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Noise-activated transitions between coexisting attractors are investigated in a chaotic spiking
network. At low noise level, attractor hopping consists of discrete bifurcation events that conserve
the memory of initial conditions. When the escape probability becomes comparable to the intra-
basin hopping probability, the lifetime of attractors is given by a detailed balance where the less
coherent attractors act as a sink for the more coherent ones. In this regime, the escape probability
follows an activation law allowing us to assign pseudo-activation energies to limit cycle attractors.
These pseudo-energies introduce a useful metric for evaluating the resilience of biological rhythms
to perturbations.

INTRODUCTION

Inhibitory neurons play an important part in the gen-
esis of biological rhythms. They entrain long range elec-
trical activity in the brain [1] and produce the spatiotem-
poral signals that control motor actions [2, 3]. A notable
property of inhibitory networks is their ability to sup-
port coexisting modes of synchronized oscillations [4–8]
evoked by sensory stimulation [9–11]. There is however
a wide discrepancy between the number of oscillations
theoretically predicted [8, 12] and the relative paucity of
experimentally observed ones [13–15]. This discrepancy
might arise from different tolerances to noise among at-
tractors [16]. Experiments on central pattern generators
have shown that all limit cycle attractors survive mild
noise levels and heterogeneity [11] however their stability
at large noise levels is unknown. Experiments on crus-
tacean central pattern generators have shown that bio-
logical rhythms only exist within a finite range of tem-
peratures [17] and pH levels [18]. Outside of this range
oscillations become arrhythmic. An objective metric is
therefore needed for predicting the range of stability of
biological rhythms.

In conservative systems (Hopfield networks [19], Boltz-
mann machines [20]), the robustness of attractors is
defined by activation energies in a potential landscape
representing bit configurations. The dissipative sys-
tems we are concerned with here (central pattern gen-
erators, the brain) do not have an equivalent poten-
tial landscape since the state is time dependent. The-
oretical attempts have been made to describe interac-
tions in terms of a time independent function however a
unifying theoretical description is yet to emerge. Gra-
ham and Tél [21, 22] have introduced pseudo-potentials;
Stankovski et al. [23, 24] multivariate coupling functions;
while other researchers use phase-lag maps to visualize
basins of attractions as an indirect effect of “potential

wells” [4, 5, 11]. Attractor hopping is thus routinely
analysed in terms of bifurcations [25–28] rather than
equilibrium thermodynamics. Dynamic networks and
Hopfield network differ further in fundamental ways re-
garding their number of attractors and the sensitivity of
these attractors to noise. Dynamic inhibitory networks
host up to (N − 1)!/(ln2)N attractors [11, 12]. These
are protected from noise by negative Lyapunov expo-
nents [29, 30]. In contrast, Hopfield networks [19] can in
principle store 2N states however the overlap of stored
patterns limits this number to 0.14N , a number that
decreases exponentially with temperature [31]. Under-
standing the robustness of limit cycle attractors to noise
requires demonstrating the existence of (i) an activation
law, (ii) pseudo-activation energies and their relation to
limit-cycle oscillations, and (iii) the reversibility or irre-
versibility of hopping events depending on whether it is
controlled by fine-scale dynamics or thermodynamics.

Here, we answer these questions by measuring the
noise-induced transitions between the six limit-cycle at-
tractors of a three-neuron network. The network was
implemented on a purposely built neuromorphic platform
that integrates current stimuli with analogue electronic
circuits like those in the brain and that incorporate the
same level of electronic noise and heterogeneity. Unlike in
Chauhan et al. [11] where the initial state was chosen ran-
domly in phase space, we have now prepared the network
in a single attractor. We then varied the level of extrinsic
noise over a range two orders of magnitude greater than
Chauhan et al. to propel transitions out of this attractor.
At low noise level, intra basin transitions dominate. At
intermediate noise level, the system hops into the state
of immediately lower coherence. In this regime, the es-
cape probability may be fitted with a Kramers-Arrhenius
activation law [32, 33]. At higher noise level, transitions
skip the states of intermediate coherence to arrive into
the most incoherent state. In this way we obtained the



2

probability matrix of the Markov chain of the 6 attrac-
tors. We obtained the pseudo-activation energies of indi-
vidual attractors and find they increase as the coherence
of limit cycle oscillations decreases. Our demonstration
of pseudo-activation energies in dissipative networks pro-
vides a simple metric for predicting the range of stability
of network oscillations to perturbations [17, 18].

EXPERIMENTAL METHOD

Noise-induced switching was simulated in a three neu-
ron network realised on a neuromorphic platform (Fig.1).
The network was made of Hogkin-Huxley NaKl neu-
rons [34, 35] interconnected with reciprocal inhibitory
synapses [36]. The neurons were stimulated with de-
layed current steps I1(t), I2(t), I3(t) synthesized by a
current clamp amplifier driven by a computer-controlled
DAQ card (Fig.1a). Extrinsic Gaussian noise was syn-
thesized using a pseudo-random number generator (Lab-
view Gaussian White noise VI) and added to the cur-
rent steps during appropriate time window. The ana-
log circuits on the chip integrated the current waveforms
using the physical characteristics of semiconductor de-
vices (Fig.1b). This had the advantage of integrating
signals instantaneously, in continuous time, in the pres-
ence of residual electronic 1/f noise and component to
component heterogeneity mimicking the intrinsic envi-
ronment of the brain. The current-clamp amplifier picked
up the voltage oscillations returned by the three neu-
rons (Fig.1a). These were recorded by the computer.
Both the neuron activation thresholds, neuron recovery
time constants, ion channel conductances; and the synap-
tic threshold, synaptic decay time, and synaptic conduc-
tances were set by the gate voltages of field effect tran-
sistors [10, 37]. Neurons had a 7µA current threshold
above which their oscillation frequency increased from
40Hz at 8µA to 300Hz at 50µA. The inhibitory postsy-
naptic current (IPSC) peaked at -12µA and decayed with
a time constant τ set between 1 and 4ms. The period of
neuron oscillations was T = 14ms (20µA). The synaptic
threshold was set at 50% of the height of pre-synaptic
action potentials to delay the onset of inhibition by ≈
400µs. This delay was essential to maximize the num-
ber of coexisting attractors by allowing coincident action
potentials [10, 11]. All neurons (resp. synapses) were
configured with the same nominal parameters.

The experiment was conducted in two steps covering
consecutive time intervals 0− t2 and t2− t3 in Fig.2. The
network was initially prepared in the chosen attractor
during interval 0 − t2. Gaussian white noise was then
added to current stimuli to induce attractor hopping (in-
terval t2− t3). The network state was set in the basin of
the initial attractor by choosing the current delays τ21,
τ31 that give the desired sequence of action potentials
(Fig.2a). The initial momentum was imparted over one

oscillation period since 0 < τ23, τ31 < T (interval 0− t1).
The network state was then left to relax into the attractor
state over the next 200ms (interval t1−t2) which was suf-
ficient to absorb transient oscillations. The network has
six basins representing all possible discharge sequences of
neurons 1, 2 and 3 (Fig.2b). Type C represents action
potentials discharging in clockwise, 1→ 2→ 3, and anti-
clockwise 1→ 3→ 2 sequences; Type B are partially co-
herent sequences 1→ {2, 3}, 2→ {3, 1}, 3→ {1, 2}; Type
A is the coherent state {1, 2, 3} with coincident action
potentials. The 5 attractors and their basins are shown
in the phase lag maps plotting the dephasings of neu-
ron 2 and 3 relative to neuron 1 (Φ21,Φ31) over intervals
0 − t2 (Fig.2c). Once in the chosen attractor, Gaussian
noise was applied over the next 600ms to induce attractor
switching (interval t2−t3). The final state of the network
was recorded over the last oscillations of that time win-
dow and used to compute transition probabilities. The
noise had a normal distribution N (0, σ). Its standard
deviation was varied between σ = 0 and 300mV. This
covers a noise range 60 times greater than in Ref. [11].
High noise intensity was required to“depopulate” attrac-
tors. At t > t3, current stimuli were reset (I1−3 = 0) for
200ms to let the network return to its quiescent state.
The network state was then re-initialized and the noise
level was incremented to probe the dependence of switch
probabilities on noise for each attractor.

RESULTS

Fig.2d shows an example of noise induced switching
from the partially coherent state (B) to the sequential
state (C). The switch occurs quasi-instantaneously in
this example as the noise level is high (σ = 300mV). Once
the switch is complete, no reversion to the initial state
occurs at any later point of the noise window t2− t3. For
most practical purposes, the switch appears irreversible
as we shall see below. This points to an activation process
ruled by thermodynamics rather than reversible fine-scale
dynamics.

A systematic study of escape probabilities out of the
coherent state A and the partially coherent state B is
shown in Figs.3a and 3b as a function of noise. In Fig.3a,
the coherent state A is stable up to σ ≈ 75mV where most
noise-induced transitions are within the initial attractor
basin. From σ = 75mV to 230mV a majority of transi-
tions terminate in the partially coherent states B as the
number of intra-basin transitions rapidly decreases. It
is noteworthy that outbound transitions end up prefer-
entially in either one of the 3 partially coherent states
(B) rather the 2 incoherent states (C). It is only from
σ ≈ 230 mV and above that hopping from the coher-
ent state occurs directly into the incoherent states with-
out transitioning through the partially coherent states.
This suggests that noise activated hopping follows a se-
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FIG. 1. (color online) Current-clamp measurements on a three-neuron network
(a) The current-clamp amplifier injects time series currents I1(t), I2(t) and I3(t) in the three-neuron network in the silicon chip
and measures their voltage waveforms V1(t), V2(t) and V3(t). The prototypical current protocol is shown in the upper window of
the computer screen. The 200ms long current step is followed by a 600ms long epoch where noise is added to propel transitions
between attractors. The neuron oscillations are recorded in the lower window of the computer screen. (b) Micrograph of one
neuron on the chip (top). Detail of an ion activation gate in 0.35µm technology (bottom).

quential process trickling down the coherence order into
states of lower and lower coherence as the noise ampli-
tude increases. Turning to Fig.3b, intra-basin transitions
similarly dominate at low noise until σ ≈ 230mV. Re-
verse switching events from the partially coherent state
towards the coherent state are negligible in comparison
to intra-basin transitions and are therefore not visible.
When σ > 230mV the network switches out of the par-
tially coherent attractor into incoherent states (C). Note
the absence of significant reverse switching into the co-
herent state (A) or into the other two partially coher-
ent attractors (B) (Fig.3b). This apparent irreversibility
where the incoherent states act as a sink for the more co-
herent states suggests that a thermodynamic equilibrium
is reached at higher noise levels and that the lifetime of
attractors is given by a detailed balance of transitions.

Noise carries a power per unit bandwidth which is dis-
sipated across the leak resistance of the neuron mem-
brane (R = 50kΩ). The power spectral density is equiv-
alent to a thermal energy as prescribed by Johnson and
Nyquist [38, 39]:

σ2

R∆f
= 4kBT (1)

where ∆f is a unit of noise bandwidth, kB is Boltz-
mann’s constant and T is the temperature of the reser-

voir. Noise therefore provides a reservoir with its own
energy and entropy in equilibrium with the discernible
microstates states of the network. These microstates
are the states trajectories differentiated by their initial
conditions (Fig.2c). The microstates are assumed to be
equiprobable and their number to be very large. For the
network at equilibrium, the most likely macrostate will be
the state of maximum disorder with a probability that de-
pends exponentially on temperature P = exp(−E/kBT )
where E has the dimension of an energy. Substituting
kBT with the variance of noise using Eq.1, the probabil-
ity of the macrostate is:

P = exp

(
−4R∆fE

σ2

)
(2)

In order to test this picture we have plotted the noise-
induced escape probability from the initial attractor as
a function of the inverse of the noise variance. This is
shown in Fig.3c for the coherent attractor (PA→B,C) and
in Fig.3d for the partially coherent attractor (PB→C). In
the limit of high noise levels (σ−2 → 0), the escape proba-
bility approaches unity. As noise gradually decreases and
approaches the 75mV and 230mV thresholds, the escape
probability decreases exponentially with the inverse of
the noise variance, validating Eq.2. A least square fit of
the probability data (red line) gives pseudo-activation en-
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FIG. 2. (color online) Noise-activated switching between attractors
(a) Neurons N1, N2 and N3 interact via reciprocal inhibitory synapses. The timings of stimuli τ21 and τ31 set initial condi-
tions. (b) The network has three types of synchronized oscillations: Type C consists of sequential action potentials, Type B
consists of two coincident action potentials out of phase with the third and, Type A has all three action potentials discharging
simultaneously. (c) Phase lag map plotting the trajectories of the network state (Φ21(t),Φ31(t)) emanating from all possible
initial states. Φ21(t) and Φ31(t) are the instantaneous dephasings of action potentials of neurons 2 and 3 relative to neuron 1.
(d) The network is prepared in a given state (B) by first placing it in the relevant basin of attraction (0 − t1), and letting it
relax in the attractor (t1 − t2). Noise is then applied to study transitions towards another attractor (t2 − t3, arrows panel (c)).

ergies of EA = 45.6nW/Hz for the coherent attractor and
EB = 783nW/Hz for the partially coherent attractor. As
the noise amplitude decreases below these thresholds, the
statistical sample of events used to calculate the escape
probability becomes very small. This gives a wider dis-
persion of escape probabilities in Fig.3c,d.

The detailed balance of transitions between attractors
is consistent with the existence of a pseudo-potential sim-
ilar to that plotted in the insets to Figs.3c and d. The
pseudo-activation energies define the depth of pseudo-
potential wells. When the noise variance is small com-
pared to the activation energy, transitions take place
within the initial well. When noise increases to become
comparable to the pseudo-activation energy, transitions
in and out of the initial attractor erase the memory of ini-
tial conditions and a detailed balance is established. The
detailed balance assigns exponentially small lifetimes to
the more coherent states: τA,B/τC = exp[−4R∆f(EC −
EA,B)/σ2]. The occupancy of the coherent state τB/τA

remains very small over a wide range due to the large
difference in pseudo-activation energies. For example at
σ = 75mV, τA/τB = 4 × 10−12 which explains why re-
verse switching into the coherent state is never observed
(Fig.3a). The detailed balance also explains the sequen-
tial activation of transitions into attractors of increas-
ingly low coherence as noise increases (Fig.3a). The par-
tially coherent attractors initially acts as a sink to the
coherent attractor (Fig.3c, grey arrow). This only lasts
until noise is sufficient to overcome the pseudo-activation
energy of the partially coherent attractor, at which point
the incoherent attractors become the new sink (Fig.3c,d,
purple arrows). This sink is with respect both to the
partially coherent attractor selected by current stimuli
and the two equivalent attractors (B). This is why tran-
sitions {3, 1}2 ⇒ {1, 2}3 and {3, 1}2 ⇒ {2, 3}1 are not
observed in Fig.3b.

We have also measured the time dependence of the
switch probability from the instant that noise was ap-
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FIG. 3. (color online) Detailed balance of transitions between attractors
(a) Probabilities of transition from the coherent state (A) towards any of the other 5 attractors and to self, as a function of
noise. (b) Probabilities of transition from the partially coherent state (B) towards any of the 5 other attractors and to self.
(c) Escape probability out of A as a function of noise, fitted with Eq.2 (red line). Inset : Noise-activated hopping in the non-
equilibrium potential, φ, showing capture by the final state B at moderate noise (∼ 75mV) and by final state C at σ ∼ 230mV.
When σ < 230mV hopping into C is a sequential process that occurs via B (full purple arrows). When σ > 230mV, hopping
into C is direct (dashed purple arrow). (d) Escape probability out of B as a function of noise.

plied to determine the instantaneous switch rates (Fig.4).
Under a noise level of σ = 100mV, the occupancy of the
initial state decays exponentially over the first 200ms.
The rate of escape increases exponentially as noise am-
plitude increases and at σ = 300mV, switching is almost
instantaneous (Fig.2d).

DISCUSSION

Our neural hardware models the equations of motion
of neurons and synapses [40] in the presence of 1/f elec-

tronic noise and component-to-component heterogeneity.
The system integrates 18 coupled differential equations
(4 × 3 neurons + 6 synapses) to compute the network
state. Unlike conservative systems [19, 20] this state does
not have a time independent energy function. Limit cy-
cle attractors [5, 8, 10] are sequences of action potentials
rather than local minima of an energy function represent-
ing bit configurations. In dissipative systems, attractor
switching is analysed in dynamic terms of bifurcations,
event timing, initial conditions, and the realizations of
noise [25–27]. In conservative systems attractor hopping
follows equilibrium thermodynamics [41].
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FIG. 4. (color online) Temporal dependence of the
switching probability out of the coherent state A
Noise of amplitude σ = 100mV is applied at t =10ms.

Our experiments on noise activated switching distin-
guish a low noise regime dominated by intra-basin tran-
sitions and a higher noise regime not investigated previ-
ously where 50% or more transitions are inter-attractor
transitions. In the low noise regime, state trajectories
conserve the memory of initial conditions and interdif-
fuse reversibly between attractor basins [11]. The escape
probability cannot be defined over our finite 600ms in-
terval and has the broad distribution seen in Figs.3c,d at
σ → 0. In the high noise regime, single event dynamics is
replaced with the detailed balance of transitions between
attractors. The state at the end of the 600ms observa-
tion window is determined with greater consistency and
the escape probability in Figs.3c,d narrows down on the
exponential trend line (red line). The memory of initial
conditions is lost. The attractor lifetime is now given
by the detailed balance of transitions. Pseudo-activation
energies validate the hypothesis of pseudo-potential bar-
riers made by Graham and Tél [21, 22] in dissipative
multi-attractor neural networks.

The detailed balance principle explains the transitions
probabilities reported in Figs.3a,b and their dependence
on noise. These together with the remaining transitions
with vanishingly small probabilities give the Markov
transition matrix of the 6-attractor system. Hopping is
effectively unidirectional from coherent to incoherent at-
tractors. Reverse transitions from the incoherent to the
coherent states have a very low probability due to the dif-
ferent pseudo-activation energies and vanishing lifetime
of the coherent attractor. Hopping among attractors of
the same type (e.g. B in Fig.3b) is improbable because
these transitions compete with transitions into attractors

of lower coherence. The attractor of lowest coherence
whose pseudo-activation energy is greater than the noise
variance will act as a sink for all transitions emanating
from states of higher coherence. Asymmetrical hopping
probabilities into the 3 B states in Fig.3a is likely due to
residual imbalance in the network connectivity. Prefer-
ential noise-induced hopping is known to occur in multi-
stable dynamical systems [25]. We have also investigated
noise-induced switching in a 4-neuron network building
on the low noise work of Chauhan et al. [11]. The same
detailed balance is established at higher noise level as in
the present 3-neuron network. This now takes placed be-
tween 24 attractors. The coherent attractor in particular
is less stable than in the 3 neuron network.

The pseudo-activation energies of dissipative dynamic
networks are likely to have several important applica-
tions. They are easy to compute and will be important
to estimate the range of stability of oscillations to per-
turbations other than noise that may be quantified in
terms of an energy, such as temperature [17] and pH [18].
The broad distribution of pseudo-activation energies in
multi-attractor networks will further explain the discrep-
ancy between the plethora of theoretically predicted at-
tractors and the smaller number observed in biological
networks. Lastly, our work paves the way to engineer-
ing the pseudo-potentials of dissipative networks to solve
computationally hard problems in the same way as the
free energy of Hopfield-like conservative networks is op-
timised to perform integer factorization [42] or simulated
annealing [41, 43]. Wojcik et al. [5] and Schwabedal et
al. [44] have shown that the size and location of attrac-
tor basins may be tuned with the network connectivity.
If used in this way it is expected that dynamical net-
works would hold many more information patterns for
their larger number of attractors ((N−1)!/(ln2)N against
2N ) which are protected from noise.

The advantages and limitations of neuromorphic hard-
ware as a test bench for nonlinear dynamics are as
follows. The development of neuromorphic models is
driven by bioelectronic medicine, in particular cardiac
pacing [45], where they provide effective solutions [46]
and brain-machine interfaces [47]. Applications aside,
both analogue neuron models [40, 48] and computational
models [49, 50] are equally capable of predicting the state
of a biological neuron to near perfection when config-
ured with the right parameters. Both types of models
are thus equally suited to modelling functional biocir-
cuits. It should also be noted that all neuron models
are guesses irrespective of whether they are hardware or
computational models. Model error is currently the ma-
jor hurdle for estimating meaningful biological parame-
ters. Parameter estimation frequently assigns erroneous
values to parameter solutions to compensate for model
error when fitting electrophysiological data. Neuromor-
phic computation has the advantage of being instanta-
neous, accurate and free from approximations although
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it requires a time investment to build the hardware. Non-
ideal situations are modelled by default including device
specific heterogeneity, 1/f electric noise with multiple
sources distributed across the spatial structure of the net-
work. Probing the dynamics of actual living cells would
be an ideal alternative however it would require isolat-
ing a functional sub-network, injecting multiple stimuli
and recording multiple neurons simultaneously without
cross-talk. Any of these undertakings, on its own, is be-
yond current experimental capabilities in electrophysiol-
ogy. Assuming a functional network could be isolated
and measured, the lack of knowledge on electro-chemical
parameters [51] (neuromodulation, ion pumps...) would
add uncertainty to the recorded data. Until experimen-
tal methods in neuroscience are sufficiently advanced to
probe network dynamics in vitro, neuromorphic hard-
ware will provide a powerful proxy for testing concepts
in nonlinear dynamics free from uncertainty in electrical
characteristics.

CONCLUSION

Our experiments unify the theoretical picture of time
independent interactions in dissipative dynamical sys-
tems by validating the existence of pseudo-potentials.
Unlike conservative systems where the free energy ex-
ists independently of noise, the pseudo-potential barriers
of our dissipative dynamical network form when the es-
cape probability becomes comparable to the intra-basin
hopping probability. When noise level is low, attractor
switching occurs through small-scale bifurcation events.
We have obtained the pseudo-activation energies of limit-
cycle attractors, to our knowledge for the first time, and
show that these energies increase rapidly with the inco-
herence of synchronized oscillations. This energy-based
metric is important to predict the range of stability of bi-
ological rhythms to perturbations (thermal, electrochem-
ical, pressure) that may be expressed as energies.

This work was supported by the European Union’s
Horizon 2020 Future Emerging Technologies Programme
under Grant No. 732170.
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