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Abstract

We study uniaxial solutions of the Euler-Lagrange equations for a Landau-de Gennes free energy for nematic liquid
crystals, with a fourth order bulk potential, with and without elastic anisotropy. These uniaxial solutions are charac-
terised by a director and a scalar order parameter. In the elastic isotropic case, we show that (i) all uniaxial solutions,
with a director field of a certain specified symmetry, necessarily have the radial-hedgehog structure modulo an orthog-
onal transformation, (ii) the“escape into third dimension” director cannot correspond to a purely uniaxial solution of
the Landau-de Gennes Euler-Lagrange equations and we do not use artificial assumptions on the scalar order param-
eter and (iii) we use the structure of the Euler-Lagrange equations to exclude non-trivial uniaxial solutions with e, as
a fixed eigenvector i.e. such uniaxial solutions necessarily have a constant eigenframe. In the elastic anisotropic case,
we prove that all uniaxial solutions of the corresponding “anisotropic” Euler-Lagrange equations, with a certain spec-
ified symmetry, are strictly of the radial-hedgehog type, i.e. the elastic anisotropic case enforces the radial-hedgehog
structure (or the degree +1-vortex structure) more strongly than the elastic isotropic case and the associated partial
differential equations are technically far more difficult than in the elastic isotropic case.

Keywords: Landau-de Gennes, Uniaxial Solutions, Symmetric Solutions

1. Introduction

Nematic liquid crystals are classical examples of mesophases intermediate in physical character between conven-
tional solids and liquids [1, 2]. Nematics are often viewed as complex liquids with long-range orientational order or
distinguished directions of preferred molecular alignment, referred to as directors in the literature. The orientational
anisotropy of nematics makes them the working material of choice for a range of optical devices, notably they form
the backbone of the multi-billion dollar liquid crystal display industry.

Continuum theories for nematics are well-established in the literature and we work within the powerful Landau-de
Gennes (LdG) theory for nematic liquid crystals. The LdG theory describes the nematic phase by a macroscopic order
parameter, the Q-tensor order parameter that describes the orientational anisotropy in terms of the preferred directions
of alignment and “scalar order parameters” that measure the degree of order about these directions. Mathematically,
the Q-tensor is a symmetric, traceless 3 X 3 matrix, with five degrees of freedom [1, 2], i.e.

QeS={Qe M ®)|Q=Q".r(Q =0}. (L.

A nematic phase is said to be (i) isotropic if Q = 0, (ii) uniaxial if Q has two degenerate non-zero eigenvalues with a
single distinguished eigenvector and (iii) biaxial if Q has three distinct eigenvalues. In particular, if Q is uniaxial or

isotropic, then
I
QelU-= {s(n@n— 5)
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where n is the distinguished eigenvector with the non-degenerate eigenvalue, labelled as the “uniaxial” director, s
is a scalar order parameter that measures the degree of order about n, and I is the 3 x 3 identity matrix [3]. The
eigenvalues of the uniaxial Q are %, —3.—3 respectively and s = 0 describes a locally isotropic point. The uniaxial
Q-tensor only has three degrees of freedom and the mathematical analysis of uniaxial Q-tensors has strong analogies
with Ginzburg-Landau theory, since we can treat uniaxial Q-tensors as R* — R maps [3].

As with most variational theories in materials science, the experimentally observed equilibria are modelled by
either global or local minimizers of a LdG energy functional [1, 2, 4]. The LdG energy typically comprises an elastic
energy and a bulk potential; the elastic energy penalizes spatial inhomogeneities and the bulk potential dictates the
isotropic-nematic phase transition as a function of the temperature [2, 4]. There are several forms of the elastic
energy; the Dirichlet energy is referred to as the “isotropic” or “one-constant” elastic energy and elastic energies
with multiple elastic constants are labelled as “anisotropic” in the sense that they have different energetic penalties
for different characteristic deformations [S]. These equilibria are classical solutions of the associated Euler-Lagrange
equations, which are a system of five elliptic, non-linear partial differential equations for reasonable choices of the
elastic constants [5]. We study and classify uniaxial solutions with either specified symmetries or certain properties
in this paper i.e. can we give a complete characterization of uniaxial solutions of the LdG Euler-Lagrange equations
for certain model problems, under certain restrictions on either the director field or the eigenframe of the uniaxial
solution? We treat the isotropic and anisotropic cases separately. The classification of all uniaxial solutions of the
LdG Euler-Lagrange equations is a highly non-trivial analytic question; uniaxial Q-tensors only have three degrees of
freedom and to date, there are few explicit examples of uniaxial solutions for this highly coupled system. Our results
are forward steps in this challenging study.

Our computations build on the results in [3] and [6], although both papers focus on the elastic isotropic case.
In the paper [3], the author derives the governing partial differential equations for the order parameter s and three-
dimensional director field, n in (1.2) in the one-constant LdG case and studies uniaxial minimizers (if they exist) of
the corresponding energy functional in a certain asymptotic limit. In [6], the author addresses some general questions
about the existence of uniaxial solutions for the one-constant LdG Euler-Lagrange equations. The author derives an
“extra equation” that needs to be satisfied by the director in “non-isotropic” regions; this equation heavily constrains
uniaxial equilibria. The author further shows that if the uniaxial solution is invariant in a given direction, then the
uniaxial director is necessarily constant in every connected component of the domain; we refer to such uniaxial
solutions as “trivial” uniaxial solutions. In [6], the author proves that for the model problem of a spherical droplet with
radial boundary conditions, the “radial-hedgehog” solution is the unique uniaxial equilibrium for all temperatures,
for a one-constant elastic energy density. The radial-hedgehog solution is analogous to the degree +1 vortex in
the Ginzburg-Landau theory for superconductivity [7]; the director field n is simply the radial unit-vector in three
dimensions and the scalar order parameter, s, is a solution of a second-order nonlinear ordinary differential equation
which vanishes at the origin (see (1.2)). It is not yet clear if there are other explicit uniaxial solutions of the Euler-
Lagrange equations, even in the one-constant case, in three dimensions.

We re-visit the question of purely uniaxial solutions for the LdG Euler-Lagrange equations, in the elastic isotropic
and anisotropic cases, without the restriction of special geometries or specific boundary conditions. We purely use the
structure of the LdG Euler-Lagrange equations and the corresponding uniaxial solutions will also be critical points
of the associated LdG free energy on bounded domains, subject to their own boundary conditions. Whilst we do
not provide a definitive answer to the question - are there other non-trivial uniaxial solutions, apart from the well-
known radial-hedgehog solution, for the fully three-dimensional (3D) Euler-Lagrange equations; we make progress
by considering special cases and excluding the existence of other non-trivial uniaxial solutions for these special cases.
Our main results can be summarized as follows. We firstly consider uniaxial solutions for which the uniaxial director
can be parameterized by two angular variables, f and g, locally. We derive the five governing partial differential
equations for these three variables from the one-constant Euler-Lagrange equations and in particular, we recast the
“extra condition” in [6] in terms of f and g. This is an interesting and useful computation that has not been previously
reported in the literature. In terms of spherical polar coordinates, (r, ¢, d) where r is the radial distance in three
dimensions, 0 < ¢ < x is the polar angle and 0 < 6 < 2 is the azimuthal angle, the radial-hedgehog solution
corresponds to f = ¢ and g = 6 with s being a solution of a second-order ordinary differential equation. We prove
that for a separable director field with f = f(¢) or g = g(6), all admissible uniaxial solutions must have f = +¢,
g = =0 + C for a real constant C and s is a solution of the “radial-hedgehog” ordinary differential equation i.e. all
uniaxial solutions with this symmetry are of the radial-hedgehog type, modulo an orthogonal transformation. Our

2



method of proof is purely based on the governing partial differential equations for s, f and g. We also show that the
“escape in third dimension” director field cannot correspond to a uniaxial solution, since we cannot find a s compatible
with this director. This is relevant for cylindrical geometries where the leading eigenvector of the LdG Q-tensor is
planar (or in the (x, y)-plane) away from the cylindrical axis. This result has been previously reported in the literature
under the assumption that s is independent of z [6]; our proof again does not use such assumptions and only relies on
the LdG Euler-Lagrange equations. Our last result in the elastic isotropic case concerns uniaxial solutions that have
e, the unit-vector in the z-direction, as an eigenvector; we use a basis representation of Q-tensors in terms of five
scalar functions, two of which necessarily vanish when e, is a fixed eigenvector. We analyse the governing equations
for the remaining three scalar functions to exclude the existence of non-trivial solutions of this type i.e. any uniaxial
solution of this type must have a constant eigenframe. This could be interesting for severely confined systems where
we expect the physically relevant solution to have one fixed constant eigenvector. In such cases, if the boundary
conditions require an inhomogeneous eigenframe, the corresponding solutions of the LdG boundary-value problem
cannot be purely uniaxial as a consequence of our result. Our result is not subsumed by results in [6] where the author
defines reduced problems in terms of invariance in one direction i.e.v - VQ = 0 for some unit-vector v and our method
of proof is different, which doesn’t rely on the “extra equation”.

Our last result focuses on an anisotropic elastic energy density in the LdG energy functional. The anisotropic term
in the Euler-Lagrange equations is a non-trivial technical challenge. We apply the same techniques as in the elastic
isotropic case, to compute the projections of these equations in three different spaces, and manipulate these projections
to show that all uniaxial solutions of the corresponding “anisotropic” LdG Euler-Lagrange equations with s = s(r)
and f and g independent of r, must necessarily have f = ¢, g = € where s is a solution of an explicit second-order
nonlinear ordinary differential equation. This is exactly the anisotropic “radial-hedgehog” solution which has been
reported in [8] but ours is the first rigorous analysis of uniaxial solutions in the anisotropic LdG setting.

The paper is organized as follows. In Section 2, we introduce the basic mathematical preliminaries for the Landau-
de Gennes theory. In Sections 3.1, 3.2, 3.3, we focus on the elastic isotropic case and in section 4, we study an
anisotropic LdG elastic energy density. In Section 5, we present our conclusions and future perspectives.

2. Preliminaries

We consider the LdG theory in the absence of any external fields and surface energies [4, 6, 9]. The LdG energy
is a nonlinear functional of Q(x) € S and its spatial derivatives; the LdG free energy is given by [1]

F1Q] = fg FQ) + £a(Q. YQ)dx @.1)
with f;, and f;; the bulk and elastic energy densities, given by
T-T* b* 2
o= 0@ - L@ + S @), 2.2)
L
fa =5 (IVQP + L (divQ)?), 2.3)

where a,b2,¢2 > 0 are material-dependent constants, 7 is the absolute temperature, and 7~ is the supercooling

temperature below which the isotropic phase Q = 0 loses its stability. Further, L > 0 is an elastic constant and L, is
the “elastic anisotropy” parameter. In the remainder of this section, we set L, = 0, labelled as the “elastic isotropic”
case and we re-visit the “anisotropic” L, # 0 case in the last section.

It is convenient to nondimensionalize (2.1) in the following way. Define & = 27;42 L as a characteristic length and
rescale the variables by [10]
X o« 27c4 ~ 276
X = E, Q = WQ’ 7__ = M . (24)

Dropping the superscript for convenience, the dimensionless LdG functional can be written as

FQ] = fg L@~ V6u(@") + 5(x(@)? + 317Qfdx, 25)
3



27T — T*)c?
4
We work with temperatures below the nematic-isotropic transition temperature, that is # < 1. It can be verified that
Jo attains its minimum on the set of Q-tensors given by [11]

where t = is the reduced temperature.

Quin = {Q =s5;(n®n-— %I), ne SZ} (2.6)
for ¢t < 1, where
— ot
. = \g 3+ VO-E v498 , o

The LdG equilibria or LdG critical points are classical solutions of the associated Euler-Lagrange equations [4]
NG 1 2 2
AQ;j =1Q;; —3V6[QuQyj — §5ijtr(Q )|+ 2Q;tr(Q7), (2.8)

where the term V66; J-tr(Qz) is a Lagrange multiplier accounting for the tracelessness constraint tr(Q) = 0. This is a
system of five elliptic, nonlinear, coupled partial differential equations. The question of interest is - do we have purely
uniaxial solutions of the form (1.2) of the system (2.8)?

3. Elastic Isotropic Case

3.1. Uniaxial Solutions with Specified Symmetries

We recall the governing partial differential equations for uniaxial solutions of the one-constant LdG Euler-Lagrange
equations from [6]. Let Q € R3 be a simply-connected open set with smooth boundary. We are seeking nontrivial
uniaxial solutions

Q(x) = s5(x) (n(x) ®n(x) — %I) eWH (@ U), xeQ 3.1

for the Euler-Lagrange equations (2.8) in Q, where s € W'?(Q,R),n € W'2(Q, S?).

Remark. For simply-connected open sets with smooth boundaries, it is reasonable to assume that the director n €
W2(Q, S?) for Q € W'(Q;U) [12]. Further, we also know from [4] that if Q is a solution of (2.8) is a simply-
connected open domain with smooth boundary, then Q is real analytic in Q. Hence, if Q € U is a solution of (2.8),

-1
then Q) = <|Q|2) (0), which is the zero-set of Q, has measure zero. Hence, we can choose n to be as smooth as Q in
Q\Qq[see [13] for instance]. In addition, the scalar order parameter s of Q € U is uniquely determined by

trQ(x)*
trQ(x)?’

and s(x) = 0 if Q = 0. Hence, we can also assume that s € W'2(Q, R).

Substituting (3.1) into (2.8), we get

s(x)=3 it Q(x)#0, 3.2)

2,

1 1 1
tr(Q?) = 35 QuQyi— 5&-,-&(02) = §s2<n ®n- 3D, (3.3)

AQ = As (n ®n— %I) +4n o (Vs . V)n) +2s(n © (An)) + 25(0yn ® Oyn), 3.4

where © denotes the symmetric tensor product, i.e. (M © m);; = (n;m; + n;m;)/2.
Following [6] and rearranging the terms, we get

M, +M2+M3=0, (35)



where A .
M, = (As —3|Vnfs — (ts — Vos* + 5s3)) (n®n - 51),

My =200 (sAn +2(Vs - V)n + s|Vnn), 3.6)

3
s(2 Z dm® dn + Vo men-1)).
k=1

M;

The unit-length constraint [n|> = 1 implies that

(Vn)'n =0,

) (3.7)

n-An+|Vn|© =0

for (Vll),'j = 6]'}’[,' = n;j, SO that
n- (sAn + 2(Vs - V)n + s|Vn|*’n) = s(n - An + (n - n)|Vn*) + 2n - ((Vn)Vs)
3.8
= s(n-An + [Vn]) + 2((Vn)Tn) Vs =0. G.8)
Thus we have |
M, eV, = span{n@n— gl},

(3.9)

M, eV, =span{n®v|venl},
M;eV; = span{v@wlv,wenﬂtr(v@w) :0}.

Since M, M,, M5 are 3 X3 symmetric traceless pairwise orthogonal tensors for the usual scalar product on M3(R),
we deduce
M, =M, =M;=0. (3.10)

Therefore, s and n are solutions of [6]

{ As = 3]VnPs + 15 — V65> + 45 Gl
sAn +2(Vs - V)n + s|Vn/*n = 0,
and in the regions where s does not vanish, n satisfies the extra equation
3
2> medm+|Vnmen-D =0. (3.12)
k=1
In what follows, we often work with spherical polar coordinates defined by
X = (rcosfsin g, rsinfsin g, rcos ¢), (3.13)
where 0 < r < 00,0 < ¢ <mand 0 < 0 < 27, and consider a special class of uniaxial solution (3.1) with
n(x) = (sin f(x) cos g(x), sin f(x)sin g(x), cos f(x)), (3.14)

almost everywhere, where we assume that f € W2 (Q,R/nZ) and g € Wwh2(Q,R/2n7Z). This assumption on the
regularity of f and g is consistent with n € W'? (Q; S 2) since one can easily check that for f € W' (Q,R/nZ)
and g € W2 (Q,R/277Z), |[Vn|* = |Vf]* + |Vg|*sin? f. Our first result, Proposition 3.1, concerns separable uniaxial
solutions with f = f(¢) and g = g(#) as shown below.
Define
m(x) = (cos f(x)cos g(x), cos f(x)sing(x), — sin f(x)),
p(x) = (—sing(x), cosg(x), 0),
5
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then n, m, p are pairwise orthogonal and

nen+meom+pep=1L (3.16)
Direct calculations show that s s
on = 6—]:m+ 6—§sinfp,
0 0
d,n = ém + ﬁ sin f p, (3.17)
0 0
Ogn = 8—£m+ G—‘zsinfp,
and { {
IVn* = 10,0 + <[00 + ———|dn* = |V f* + Vg’ sin” f. (3.18)
r rZsin” ¢
Since
2 1
omeon=90n®dn+ —d,nNnQ®d,Nn + ———Adgn ® Jyn
kzzl: k k P v r2 sin® ¢ ¢ ‘ (3.19)

= |V/Pm@m +|Vg|*sin’> f p®p + 2Vf - Vgsin fm O p,

we have the following from (3.12),

3
2 Z Hn®dm— |Vnfmen -1
i (3.20)

= (|Vf|2—|Vg|2sin2f)(m®m—p®p)+4Vf-vgsinfm@p.

Since m ® m — p ® p and m © p are orthogonal for the usual scalar product on M3(R), in the region where s does
not vanish, f and g satisfy

Vf-Vg=0
f Lot (3.21)
V£ = Vg sin’ f.
We manipulate the second equation in (3.11) to get
(S(Af = IVgP sin f cos ) + 2Vs - Vf)m + (sAg sin f + 2(Vs - Vg)sin f) p = 0. (3.22)
Since m and p are orthogonal, we have
S(Af —|Vg*sin fcos f) + 2Vs-Vf =0 (3.23)
sAg +2Vs-Vg=0. '
Thus, the partial differential equations for s, f, g are:
As = 3(|VfP + Vgl sin® f) s + (s)
s(Af — Vgl sin f cos f) +2Vs - Vf =0
sAg +2Vs-Vg=0 (3.24)
s(Vf-Vg) =0
s(|V f? = |Vg[? sin® f) =0,
where 4
w(s) =ts— V6s? + gss. (3.25)



Proposition 3.1. If
1
Q(r,0,¢) = 5(r,0,¢) |00, p) @0, ) — 51)

is a non-trivial uniaxial solution of (2.8) in an open ball Bg = {x € R3 : x| < R} which satisfies

n(6, @) = (sin f(¢) cos g(6), sin f(g)sing(6), cos f(¥)),

almost everywhere in Bg, then

+1

d
fo)=xo. &

and s satisfies

2 6 4
s"(r) + =s'(r) = 5 s(r) + ts — V652 + —s°.
r r 3

Equivalently, we have a class of uniaxial solutions of (2.8) of the form

Qi .9) = s 6. 9) 109 - 31
where
n(b, ¢) = (sin(xp) cos(6 + C), sin(xyp) sin(x6 + C), cos(+¢))
and s is a solution of (3.29) and these are the only uniaxial solutions with the symmetry (3.26).
Remark. Since Vf - Vg = 0, we only need to assume that g = g(0) or f = f(¢) in (3.27).
Proof. From |Vf|> = |Vg[?sin® f, we have

(d_f)2 _ sin® f(g) (d_g)2

dp sin?¢ \dé

Since we have assumed that f = f(¢) and g = g(6), equation (3.32) further simplifies to

sing df _ode_ o
sin f(g) de ' '

where C; is some constant.
From (3.33), we have

d*f ,cos fsinf c cosgsin f
de> ' sin?e sine
Hence,

s d2f+cos<pdf Czsinfcosf
2r2 \dg?  sing de ! sin?

Vs -Vf = —%S(Af— |Vgl* sin f cos f) = —

which implies that d s = 0.
Similarly, from (3.33), we have

1 s d’g
Vs-Vg=—-sAg=——— S8 _
PYS T T 212 sin® ¢ d6?

which implies dgs = 0.

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

As we have shown that s = s(r), the first equation in (3.11) requires that |Vn|? is independent of 6 and ¢, i.e.

2 (df\?
Vnp = ﬁ(ﬁj) - ¢,

7
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where C(r) is independent with 6 and ¢. Hence,

d
—f =C, (3.38)
de
for some constant C».
Recalling (3.33), we have
Ci Sil‘l(Cz(,D + C3) = Cy 8in ®, (3.39)

where Cj is a real constant. Computing the second derivatives of both sides, we have
~CC3sin(Cap + C3) = —=Cy sing = —C; sin(Cay + C3), (3.40)

which implies that C3 = 1.
Referring back to (3.39), we have

Cisin(p + C3) =sing or Cjsin(—¢ + C3) = —sin g, (3.41)

which implies that C; = 1,C3 = kx (kis even) or C; = —1,C3 = kn (k is odd).
Since n is equivalent to —n in the LdG theory, we can take C3 = 0 without loss of generality. Hence, we get

Il
H

Slp) = o, 1. (3.42)

dg
dé

The existence of a solution for equation (3.29) with suitable boundary conditions has been proven in several papers
e.g. [14, 15, 16]. O

Corollary 3.1. Let Q be a smooth non-trivial uniaxial solution of (2.8) in an open ball B = {x € R? : x| < R} which
is of the form (3.1) with
n = (sin f cos g, sin f'sin g, cos f).

If f = f(g) and s = s(r) with s # 0 for r > 0, then we necessarily have that

8O =x0+C, flp)==¢p (3.43)
for some real constant C.

Remark: We comment on the difference between Proposition 3.1 and Corollary 3.1. In Proposition 3.1, we assume
that f = f(¢) and g = g(0) and deduce that s = s(r) and f = +¢, g = £6 + C for a real constant C. In Corollary 3.1,
we aaume f = f(¢), s = s(r) and prove that g = +6 + C and f = +¢ as a consequence of these assumes symmetries.
In other words, these results suggest that if we impose certain “radial-hedgehog”-type symmetries on two of the three
variables, s, f and g, we necessarily find that the only uniaxial solutions with these symmetries are radial-hedgehog
solutions modulo an orthogonal transformation.

Proof. 1f s # 0, then we have d,¢ = 0 from Vf - Vg = 0 and

1 (df)
e el
(Gee) r2sin® p \de
d2g) + 20,50, = 0.

(0,9 +

2 sin’ ¢ (3.44)

2
g+ =0,g+
S< 8T8 T 2 sin® @

For fixed ry > 0, since the uniaxial Q is smooth and Q # 0 on B(ry, §) for some § > 0, we can have that s and n
are smooth on B(ry, §) [4, 6]. Hence, on B(ry, §), we have:

§(r,0) = go(8) + g1(O)(r — ro) + g2(O)(r — ro)* + O((r — rp)®), |r —rol <. (3.45)

Substituting (3.45) into the first equation in (3.44), and letting » — ry, we have

, d_f2_ @2
gl_r(z)sinztp[(déo) (d@)]' (3:40)

8




Since g is independent with ¢, we have g; = 0. By the arbitrariness of ry, we get d,g = 0 for Vr > 0. Hence

dg df
— =+C;, —=C 3.47
0 +Cy dy 1 (3.47)

for some real constant C;.
Recalling the second equation in (3.24), we have

Cysin(Cip + C3)cos(Crp + C3) =singcosg, VYo (3.48)
for some constant C3. Hence, we have C; = +1 by taking C3 = 0 without loss of generality.
O
Remark. A solution (s, f, g) of the system of equations (3.24) can be regarded as a critical point of the functional
1 26 2 1
E(x,u(x), Du(x)) = f (gtsz - T\/—”é + §s4 + g|Vs|2 + (VS +|Vgf* sin? f)] dx, (3.49)
Q
in the constrained admissible class
A= s, f.g € WAQR) | s(Vf - Vg) = 0, s(Vf = [VgP*sin® f) = 0}, (3.50)

subject to Dirichlet boundary conditions, where u = (s, f, g). The constraints in (3.50) are nonholonomic[17] and are
difficult to deal with.

According to the calculations in [18], it is difficult to find unit-vector fields n that solve the extra constraint (3.12).
In the remainder of this subsection, we discuss the “third dimension escape” solution [19] in greater detail. The
“third dimension escape” solution is known to be a non-trivial explicit solution of the extra equation (3.12) [18, 6].
However, we cannot have an order parameter s such that (s,n) solves (3.11). Theorem 4.1 in [6] suggests that this
solution cannot be purely uniaxial if 9,5 = 0. Here, we provide an alternative proof by using (3.24), without assuming
d,s = 0.

Let Q ={(0,0,2) : 0 <p <1,0<6<2r0<z< L}, where (p, 0, z) are the cylindrical coordinates. The “escape
into third dimension” uniaxial director in Q is defined by

d¥
n(p, d,z) = cos P(p)e, + sin¥(p)e, with pd— =cos Y, 3.51)
o

where e, = (cos 6, sin6,0), e, = (0,0,1) € R3. Hence,

n(r, 6, ¢) = (sin f cos g, sin f sin g, cos f) (3.52)
with x
f= 5 Y(rsing), g=86, rsing>0. (3.53)
Therefore,
1
0,f =—=cos¥, O,f= —C(,)S(p cos'P,
r sing
1 cos? (3.54)
O’f = —(cos ¥ + sin'¥ cos V), (’Jﬁf =———cosV+— % sin'¥ cos .
r sin” ¢ sin” ¢
Direct calculations show that (3.53) satisfies (3.12) and
Af —|Vfl>cos f/sinf =0, Ag=0, (3.55)



Assume there exists a scalar order parameter s such that the pair (s, n) satisfies (3.11), then (3.11) requires that s
satisfies

6 cos>¥
As= 25 us),
" sin” ¢
] .
Vs Vf=0 = ds=—-—2a,s, (3.56)
r sing

Vs-Vg=0 = 0ps=0.
In Cartesian coordinates, we have

. cos 8 cos
0ys = cosOsin@d,s + —goé‘ps =0,

sin 6 cos <,0a

dys = sinfsin d,s + =0, (3.57)
d.5 = cos pd,s — w8‘;,s = ————0,5.
r rsing
Hence, the first equation of (3.56) can be recast as
6 cos® W(x,
s = 2S5 TOD) 4y, (3.58)
r sin” ¢
By taking derivatives with respect to x and y on both sides, we have
0 (6 cos>¥(x,y)
o\ e )
e (3.59)
d [ 6 cos”WP(x,y)
sola—wz =0
dy \r sin” ¢

almost everywhere, which implies that s = 0. Hence, we cannot find a non-trivial s for which (s, n), with n as given
in (3.51), is a solution of (3.11).

3.2. A New Perspective for the Extra Equation (3.12)
Consider 1
Q = s(x)(n(x) ® n(x) - 51) +Bx)(m(x) @ m(x) - p(x) ®p(x)), Vxe€QC R, (3.60)

where n is the leading eigenvector of Q (with the largest eigenvalue in terms of magnitude), 0 < |B] < %|s|[18, 11].

In the case that the eigenvalues of Q are @,0, —@ respectively, we define the eigenvector corresponding to the

eigenvalue @ as the leading eigenvector, which implies that for s < 0, we have || < %Isl. Inspired by [18], we have
the following result:

Proposition 3.2. Ler Q be a global minimizer of LdG free energy in the admissible class, A
A= {Q is of the form (3.60) : n(X) satisfies the extra equation (3.12) in Q a.e.}, (3.61)
subject to uniaxial boundary conditions
sx)=s5,>0, B(x)=0, VxeodQ. (3.62)
Then Q is necessarily uniaxial with 8 = 0 everywhere in Q for t > 0.

Remark. In [18], the authors suggest (without a rigorous proof) that if Q ¢ A, then biaxiality is naturally induced in
the system. It has been shown previously that all uniaxial solutions of (2.8) belong to A N U. Here we rigorously
show that for 7 > 0, the global minimizer of the LdG free energy in ‘A subject to uniaxial boundary condition has to
be uniaxial. Of course, the admissible class A is restrictive because of the constraint (3.12) and in general, we cannot
constrain the leading eigenvector of Q to satisfy (3.12) everywhere.
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Proof. For Q of the form (3.60), we can check that

2
IVQJ? = g|Vs|2 +2|VB + 25 Vn[?

(3.63)
+28%(IVn* + 4{(Vm)'p*) — 4sB(p - Gp — p - Gm),
where G = (Vn)(Vn)" = ¥}_, 6;n ® d;n.
The extra equation (3.12) can be written as
1 2 1 2
G = EIVnI maem + EIan P®P. (3.64)
Since m and p are orthogonal, we easily obtain
1 1
Gm = 5|Vn|2m, Gp = E|Vn|2p. (3.65)
Hence, if the leading eigenvector n satisfies (3.12), then
2
IVQP* = §|Vs|2 +2IVB + 257 V0 + 28” (IVnf* + 4(Vm)"pP?). (3.66)

Substituting (3.60) into (2.5) and using the above reduction for the one-constant elastic energy density, the LdG
energy in this restricted class is

F(s,8,n,m) = f(% (gs2 + 2,82) + \/6(2[5’2 - gsz) s+ g (s2 + 3ﬁ2)2)

(3.67)
1
+ 3195+ VBF + 71Vl + 57 (IVnl* + 41(Vm)"pl*) dx.
The associated Euler-Lagrange equations for s and 3 are
As =3|VnPs + ts — VOs? + 35° + 4875 + 3 V6
2 T2 42 3 (3.68)
AB = (IVnf? +4(Vm)TpP + £ + 2 Vs + $5%) B + 48°.
We note that 5
AB> = 2(VB - VB + BAB)
(3.69)

=2 (|V'8|2 +(IVnP + 4/(Vm)"pl? + 1 + 2 Vos + gsz)ﬁ2 + 4ﬁ4)

In order to get the desired result, we firstly show that s > 0, which can be proved by contradiction. The proof is
similar to the proof of Lemma 2 in Ref. [11]. Let Q* = {x € Q; s(x) < 0} be a measurable interior subset of Q. The
boundary condition implies that the subset Q* does not intersect 9Q2. Then we can consider the perturbation

1
5 s(x)(n(x) ® n(x) - 5I) +Bx)(m(x) @ m(x) - p(x) ®p(x)), Vx € Q\Q’ 570,
= 1 .
—s(x)(n(x) ® n(x) - 3I) +Bx)(m(x) ® m(x) - p(x) © p(x)), VX € Q"
Then 6 € A and 6 coincides with Q everywhere outside Q*, The free energy difference 7:((3) -F(Q)is

F(Q) - F(Q) = f 4\/5($s3 - s8%)dx <0, (3.71)
o

1
where the last inequality holds because s < 0 and 87 < —s° for s < 0. This contradicts the fact that Q is a global
minimizer in the admissible class A. Hence, Q* is empty and s > 0 everywhere in Q. So for ¢ > 0,

4
t+2V6s(x) + 5s(x)2 >0, YxeQ, (3.72)

which implies that A?> > 0 and ? is subharmonic. By the weak maximum principle [20], we have ||5°|l;~@q) <
18I0 = 0. Hence, B is identically zero in Q and Q is necessarily uniaxial.
O
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3.3. An alternative approach

Consider the following basis for S; the space of symmetric traceless 3 X 3 matrices:

3 1 1 1
El = \/;(ez®ez - gI), E2 = \/;(ex®ex — ey®ey), E3 = \/;(ex®ey + ey®ex)’

(3.73)
1 1
E, = \/;(ex ®e, +e,®e,), Es= \/;(ey ®e. +e e,
where e, = (1,0,0), e, = (0,1,0), e, = (0,0,1) € R>.
ForVQ € S:
5
QX = > gi(0E;, VxeR’, (3.74)
i=1
thus,
5 5
Q) = gl IVQF =) IVail, (3.75)
i=1 i=1
Vo 5 3V2 V6 V6 32
Q") = =4} + (@) ~ ©63) - (@@ + 04 + (@195 + 0195 + 5 43dsds
(3.76)
V6 ; Vo6, V6 32 V6 32 3V2
=5 - —(qz +q3)q1 + (o + —qz)q4 (G a-—F )5 + 5 43944s-
Hence, the Euler-Lagrange equations for ¢; (i = 1,2,...,5) are given by
9
Agy = (l‘ 6q1 + 2%, 4 ))611 +3(3 ) 5(‘13 +43)
343
ACIz (r+6q1 +2(X3-, 4D) 92 — — @ - 43) -
(t+6ql+2(2k 14))43—3‘/_61445 '
Aq4 = (t=3q1 - 3V3q + 223, 4D) 4 - 3V3q345
Ags = (t=3q1 +3V3q2 + 2}, 4)) g5 — 3 V3q3qu.
It is known that Q is uniaxial, if and only if
- 3 2
BQ) = (@) - 6(rQ%)" =0, (3.78)
which can be viewed as the uniaxial constraints of (3.77) (see for example [4]).
Proposition 3.3. Let Q ¢ R? be an open set, if
3
QX = Y Gi(0E;, VxeR’ (3.79)
i=1

is a uniaxial solution of (2.8), then Q has a constant eigenframe in every connected component of {Q # 0}. Moreover,
if Q is connected, then Q has a constant eigenframe in the whole domain.

Remark. We are considering Q-tensors with g4 = g5 = 0, and show that there are no non-trivial uniaxial solutions of
this form with g4 = g5 = 0. This is equivalent to fixing e, as a constant eigenvector of the corresponding Q-tensor.

Proof. Let Q be a connected component of {Q # 0}. Since Q is uniaxial and g4 = g5 = 0, then

BQ) = (g5 + ¢3)(=3q7 + ¢35 + q3)* = 0, (3.80)
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which implies that
1
©=4¢3=0 or qi=3(g+4)) (3.81)

If g = g3 = 0in Q, then Q = ¢, E; with a constant eigenframe.
If q% = %(q% + q%) in Q;, we have

Agi = (t+ 641 +8q7)qi, i=1,2,3. (3.82)

Since g4 = g5 = 0, Q can be written as

Q=q \/;(ez®ez—§l)+v\/;(n®n—512)

(3.83)
3 1 1 1
=4qi \/;(ez Qe — 31) - V\/;(P‘@P - 512),
where n(x) € S, n(x) L e, p(x) =, xn(x),and L, = e, ® e, + €, D e,.
Letting n(x) = ae, + axe,, we have
1
¢ = (a; - I 4 = aa. (3.84)
Hence, | |
1 1
@ = g(qg +q3) = §(a‘11 s @ +al(l—ahn? = Evz. (3.85)
Since Q # 0 in Q;, we have ¢; # 0 in Q;. Hence,
v=2V3q, or v=-2V3q, in Q. (3.86)
Then from (3.83), we have
Q= 1(n®n 1I) r Q= \/T(® 1I) in Q (3.87)
V2 37 O NTTYVPEPT3 b '
which implies that s = + \/g v=- \/éql. Thus s is a solution of
4,
As = (t— Vos+ 358 (3.88)

Recalling (3.11), we have [Vn|> = 0 or [Vp|*> = 0 in Q,. Hence, Q has a constant eigenframe in Q.
If Q is connected, then Q is analytic. Following the proof in Theorem 4.1 (ii) in [6], we can show that the uniaxial
analytic Q has a constant eigenframe in the entire domain Q.

O
4. Elastic Anisotropic Case
Consider the dimensionless LdG free energy with elastic anisotropy
t 1 1 L
F1Ql = f S(Q) = V(@) + 5 (@) + 5IVQF + = Qi Qicsdx. “.1)
Q
where L, # 0. Then the corresponding Euler-Lagrange equations are
L 2
AQ;; + 72 (Qik,k i+ Qjkki — §5iijl,kl)
4.2)

1
=1Q;; -3 ‘/E(Qikaj - §6ijtr(Q2)) +2Q;tr(Q?).
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We seek uniaxial solutions of the form (3.1) for the Euler-Lagrange equations (4.2). Let

1
Vi = span{n@n— 51}’

Vs, =span{n®v|venl}, (4.3)

Vi = span{v@w,v@v—w@wlv,wenﬂtr(v@w) =O},

and P; : S — V; be the corresponding projection operators. Similarly to the elastic isotropic case in section 2, the
system (4.2) can be written as

L 2
Py (AQij + ?(Qik,k i+ Qi — 551' ijl,kl))

1
= 1Q;; - 3V6(QuQuj — 56;;tr(Q?)) + 2Q;jtr(Q?),
3

L, ) 4.4)
P> (AQij + E(Qik,kj + Qi — géiijl,kl)) =0,
L 2
P (AQij + Ez(Qik,kj + Qi — §5iij1,k1)) =0.
Direct calculations show that
1
Qixj = ((n ®n-— 31) (st)) +(Vs-m)(Vn);
ij
+(ne ((Vn)TVs))ij +((Vmn ® Vs);; + (V- mn @ Vs),; (4.5)
+ s((Vzn)n +VnVn+ (V-n)Vn+n® V(V - n)), R
ij
and ) ) |
“Quu = —(aﬁ,s(nkn, — —6k) +2Vs - (Vm)n + 2(V - n)(Vs - n)
3 3 3
4.6)
+ 5((V - n)* + tr(VnVn) + 2V(V - n) - n)),
&s on; on;
Where (st)ij = M = Sij, (Vn)u = a—x] = n,-,j, (Vzn)ijk = m = ni,j]a (VnVn)ij = n,-’knk,j, and ((Vzn)n)ij =
I’l,"jknk.
It can be noticed that
(Vn)n = (Vn)n — (Vn)"n = —n x (V x n) € n*,
4.7
ne® n)st = NSk = NiSjhy = N @ ((st)n).
For ¥v € R? and Yw € nt, we have
1
ST m®n)=nGn- §I,
1
S’T(n®v)=(v-n)(n®n—§I)+n®(v—(v-n)n), (4.8)

STwev)=no(v-n)w)+S7T (WO (v—(v-n)n)),

where © denotes the symmetric tensor product (n © m);; = %(n,-m ; +njm;), and ST (A) is the symmetric, traceless
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part of a matrix A, i.e. ST(A) = $(A + AT) — 1tr(A)I, VA € R¥3. Hence, from (4.5), we have

1 2
E(Qik,kj + Qjiki — 55; ijI,kl) =ST (Qik,k j)

= ((V -n)(Vs-n)+ Vs-(Vn)n + sV(V-n) - n + (st)n . n) (n on- %I) 4.9)
+n0 ((V2)n = (V2s)n - mn) + ((Vm)'Vs = (Vs - (Ymn)n) + (Vs - n)(Vm)n

+(V-n)(Vs=(Vs-nn) + s(V(V-n) - (V(V-n)-n) n)) + R(s,n),

where
R(s,m) = ST((Vn)n © (Vs — (Vs -n)n)) + (Vs - n + sV - n)ST (Vn)

4.10
+ 5 S7(VnVn + (V>n)n) — %(st - %(As)l). (*+-10)

The detailed calculations leading to (4.9) are given in the Appendix.

Unlike the elastic isotropic case, we are unable to get explicit equations for s and n, as the projections of R(s,n)
depend on s and n. Moreover, according to (4.9), all the equations in (4.4) involve the second derivatives of n and
s. Hence, the uniaxial assumption gives stronger constraints in the elastic anisotropic case compared to the elastic
isotropic case. We consider uniaxial solutions with certain symmetries below.

Proposition 4.1. Let

1
Q(r,0,¢) = s(r) (n(@, v)en, ) - §I) “4.11)

be a non-trivial uniaxial solution of the system of partial differential equations (4.2) in an open ball By = {x € R3 :
x| < R}, then we must have

n(,¢) = — (4.12)
Ix]
where s is a solution of
2 . 2, 2 6
(1 + —L2) (s r+-s (r)) = (1 + —Lz) —s(r) + Y(s(r)), (4.13)
3 r 372

4
where Y(s) = ts — V652 + §s3.

Proof. Let m, p be unit vectors s.t {n, m, p} is orthogonal basis in R3. Thus,

3
Vo =span{n©m, nop},

1
Vi = span{n@n— —I},
(4.14)

Vi=span(mOm-pop, mop}.

Then the system (4.1) can be written as

1
Ki(s,n) (n on-— 51) + K»(s,m) (n©@m) + K3(s,n) (mO p) 4.15)
+ K4(s,m)(mOm-pop)+ Ks(s,n)((mop) =0,

which gives us five equations for s and n, i.e. K;(s,n) =0,i =1,...5.
For clarity of presentation, we consider the special case for which

n(6, ) = (sin f(g) cos g(6), sin f(p) sin g(6), cos f(¢)). (4.16)
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Then,
e, = (sinpcosf, singsing, cosy), e, = (cosgcosf, cosgsinf, —sing),

eg = (—sinf, cosd, 0), n=(sinfcosg, sinfsing, cosf),
m = (cos fcosg, cos fsing, —sinf), p=(—sing, cosg, 0).
Since s = s(r), we have
2 2 1
Vs=0,se, Vs=0d/se Qe + —(Grs (e, ®e, +€® eg)),
r
and

2 _ (a2
Vis— 3(A9L = (3}s - ;6,s)(e, ®e, — 51)_

For n of the form (4.16), direct calculations show that

1 sin 1
V-n=- ((ms etp)aApf + ‘_f(p’ ee)aé‘g) £ _D(Q’ ‘10)’
r sSin ¢ r

1

Vn = —(6¢fm®e¢,+ -

: fﬁeg pP® ee) s
sing

~

n

wmn=1kﬁman+?f%gmwﬁ,
r sin ¢
Vs—(Vs-n)n = 6,s((m, e, )m + (p, e,)p),

where (-, -) is the inner product in R3.

Hence,
(V-n)(Vs-n)+ Vs-(Vn)n
=@mwmm+m@mmwﬁ+ggmwmw+mmmwmﬁ%m
(V2s)n-n = (n,e,)’ s +((n,e,)” + (n.e)’) %6,s = (m.¢)’s+(1-(n,e)) %Brs,
and

1 1
V(V-n)=0,(V-n)e, +-0,(V-n)e, + m 09(V - n)ey
r (2

rsi

! 1
= (_D(e, p)e, + 0,D(6, p)e, + —— 0D, <P)e€)’
’ sin ¢

1
YnVn = 72((8“’ Hm.e,)mee,
sin? f
sin?
S(Vn) = l(c?wf(m, e, )moOm +

r

+

sin
(998)"(p- )P ® € + ﬁjawf do3((p. e,)m ® €5 + (m, €g)p & eg,)),

n sin
fﬁag(p, )P O P + (0,f (P, €y) + = fﬁeg(m, €))p © m)
ne sin ¢

S1

si

1 .

+no - (6¢, f(n, e, )m + s%Lf@eg(n, ee)P) ,
r sin @

where S (A) is the symmetric part of a matrix A, i.e. S(A) = (A + AT), VA e R¥S.
Next, we compute S((V>n)n). Since

1
rsing

(Vzn)n = (n,e,)0,(Vn) + ;(n, €,)0,(Vn) + (n, e9)dy(Vn),
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4.17)

(4.18)

(4.19)

(4.20)

421

4.22)

(4.23)



where | inf
sSin
6,(Vl’l) = _r_2 (dpf me e, + Ea()g P® eg) ,

i

1 sin
0,(Vn) = ;(6ifm®e¢+0¢(ﬁ)69gp®eg—(wa)2n®e¢—0¢fm®e,),

| (4.24)
09(Vn) = ;(@,f(cos fOpg p®e, +cosp ma ey)
+ Zizi (6§g P ® ey — (9gg)” (sin f n+ cos f m)® ey — dpg p® (sin @ e, + cos ¢ e¢))).
We have
1
S((V*n))n = r_z(((n, e,)0Lf — (n.€)d,f)mOe,
| .
+ ——(n, eg) (cos @O, f — s¥n f cos f([)gg)z) mo eg
sin ¢ sin¢g
sin sin sin
+ ( T (e + 0,2y, )05 - 2L n, er)aag>)p oe
sin” ¢ SlI‘lgO SlIl(,D (425)
| .
+ ——(n, eg) (cos fO,f00g — Smf cos cpﬁgg) poe,
sin ¢ sin ¢
1
—(n, eg,)(c')sof)zn Oe, — ﬁ(n, e.)0,f moe,
- _s'mzf (1, eg) sin f(Jgg)* N O ey — s.mzf (n, eg) sin pdpg p © e,).
sin” ¢ sin” ¢
In order to get K (s, n), we need to project R(s,n) into V. Note
- 1
ST (umom) + w(pop) = l%(m@m—p@p) - l%(n@n— §I) (4.26)
for Yuy, 1y € R. Hence,
1 3 1 1 1
2 _ 2 2
P (V 5 — g(As)l) = (z(n, e) - E)(a,s - ;a,s) (non- §I),
1 1
Py(ST((Ymn© (Vs = (Vs - mm)) + (Vs - m)ST(Vm)) = Bo(6, go);ﬁ,s(r)(n on- §I), (4.27)
2 1 1
Py((V-m) ST(Vn) + ST (YnVn + (V’mn)) = = Co(6. ¢)(non - 1),
r 3
where By(6, ¢), Co(8, ¢) depend on f and g, which can be calculated from (4.22), (4.25). One can show that
1 sin f
Bo(6.¢) = =5 |(m.e,)m. &) + (m. e)(m. €))d,f + =——((n.e)(p. ) + (p.es)n.e)dgg ). (4.28)
sin @
The expression of Cy(6, ¢) is rather complicated and does not play any role in our proof.
Recalling (3.4) and (3.6),
1
AQ = As (n ®n-— §I) +4n 0O (Vs . V)n) +25(n © (An)) + 25 (9yn ® dn) , (4.29)
and |
P(AQ) = As (n ®n- gI) , Py(AQ)=2no (sAn +2(Vs-V)n + s|Vn|2n),
(4.30)

3
P3(AQ) = (2 Z dm®dm+|VnP men-1)).
k=1
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The above calculations imply that K;(s,n) = 0 is equivalent to

1 1
A1(0,¢)s”(r) + By (6, 90);S’(r) + C1(6, sa)ﬁS(V) = yY(s), (4.31)
where 1
A0, 9)s"(r) + Bi(60.9)~5'(r) = As + Ly ((V-n)(Vs-n) + Vs - (Vmn + (Vs)n - n)
1 1 1 1 (4.32)
+ LyBy(0,¢)~5'(r) = Ly (—(11, ) - —) (S"(r) - —S’(r)),
r 2 6 r
and
%cl(e, @) =L, (%co(e, @)+ V(V-n)- n) - 3|vn2. (4.33)
From (4.21), we have
(V-n)(Vs-n)+ Vs-(Vn)n + (V2s)n - n = (n,e,)>s”(r)
+ (((n, e, )(m, e,) + (m, e,)(n, e,)d, f + %((n, es)(p, e,) + (p, eo)(n, ,))dug (4.34)
+1—(n, e,)z)ls'(r).
r
Hence, (4.32) implies that
A0.9) =1+ Ly ((n, e - (%(n, &) - é))
| | (4.35)
=1+1L, (E(n, e) + 6) #0,
and 5 1 |
Bi(0,¢) =2+ Lo — 5(me ) + 5((n,e,)m, )+ (m,e,)(n, )0, f
? sinzf ? (4.36)
+ 520 (e, €) + (. en)n, €0)ug)
sin ¢
Similarly, from (4.9), one can show that
L 2
P (AQij + _Z(Qik,kj + Qjkki — —5iij1,k1)) = Ps(AQij + LyR(s, n))
2 1 3 1 (4.37)
= 5" (A0, ) + ;S'(F)B(é’, @)+ r—ZS(r)C(G, 0) =0,
where
1
s (r)A(6, ¢) + P s'(rB(b, ¢)
= L,P; (S‘T((Vn)n © (Vs —(Vs-nn)) + (Vs - n)ST(Vn) — %(st - %(As)l)) (4.38)
1 1
= (A4(9, ©)s”(r) + Bu(6, 90);S'(r)) (mom-pop)+ (As(& @)s” (r) + Bs(6, tp);S’(r)) mop,
and
3
lZC(e, ) = (2 > gnean - [Vald-ne n)] + LZ(P3(ST((V .m)Vn + VnVn + (V2n)n))),
r s (4.39)
1
= 5(C0.9)mom —pop) + C5(0.9)m o p).
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Hence, | .
Ki(s,m) =0 < A,0,¢)s"(r) + Bi(#, go);s'(r) +Ci(0,9)5s(r) =0, i=4,5. (4.40)
T
From (4.38) and (4.19), we have

A0, ) = —%P3(er ®e — %1)

L1 (4.41)
= (5 ((m,e)” - (p,e)’)moOm - pOp) +2(m, e,)(p,e)m p) :
Hence, L oL
Ai(0.9) = =2 (. e)’ - (p.e)).  As(0.9) = -~ (m.e)(p.e,). (4.42)

The two equations in (4.40) can be viewed as two linear ordinary differential equations for s(r). If Ik € {4, 5}, s.t.
Ax(6, ¢) # 0, we can obtain s(r) by solving the equation in (4.40) with A; # 0, which cannot be a solution of (4.31).
Indeed, solutions of the equation in (4.40) with A; # 0, are of the form

Yir" +yr®, or (y1+vy2Inr)r*, or r® (y;cos(azInr) + y; sin(a; Inr)), (4.43)

depending on Ay, By, and Cy [21]. However, the solutions in (4.43) cannot be solutions of (4.31).
S0 A4(6, ¢) = As(6, ¢) = 0, which implies that (m, e,) = (p, e,) = 0. Since n, m and p are pairwise orthogonal, we

haven =e, = 1.
X x|
Forn = m, direct calculations show that
Ly 2 .
P;|AQ;; + ?(Qik,kj + Qjiki — §5iij1,kl) =0,i=2,3, (4.44)
and s is a solution of
2\, . 2, 2 \6
L+ L |(s7() + =5'(0) =1+ Lo | 5 5() + y(s(r), (4.45)
3 r 3 r2

4
where ¢/(s) = ts — V652 + §s3.
For a general n(6, ¢), we note that n = n(6, ¢) implies that

6ni 1 62111' 1
=oi) sam=oln) (440
Hence, as in the special case,
1 1
Ki(s;n) =0 < A(6,¢)s"(r) + Bi(6, w);S'(r) +Ci(6, QO)ﬁS(”) = y(s(r)), (4.47)
and 1 !
Ki(s,m) =0 & Ai(0,9)s"(r) + Bi(0,9)=s'(r) + Ci(0, )5 s(r) =0, i=2,3,4,5. (4.48)
r r

We can conclude the proof by noting that (4.35) and (4.42) always hold, as A;, A4 and As are all determined by
V2Zs. Hence, if

1
Q(r.6,¢) = s(r) (H(Q p)en(@,¢) - 51) (4.49)

is a non-trivial uniaxial solution of (4.1), then n = ﬁ and s is a solution of
X

(1 N §L2) (") + %s’(r)) = (1 + %Lz) %s(r) +(s(r)), (4.50)

4
where ¥(s) = ts — V6s? + 533.
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5. Conclusions

We study uniaxial solutions for the Euler-Lagrange equations in the LdG framework, to some extent building on
the results in [6]. There is existing work on the uniaxial/biaxial character of LdG equilibria, they rely on energy
comparison arguments and the fact that biaxiality is preferred at low temperatures, to the uniaxial phase, or that
biaxiality arises from geometrical considerations. We purely use the structure of the Euler-Lagrange equations (as
in [6]), and our results Proposition 3.1, 3.3, 4.1 apply to all critical points. However, Proposition 3.2 is restricted to
minimizers since the proof depends on energy comparison arguments.

For a 3D problem, a uniaxial LdG Q-tensor has three degrees of freedom whereas a fully biaxial tensor has five
degrees of freedom. We consider the uniaxial solution with unit vector n = (sin f cos g, sin f sin g, cos f) can be
represented by spherical angles, and derive a system of partial differential equations for f, g and the scalar order
parameter, s. We believe that this representation of uniaxial solutions will aid further work in this direction.

In the elastic isotropic case, under the assumption that f = f(¢) and g = g(6), we show that the only possible
uniaxial solutions are f(¢) = +¢, g(6) = +0 + C, and s = s(r) satisfies a second order ordinary differential equation.
In other words, they are radial-hedgehog solutions modulo an orthogonal transformation. Our results rely on certain
assumed symmetries of either the director field or the scalar order parameter, but these assumptions are physically
relevant. For example, it is reasonable to expect that the uniaxial director is independent of r for spherically symmetric
geometries.

By using an orthonormal basis for the space of symmetric and traceless tensors, we can show that if e, is a eigen-
vector of a uniaxial solution, then this solution necessarily has a constant eigenframe. This result has physical impli-
cations; for example if we consider severely confined nematic systems where the vertical z-dimension is much smaller
than the lateral dimension, then the physically relevant solutions typically have e, as a fixed eigenvector. In such cases,
the mathematical problem reduces to a boundary-value problem for the LdG Q-tensor on a two-dimensional cross-
section i.e. analyzing solutions of the LdG Euler-Lagrange equations on a two-dimensional domain with prescribed
boundary conditions. If the imposed boundary conditions are incompatible with a constant eigenframe and a single
order parameter, then we cannot have purely uniaxial solutions for such boundary-value problems as a by-product of
our result.

In the elastic anisotropic case, we can show the radial-hedgehog is the only possible uniaxial solution under the
assumption that s = s(r), n = n(6,¢). Although a complete description of 3D uniaxial solutions is still missing,
we believe the radial-hedgehog is the only nontrivial uniaxial solution, at least in the elastic anisotropic case. The
formulation of the uniaxial problem in terms of s, f and g will be useful for a completely general study of uniaxial
solutions of the LdG Euler-Lagrange equations without any constraints.

Pure uniaxiality appears to be a strong constraint but it is known that for several model situations, (see e.g. [4, 10]),
minimizers are approximately uniaxial almost everywhere. Therefore, it would be interesting and highly instruc-
tive to construct “explicit” approximately uniaxial solutions. Our technical computations in the elastic isotropic and
anisotropic case may aid such constructions and equally, our techniques may help in classifying all solutions (without
the constraint of uniaxiality) of the LdG Euler-Lagrange equations.
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Appendix A. Calculations of Eq. (4.9)

In order to get (4.9), we compute the symmetric, traceless part of each term in (4.5), the first step of which is eq.
(4.8).
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Then direct calculations show that
ST ((n ®n-— %I) (st)) = ST (n® (Vs)n) - ST (%st)
=((V?s)n-n) (n on- %I) +n0((V29n - ((V?s)n-n)n) - % (st - %(As)l),
ST((Vs-m)Vn) = (Vs - m)ST(Vn),
ST(n®((Vm)'Vs)) = ((Vm)'Vs) - n) (n on- %1) +n0 ((Vn)'Vs - (Vn)"Vs) - nn)

= (Vs-(Vn)n) (n on-— %I) +no ((Vn)TVs —(Vs- (Vn)n)n),

(A1)
ST((Vnn® Vs) = (Vmn o (Vs - mn + S7((Ymn © (Vs - (Vs - m)n))
=10 ((Vs-m)(Vm)n) + ST((Vmn o (Vs - (Vs - mn)),
ST((V-mneVs) = (V-n)S7(ne Vs)
=(V-n)(Vs-n) (n on- %I) +no ((v -m) (Vs — (Vs - n)n)),
ST (s((V’m)n + VnVn + (V- m)Vn)) = s(V - m)ST(Vn) + s ST ((V’m)n + YnVn),
ST(sn@V(V . n)) = (sV(V -n)- n)(n@n— %I) + n@(s(V(V ‘n)— (V(V-n)- n)n)).
Hence, we have
1 2
E(Qik,kj + Qjkki — §6iijl,kl) =8T (Qik,k j)
= ((V-m)(Vs-m)+ Vs-(Vmn + sV(V-n)-n+ (V2s)n - n) (n on- %I) A2)
+n0 (((Vs)n = (V2)n - mn) + ((Vn)"Vs - (Vs - (Ymm)n) + (Vs - n)(Vn)n
+(V-m) (Vs = (Vs-mm) + s(V(V - m) = (V(V - m) - m) )) + R(s, m),
where
R(s,n) = ST (Vn)n ® (Vs = (Vs -n)n)) + (Vs - n + sV - n)ST (Vn)
) 1, 1 (A3)
+5 ST(VnVn +(Vimn) - - (V 5 — 5(As)l).
Note A 2 2 T
J(s,m) 2 ((V25)n = (V2s)n - mn) + (V)" Vs = (Vs - (Vmn)n) + (Vs - n)(Vm)n A

+(V-n)(Vs—=(Vs-nn) + s(V(V-n) = (V(V-n)-n)n) € n*,
son® J(s,n) € V,.
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