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ABSTRACT

Electricity generation contributes a large proportion of the total greenhouse gas emissions in
the United Kingdom (UK), due to the predominant use of fossil fuel (coal and natural gas)
combustion for this purpose. A range of future UK energy scenarios has been employed to
determine their resulting environmental and carbon footprints. The three scenarios were
characterised as ‘Business As Usual’ (BAU), ‘Low Carbon’ (LC) and ‘Deep Green’ (DQG)
futures, and yielded possible electricity demands out to 2050. It was found that the
environmental footprint of the current power network is 41 million (M) global hectares (gha).
If future trends follow a BAU scenario, then this footprint is observed to fall to about 25
Mgha in 2050. The LC scenario implies an extensive penetration of micro-generators in the
home to satisfy heat and power demands. However, these energy requirements are minimised
by way of improved insulation of the building fabric and other demand reduction measures. In
contrast, the DG scenario presupposes a network where centralised, large-scale renewable
energy technologies (mainly wind turbines) have an important role in the power generation.
However, both the LC and DG scenarios were found to lead to footprints of less than 4 Mgha
by 2050.
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1. INTRODUCTION

1.1 Background

Electricity generation presently contributes approximately 30% of United Kingdom (UK)
carbon dioxide (CO;) emissions [1], the principal ‘greenhouse gas’ (GHG) having an
atmospheric residence time of about 100 years [2]. This is predominantly due to the use of
fossil fuel (coal and natural gas) combustion for this purpose. Changes in atmospheric
concentrations of GHGs affect the energy balance of the global climate system. Human
activities have led to quite dramatic increases since 1950 in the ‘basket’” of GHGs
incorporated in the Kyoto Protocol; concentrations rising from 330 ppm to about 430 ppm
currently [3]. Prior to the first industrial revolution the atmospheric concentration of ‘Kyoto
gases’ was only some 270 ppm. The cause of the observed rise in global average near-surface
temperatures over the second half of the 20™ Century has been a matter of dispute and
controversy. But the most recent (2007) scientific assessment by the Intergovernmental Panel
on Climate Change (IPCC) states with ‘very high confidence’ that humans are having a
significant impact on the global warming [3]. They argue that GHG emissions from human
activities trap long-wave thermal radiation from the Earth’s surface in the atmosphere (not
strictly ‘greenhouse’ phenomena), and that these are the main cause of rises in climatic
temperatures. In order to mitigate anthropogenic climate change, the Royal Commission on
Environmental Pollution in the UK [4] recommended at the turn of the Millennium a 60% cut
in UK CO; emissions by 2050. The British Government subsequently set a tougher, legally
binding target of reducing the nation’s CO, emissions overall by 80% by 2050 in comparison
to a 1990 baseline [5].

The history of electricity generation since the time of Edison has been based around the
concept of employing large, centralised power stations (see, for example, Buchanan [6],
Hammond [2] and Hughes [7]). Thus, the bulk of electricity in Britain is still generated by
large thermal power plants that are connected to a high-voltage transmission grid, and is then
distributed to end-users via regional low-voltage distribution networks [1,8]. The whole UK
energy system is represented schematically in Fig.1 [2], where the electricity network is
clearly illustrated. This centralised model has delivered economies of scale and reliability [9],
but there are significant drawbacks. It suffers, for example, from overall energy system losses
of about 65% in terms of primary energy input [2,9-11]. These losses predominantly result
from heat wasted during electricity production (58%), but there are smaller losses rising in
transmission and distribution - approximately 1.5% and 5% respectively [1,9]. The use of
micro-generation and other decentralised or distributed power technologies has the potential
to reduce such losses. It has recently been predicted that micro-generation could provide 30—
40% of the country’s electricity needs by 2050 [9].

1.2 The Issues Considered

Environmental or ‘ecological’ footprints (ef) have been widely used in recent years as
indicators of resource consumption and waste absorption transformed on the basis of
biologically productive land area [in global hectares (gha)] required per capita with prevailing
technology [12-16]. They represent a partial measure of the extent to which an activity [that
might be associated with communities, technologies, or systems] is ‘sustainable’ [14,15]. In
contrast, ‘carbon footprints’ (cf) are the amount of carbon [or carbon dioxide equivalent
(CO2)] emissions associated with such activities [17,18], and are closely related to
environmental footprints. But, unlike the latter, they are generally presented in terms of units
of mass or weight (kilograms per functional unit), rather than in spatial units (such as gha).



These carbon footprints have become the ‘currency’ of debate in a climate-constrained world
[18]. They are increasingly popular ecological indicators, adopted by individuals, businesses,
governments, and the media alike. Carbon and environmental footprint analysis have been
employed in the present study to estimate the environmental impacts associated with UK
power generation based on historic data and alternative energy scenarios out to 2050. Thus,
the UK Electricity Supply Industry (ESI) is evaluated on a ‘whole systems’ basis, within an
overall ‘sustainability framework’ [2,14,15]. The current footprint analysis is consistent with
that developed by the Global Footprint Network and related bodies. The environmental
footprint (ef) was broken down respectively into carbon (effectively cf), embodied energy,
transport, built land, water, and waste components. ef was then determined on an annual basis
from 1950-2050. Uncertainties related to both footprints were estimated using an established
procedure for uncertainty analysis [15,19].

Historical electricity consumption data was available from UK national statistics for different
fuel types over the period from 1950 [9]. In order to determine future trends in the power
sector footprints, a range of future energy scenarios were adopted that had previously been
developed for the UK SUPERGEN Research Consortium on ‘Highly Distributed Power
Systems’ (HDPS) by Jardine and Ault [20]: funded under the auspices of the UK Research
Councils’ Energy Programme. The original aim of these scenarios was to study the potential
for extensive penetration of micro-generators into the British electricity network. They were
developed from a synthesis of those that had been earlier devised for future network
technologies on the one hand, and domestic energy demands on the other. Three resulting
scenarios were characterised as ‘Business As Usual’ (BAU), ‘Low Carbon’ (LC) and ‘Deep
Green’ (DG) futures, and yielded possible future electricity demands to 2050. The present
contribution is part of an ongoing research effort aimed at evaluating and optimising the
performance of various sustainable energy systems [2,8,9,11] in the broad context of
transition pathways towards a low carbon future for the UK [21].

2. THEUKELECTRICITY SYSTEM

The UK ESI currently has a heavy reliance on primary fuels, particularly coal and natural gas.
Cheap coal from overseas is unlikely to cause a security of supply problem, but the increasing
reliance being placed on imports of natural gas for Combined Cycle Gas Turbine (CCGT)
power plants brings with it potential risks. Britain became a net importer of natural gas in
2004 as reserves in the UK continental shelf declined [8,10,22]. In the long-term there is
considerable uncertainty about the security of imported gas supplies. The largest natural gas
reserves globally are found in Russia, North Africa, and the Middle East. Even without the
obvious political problems associated with these regions, there will be difficulties in terms of
the transportation of gas from these areas. Long pipelines, additional port and storage capacity
will all be required. The natural gas interconnector between Norfolk (in the East Anglian
region of England) and Belgium means that gas can flow out of Britain to the continental
market, as well as inward to meet domestic demand. In 2010 the UK produced 665,083 GWh
of indigenous natural gas, with its net imports amounting to some 413,098 GWh [9]. Imports
are likely to continue to grow quite rapidly in the near future.

The UK electricity system is made up of companies performing different functions: the
generators, network companies, and suppliers [8,22]. National Grid (NG) acts as the system
operator with responsibility for balancing power supply and demand. The ‘generators’ own
and operate large power stations: coal-fired stations, CCGT plant, nuclear power stations,
wind farms, and various smaller contributors. Thirty large (>1GW,) power plants meet the



bulk of electricity demand [7]. This is typically ~40GW,, although it rises to ~60GW; at peak.
NG is also the ‘Transmission Network Owner’ (TNO) for England and Wales, whilst Scottish
Power and Scottish and Southern are the TNOs in Scotland. The ‘grid’ is made up of ~25,000
km of high voltage overhead lines (275kV or above) that minimise energy losses over
distance. There are currently some fourteen regional distribution networks in Great Britain
with 800,000 km of overhead lines and underground cables [7]. They deliver lower voltage
(132kV and below) power from grid supply points to consumers. These regional networks are
managed, in turn, by seven companies that act as Distribution Network Operators (DNOs).
Much of the grid was constructed in the 1950s and 1960s. It is therefore heavily reinforced in
former coal-mining areas, and is nearing the end of its design life [8,22]. There are
‘bottlenecks’ restricting power flow from Scotland to England (2.2GW,), and via the
interconnectors (in the form of high-voltage undersea cables) to France and Northern Ireland.
The grid will require both renewal and reconfiguration in order to accommodate distributed
generation.

3. UK ENERGY FUTURES

3.1 The Parent Scenarios

The scenarios employed for the present study were created by Jardine and Ault [20] as a
synthesis of the earlier SUPERGEN Future Network Technologies (FNT) scenarios of Elder
et al. [23] and the UK Domestic Carbon Model (UKDCM2) produced by Layberry [24]. The
FNT scenarios [23] were supply-side focused and described six high-level UK electricity
networks as they might appear in 2050. Each considered various technical, economic,
environmental and regulatory constraints on the UK ESI. They yield different penetrations of
centralised generators (including large-scale renewables) and capacity mixes, as well as
network infrastructures. In contrast, the UKDCM2 model [24] takes a demand-side approach,
with energy use and carbon dioxide emissions from the UK housing stock being determined
from inputs on household numbers, house type, thermal efficiency, and appliance efficiency,
together with the number and efficiency of micro-generators used. It was employed to
estimate electricity demand for households based on the assumed stock of lights and
appliances, as well as building type (insulation levels, internal temperatures, and occupancy).
The total electricity demand was then determined from the sum of this and non-domestic
power demand split between industrial and other uses.

3.2 The SUPERGEN Highly Distributed Power Systems (HDPS) Scenarios

The HDPS scenarios [20] were developed from a synthesis of those that had been devised
earlier (and outlined above) for future network technologies on the one hand, and domestic
energy demands on the other. Jardine and Ault [20] created a set of three normative scenarios
in order to examine the specific consequences of extensive penetrations of micro-generators
into British electricity networks. The integration of the two sets of predecessor scenarios [20]
kept the level of details of each parent approach, while allowing for key parameters that
influence electricity networks. They have provided a useful tool for unifying contributions
across HDPS project partners [25], quantifying the scale of the change required (moving from
a centralised system to one where perhaps 1/3 of electricity comes from distributed sources),
and to ensure that the suggested futures were in line with the UK Government’s initial target
of a 60% reduction in CO, by 2050. This level of distributed power presents significant
challenges, including reverse power flow on networks, load balancing, storage requirements,
phase unbalance, harmonics, and ancillary services [25]. The resulting three scenarios were
characterised as ‘Business As Usual’ (BAU), ‘Low Carbon’ (LC) and ‘Deep Green’ (DQG)
futures, and yielded possible electricity demands to 2050. The BAU scenario [20] is based on



incremental change over time with a continuation of near-term trends in technologies, as well
as energy policy responses to the climate change and energy security challenges. Growth in
the take-up of decentralised energy resources (DERS) is assumed to be consumer-led, rather
than stimulated by an act of government policy intervention. In contrast, the LC scenario [20]
implies an extensive penetration of micro-generators in the home to satisfy heat and power
demands. However, these are minimised by way of improved insulation of the building fabric
and other demand reduction measures. Under this scenario, DERs contributes ~44% of UK
electricity supply by 2050, and residential dwellings are significant net exporter of power.
Finally, the DG scenario [20] presupposes a network where centralised renewable energy
technologies — mainly large-scale onshore and offshore wind turbines - have a significant role
in power generation. Demand reduction again plays an important role (in a similar manner to
that with the LC scenario), but fossil fuel power generation is effectively eliminated. The
scenarios do not take account any increase in electricity demand associated with the
possibility of much greater use of electric heat pumps for home heating or electric vehicles for
transport. This is justified on the basis of a ‘like-for-like’ comparison.

4. CARBON AND ENVIRONMENTAL FOOTPRINTING

4.1 The Ecological or Environmental Footprint Methodology

The use of ‘ecological’ or environmental footprint analysis has grown in popularity over
recent years, both in Europe and North America. They provide a simple, but often graphic,
measure of the environmental impact of human activity: whether or not, in the foreseeable
future, humanity will be able to "tread softly on the Earth” [2]. William Rees used footprint
analysis in its basic form to teach planning students for some 20 years (see Wackernagel and
Rees [12]). He decided to adopt the term ‘ecological footprint' in the early 1990s, rather than
‘appropriated carrying capacity' that he had previously used, after buying a new television set
[13]. It had a smaller footprint (that is, took up less space) than his old model. The terms
‘environmental’ and ‘ecological' footprints are used interchangeably here (as they were
previously by Hammond [14] and Eaton et al. [15]), although the former expression is
preferred. Ecology is that branch of biology dealing with the introduction of organisms and
their surroundings. 'Human ecology’, sometimes used for the study of humans and their
environment, is closer to the usage implied by footprint analysis.

Footprint calculations involve several steps. Initially the land area per functional unit (e.g.,
per capita or, in the present case, per GWh) appropriated for each major category of
consumption (aa;) is determined:

ag =i ~ annual consumptia of anitem
1= -
P, averageannual yield

In the original version of environmental footprint analysis (EFA) employed by Wackernagel
and Rees [12], four consumption categories were identified: energy use, the built environment
(the land area covered by a settlement and its connection infrastructure), food, and forestry
products. This is a restricted subset of all goods and services consumed, which was
determined by the practical requirements of data gathering and influenced by the development
of the technique in a Canadian setting. Five land types are typically been employed:
Chambers et al. [13], for example, adopted bioproductive land, bioproductive sea, energy
land, built land, and the land needed to secure biodiversity as their categories (see also Eaton
et al. [15] and Fig. 2). Here the components analysed, in addition to the carbon footprint,



were ‘built land’, ‘embodied energy’, ‘materials and wastes’, ‘transport’, and ‘water’. In order
to calculate the footprint per functional unit (ef) in global hectares (gha), the appropriated land
area for each consumption category is then summed to yield:

One global hectare represents a hectare (ha) of biologically productive land at the average
global productivity. Different footprint components need to be standardised, so that global
hectares account for disparities in land productivities. This computation then leads to a matrix
of consumption categories and land use requirements, which is ideally suited to a spreadsheet
implementation. In order to determine the total footprint for a given country, region or
community (EF), the functional unit value (ef) is simply multiplied by the relevant population
size (N), viz.
EF=ef (N)

4.2 The Carbon Footprint Component

The concept of the ‘carbon footprint® (cf) is rooted within the framework used to determine
the eco-footprint. However, Hammond [17] noted that a ‘footprint’” would normally be
measured in spatial units [such as global hectares (gha)], whereas the carbon footprint is
typically presented in mass (or weight) units, i.e., kilograms or tonnes. He therefore argued
that it should perhaps be termed a ‘carbon weight’ (Cy) or something similar. Wiedmann and
Minx [26] reviewed various suggestions, including that of Hammond [17], and then proposed
a definition for the ‘carbon footprint” as including the “total amount of CO, emissions that is
directly and indirectly caused by an activity”. Unfortunately, no definition has been formally
adopted in a standard with the agreement of the communities involved. Indeed, many
organisations have adopted the use of the term carbon footprint when assessing the carbon
dioxide emissions released during various processes or activities, although these are again
measured in tonnes of carbon dioxide [18].

4.3 Other Components of the Environmental Footprint

The initial phase of footprint analysis involves the collection of consumption data covering
the various components. This yields the flow of resources into and out of the UK electricity
sector. Proxy (or secondary) data adapted from national statistics was employed in the
absence of sector-specific obtained (or primary) data. This collation and analysis of data is
highly disaggregated with very many individual items of information. In addition to the
consumption data needed for footprint analysis, yield and conversion (or ‘equivalence’)
factors were required. The EFA resource components had to be identified and categorised (see
Fig. 3). They reflected broad and identifiable policy making categories, which match the
consumption of ‘natural capital’ [15,27]. In the present study, these components (see also the
‘block diagram’ in Fig. 4) were:
e Built Land: Land appropriated for power sector development.
e Embodied Energy: The quantity of energy required for the construction of power
plants or to process fuels for the sector [28].
e Materials and Waste: Consumption of products and materials for use within the power
sector.
e  Transport: ‘Full fuel cycle’ transportation requirements.
e  Water: The use of water within the power sector.



‘Double accounting’ can arise when the embodied energy component [28] includes the energy
used in production; fuels for electricity generation here. Thus, in the present study, the
embodied energy incorporates only the ‘upstream’ use of energy, whilst the carbon footprint
represents the direct fuel inputs for power production (e.g., fossil fuels for boiler combustion).

4.4 Uncertainty Analysis

The uncertainties in EFA are dependent on the accuracy of the data collected. Some of the
data represents a proxy adopted from national resource consumption statistics, and hence
errors are inevitably present in footprint calculations. Footprint uncertainties were calculated
using a ‘standard’ method developed originally by Kline and McClintock [19] for single-
sample experiments in engineering research; see the Appendix below. Here estimates of
uncertainties were based on a careful assessment of errors in the various primary and
secondary (or proxy) sources (see also Eaton et al. [15]).

5. ANALYSIS OF UK ELECTRICITY FUTURES TO 2050

5.1 UK Electricity Supply and Demand: Historic Data

The annual electricity consumption by fuel type in the UK since 1950 was obtained from the
annual Digest of UK Energy Statistics (DUKES) [9]. Coal has played an important role in
electricity generation over the past half century, and still accounts for approximately a third of
the electricity consumed today [2,9]. Oil-fired power plants were introduced in the late 1950s
and their use fluctuated throughout from the 1960s to the 1980s, before falling in the 1990s to
less than 4% today [8,10]. Natural gas is responsible for about a further third of electricity
produced at the present time, following the so-called ‘dash for gas’ after energy market
liberalisation in the early 1990s [2,8]. Nuclear power generation accounts for around 20% of
UK electricity supply [7-9], which grew steadily following its introduction in the late 1950s
until the early 1990s. Thereafter it has been in slow decline, due to decommissioning of the
earliest nuclear power plant designs (the Magnox and Advanced Gas-cooled Reactors). A
small contribution has been made from large-scale hydropower schemes since the late 1950s.
The construction of onshore, and recently offshore, wind turbine arrays has made a modest
contribution since the 1990s [2,9], and the biomass co-firing of coal-fired power plants (in
order to offset carbon emissions) was introduced in the 2000s.

The environmental footprints per unit electricity (ef) associated with power generators in the
‘baseline’ year (taken as 2005) are depicted in Fig. 5. Here the functional unit employed is the
GWh, and thus the footprints are presented in terms of gha/GWh. Carbon emissions or
footprints are largely associated with fossil-fuelled power plants. The environmental
footprints of these plants were coal - 158 gha/GWh, oil - 122 gha/GWh, and natural gas - 80
gha/GWh. Nuclear power and renewables (other than bioenergy) are near zero carbon
emitters. Their ef values are consequently 57 gha/GWh and <25 gha/GWh respectively. Solid
(so-called ‘first generation’) biofuels give rise to potentially significant emissions, and exhibit
the highest land-take of any of the technologies shown in Fig. 5. They therefore lead to the
largest ef value of 214 gha/GWh. The plants categorised as ‘Other’ represent other thermal
sources that include those from various coke oven gas, blast furnace gas, waste products from
chemical processes, and refuse derived fuels. It gives rise to the second largest footprint per
unit electricity at 194 gha/GWh. Nevertheless, the overall environmental footprint (EF) of
such plants is relatively insignificant, because their total power capacity is small.



5.2 The ‘Business as Usual’ (BAU) Scenario

The projected electricity consumption by fuel type according to the BAU scenario is
illustrated in Fig. 6 below. It can be seen that total demand is expected to gradually rise to
around 430 TWh per year by 2025 and thereafter it remains fairly stable. There will be a
gradual decline in electricity generated from coal-fired power plants to less than 50 TWh per
year over the next 30 years, which will initially be balanced by a rapid increase in natural gas.
It is anticipated that CCGT plants with carbon capture and storage (CCS) facilities will be
introduced around 2020 [29]. This will gradually replace conventional gas-fired power
station, with CCGT/CCS schemes reaching a total output of 98 TWh by 2050 compared to
130 TWh from conventional gas. Oil and other thermal fuels will be slowly phased out, and
nuclear power will decline to approximately 33 TWh per year by way of “replacing nuclear
by nuclear”, i.e., replacing decommissioned nuclear power plants by ‘new build’ nuclear
power reactors. Much of the initial increase in demand is likely to be met by onshore and
offshore wind power, which is projected to continue to grow and replace conventional
generators up to about 100 TWh in 2050. Finally, marine technologies (tidal barrages, tidal
stream and wave power devices) are assumed to be introduced around the mid-2020s, and
slowly become established to produce around a modest 20 TWh by 2050.

The BAU scenario suggests, as depicted in Fig. 7, a gradual decline of the environmental
footprint per GWh of electricity produced (ef) over the period from the present day until 2050.
This is similar to the historical decline during 1950-2000, and it should therefore be possible
to achieve the projected footprint of 67 gha/GWh in 2050. The corresponding total
environmental footprint (EF) from 1950 to 2006 calculated from published historical data [9]
was found to grow rapidly from 10 million (M) global hectares (gha) in 1950 to over 35
Mgha per year by the late 1970s, due to the increase in electricity use [2]. The latter figure is
about twice the physical area of agricultural land in the UK. There was a notable drop in the
footprint in early 1980s, which coincides with a drop in coal generation caused by the national
coal miner’s strike of 1983/84. Throughout the 1990s the environmental footprint has
fluctuated between 35-40 Mgha, due to the introduction of gas-fired power stations — the
‘dash for gas’ - and new nuclear power plant (such as the Sizewell B plant in Suffolk). These
have a lower impact on the environment per GWh of electricity produced than conventional
coal-fired power stations. The BAU scenario indicates that the total environmental footprint
(EF) out to 2050 will remain high until about 2020 contributions (see Fig.8), when it will start
to decline slowly before stabilising at around 28 Mgha per year in 2040. This is because,
although the reduction in coal use will continue and be replaced by lower carbon
technologies, the demand for electricity will continue to grow until around 2025 as depicted
in Fig. 6. It was found that historically just over a half of the total environmental footprint
(EF) was as a result of the carbon footprint (weight) of the UK power sector, and that a
further 40% resulted from the embodied energy and transport, while built land, water and
waste make fairly insignificant contributions (see again Fig.8). The BAU scenario suggests
that initially the proportion of the footprint resulting from carbon emissions will increase, but
once electricity demand stabilises in the mid-2020s, this proportion will decline as a result of
the increasing capacity of low carbon technologies. Although the annual environmental
footprint per GWh of electricity produced (ef) has declined almost continually since 1950 (see
Fig. 7) with a more rapid decline during the 1990s, since 2000 it has begun to creep up again,
due to increased use of coal-fired power generators to meet the increasing electricity demand.

5.3 The ‘Low Carbon’ (LC) Scenario

The projected electricity consumption by fuel type under the LC scenario is shown in Fig 9. It
can be seen that total demand is expected to reduce dramatically over time as a result of



energy conservation, technological innovation and product efficiency, environmental
awareness, and changes to lifestyles and government policies. By 2050 the demand is reduced
to about 200 TWh per year. Coal, conventional natural gas, and other thermal fuels are
expected to be completely phased out in favour of CCGT/CCS. This will be the only
remaining fossil fuel generating capacity in 2050 of about 30 TWh of electricity per year (Fig.
9). Nuclear power generation, due to a policy of “replacing nuclear by nuclear”, will be
stabilise at around the same level as CCGT/CCS by 2050. Approximately half of the
electricity demand, around 100 TWh, will be generated by onshore and offshore wind power
with an increasing contribution from marine power schemes reaching almost 40 TWh per year
by the end of the projection/scenario timescale. The remaining demand will be made up by
small contributions from solar PV and small-scale (or natural flow) hydropower.

The LC scenario suggests (see Fig. 10) a more rapid decline in annual environmental footprint
per GWh of electricity produced (ef) than under the BAU scenario; falling to 18 gha/GWh in
2050. However, the steepest decline occurs in the 2030s and 2040s, although this is still less
steep than the decline seen in the 1990s. It would therefore appear to be attainable. In contrast
to the BAU scenario, the LC scenario indicates an immediate decline of the total
environmental footprint (EF), due to gradual replacement of coal and other thermal electricity
generation by natural gas capacity with its smaller carbon total footprint (see Fig. 11). The
decline in EF is sustained by demand reduction from about 2018, and by the gradual phasing
out of convention gas power plant and its substitution by CCGT/CCS and wind power.
Convention gas is consequently expected to account for less than 5 Mgha by 2050 under the
LC scenario (Fig. 11). This scenario suggests that the proportion of the total environmental
footprint resulting from carbon emissions will rise slightly before rapidly declining to a
proportion of under 15% in line with the 2050 UK carbon reduction targets. The proportion
from embodied energy will increase to about 70%, due to the construction of new build
nuclear power and CCGT/CCS. Finally, the built land will increase to about 10% by 2050.

5.4 The ‘Deep Green’ (DG) Scenario

The DG scenario gave rise to a trajectory very similar to the LC scenario; see Fig 12. Total
electricity demand is expected to dramatically fall over time again as a result of policies
aimed at energy conservation, technological innovation and product efficiency, environmental
awareness, and changes to lifestyles and government policies. By 2050 the demand is reduced
to about 220 TWh per year. Since under the DG scenario the environmental imperative is
considered as being paramount, coal, conventional gas, other thermal fuels, and nuclear will
be completely phased out over the projection/scenario timeframe. CCGT/CCS will not be
introduced, and by 2050 electricity generation will be dominated by renewable energy
sources. Such renewables give rise to intermittency in electricity production, and extra
provision has to be made in order to ensure energy security. Thus, the total demand is rather
higher out to 2050 than under the LC scenario. The majority of the electricity demand under
the DG scenario is envisaged to be increasingly met by wind power; that will reach some 170
TWh per year by 2050. Small-scale (or natural flow) hydropower will follow a similar pattern
to that of the LC scenario, whilst marine power will provide a slightly smaller contribution
and solar PV is likely to be higher in order to compensate.

The DG scenario projects a similar decline in annual environmental footprint per GWh of
electricity produced (ef) to that of the LC scenario until the 2040s (see Fig 13), where more
rapid decline results in a total footprint of just 6 gha/GWh in 2050. This fall is less steep than
the decline observed in the 1990s, and was therefore regarded as attainable by Jardine and
Ault [20]. In a similar manner to the LC scenario, the DG trajectory produces an immediate



decline of the environmental footprint, due to gradual replacement of coal and other thermal
electricity generation by gas, which has a smaller total environmental footprint. Demand
reduction from 2018 and gradual phasing out of conventional gas again sustain the decline in
the total environmental footprint. However, CCGT/CCS is not adopted and nuclear power is
completely phased out by 2025. Electricity demand is met by mainly wind power, and the
total environmental footprint (EF) is projected to be only 1.2 Mgha in 2050 (see Fig 14).
Initially the proportion of this footprint resulting from carbon emissions (footprint or weight)
according to the DG scenario is similar to the LC scenario, although after 2040 it declines
more rapidly in order to reach zero in 2050. The embodied energy proportion also declines,
due to the phasing out of large centralised generators (such as conventional thermal and
nuclear power stations), which require large amounts of infrastructure and involve energy
intensive construction processes. Nevertheless, the built land proportion of EF increases
somewhat, due to the physical area required for new wind farms.

6. CONCLUDING REMARKS

Electricity generation contributes a large proportion of the total greenhouse gas emissions in
the UK, due to the predominant use of fossil fuel (coal and natural gas) combustion for this
purpose. Carbon and environmental footprint analysis has therefore been employed to
estimate the environmental impacts associated with UK power generation based on historic
data and alternative energy scenarios out to 2050. The British Government has set a legally
binding target of reducing the nation’s CO, emissions by 80% over this timescale in
comparison to a 1990 baseline. It is recognised that in order to achieve this target, the UK
Electricity Supply Industry (ESI) needs to be decarbonised over this period. In order to
determine future trends in the power sector footprints, a range of future energy scenarios were
adopted that had previously been developed for the UK SUPERGEN Consortium on ‘Highly
Distributed Power Systems’ (HDPS) by Jardine and Ault [20]. They were developed from a
synthesis of those that had been earlier devised for future network technologies on the one
hand, and domestic energy demands on the other. Three resulting scenarios were
characterised as ‘Business As Usual’ (BAU), ‘Low Carbon’ (LC) and ‘Deep Green’ (DG)
futures, and yielded possible future electricity demands to 2050. The BAU scenario is based
on incremental change over time with a continuation of near-term trends in technologies (see
Fig. 6), and energy policy responses to the climate change and energy security challenges.
Growth in the take-up of decentralised energy resources (DERS) is assumed to be consumer-
led, rather than stimulated by an act of government policy intervention. In contrast, the LC
scenario implies an extensive penetration of micro-generators in the home to satisfy heat and
power demands (the former not displayed in the present work). However, these energy
requirements are minimised by way of improved insulation of the building fabric and other
demand reduction measures. Under this scenario, DERs contributes ~44% of UK electricity
supply by 2050 (not shown in Fig. 9, which only shows the electricity produced by ESI
network power generators), and residential dwellings are significant net exporter of power.
Finally, the DG scenario presupposes a network where centralised renewable energy
technologies — mainly large-scale onshore and offshore wind turbines - have an important role
in the power generation (see Fig. 12). Demand reduction again plays an important role (in a
similar manner to that with the LC scenario), but fossil fuel power generation is effectively
eliminated.

Methodologies were established for the present study to calculate the environmental and
carbon footprints of the UK electricity industry on both a historic timescale and in accordance
with the HDPS scenarios. These were consistent with that developed by the Global Footprint



Network and related bodies. The environmental footprint was broken down respectively into
carbon (effectively cf), embodied energy, transport, built land, water, and waste components.
Annual environmental footprint per GWh of electricity produced (ef) was then calculated over
the timeframe of 1950-2050. Uncertainties related to both footprints were estimated using an
established procedure for uncertainty analysis. It was found that the current total
environmental footprint (EF) as a result of UK electricity supply and demand is 41 Mgha,
with an estimated uncertainty of +4%. If future trends follow the HDPS BAU scenario this
footprint in 2050 is projected to fall to about 25 Mgha (+3%), whereas both the LC and DG
scenarios lead to footprints of less than 4 Mgha (£5%). The latter two scenarios were found to
give rise to quite similar trajectories out to 2050. It is argued that the latter two scenarios are
more likely to reflect an effective transition pathway in terms of meeting the 2050 CO,
reduction targets for electricity generation, with the ‘Deep Green’ scenario proving the
preferred choice if complete decarbonisation of UK power generation were deemed desirable.

The UK Government established an independent Committee on Climate Change (CCC) in the
Climate Change Act 2008 in order to advise it on progress towards meeting its overall carbon
reduction target of 80% by 2050 from heating, power and transport fuels against the 1990
baseline. This adopted a new approach to managing and responding to climate change in the
UK, and led to the creation of a legally binding target for reducing Britain’s GHG emissions.
A 37% emissions reduction by 2020 (relative to 1990) was proposed under the tightening of
second and third CCC carbon budgets [29]. Required reduction in emissions from 2010 until
2030 was set as 46%. The CCC also advocated deep cuts in power sector emissions through
the 2020s [29], with UK electricity generation becoming largely decarbonised by 2030-2040.
The present HDPS scenarios (see, for example, Fig. 8, 11 and 14 [20]) suggest that there
might actually be a fall in carbon emissions from the UK power generation sector [using the
total environmental footprint (EF) here as a proxy for overall carbon emissions] of some 9-
19% by 2020, 16-55% by 2030, and 26-97% in 2050. The lower figures relate to the BAU
scenario, whilst the higher ones are associated with the other two futures. Thus, the present
HDPS scenario (see again Fig. 8, 11 and 14) projections indicate that the UK ESI could only
be decarbonised by 2050 under the LC and DG scenarios. This is because the present EF
estimates take account of upstream emissions (i.e., those associated with the ‘embodied
energy’ component), whereas the projections by bodies like the CCC and UK Government’s
Department of Energy and Climate Change (DECC) only make allowance for direct or
operational GHG emissions from power plant combustion.
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APPENDIX: Uncertainty Analysis of Environmental Footprints

The uncertainties in the footprints of each component were calculated using a ‘standard’
method developed originally by Kline and McClintock [19] for single-sample experiments in
engineering research. A more accessible description of the technique is given by Holman
[30]. Here estimates of uncertainties were based on a careful assessment of errors in the
various primary and secondary (or proxy) sources (see also Eaton et al. [15]). The result of an
experiment or study can be expressed using a function of the variables:

R = R(X1, X2, X3, - . ., Xn)

If W, is the uncertainty in the final result (the footprints), and W1, W,, W3, . . ., W, are the
uncertainties in the individual variables, then the uncertainty in the result is given by [19,30]:

2 2 2 1/2
W, = a—RW1 + a—RW2 + . + R W,
0x, 0x, 0x,

In the present footprint study, the primary data consisted of resource consumption estimates
used to determine each component of the footprint. The function employed to calculate the
overall footprint (EF) of the HDPS scenario projections can be expressed in terms of the
different components, viz:

Total Environmental Footprint = Carbon Footprint + Embodied Energy Footprint +

Transport Footprint + Built Land Footprint + Water Footprint + Waste Footprint

To simplify the calculations, the uncertainty for each component was initially estimated by
considering them separately. These uncertainties were then used to determine to total
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uncertainty in the footprint. In addition, these uncertainties were converted into percentage
values for each component. The total uncertainty was obtained by summing the uncertainties
for each component. Here the calculated uncertainty in the total environmental footprint (EF)
IS shown in Table 1 below. The uncertainties associated with each of the individual
component are also displayed there. It can be seen that those for the built land, carbon and
water components are all in the range + 4.0-5.3%, whereas those for embodied energy,
transport and waste were roughly double that. Nevertheless, the weightings resulted in an
overall uncertainty of + 4.35% for the environmental footprint of the UK power network in
the base year.

Table 1 — Total Environmental Footprint (EF) of the UK Power Network:
Uncertainty for the Base Year [circa 2005]

Footprint ) oR Y
(thousand gha) Uneertainty (5_XW)

Carbon 20554.3 4.84% 971466
Embodied energy 17455.6 8.46% 2182991
Transport 705.9 9.01% 4043
Built land 1192.7 5.22% 3870
Water 77.8 4.07% 10
Waste 964.7 10.65% 10566
Total 40951.1 3172945
Uncertainty-factor 1781.3
(gha)
Uncertainty 4.35%

B: The data sources employed here would suggest that these estimates are only valid up to
an accuracy of not more than three significant figures.
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