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Abstract: In this paper the delivery of high power Er:YAG laser pulses
through a silica hollow core photonic crystal fibre is demonstrated. The
Er:YAG wavelength of 2.94 um is well beyond the normal transmittance of
bulk silica but the unique hollow core guidance allows silica to guide in this
regime. We have demonstrated for the first time the ability to deliver high
energy pulses through an all-silica fibre at 2.94 um. These silica fibres are
mechanically and chemically robust, biocompatible and have low sensitivity
to bending. A maximum pulse energy of 14 mJ at 2.94 um was delivered
through the fibre. This, to our knowledge, is the first time a silica hollow
core photonic crystal fibre has been shown to transmit 2.94 pm laser light at
a fluence exceeding the thresholds required for modification (e.g. cutting
and drilling) of hard biological tissue. Consequently, laser delivery systems
based on these fibres have the potential for the realization of novel,
minimally-invasive surgical procedures.
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1. Introduction

Er:YAG lasers operating at 2.94 pum are used for medical and surgical applications. Currently,
delivery of surgical laser light for use in the operating theatre is achieved using articulated
arms [1]. There are a number of shortfalls of these systems, in particular misalignment issues,
where the beam is slightly off-axis, resulting in beam wander as the arm is manipulated.
These systems are also difficult to maintain. Additionally, articulated arms restrict the
movement of the surgeon and reduce the capabilities for endoscopic or minimally invasive
procedures. A robust and flexible fibre delivery system would alleviate these problems and
radically increase the usefulness of surgical lasers. However, the development of reliable
fibres for this wavelength is challenging and the fibres which are available (both solid and
hollow core) have significant drawbacks.

There are a number of solid core fibres that have been investigated for this application
area, based on Chalcogenides [2,3], GeO, [3] or Sapphire [4]. Although appreciable power
delivery has been demonstrated, in general it is necessary to reduce the energy density carried
in the core to overcome the Laser Induced Damage Threshold (LIDT) of the bulk material.
Consequently, they tend to be large core (multimoded) fibres, and hence the energy
distribution and density at the output of the fibre will be sensitive to bending [5] due to
changes in modal patterns. The main drive for fibre delivery is the flexibility it gives the users
and it is often important or beneficial to have a small bend radius.

There also exists a range of hollow optical waveguides which confine the optical radiation
by different mechanisms, e.g. total internal reflection; Bragg reflection; and internal reflection
at a dielectric coated metallic interface in the case of leaky tube waveguides, which guide in
the infrared wavelength range up to 20 pum [5-7]. A key benefit of all hollow optical
waveguides fibres is that the optical power is mostly contained within a gas and they therefore
typically have higher damage thresholds than solid core fibres. Also, since there are no
Fresnel reflections at the fibre ends, a high coupling efficiency is possible [8]. However,
during practical use an end capsulation of the fibre at the output side is often required, which
would introduce loses due to Fresnel reflections at around 6.5% per surface for a sapphire
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based endtip. As regards optical damage, these encapsulation surfaces can be placed a short
distance from the fibre end to ensure a reduced intensity due to beam divergence (and hence
increased damage threshold) compared with the end-face of a solid core fibre. However most
types of hollow core fibre support many guided modes which, as with the solid core
multimode fibres described earlier, leads to high bend losses, multi-modal behaviour and
changes in output beam profile changes as the fibre is bent [6], [9]- [10].

The exception is hollow-core photonic crystal fibres (HC-PCF), which can offer single-
mode guidance and which are relatively bend insensitive compared with traditional hollow
waveguides [11], [12]. This allows increased flexibility and accessibility in applications such
as laser surgery. The unique guiding mechanism is achieved by a periodic structure
surrounding the core. This structure is made of air holes in fused silica leading to a photonic
bandgap material within which particular frequencies of electro-magnetic waves cannot
propagate for a range of angles, confining guided modes inside the core. Delivery of high
energy nanosecond pulses at 1064 nm has already been demonstrated with this class of fibre
[11], [13] showing the marked increase in single mode power delivery possible with hollow
core guidance. However, with HC-PCFs it is also possible to extend the transmission window
of silica significantly beyond that exhibited by the bulk material as the majority of the light is
guided in air; indeed fibres have already been demonstrated that guide light of wavelength of
~3 um [12] with relatively low attenuation. The cross section of a hollow core fused silica
fibre guiding in the 2.94 um region is shown in Fig. 1.

Fig. 1. SEM picture of the HC-PCF used in this paper, the core diameter is 24 um, the pitch is
~8 um and the PCF region is ~135 pum across.

Of specific interest for surgical applications is the 2.94 um wavelength because the water
contained in human tissue strongly absorbs light at this wavelength. The high absorption leads
to a small penetration depth and therefore the unique capability of high ablation rates and
precise tissue ablation with a minimal heat-affected zone. The thresholds for laser ablation at
2.94 pm for different tissue types are shown in Table 1. We present, for the first time to our
knowledge, single-mode like pulse delivery through a silica HC-PCF which exceeds these
thresholds and therefore has the potential to be used for cutting and drilling of soft and hard
tissue, and hence be implemented in surgical applications where a high power laser radiation
is needed and/or a single mode profile desired.
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Table 1. Ablation Thresholds for Different Tissue Types

Rep rate [Hz] Pulse length [us] Tissue type Threshold [J/cm?] Reference
2 250 Human dental enamel 35 [19]
7-10 250 Human skin 1.6 [20]
1.7 250 Pig retina 1 [21]
1 100-5000 Human dentine 2.69-3.66 [17] [10]
5 NA Pig skin (vitro) 3.6-5.6 [22]
2 200 Guinea pig skin 0.6-1.5 [15]
2 200 Guinea pig bone 2.1-34 [15]

2 Pulse delivery
2.1 Fibre

The production method for the HC-PCF presented in this paper is a standard stack and draw
process with parameters optimized to achieve a bandgap at around 2.94 pum. Fused silica
(Suprasil F300) was used for the fabrication of the HC-PCF. An attenuation measurement is
shown in Fig. 2. The average loss in the wavelength range 2.9 pm to 3.15 pm is ~1.2 dB/m
and the loss at the wavelength of the Er:YAG laser is 1.1 dB/m. Attenuation was measured
using a Bentham TM300 monochromator with a spectral resolution of ~20 nm using a cut-
back technique. A tungsten halogen bulb was used as a broadband light source. As can be
seen in Fig. 3 the bulk attenuation for Suprasil F300 at 2.94 um is 50 dB/m [14]. No particular
care or special procedures were taken during fabrication of the fibre to control or minimise
OH levels.

2.6 Loss of the HC-PCF fibre
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Fig. 3. Bulk attenuation for dry silica (Suprasil F300) used for the fabrication of the HC-PCF, from [14].
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2.2 Experimental Setup
2.2.1 Laser

For the pulse delivery investigation an Impex High Tech ERB 15 laser was used. The
operating wavelength is 2.937 pm and the pulse-length is 225 pus FWHM (Fig. 4a), with a M?
of ~2.5 at a repetition rate of ~15 Hz. The spatial profile of the laser has a doughnut shape
(Fig. 4b), the low resolution in the image is a result of the relative large pixel size of the IR
camera used (each pixel is 50 x 50 um and in this arrangement imaged an area ~100 x 100
pum).

The laser output was expanded to a diameter of 2.1 cm (46 beam width) and focused into
the 0.4 m long fibre using a CaF, lens with f = 100 mm, giving an NA of 0.1 and a
corresponding spot size diameter of 46 um. This is double the size of the core, but due to the
relative poor laser beam quality a compromise had to be made between the optimal spot size
and NA. Tests with other NA values (0.2 and 0.05) resulted in reduced coupling efficiencies.
However, it was apparent that there was still a significant mismatch between the laser and
fibre fundamental mode which led to a very low coupling efficiency of around 5%. We would
expect this coupling efficiency to be significantly improved by using a laser with improved
beam quality to allow optimised matching into the fundamental mode of the fibre. Previous
work with delivery of high energy pulses through HC-PCF has shown that efficiencies around
98% should be achievable [8]. However, for this study a high power laser source at 2.94 um
with high beam quality was not available.

Optimal fibre alignment conditions were achieved by using a 3-axis micro block with the
additional alignment of pitch and yaw, to maximise the output power. For the initial
alignment the laser was operated just above threshold in conjunction with one or several glass
microscope slides for variable attenuation (T = 47% per slide) [15]. Once the alignment was
optimised the slides were removed and the laser output power gradually increased to
determine the maximum transmission. The front facet of the fibre was monitored with a
camera to detect any damage due to laser radiation. The fibre was bent with a radius of ~10
cm during these experiments.

a)

Detector signal fa.u.
Vertical / mm

0 200 400 600 200

Time /ms ‘ Horizontal / mm
Fig. 4. a) Temporal profile of the laser pulse b) Spatial beam profile of the laser.
2.3 Results

The maximum output power delivered through the HC-PCF was measured to be 210 mW at
~15 Hz, corresponding to a pulse energy of 14 mJ and a pulse length of 225 pus FWHM. At
higher powers the fibre launch end sustained catastrophic damage and the cladding area
surrounding the core was completely destroyed, as can be seen in Fig. 5.
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Fig. 5. Optical microscopy image of catastrophic damage at the launch end of the fibre. Most
of the periodic structure is destroyed.

However, even with the damaged fibre launch end, it was still possible to guide light
through the fibre and a power of 80 mW (5.4 mJ) could still be transmitted. No damage to the
output facet was observed during any of the experiments and the output facet had the
appearance of a pristine cleaved end (as shown in Fig. 1) which included pulse delivery
experiments with the damaged launch facet. To evaluate the LIDT of the HC-PCF, light was
deliberately focused onto the cladding structure and the pulse energy required to cause
damage was determined. The cladding structure damaged at a fluence of ~30 kJ/cm?.

Previous work [11] found the LIDT for the cladding structure of a similar silica HC-PCF
to be 130 — 140 J/cm? for an 8 ns pulse (at 1064 nm). The approximate factor of t,"?, where t,
is the pulse width, can be used to scale energies [16] from an 8 ns to a 250 us pulse. Scaling
the 8 ns pulse results gives an expected LIDT of 23.5 ki/cm? for a 225 ps pulse which is in
close agreement to the value found in these experiments (30 kd/cm?). In fact one would expect
a slightly different value for the LIDT in these experiments, which were conducted at 2.94 um
compared to 1.064 um, as materials have be shown to have a different LIDT at different
wavelengths [17]. The potential capability of these fibres for pulse delivery can be estimated
by considering a Gaussian beam at the input face. Fibre damage will occur if the intensity at
the input face incident on the silica glass surrounding the air core exceeds the damage
threshold. If the fluence in the silica glass exceeds the 30 ki/cm? measured above, then the
fibre will be damaged. The mode field diameter of the fibre is estimated to be the same size as
the core i.e. 24 um. When coupling a Gaussian beam with a 1/e? width of 24 um into the
fibre, with a fluence of 111 kJ/cm? in the core region, the intensity incident on the silica
cladding will be in the order of the damage threshold of 30 kl/cm?®. At the fluence of 111
kJ/cm? in the 24 um diameter core a pulse of 500 mJ is being delivered. This value could be
considered to be the absolute maximum pulse energy deliverable with these fibres using an
optimised laser source with sufficiently good beam quality to achieve a Gaussian beam waist
of appropriate diameter and divergence.

The output facet of the fibre showed no damage during the experiments, even after the
launch end was destroyed. This gives confidence that optimised coupling would lead to
improved performance. The grey scale images for the near and far field beam profile and
corresponding cross section are shown in Fig. 6 and it can be seen the beam is roughly
circular and single-mode like. The pictures were made by capturing the reflection of the laser
light from the fibre end on a ceramic surface using a mid-infrared camera (Electrophysics
PV320-L2E). A ~15 x magnification telescope was used to take the near field images.
Additionally the image was not taken in the exact focal plane however the image plane was
still within the Rayleigh length to enhance the resolution. The offset of the pictures is due to
background noise.
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One of the potential problems with implementing a hollow core fibre in surgical
applications is possible contamination due to ingress of blood and other fluids during in-vivo
use. In order to protect and seal the ‘open’ end of the fibre from liquid ingress we previously
developed a sapphire “end cap” [18]. With such an end-capped fibre, a typical distance of up
to 500 pm could be anticipated between fibre end facet and the tissue due to the thickness of
the window in the endtip. The NA of the fibre was measured as 0.12, which gives a spot size
of 140 um diameter (core diameter is 24 um) at a distance of 500 pum from the fibre end. If
pulses of energy 12 mJ (180 mW) are delivered through the fibre and assuming a total loss
due to the endtip of around 15% the pulse energy incident on the tissue would be 10.2 mJ.
Hence the energy density in a 140 pm spot would be 66.2 J/cm?. A value of 12 mJ (180 mW)
for the fibre output was chosen as tests were done at this level to check the stability. The
output power was measured for 5 minutes (4425 pulses) at 180 mW with no observable
damage to the launch facet. During this time the output power changed by £ 30 mW, which
was attributed to the instability of the laser and slight movements of the fibre at the input end.
The fluctuations in output power had no effect on the pulse delivery capability of the fibre.
However for a clinical system a more stable laser is required to ensure a constant output
power. The experiments were carried out over a number of weeks, and during this period no
degradation of the fibre was detected. The demonstrated power density of 66.2 J/cm? exceeds
the thresholds needed for cutting and drilling of biological tissue, as shown in Table 1.
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Fig. 6. Near- and far-field beam profiles. a): near-field profile at the fibre end with b)
associated line scan (images are magnified); c) far-field profile at a distance of 4 cm from the
fibre output end with d) associated line scan.

3 Conclusion

In this paper we demonstrate the ability to deliver, for the first time, high energy microsecond
pulsed Er:-YAG laser light at a wavelength of 2.94 um through a silica HCPCF. We have
shown that despite the non-optimised launch conditions we are able to deliver pulse energies
up to 14 mJ at a pulse length of 225 ps (FWHM). Taking into account practical considerations
for realising a surgical delivery system, such as end capping, an estimated power density of
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66.2 J/cm? is achievable which exceeds previously reported data for the ablation of biological
tissue. Additionally, silica HC-PCF’s are more mechanically and chemically robust, less bend
sensitive and more biocompatible compared to current fibres fabricated from alternative
materials for delivery at this wavelength. Our results therefore demonstrate that silica HC-
PCF have great potential to be developed into surgical laser delivery systems and offers a
promising new alternative to the established articulated arms or large core fibres providing
improved flexibility and enabling and enhancing minimally invasive surgical procedures.
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