK to define a hot event 

as one where the maximum daily temperature is greater than 5°C above the average maximum 

summer temperature. Data from London Heathrow in the period from 1961 to 1990 was used to 

extract heat waves using the previous definition. Although the definition is one of many, it was 

believed to be sufficient to select the most significant ones, and with them, make a study about 

the shape of heat waves. If we study the probability of the extracted heat waves using data from 

London Heathrow (Met Office, 2006) (where the average summer maximum is the mean for the 

period 1961-1990) we obtain Figure 7 and Figure 8.  

 

Figure 7. Duration of heat waves in UK.  



 

Figure 8. Intensity of heat waves in UK.  

In total, 309 heat waves are found. These heat waves have a mean intensity of 28.3°C and a 

mean duration of 2.6 days.  

The London summer base temperature1 is found to be 20.6°C (from the data previously 

cited) between 1961 and 1990. The heat waves are then characterized by excursions above the 

base of between 5.1°C and 16.7°C, with a mean of 7.7°C.  

There remains the temporal form of the heat wave. Buildings are natural low-pass filters, so 

for the methodology to be realistic the real heat waves do not need to be perfectly sinusoidal for 

the method to work. However, they do need to still contain a smooth hill, particularly in terms 

of skewness or sharpness. To evaluate that, we have extracted the form of 32 real heat waves.      

Figure 9 plots 32 random one out of the 309 heat waves from the years between 1961 and 1990 

derived from data from (Met Office, 2006). These real heat waves were normalized in time and 

magnitude to keep only the shape of the actual lift. Once this was done, all of them were plotted 

(Figure 10), and the average of all of them calculated and plotted (also in Figure 10). This shows 

the average form of the 28 heat waves once the daily harmonic has been removed. It is clear that 

the external heat waves are on average rather smooth functions (the black line in Figure 10). 

Hence, we need a form of synthetic heat wave that also has a diurnal cycle and is smooth. This 

fits well with the need to drive the LPMs with a simple function, such as a sine wave, in order to 

arrive at an analytical solution. 

 
1 Mean temperature of the period between the two equinoxes 



Figure 9. Superposition of 32 UK heat waves with different lengths and intensities from 1961 to 

1990. 

 

 

Figure 10. In black, the shape of average heat wave anomaly once the daily harmonic is removed 

and average temperature and length is normalised. The dashed portions of the black line represent 

the 10% edges of the curve where transitional effects may come into play. The green lines are 

each anomaly, and the red line is an example of the shape used in this paper as a synthetic heat 

wave. 



2.7 Selection of synthetic internal anomalies 

For synthetic heat waves to be of use in any dialogue between designer and client, and to 

have real meaning to the public when used to declare a health emergency, these heat waves need 

to be describable in simple terms. For example, a heat wave of “5°C above normal for 5 days”. 

The methodology though, needs to define the heat wave as a smooth rise in the temperature - as 

seen in the previous section. Inconveniently, a half sine wave of height 5°C and a width of 5 

days, is only momentarily at 5°C, and hence does not match the natural description. An obvious 

solution that fits well with the need to (a) provide a form that gives an analytical solution under 

an LPM, and (b) can be described in simple public-orientated terms is to describe/classify the 

hump in terms of a rectangle that fits within it (see Table 3 for examples). This approach also 

fits well with the data shown in Figure 9 and Figure 10  and with the UK Met Office description 

of a heat wave given in the introduction. The sinusoidal chosen is the one that fully encloses the 

pulse (defined for example as 5°C above normal for 5 days) yet has minimum area. This can be 

achieved in all cases by multiplying the stated duration by 2.381 and the amplitude by 1.602. 

 

Table 3: A selection of ITAs (the sinusoidal forms) and their public-orientated descriptors (the 

rectangular forms). 

 Duration 

3 Days 

Duration 

5 Days 

Duration 

7 Days 

Intensity 

+2 kelvin 

   
Intensity 

+4 kelvin 

  

 



Intensity 

+6 kelvin 

   
 

 

 

 

Table 4: Nomenclature for the ITAs shown in Table 3 and used in the results section.  

Duration Intensity 

  A = +2 K B= +4 K C = +6 K 

3 days A3 B3 C3 

5 days A5 B5 C5 

7 days A7 B7 C7 

 

Table 5: Consequences of the ITAs on complaints about overheating in commercial buildings 

per square meter of floor area with ITAs being over imposed to the comfort limit of 24 Celsius 

according to Federspiel (Federspiel et al 1998).  

Duration Intensity 

  A = +2 K B= +4 K C = +6 K 

3 days 0.19 0.83 2.16 

5 days 0.32 1.39 3.60 

7 days 0.45 1.94 5.04 

 

Table 4 shows the targeted internal temperature anomalies. We now need to find the 

external temperature anomalies or synthetic heat waves (SHWs) that would give rise to these 

ITAs in buildings, i.e. to reverse engineer the external heat waves. This is the core of this work: 

to reverse engineer heat waves, that give predefined internal conditions that might be of concern 

to public health. That ITAs of this magnitude have a material effect on occupants is shown in 

Table 5, which shows the impact of the ITAs on building occupants according to the model of 

Federspiel (Federspiel et al 1998). In their study, Federspiel et al. performed a detailed study on 

how absolute temperatures outside of the comfort limits for a given length of time represent 

dissatisfaction in building occupants. The ITAs in this paper have been chosen in a way in which 

they cover a substantial range of extreme events in the interior of the building. We checked the 

range of discomforted people they generate according to the Federspiel model. The result showed 



that the ITAs cover the range from very low dissatisfaction, to very high dissatisfaction. We used 

this as a check for verifying that the ITAs chosen were adequate. 

We undertake the reverse engineering using the 28 LPMs of the monitored homes. As 

each one of the houses has a different thermodynamic response, each one of the houses will need 

a different SHW to produce the same ITA. 

Our ITAs (Table 3) are sinusoidal functions defined on the interval -π/2 to 3π/2, and 

shifted by a positive factor equal to its amplitude to ensure that all the values are positive: 

ITA(𝑡) = 1.602 ×  0.5 × 𝐴 (1 + 𝑠𝑖𝑛 (
2𝜋𝑡

2.381𝑇
−

𝜋

2
)) 

Eq. 2 

 

with A the amplitude of the ITA in kelvin, t time in hours and T the length of the ITA in hours. 

In a dynamic linear system, a sinusoidal input has a sinusoidal output with the same 

angular frequency but different amplitude and with a lag. The attenuation factor and the lag can 

be obtained by the transformation of the transfer function to the Laplace domain. The Laplace 

domain allows one to transform the differential equations governing the system into algebraic 

equations defined on the frequency domain. However, this is only true if the system has been 

given enough time to adapt to the given cyclic driving force. In our case, the excitation only 

occurs for one cycle, this implies that the input for generation of the ITA, has to include a factor 

accounting for the transitory effect. This is the transient component, and its magnitude is rather 

small, and it can be found using systems theory (Ogata 2009). The models we use have order 

three, meaning the transfer function that relates the outputs and inputs also has order three.  

An LPM can be represented in the Laplace domain as a transfer function between an 

input (the external temperature) and the output (the internal temperature). In the Laplace domain, 

the frequency is the independent variable, and the attenuation of the transfer function and lag, 

depend on it. The transfer function used is given by Eq 3. The transfer function is given in 

fractional form, and the response of the system is highly conditioned by the values of frequency 

at which the denominator is made zero. These are called the poles of the system and provide 

information about the dynamic response of the system. . The poles with absolute values closer 

to zero are considered the most dominating poles of the system as they have the biggest influence 

on the response (Ogata, 2009). 

H(s) = 
K∗( s−z1)∗(s−z2)

(s−p1)(s−p2)(s−p3)
  Eq. 3 

 



In this equation z1 and z2 represent the frequencies that make the transfer function’s numerator 

zero, and p1, p2 and p3 represent the poles of the system.  

 Knowing that a relationship between the most dominant pole and the error due to the 

transitory effects in the model will provide a good adjustment, a correction factor was obtained 

via the correlation found between the value of the dominant pole and the error due to the 

transitory effects, via Eq 4. 

MAG =  MAG𝑠𝑠𝑟 (0.9829 +  0.0021
1

|pole_min|
) 

Eq. 4 

 

Where MAGssr is the magnification obtained from the Bode diagram and valid for the 

stationary sinusoidal regime (SSR), and MAG is the magnification needed to produce an accurate 

ITA. 

The above was used to identify the magnitude modification that the transitory regime 

may have on the SHW. However, when evaluating the lag that the SHW has to have to produce 

the given ITA the method is simpler, as the time difference between input and output is not 

affected by the transitory part of the response. It is therefore possible from the Laplace domain 

to obtain the lag between the input and the output using the wave length of the ITA under study 

and by calculating the phase of the transfer function.  

From the above it is now possible to calculate analytically the magnification and lag that 

is needed to generate an SHW that will produce a given ITA. If the ITA has the form shown in 

Eq. 2. Then the SHW that will generate that ITA should have the form: 

SHW(t)  = 1.6027 MAG ×  0.5 A (1 + sin (2π
𝑡−𝑃𝐻𝐴

2.381T
 −

𝜋

2
 )) 

Eq. 5 

  

With PHA being the lag (in hours) between input and output obtained analytically from 

the transfer function of the system. 

3 Results 

Each of the 28 buildings produces a different SHW for any ITA in Table 4. The aim of 

this work is to create a methodology that allows one to obtain a single SHW or a small set of 

SHWs that can serve as a resilience check of buildings. This suggests we seek SHWs that would, 

for example, give rise to temperatures of greater than X for more than Y hours in Z percent of 

the stock. Plotting the amplitude of the SHWs generated by the above method for our stock of 

28 buildings gives Figure 11. 



Once it has been decided what increase in internal temperature is considered pernicious, 

one can use the method presented here to create the heat wave that will give rise to this increase. 

As different buildings will “suffer” differently in the event of a given heat wave, each building 

will have a different synthetic heat wave that will produce a given ITA, it is therefore necessary 

to also state what percentage of homes it is considered unacceptable to suffer the given internal 

anomaly. These two parameters then allow the generation of a synthetic heat wave that will 

produce at least that anomaly for that percentage of homes. 

Referring to Figure 11, if one wants to find the SHW that would generate an ITA of 

duration 4 days with an intensity of 2K in 75% of UK houses (assuming our sample of 28 is 

reasonably representative), one begins by determining the magnification for 4 days in 75% of 

the stock. This is achieved by following the red arrows in Figure 11, to obtain a magnification 

of 1.42. This magnification will be the same regardless of the intensity of the ITA. Hence the 

external temperature amplitude will be 1.42 times 2 kelvin. The equation for the SHW will then 

be in this case: 

SHW = 1.42 × 1.6017 × 0.5 × 2[kelvin] (1 + sin (2π
𝑡 − 6.48

2.381 × 96[hours]
 −

𝜋

2
)) 

 

 

Figure 11. Chart to derive the SHWs’ amplitude (as a multiplier of the ITA amplitude) based on 

the duration of the ITA. The percentage is the percentage of the building stock affected to at least 

this degree. 



In the same way it is possible to obtain the lag (the number of hours between when the 

SHW peaks and the ITA peaks) that will be seen between the SHW and the ITA. This parameter 

may be of interest to those designing actuation plans for heat waves as it provides a warning 

period. For example, using Figure 12, and starting from the duration of the ITA on the x-axis, a 

vertical line followed to the line that represents 75% of the buildings. The Y-axis then gives the 

lag, in this case 0.27 days (6 and half hours). Table 6 gives example values for three of the ITAs 

in Table 4. It should be noted in this table that the standard deviations are large in the case of the 

magnification among buildings, but not in the case of the lag. This implies that different houses 

will be affected by heat waves in different ways, and that the variability between homes will be 

larger than the variability that an average home will have between different anomalies (A3, A5 

and A7). This is why this study was interesting, it is crucial to understand the building stock in 

its variability to have valuable findings. The lag however, is much more constant between homes, 

and it is the different anomalies what produce different lags in their effects. 

 

Figure 12. Chart used to derive SHWs’ lag based on the length of the ITA. 

Table 6. Relationships between ITAs from group A and SHWs. 

ITA SHW 



Anomaly  Intensity  

[K] 

 

Duration 

[days] 

Mean magnification 

(50% of homes) 

[K/K] 

Standard 

deviation of 

Magnification 

due to homes 

variability 

[K/K] 

Mean lag 

(50% of 

homes) 

[days] 

Standard 

deviation of 

lag due to 

homes 

variability 

[days] 

A3 +2 3 1.3772 2.6307 0.36749 0.05108 

A5 +2 5 1.1956 3.1486 0.61161 0.04963 

A7 +2 7 1.0899 4.0612 0.79203 0.05411 

 

4 Validation of the method 

As the results presented so far are based on measured data they are validated for the 28 

homes considered. What remains to be confirmed is the correctness and utility of the method. 

This is best achieved by applying the newly created SHWs to buildings as they would be 

modelled by researchers or practicing engineers, using benchmark software tools. We chose to 

test the A3 ITA as the process is the same for all SHWs. In order to do this, a suitable weather 

file was created by superimposing the SHW given by A3 onto a synthetic weather file consisting 

of a flat temperature signal with amplitude of 20ºC and all the other weather variables made 

constant (by setting them to their annual average) except for the solar gains that were set to zero, 

as this gain will have no influence in this particular comparison. The Synthetic Heat Waves 

Weather Files proposed here are to be taken as a definition per se of several heat waves. A 

definition that is derived by the effect that they have in our population considering the current 

building stock. And with this establish a benchmark in the same way as the 1990 figures of CO2 

emissions stablish a baseline when discussing energy use. Our synthetic weather files would 

contain a variety of Synthetic Heat Waves that have a given effect on the Building Stock of 2006. 

This would could be updated as the building stock is (hopefully) improved. 

We then created a SHW that would produce at least an A3 (i.e. a 2K rise for 3 days) in 

50% of the dwellings (we term this A3/50). For that we use the graph in Figure 11 and Figure 12 

so we can evaluate the lag that we would expect between SHW and ITA.  

Each of the 28 buildings used to obtain the LPMs were modelled in Energy Plus (a 

construction industry standard for thermal simulation - see the Appendix 3 for construction 

details and modelling assumptions) under this SHW. The SHW was placed starting at day 30 of 

the simulation to ensure a warm up period. The results are shown in Figure 13. 



 

Figure 13. Impact of the SHW A3/50 on the 28 buildings given by an A3 ITA when modelled in 

EnergyPlus (genITA.E+) and modelled with LPM (genITA.LPM). 

We can see in Figure 13 how the models from EnergyPlus also show a temperature rise 

and duration similar to the ITA. This implies that the method produced similar results when used 

within industry standard software, not just within LPMs. We see that 85.7% have elevated 

temperatures of at least 2K for at least 3 days. This is more than the 50% required, indicating the 

method is conservative. It is also worth noting that as the EnergyPlus models were created using 

data from the SAP assessment of the buildings. This is known to be imprecise, so we would not 

expect perfect fidelity.  

Also, after consideration of this graph, one has to take into account that several works in 

the literature where the European Energy Performance Certificate (a European equivalent with 

respect to methodology of calculation and purpose) has failed to provide an accurate performance 

evaluation with respect to overall heat transfer of the building (Tronchin et al. 2012), (Herrando 

et al. 2016) or (Iman et al 2017). It is for this reason that we did not want to give too much 

importance to the extract comparison between these two sets of models. It was just to show that 

we are seeing similar responses between the two. The reader is invited to examine Appendix 1 

and Appendix 3 to identify differences between the HTCs derived from the SAP evaluation 



(visual inspection tests), and the conductivities derived from the data (therefore correct by 

design) to find the reason for the discrepancies in the curves of Figure 13. 

5 Example of the synthetic heat waves for practitioners 

The temperatures found within a building during a heat wave will be a complex product 

of the interaction of the architecture, the occupants and the local weather. Although it would be 

easy to splice the SHWs into a time series of observed weather, or a test reference year (Eames 

et al. 2010), this would raise questions of where exactly in the year to place it and what the impact 

of the weather just before the SHW might be, and it would be hard to find a consistent solution 

for all locations. For example, picking a date such as the 1st July would not work, as in one 

location the week before might have been particularly hot, but in another not so. Hence we 

suggest the use of totally synthetic weather during the run-up period based on simple functions 

for all variables when trying to quantify the resilience of a building or a design to heat waves in 

a robust and consistent way. Clearly this is an approximation, similar in some ways to the 

admittance method (Clarke, 1985) but we are trying to rank-order the resilience of designs so it 

would seem reasonable. The most critical time series would be the temperature time series and 

we suggest that this is constructed using a sine wave with a 24-hour period, with the mean equal 

to the summer time mean over a twenty-year period and the diurnal cycle also being the mean 

over this period. As these numbers are known for future years from climate change modelling, 

researchers should also be able to use the approach to look at resilience into the future. The other 

weather variables are slightly more problematic, in that their forms are interlinked, for example 

humidity is related in many locations to temperature. It is not known whether this interlinking is 

material for this kind of work, but it is likely that all the necessary weather variables can be 

represented by simple forms even if they are interrelated.  

We term such a SHW embedded within a weather time series produced using simple 

synthetic time series for all variables, a super synthetic heat wave (SSHW). Figure 14 shows the 

A3/50 example for Nottingham with the mean and diurnal cycle based on the 20 years of 

observed weather (astronomical summer) used to assemble the current test reference year for 

Nottingham. As can be seen, the heat wave becomes an uplift to the normal diurnal signal. 



 

Figure 14. A3/50 SSHW for Nottingham. 

If we assume ranges of possible heat wave durations of at least 3 to 7 days (as indicated 

by Table 5) and the range of amplitudes to be 2 to 6 °C (as indicated by Table 5) we have 25 

possible combinations, even if we restrict ourselves to integer values of duration and amplitude. 

It is unlikely either researchers or practicing engineers would be interested in all possible 

combinations, hence we suggest that the reduced escalating set of five SHWs shown in Table 7 

might be useful for comparing the resilience of designs, however other sets could be used. This 

set and its nomenclature has been picked to have resonance and simple meaning with architects, 

designers, government and the public. The methodology presented here aims at providing the 

scientific tools to create synthetic heat waves that will help with the analysis of resilience. 

Depending on the application at hand, the professionals in charge of designing the synthetic 

weather-files (policy makers or professional associations), will determine the ITAs, after 

considering the effect in the population that they are willing to accept. This will include the effect 

on occupants (ITAs) and the maximum percentage of homes that it is considered reasonable to 

suffer a particular ITA. Here we provide two examples to illustrate the application, but each 

application of the method can have a variety of approaches. In this case two percentiles have 

been chosen. One (50%) indicating that half or more buildings will show such an increase above 

typical for the time of year. The other, indicating 10% of buildings will show such an increase, 

being more precautionary, as it is presumably often unknown in what housing vulnerable groups 



might be resident. 10% will also be of use to those wanting to show that their design is 

particularly resilient to heat waves, as it indicates that 90% of building fare worse.  

Table 7. Suggested list and nomenclature of possible SHWs for studying resilience. For 

example, the heat wave shown in bold would be referred to simply as “2/10”. 

Rise (oC) Percentile Meaning of heat wave 

2 10 A 2oC rise in temp above normal for 2 days in 10% of 

buildings 

2 50 A 2oC rise in temp above normal for 2 days in 50% of buildings 

4 10 A 4oC rise in temp above normal for 4 days in 10% of buildings 

4 50 A 4oC rise in temp above normal for 4 days in 50% of buildings 

6 10 A 6oC rise in temp above normal for 6 days in 10% of buildings 

6 50 A 6oC rise in temp above normal for 6 days in 50% of buildings 

8 10 An 8oC rise in temp above normal for 8 days in 10% of buildings 

8 50 An 8oC rise in temp above normal for 8 days in 50% of buildings 

10 10 A 10oC rise in temp above normal for 10 days in 10% of buildings 

10 50 A 10oC rise in temp above normal for 10 days in 50% of buildings 

 

 With future knowledge of return periods for such events, additional meaning could be 

given to the SHWs, for example that in London SHW 4/10 has as return period of X years, now 

and Y in 2080.  

In practice, it is envisioned designers would apply the SSHW of interest, for example the 

4/10, within a dynamic thermal model of their building, and if their design did not increase (in 

this case) by 4oC for 4 days, then it is more resilient to such a heat wave than 90% of the domestic 

stock, thereby providing confidence. The idea will be that the users of this methodology will 

know that the effect of the synthetic weather is the one that would occur in a 2006 building stock. 

The effects in current and future stock will have to be re-calculated, as is done in other 

methodologies such as the future climate predictions for creating future weather files. 



Alongside testing a design against the pre-existing stock, there is the need to test against 

targets that reflect the potential to cause discomfort or harm. Hence, further work is needed to 

understand the implications of maintaining vulnerable groups at high temperatures for differing 

periods of time within buildings. 

It is possible that 28 buildings might not be enough to statistically represent the full range 

of domestic buildings that exist. However, this number could be increased at very low cost, and 

there may already be larger data sets of internal temperature time series that could be used. 

 

6 Summary and Conclusions 

Previous definitions of heat waves have all been based on external conditions, yet it is 

the conditions within buildings that kill people, often in large numbers. In this work, we have 

developed a way of defining heat waves in terms of the impact they would have on conditions 

within buildings and on their occupants. This was based on data collected in 28 dwellings during 

a heat wave. The buildings used are from four different locations in the UK. The buildings’ 

characteristics are detailed in Appendix 1, and they have been picked randomly from a published 

database. The buildings are representative of the UK stock, but the methodology that we present 

can (and should be) applied world-wide, thereby giving synthetic heat waves that are truly 

occupant-centric. Considering that many countries have initiatives to capture and record energy 

consumption and other environmental parameters such as temperatures, one can anticipate that 

the methodology could easily be applied internationally. 

As part of this, we converted a problem that needs to be solved in a numerical way 

building-by-building, into a general analytical problem. The final result is a set of super synthetic 

heat waves that can be used to discuss and rank order the resilience of new buildings or pre-

existing ones, or to set alerts for public emergencies. 

The work uses a methodology that employs data-driven models that have been created to 

fit the behaviour of real buildings, this should be contrasted with models created from 

architectural drawings—which are known to frequently not represent a building as-built 

(especially with respect to air tightness and U-value), nor to contain a truthful description of how 

the occupants really use the building. Although the models used are simpler than industry 

standard models such as Energy Plus, they offer the certainty of fitting the real world by default. 

More importantly, they also offer the advantage of having analytical forms that allow one to not 



only obtain the output (internal conditions) for a given input (weather data, etc.) but also to 

reverse the process. 

The method used for this reverse engineering consisted of using systems theory and 

Laplace domain modelling analysis to identify the external heat waves that produce a defined 

internal temperature response within the buildings. The method was shown to be accurate and 

produced results consistent with those from Energy Plus—which is important if the super 

synthetic heat waves are to be adopted as one method of showing compliance to a regulatory 

body. The method was also shown to be easy to use, as it can be reduced to consulting a graph, 

or using an algebraic equation. We were then able to create synthetic heat waves that produce an 

internal overheating defined by us within a set percentage of the building stock. This is the core 

result of the paper, and it has the potential to alter the way we assess the resilience of buildings. 

In addition, the form of the heat waves produced were shown to be similar to those from 

observed heat waves. This suggests that they could also be of use to those wanting to look at the 

resilience in other settings, for example cladding materials or agriculture. 

By exchanging an external definition of a heat wave for an internal one, we believe the 

method is a more human-centric way of evaluating the resilience of buildings, and could form 

the basis of an early warning system for declaring a health emergency. 

For those wishing to try the approach, SSWHs in epw format can be downloaded from 

colbe.bath.ac.uk. 
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9 Appendix 1. Building Narratives 

 District Fl. Area [m2] Archetype Year Wall Area [m2] Wall U-Value Glass Area [m2] 

1 Belfast 31.20 3rd floor of Mid Terrace 1904 67.84 3.26 7.70 

2 Manchester 85.00 Mid Terrace 2006 57.77 0.20 19.70 

3 Manchester 85.00 Mid Terrace 2006 57.77 0.20 19.70 

4 Manchester 85.00 Mid Terrace 2006 57.77 0.20 19.70 

5 Nottingham 93.91 Detached Cottage 1790 107.67 0.90 22.81 

6 Nottingham 90.26 Semi Detached 1957 71.56 2.12 25.69 

7 Belfast 77.17 End Terrace 1959 97.60 0.76 17.90 

8 Belfast 65.62 Semi Detached 1924 missing missing 10.35 

9 Belfast 64.86 3rd floor of Mid Terrace 1904 missing missing 9.98 

10 Belfast 61.33 Semi Detached 1969 73.68 missing 4.32 

11 Belfast 94.06 Semi Detached 2005 missing missing 20.14 

12 Belfast 88.00 End Terrace 1964 88.46 1.63 14.07 

13 Belfast 57.22 Mid Terrace 1904 missing missing 5.04 

14 Belfast 88.80 End Terrace 1960 89.87 0.62 13.50 

15 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.94 

16 Belfast 77.80 Semi Detached 1964 108.00 0.46 18.20 

17 Belfast 62.52 End Terrace 1969 96.50 0.46 13.30 

18 Cambridge 95.81 Mid Terrace 2005 78.68 0.63 11.94 

19 Belfast 67.27 3rd floor of Mid Terrace 1904 missing 2.20 7.19 

20 Belfast 58.85 Mid Terrace 1969 86.20 0.76 13.50 

21 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.94 

22 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.94 

23 Belfast 75.63 Terrace 1969 97.80 0.46 14.20 

24 Belfast 38.66 Mid Terrace 1904 missing 1.20 8.52 

25 Cambridge 95.81 End Terrace 2005 78.68 0.63 11.94 

26 Derby 41.80 Semi Detached 1970 25.65 0.52 14.01 

27 Belfast 77.17 Mid Terrace 1969 97.60 0.76 17.90 

28 Belfast 80.90 End Terrace 1959 119.60 0.76 15.20 

 



10 Appendix 2. Lumped Parameter Models 

 

Error on the fitting in CDH. Err = (CDH_sim – CDH_real)/CDH_real 

ID K1 

[W/K] 
C1 
[Wh/K] 

K2 
[W/K] 

C2 
[Wh/K] 

K3 
[W/K] 

C3 
[Wh/K] 

K4 
[W/K] 

SF  Err 

1 191.06 91.13 84.70 143.09 84.18 4982.82 35.48 1.10 0.047731 

2 128.95 0.01 69.35 199.65 100.46 5135.95 53.53 3.05 0.112375 

3 166.88 62.44 0.00 573.49 162.49 4945.20 118.30 4.90 0.008652 

4 877.24 143.03 0.00 153.20 98.57 4866.32 66.74 2.03 0.026029 

5 252.92 1.12 174.48 322.52 141.92 4919.55 84.10 2.71 0.043731 

6 352.51 3002.51 368.61 734.79 275.16 5169.91 412.54 7.35 0.00826 

7 200.21 121.58 78.74 174.16 93.64 4992.06 34.11 0.49 -0.02726 

8 200.14 120.89 78.81 174.12 93.90 4992.16 33.96 0.95 0.066735 

9 389.02 0.01 236.90 591.17 214.34 5204.82 90.71 2.28 0.031665 

10 609.32 0.18 380.08 844.13 563.41 4996.06 167.99 4.24 0.040354 

11 146.85 284.72 234.53 273.74 103.54 4947.87 82.43 2.31 0.060598 

12 355.74 3005.74 371.84 746.72 278.39 5173.14 420.02 10.58 0.018903 

13 451.05 286.63 0.00 495.80 199.70 5039.17 169.35 3.12 0.042976 

14 390.77 0.00 148.70 590.50 223.15 5179.46 123.56 2.94 0.078082 

15 0.00 131.24 332.01 65.45 68.45 1200.95 81.12 0.25 0.035857 

16 500.28 1000.28 366.38 1000.28 272.93 5167.68 201.39 5.12 0.031342 

17 255.71 2117.15 56.98 613.05 104.93 5294.83 151.89 1.65 0.024542 

18 514.57 314.57 214.57 1014.57 614.57 50014.57 272.83 19.40 0.036825 

19 566.67 47.30 157.61 203.25 116.12 4493.08 10.42 1.87 0.029433 

20 268.20 314.90 180.29 266.49 105.15 5149.23 62.09 1.73 0.030092 

21 200.05 121.05 78.05 174.05 93.05 4992.05 33.27 1.35 0.054055 

22 263.84 93.83 109.46 242.55 172.33 4945.35 89.21 1.00 0.044456 

23 320.01 0.17 167.93 501.68 131.53 4921.23 0.00 0.96 0.095427 

24 158.26 1593.63 247.37 900.80 236.58 5253.78 311.42 3.38 0.047512 

25 413.89 0.00 277.80 631.60 233.23 5056.88 77.96 4.00 0.060017 

26 461.74 454.55 0.04 112.78 104.64 4896.19 89.20 1.95 0.035728 

27 452.64 0.00 156.79 1165.88 320.91 5016.19 234.87 1.41 0.082392 

28 976.77 3158.21 342.28 205.38 378.36 2774.62 4.76 2.26 0.130374 

 

11 Appendix 3. Energy Plus models 

Three archetypes have been defined to accommodate the building types from which 

data has been extracted. The three types are detached, semidetached and terrace. Depending on 

the building type a different configuration will be adopted that will affect the number of walls 

that are adiabatic and the facades in which windows are located. As shown in Appendix 1, 

some of the parameters of the buildings are missing. In the case of having a missing value, the 

average value from the existing values of the other buildings will be adopted.  



The process of creating the different buildings have been automated. The floor area was 

obtained from the building data and always considered that the building had an aspect ratio of 

1.5, as there was no information about the aspect ratios.  

The ventilation and infiltration of each building was obtained with the SAP Vent HL 

that is reported on the data. Once transformed in ach considering the volume of the building, a 

background constant infiltration was considered with that value.  

 As most of the construction types of walls were unknown, a generic construction with 

an outer brick layer, and a sandwich configuration with plasterboard – insulation –plasterboard 

was used. Adjusting the thickness of the insulation it was possible to generate a wall with a U-

Value equal to that reported in the data. The same was done with ground floors and roofs.  

As no U-Values were provided for windows, generic single, double, and triple glazing 

windows were used with wooden frame. 

The simulation was done using 6 time steps per hour, and the simulation spanned from 

the first of January to the first of September. Although the output of the simulation only was 

considered beyond the first of June, the simulation was started from the beginning of the year 

to make sure that thermal inertia from winter was taken into account in the summer response.  

The output of the simulation was the internal temperature of the building that was then 

used to evaluate and compare with the output from the LPMs. 

 


