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Abstract

We present a simple and fast algorithm to test the thermodynamic stability
and determine the necessary chemical environment for the production of a
multiternary material, relative to competing phases and compounds formed
from the consituent elements. If the material is found to be stable, the region
of stability, in terms of the constituent elemental chemical potentials, is deter-
mined from the intersection points of hypersurfaces in an (n— 1)-dimensional
chemical potential space, where n is the number of atomic species in the ma-
terial. The input required is the free energy of formation of the material itself,
and that of all competing phases. Output consists of the result of the test
of stability, the intersection points in the chemical potential space and the
competing phase to which they relate, and, for two- and three-dimensional
spaces, a file which may be used for visualization of the stability region. We
specify the use of the program by applying it to a ternary and quaternary
system. The algorithm automates essential analysis of the thermodynamic
stability of a material. This analysis consists of a process which is lengthy
for ternary materials, and becomes much more complicated when studying
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materials of four or more consituent elements, which are of increased inter-
est in recent years for technological applications such as energy harvesting
and optoelectronics. The algorithm will therefore be of great benefit to the
theoretical and computational study of such materials.

Keywords: Thermodynamic stability, Chemical potential, Materials
design, Defect formation analysis

PROGRAM SUMMARY
Manuscript Title: Automated procedure to determine the thermodynamic stabil-
ity of a material and the range of chemical potentials necessary for its formation
relative to competing phases and compounds
Authors: J. Buckeridge, D. O. Scanlon, A. Walsh, C. R. A. Catlow
Program Title: CPLAP
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: FORTRAN 90
Computer: Any computer with a FORTRAN 90 compiler
Operating system: Any OS with a FORTRAN 90 compiler
RAM: 2 megabytes
Number of processors used: one
Keywords: Thermodynamic stability, chemical potential, materials design, defect
formation analysis
Classification: 16.1 Structure and properties, 23 Statistical Physics and Thermo-
dynamics
Nature of problem:
To test the thermodynamic stability of a material with respect to competing phases
and standard states of the constituent atomic species and, if stable, determine the
range of chemical potentials consistent with its synthesis.
Solution method:
Assume that the formation of the material of interest occurs, rather than that of
competing phases and standard states of the constituent elemental species. From
this assumption derive a series of conditions on the elemental chemical potentials.
Convert these conditions to a system of m linear equations with n unknowns,
where m > n. Solve all combinations of n linear equations, and test which solu-
tions are compatible with the conditions on the chemical potentials. If none are,
the system is unstable. Otherwise, the compatible results define boundary points
of the stability region within the space spanned by the chemical potentials.
Restrictions:
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The material growth environment is assumed to be in thermal and diffusive equi-
librium.

Additional comments:

For two- and three-dimensional spaces spanned by the chemical potentials, files
are produced for visualization of the stability region (if it exists).

Running time: Less than one second.

1. Introduction

Over the past few decades, there has been considerable growth in the
development of advanced materials for energy harvesting and transparent
electronics applications. [1, 2, 3, 4] At present, two of the greatest challenges
facing the optoelectronics industry are the production of stable and economi-
cally viable p-type materials, [5, 6] and the replacement of rare or inaccessible
components such as indium with more earth-abundant elements. [7, 8, 9, 10]
This has led to increased interest in more exotic materials, consisting of
ternary, [11, 12, 13] quaternary, [14, 15, 16] and quinternary [17, 18, 19|
systems. These materials are also of increased interest for applications in
batteries [20] and solid state electrochemistry. [21] Having a large number of
elements in a compound offers a greater degree in chemical freedom, where
the tuning of properties of interest, such as band gaps, can be performed by
varying the composition.

Instrumental in this research is the theoretical prediction of material prop-
erties, using various computational approaches, e.g. density functional theory
(DFT) and methods based on interatomic potentials. [22] A key considera-
tion when predicting materials appropriate for particular applications is the
thermodynamical stability of the system, as stable materials present far fewer
technological challenges when incorporated into devices. [23, 24] It is of great
interest to predict the range of chemical potentials of the component elemen-
tal species over which the target phase is stable, rather than the elemental
species themselves or competing phases, as this gives an indication the chem-
ical environment necessary for the synthesis of that phase. Indeed, in order
to predict the stability of a material, one needs to compare its free energy
with that of all competing phases, including those consisting of subsets of
the elemental species in the material. [25] The standard procedure [25, 26]
is to calculate all relevant free energies at the athermal limit, under the
assumption of thermodynamic equilibrium. Assuming that the material is
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thermodynamically stable, rather than the competing phases, leads to a set
of conditions on the elemental chemical potentials, from which one can work
out the stability range (if it exists). For binary systems, where the number
of independent variables is one, the procedure is trivial. For ternary systems,
though the calculation is still straightforward, if there are many competing
phases, the exercise can become tedious. For quaternary or higher order sys-
tems, the calculation of the stability region becomes quite involved, as there
are typically a large number of competing phases to consider, and three or
more independent variables. It is evident that an automated process to per-
form these tasks would be of great benefit to theoriticians working on these
problems.

Consideration of the chemical potential landscape within which a mate-
rial forms is also crucial when predicting the nature and concentration of
defects. The synthesis of a material in different conditions can mean that
the formation of different defects becomes favorable. Calculations of defect
formation energies, which depend on the chemical potentials, provide use-
ful information to experimentalists wishing to produce a material with a
particular defect-related property. For example, to produce a material with
significant concentrations of a p-type donor incorporated during the growth
process, it is necessary to know which chemical environment favors the forma-
tion of that particular donor defect. Knowledge of the full range of elemental
chemical potentials within which the material is stable is required, in order
to predict where in that range the formation of the p-type donor defect is
favored. It is therefore necessary to work out accurately the stability region
in the chemical potential space — not carrying out this procedure correctly
can lead to unphysical predictions of defect formation energies. [27, 28] We
stress that this type of analysis is limited to growth conditions where the
assumption of thermodynamic equilibrium is reasonable.

In this paper, we present a simple, fast and effective algorithm to deter-
mine the range of the elemental chemical potentials within which the for-
mation of a stoichiometric material will be favorable, in comparison to the
formation of competing phases. If there is no range, then the material is not
thermodynamically stable within the specified environment. The algorithm
works by first reading in the free energy of formation of the material itself and
that of the competing phases, which must be provided by the user. Setting
the condition that the material is, in principle, stable constrains the values
of the elemental chemical potentials, effectively reducing the number of inde-
pendent variables by one, meaning that the space spanned by the elemental

4
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chemical potentials is (n — 1)-dimensional, where n is the total number of
elements in the material. The condition that the competing phases do not
form provides further conditional relations among the independent variables.
A set of linear equations, corresponding to the set of all conditions on the
independent variables, is constructed. All possible combinations of the linear
equations in the set are solved in order to find their intersection points. The
intersection points are then checked to determine which ones satisfy every
condition (if none do the system is not thermodynamically stable). Those
that do form the corner points of the region of stability in the chemical
potential space. The algorithm is based on the fact that each competing
phase and standard state effectively defines a hypersurface in the elemental
chemical potential space, and the region bounded by these hypersurfaces cor-
responds to the region of values of chemical potentials in which the material
will be stable. The elemental chemical potentials are given with respect to
their standard states, i.e. we set the energy that the element has (per atom)
in its standard state as the zero of chemical potential for that element. The
algorithm requires that the energy of formation of the material and each
competing phase is calculated (or measured) prior to execution. For an in
silico study, it is therefore of great importance that the user searches the
chemical databases (such as the Inorganic Crystal Structure Database [29])
extensively, and calculates the energy of all phases and limiting compounds
using the same level of theory. [30, 31, 26, 25, 1] We have incorporated the
algorithm in a FORTRAN program called ‘Chemical Potential Limits Analysis
Program’ (CPLAP) which we have made available online. [32, 33] For con-
venience, if the chemical potential space is two-dimensional (2D) or three-
dimensional (3D), the program produces files that can be used as input to
GNUPLOT [34] and MATHEMATICA, [35] to visualize the region of stability. An
option to fix the value of a particular chemical potential is available, which
effectively reduces the dimensionality by one.

The rest of the paper is structured as follows: In Sec. 2 we discuss the
relevant theory on which the algorithm is based; in Sec. 3 we present the
algorithm; in Sec. 4 we demonstrate how the program works using a ternary
and quaternary system as examples; and in Sec. 5 we summarize our work.
All the figures in this work, apart from the flowcharts, have been produced
using GNUPLQT, from the output from CPLAP.
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2. Theory

The fundamental assumption, upon which analysis of the chemical po-
tential landscape in which a material forms is based, is that the combined
system in the growth environment is in thermodynamic equilibrium. To illus-
trate the necessary theory, we consider a binary system A,,B,,, which forms
via the reaction:

mA+nB — A, B,, (1)

at constant pressure and temperature. The formation of A,,B, competes
with the phase A,B,. The procedure is then to assume that A,,B,, forms,
rather than A, B, or the standard states of A and B, and see if this leads to
a contradiction.

We recall that the chemical potential pu, of species or compound « is

defined as 00
Ho = ) (2)
(aNa ) p, T

where G is the Gibbs free energy of the system (G = U — TS+ pV, U is the
internal energy, T is the temperature, S is the entropy, p is the pressure, and
V' is the volume) and N, is the number of particles of species or compound
a.

We first consider the chemical potential of individual species in the com-
pound A,, B, (i.e. A and B). We denote the chemical potential of species «
in its standard state as p5. We would now like to refer the elemental chemical
potentials p, to their respective i, i.e. we set

o = Ho — 1, (3)

where ! is the chemical potential of species o that shares a common ref-
erence with ;5. We do this for convenience; by determining the x5 in a
consistent manner, we will automatically obtain a common reference for all
elemental chemical potentials. We note that, when calculating formation en-
ergies that depend on the chemical potentials, ul = 15 + 1, should be used.
In order to avoid formation of the standard states of A and B, we must have

o <0, (4)

placing an upper bound on each elemental chemical potential.
We now consider all species involved in the reaction given in Eqn. 1, so
that o = A, B, A,,B,,, and follow the analysis given in Ref. [36]. Under the
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assumption of constant p and 7', the differential dG in the Gibbs free energy
is given by:

dG =Y prdN,. (5)

As dN, is proportional to the coefficient i, in the reaction given by Eqn. 1
(i, = m for « = A, i, = n for « = B, i, = —1 for « = A,,B,), it can
be written as dN, = i,dN, where dN is the number of occurences of the
reaction in Eqn. 1. We can therefore write

dG = <Z iau§> dN. (6)

e

At equilibrium,! dG = 0, implying that
> oy =0, (7)

from which we obtain (remembering 4,5, = —1):
mpa+npp = pa,, = AGr[AnBnl; (8)

here AGf[X] = AH¢[X] — TAS is the Gibbs free energy of formation of
compound X with respect to the standard states of its constituent elements,
H¢[X] is the enthalpy of formation of X, and AS is the change in entropy.
For crystalline systems with low levels of disorder, a good approximation is
to set AS = 0, so that AGf[X]| = AH[X]. Under this approximation we
can set the chemical potentials of A and B in their standard states equal
to the total energy (per atom) of the standard states. Calculating all total
energies, including those required to determine AH ;[ X], in a consistent man-
ner ensures all chemical potentials have a common reference. Although it is
possible to include vibrational entropic effects using, for example, the quasi-
harmonic approximation, and configurational entropic effects for disordered

systems, in the remainder of this paper we assume that the approximation
AG[X] = AH;[X] applies. Eqn. 8 now becomes:

mpa+npp = pa,s, = AH[Ay,B,l, (9)

1Once equilibrium is reached, the reaction will not proceed further; therefore there will
not be any further change in the thermal average values of the concentrations. This implies
that, given the volume at equilibrium, Eqn. 7 will be valid when V and T are specified
instead of p and T, as was our initial assumption. See Ref. [36]
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effectively constraining our mathematical problem, so that one chemical po-
tential can be written in terms of the other, i.e. the number of independent
variables is one. For a binary system, therefore, the chemical potential space
is one-dimensional (1D), spanned by the one independent variable.

Combining Eqns. 4 and 9 and taking pa to be the independent variable,
we find that:

AH[A,,B,]
m

with pup being determined for each value of py from Eqn. 9. It follows
then that the boundary g4 = 0 corresponds to A-rich/B-poor growth condi-
tions, and the boundary ps = AHf[A,,B,]/m corresponds to B-rich/A-poor
growth conditions. Eqn. 10 defines the stability region (a line segment) in
the 1D chemical potential space spanned by fi4.

We now include in our calculation the competing phase A,B,. The as-
sumption that A,B, does not form leads to the following condition:

< pa <0, (10)

pra+qup < pia,p, = AH[A,By]. (11)
Combining this with Eqn. 9 provides the following limits:
m
(p=T5)na < AH[AB) - LAH[[A,B,;
pn P
(1= =) us < AH[A,B) - LAH/](A,B,) (12)

If these limits are inconsistent with Eqn. 4 then A,,B,, is unstable with re-
spect to the formation of A,B,. If they are consistent, then they effectively
reduce the range given in Eqn. 10, i.e. they reduce the extent of the stabil-
ity region. The addition of more competing phases will further restrict the
stability region, which will (if it exists) consist of a line segment in the 1D
space spanned by 4, with corresponding values of ug derived from Eqn. 9.
This solves the case of a binary system.

We now consider a ternary system, to demonstrate the generalization
of the process as one increases the dimensionality of the chemical potential
space. We consider the system A,, B, C,, whose formation competes with the
phases A,B, and A,B;C,.

Corresponding to Eqn. 9, the assumption that A,,B,C), forms in an equi-
librium reaction with the constituent elements’ standard phases provides the
constraint:

mpa +npp + plc = pa,B,c, = AH[AyB,Cpl, (13)

8
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allowing us to express one of the chemical potentials, say uc, in terms of
the other two, leaving two independent variables p4 and pp spanning a 2D
chemical potential space. Allowing uc to adopt its maximum bounded value
of zero (see Eqn. 4) gives the following condition on 4 and up:

mpa +npp > AHf[A,B,Cyl. (14)

Combining Eqns. 4 and 13 gives the following conditions on the chemical
potentials:
wi > AH¢[AyBrCyl/ia, (15)

where 7, stands for either m, n, or p, whichever is appropriate.
Assuming the competing phases do not form leads to the conditions:

qua+rpp < pia,s, = AH[A,B,]; (16)
spa+tup +vuc < pape, = AHI[ABC,). (17)

Using Eqn. 13 to eliminate uc from Eqn. 17, we see that Eqns. 4, 14, 15,
16, and 17 define conditional relations on a 2D plane formed by p, and
pup. If there does not exist a region in the 2D plane that conforms to every
condition, then the system is not thermodynamically stable. Otherwise, we
have a region of stability. One method of determining if this is the case is to
set the inequality signs in Eqns. 4, 14, 15, 16, and 17 to equality signs,
giving a series of linear equations with two unknowns. These linear equations
define lines on the 2D plane formed by p4 and pg. Their intersection points
can be determined by solving the appropriate combinations of the linear
equations. Those that then simultaneously satisfy the conditions given by
Eqns. 4, 14, 15, 16 and 17 (if any) will bound the region of stability. The
result will be a 2D stability region in the plane defined by p4 and pug, with
the corresponding value of pc at each point in the stability region determined
from Eqn. 13. Graphically, one can display this solution as a 2D plot in the
space spanned by p4 and ppg, with the corresponding values of pe given at
points of interest.

The generalization of this procedure to systems with larger number of
constituent elements is as follows. For a system with n constituent elements,
we will have n — 1 independent variables. The higher dimensional analogues
of Eqns. 4, 14, and 15 provide 2n — 1 linear equations (which correspond to
hypersurfaces in the (n — 1)-dimensional space), and each competing phase
provides an additional linear equation. We therefore have a minimum of
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2n — 1 linear equations with n — 1 unknowns. Mathematically, the solution is
trivial, as it only involves solving different combinations of the linear equa-
tions and checking which solutions are compatible with a series of conditional
statements. In practice, however, if we have m competing phases there are
ntm=1C | combinations to consider, and carrying out the procedure can be
quite time consuming and error-prone. This is the reason we have developed
a program to automate it.

3. Algorithm

Input to the program consists of the number of species in the compound
of interest, the names and stoichiometry of the species, and the free energy of
formation of the compound. One must also input the total number (if any)
of competing phases, and, for each one, the number of species, the names
and stoichiometry of each species, and the free energy of formation of that
competing phase. The input can be provided via a file, or interactively while
running the program.

The user must specify which elemental chemical potential is to be set as
the dependent variable. We note here that the procedure carried out by the
program can, in principle, be performed without any dependent variable set.
If this is done, however, only the intersection points with the hypersurface
corresponding to the compound of interest are viable solutions, since, by
not setting a dependent variable, the constraint given by Eqns. 9 or 13 (or
the higher-dimensional analogue) is assumed no longer to apply, and instead
effectively the equality sign is replaced by a ‘greater than or equals to’ sign
(i.e. the assumption that the reaction in Eqn. 1 is in equilibrium no longer
holds). Only those results that are consistent with the constraint are actual
solutions of the problem at hand. So, though more intersection points may
be found when no dependent variable is set, only those that intersect the
hypersurface corresponding to the compound of interest are actual solutions.
If no dependent variable is set, the program warns the user of this fact,
and how to interpret the results. It is always preferable to set a dependent
variable.

After reading in the input, the main algorithm begins (see Fig. 1). If the
system is binary, the solution is relatively trivial. The program carries out
the procedure as described in Sec. 2 for binary systems, which is to check
that the limits imposed by the competing phases (Eqns. 12) are consistent
with Eqn. 4 and the constraint (Eqn. 9), and, if they are, to return the line
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segment that defines the region of stability. The constraint is also returned
as output. Note that this is a separate procedure from that used when the
number of species is greater than two.

For ternary and higher-order systems a more complex algorithm is used.
From the input, the program constructs a matrix of linear equations with n—1
unknowns, where n is the number of species in the system. The compound of
interest itself provides one linear equation (Eqn. 14, or its higher-dimensional
analogue). Each independent variable then contributes two linear equations;
one given by Eqn. 4, the other given by Eqn. 15, which means that there
are, at a minimum, 2n — 1 linear equations in the matrix. Additional equa-
tions are provided by the competing phases: one per phase. If there are m
competing phases, we therefore have, in total, 2n + m — 1 linear equations.
Once the matrix has been constructed, it is passed to a sorting routine which
extracts every possible combination of n — 1 equations from the 2n +m — 1
total. This sorting routine is described in Appendix A. For each combi-
nation, the n — 1 equations are solved using a standard LU decomposition
and back-substitution method, [37] if a solution exists. In this way a series
of intersection points are found (redundencies are checked for, and removed).
Each intersection point is tested to see if it obeys simultaneously all the con-
ditions on the elemental chemical potentials (Eqns. 4, 14, 15, 16, and 17
or higher-dimensional analogues). If none do, the system is not thermody-
namically stable. Otherwise, those that do correspond to corner points in
the stability region. The output is then sent to file, consisting of the limit-
ing conditions applied, the resulting intersection points (with, for each one,
the corresponding value of the dependent variable), and a list composed of
each competing phase, with its corresponding linear equation and intersec-
tion points (if any).

An option is provided to print to file a grid of points within the stability
region, with the grid density provided by the user. Such a grid of values
may be useful for demonstrating the variation of the formation energy of
a particular defect as the elemental chemical potentials are varied; for this
the user would be required to calculate the formation energy at each grid
point. If the chemical potential space is 2D or 3D, the program outputs a file
which may be loaded directly into GNUPLOT, and text which may be pasted
into a notebook in MATHEMATICA, to produce a plot of the stability region,
which will be useful for visualization of results. In addition, for 2D chemical
potential spaces, a text file is produced which contains the necessary data to
plot the lines in the chemical potential space corresponding to the material

11
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of interest and its competing phases.

It is possible to restart a run from a previous calculation. Options are
then available to set a different chemical potential as the dependent variable,
to provide additional competing phases not considered in the original run,
or to set a chemical potential to a particular value (effectively reducing the
dimensionality of the chemical potential space by one). The latter option is
not available for binary systems, as the solution is trivial.

We note that, in principle, the procedure could be extended to arbitrary
pressure and temperature ranges by including thermodynamic potentials ei-
ther from computations (using phonon frequency calculations and/or statis-
tical mechanics) or thermochemical data. Such an extension is beyond the
immediate scope of the present work.

Our approach should be compared with that of the CALPHAD code, [38, 39,
40] which is widely used in modelling phase diagrams of alloys over a range
of temperature, pressure and composition. CALPHAD uses a model with ad-
justable parameters to describe the thermodynamic properties of each phase
of a material, fitting the parameters to results from thermochemical and ther-
mophysical studies stored in databases, and determines a consistent phase
diagram using a wide range of data. The aim of our approach is different;
it identifies the range of elemental chemical potentials over which a specified
phase is stable.

4. Examples

4.1. Ternary system

As our first example of the application of our program, we consider the
system BaSnOs, [41] an indium-free transparent conducting oxide (TCO).
The formation of BaSnOs (in the cubic perovskite structure) occurs in com-
petition with the phases BaO, SnO, SnO,, and Bay;SnOy, as determined by
searching the Inorganic Crystal Structure Database [29] for systems con-
sisting of combinations of the elements Ba, Sn, and O. Our aim here is to
determine the ranges of chemical potentials in which stoichiometric BaSnO3
will form, using our program. The enthalpies of formation of the compet-
ing phases and the material itself have been calculated previously, [41] using
DFT with the PBEO [42, 43] hybrid functional (at the athermal limit). The
values are presented in Table 1. These, and the stoichiometries of the rel-
evant compounds, form the input to our program. The constraint on the
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elemental chemical potentials is (see Eqn. 13):

UBa + tsn + 310 = [Basnos = —11.46 eV. (18)

We set the chemical potential of O, uo, as the dependent variable.

Table 1: Enthalpies of formation (AHy) of BaSnO3 and its relevant competing phases.
The values, which are taken from Ref. [41], were determined using DFT with the PBEO
hybrid functional.

System AHy (eV) System AHy (eV)
BaSnO; -11.46 BasSnOy -17.13
BaO -5.14 SnO -2.54
SH02 -5.29

After running the program, we find that the system is thermodynamically
stable. Given that BaSnOj forms, the limiting conditions that apply to the
two independent variables up, and pug, are (energies in eV):

HBa + pisn > —11.46,
201Ba — flgn < —5.52,
20Ba — plsn < —3.95,

—HBa + 2psn < 3.85,
pBa < 0,
psn < 0,
pBa = —11.46,
Msn > —11.46.

(19)

We present the resulting intersection points bounding the stability region in
Table 2, where we give the corresponding value of the dependent variable
1o, and the competing phases to which the intersection points correspond.
The stability region is plotted in Fig. 2. We note that, if we change which
chemical potential is set as the dependent variable, we obtain the same results
(as we must). The only difference will be in the appearance of the figure, as
one of the axes will be changed to that of the new independent variable.

It is worth noting that if one of the competing phases, say Bay;SnOy
(which could easily be overlooked), is not included in the calculation, the
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Table 2: Intersection points bounding the stability region in the 2D chemical potential
space spanned by the independent variables pp, and pg,. The corresponding values of the
dependent variable po, and the relevant competing phases, are also given. All energies
are in eV.

UBa | Msn to | Competing phases

A | -5.66 | -5.80 || 0.00 | BagSnO,4, BaSnO;
B |-6.18 | -5.29 || 0.00 SnO,, BaSnO3
C |-2.76 | 0.00 || -2.90 BaySnO,

D | -3.53 | 0.00 || -2.64 SnO,

resulting stability region (see Fig. 3) is approximately twice as extensive
as that shown in Fig. 2, indicating the importance of taking into account
all relevant competing phases. If one or more is left out, the analysis may
be incorrect. Similarly, when calculating the total energies of the standard
phases of the constituent elements, the correct ground-state of Oy (triplet
spin configuration) must be used, as well as sufficient k-point sampling for
the metallic standard phases.

As is discussed in Ref. [41], the most stable n-type intrinsic defect in
BaSnOj; is the O vacancy (Vo). The formation enthalpy AH¢[Vo] of the
(neutral) defect is determined from the reaction

1
Oo — Vo + 502 (20)

according to:
AHf[Vo] = (EY — E") + Eo, + po, (21)

where E* is the energy of the stoichiometric host supercell, E? is the energy
of a supercell containing the defect, and Ep, is the energy per atom of O in
its elemental (Oy gas) form, which we have set as the chemical potential of
O in its standard state, ug (see Sec. 2). As can be seen, AH;[Vo] depends
on io. By printing a grid of points contained within the stability region,
one obtains a list of points at which AH;[V| can be determined, which
in turn can be used to demonstrate how the defect formation energy varies
at the different possible growth conditions. We show the results of such a
calculation in Fig. 4, where the variation in AH;[Vp] is shown within the
stability region in the chemical potential space. We see that, unsurprisingly,
Ba- and Sn-rich conditions favor its formation. It should be remembered
that the defect concentration depends exponentially on this quantity.
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4.2. Quaternary system

We now discuss the application of CPLAP to the quaternary system LaCu-
OSe. This layered oxyselenide is a promising degenerate p-type wide band-
gap semiconductor. [44, 45, 46, 15] With four species in the compound, we
have a 3D chemical potential space. There are a large number of compet-
ing phases (22) to be taken into consideration, as determined by searching
the Inorganic Crystal Structure Database [29] for systems consisting of com-
binations of the elements La, Cu, O, and Se. We therefore have a much
more complicated problem than for the ternary system BaSnOj, discussed
in Sec. 4.1. This example demonstrates well the power of our program in
analyzing the chemical potential ranges.

We have calculated the enthalpy of formation of the compound and its
competing phases using DFT with the HSE06 [47] hybrid functional. Our
purpose here is to discuss the ranges of chemical potentials consistent with
the growth of the material, which can support future studies of its defect and
materials physics. The calculated enthalpies of formation are shown in Table
3. These, along with the stoichiometries of the compounds, form the input
to CPLAP.

Table 3: Enthalpies of formation (AHy) of LaCuOSe and its relevant competing phases.
The values were determined using DFT with the HSE06 hybrid functional.

System AHy (eV) System AHy (eV)
LaCuOSe -9.55 CuSe, -1.16
LagCuO4 -19.94 CUS6205 -6.54
CuLa02 -10.60 LaQSeOg -16.27
La203 -17.70 La2(8603)3 -27.94
LasSey -15.77 LasSe;04 -33.16
LaCuSe, -6.96 LaCusy -2.13
LaSe, -5.64 LaCus -4.52
LaSe -4.41 La(CuOy), -13.07
CeySe -1.95 LaCuOs -10.61
CuSe -1.17 Sey 05 -3.37
CusSes -3.55 SeOy -1.95
LagCu(SeOg)4 -32.78
The constraint on the chemical potentials is:
HLa + ficu + o + fise = HLacuose = —9.95 €V. (22)
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We choose pige as the dependent variable. Running the program, we find that
the system is thermodynamically stable. As there are 29 limiting conditions
on the independent variables, we do not list them here. We find 20 inter-
section points in the 3D chemical potential space spanned by py,a, fcu, and
1o- They are presented, along with the corresponding values of ugs. and the
relevant competing phases, in Table 4. The 3D stability region is shown in
Fig. 5. The relevant competing phases describe 2D surfaces in the 3D space,
which are shown using colors in Fig. 5 (we note that, because GNUPLOT can-
not plot surfaces parallel to the z-axis, we must represent such surfaces by
placing a cross at their mid-point, as we do for the competing phase LaCus).

Table 4: Intersection points bounding the stability region in the 3D chemical potential
space spanned by the independent variables pir,,, ptcy and po. The corresponding values
of the dependent variable puge, and the relevant competing phases, are also given. All
energies are in eV.

Pra | fcu | Mo || Hse Competing phases

A | -578]-1.18 | -2.59 || 0.00 LaCuSe,, CusSey, LaCuOSe
B |-5.701]-1.26 | -2.59 || 0.00 LaCuSe,, LasSe30,4, LaCuOSe
C |-6.77 | -1.18 | -1.60 || 0.00 | CugSeq, Las(SeO3)s3, LaCuOSe
D | -6.67 | -1.26 | -1.62 || 0.00 | Lag(SeO3)s, LasSe30,, LaCuOSe
E | -6.62 | -1.00 | -1.49 || -0.44 CuLaOs, LayO3, Lag(SeO3)3
F |-3.95|-0.11 | -3.27 | -2.22 CuLaOg, La203, LaCu5

G | -5.67|-0.36 | -2.28 || -1.24 CuLaOg, CugSe, CU3SGQ

H | -4.60 | 0.00 | -3.00 || -1.95 CuLaOs, CuySe

I |-6.77]-0.91 | -1.46 || -0.42 CuLaOs, CuzSes, Las(SeO3);
J [ -4.52 | 0.00 |-3.04 || -1.99 CuLaO,, LaCus

K |-5.77|-1.111-2.05 -0.62 La203, LaQSeOg, La4Se3O4
L -3.23 | -0.26 | -3.75 -2.32 La203, LaQSeOg, LaCu5

M| -6.511|-1.19 | -1.56 || -0.29 La203, LaQ(SeO3)3, La486304
N | -296 | -0.56 | -4.31 || -1.72 LagSes, LaCuSes, LasSeO,
O |-261]-0.38|-4.57] -1.98 LagSeys, LaCuSe,, LaCus

P |-2.54|-0.40 | -4.58 || -2.04 LagSey, LasSeO,, LaCus

Q -4.12 | -0.36 | -3.83 -1.24 LaCuSeg, CUQSG, Cu3Seg

R | -3.60 | -0.18 | -4.18 || -1.59 LaCuSe,, CusSe, LaCus

S |-461]-1.111-3.21 | -0.62 LaCuSe,, LasSeO,, LaySezOy
T | -452 | 0.00 | -3.08 || -1.95 CusSe, LaCus

If we are interested in, e.g., O-poor conditions, we can set up to a low
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value, say -4 eV (which is close to, but a little above its minimum value
of -4.58 eV — see Table 4). Doing this reduces the dimensionality of the
problem by one. The resulting stability region is a 2D ‘slice’ taken from the
3D stability region shown in Fig. 5. We present this 2D stability region in
Fig. 6, along with the relevant competing phases, which describe lines in the
2D chemical potential space.

Other sections of the stability region that may be of interest can be ex-
tracted easily by setting chemical potentials to particular values. The vi-
sualization of the resulting regions can be further modified by changing the
dependent variable. This demonstrates the versatility of CPLAP in explor-
ing the region of stability in the chemical potential space. To carry out
these types of manipulations, in particular for a quaternary system such as
LaCuOSe, ‘by hand’ can be quite time-consuming and error-prone. Once
the calculation is set up, the region of stability can be explored easily and
accurately, with visualization possible when the system is 2D or 3D. For
quinternary (or higher order) systems, one has to set a chemical potential
to a particular value before the stability region can be visualized (in 3D).
The ease with which one can systematically explore the stability region us-
ing CPLAP will be of great benefit to the theoretical and computational study
of systems consisting of 4 or more species.

5. Conclusion

In summary, we have described a simple and effective algorithm to de-
termine the thermodynamical stability and range of chemical potentials con-
sistent with the formation of a particular compound of interest, in compar-
ison with the formation of competing phases and elemental forms of the
constituent species. By assuming that the compound of interest forms in
equilibrium, rather than competing phases and standard states, a set of con-
ditions on the chemical potentials can be derived. These conditions can be
interpreted as defining a region bounded by hyper-surfaces in an (n — 1)-
dimensional chemical potential space, where n is the number of species in
the system. Determining this region of stability gives the chemical potential
landscape consistent with the production of the compound of interest. The
algorithm works by reading in the energies of formation of the compound
itself, and all competing phases, then constructing a matrix of linear equa-
tions, solving all possible combinations of the equations, and finding which
solutions (if any) obey the conditions on the chemical potentials. We have
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incorporated the algorithm in a FORTRAN program (CPLAP). Options are avail-
able to set a chemical potential to a particular value, and to print a grid of
points within the stability region. For 2D and 3D systems, files are produced
to allow visualization of the results. We have demonstrated the effective-
ness of the program using a ternary and quaternary system. We have also
demonstrated the flexibility with which the program may be used to explore
a region of stability in the chemical potential space.

This program will be of benefit to the theoretical and computational
study of materials with 3 or more constituent species, particularly for the
design of novel functional materials that are thermodynamically stable, and
the generality of the present approach has clear advantages.
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Appendix A. Sorting routine

In this appendix we describe the sorting algorithm used to extract all
appropriate combinations from the set of linear equations derived from the
conditions on the chemical potentials (see Sec. 3). We assume that there
are n unknowns, and m linear equations, where m > n. The aim of the
sorting algorithm is to extract all combinations of n equations from the total
m (there will be ™C), combinations).

The input to the routine is the matrix M;;, which is m x (n 4 1) dimen-
sional. Each row corresponds to a linear equation; the first n columns are
the coefficients of the n unknowns, and the n + 1-column is the right-hand-
side of the linear equation. The output from the routine will be the ™C),
matrices .S;;, which are the n x n dimensional matrices of coefficients, and
the vectors v;, which are the n-dimensional corresponding vectors consisting
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of the right-hand-sides of the appropriate equations. S and v can then be
used in a standard LU decomposition and back-substitution approach [37]
to determine the unknowns (i.e. to find the intersection points of the linear
equations, if they exist).

The routine works by creating an array tval, which is n-dimensional. The
elements in the array are initially set as the integers 1,2, ..., n. The array is
then used to construct S and v. By sequentially changing the arrangement
of the elements of the array (and allowing the array elements to adopt values
up to m), all ™C,, combinations are extracted from the matrix M. The
algorithm is shown in detail in Fig. A.7.
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Figure 1: Flowchart of main algorithm.

23

segment




12 10 -8 -6 -4 -2 0
T T T T T O
{-2
1 -4
BaSnO; —— =
Ba,SnO, =
N BaO —— {-6 <
SnO &
Sno,
1 -8
1 -10
-12

Figure 2: (Color online) Region of stability (shaded) for BaSnO3 in the 2D space spanned

by upa and pgn. The (colored) lines indicate the limits imposed by the competing phases
and the compound of interest.
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Figure 3: (Color online) Region of stability (shaded) for BaSnOgs in the 2D space spanned
by pBa and pg, when the competing phase BasSnQ, is not taken into account.
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Figure 4: (Color online) Variation in Vo formation enthalpy as a function of chemical
potential, shown within the stability region for the formation of BaSnOs. The (colored)
lines indicate the limits imposed by competing phases.
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Figure 5: (Color online) Region of stability for LaCuOSe in the 3D space spanned by pr,a,
tou and po. The thick (blue) lines indicate the boundary provided by the compound of
interest (LaCuOSe). The (colored) surfaces indicate the limits imposed by the competing
phases and the compound of interest. Surfaces parallel to the z-axis are represented by a
cross at their mid-point.
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Figure 6: (Color online) Region of stability for LaCuOSe in O-poor growth conditions
(o = —4 eV). The chemical potential space is 2D, spanned by pr, and pcy. The region
is effectively a ‘slice’ taken from the 3D stability region shown in Fig. 5. The (colored)

lines indicate the limits imposed by the relevant competing phases and the compound of
interest.
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Figure A.7: Flowchart of sorting routine.
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