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Abstract—The water system management problem has been widely
investigated. However, the interdependencies between water and
energy systems are significant and the effective co-optimization is
required considering strong interconnections. This paper proposes a
two-stage distributionally robust operation model for integrated
water-energy nexus systems including power, gas and water systems
networked with energy hub systems at a distribution level considering
wind uncertainty. The presence of wind power uncertainty inevitably
leads to risks in the optimization model. Accordingly, a coherent risk
measure, i.e., conditional value-at-risk, is combined with the
optimization objective to determine risk-averse operation schemes.
This two-stage mean-risk distributionally robust optimization is
solved by Bender’s decomposition method. Both the day-ahead and
real-time operation cost are minimized with an optimal set of
scheduling the multi-energy infrastructures. Case studies focus on
investigating the strong interdependencies among the four
interconnected energy systems. Numerical results validate the
economic effectiveness of IES through optimally coordinating the
multi-energy infrastructures. The proposed model can provide system
operators a powerful two-stage operation scheme to minimise
operation cost under water-energy nexus considering risk caused by
renewable uncertainties, thus benefiting customers with lower utility
bills.

Index Terms—Integrated energy system, mean-risk optimization,
power-to-gas, renewable uncertainty, water-energy nexus.

NOMENCLATURE
A. Indices and sets
t,T Index and set of time periods.
b,B Index and set of electricity buses.
n,N Index and set of gas nodes.
w, W Index and set of water nodes.
i, 1o Index and set of traditional distributed generators
(DG).
ig, I Index and set of natural gas sources.
wr, WR Index and set of water reservoirs.
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Index and set of renewable DGs.

Index and set of gas turbines.

Index and set of water pumps.

Index and set of power lines.

Index and set of gas pipelines.

Index and set of water pipelines without pumps.
Index and set of water pipelines with pumps.
Index and set of power loads.

Index and set of gas loads.

Index and set of water loads.

Parameters

Demand of active power, reactive power, gas and
water.

Maximum active power purchase from upper level
market and water purchase from reservoir.
Maximum up and down reserve capacity of
traditional DGs, the gas turbine and water pumps.
Maximum and minimum limits for active power
output of traditional DGs, gas turbine output and
water pump power consumption.

Maximum and minimum reactive power output of
traditional DG i,.

Maximum and minimum voltage limits.

Reactance and resistance of power line [,.
Reference voltage magnitude.

Maximum active and reactive power flow of line [,.
Conversion coefficient for electric boilers and the
gas turbine.

Forecasted output of renewable DG j at time t.
Maximum and minimum output of gas source i,.
Maximum and minimum gas pressure of gas
pipeline I,.

Coefficient for Weymouth equation.

Maximum gas flow of line [.

Gas compressor coefficient.

Electrical efficiency for electrolyser.

Maximum and minimum limits for head pressure of
water node connected with or without water pump.

Water pump characteristic coefficients.

Head gain and loss coefficients.

Water pump efficiency.

Water flow for water pipeline with and without
pump.

Water consumption efficiency for combined heat
and power (CHP), power-to-gas and electric boiler.
Electric and heating efficiency for CHP.
Coefficient of performance of ground source heat
pump (GSHP) and efficiency of gas furnace (GF).
Maximum and minimum input limits of CHP,
GSHP and GF.

Maximum and minimum charging and discharging
power for battery storage.

Maximum and minimum charging and discharging
heat for heat storage.
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neh,ndch neh,  Charging and discharging efficiency for battery and
néch heat storage.

Maximum and minimum remaining energy limits

of battery and heat storage.

Electricity and heat load ofenergy hub system.

Cost coefficients for generation of traditional DG

ip.

EBS,max' EBS,min'

EHS,max' EHS,min'
Le,tl Lh,t

a b ¢
Aip Aiy Ag,

Aig Cost coefficient for output of natural gas source i.
Am,Awr Cost coefficient of power and water purchase.
A;fe, A Aér, Cost coefficient for up and down reserve of

traditional DGs, the gas turbine and water pumps.
Regulation cost coefficient of power purchase,

e e

AGTv Awpr Awp
re re re

e, A7, A58, A7,

are. traditional DGs i,, wind tL_erines, natural gas
sources and water reservoir.
C. Variables
P ts Pur g Active power and water purchase.

+

T T Tgee Up and down reserve capacity of traditional DGs,

the gas turbine and water pumps.
Active power output of traditional DGs, gas turbine
Pyitr Pupst output and water pump power consumption.
Qit Reactive power output of traditional DGs.
Py, Output of natural gas source.
Vg Vs Scheduled and regulated voltage of bus b at time t.
Jrots Wiger fige Active and reactive power flow and gas flow.
fipentr Peb g Injected power flow and output of electric boiler.
G Output of natural gas sources.
Pry, Pressure of gas node n.

Injected gas flow and output of gas turbine.

e e _
Tgt.tr Twp,tr Twp,t
P,

igt?

igt

figore Pt

phe Power consumed by the electrolyser.

G‘:}t] ) GT’LLJ;W , Gas output for overall P2G process, direct

Ghy,a C';me hydrogen injection, hydrogen during methanation
nt Ut process and methanation.

Gr% Required gas of carbon dioxide during methanation

process.

phwe plw Water pressure of pipe with and without water
witrwe pump.

Riw ,,—llwp . Elevation of water node connected with and
Wi wit without pump.

Rw plwe Head loss and gain of water node.
w,t’ w,t

SrptSrut Water flow of pipe with and without water pump.

£ ping Power and gas flow injection to EHSs.
let Jigt

Plops PSpy, ~ Powerinputand heat output of GSHP.
Gas input and output of gas furnace.

Gas input and power and heat output of CHP.

PGiF:,tJ PgF,t
Pep o Poye
Pehs
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PIFII.;,D ngﬁ

EBS,t' EHS,t

Charging and discharging power and heat of battery
and heat storage.

Remaining energy of battery and heat storage.

Vets Vgt Dispatch factors of power and gas.

. INTRODUCTION

HE integrated energy system (IES) provides an
interdependent configuration and management solution to
coordinate multiple energy vectors [1]. It can be realised by the
utilization of energy converters, e.g., power-to-gas (P2G),
combined heat and power (CHP), heat pumps and gas turbines,
etc, further intensify the operational interdependency of IES.
Through optimally coordinating multiple energy infrastructures,
the overall system efficiency can be significantly improved,
renewable energy penetration can be highly facilitated, and
environmental targets can be achieved.
Much effort has been focused on the optimization of IES,
mainly achieving economic and environmental targets. A robust
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optimization (RO) model is proposed for an integrated power-
gas-heat system in smart districts [2]. This model is demonstrated
on a real multi-energy district and real-world physical limitations
of energy infrastructures are examined. Paper [3] develops a
chance constrained operation scheme for multiple interconnected
IESs in a smart city. The Cornish-Fisher algorithm effectively
handles the problem. A non-convex energy hub scheduling model
is proposed for an interconnected system considering battery
lifetime cost in [4]. The decomposed particle swarm optimization
(PSO) is utilized which outperforms the conventional PSO. Paper
[5] proposes a real-time energy hub operation model considering
the correlation between temperature and gas consumption. The
impact of seasonal and weekly changes on operation results is
extensively investigated.

Traditionally, water and power systems are designed and
operated separately. Nevertheless, water and energy systems are
mutually interdependent [6]. According to [7], 3% of U.S.
electricity is facilitated by water distribution systems and
approximately 80% of electricity consumed by water systems is
used for distributing and pumping water. The abundant water
resources largely contribute to power generation and conversion
in power systems.

The existing work on joint optimization of water and power
systems mainly focuses on reducing system operation cost and
gas emissions. Paper [8] proposes an optimal water-power usage
by controllable assets considering the couplings in an integrated
water and power system (IWPS). A distributed algorithm based
on the alternating direction method of multipliers helps pursue
individual objectives. In [9], a coordinated day-ahead
optimization model for IWPS is proposed considering the
hydraulic constraints of water systems. An energy flexibility
model for water systems is designed to offer the feasible energy
flexibility capacity to the system operator. Paper [10] proposes an
optimization model for the demand-side management of IWPS.
The water system is treated as an effective resource to manage
renewable generation. Stochastic programming (SP) based multi-
stage fuzzy optimization is developed for a combined operation
and planning problem in an IWPS considering uncertain power
demand [11].

The enormous interdependencies among each subsystem are
realized by the strong couplings for subsystems with multiple
energy converters facilitated. CHP enables the conversion from
gas to both heat and electricity. P2G facilities can convert
excessive renewable power generation to synthetic natural gas;
The conversion from gas to power is mainly realized by utilizing
gas turbines; Ground source heat pump (GSHP) and gas furnace
(GF) enable the heat conversion from power and gas respectively;
The electrolyses in the P2G facilities consume the water from
water system; The energy conversion from CHP relies on the
water supply; Water pumps consume electricity from power
system; The electricity boiler in the water system requests the
electricity supply to convert the water to heat. Modelling and
optimizing all the subsystems as an entity can facilitate the
economy and security of the entire system.

The inherent interdependencies between subsystems in IES
have been promoted due to increasing energy demand growth,
lower prices of gas resources, and emerging conversion
technologies for interconnecting subsystems [12-14]. The
aforementioned literature in the IES demonstrates the benefits of
interdependencies [1-7, 14-16]. Moreover, the integration of
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multiple energy systems and water systems will further
strengthen the couplings and interdependencies.

In the existing literature, the uncertainty pertaining to
renewable generation in IES operation is commonly handled by
SP [15, 16] and RO [2]. SP assumes that the distribution of
uncertain variables is known. However, obtaining explicit
distributions is impractical and the scenario approach will lead to
computational burden in optimization. RO copes with uncertainty
considering all realizations, including the worst-case renewable
fluctuation scenario, which ensures system robustness but
sacrifices system cost effectiveness. Distributionally robust
optimization (DRO), which employs partial distributional
information to capture the ambiguous uncertainty distributions,
can overcome the limitations and deficiencies of SP and RO [17].
Recently, DRO has been applied in the operation of distribution
systems. Paper [18] proposes distributionally robust scheduling
for integrated electricity and gas systems considering demand
response. The revenue from demand response is maximized and
expected load shedding cost is minimized. A distributionally
robust operation for electric vehicle aggregators is proposed in
[19]. The DRO technique is effective for avoiding unnecessary
costs considering temporal and spatial characteristics of the
charging demands of aggregators.

DRO employs ambiguity sets to capture the uncertainties
pertaining to known distributional information. The optimization
results will be intractable or over-conservative if the ambiguity
set is not chosen appropriately [20]. There are two common
methods to characterize ambiguity sets, moment-based ambiguity
set and discrepancy-based ambiguity set. The former one has
simple tractable reformulations, e.g., semidefinite program (SDP)
or second-order cone program (SOCP). Nevertheless, different
distributions might have the same moment information, which
introduces challenges for determining the worst-case distribution.
Discrepancy-based ambiguity set measures the statistical distance
between the reference distribution and candidate distributions.
Kullback-Leibler (KL) divergence is widely applied in operation
problems in the area of power systems [21, 22].

The uncertainties bring risks into economic operation.
Intuitively, risks in the proposed IES operation model can lead to
abnormal high operation cost. Mean-risk optimization considers
a coherent trade-off between system economic performance and
risk, which has been applied with SP on energy system operation
[23-25]. Paper [23] develops a mean-risk stochastic programming
model for unit commitment considering renewable energy
uncertainty. A conditional value-at-risk (CVaR) is incorporated
to assess the risk from renewable energy uncertainty. In [25], a
day-ahead operational planning model for a regional energy
service provider with electricity price uncertainty is proposed.
The CVaR criterion is employed to hedge against the uncertainty.

This paper aims at constructing a two-stage mean-risk DRO
model, which is helpful for providing system operators the trade-
off operation scheme between operation cost and risk mitigation.
Based on the common IES, this paper proposes a coordinated
optimization for integrated water-energy nexus system (IWENS)
with the connection of multiple energy hub systems (EHSS)
containing power, gas and water systems. This paper proposes a
two-stage mean-risk distributionally robust optimization (TSMR-
DRO) for IWENS considering the uncertainty of wind power
generation. The two-stage model includes day-ahead and real-
time operation schemes, prior to and after wind uncertainty
realization. The ambiguity set for capturing wind uncertainty is

3

constructed using KL divergence. The coherent risk measure, i.e.,
CVaR is employed to model the trade-off between expected
computational performance and risk. Bender’s decomposition is
applied to solve the problem in an iterative manner. The proposed
IWENS provides utility system operators a two-stage operation
scheme to minimize operation cost when dealing with enormous
Ccross energy vector interdependencies.

The main contributions of this paper are as follows:

1) It develops an innovative IWENS structure networked with
EHSs and renewable distributed generators (DGs) for integrated
energy distribution systems. The intricate nexus between power,
gas and water is extensively modelled.

2) It aggregates considerable interconnections and converters
among subsystems, e.g., gas turbines, P2G facilities, CHP, GF,
GSHP, water pumps and electric boilers. The enormous
interdependencies and interactions between energy sectors are
beneficial for improving economic efficiency and sustainability.

3) A two-stage DRO model is applied to optimize both day-
ahead and real-time operation schemes. The day-ahead stage
determines the initial operation scheme with reserve capacity
from traditional DGs and CHPs and water pumps.

4) It combines DRO with mean-risk optimization. The benefits
of the proposed DR-MRO is in threefold: i) it overcomes the
shortages of SO and RO by using partial distributional
information with moderate robustness, ii) the KL divergence-
based ambiguity set can flexibly shape the considered candidate
distributions compared with moment-based ambiguity sets and
accordingly yields less-conservative results and iii) the trade-off
between economic performance and risk can be realized based on
the incorporation of CVaR on the objective function.

The remainder of this paper is organized as follows. Section II
presents the objective function and constraints for both day-ahead
and real-time stages. Section III proposes the method for solving
KL divergence-based TSMR-DRO considering the incorporation
of CVaR. The case studies for demonstrating the advantages of
IWENS and TSMR-DRO are given in Section IV. Finally, section
V concludes the entire paper.

Il. PROBLEM FORMULATION

This section proposes the mathematical modelling for IWENS
including both day-ahead and real-time operation schemes. Then
the risk measure is given. Finally, the objective function is
illustrated. The assumption is made that the entire IWENS is
owned by a single entity which controls all the energy
infrastructures and there is no trading between each subsystem.

The proposed IWENS structure is given in Fig. 1, where the
power, gas and water systems are shown in black, navy and blue.
The power and gas systems have three interconnection points: i)
buses 6 and 15 in power system are connected with node 2 and 6
in the gas system via gas turbines and P2G facility at bus 10 is
connected with gas node 3. The two EHSs are sourced from both
power and gas systems. The water distribution system
interconnects with all the other subsystems: i) water node 11 is
connected with the P2G facility for the water electrolysis process,
ii) water node 2 connects with EHSs 1 and 2 for CHP conversion;
iii) water pump at nodes 1, 2 and 6 consume electricity from EHS
1 and iv) water system is connected with EHS via an electric
boiler. The IWENS contains two EHSs. Each EHS contains a
CHP, a GSHP, a GF. EHS 1 contains an energy storage system
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Fig. 1. Proposed structure of IWENS.

(ESS). The ESS is composed of a battery storage and a water tank
for storing excessive electricity and heating respectively [26, 27].

A. Day-ahead Operation

The day-ahead optimization schedules power generation plan
of traditional DGs and the reserve capacity dispatch from
traditional DGs, gas turbines and water pumps considering the
operation status of other energy infrastructures. The constraints
are in (1)-(40). The power purchase from upper-level market is
given in (1). The reserve capacity from traditional DGs, gas
turbines and water pumps are shown in (2) and (3), followed by
their output limits in (4) and (5). Constraint (6) limits the reactive
power output of traditional DGs. Constraints (8) and (9) are the
linearised DistFlow equations for distribution networks. They are
obtained based on the assumption that i) losses are negligible, ii)
the voltage at each bus is close to 1.0 p.u. and iii) the voltage at
the reference bus is 1.0 p.u. [28-30]. Constraint (10) is the output
of electric boiler. The balancing conditions for active and reactive
power are in (11) and (12).

The output of the natural gas source is constrained in (13).
Constraints (14) and (15) are used to limit the gas pressure. Note
that the gas pressures of initial nodes are always higher than
terminal nodes due to the unidirectional gas flow. Accordingly,
constraint (15) is used to ensure unidirectional gas flow. Equation
(16) is the Weymouth gas flow equation that characterizes the
relationship between gas pressure and flow. The gas flow of gas
pipelines is constrained in (17). The output of gas turbine is in
(18). Equation (19) presents the relationship between the gas
pressure of initial and terminal nodes of gas compressors. The
excessive renewable generation can be converted into gas via
P2G. The electrolyser splits water into hydrogen and oxygen. The
output of electrolyser is given in (20). The nodal gas balance is
given in (21).

In water distribution systems, constraint (22) limits the output
of reservoir. Equation (23) is the constraint of water pressure limit
for pipes installed with and without water pumps. In (24)-(27),
the hydraulic characteristics of water pipes are given for pipes
installed with and without water pump in terms of head gain and
loss. The pressure head gain of water pump is in (26). Equation
(27) describes the hydraulic characteristic of pipes without pumps
using Darcy-Weisbach equation [31]. The power consumption of
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water pump is in (28). Constraint (29) limits the water flow
magnitude. The mass balance for the water system is in (30). The
water consumption of energy converters is also given in (30),

where gy, Py kng,ftP ¢ and a,,PS,, represent the water

consumed from CHPs, P2Gs and electric boilers, respectively
[32, 33].

In EHSs, the energy conversion of CHP, GF and GSHP are in
(31)-(33). The input limit for all converters is given in (34).
Equation (35) is the constraint of the charging and discharging
power and heat for ESSs. Constraint (36) and (37) limit the
remaining energy for battery storage and water tank. Constraint
(38) presents the coupling relationship for the EHSs, which is the
energy balance constraint of EHSs.
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B. Real-time Operation

In the second stage, corrective operation schemes are deployed
based on the realization of wind uncertainty. Equation (39) is the
constraint for the regulated power output of traditional DGs and
gas turbine. And (40) is the new power balance constraint
considering wind uncertainty. Due to space limitation, the
constraints for real-time operation are not listed. Apart from (39)
and (40), the rest second-stage constraints are the same as the
first-stage constraints, where the superscript ‘s’ on each variable
is changed to ‘re’. ‘s’ represents the scheduled decision variables
in the first stage and ‘re’ represents the regulated decision
variables in the second stage. The regulated decision variables are
summarized in (41).

s - re s + i
Piye =13 S P S P + 1030 U3 = Ly gt wp (39)
DR > Y I R = ) B+ Y S (40)
ioel, 7l loeL, l,eL, KeEK, loeL,
+ Z P+ Z PP+ Z Pre
ebt nt wpit
ebeEB neN WpEWP

re pre pre re yre gre re nre re rre pre prepP2G
(Pm,t'PiE,t'Pgt,t' Qige Vot fitr afi e Gl e Prie fig i Pace Pu .)

e

re,hy re,P2G ~rehyme ~Tehyq ~reca ~reme pre re re
Gn,t 'Pn,t 'Gn,t 'Gn,t 'Gn,t 'Gn,t ‘PWT,t‘hlw:t'hlwprt'

Y=A7tre fre re cre pre rei prei prei preo preo preo 41
hzw,n hlwp,t'flw,t nflwp,n PW,,,rn PCUP,t' PGF,t' Pcp 3t PcoP,c. PGF,t ’ Pcpe,t‘ ( )
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C. Objective function

In the first stage, the day-ahead objective in (42) is to minimize
total operation cost, including i) generation cost of traditional
DGs and natural gas sources, ii) power purchase cost from day-
ahead upper-level market, iii) water purchase cost from water
reservoirs, iv) cost for reserve capacity from traditional DGs, gas
turbines and water pumps.

I; = min AP+ A8 PS 2+ A0 PS4+ 25,
ic€le)igEly tETWrEWR,gLEGT o (42)

+ AP + /lingg e AL TG 1
= lg, gt, wp

The second-stage problem considers real-time redispatch and
corrective actions pertaining to wind uncertainty. The objective
function contains the penalties due to the overestimation or
underestimation of scheduling in the first stage. The first-stage
generation decisions include the scheduled power and water
purchase, wind generation forecast, scheduled output of
traditional DGs and natural gas sources. The minimization of
deviation between scheduled and regulated results promotes the
utilization of renewable energy [34].

A’;:|P51,t - Prrrft| + A;e|wit - fj,t|
i€l igElG, tLET,WIEWR (43)
+ Aje|Ps = PG| + 45 [P — PIE|

+ A\rA/er|vavr,t - P;:/i,t|

I, = min

I1l. METHODOLOGY

The proposed DR-IWENS is a two-stage minmax DRO model,
which can be solved by the Bender’s decomposition, shown in
this section. Firstly, the linear problem is represented by a
compact form for notation brevity. Secondly, the KL divergence-

0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5

Initialize scenario i=1, ..., m, 7t =0, u* =a
positive constant, &* =0, set for optimality cut
(0C°(i)) and its iteration index k=0, upper bound
UB = +o0, and lower bound LB= -0

[

Solve the master problem M, (66), record
the optimal objective value 0%,
and optimal solution x? .
T

3
Solve sub problem (49) at x = x*,
record the optimal objective value o*
and optimal solution y*.

S

Yes

Generate optimality cut
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{
Gi(x4,8) = A - e )] + 5 ak
update i=i+1, UB= ¢'x* + al* + o + nuk +
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|
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optimal objective value 0%,
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Yes

UB-LB> ¢?

No
Obtain optimal solution
x** and y* and optimal
value UB

End

Fig. 2. Flowchart of Bender’s decomposition approach.

based ambiguity set is used to define the uncertainty. Then, CVaR
is derived. The final step incorporates the mathematical
reformulation and decomposition methods for solving the
problem.

A. Formulation in Brevity

The original problem can be represented by vectors and
matrices to represent the objective function and constraints for
notation simplicity. Compared to the proposed risk-averse model,
the traditional risk-neutral DRO model does not consider risk
factor, which is given in (44).

minc’x + sup E,[Q(x,$)] (44)
XEX pGDf

Based on the traditional risk-neutral DRO model, the risk
measure can be included in the second stage problem, shown
below:

minc'x + sup {0 = DE[Q(x, O] + aR(Q(x, )} (45)
peDg

st.Ax < b, (46)

00 &) = minfy @)

st.Ex+Fy+GE<h, (48)

The risk-averse objective function (45) is to minimize the sum
of the first-stage objective c¢’x, the weighted expected second-
stage objective (1 — a)E,[Q(x,$)] , and the weighted risk
measure aR(Q (x, E)). D; denotes the ambiguity set, containing
distribution p. The weighting factor a ranges between 0 and 1.
When a=0, (45) degrades to the traditional risk-neutral DRO.
Equation (46) presents the first-stage constraints. The recourse
process is represented by (47) and (48), where f denotes the
coefficient of (47).
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B. KL Divergence-Based Ambiguity Set

The discrepancy-based ambiguity set is constructed based on
measuring the distance between probability distributions, i.e., the
divergence tolerance 7 in (49). The true and reference probability
distribution are represented by p and p,..f, respectively. The KL
divergence between p and p,.f is defined in (50), where p (£)
and p,..r (&) are the probability density functions.

Dis = {p € D¢ |D¢,(p|prer) < n} (49)
50
Do (ollny) = [ £C6)100 LSt (50)

KL-divergence function of variable a is in (51) and it will be
used in the dual formulation to solve the inner maximization

problem in section D.
pg(@):=aloga—a+1 (51)

C. Coherent Risk Measure

The probability of the second-stage objective function Q(x, &),
i.e., the corrective operation cost including load shedding lost, is
restricted by the threshold £ As an emerging risk measure
method, CVaR is a coherent risk measure, which is convex,
transition-equivalent, and monotonic. The original expression of
CVaR is in (52), which can be further approximated by (53) to
avoid the computation of multiple integral [35]. [Q(x, &) — {]*
represent determining the larger value between Q(x, &) — ¢ and
0.

(52)

CVaRg(Q(x,6)):= 1-F
=B Joterzvargxs)

Qx,9p (§)dé

(53)

CVaRp(Q(x, 8)): —mm{( —E,[0(x8) - (]+}

1- /3

D. Risk-Averse DRO

The proposed TSMR-DRO is formulated as (54) with weighted
CVaR. Equation (55) can be derived by substituting CVaR in (56)
with (55).

minc'x + sup
X€X PEDg E=APLE

{ - DE,[Q(x, O] + aCVaRp(Q(x, )} (54)

|, ] (55)
min {c X+ peng?igpk,fj Iglelngzl{af + E,[G(x,O)]} ]

Glx, &)= 1:;&
stQ( &) — a—¢<0,a=0

Based on the proof in [36] on the strong duality, (55) can be
reformulated into (56) and then (57).

mm [c x+ ?nﬂgpenfsfugm : {ag + E,[G(x, ) } (56)
min {c' x+ad+ peogfﬁ(pk,s, {Z piGi(x, E)} } (57)

The inner maximization problem can be handled by the Lagrange
function (58) with its dual formulation (64)

Di
Llp,T,p) = ZPlG [€X3) +T<1 —Zm) +u<n memm (p p)) (58)

i=1 i=1

Gi(x, &) —
max L(p,T,u) =T+nu+ uz Dref,i [eXP (%) - 1] (59)

i=1
According to Slater’s condition [37], when 7 is larger than 0, the
below reformulation can be made:

m
pen Bk, {Z piGi(x, ¢ )] = min max L(p,7,1) (60)

_ - Gi(x,8) -1
= min [‘r +nu + ”Z Dref.i [EXp <T> - 1]} (61)

i=1

6

Substituting the inner maximization in (57) with (61), the below
derivation can be obtained.
), S Gi(x,§) -1
,rmgo cx+a(+r+nu+u;preﬂi [exp<T>—1H (62)
st.x€X,Q(x8)—a—-7<0,d>0,
60 ):= (1= DO O] + 75

However, the optimization problem (62) is nonlinear, which needs
to be linearized before decomposition. For a given x = x*, when
Q(x*,&) < o, then Q(x*, &) is subdifferentiable [38] and equation (63)
can be obtained, where Dual(x*) = argmax{n’(h — Ex¥):F'm < f} is
the set of optimal solutions of dual problem for (47) and =*i e
Dual(x*) is optimal solution for the ith and kth iterations.

0Q(x*,&) = —E'Dual(x*)
Gilx* E) *

¢

(63)
Let sk: = and F}: = p*[exp(s¥) — 1], the subgradient of F¥

can be descrlbed as:
= [(1 — a)exp(sME'mk, (1 — s¥)exp(s*) — 1,7@)(p(s"),1 i

7 exp(s")] (64)

Based on the subgradient inequality of convex function, the below
equation can be obtained. The optimality cut can be defined in (66).
Fi(x,u,7,8;) = Fy(xk, pk, o, ak) + FF - (x — x* u — p*, v — 7%, @, — a¥) (65)

(66)

~k
Fi(x,u,7,8;) > [Gi(x", &+ (1 —a)(mh) Ex* __1“:11'[)) +oFK (e, 1,7, a)

A Bender’s decomposition is employed to solve the TSMR-DRO
problem and the flowchart is given in Fig. 2.

IV. CASE STUDIES

The proposed DR-IWENS is verified on a district water-energy
nexus system consisting of a modified IEEE 33-bus system, a 6-
node gas system, two EHSs and a 11-node water system, where
generator information is given in TABLEs I, II and III . The
power system has two traditional DGs and four renewable DGs.
The power system is connected with the gas system via two gas
turbines and a P2G facility. Two EHSs are supplied by both
electricity buses 20 and 25 and natural gas nodes 2 and 5. The
technical parameters of EHSs can be found in the existing
publications [3, 39]. The water consumption of P2G and CHPs
are supplied by node 11 of the water system. Electric boilers
enable the heating conversion from power and water. This study
considers 5 cases for demonstrating the effectiveness of the
model, which is presented in TABLE IV.

The economic performance for all the cases is studied firstly in
this section, followed by the optimal schedule of interdependent
energy converters. The mathematical performance with different
risk-aversion parameters is given in section C.

A. Economic Performance of Each Subsystem

The economic performance for all the cases is given in
TABLE V, which incorporates the operation cost of power
system, gas system, water system and entire IES. Overall, case 3
with twice output of the renewable DGs vyields the lowest total
operation cost whilst the total operation cost of case 5 is the
highest when gas price is twice of case 1. Case 2 is the risk-neutral
optimization without considering CVaR in the objective function.
It can be seen that the operation cost of each subsystem is lower
than those of case 1. The total operation cost, i.e., $36687, is 91%
of that of case 1. When the output of renewable DGs is doubled
in case 3, the most distinct feature is the operation cost of power
system, which is only $13275. Meanwhile, the gas system
operation cost is also reduced by $3468 since there is more
excessive renewable output injecting to the gas system via the
P2G facility. However, the water system operation cost is $348
more than that of case 1. The reason is that P2G and CHPs
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TABLEI
PARAMETERS OF WATER RESERVOIRS

Byrmax Ar Elevation
NodeNo. iy s/m3)  (m)
1 325 6.4 -252.5
2 700 2.6 -255
TABLEII

PARAMETERS OF NATURAL GAS SOURCES
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Node No Pig,min Pig,max }Lig
' (kcf/h) (kefh)  ($/keh)
1 0 35.31 2.2
2 0 70.63 2
TABLEIII
GENERATOR PARAMETERS
Bus No Pie,max Pig,min R;’, R; a; b; Ci
MW) MwW) MwW)  ($/MW?2)  ($/MW) ®
13 12 0.3 0.2 6000 7100 6200
28 1.0 0.1 0.2 4500 10500 4000
TABLE IV
CASE ILLUSTRATION
Gas
Case . Renewable P2G .
No. Risk measure DG capacity connection ger;)ergggon
1 Yes Nominal Yes Nominal
2 No Nominal Yes Nominal
3 Yes Twice Yes Nomimal
4 Yes Nominal No Nominal
5 Yes Nominal Yes Twice
TABLEV
ECONOMIC PERFORMANCE FOR ALL CASES
Economic result Case 1 Case 2 Case 3 Case 4 Case 5
Power system
operation cost ($) 22900 20400 13275 21472 28925
Gas system 15512 14485 12044 16324 26140
operation cost ($)
Water system 1962 1802 2310 1858 2352
operation cost ($)
Systemoperation  yq57, 36687 27629 39600 57417
cost ($)
TABLE VI
ECONOMIC PERFORMANCE FOR TWO STAGES
Economic
result Case 1 Case 2 Case 3 Case 4 Case 5
First-stage
cost (9) 32526 29520 22028 31087 47840
Expected
Second-stage 7848 7167 5601 8522 9577
cost ($)
Total cost ($) 40374 36687 27629 39609 57417
5540450
/40400
840350
40300
240250
€ 40200
& 40150
= 40100
g 40050
40000 . . . .
0 1000 2000 3000 4000 5000
Sample size

Fig. 3. Total expected cost of case 1 based on different sample size.
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Fig. 4. Gas scheduling of gas turbines and P2G.
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Fig. 5. Water injection of boilers.

consume more water with increasing renewable output. In case 4,
there is no supply from the power system to the gas system, which
causes the higher operation cost of gas system since the excessive
renewable generation cannot be fully utilized. The operation cost
of all the subsystems and the overall system is the highest in case
5. Compared with case 3 with the lowest cost, the total operation
cost is 107% higher. Particularly, the gas system operation cost is
$26140, which is $10628 more than that of case 1.

The IWENS operation cost of first and second stages are
presented in TABLE VI. Case 5 results in the highest cost for both
the first and second stages, i.e., $47840 and $9577. When the
twice of the renewable generation capacity is considered, case 3
yields $5601 of the adaptive recourse cost. In Fig. 3, the total
expected IWENS oepration cost with different number of
simulation samples is given. The second-stage expected
performance is conducted based on 1000 simulated uncertainty
realizations. The sample size is changed to investigate its impact
on second-stage operation cost. In Fig. 3, the result of case 1
fluctuates when the sample is fewer than 1000 and converges
toward $40374 afterwards.

B. Analysis of Energy Conversions

This section investigates the scheduling of coupling devices for
interconnecting each system, i.e., gas turbines, P2G facility,
electric boilers, CHP, gas furnace and GSHP. To begin with, the
operation scheme of gas turbines and the P2G facility is given in
Fig. 4. Note that it shows the input of gas turbines and output of
P2G facility. It can be seen that the gas turbine at node 2 has
higher gas consumption than node 5. The average gas
consumption of node 2 is 1867kcf and that of node 5 is 591Kkcf.
The potential reason of the higher gas consumption at node 2 are
i) node 2 is connected to a natural gas source which has abundant
gas supply and ii) the requirement of power transformation at bus
6 is higher as it is connected with more buses. As for P2G, it
produces 549kcf averagely. The transformed gas from P2G can
supply loads at nodes 3, 5 and 6. In addition, abundant gas can be
converted back to the power system at node 5. The scheduling of
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Fig. 7. Water consumption of CHPs and P2G.

water injection of electric boilers is shown in Fig. 5. The water
injection is 3 at node 6m® and 37 m® at node 1 averagely.
Although the heating loads of EHS 1 and 2 have similar amount,
the heating supplied by water system at water node 1 is more than
6 times of that at node 6. Since the gas supply of EHS 2 connected
to gas node 5 is less. However, the water supply from water node
1 is sufficiently connected to the water reservoir.

In Fig. 6, the heating output of converters in EHS 1 and 2 are
given, respectively. Overall, the total heating output of converters
in EHS 1 is 0.1MW higher than that of EHS 2. The heating supply
composition is different for EHS 1 and 2. The CHP is utilized
around 0.15MW for each hour and takes up 50% of the total
heating output of converters. While the CHP in EHS 2 outputs
approximately 0.33MW, which is 81% of the total heating
conversion. The reason is that the supply from the power system
is not sufficient, which affects the heat conversion of GSHP even
though the heating conversion efficiency of GSHP is high. The
insufficient electricity consumption needs to be satisfied by CHP
conversion, which also increases heating conversion.

The water consumption of CHPs and P2G is in Fig. 7. As
discussed for Fig. 6, the heating conversion from CHP in EHS 2
is higher than that of EHS 1. The water consumption of CHP in
EHS 2 is also higher than that of EHS 1, i.e., the average water
consumption of CHP in EHS 2 is 0.28m?3 and it is 0.77 m® of CHP
in EHS 1. Compared to CHP, P2G consumes less water and its
average water consumption is 0.15 m3,

C. The Impact of CVaR on Economic Performance

Through adjusting the confidence level and weighting factor
for operation cost versus risk trade-off, the overall economic
performance varies. TABLEs VII and VIII present the economic
performance with different § and «, respectively. This paper
considers 95% as the benchmark o used in TABLEs V and VI
As shown in TABLE VII, the total cost increases with the
increase of a. For case 1, the highest total operation cost is
$40652 with g =0.9 and the lowest total operation cost is $35635
with £ =0.99. When g is fixed, case 5 which considers twice of

8

TABLE VII
ECONOMIC PERFORMANCE WITH DIFFERENT WEIGHTING FACTORS

izz?f?;;c =08  p=09 =095 S=0.99

Case 1 35635 39573 40374 40652

Case 3 25830 26412 27629 27940

Case 4 38749 39015 39609 40527

Case 5 54119 57087 57417 57906
TABLE VIII

ECONOMIC PERFORMANCE WITH DIFFERENT CONFIDENCE LEVELS

i‘;ﬂ’l‘fgc 4=0  a=025 =05 ¢=0.75
Case 1 36687 38200 40374 42049
Case 3 25872 26412 27629 28950
Case 4 37321 38580 39609 47140
Case 5 50767 51263 57417 62875

the original gas price has the highest total operation cost,
followed by cases 4, 1 and 3, which is the same as discussed in
section A. In TABLE VIII, the impact of changing g on the
economic performance for all cases is presented. It can be seen
that the higher a causes higher priority on minimizing the risk,
which leads to higher operation cost. When o=0, the mean-risk
DRO degrades into the risk-neutral DRO. For case 5, the total
operation cost is only $50767 compared with the $57417 solved
by the benchmark mean-risk DRO.

D. Result Discussion

This section presents the result discussion for sections A-C.
The economic performance of all the cases is shown in TABLES
V-VI and Fig. 3. When CVaR is not considered in the objective
function, there is a 10% reduction of the operation cost. The
lowest operation cost is yielded when twice the capacity of
renewable DGs is applied. Result also indicates that P2G
connection does not have a profound impact on the economic
performance. The twice of the gas generation price yields the
highest operation cost, i.e., $57417. In Fig. 3, the second-stage
expected operation cost of case 1 shows that the computational
result converges when the sample size is sufficiently large, i.e.,
1000 samples. Based on different risk measure parameters, the
economic performance is given in TABLEs VII and VIII. The
results show that the higher confidence level and weighting
coefficient lead to higher operation cost, e.g., the operation cost
of case with 5=0.99 is 14% higher than that with $=0.8.

The scheduling results of energy converters in Figs. 4-7
provide the system operator the guide for decision making. The
converter scheduling of gas turbines, P2G facilities and boilers
with water consumption are given in Figs. 4 and 5. Figs. 6 and 7
show that CHP is scheduled dominantly. GSHP with the highest
conversion efficiency also presents a high utilization rate.

V. CONCLUSION

A mean-risk coordinated optimization for an IES in the water-
energy nexus with enormous interdependencies is proposed in
this paper. The tight couplings and interactions between each
subsystem enable the reliable and economic operation for the
entire IES. The renewable uncertainty is captured by mean-risk
DRO. The coherent risk measure, CVaR provides the trade-off to
system operators with flexible alternatives on choosing between
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economic efficiency and risk. A tractable Bender’s
decomposition is employed to solve the DR-IWENS problem.
Through the extensive case studies on the economic performance,
scheduling of interdependent coupling devices and the risk
management via adjusting parameters, the major contributions
are tested:

= The coordination of each subsystem with the conversion

technologies enhances the energy efficiency of all vectors.
= The water system should be considered in the IES operation
as water is extensively consumed by energy conversions.

= The mean-risk DRO applied in IES operation problem

provides system operators with not only economic but risk
concerns.

This work provides system operators a two-stage operation
scheme to minimise system operation cost while dealing with
enormous cross energy vector interdependencies, thus helping
lowering utility bills for end customers.

The future work aims to resolve two problems: i) a more
practical decentralized operation mechanism will be considered,
i.e., power, gas and water subsystems are owned by independent
system operators, and ii) a complete heating network will be
modelled in the IWENS, which will further enhance the energy
efficiency for the system with more supply flexibility for energy
hubs.
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