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Abstract. It is well established that the solitary waves of FPU-type chains converge
in the high-energy limit to traveling waves of the hard-sphere model. In this paper we
establish improved asymptotic expressions for the wave profiles as well as an explicit
formula for the wave speed. The key step in our approach is the derivation of an
asymptotic ODE for the appropriately rescaled strain profile.
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1. Introduction

Traveling waves in nonlinear Hamiltonian lattice systems are ubiquitous in many
branches of sciences and their mathematical analysis has attracted a lot of interest
over the last two decades. In the simplest case of a spatially one-dimensional lattice
with nearest-neighbor interactions — often called Fermi-Pasta-Ulam or FPU-type chain
— the analytical problem consists of finding a positive wave-speed parameter ¢ along
with a distance profile R and a velocity profile V' such that

R(z) =V(e+1)-V(z-1), .
V() = (R(z+1)) - @'(R(z - 1))
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is satisfied for all x € R. Here ® is the nonlinear interaction potential and the position
u;(t) of particle j can be recovered by

W) = UG- ver). U= | Viy)dy.

Zo

which implies the identities
i(t) =VoV(ji—+vot) and ujn(t) —u(t) =R(j+ 5 — Vo)

for the atomic velocities and distances, respectively. In particular, u satisfies Newton’s
law of motion

i;(t) = ' (uja(t) —u;(t)) — ' (uy(t) —uy—1(t)),  JEZL. (2)

The existence of several types of traveling wave solutions (with periodic, solitary,
front-like, or even more complex profile functions) can be established in different
frameworks; see, for instance, [5, 2] for constrained optimization problems, [9] for critical
point techniques, [8] for spatial dynamics, and [10, 13] for almost explicit solutions.
However, very little is known about the uniqueness of the solutions to the advance-
delay differential equation (1) or their dynamical stability within (2). The only nonlinear
exceptions are the Toda chain — which is completely integrable, see [11] and references
therein — and the Korteweg-de Vries (KdV) limit of solitary waves in chains with so called
hardening. The latter has been investigated by Friesecke and Pego in a series of four
seminal papers starting with [4]. In this limit, solitary waves have small amplitudes,
carry low energy, and are spread over a huge number of lattice sites. The discrete
difference operators in (1) can therefore be approximated by continuous differential
operators and the asymptotic properties are governed by the KdV equation, which is
completely integrable and well understood.

Another interesting asymptotic regime concerns solitary waves with high energy in
chains with rapidly increasing potential. Here the profile functions localize completely
since V' converges — maybe after some affine rescaling — to the indicator function of
an interval, see [3, 12] or [6] for potentials ® that posses a singularity or grow super-
polynomially, respectively. The physical interpretation of the high-energy limit is that
the particles interact asymptotically as in the hard-sphere limit, that means by elastic
collisions only.

The high-energy limit is another natural candidate for tackling the analytical
problems concerning the uniqueness and the stability of traveling wave. In this context
we are especially interested in the spectral properties of the linearized traveling waves
equation — see the discussion in section 3.6 — but the convergence results from the
aforementioned papers do not give any control in this direction. They are too weak and
provide neither an explicit leading order formula for ¢ nor the next-to-leading order
corrections to the asymptotic profile functions. In this paper we derive such formulas
and present a refined asymptotic analysis of the high-energy limit for potentials with
sufficiently strong singularity.



Asymptotic formulas for solitary waves 3

1.1. The high-energy limit

In order to keep the presentation as simple as possible, we restrict our considerations to
the example potential

B(r) = — <1>m—mr—1> with me (1, 00),  (3)

S mm A+ \(1—7
which is convex and well-defined for r < 1, satisfies
®(0) =d'(0) =0, o"(0) =1,

and becomes singular as r * 1. The condition m > 1 is quite essential and shows up
several times in our proofs. The other details are less important and our asymptotic
approach can hence be generalized to the case

® is convex and smooth on some interval [a, b] with ®'(a) =0
such that the limit lim, ~ ®(z)(b — )™ does exist .

This class also includes — after a reflection with respect to the distance variable — all
Lennard-Jones-type potential, which blow up on the left of the global minimum.

To simplify the exposition further, we merely postulate the existence of a family
of solitary waves with certain properties but sketch in section 1.4 how our assumption
can be justified rigorously. Specifically, we rely on the following standing assumption,
where unimodal profile means increasing and decreasing for negative and positive x,
respectively.

Assumption 1 (family of high-energy waves). (Vs, Rs, 05) 1 1s a family of solitary

0<d<
waves with the following properties:

(i) Vs and Rs belong to L2(R) N BC'(R) and are nonnegative, even, and unimodal.
(11) Vs is normalized by ||Vs|la = 1 — 6 and Rs takes values in [0, 1).

Moreover, the potential energy explodes in the sense of ps == [ ®(Rs(x)) dz — +o0 as
0 —0.

Beside of § there exist two other small quantities, namely

Es i — 1-— R(s(O), Hs :— A/ O 6271—&-27 (4)

which feature prominently in the asymptotic analysis. The amplitude parameter &4
quantifies the impact of the singularity and appears naturally in many of the estimates
derived below. The parameter ugs, which looks rather artificial at a first glance, is also
very important as it determines the length scale for the leading order corrections to the
asymptotic profile functions V; and Rj.

For the interaction potential (3) and the waves from Assumption 1, the existing
results for the limit 6 — 0 are illustrated in Figures 1, 2 and can be summarized as
follows.
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Figure 1. Numerical examples of solitary waves for the potential (3) and as in
Assumption 1: The graphs of Vs (black, dashed) and Rjs (gray, solid) are plotted
for m = 1.5 (top row) and m = 2.5 (bottom row). In the high-energy limit 6 — 0
(from left to right column), Vs and R;s approach the indicator function V; and the tent
map Ry, respectively. See section 1.4 for details concerning the numerical scheme.
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Figure 2. Parameter plots for three different choices of m and the simulations from
Figure 1: ps represents the potential energy, €5 is the amplitude parameter from (4),
and 65 1= o5/ (EQE?) measures the relative deviation of the speed parameter o with
respect to the asymptotic value from (32)

Theorem 2 (localization theorem). In the high-energy limit, we have

0
Vs = Volla + 1 Rs = Rollos + &5+ 15— 0

with
Vo(x) = X(z)  Rolx) = max {0, 1— |o|},
where x denotes the indicator function of the interval [—%, —1—%]

We give a short proof in section 1.3. The corresponding results in [3, 12] also
provide lower and upper bounds but no explicit expansion for oy.

1.2. Statement of the asymptotic result

Our strategy for deriving a refined asymptotic analysis is to blow up the profile
functions near the critical spatial positions and to identify equations that determine
the asymptotic wave shape with respect to a rescaled space variable Z. Specifically,
we use the transition scaling in order to describe the asymptotic velocity profile near
T = j:%, while the distance profile can be rescaled at both the tip position x = 0 and the
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Figure 3. Schematic representation of the different scalings: The transition scaling
describes the jump-like behavior of Vs near x = :I:% while the foot and the tip scaling
magnify the turns of Rs at z = +1 and z = 0, respectively. The width parameter p;
is introduced in (4) and satisfies s ~ €5 according to Corollary 13.

Y=

Figure 4. Graph of the function Sy and its second derivative for m = m; (black) and
m = my (dark gray) and m = mg (light gray) with m; < ma < ms.

foot positions x = £1, see Figure 3 for an illustration. Our main findings can informally
be summarized as follows.

Main results. In the high-energy limit 6 — 0, all relevant information on (Rs, Vs, 05)
can be obtained from the function Sy, which is defined by the ODE initial value problem

5 2 1 ~ N
5o (%) = ' mrre 20(0) =5(0) =0 (5)
m+1 (1 + S’o(:ﬁ)) "

and plotted in Figure 4. More precisely,

(1) the velocity profile Vs converges under the transition scaling,
(ii) the distance profile Rs converges under both the tip scaling and the foot scaling,

(iii) the rescaled parameters 0mos, 6 ‘es, and 6 ‘s converge,

where the respective limit objects can be expressed in terms of Sy and all error terms are
at most of order O(0™).

The details concerning the convergence under the tip, the transition, and the foot
scaling are presented in the Theorems 7, 9, and 15, respectively, while Corollary 13
provides the explicit scaling laws for e5, ps, and os5. Moreover, the combination of
all partial estimates gives rise to the global approximation results in Theorem 16 and
Corollary 17.

The above results provide an improved understanding of the high-energy limit
of solitary waves. In particular, it seems that our asymptotic formulas can be used
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to control the spectrum of the linearized traveling wave equation, see the brief and
preliminary discussion in section 3.6.

The paper is organized as follows. In the remainder of the introduction we prove
the localization theorem and discuss both the results from [3, 12] and the justification
of Assumption 1 in greater detail. Then section 2 is devoted to the tip scaling, which
turns out to be most fundamental step in our asymptotic analysis. In particular, we
identify the intrinsic scaling parameters in section 2.1 and link afterwards in section 2.2
the rescaled distance profile to the initial value problem (5). In section 3 we finally
employ the results on the tip scaling and establish all other asymptotic formulas.

1.3. Preliminaries

In this section we prove Theorem 2 since it provides the starting point for our asymptotic
analysis in section 2 and section 3. To this end it is convenient to reformulate the
advance-delay-differential equation (1) as

R=AV, oV =A¥(R), (6)

where the operator A stands for the convolution with the indicator function x. This
reads

1
z+§

@) = [ V) dy

2
and the elimination of R reveals that (1) can be viewed as a symmetric but nonlinear and

nonlocal eigenvalue problem for the eigenvalue ¢ and the eigenfunction V. The proof
that (6) implies (1) is straight forward and involves only differentiation with respect to
x; for the reversed statement one has to eliminate the constants of integration by the
decay condition V' € L*(R).

Using elementary analysis such as Holder’s inequality we readily verify the estimates

AVl < VI, [[AV]s < IVII2, 1AV 2 < 2[V]2, (7)

for any function V' € L?(R), and this implies that the potential energy

PV)= [ @((AV)@) . ®)
is well defined as long as ||V||a < 1. Moreover, we get

[BRsllec = R5(0) = 1 — &5 < [[Vslla =110 (9)
for the family from Assumption 1.
Lemma 3 (variant of the localization theorem). The estimates

Vs = xll2 < Ces, [|Rs = Axlloo < Ces (10)
and

ces < ps < Cy/es (11)

hold for some constants ¢, C independent of 6. Moreover, we have es — 0 as § — 0.
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Proof. We start with the identities

Rs(0) = (Vs x), Vs = xllz = IV3lI3 + [IxII5 — 2(Vs, x) (12)
where (-, -) denotes the usual inner product in L*(R), and observe that (6) implies
05(1 - 5)2 = <(I3/(R5), R5> . (13)

Since (9) yields 6 < &5, we find
0<[[Vs—xll3= (1= 8)"+1—-2(1—25) < Ce

and hence (10);, which in turn implies (10)y thanks to Ry — Ax = A(Vs — x) and (7).
By (6) we also have

4
V) = [T @ (Rila)) < (1 - 2) < O,
and this provides the upper bound in (11) since the unimodality of V5 combined with
(10); guarantees that liminfs o V5(0) > 0. To obtain the corresponding lower bound,
we notice that (1) ensures

4 (Re) |l __ C

O - 056?“

Rs(z) > 1—Ces forall |z| <y osel™ = us

due to R5(0) = 0 and Rs(0) = 1 — 5. Combining this with (13) we obtain

[R5 lloe <

and hence

13 Ho fs
=07 2 [ (R i) de 2 ey
€5 —Hs <

and the proof of (11) is complete. Finally, the properties of ® imply
ps = P(Vs) < &5™[|Rsl3 < Cez™

so €5 — 0 is a consequence of ps — 00. ]

1.4. Justification of Assumption 1

We briefly sketch how Assumption 1 can be justified using a constrained optimization
approach. All key arguments are presented in [6] for non-singular potentials ® but can
easily be adapted to the potential (3). At the end of this section we also discuss the
results from [12] and [3].

The variational approach from [6] is based on the potential energy functional (8),
which is convex and Gateaux differentiable on the open unit ball in L*(R); the derivative
of P is given by

Oy P(V) = AP/ (AV),
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so the traveling wave equation (6) is equivalent to oV = 9yP (V). We further introduce
the cone C of all L?-functions that are even, unimodal and nonnegative, i.e. we set

C:={Vel’R):0<V(z) <V(y) =V (~y) for almost all z < y < 0}.

The key observation is that solitary waves as in Assumption 1 can be constructed as
solutions to the constrained optimization problem

Maximize P under the norm constraint ||V||; = 1—0 and (14)
the shape constraint V' € C.
In the existence proof one has to ensure that maximizers do in fact exist and that the
shape constraint does not contribute to the Euler-Lagrange equation for the maximizer.
With respect to the latter issue we introduce the improvement operator
Ad'(AV)
A" (AV)[2-

We are now able to describe the key arguments in the variational existence proof for

Ts(V) = (1 =9)

solitary waves with profiles in C.
Lemma 4 (three ingredients).
(i) Since ® is strictly super-quadratic, each mazximizing sequence for (14) is strongly
compact.

(i1) The cone C is invariant under the actions of both the convolution operator A and
the superposition operator ®'. In particular, V € C implies R € C and T5(V') € C.

(111) We have P(Ts(V)) > P(V), where the equality sign holds if an only if V' is a fized
point of Ts.

Sketch of the proof. The main steps can be summarized as follows:

(i) The assertion follows by a variant of the Concentration Compactness Principle.
(ii) The invariance properties can be checked by straight forward calculations.
(iii) Since ® is convex, we have
P(T5(V)) =P(V) = (ovP(V), Ts(V) = V)
=o(V)(T5(V), T5(V) = V)
= 30 T5(V) = V13,
where we used ||75(V)|l2 = ||Vl = 1 — ¢ and that o(V) := || AP (AV)]|2/(1 — ¢) is
well defined as long as P(V') > 0.
The details can be found in [6]. O
Corollary 5 (variational existence proof). For any 0 < 6 < 1, there exists a solitary

wave with Vs, Rs € C N BC™(R) and ||V;|| = 1 — 0. Moreover, we have P(Vs) — oo as
60— 0.



Asymptotic formulas for solitary waves 9

Proof. The existence of a solution Vj to (14) can be established by the Direct Method due
to the compactness result from Lemma 4 and since P is strongly continuous. Moreover,
any maximizer Vs satisfies

P(Vs) = P(T5(Vs)),  P(Vs) 2 P((1-0)x)-

The first estimate implies P (Vs) = P(T5(Vs)), so V; satisfies the traveling wave equation
(6) and is therefore smooth. We also compute

1
P((1—-9)x) = 2/ O((1-0)(1—2))dx 20, 4o
0
and the proof is complete. O]

The improvement operator 75 can also be used to compute solitary waves
numerically. In fact, imposing homogeneous Dirichlet boundary conditions on a large
but bounded and fine grid, the integral operator A can easily be discretized by Riemann
sums. The resulting recursive scheme exhibits very good convergence properties; it has
been applied to a wide range of potentials, see for instance [1, 6], and also been used to
compute the numerical data displayed in Figures 1 and 2.

A different variational framework has been introduced in [5] and later been applied
to the high-energy limit in [3]. The key idea there is to minimize the kinetic energy
term 1[|V||3 subject to a prescribed value of p = P(V)). The results from [3] imply
for the potential (3) that solitary waves converge as p — oo to the limit function
x and satisfy Assumption 1 (though, strictly speaking, neither the unimodality nor
the evenness of the profile functions R and V have been shown). In this context we
emphasize again that uniqueness of Hamiltonian lattice waves is a notoriously difficult
and an almost completely open problem. It is commonly believed that all variational
and non-variational approaches provide — up to reparametrizations and for, say, convex
potentials — the same family of solitary wave but there seems to be no proof so far.

A non-variational existence proof for solitary waves with high energy has been given
in [12] using a carefully designed fixed-point argument for the (negative) distance profile
R in the space of exponentially decaying functions. In our notations, the smallness
parameter is ¢ and the waves are shown to satisfy ||R — Ax|| = O(g) in some suitably
chosen norm. We therefore expect that the waves constructed in [12] also satisfy
Assumption 1, although the justification of the unimodality might be an issue.

2. Main result on the tip scaling of R;

Our first goal is to describe the asymptotic behavior of the distance profile Rs near
x = 0 by showing that it converges as § — 0 under an appropriately defined rescaling to
some nontrivial limit function. In view of theorem 2 and the numerical simulations from
figure 2 we expect that both the variable x as well as the shifted amplitude variable
1 — Rs(9) must be scaled with certain powers of §. A naive ansatz, however, does not
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Figure 5. Cartoon of the tip scaling: The function S5 and its derivative for § > 0
(gray, solid) and § = 0 (black, dashed). The dotted vertical lines enclose the symmetric
interval Js which has length 1/us > 1. The convergence S5 — Sy as & — 0 implies
s ~ €5, see Theorem 7 and Corollary 8.

work here because we lack a priori scaling relations between the small parameters 9, &g,
and pus. For instance, if we would start with the rescaling

R(;(l‘) =1- 5711?5(572:5) s

we could not eliminate o5 in the leading order equation. To overcome this problem
we base our analysis on an implicit scaling, which magnifies the amplitude with 5 but
defines the rescaled space variable by

T = 5.

In this way we obtain an explicit leading order equation that does not involve any
unknown parameter and can hence be solved. Moreover, the corresponding solution
finally allows us to identify the scaling relations between the different parameters; at
the end it turns out that J, 5 and us are all proportional to each other, see Corollary
13.

2.1. Implicit rescaling of Rs

In order to derive asymptotic formulas for Rs near = 0, we define the rescaled distance

profile
. - 7)1 —es — 7
S(;(Zi) — R5(0) R(;(,u(;:c) _ €5 R5(:u5$) (15)
Es €s
and obtain an even function which satisfies
55(0) = 55(0) =0, S5() = S5(~7), (16)
see Figure 5 for an illustration. We also introduce the auxiliary functions
Fy(7) = ggn“cp'(m(m)) (17)
Gis(7) = ey (R(;(—l n m)), (18)

as well as the intervals

1
L; = |:07 2_LL5:| y J5 == (—L;) U L;
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and study the limit of Sj restricted to .J;.

Employing the identity (1); as well as (4) we readily verify
2

S3(&) = L2 (V) (s — ) = V3 (s + )
5
= o5y (Vi (s = §) = Vi (s + 1))
and by (1), we arrive at
S5 () = 2F5() — Gs(%) — Gs(—17), (19)
where we used that Rs(1 + %) = Rs(—1 — p57). The definition of G5 combined with

the unimodality of Rs implies

- - (1
0 < Gs(7) < Gtg(ﬂ) = el (Rs (1)) < Cef™ forallz € J;  (20)
§

and from (17) we get

. \11(85 + 8555(:%))
Fy(7) = e (21)
(1 + &;(:ﬁ))
where the function VU : [0, 1] — R, with
1
— (1 — m+1 < i —
U(s):=d(1—s)s for 0<s<1, v(0) : 1’1{% U(s) ——

is smooth and positive. In particular, on the interval Js we find
. ~ 2 1
S:;/(ZL’)NQFJ(ZL’)Nm_'_l . \mFl>
1+ Sg(:(])

and conclude that Ss satisfies the initial value problem (5) from the introduction up to

small error terms.

Lemma 6 (solution of the limit problem). The initial value problem (5) has a unique
solution which is even, nonnegative, and convex. This solution Sy grows linearly for
T — £o0 as it satisfies

$42) — 7sen(@)| < ﬁ (22)
and

500) - 800 ] < (23)
for all T € R with

pe—— 2w [Tii@ar, m= [ S 5 di

fim ey | asi@ar. m= [ S Sy s

and some constant C' which depends only on m.
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Figure 6. Numerical values for the constants [, K, and 7 from (24), which provide
the leading and the next-to-leading order terms in the scaling relations between &4, s,
and og, see Corollary (13).

Proof. The planar and autonomous Hamiltonian ODE (5); admits the conserved
quantity

3h’
(1 + 50(57;)>m

with value Ei(7) = Fiot(0) = 272 for all Z. A simple phase plane analysis reveals that

Eiot(7) = %(%(@)2 + Epot(T), Epot(7) :=

~ 2 ~
S is even and that both Sy and S| are strictly increasing for & > 0, see Figure 4 for an

illustration. In particular, we have

SiE) —22 V2B (0) =7 >0

so the conservation law implies

S”(’)(j) -V 2Et0t(0)’ = ‘\/QEtot(O) - 2Epot(f) Y 2Etot(0)

C
<CEppi(T) < —rrr |
— p t(x) = (1 +j)m
and hence (22). Moreover, the even function Ky with Ko(#) := £.5)(&) — So(#) satisfies
- 5 C
0< (/)(j) = jS(l)/(j) < m forall z >0,

SO [N((’) is integrable due to m > 1. The constant & = limz_,, f(o(f:) is therefore well-
defined and (23) follows immediately from the estimate for Kj(%). Finally, 77 is well-
defined since the integrand is continuous and decays as 27" for T — oo. O

There seems to be no simple way to compute the constants & and 7 as functions of
m but numerical values are presented in Figure 6.

2.2. Asymptotic formulas for S
We now able to formulate and prove our main asymptotic result.

Theorem 7 (asymptotics of 55). Any function Ss is strictly increasing and convexr on
Is. Moreover, the estimates

sup |S5(2) — So(%)| < Cep? (25)

zEJs
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and
sup |S5(%) — 5’6(%) < Cey, sup [S¥ (%) — 5()’(5;) < Ceptt (26)
TeJ; zeJs

hold for all 0 < 6 < 1 and a constant C' independent of §.

Proof. Since Sy and 5’0 are even functions it suffices to consider T € Is.
Dynamics of Ss: By (21) and due to ¥(0) — ¥(s) = Cs™*! we have

_ W(0)

Fy() = g | < Ceg™,
(1 + S(;(:z)>
and in view of (21) and (20) we conclude that Sy satisfies on the interval I5 the ODE
~ w0
S§(z) = - 0) — + ey hs () with  |hs(2)| < C'. (27)
<1 + Sa(:z))
Standard ODE arguments now imply
meQ@—Q@y+$@—%@wgcgﬂ (28)

0<#<i.
for any fixed z, > 0, where C' depends on Z,.
Properties of Sy: The monotonicity of both S5 and S§ on I5 follows directly from

the unimodality of Rs, Vs and the definition (15). In particular, 55 is convex on I5. We
therefore have

5'5(93) > 5'5(93*) + gg(f*), (5} — i‘*) ,
and choosing 7, > 0 sufficiently close to 0 we find a constant ¢ such that
1+ S5(x) > e(1 + 1) (29)

holds for all # € I5, where we used that lims_, S5(Z,) = S)(&,) > 0 is implied by (28).
Notice that (29) holds also for 6 = 0.

Estimates for Sy: By (5) and (27) — and using both the Mean Value Theorem as
well as (29) — we obtain

S(z) — S*g(gz)‘ < ¢ Ss(i) — So(az)( + CemtL, (30)

Integration with respect to = yields

~r < ] ~ z C 7]
‘Sa(x) —So(x)‘ < Cegg +15”+/0 W/ﬂ

since (16) ensures that

S4(2) — Sy(2)] dz

35(0) = 50(0) =0, 5‘(’5(0) = 5p(0) =0,

and a direct computation reveals
. - z C . -
S§(F) — Sp( <Cam“§:+/ ————— |S5(2) — Sp(2)| dz.
§@) = S| < et | [509) - S0
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Employing the Gronwall Lemma for £ > 0 we obtain
. - e C
S(7) — S()(j)‘ < CePiexp (/ _— dz> < CeP iz, (31)
o (1+2)

and using ¥ < 1/(2f15) as well as the lower bound for ps from Lemma 3 we arrive at
(26)1. Moreover, integrating (31) with respect to Z gives

S5(7) — 50(5;)‘ < Cemtiz?

and hence (25). In combination with (30) we further get
~2

T 1)
(1 + j)m+2 ’

which in turn provides (26)s. O

@) - 5] < oo

A first consequence of Theorem 7 are leading order expressions for us and hence
for os; below we improve this result by specifying the next-to-leading order corrections
in Corollary 13.

Corollary 8 (convergence of us and oy).
= oy o (32)
€s

Proof. By construction — see (15) — and Lemma 3 we have

~ 1 6—0 1
6555 — 21—85—R51 EE— 5 -
(5-) ) 2

and in view of Theorem 7 we conclude that

~ 1
25580(2—lu5> ﬂ) 1.

On the other hand, the estimates (22) and (23) evaluated at & = 1/(2u;) imply
~ 1
2 ps So (2—) 20, i,
s

so the claim for us follows immediately. The convergence result for oy is a consequence
of (4). O

3. Further asymptotic formulas

In this section we exploit the asymptotic results on the tip scaling and derive
approximation formulas for the foot and transition scaling, the tails of the profile
functions, and for the scaling relations between ¢, €5, and os. In this way we obtain
a complete set of asymptotic formulas which finally allows us to extract all relevant
information on the limit 6 — 0 from the function S, only. We also sketch a possible
application of these formulas, namely the study of the linearized eigenvalue problem.



Asymptotic formulas for solitary waves 15
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Figure 7. Cartoon of the tip and the foot scaling: The functions Wy and T for § > 0
(gray, solid) and & = 0 (black, dashed). The limits Wy and T can be computed from
So, see (34) and (45).

3.1. Transition scaling of Vs

To describe the jump-like behavior of Vs near x = :I:% we introduce the rescaled profiles
W5 by
Wy(7) = g—jw(—g + ps7) (33)

and refer to Figure 7 for an illustration. The key observation for the asymptotics of W
is the approximation

Wi(7) ~ F5(7) ~ 157(7),
and hence we are able to prove the convergence of W to

Wo(@) := (Sh(@) +7) (34)
where S is the ODE solution from the tip scaling and defined in (5).

Theorem 9 (convergence under the transition scaling). We have

sup [Ws(z) — Wo(2)| < Cef, sup [W(2) — Wy(@)] < Ot (35)

z€J; z€Js

for some constant C independent of 9.

Proof. Uniform estimates for the derivative: By (33), the traveling wave equation (1),

and the definition of s in (4) we have
(@) = B85 (-4 + o)
= o5e5 Vi (=5 + ps?)
= (@ (Ro(ps) — @ (Ro(—1+ p15)))
and from (17), (18) as well as (19) we infer that
Wi#) = Fa) — Go(@) = §(S (&) — Gsl@) + Go(=7))

The estimate (35)2 is now a direct consequence of (20) and Theorem 7.
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Pointwise estimate at & = 1/(2us): Using (33), the traveling wave equation (6),

and the unimodality of Rs we obtain

SO o e,
EJW(l) 0 /_ (Rs(x))

o "\ 2us

1
3 9s
1
[
O5E5 1 0 °

Thanks to (4), (17), and (19) we thus conclude
< (1 I 5 () 45 5 (=) 7
Ws{ — ) = —mH/I 2Fs(2)dz = / 2 Fs(7)dz
é

21“6 0-5 86 15
= [ 8@ - Gs(@) - Go(-a) @i

Is

and since ffa Gs(£#) di = O(e7) holds according to (20) and Corollary 8, we obtain

-1\ (1 .
) =513 ) -0

Lemma 6 combined with Theorem 7 and (32) finally provides

/1 B o (1 n
Wg(Q—M) = M+O(€5 ) = WO(Q,Mg) +O(€§ ),
so (35); follows from (35),. O

3.2. Tail estimates

We complement our previous results by estimates for the tails of the profiles Vs and
Rs. The derivation of those exploits the exponential decay with respect to x, which we
establish by adapting an idea from [7].

Theorem 10 (tail estimates for Vs and Rs). The estimates

sup Vs(x) + / Vs(z)de < Ce&f
|z >1

|z|>1

and

sup Rs(z) + / , Bs(z)dz < Cey'
|z[>5

ja|>3
hold for some constant C' independent of ¢.
Proof. Since Vj is unimodal and nonnegative by Assumption 1, we have

0 < Vs(x) <Vs(—1) forall z<-—1. (36)
Moreover, the properties of the convolution operator A combined with (6) imply

Q)’(R(; (z+ %))

s

Rs(z) < Vs(z+13), Vis(z) < forall z< -1  (37)
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and we infer that
' (Vs(r + 1))

s

Vs(x) < < Ces™Vs(x+1) forall =< —2 (38)

where we used Corollary 8, the properties of ®’, and that the unimodality of Vj
guarantees
Ws(~1)? < ||Vs|2=(1—-6)°  andhence  Vi(—1)<1/v2<1.
By iteration of (38) we obtain
Vs(z —n) < (Cef)"Vs(x) forall *<—-1,neN
and conclude that Vs decays exponentially with rate
As > m|lnes| (1+0(1))

and satisfies
—1

/ Vs(z) da < OVs(~1). (39)

—00

Finally, (33) and Theorem 9 ensure that

ES = 1
Vs(—=1) = —Ws| ——
o(=1) s 6( 2#5)

~ 1
: E+55(_ﬂ) (40)
) 9
== +o@Ep) | = oy
s 9 (e5") (e5")

where the last identity stems from (22) and (32). The desired estimates for Vs are
now direct consequences of (36), (39), and (40), and imply the claim for Rs thanks to
(37)1. O

Notice that the exponential decay rate in the proof of Theorem 10 is asymptotically
optimal for small §. In fact, after linearization of ® in 0 we find the tail identity
0-5‘/:5 ~ Az% )

and the usual exponential ansatz predicts that the exact decay rate \s is the positive
solution to the transcendental equation

WO _ (14 0.

In particular, s is large for small § and satisfies A\s = m |Ines| + O(In |Ineg|).
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3.3. Relations between the parameters §, €5, and g

In this section we identify the scaling relations between the small quantities
0, €5, s

and start with two auxiliary results.

Lemma 11 (scaling relation between ps and €5). The formula

HEs m—+1
=——+4+0
Hs 1+ e5(R—1) + (55 )

holds for all 0 < § < 1.

Proof. Our starting point is the identity
0

1—€5=R5(0) 22/ Vg(x) dz

—-1/2

1/(2ps) 1 1/(2us)
:2u5/ ‘/;;(—5—1-/252') di':285/ Wg(fﬁ)di‘
0 0

which follows from (6), Assumption 1, and (33). Theorem 9 now yields

1/(2u5)
| ey 255/ Wo(#) dz + O(eT)
0

_s(r, e (L m
_M6<2+M6SO(2H,6)>+O(85)’
while (23) and (32) provide

G L —LN’ L _ = m—1 _E_— m—1
SO<2M5>2M550<2M5> H+O(M5 )72/&5 KJFO(% )

The combination of the latter two formulas yields
Es (_ _ m
1l—g5= —(u—um) + O(ey"),
Hs
and rearranging terms we find the desired result. O]

Lemma 12 (scaling relation between €5 and §). We have

5:1—\/<1+€5(E—1)> (1—55<1+g)> +0(),

where the right hand side is real-valued and positive for all sufficiently small 6 > 0.

Proof. From Assumption 1 and the tail estimates in Theorem 10 we derive

(o7 = [Vt =2 [ viw?ar o).

-1
and (33) gives
0 1 ? e [+
/ Vs(z)* dz = u(;/vg<—— + u(;i") dz = =2 [ Wy(2)*di .

_1 2
Js Js
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Therefore — and thanks to Theorem 9 — we get
2
(1-6?2=22 / Wo(7)? di + O(e})
s
’s (41)

—2 2 2

Hes | Es &1 (N2 1~ m
= = [ 5,(z)"dz + O(£§")

2:“% K Jrg ° ’

where we used that 5’6 is an odd function, and integration by parts yields
- (1 \=~ /1 N .
Sy(#))" dit = § <—)S<—> —/ So(¥) SU(#) di
| @@t ez =50( 5, ) 5 (5 ) - [ @ S5
1 -/ 1 ~ (1
(2u5 "\ 2 N\ops) " ()
A\ m—
= (——ﬁ)u—nJrO(ua )

2415

thanks to the estimates and decay results from Lemma 6. In summary we find

2.2 2
e €5 . _ m
(1-0)" =2 = 2(®"E+7) +O(ef)
Hs Hs
and eliminating pug by Lemma 11 yields via

(1—6) = (1 +es(R— 1))2 - 55(1 +es(R— 1)) (m :) +O(EM) (42)

the assertion. O

=3

Lemma 11 and Lemma 12 provide explicit formulas for
s ~ Es and 0~ e

in terms of €5 but there is a slight mismatch between both results since the error bounds
in the formula for s are of higher order than those in the scaling law for 4. It is not
clear, at least to the authors, whether this mismatch concerns the real error terms or
just means that the bounds in Lemma 12 are less optimal than those in Lemma 11.

Our main result concerning the scaling relations between the different parameters
can now be formulated as follows.

Corollary 13 (leading order scaling laws). The relation between us and €5 can be
computed up to error terms of order O(e?“), while the scaling law between ¢ and
es 1s determined up to order O(e§") only. In particular, we have

ps =Tes+ (1 —F)es +o(e3),

o5 =" 20 (1—R) ey ™ 4+ o(e5™ )
for allm > 1, as well as

s_2E-FR—0_ R4 20RY

gs +

27 7 g5 +o(g3)

provided that m > 2.

Proof. All assertions are provided by Lemma 11, Lemma 12, and formula (4). n
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3.4. Foot scaling of Rs

We study now the asymptotic behavior of Rs near z = +1. To this end we define

_ Rs(—1+ psT)

Tg(i’) . &

(43)

and find by direct calculations the identity

T3(z) = Fy() + H5(7) — 2G5(2) ~ 555 (7) (44)
because both ég and

Hy(7) := O'(Rs(=2 + psi))
can be neglected on the interval I5. We further define

To(7) i= (So(@) + 717 + 7) (45)
and show that T converges as 0 — 0 to Ty, see Figure 7.

Lemma 14 (asymptotics of R; at * = +1 and for Vs at z = 0). The terms Rj(—31),
QR(;(%), and V5(0) are identical to leading order in 0. More precisely, we have

/ € o m _ m
R5(3) =0+ O(R) = (1 +<s(F — 1) + O,
and

2R5(3) = By(=3)1 = 0@, [Vs(0) = Ri(-5)| = O(F)
forall0 < § < 1.

Proof. From (15), Lemma 6, Theorem 7, and (32) we infer
~ 1
R(=1) = — R.(L :ﬁS/<_>
6( 2) 5(2) L4 g 2415
(1 7
:9%(—)+0wm=%§+M£>

Hs  \2ps
and similarly

L1 L1 m
Rg(%) =1—¢e5— €555 (2_,u5> =1—¢e5—¢e55 (2—M> + O(/Jg )
leg—es( (=) &) +0(em)
= s Es 5 S 0 2#5 K Es
_ Es b
=1+¢e(F—1)— — +0(e5") .
-1 - 22 4 oep)
Thanks to (33) and Theorem 9 we also find
E§ 1 Egﬂ
Vs(0) = =Wyl — | + O(e§') = — + O(§"),
(0) s 0(2M5) () Hs (=)

and the result follows from Lemma 11. O
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Theorem 15 (convergence under the foot scaling). The estimate
sup (= |T3(2) = Tola)| + & T3(2) = T3(2)| +1T(@) ~ T (@)]) < Cem !
holds with some constant C independent of §. In particular, we have

Rs(+1) =

TRes +O0(e]).

Proof. The unimodality of Rs, the monotonicity of ®’, and (20) imply
0 < Hs(7) < Gs(3) < Cemt!

for all £ € Js. Combining this with (44) and Theorem 7 we arrive at the desired
estimates for the second derivatives. We also notice that Lemma 6 along with Lemma
14 imply

where the last identity stems from (43), and by similar arguments we justify

/1 1- /1 17 1
To(—) = — ) +-+iR
0(2%) 0<2M5) dps 2

55
I R R N Ly o m-1
_2(2% n)+4ué+2n+0(55 )
:ﬁ+0(agﬂ)
19
_R5(i%) m—1\ _ 1 m—1
- B o )—T5<2—M>+O(56 )

The assertions for the first and zeroth derivatives can thus be derived from the estimates
for the second derivatives by integration with respect to . O]
3.5. Summary on the asymptotic analysis

We finally combine all partial results as follows.

Theorem 16 (global approximation in the high-energy limit). The formulas
1—5—55’0(@) for 0 <|z| <
He
» — - /1=
Ry ()

0 else

N =

nojee

and
< (3l
~ ) 9 LLO Ee— fOTOS |ZE|<1

else
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with
pe A —me2 A2
l+e(rR—1) e C c

approzimate the solitary waves from Assumption 1 in the sense of

1Rs — Beyll, + Vs = Vel + €5tlos — 6] = O(ef?) = O(6™)

ﬂs =

for any q € [1, oo]. Here, Sy solves the ODE initial value problem (5), the constants T,
% are given in (24), and the functions Wy, Ty are defined in (34), (45).

Proof. Notice that O(6) = O(es) is ensured by Lemma 12 and that it suffices to consider
the case ¢ = oo because the functions R. and V. are compactly supported. Theorems 7,
9, and 15 — which concern the convergence under the different rescalings — as well as
the tail estimates from Theorem 10 provide a variant of the desired estimates in which
fle, is replaced by ps. Thanks to Lemma 11 we also have ps ~ 9 as well as

1 1
pts = fley + O(6™) and hence — ==
,Ud ,u&‘(;
Since g{) is bounded, the intermediate value theorem implies
~ (| ~ ( |z ~ _
So (u) - S0 <|A—|) ‘ =3 ‘HS(/)HOO || O(5m 1)
Hs e

and by similar arguments we derive the corresponding estimate for T,. For the

+0(6™ ). (46)

€5 =0(0™),

approximation of the velocity profile, the crucial estimate is

(A=l o (|

o () i (2 = o) - leoln)
Hs Hes

where £ denotes an intermediate value and where we used that the function z — fVNV(;(f)

= 0(™),

is bounded. Finally, the estimates for o5 — 6., follow from (4) and (46). O

For practical purposes it might be more convenient to regard ¢ as the independent
parameter and ¢ as the derived quantity. In this case we can employ the following result,
which is, however, weaker than Theorem 16 since the guaranteed error bounds are of
lower order.

Corollary 17 (variant of the global approximation result). We have
1R = Ry ||, + IVe = Vi ll, + ™Mo — o5 | = O(e™)
for any q € [1, 00], where b, :== 1 — ||V.||y ~ ¢.

Proof. Let €, be fixed, where the subscript * has been introduced for the sake of clarity
only, and write 0, := 0., as well as u, := fi., for the quantities that can be computed
directly and explicitly from e,. Lemma 12 provides

2= (142 (r-1) (1 —es, (1+ g)) +0(e5)

(1—6.)" = V.
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where €5, and ps, are defined by the exact wave data (Rs,, V;,, 05,) and must not be
confused with e, and u,. On the other hand, a direct calculation — we just repeat all
arguments between (41) and (42) with (e, u.) instead of (es,, is,) — reveals

+1/(2u*)
(-6 =V 2=2% / Wo(2)? di
s
—1/(2p«)

- (et ) (12 {1+ 2) ) - 0.

Equating the right hand sides in both identities we then conclude

g5, = €« + O(el") ps. = p. + O(el"),
where the last identity holds due to the e.-dependence of p, and Lemma 11, which
provides an approximation of s, in terms of €5,. Finally, exploiting the properties of
So, Wy, and Tj as in the proof of Theorem 16 we arrive at

Ex — &
oo:O(|* Ox
9

~

||R6* - ng*

O
*

)=o),

and obtain analogous estimates for the g-norms due to the compactness of the supports.
The assertion is now provided by Theorem 16. O]

3.6. On the asymptotic eigenvalue problem

Of particular interest in the analysis of solitary waves is the spectrum of the linearized
equation. The problem consists of finding eigenpairs (A, U) € R x L*(R) such that

(R
U = LU, LU :=AQsAU,  Qs(x):= w , (47)

[
where the function Q)5 becomes singular in the limit § — 0, see Figure 8. Due to the

shift symmetry of the traveling wave equation (6), there is always the solution
A=1, U=V,

and a natural question is whether this eigenspace is simple or not. In fact, simplicity
would immediately imply some local uniqueness for solitary waves and is also an
important ingredient for both linearized and orbital stability.

Unfortunately, very little is known about the solution set of (47) due to the
nonlocality of the operator A. In the small-energy limit of FPU-type chains, the
corresponding problem has been solved in [4] by showing that the spectral properties of
the analogue to Ls are governed by an asymptotic ODE problem which stems from the
KdV equation and admits explicit solutions. The hope is that the asymptotic formulas
derived in this paper provide spectral control in the high-energy limit. A detailed
study of the singular perturbation problem (47) is beyond the scope of this paper but
preliminary investigations indicate that the spectrum of Ly depends in the limit 6 — 0
— and at least for sufficiently large m — crucially on the coefficients c4; that are derived
in the following result.
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AQs(x)

! O(us") K3

Figure 8. Cartoon of the coefficient function Qs in the linear eigenproblem (47).

Theorem 18 (weakx-expansion of Q). For any sufficiently reqular test function ¢ we
have

with

1 ~2
C_q Z:/ ~ mT2 di‘, Ci1 :%/ ~x ) di’,
R<y+&@ﬁ R(L+&@D
where the error terms depend on .

Proof. Due to ®”(r) = (1 — )™ * and the scaling relations (32) we find

R\[-1/2, +1/2]
and (15) along with (4) implies
[, et =L [ oo a
[—-1/2,+1/2] as
~ m+2
“6%@+5(»

Theorem 7 as well as the linear growth of Sy — see Lemma 6 — ensure

P (ps7) 5= p(psT) 5 m-1
[]5 (1+5@)"" ‘ /J (1+8@)"" o

p(psT) )
_/ W) 45+ O (ur )
R (1 + So(:z)>
and by smoothness of ¢ and evenness of Sy we can approximate
z -
[ 2 i = g (0) + s 0+ O (i)
(1 + SO(:Z-))

The claim now follows by combining all partial estimates from above. O]

For completeness we mention that the estimate (48) is not optimal for moderate
values of m and might be improved for the prize of more technical effort.
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