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TO IEEE TRANSACTIONS ON POWER SYSTEMS

A Cyber-Secured Operation for Water-Energy Nexus

Pengfei Zhao, Chenghong Gu, Member, IEEE, Zhidong Cao, Da Xie, Member, IEEE, Fei Teng, Member, IEEE,
Jianwei Li, Xinlei Chen, Chenye Wu, Dongmin Yu, Xu Xu, and Shuangqi Li

Abstract—The wide implementation of information and
communication technologies (ICT) cause power system operations
exposed to cyber-attacks. Meanwhile, the tendency of integrated
multi energy vectors has worsened this issue with multiple energy
coupled. This paper proposes a two-stage risk-averse mitigation
strategy for water-energy systems (WESS), incorporating power,
natural gas and water systems against false data injection attacks
(FDIA) under water-energy nexus. The FDIA on individual sub-
systems is modelled through hampering false data integrity to the
systems. An innovative two-stage risk-averse distributionally robust
optimization (RA-DRO) is proposed to mitigate uneconomic
operation and provides a coordinated optimal load shedding scheme
for the nexus system security. A coherent risk measure, Conditional
Value-at-Risk is incorporated into the RA-DRO to model risk. A
Benders decomposition method is used to solve the original NP-hard
RA-DRO problem. Case studies are demonstrated on a WES under
water-energy nexus and results show that the effectiveness of the
method to mitigate risks from potential FDIA and renewable
uncertainties. This research provides WES operators an economic
system operation tool by optimally coordinating energy
infrastructures and implementing reasonable load shedding to
enhance cybersecurity.

Index Terms—Distributionally robust optimization, false data
injection attacks, integrated energy system, mitigation strategy,
risk aversion, water-energy nexus.

NOMENCLATURE
The superscript ‘S’ and ‘re’ representing ‘scheduled’ and
‘regulated’ respectively are omitted in section C. The
superscript ‘ini” and ‘ter’ representing initial and terminal
nodes of power bus, gas and water nodes are also omitted in this
section to save space.
A. Indices and sets

t, T Index and set of time periods.

b, B Index and set of power buses.

n, N Index and set of gas nodes.

w, W Index and set of water nodes.

igy I Index and set of generators.

ig, Iy Index and set of gas wells.

wr, WR Index and set of water reservoirs.

j, J Index and set of renewable energy sources
(RES).

gt, GT Index and set of gas turbines.

wp, WP Index and set of water pumps.

l,, L, Index and set of power lines.

ly, Lg Index and set of gas pipelines.

Ly, Ly Index and set of water pipelines without

pumps.

lwp: pr

e

g

= =
XN

w1 w

Index and set of water pipelines with
pumps.

Index and set of power loads.

Index and set of gas loads.

Index and set of water loads.

B. Parameters
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Attack injection level for FDIA.

Maximum up and down reserve capacity of
generators, the gas turbine and water
pumps.

Resistance of power line 1.

Maximum power flow of line .

Demand of power, gas and water.
Forecasted output of RES j at time t.

Maximum and minimum output of gas
source .

Maximum and minimum pressure of gas
pipeline ;.

Coefficient for Weymouth equation.
Maximum gas flow of line [,,.
Conversion coefficient for gas turbines.
Electrical efficiency for electrolyser.
Maximum and minimum limits for head
pressure of water node connected with or
without water pump.

Water pump characteristic coefficients.
Head gain and loss coefficients.

Water pump efficiency.

Water flow limits for water pipeline with
and without pump.

Water consumption coefficient of power-to-
gas.

Maximum limits of power, gas and water
load shedding.

Cost coefficients of generator i,.
Cost coefficient for output of gas well .
Cost coefficient of water purchase.
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A?;, A, Aér,  Cost coefficient for up and down reserve of

Aer: X, generators, gas turbines and water pumps.
Ay
il A5 /1{;, Regulation cost coefficient of power
e purchase, generators, RES, gas wells and
water reservoirs.
C. Variables
Ti:,r: Up and down reserve capacity of
T o i generators, the gas turbine and water
et Tgt,
- umps.
Tgt,t rv-:;p,t- pump
Twp,t
P . Output of generators , gas turbines and
er
Pyt Pupst water pump power consumption.
0/, 0% Phase angle at initial and terminal buses.
Gige Output of gas wells.
fioer flg,t Power flow and gas flow.
Pry. Pressure of gas node n.

fig6re Poee Injected gas flow and output of gas turbine.

plze Power consumed by the electrolyser.
GH Gas output for power-to-gas process.
Pyry Water purchase from reservoir.
nhwp plw Water pressure of pipe with and without
w,t’ w,t’
water pump.
phw plwe Elevation of water node connected with and
w,it’ w,t ! .
without pump.
pw  jlwe Head loss and gain of water node.
w,t’ Fwit
fruptSrt Water flow of pipe with and without water

pump.

APy, 1, APy ¢, Load deviation due to FDIA.

APy,

L L L H
Pyt P, 1 Pi,, L-0ad shedding of power, gas and water.
it Generation of renewable energy sources.

I. INTRODUCTION
ODERN energy management systems (EMS) with the
increasing dependence on emerging information and
communication technologies (ICTs), have massively facilitated the
high efficiency, reliability and security of the EMS [1]. Meanwhile,
the increasingly aggressive cyber-attacks are also growing in
numbers. As a typical arbitrary cyber-attack, false data injection
attack (FDIA) can be manipulated by adversaries to integrate
falsified data into real-time meter measurement and thus to
affect and mislead the system operators with erroneous

decisions on operation and control [2, 3].

Present research work of investigating FDIA on EMS can be
categorized in terms of the perspective of attackers or system
defenders. As for attack modelling from adversaries, a class of
unobservable FDIA are designed assuming the attacker has the
knowledge of system historical data [4]. A generalized
framework for investigating the vulnerability of power system
nonlinear state estimator to FDIA is analysed in [5].

Meanwhile, a robust detector model is proposed to check the
measurement  statistical consistency with the ensured
detectability. From the perspective of system defenders,
detection modelling and corresponding algorithms have been
investigated widely. State estimation is of great significance in
EMS, which provides reliable state estimates for system
operators on economic dispatch and reliability analysis [6].
State estimation is implemented based on redundant
measurements to filter out corrupted data. Nevertheless, some
judiciously designed FDIA can be masked and hidden and
eventually bypass the state estimation.

Therefore, mitigation strategy for EMS against FDIA is
considered as the final barrier for defending power systems
since conventional state estimation is still employed which fails
to detect stealthy designed FDIA in real practice. The
mitigation strategy for intra-interval operational security
against FDIA is proposed in [7]. A dynamic analytical
framework is designed for analysing the impacts considering
system variability in the short dispatch interval. Paper [8]
proposes the mitigation strategy for a unit commitment by using
a tri-level optimization model and the original problem is
transformed into a bi-level mixed-integer programming. The
previous work of the authors proposes a risk and mitigation
strategy for integrated electricity and gas systems under FDIA
in a moment-based hierarchical two-stage framework [9]. In
comparison, the improvements of this paper over [9] are three
aspects: i) water-energy nexus has gained extensive research
attention. There is widely investigation of FDIA on power
systems. However, WESs also require a cyber-secured
operation scheme against FDIA. Since WESs are more
vulnerable than power systems or IESs with higher
interdependencies; ii) the proposed WES is linked closer via
power-to-gas (P2Gs), gas turbines and water pumps than with
only one gas turbine. The complex couplings and
interconnections among power, gas and water systems desire a
cyber-secured operation scheme; iii) a risk-averse DRO is
adopted in this paper considering the risk of uneconomic
operation cost caused by FDIA and renewable uncertainties.
However, paper [9] lacks risk analysis. Compared with the
existing risk mitigation strategy against FDIA, the advancement
of this paper is summarized in TABLE 1.

The interdependencies between coupled energy systems have
been largely promoted due to the rapid demand increase of
multiple energy and the development of energy conversion
technologies. Through fully exploiting the interdependency of
integrated energy systems (IES), existing literature regarding
IES operation mainly focuses on several aspects: i) economic-
based operation for minimizing operation cost or maximizing
economic gain under normal conditions, ii) reliability-based
operation considering risks from reliability issues and iii)
resilience-based operation strategies against natural disasters.
Paper [10] proposes an economic system operation for IES
considering the relief of power and gas flow congestions. The
distributed optimization outperforms than centralized
optimization method with parallel data processing. A security-
constrained unit commitment is designed in [11] for enhancing
the operational reliability of IES considering possible N - k
contingencies. A two-stage RO is applied and the problem is
solved by a second-order cone-based Column & Constraint
Generation (CCG) approach.
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TABLEI
COMPARING THE PROPOSED MODEL WITH DIFFERENT STUDIES

e R R e e
Power Gas Water Power Gas Water

[4] v x x x Single-stage Deterministic v x x x

[12] v x x x Single-stage Deterministic v x % x

[37] v x x x Single-stage Deterministic v x x x

[13] v x x x Single-stage Robust v x x x

[14] v v x x Two-stage DRO v v x v
Proposed v v v v Two-stage Risk-averse v v v v

DRO

In recent studies, the novel distributionally robust model for multi energy systems [22]. Wind uncertainty is

optimization (DRO) is widely deployed to overcome the
disadvantages of RO and SO. DRO employs partial distribution
information instead of requiring the specific full knowledge of
distributions [12, 13]. Meanwhile, it is a data-driven approach,
which yields less-conservative solutions than RO. A combined
optimization for integrated electricity and heat systems is
proposed in [14] considering renewable and ambient
temperature uncertainties, which are characterized by DRO.
Paper [15] investigates the operation schemes for energy hub
systems (EHSs) considering renewable uncertainty and
multimodality information.

The uncertainties bring risks into economic operation.
Intuitively, risks in the proposed WES operation model can lead
to abnormal high operation cost. Risk-averse optimization
considers a coherent trade-off between system economic
performance and risk, which has been applied with SO on
energy system operation [16, 17]. Paper [16] develops a risk-
averse stochastic programming model for unit commitment
considering renewable energy uncertainty. A conditional value-
at-risk (CVaR) is incorporated to assess the risk from renewable
energy uncertainty. In [17], a day-ahead operational planning
model for a regional energy service provider with electricity
price uncertainty is proposed. The CVaR criterion is employed
to hedge against the uncertainty. This paper utilizes a risk-
averse DRO model, which outperforms the existing risk-averse
SO models with more practical distributional information
availability.

Under the era of water-energy nexus, water systems have
been given higher attention in the recent research works.
Traditionally, water and power systems are modelled and
operated separately. However, the two systems are actually
mutually interdependent [18]. Around 80% of the power
consumed in water systems is used for pumping and distributing
water [19]. In power systems, surplus water resources
significantly contribute to the generation and conversion in
power systems. The joint optimization of power and water
systems have been investigated in existing work, targeting at
reducing operation cost and emissions. An optimal water-power
usage operation scheme is in [20] considering the couplings in
an integrated power and water system (IPWS). An alternating
direction method of multipliers-based optimization is used.
Paper [21] utilizes the water as an effective resource to manage
renewable generators combined with demand-side management.
Very recent work proposes a two-stage robust optimization (RO)

handled and the proposed model is solved by a CCG method.

In this paper, the proposed water-energy system (WES)
incorporates power, gas and water systems. It realizes the
comprehensive coordination between energy infrastructures of
the three independent systems. The increasing penetration of
conversion technologies strengthen the coupling and
interactions between electricity, gas and water systems. The
interdependency is enhanced, leading to both beneficial and
adverse impacts for WES. As for the beneficial impacts, the
relatively lower price of gas sources can provide more
economic operation solutions for WES; the surplus generation
in the original independent energy system can supply loads in
other sub-energy systems based on upcoming energy
conversions. However, the strong interdependency of WES is
detrimental to system security, i.e., reliability issues, natural
disasters and cyber-attacks. The failure on power, gas or water
systems will inevitably propagate to other sub-systems.
Accordingly, the uneconomic operation is caused not only
because of the individual complexities in each sub-system, but
also due to the tight interdependencies. The higher the
interdependency in a WES, the more vulnerable the WES is.

This paper proposes a risk-averse mitigation strategy to
alleviate the uneconomic operation of WES against potential
FDIA considering renewable uncertainty. FDIA is assumed to
target at load meter readings of power, gas and water systems.
The two-stage framework consists of i) day-ahead operation
scheme prior to the FDIA and forecasting of renewable
uncertainty and ii) the implementation of real-time recourse
actions based on the FDIA and realization of renewable
uncertainty. Load shedding and scheduling operation are
considered as the recourse actions to mitigate the impact from
FDIA. The ambiguity set for capturing the FDIA and renewable
uncertainty is constructed based on Kullback-Leibler (KL)
divergence. The coherent risk measure, i.e., CVaR is used to
balance the trade-off between risk and computational
performance.  The proposed two-stage  risk-averse
distributionally robust FDIA mitigation strategy for WES is
denoted as TSRA-FMS for simplicity. Bender’s decomposition
approach is adopted to solve the TSRA-FMS problem.

The major contributions of this paper are as follows:

1) This paper develops a mitigation strategy against FDIA for
WES. The water-energy nexus achieves optimal energy
coordination under normal conditions but is more vulnerable to
cyber-attacks. The interdependencies between power, gas and
water systems are analysed under different FDIA scenarios.

2) It utilizes a two-stage optimization framework
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incorporating both day-ahead system operation under normal
conditions and real-time mitigation scheme against potential
FDIA. To defend and mitigate the FDIA, capacity reserve from
generations are scheduled in the first stage and load shedding is
implemented in the second stage.

3) The model incorporates CVaR into DRO. This risk-averse
mitigation method has the benefits of: i) it inherits the
advantages of RO and SO based on limited uncertainty
distribution information with weakened robustness, ii)
compared with moment-based ambiguity set, the ambiguity set
constructed by KL divergence can flexibly shape the candidate
distributions of both FDIA and renewable uncertainty and thus
it yields less-conservative solutions and iii) the trade-off
between the optimization performance and risk is modelled
based on the incorporation of CVaR.

The remaining paper is organized as follows: section II
models three types of FDIA in power, gas and water systems.
The problem formulation of TSRA-FMS is given in section III.
In section 1V, the methodology of KL divergence-based TSRA-
FMS considering CVaR as the risk measure is proposed. The
case studies are given in section V. Section VI concludes the

paper.

Il. ATTACK MODELLING

This paper considers three types of FDIA and the attack
modelling is in this section. State estimation is used to provide
accurate snapshot of power systems and detect FDIA based on
available measurements. Nevertheless, a stealthy designed
FDIA can be undetectable and bypass the state estimation. The
FDIA considered in this paper is designed on corrupting load
measurement. Equation (1) and (2) show the original expression
of bus power injection and line flow. The incidence matrices of
bus-generator and bus-load are represented by KP and KD,
respectively. The shift factor matrix can be obtained from the
linearized DC flow equation, which is used to approximate the
change of active power flow. The incremental matrices of BP
and PL are given in (3) and (4) due to FDIA.

BP=KP-G—KD-D (1)
PL = SF - BP 2

ABP = KP-AG — KD - AD (3)
APL = SF - ABP (4)

The following conditions should be satisfied for a successful
FDIA:
Condition 1:AG = 0. The attack on the measurement of output
of generation is ignored since this type of attack can be easily
detected and corrected.
Condition 2: Zero injection buses, i.e., buses without generators
or loads connected, are not attackable.
Condition 3: Load measurements are attackable.
Condition 4: The load measurement eventually impacts on
branch flow measurement.

The resulting formulation in (5) is obtained based on the
above conditions:

APL = —SF - KD - AD (5)

As proposed in [23], the FDIA targeting on the load
measurements increases and decreases some loads
simultaneously. And the total load is remained unchanged. The
attack deviation is limited with the attack injection level AIL in

(7).

ZAD =0 )

—AILD < AD < AILD (7)
Constraint (8) and (9) limit the original and attacked power
flow before and after the FDIA. However, in practice, the line
capacity is always sufficiently large in case of overloading
issues.
PL < PL<PL (8)
PL+SF-KD-AD < PL < PL+ SF-KD - AD )
In the real implementation, constraints (10) and (11) are used
as the explicit expressions of (6) and (7).

Z APy, =0

—AIL Py, < APy, < AlLy Py, ¢ (11)
To investigate the system interdependencies under the
exposure of FDIA, the FDIA on load measurement of gas and
water systems are additionally considered, which are given in
(12) and (13).
—AILy Py, ¢ < APy < AlLy Py,
—AILy, Py, ¢ < APy, < AlLy, Py,

(10)

(12)
(13)

I1l1. CYBER-SECURED MITIGATION SCHEME

The proposed two-stage cyber-secured mitigation scheme for
the uneconomic operation of WES includes: i) day-ahead
operation scheme prior to the FDIA and renewable uncertainty
and ii) real-time corrective redispatch scheme and security
measures under the potential FDIA and the realization of
renewable uncertainty. This section proposes the objective
function of the mitigation scheme and the associated
constraints.

A. WES Structure

The proposed WES structure is shown in Fig. 1, including a
modified IEEE 30-bus power system, a 20-node gas system and
a 10-node water system. The power system contains 5 power
generators and 3 RES generators. Two P2G facilities
interconnect RES generators and gas nodes, which converts
the excessive power energy to hydrogen gas. A gas turbine
transfers gas from node 8 to bus 13. In the water system, there
are 2 water reservoirs and 3 water pumps. Water pumps
connected with nodes 1, 2 and 6 consume power form buses 29
and 30. The water electrolysers of P2Gs consume water, which
are supplied from node 5. It is to be noted that the gas and water
nodes are similar to the electrical buses in power systems.
Nodes are the points that connect two or more gas pipelines,
where a certain volume of gas is delivered or injected. A typical
gas node can be connected with gas pipelines, natural gas
sources, gas wells, gas storage systems, gas compressors and
gas loads. In water networks, the water pipelines and nodes are
similar to the power lines and buses in power networks, which
are used to describe pipe connections and endings. Water nodes
in a water network can represent water supplies, storage, pumps
and loads.
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The structure of WES.

Fig. 1.
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B. Obijective Function

The overall objective is to mitigate the uneconomic operation,
which is separated into a hierarchical day-ahead and real-time
optimization under normal conditions and FDIA, respectively.
The structure of the proposed cyber-secured mitigation scheme
is given in Fig. 2. The objective function of day-ahead operation
is given in (14), including the i) day-ahead generation cost of
electricity generators, gas wells, ii) reserve cost of generators,
gas turbines and water pumps and iii) water purchase cost from
reservoirs. It is to be noted that the reserve capacity is prepared
for counteracting impacts from FDIA and renewable
uncertainty in the second stage.

. 2
I, = min AL PSS+ AP+ A
i¢€le,ig€lg,tET
+ /1,:3 P{;‘t + AWT‘Plf/T,t + lzr_}r{f}’t
+ AT U = le, gt wp
The second-stage sub-objective (15) is implemented under
the presence of FDIA and renewable uncertainty, which
involves i) the adjustive decisions on redispatching generators,
gas wells, RESs and water purchase and ii) minimum joint load
shedding.

(14)

— i re|,.s _ &
I; = min 27 |wfe = &l
ie€le)igElg teT keE€Ke kgEK,
re|ps _ pre re | ps
+ Aie |Pie,t Pl.e,f| +A’lg Plg,f
re re | ps re
- Pig,t + /1wr|Pwr,t - Pwr,t|

Is pls Is pls ls ls
+ }lkePkevt + }lkgpkg,f + }lkwpkw,f

(15)

C. Day-ahead operation

The day-ahead operation determines the power generation
schedule of generators and the reserve dispatch of generators,
gas turbines and water pumps. The day-ahead operation scheme
(16)-(39) is based on the renewable forecast without
considering the risks of FDIA. The reserve capacity of
generators, gas turbines and water pumps are limited in (16) and
(17). Constraints (18) and (19) provide the limits of output of
generators, gas turbines and power consumption of water
pumps. The DC power flow after the linearization is shown in
(20) and (21). The power balance constraint is given in (22).
Equation (23) regulates the output of gas wells.

In the gas system, gas pressure is constrained in (24). In
constraint (25), it shows that the pressure at initial nodes are
always larger than the terminal nodes because the gas system
considered in this paper is of radial topology. Weymouth gas
flow equations are given in (26) and (27). Equation (28) is the
constraint of the output of gas turbines. P2G enables to utilize
the surplus renewable power generation and convert it to gas.
Equation (29) shows the gas output via P2G [24]. The gas nodal
balancing equation is given in (30).

Equations (31)-(39) are constraints of water system. The
output of water reservoir is limited in (31). The water pressure
limit is given in (32) for pipes with and without water pumps.
Constraints (32)-(44) describes the hydraulic characteristics of
water pipes with and without water pumps including head gain
and loss. In (35), the pressure head gain of water pump is
shown. The hydraulic characteristic of pipes without water
pumps is given in (36) based on Darcy-Weisbach equation [25].
Equation (37) presents the power consumption of water pump.
The water flow magnitude is limited in (38). And the mass
balance constraint of water system is presented in (39).

0 <1, <R{, {}=1i.,gtwp (16)
0<r5: <Ry {}=1i.,gtwp (17)
Pg},t + r{_&,t < Piymax {} =i, gtwp (18)
P{-},min < P{S,}'t - T{__}'t, {}= e, gt,wp (19)
xfise = (00" = 0ic") (20)
_flf,,max =< fl:,t = flz,max (21)
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Z " +Z Z fls ,ini Z fls ter + Pgﬁ:,t (22)
ig€le Jj€J le€Le le€Le
= Z Pkg,t
k€K,
+Zflsm] ZPSPZG Z Pfa/pt
le€Le nenN WpPEWP
Gig,min = GI. ,t = Glg max (23)
Prr?mm = Prnt Prn,max (24)
Pr,,iém > Prys” (25)
fige = v, (PR = Prfer”) (26)
0<fi e < fimax (27)
Pgt t = cGTflg gt.t (28)
S,P2G
. (29)
n,t _th
A 30
Z Gi;,r"'zG;,ty"' Z flsmt Z flster ( )
igEIg nenN lgELg lgELg
= Z Gkg,t+ Z flggtt
kgEKg lgeLg
0 < Pyrt < Rurmax (31)
h\{/v}mm < hs{} < h\{/v}max'{} =1y, lwp (32)
fl{s_}'t _ (h\ift}'ml + hs,{ },ml) (33)
_ (hs{}ter + RS {-},ter) {}
=Ly, by
R 2 0 (34)
Elswp,t + alwpflwp,t + blwp = lepflvs,p,t (35)
T 2
hlsw,t = lefl:,p,t (36)
2
PS o= (ay, fis i + blwpfl;p )/nwp (37)
0<f{}tsf{}max'{} (38)
ps + z s,ini __ z s,ter
> P i B
WrewRr {YELw.Lwp {YELw.Lwp
= Z akpg rftPZG_I_ Z Pkw
kpg€Kpg kw €Ky

D. Real-time Cyber-Secured Mitigation

The cyber-secured mitigation is implemented in the second
stage to mitigate the uneconomic operation based on the
realization of FDIA and renewable uncertainty. Equation (40)
is the regulated output of generators, gas turbines and the
regulated power consumption of water pumps. Equations (41)-
(44) model the stealthy designed FDIA on power, gas and water
systems. The load shedding is given in (45).

PEe =10 S P S P+ 1 (Y =l gt wp (40)
Z APy, =0 (41)

~BioPrpt < DPryt < Bi,Pr (42)
~BieyPrge < APy < Biey Pry e (43)

—Br,, Pyt < APy, < B, Pr, e (44)

0 < PE < PSmaxr {3 = ke kg Ky (49)

The rest of the second-stage constraints are not listed due to
space limitation. The constraints of the second stage are the
same as the first-stage constraints when the superscript ‘s’ is
replaced by ‘re’, which denotes the regulated decision
variables.

IV. METHODOLOGY

The proposed TSRA-FMS is a two-stage DRO framework with
minmax formulation in the second stage problem. The linear
TSRA-MS is firstly represented by compact form for notation
brevity. Then the KL divergence-based ambiguity set of DRO is
constructed to capture the FDIA and renewable uncertainty. In
section C, the expression of CVaR is given and incorporated in the
original formulation of TSRA-FMS. Finally, the mathematical
reformulation is made and the solution algorithm is proposed.

A. Formulation in Brevity

Matrices and vectors are used for notation brevity of the TSRA-
FMS problem. The original objective function of TSRA-FMS is
given in (46) without considering the risk measure.

min ¢'x + sup Ep[Q(x,&)] (46)
X€EX pEDg

The risk-averse DRO incorporates the risk measure in the
second-stage problem, which is given in (47). The first term c'x
is the first-stage objective. The second term (1 — a)E,[Q(x,$)]
represents the weighted expected second-stage objective and the
last term aR(Q(x,€)) is the weighted risk measure. The
weighting coefficient a ranges between 0 and 1. Equation (50)
degrades to risk-neutral DRO model when a=0.

minc'x + sup {(1 - )E,[Q(x, )] + aR(Q(x, )} (47)
PEDg

st Ax <b, (48)

Q(x,§) = minf"y (49)

st. Ex+ Fy+ GE <h, (50)

The first-stage constraints are represented by (48). Equations
(49) and (50) represent the second-stage objective function and
constraints, respectively, where the coefficient of (49) is denoted
by f.

B. Constructing the Ambiguity Set

Based on the distance between probability distributions, the
discrepancy-based ambiguity set can be modelled, where 7 is the
divergence tolerance. In (51) and (52), p and p,., are the true
and reference probability distribution, respectively. Equations (51)
and (52) are the implicit and explicit descriptions of distribution
distance.

Dis = {p € De |De,(p[|prer) <} )
D ollony) = [ £ 1092 (52)

Equation (54) shows the KL-divergence function of variable a.
gkL(a):=aloga—a+1 (53)

C. Risk-Averse DRO

CVaR refers to a risk assessment which quantifies the tail risk
of investment [26]. CVaR is developed to mitigate the
shortcomings of value at risk. CVaR is initially applied in finance
industries, which is then extended to portfolio problems in other
fields, such as power systems [27].

The probability of Q(x, &) is limited by the threshold £ The
coherent risk measure CVaR is convex and monotonic. The
probability of Q(x,&) not larger than the threshold ¢ is shown as:
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W(x, Q)= f (54)

Q)=

p(§d¢

Where ¥ is the cumulative distribution function of Q(x,¢),
which is a fundamental element of VaR and CVaR. Moreover, is
continuous and nondecreasing with respect to ¢. The definition of
£-VaR and g-CVaR are shown as (55) and (56).

VaRp(Q(x,§)) = min{{ e R: ¥(x,{) = B} (55)

(56)

1
CVaRp(Q(x,8)):= — QCx, E)p (§)d¢

1=BJlowerssme
Since Q(x, &) is continuously differentiable and convex, the
below formula can be derived [26, 28].
cVaRy(00e )= min{¢ + 1= B, 000 )~ 1] &7
BACADSI) ™ rer 1—p P
Where function [Q(x, &) — ¢]* is used to determine the larger

value between Q(x,&) — ¢ and 0.
[Q(x,f)—i Q8 -¢>0) (58)

0 (Q(x,8—-¢<0)
The original objective function of TSRA-FMS is reformulated
as (59) with weighted CVaR. When substituting CVaR in (59) with
(58), (59) can be derived.

[Q(x, &) -3 =

min cx+  sup {1 - @E,[Q(x, O] + aCVaRe(Q(x, )} (59)
X€ PEDg §=AP.E;
L o (0
minjc’x + pED&s;irA)Pkgj I?elug{a{ + E,[G (x, )]}
60 8)i= (1= DIQG D] + To5a

stQ(x,&)—a-¢<0,a=0
When the strong duality holds, (60) can be reformulated to (61)
and then further equivalent to (62) [29].

min c’x+f;;ingpen;‘:&k@{““Ev[“"'f)”} (61)
IBEI)K(] [C’x tal+ peD;}LaAXPk:fj ;; Pl f)} } ©2)

Larange function (63) can be used to handle the inner
maximization problem with its dual formulation (64).

m

o I SR Y R S L
Lp,t,w = ;plo‘l(x.f) +t (1 Zn) +p <n ; Prefi Pxe (pref)) (63)

i=1

N Gi(x,§) —r) ]
LT =Tt+nu+ oy — -1
max L(p,7, 1) =7+ nu u;p 1 [eXp< u (64)
Based on the Slater’s condition [30], the (65) and (66) can be
made when 7 is larger than 0:

PED;?:aAXPk,f,' !; Pi Gi(x‘ f)} = 'Ll:illlar(l) max L(p' v ‘u) (65)
_ . - Gi (x, 5) -7
= ?;lllzlé {T +nu+u Z Pref,i [EXP (#) - 1” (66)

The derivation in (6?) can be obtained when substituting the
inner maximization problem in (62) with (66).

m Gi : _
(rmn;o [c’x +al+T+nu+ uz Dref.i [exp <¥> - IH (67)

i=1

st. x€X, Q(x,§)—a—7<0,a=0o,
a
G68):= 1 -aQ ] +7 —/?&

Nevertheless, equation (67) is a nonlinear problem which
requires to be linearized before the decomposition algorithm. For a
given x=x* , when Qx¥& <w , Qx%& is
subdifferentiable [31] and (68) can be obtained, where
Dual(x*) = argmax{n’'(h — Ex*):F'n < f} is the set of

optimal solutions of dual problem in (49). w*i € Dual(x*) is the
optimal solution for the ith scenario and kth iteration.
0Q(x*,&) = —E'Dual(x*) (68)
(K _.k
Let sk;= G- 'i) z
of FF isgiven as:
IFf = [(1 — a)exp(sM)E'nh, (1 — s¥)exp(s¥) — 1, —exp(s¥),

and FF:= p*[exp(s*) — 1], the subgradient

o] (69)

Equation (70) can be obtained based on the subgradient
inequality of convex function. And equation (71) is the optimality
cut.

Fy (1,7, 8) = Fy(x*, uk, ok, ak) + 0FF - (x — x*, p — p*, v — 7%, 8; — af) (70)

adk ] (71)

G;(x*,&) + (1 — a) (") Exk — T-p

Fi(x,pu,7,0;) =

+ 0FF(x ,u,7,d)
Finally, to solve the overall two-stage risk-averse DRO problem,
a Bender’s decomposition method should be applied.

V. CASE STUDY

In this section, the numerical experiments are validated on a
modified IEEE 30-bus power system, connected with a 20-node
gas system and a 10-node water system. The WES is given in
Fig. 1. The RESs are connected at buses 15, 22 and 26 with
60MW for each output. Two P2G facilities and a gas turbine are
used for power-gas connection. The water consumption of
P2Gs is supplied by the water system at node 5. The water
system has three water pumps, which consume power from the
power system. TABLEs II presents the parameters of water
reservoirs. Fig. 3 presents the maximum and minimum limits of
the gas pressure. The load profile of power, gas and water
systems are shown in Figs. 4-5. For notation simplicity, the
FDIA at power, gas and water systems are denoted as P-FDIA,
G-FDIA and W-FDIA, respectively.

The case illustration is given in TABLE III. Case 1 is a
deterministic operation model of WES without considering
FDIA or renewable uncertainty. Case 2 utilizes RO to capture
FDIA. Compared with case 2, case 3 further incorporates
renewable uncertainty. Cases 4-7 are used to analyse the impact
under different FDIA scenarios. As the benchmark case, case 7
considers all the potential types of FDIA (P-FDIA, G-FDIA and
W-FDIA) with 5% of AIL. In comparison, the AIL of cases 8-
10 gradually increases.

A. Studies on Economic Performance

The economic performance for all cases are first analysed
and the result is given in TABLE IV. Case 1 has the lowest
operation cost, i.e., $843986, when no FDIA is conducted. In
contrast, the operation cost of case 10 is the highest ($2521441)
when all three types of FDIA are at 20% of AIL. Compared with
cases 6 and 7, cases 2 and 3 utilize single-stage RO. The results
of cases 2 and 3 are higher than cases 6 and 7, which implies
the over-conservatism of RO when considering the worst-case
FDIA condition. Case 4 only considers the potential impact
from P-FDIA, which yields the second-lowest solution, i.e.,
$855096. When addition G-FDIA is modelled in case 5, the
operation cost is $26866 higher than that of case 4. Similarly,
W-FDIA and renewable uncertainty are additionally considered
in cases 6 and 7. The AIL is increasing consecutively in cases 7,
8, 9 and 10 from 5% to 20%. The first and second stage
operation cost of case 7 are $759910 and $248762, respectively.
With the increase of AIL, the expected second stage costs
increase rapidly. In particular, the expected second stage cost
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TABLEII
PARAMETERS OF WATER RESERVOIRS

P, A Elevation
Node No. wr.max wr
(m3h)  ($/m3) (m)
1 325 6.4 -252.5
2 700 2.6 -255
300
250 Min limit = Max limit

DN
o
=]

Pressure (Psig)

9 10 11 12 13 14 15 16 17 18 19 20

50
100
50
0
123 456 78

Node No.
Fig. 3. Limits of gas pressure at each node.
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Fig. 5. Water load profile.

increases $637428 from case 9 to 10. Consequently, it can be
concluded that the increase rate of operation cost is highly
affected by the AIL.

B. Studies on Load Shedding

Load shedding in three sub-systems is implemented to ensure
the overall system security and maintain the feasibility of the
proposed mitigation scheme. The optimal coordinated load
shedding strategy considers power load shedding (PLS), gas
load shedding (GLS) and water load shedding (WLS) for 24
hours under different levels of FDIA. Figs. 6-9 present the load
shedding under different combinations of FDIA. In Fig. 6, it can
be seen that PLS is affected by both P-FDIA and G-FDIA. PLS
is not sensitive when the AIL of P-FDIA is below 8%. When G-
FDIA is at 0%, PLS rises from OMWh to 691MWh; when G-
FDIA is at 20%, PLS rises from OMWh to 1274MWh. Fig. 7
shows the GLS under P-FDIA and G-FDIA. The highest GLS,
589kcf, is obtained when the two types of FDIA are at the
highest level. When solely conducting G-FDIA, GLS ranges
between 400kcf and 589kcf. The PLS under P-FDIA and W-
FDIA is shown in Fig. 8. The highest PLS (1990MWh) is
implemented at 20% of AIL of P-FDIA and W-FDIA, which

1500

1000

Load Shedding (MWh)
g

3
/

18

10 N
AIL of FDIA on gas load (%) G 8 6
5 LS T

"% AIL of FDIA on electricity load (%)

Fig. 6. Power load shedding under P-FDIA and G-FDIA.

g &8 &8 8

Load shedding (kef)

10
AIL of FDIA on power load (%)

" 12
b ©  AIL of FDIA on gas load (%)

Fig. 7. Gas load shedding under P-FDIA and G-FDIA.

Load shedding (MWh)

AIL of FDIA on water load (%)

‘
AIL of FDIA on power load (%)

Fig. 8. Power load shedding under P-FDIA and W-FDIA.

Load shedding (m*)

AIL of FDIA on water load (%) _
AIL of FDIA on power load (%)

Fig. 9. Water load shedding under P-FDIA and W-FDIA.

indicates the higher impact caused by W-FDIA compared with
G-FDIA in Fig. 6. At the highest level of P-FDIA, increasing
W-FDIA causes PLS growth from 709MWh to 1990MWh. Fig.
9 depicts WLS under P-FDIA and W-FDIA. The highest WLS
is 257m® at the highest level of P-FDIA and W-FDIA.
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TABLEIII
CASE ILLUSTRATION

Case  Optimization Renewable

No. method P-FDIA G-FDIA W-FDIA Uncertainty AlL
1 Deterministic No No No No 0%
2 RO Yes Yes Yes No 5%
3 RO Yes Yes Yes Yes 5%
4 DRO Yes No No No 5%
5 DRO Yes Yes No No 5%
6 DRO Yes Yes Yes No 5%
7 DRO Yes Yes Yes Yes 5%
8 DRO Yes Yes Yes Yes 10%
9 DRO Yes Yes Yes Yes 15%
10 DRO Yes Yes Yes Yes 20%

TABLE IV

ECONOMIC PERFORMANCE FOR CASE 1-10

Economic Case 1 Case 2 Case 3 Case 4 Case 5
result
First-stage 843986 1031728 1037751 729817 748581
cost ($)
Expected
Second-stage 0 0 0 125279 133381
cost ($)
Total cost (§) 843986 1031728 1037751 855096 881962
Economic Case 6 Case 7 Case 8 Case 9 Case 10
result
FISLSIage 75984 750910 804505 843697 889062
cost ($)
Expected
Second-stage 247276 248762 516593 994951 1632379
cost ($)

Total cost (§) 1006560 1008672 1321188 1838648 2521441

Compared with other FDIA scenarios, WLS increases smoothly
when P-FDIA is at the highest level.

C. Scalability Analysis

In this section, the proposed TSRA-FMS is tested in a larger
system scale to validate the applicability. This WES contains an
IEEE 118-bus system, a 20-node gas system and a 10-node
water system according to [32] and [33]. There are 54 power
generators and 3 RES generators in the power system. RES
generators are connected with buses 36, 69 and 77 with a
capacity of 250MW. This analysis is conducted among 8
cases to demonstrate i) the effectiveness of TSRA-FMS on IESs,
ii) comparison between risk-averse DRO and risk-neutral DRO
and iii) the impact of system interdependency on system
vulnerability. The case illustration is shown in TABLE V. Note
that ‘system interdependencies’ indicates the number of
connected gas and water systems in the WES. For instance, in
case 1, the WES contains 3 gas systems and 3 water systems.

In Figs. 10 and 11, the water load shedding under cases 4 and
5 is given. Cases 4 and 5 are used to compare the proposed risk-
averse DRO and risk-neutral DRO of [9]. In Fig. 11, the WLS
reaches up to 983m?* when P-FDIA and W-FDIA are both under
20% of AIL. When P-FDIA is not considered, the highest AIL
of W-FDIA causes 77 m® WLS. Compared with Fig. 10, the
risk-averse DRO presents a higher WLS than that of risk-
neutral DRO, i.e., the WLS is 1168 m® under 20% of P-FDIA
and W-FDIA, which is 19% higher than that of risk-neutral
DRO.

TABLEV
CASE ILLUSTRATION

Case . . Test System
No. Risk analysis system interde)r/)endencies

1 Yes IES 3

2 Yes IES 2

3 Yes IES 4

4 No WES 3

5 Yes WES 3

6 Yes WES 2

7 Yes WES 4

15

AL of FDIA on water load (%)

AIL of FDIA on power load (%)

10

T
0 B AlL of FDIA on power load (%)

Fig. 11. Water load shedding under case 5.
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Fig. 12. Total expected cost of cases 4 and 5.
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Fig. 13. Power load shedding cost of different cases.
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5% of AIL is considered for Figs. 12 and 13. In Fig. 12, the
second-stage expected cost under different sample size is given,
where the black and blue curves represent cases 4 and 5,
respectively. Overall, case 4 without considering CVaR shows
lower second-stage expected operation cost under FDIA and
renewable uncertainty. When 5000 second-stage samples are
considered, the results of cases 4 and 5 approximates to
$736000 and $800000. However, the result fluctuates when the
data sample is below 500. In Fig. 13, the results show that the
PLS in WES is higher than that in IES. For instance, cases 3
and 7 yield $567000 and $648000 PLS cost, respectively. Since
W-FDIA causes WLS and the water reservoirs and pumps
require higher usage. Accordingly, higher power consumption
of water pumps leads to higher PLS. For case 5, there are 2 gas
systems and 2 water systems, which shows $47000 higher cost
than that of case 6 with 1 gas system and 1 water system. The
additional 2 P2G facilities and 3 water pumps thus result in
higher power consumption.

VI. CONCLUSION

Under the water-energy nexus era, the three proposed sub-
systems are highly interwined. The cyber-attacks on any sub-
system could propagate to the other two-subsystems.
Consequently, this paper proposes a two-stage risk-based
mitigation strategy for the novel WES under water-energy
nexus. Both the day-ahead and real-time operation schemes are
determined with FDIA on three sub-systems. The FDIA and
renewable uncertainty are captured via the proposed RA-DRO.
The trade-off between the economic performance and risk
caused by cyber-attacks and renewable fluctuation is provided.
This two-stage mitigation framework with flexible risk
alternative is solved by a tractable Bender’s decomposition
method. Through the extensive studies, the key findings are
listed below:

= Considering all types of FDIA, i.e., P-FDIA, G-FDIA and

W-FDIA, leads to higher system economic loss than
considering two types or one type of FDIA.

= PLS is more sensitive to W-FDIA compared with G-FDIA.

= The proposed RA-DRO mitigates the conservatism of RO

with less load shedding.

The economic efficiency and system security under water-
energy nexus is achieved via the effective proposed TSRA-
FMS with optimally coordinated load shedding schemes to
protect the entire system. The end energy users will benefit
from this better supply security. This work is especially
practical under smart cities with enormous water-energy
interdependencies.
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