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Abstract—The wide implementation of information and 

communication technologies (ICT) cause power system operations 

exposed to cyber-attacks. Meanwhile, the tendency of integrated 

multi energy vectors has worsened this issue with multiple energy 

coupled. This paper proposes a two-stage risk-averse mitigation 

strategy for water-energy systems (WESs), incorporating power, 

natural gas and water systems against false data injection attacks 

(FDIA) under water-energy nexus. The FDIA on individual sub-

systems is modelled through hampering false data integrity to the 

systems. An innovative two-stage risk-averse distributionally robust 

optimization (RA-DRO) is proposed to mitigate uneconomic 

operation and provides a coordinated optimal load shedding scheme 

for the nexus system security. A coherent risk measure, Conditional 

Value-at-Risk is incorporated into the RA-DRO to model risk. A 

Benders decomposition method is used to solve the original NP-hard 

RA-DRO problem. Case studies are demonstrated on a WES under 

water-energy nexus and results show that the effectiveness of the 

method to mitigate risks from potential FDIA and renewable 

uncertainties. This research provides WES operators an economic 

system operation tool by optimally coordinating energy 

infrastructures and implementing reasonable load shedding to 

enhance cybersecurity. 

 

Index Terms—Distributionally robust optimization, false data 

injection attacks, integrated energy system, mitigation strategy, 

risk aversion, water-energy nexus.   

NOMENCLATURE 

The superscript ‘s’ and ‘re’ representing ‘scheduled’ and 

‘regulated’ respectively are omitted in section C. The 

superscript ‘ini’ and ‘ter’ representing initial and terminal 

nodes of power bus, gas and water nodes are also omitted in this 

section to save space. 

A. Indices and sets 

t, T Index and set of time periods.  

𝑏 , 𝐵  Index and set of power buses. 

𝑛 , 𝑁  Index and set of gas nodes. 

𝑤 , 𝑊  Index and set of water nodes. 

𝑖𝑒, 𝐼𝑒  Index and set of generators. 

𝑖𝑔, 𝐼𝑔 Index and set of gas wells. 

wr, WR Index and set of water reservoirs.  

j,  J Index and set of renewable energy sources 

(RES).  

gt, GT Index and set of gas turbines. 

wp, WP Index and set of water pumps. 

𝑙𝑒, 𝐿𝑒 Index and set of power lines. 

𝑙𝑔, 𝐿𝑔 Index and set of gas pipelines. 

𝑙𝑤, 𝐿𝑤 Index and set of water pipelines without 

pumps. 

𝑙𝑤𝑝, 𝐿𝑤𝑝 Index and set of water pipelines with 

pumps. 

𝑘𝑒, 𝐾𝑒 Index and set of power loads. 

𝑘𝑔, 𝐾𝑔 Index and set of gas loads. 

𝑘𝑤, 𝐾𝑤 Index and set of water loads. 

B. Parameters  

AIL Attack injection level for FDIA. 

𝑅𝑖𝑒

+ , 𝑅𝑖𝑒

− , 

𝑅𝑔𝑡
+ , 𝑅𝑔𝑡

− , 

𝑅𝑤𝑝
+ ,𝑅𝑤𝑝

−  

Maximum up and down reserve capacity of 

generators, the gas turbine and water 

pumps. 

𝑥𝑙𝑒
 Resistance of power line 𝑙𝑒. 

𝑓𝑙𝑒,𝑚𝑎𝑥  Maximum power flow of line 𝑙𝑒. 

𝑃𝑘𝑒,𝑡 , 𝐺𝑘𝑔,𝑡 , 𝑃𝑘𝑤,𝑡 Demand of power, gas and water. 

𝜔𝑗
𝑠(𝑡) Forecasted output of RES j at time t. 

𝐺𝑖𝑔,𝑚𝑎𝑥,

𝐺𝑖𝑔,𝑚𝑖𝑛 

Maximum and minimum output of gas 

source 𝑖𝑔.   

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥 , 𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 Maximum and minimum pressure of gas 

pipeline 𝑙𝑔.  

𝛾𝑙𝑔
 Coefficient for Weymouth equation. 

𝑓𝑙𝑔,𝑚𝑎𝑥 , Maximum gas flow of line 𝑙𝑔. 

𝑐𝑔𝑡 Conversion coefficient for gas turbines. 

𝜂𝑒 Electrical efficiency for electrolyser.  

ℎ𝑤,𝑚𝑎𝑥

𝑙𝑤𝑝 , ℎ
𝑤,𝑚𝑖𝑛

𝑙𝑤𝑝 , 

ℎ𝑤,𝑚𝑎𝑥
𝑙𝑤 ,

ℎ𝑤,𝑚𝑖𝑛
𝑙𝑤  

Maximum and minimum limits for head 

pressure of water node connected with or 

without water pump. 

𝑎𝑙𝑤𝑝
, 𝑏𝑙𝑤𝑝

 Water pump characteristic coefficients.  

𝑅𝑙𝑤𝑝
, 𝑅𝑙𝑤

 Head gain and loss coefficients. 

𝜋𝑤𝑝 Water pump efficiency. 

𝑓𝑙𝑤𝑝,𝑚𝑎𝑥
𝑠 , 𝑓𝑙𝑤,𝑚𝑎𝑥

𝑠  Water flow limits for water pipeline with 

and without pump. 

𝜎𝑘𝑝𝑔
 Water consumption coefficient of power-to-

gas. 

𝑃𝑘𝑒,𝑚𝑎𝑥
𝑙𝑠 𝑃𝑘𝑔,𝑚𝑎𝑥

𝑙𝑠

, 𝑃𝑘𝑤,𝑚𝑎𝑥
𝑙𝑠  

Maximum limits of power, gas and water 

load shedding. 

𝜆𝑖𝑒

𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒

𝑐  Cost coefficients of generator 𝑖𝑒.  

𝜆𝑖𝑔
 Cost coefficient for output of gas well 𝑖𝑔. 

𝜆𝑤𝑟  Cost coefficient of water purchase. 
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𝜆𝑖𝑒

+ , 𝜆𝑖𝑒

− , 𝜆𝐺𝑇
+ , 

𝜆𝐺𝑇
− , 𝜆𝑤𝑝

+ , 

𝜆𝑤𝑝
−  

Cost coefficient for up and down reserve of 

generators, gas turbines and water pumps.  

𝜆𝑖𝑒

𝑟𝑒 , 𝜆𝑗
𝑟𝑒 , 𝜆𝑖𝑔

𝑟𝑒 , 

𝜆𝑤𝑟
𝑟𝑒  

Regulation cost coefficient of power 

purchase, generators, RES, gas wells and 

water reservoirs. 

C. Variables 

𝑟𝑖𝑒,𝑡
+ , 

𝑟𝑖𝑒,𝑡
− , 𝑟𝑔𝑡,𝑡

+ , 

𝑟𝑔𝑡,𝑡
− , 𝑟𝑤𝑝,𝑡

+ ,

𝑟𝑤𝑝,𝑡
−  

Up and down reserve capacity of 

generators, the gas turbine and water 

pumps. 

𝑃𝑖𝑒,𝑡
 ,

 𝑃𝑔𝑡,𝑡
 , 𝑃𝑤𝑝,𝑡

  

Output of generators , gas turbines and 

water pump power consumption. 

𝜃𝑙𝑒,𝑡
𝑖𝑛𝑖 , 𝜃𝑙𝑒,𝑡

𝑡𝑒𝑟   Phase angle at initial and terminal buses.  

𝐺𝑖𝑔 ,𝑡
  Output of gas wells. 

𝑓𝑙𝑒,𝑡
 , 𝑓𝑙𝑔,𝑡

   Power flow and gas flow. 

𝑃𝑟𝑛,𝑡
  Pressure of gas node n.  

𝑓𝑙𝑔,𝐺𝑇,𝑡
 , 𝑃𝑔𝑡,𝑡

  Injected gas flow and output of gas turbine.  

𝑃𝑛,𝑡
𝑃2𝐺  Power consumed by the electrolyser. 

𝐺𝑛,𝑡
ℎ𝑦 

 Gas output for power-to-gas process.  

𝑃𝑤𝑟,𝑡 Water purchase from reservoir. 

ℎ𝑤,𝑡

𝑙𝑤𝑝 , ℎ𝑤,𝑡
𝑙𝑤 ,  Water pressure of pipe with and without 

water pump. 

ℎ̅𝑤,𝑡
𝑙𝑤 , ℎ̅𝑤,𝑡

𝑙𝑤𝑝  , 

 

Elevation of water node connected with and 

without pump. 

ℎ̃𝑤,𝑡
𝑙𝑤 , ℎ̃𝑤,𝑡

𝑙𝑤𝑝
 Head loss and gain of water node. 

𝑓𝑙𝑤𝑝,𝑡,
 𝑓𝑙𝑤,𝑡

  Water flow of pipe with and without water 

pump. 

Δ𝑃𝑘𝑒,𝑡 , Δ𝑃𝑘𝑔,𝑡 ,  

Δ𝑃𝑘𝑤,𝑡 

Load deviation due to FDIA. 

𝑃𝑘𝑒,𝑡
𝑙𝑠 , 𝑃𝑘𝑔,𝑡

𝑙𝑠 , 𝑃𝑘𝑤,𝑡
𝑙𝑠  Load shedding of power, gas and water.  

𝜉𝑗,𝑡 Generation of renewable energy sources. 

I. INTRODUCTION 

ODERN energy management systems (EMS) with the 

increasing dependence on emerging information and 

communication technologies (ICTs), have massively facilitated the 

high efficiency, reliability and security of the EMS [1]. Meanwhile, 

the increasingly aggressive cyber-attacks are also growing in 

numbers. As a typical arbitrary cyber-attack, false data injection 

attack (FDIA) can be manipulated by adversaries to integrate 

falsified data into  real-time meter measurement and thus to 

affect and mislead the system operators with erroneous 

decisions on operation and control [2, 3].  

Present research work of investigating FDIA on EMS can be 

categorized in terms of the perspective of attackers or system 

defenders. As for attack modelling from adversaries, a class of 

unobservable FDIA are designed assuming the attacker has the 

knowledge of system historical data [4]. A generalized 

framework for investigating the vulnerability of power system 

nonlinear state estimator to FDIA is analysed in [5]. 

Meanwhile, a robust detector model is proposed to check the 

measurement statistical consistency with the ensured 

detectability. From the perspective of system defenders, 

detection modelling and corresponding algorithms have been 

investigated widely. State estimation is of great significance in 

EMS, which provides reliable state estimates for system 

operators on economic dispatch and reliability analysis [6]. 

State estimation is implemented based on redundant 

measurements to filter out corrupted data. Nevertheless, some 

judiciously designed FDIA can be masked and hidden and 

eventually bypass the state estimation.  

Therefore, mitigation strategy for EMS against FDIA is 

considered as the final barrier for defending power systems 

since conventional state estimation is still employed which fails 

to detect stealthy designed FDIA in real practice. The 

mitigation strategy for intra-interval operational security 

against FDIA is proposed in [7]. A dynamic analytical 

framework is designed for analysing the impacts considering 

system variability in the short dispatch interval. Paper [8] 

proposes the mitigation strategy for a unit commitment by using 

a tri-level optimization model and the original problem is 

transformed into a bi-level mixed-integer programming. The 

previous work of the authors proposes a risk and mitigation 

strategy for integrated electricity and gas systems under FDIA 

in a moment-based hierarchical two-stage framework [9]. In 

comparison, the improvements of this paper over [9] are three 

aspects: i) water-energy nexus has gained extensive research 

attention. There is widely investigation of FDIA on power 

systems. However, WESs also require a cyber-secured 

operation scheme against FDIA. Since WESs are more 

vulnerable than power systems or IESs with higher 

interdependencies; ii) the proposed WES is linked closer via 

power-to-gas (P2Gs), gas turbines and water pumps than with 

only one gas turbine. The complex couplings and 

interconnections among power, gas and water systems desire a 

cyber-secured operation scheme; iii) a risk-averse DRO is 

adopted in this paper considering the risk of uneconomic 

operation cost caused by FDIA and renewable uncertainties. 

However, paper [9] lacks risk analysis. Compared with the 

existing risk mitigation strategy against FDIA, the advancement 

of this paper is summarized in TABLE Ⅰ. 

The interdependencies between coupled energy systems have 

been largely promoted due to the rapid demand increase of 

multiple energy and the development of energy conversion 

technologies. Through fully exploiting the interdependency of 

integrated energy systems (IES), existing literature regarding 

IES operation mainly focuses on several aspects: i) economic-

based operation for minimizing operation cost or maximizing 

economic gain under normal conditions, ii) reliability-based 

operation considering risks from reliability issues and iii) 

resilience-based operation strategies against natural disasters. 

Paper [10] proposes an economic system operation for IES 

considering the relief of power and gas flow congestions. The 

distributed optimization outperforms than centralized 

optimization method with parallel data processing. A security-

constrained unit commitment is designed in [11] for enhancing 

the operational reliability of IES considering possible N - k 

contingencies. A two-stage RO is applied and the problem is 

solved by a second-order cone-based Column & Constraint 

Generation (CCG) approach.  

M 
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In recent studies, the novel distributionally robust 

optimization (DRO) is widely deployed to overcome the 

disadvantages of RO and SO. DRO employs partial distribution 

information instead of requiring the specific full knowledge of 

distributions [12, 13]. Meanwhile, it is a data-driven approach, 

which yields less-conservative solutions than RO. A combined 

optimization for integrated electricity and heat systems is 

proposed in [14] considering renewable and ambient 

temperature uncertainties, which are characterized by DRO. 

Paper [15] investigates the operation schemes for energy hub 

systems (EHSs) considering renewable uncertainty and 

multimodality information. 

The uncertainties bring risks into economic operation. 

Intuitively, risks in the proposed WES operation model can lead 

to abnormal high operation cost. Risk-averse optimization 

considers a coherent trade-off between system economic 

performance and risk, which has been applied with SO on 

energy system operation [16, 17]. Paper [16] develops a risk-

averse stochastic programming model for unit commitment 

considering renewable energy uncertainty. A conditional value-

at-risk (CVaR) is incorporated to assess the risk from renewable 

energy uncertainty. In [17], a day-ahead operational planning 

model for a regional energy service provider with electricity 

price uncertainty is proposed. The CVaR criterion is employed 

to hedge against the uncertainty. This paper utilizes a risk-

averse DRO model, which outperforms the existing risk-averse 

SO models with more practical distributional information 

availability. 

Under the era of water-energy nexus, water systems have 

been given higher attention in the recent research works. 

Traditionally, water and power systems are modelled and 

operated separately. However, the two systems are actually 

mutually interdependent [18]. Around 80% of the power 

consumed in water systems is used for pumping and distributing 

water [19]. In power systems, surplus water resources 

significantly contribute to the generation and conversion in 

power systems. The joint optimization of power and water 

systems have been investigated in existing work, targeting at 

reducing operation cost and emissions. An optimal water-power 

usage operation scheme is in [20] considering the couplings in 

an integrated power and water system (IPWS). An alternating 

direction method of multipliers-based optimization is used. 

Paper [21] utilizes the water as an effective resource to manage 

renewable generators combined with demand-side management. 

Very recent work proposes a two-stage robust optimization (RO) 

model for multi energy systems [22]. Wind uncertainty is 

handled and the proposed model is solved by a CCG method. 

In this paper, the proposed water-energy system (WES) 

incorporates power, gas and water systems. It realizes the 

comprehensive coordination between energy infrastructures of 

the three independent systems. The increasing penetration of 

conversion technologies strengthen the coupling and 

interactions between electricity, gas and water systems. The 

interdependency is enhanced, leading to both beneficial and 

adverse impacts for WES. As for the beneficial impacts, the 

relatively lower price of gas sources can provide more 

economic operation solutions for WES; the surplus generation 

in the original independent energy system can supply loads in 

other sub-energy systems based on upcoming energy 

conversions. However, the strong interdependency of WES is 

detrimental to system security, i.e., reliability issues, natural 

disasters and cyber-attacks. The failure on power, gas or water 

systems will inevitably propagate to other sub-systems. 

Accordingly, the uneconomic operation is caused not only 

because of the individual complexities in each sub-system, but 

also due to the tight interdependencies. The higher the 

interdependency in a WES, the more vulnerable the WES is. 

This paper proposes a risk-averse mitigation strategy to 

alleviate the uneconomic operation of WES against potential 

FDIA considering renewable uncertainty. FDIA is assumed to 

target at load meter readings of power, gas and water systems. 

The two-stage framework consists of i) day-ahead operation 

scheme prior to the FDIA and forecasting of renewable 

uncertainty and ii) the implementation of real-time recourse 

actions based on the FDIA and realization of renewable 

uncertainty. Load shedding and scheduling operation are 

considered as the recourse actions to mitigate the impact from 

FDIA. The ambiguity set for capturing the FDIA and renewable 

uncertainty is constructed based on Kullback-Leibler (KL) 

divergence. The coherent risk measure, i.e., CVaR is used to 

balance the trade-off between risk and computational 

performance. The proposed two-stage risk-averse 

distributionally robust FDIA mitigation strategy for WES is 

denoted as TSRA-FMS for simplicity. Bender’s decomposition 

approach is adopted to solve the TSRA-FMS problem.  

The major contributions of this paper are as follows:  

1) This paper develops a mitigation strategy against FDIA for 

WES. The water-energy nexus achieves optimal energy 

coordination under normal conditions but is more vulnerable to 

cyber-attacks. The interdependencies between power, gas and 

water systems are analysed under different FDIA scenarios.    

2) It utilizes a two-stage optimization framework 

TABLE Ⅰ 

 COMPARING THE PROPOSED MODEL WITH DIFFERENT STUDIES 

 

Reference  

No. 
 Test system   

Water-energy 

nexus 

Risk mitigation 

approach 

Optimization 

framework 
 FDIA  

Renewable 

uncertainty 

 Power Gas Water    Power Gas Water  

[4] ✓    Single-stage Deterministic ✓    

[12] ✓    Single-stage Deterministic ✓    

[37] ✓    Single-stage Deterministic ✓    

[13] ✓    Single-stage Robust ✓    

[14] ✓ ✓   Two-stage  DRO ✓ ✓  ✓ 

Proposed ✓ ✓ ✓ ✓ Two-stage  Risk-averse 

DRO 

✓ ✓ ✓ ✓ 
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incorporating both day-ahead system operation under normal 

conditions and real-time mitigation scheme against potential 

FDIA. To defend and mitigate the FDIA, capacity reserve from 

generations are scheduled in the first stage and load shedding is 

implemented in the second stage. 

3) The model incorporates CVaR into DRO. This risk-averse 

mitigation method has the benefits of: i) it inherits the 

advantages of RO and SO based on limited uncertainty 

distribution information with weakened robustness, ii) 

compared with moment-based ambiguity set, the ambiguity set 

constructed by KL divergence can flexibly shape the candidate 

distributions of both FDIA and renewable uncertainty and thus 

it yields less-conservative solutions and iii) the trade-off 

between the optimization performance and risk is modelled 

based on the incorporation of CVaR. 

The remaining paper is organized as follows: section Ⅱ 

models three types of FDIA in power, gas and water systems. 

The problem formulation of TSRA-FMS is given in section Ⅲ. 

In section Ⅳ, the methodology of KL divergence-based TSRA-

FMS considering CVaR as the risk measure is proposed. The 

case studies are given in section Ⅴ. Section Ⅵ concludes the 

paper.    

II. ATTACK MODELLING 

This paper considers three types of FDIA and the attack 

modelling is in this section. State estimation is used to provide 

accurate snapshot of power systems and detect FDIA based on 

available measurements. Nevertheless, a stealthy designed 

FDIA can be undetectable and bypass the state estimation. The 

FDIA considered in this paper is designed on corrupting load 

measurement. Equation (1) and (2) show the original expression 

of bus power injection and line flow. The incidence matrices of 

bus-generator and bus-load are represented by 𝐾𝑃 and 𝐾𝐷, 

respectively. The shift factor matrix can be obtained from the 

linearized DC flow equation, which is used to approximate the 

change of active power flow. The incremental matrices of 𝐵𝑃 

and 𝑃𝐿 are given in (3) and (4) due to FDIA.  

𝐵𝑃 = 𝐾𝑃 ∙ 𝐺 − 𝐾𝐷 ∙ 𝐷 (1) 

𝑃𝐿 = 𝑆𝐹 ∙ 𝐵𝑃 (2) 

Δ𝐵𝑃 = 𝐾𝑃 ∙ Δ𝐺 − 𝐾𝐷 ∙ Δ𝐷 (3) 

Δ𝑃𝐿 = 𝑆𝐹 ∙ Δ𝐵𝑃 (4) 

  The following conditions should be satisfied for a successful 

FDIA:  

Condition 1:Δ𝐺 = 0. The attack on the measurement of output 

of generation is ignored since this type of attack can be easily 

detected and corrected. 

Condition 2: Zero injection buses, i.e., buses without generators 

or loads connected, are not attackable. 

Condition 3: Load measurements are attackable. 

Condition 4: The load measurement eventually impacts on 

branch flow measurement. 

The resulting formulation in (5) is obtained based on the 

above conditions: 

Δ𝑃𝐿 = −𝑆𝐹 ∙ 𝐾𝐷 ∙ Δ𝐷 (5) 

As proposed in [23], the FDIA targeting on the load 

measurements increases and decreases some loads 

simultaneously. And the total load is remained unchanged. The 

attack deviation is limited with the attack injection level AIL in 

(7).  

∑ Δ𝐷

 

= 0 
(6) 

−𝐴𝐼𝐿 𝐷 ≤ Δ𝐷 ≤ 𝐴𝐼𝐿 𝐷 (7) 

Constraint (8) and (9) limit the original and attacked power 

flow before and after the FDIA. However, in practice, the line 

capacity is always sufficiently large in case of overloading 

issues.  

𝑃𝐿 ≤ 𝑃𝐿 ≤ 𝑃𝐿 (8) 

𝑃𝐿 + 𝑆𝐹 ∙ 𝐾𝐷 ∙ Δ𝐷 ≤ 𝑃𝐿 ≤ 𝑃𝐿 + 𝑆𝐹 ∙ 𝐾𝐷 ∙ Δ𝐷 (9) 

In the real implementation, constraints (10) and (11) are used 

as the explicit expressions of (6) and (7).  

∑ Δ𝑃𝑘𝑒,𝑡

 

= 0 
(10) 

−𝐴𝐼𝐿𝑘𝑒
𝑃𝑘𝑒,𝑡 ≤ Δ𝑃𝑘𝑒,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑒

𝑃𝑘𝑒,𝑡 (11) 

To investigate the system interdependencies under the 

exposure of FDIA, the FDIA on load measurement of gas and 

water systems are additionally considered, which are given in 

(12) and (13).  

−𝐴𝐼𝐿𝑘𝑔
𝑃𝑘𝑔,𝑡 ≤ Δ𝑃𝑘𝑔,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑔

𝑃𝑘𝑔,𝑡 (12) 

−𝐴𝐼𝐿𝑘𝑤
𝑃𝑘𝑤,𝑡 ≤ Δ𝑃𝑘𝑤,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑤

𝑃𝑘𝑤,𝑡 (13) 

III. CYBER-SECURED MITIGATION SCHEME 

The proposed two-stage cyber-secured mitigation scheme for 

the uneconomic operation of WES includes: i) day-ahead 

operation scheme prior to the FDIA and renewable uncertainty 

and ii) real-time corrective redispatch scheme and security 

measures under the potential FDIA and the realization of 

renewable uncertainty. This section proposes the objective 

function of the mitigation scheme and the associated 

constraints.    

A. WES Structure 

  The proposed WES structure is shown in Fig. 1, including a 

modified IEEE 30-bus power system, a 20-node gas system and 

a 10-node water system. The power system contains 5 power 

generators and 3 RES generators. Two P2G facilities 

interconnect  RES generators and gas nodes, which converts 

the excessive power energy to hydrogen gas. A gas turbine 

transfers gas from node 8 to bus 13. In the water system, there 

are 2 water reservoirs and 3 water pumps. Water pumps 

connected with nodes 1, 2 and 6 consume power form buses 29 

and 30. The water electrolysers of P2Gs consume water, which 

are supplied from node 5. It is to be noted that the gas and water 

nodes are similar to the electrical buses in power systems. 

Nodes are the points that connect two or more gas pipelines, 

where a certain volume of gas is delivered or injected. A typical 

gas node can be connected with gas pipelines, natural gas 

sources, gas wells, gas storage systems, gas compressors and 

gas loads. In water networks, the water pipelines and nodes are 

similar to the power lines and buses in power networks, which 

are used to describe pipe connections and endings. Water nodes 

in a water network can represent water supplies, storage, pumps 

and loads.  
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B. Objective Function 

The overall objective is to mitigate the uneconomic operation, 

which is separated into a hierarchical day-ahead and real-time 

optimization under normal conditions and FDIA, respectively. 

The structure of the proposed cyber-secured mitigation scheme 

is given in Fig. 2. The objective function of day-ahead operation 

is given in (14), including the i) day-ahead generation cost of 

electricity generators, gas wells, ii) reserve cost of generators, 

gas turbines and water pumps and iii) water purchase cost from 

reservoirs. It is to be noted that the reserve capacity is prepared 

for counteracting impacts from FDIA and renewable 

uncertainty in the second stage. 

𝛤1 = min ∑ 𝜆𝑖𝑒

𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒

𝑏 𝑃𝑖𝑒,𝑡
𝑠 + 𝜆𝑖𝑒

𝑐

+ 𝜆𝑖𝑔
𝑃𝑖𝑔,𝑡

𝑠 + 𝜆𝑤𝑟𝑃𝑤𝑟,𝑡
𝑠 + 𝜆{∙}

+ 𝑟{∙},𝑡
+

+ 𝜆{∙}
− 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝  

 

(14) 

The second-stage sub-objective (15) is implemented under 

the presence of FDIA and renewable uncertainty, which 

involves i) the adjustive decisions on redispatching generators, 

gas wells, RESs and water purchase and ii) minimum joint load 

shedding.   

𝛤2 = min ∑ +𝜆𝑗
𝑟𝑒|𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡|

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑘𝑒∈𝐾𝑒,𝑘𝑔∈𝐾𝑔

+ 𝜆𝑖𝑒

𝑟𝑒|𝑃𝑖𝑒,𝑡
𝑠 − 𝑃𝑖𝑒,𝑡

𝑟𝑒 | +𝜆𝑖𝑔

𝑟𝑒 |𝑃𝑖𝑔,𝑡
𝑠

− 𝑃𝑖𝑔,𝑡
𝑟𝑒 | + 𝜆𝑤𝑟

𝑟𝑒 |𝑃𝑤𝑟,𝑡
𝑠 − 𝑃𝑤𝑟,𝑡

𝑟𝑒 |

+ 𝜆𝑘𝑒

𝑙𝑠 𝑃𝑘𝑒,𝑡
𝑙𝑠 + 𝜆𝑘𝑔

𝑙𝑠 𝑃𝑘𝑔,𝑡
𝑙𝑠 + 𝜆𝑘𝑤

𝑙𝑠 𝑃𝑘𝑤,𝑡
𝑙𝑠  

 

(15) 

 

C. Day-ahead operation  

The day-ahead operation determines the power generation 

schedule of generators and the reserve dispatch of generators, 

gas turbines and water pumps. The day-ahead operation scheme 

(16)-(39) is based on the renewable forecast without 

considering the risks of FDIA. The reserve capacity of 

generators, gas turbines and water pumps are limited in (16) and 

(17). Constraints (18) and (19) provide the limits of output of 

generators, gas turbines and power consumption of water 

pumps. The DC power flow after the linearization is shown in 

(20) and (21). The power balance constraint is given in (22). 

Equation (23) regulates the output of gas wells.  

In the gas system, gas pressure is constrained in (24). In 

constraint (25), it shows that the pressure at initial nodes are 

always larger than the terminal nodes because the gas system 

considered in this paper is of radial topology. Weymouth gas 

flow equations are given in (26) and (27). Equation (28) is the 

constraint of the output of gas turbines. P2G enables to utilize 

the surplus renewable power generation and convert it to gas. 

Equation (29) shows the gas output via P2G [24]. The gas nodal 

balancing equation is given in (30).  

Equations (31)-(39) are constraints of water system. The 

output of water reservoir is limited in (31). The water pressure 

limit is given in (32) for pipes with and without water pumps. 

Constraints (32)-(44) describes the hydraulic characteristics of 

water pipes with and without water pumps including head gain 

and loss. In (35), the pressure head gain of water pump is 

shown. The hydraulic characteristic of pipes without water 

pumps is given in (36) based on Darcy-Weisbach equation [25]. 

Equation (37) presents the power consumption of water pump. 

The water flow magnitude is limited in (38). And the mass 

balance constraint of water system is presented in (39). 

0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (16) 

0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (17) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (18) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (19) 

𝑥𝑙𝑓𝑙𝑒,𝑡
 𝑠 = (𝜃𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 − 𝜃𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟) (20) 

−𝑓𝑙𝑒,𝑚𝑎𝑥
𝑠 ≤ 𝑓𝑙𝑒,𝑡

 𝑠 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥
𝑠  (21) 

 

 
 

Fig. 1.  The structure of WES. 
 

 
  

 

Fig. 2.  The proposed cyber-secured mitigation scheme. 
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∑ 𝑃𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑ 𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

+ 𝑃𝑔𝑡,𝑡
 𝑠

𝑗∈𝐽

= ∑ 𝑃𝑘𝑒,𝑡

𝑘𝑒∈𝐾𝑒

 

(22) 

+ ∑ 𝑓𝑙𝑒,𝑡
 𝑠,𝑖𝑛𝑗

𝑙𝑒∈𝐿𝑒

+ ∑ 𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝑛∈𝑁

+ ∑ 𝑃 𝑤𝑝,𝑡
𝑠

𝑤𝑝∈𝑊𝑃

  

𝐺𝑖𝑔,𝑚𝑖𝑛
  ≤ 𝐺𝑖𝑔,𝑡

𝑠 ≤ 𝐺𝑖𝑔,𝑚𝑎𝑥
  (23) 

𝑃𝑟𝑛,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑛,𝑡
𝑠2

≤ 𝑃𝑟𝑛,𝑚𝑎𝑥
 2 

 (24) 

𝑃𝑟𝑛,𝑡
𝑠,𝑖𝑛𝑖  

≥ 𝑃𝑟𝑛,𝑡
𝑠,𝑡𝑒𝑟  

 (25) 

𝑓𝑙𝑔,𝑡
 𝑠 2

=  𝛾𝑙𝑔
(𝑃𝑟𝑛,𝑡

𝑠,𝑖𝑛𝑖2
− 𝑃𝑟𝑛,𝑡

𝑠,𝑡𝑒𝑟 2 

) (26) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

 𝑠  (27) 

𝑃𝑔𝑡,𝑡
 𝑠 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝑔𝑡,𝑡

 𝑠  (28) 

𝐺𝑛,𝑡
𝑠,ℎ𝑦 

= 𝜂𝑒

𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝛺ℎ𝑦

 
(29) 

∑ 𝐺𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+ ∑ 𝐺𝑛,𝑡
𝑠,ℎ𝑦

𝑛∈𝑁

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟   

𝑙𝑔∈𝐿𝑔

= ∑ 𝐺𝑘𝑔,𝑡

𝑘𝑔∈𝐾𝑔

+ ∑ 𝑓𝑙𝑔,𝑔𝑡,𝑡
𝑠

𝑙𝑔∈𝐿𝑔

 

(30) 

0 ≤ 𝑃𝑤𝑟,𝑡
𝑠 ≤ 𝑃𝑤𝑟,𝑚𝑎𝑥

  (31) 

ℎ𝑤,𝑚𝑖𝑛
{∙} ≤ ℎ𝑤,𝑡

𝑠,{∙} ≤ ℎ𝑤,𝑚𝑎𝑥
{∙} , {∙} = 𝑙𝑤 , 𝑙𝑤𝑝  (32) 

ℎ̃{∙},𝑡
𝑠 = (ℎ𝑤,𝑡

𝑠,{∙},𝑖𝑛𝑖 + ℎ̅𝑤,𝑡
𝑠,{∙},𝑖𝑛𝑖)

− (ℎ𝑤,𝑡
𝑠,{∙},𝑡𝑒𝑟 + ℎ̅𝑤,𝑡

𝑠,{∙},𝑡𝑒𝑟), {∙}

= 𝑙𝑤 , 𝑙𝑤𝑝 

(33) 

ℎ̃𝑙𝑤𝑝,𝑡
𝑠 ≥ 0 (34) 

ℎ̃𝑙𝑤𝑝,𝑡
𝑠 + 𝑎𝑙𝑤𝑝

𝑓𝑙𝑤𝑝,𝑡
 𝑠  

+ 𝑏𝑙𝑤𝑝

 = 𝑅𝑙𝑤𝑝
𝑓𝑙𝑤𝑝,𝑡

 𝑠 2
 (35) 

ℎ̃𝑙𝑤,𝑡
𝑠 = 𝑅𝑙𝑤

𝑓𝑙𝑤𝑝,𝑡
 𝑠 2

 (36) 

𝑃 𝑤𝑝,𝑡
𝑠 = (𝑎𝑙𝑤𝑝

𝑓𝑙𝑤𝑝,𝑡
 𝑠 2

+ 𝑏𝑙𝑤𝑝
𝑓𝑙𝑤𝑝,𝑡

 𝑠  
) /𝜋𝑤𝑝 (37) 

0 ≤ 𝑓{∙},𝑡
 𝑠 ≤ 𝑓{∙},𝑚𝑎𝑥

𝑠 , {∙} = 𝑙𝑤 , 𝑙𝑤𝑝 (38) 

∑ 𝑃𝑤𝑟,𝑡
𝑠

𝑤𝑟∈𝑊𝑅

+ ∑ 𝑓{∙},𝑡
𝑠,𝑖𝑛𝑖 −

{∙}∈𝐿𝑤,𝐿𝑤𝑝

∑ 𝑓{∙},𝑡
𝑠,𝑡𝑒𝑟  

{∙}∈𝐿𝑤,𝐿𝑤𝑝

 

= ∑ 𝜎𝑘𝑝𝑔
𝑃𝑛,𝑡

𝑠,𝑃2𝐺

𝑘𝑝𝑔∈𝐾𝑝𝑔

+ ∑ 𝑃𝑘𝑤,𝑡

𝑘𝑤∈𝐾𝑤

 

 

(39) 

D. Real-time Cyber-Secured Mitigation 

The cyber-secured mitigation is implemented in the second 

stage to mitigate the uneconomic operation based on the 

realization of FDIA and renewable uncertainty. Equation (40) 

is the regulated output of generators, gas turbines and the 

regulated power consumption of water pumps. Equations (41)-

(44) model the stealthy designed FDIA on power, gas and water 

systems. The load shedding is given in (45).  

𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑠 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (40) 

∑ Δ𝑃𝑘𝑒,𝑡

𝑘𝑒∈𝐾𝑒

= 0 
(41) 

−𝛽𝑘𝑒
𝑃𝑘𝑒,𝑡 ≤ Δ𝑃𝑘𝑒,𝑡 ≤ 𝛽𝑘𝑒

𝑃𝑘𝑒,𝑡 (42) 

−𝛽𝑘𝑔
𝑃𝑘𝑔,𝑡 ≤ Δ𝑃𝑘𝑔,𝑡 ≤ 𝛽𝑘𝑔

𝑃𝑘𝑔,𝑡 (43) 

−𝛽𝑘𝑤
𝑃𝑘𝑤,𝑡 ≤ Δ𝑃𝑘𝑤,𝑡 ≤ 𝛽𝑘𝑤

𝑃𝑘𝑤,𝑡 (44) 

0 ≤ 𝑃{∙},𝑡
𝑙𝑠 ≤ 𝑃{∙},𝑚𝑎𝑥

𝑙𝑠 , {∙} = 𝑘𝑒 , 𝑘𝑔, 𝑘𝑤 (45) 

The rest of the second-stage constraints are not listed due to 

space limitation. The constraints of the second stage are the 

same as the first-stage constraints when the superscript ‘s’ is 

replaced by ‘re’, which denotes the regulated decision 

variables. 

IV. METHODOLOGY 

The proposed TSRA-FMS is a two-stage DRO framework with 

minmax formulation in the second stage problem. The linear 

TSRA-MS is firstly represented by compact form for notation 

brevity. Then the KL divergence-based ambiguity set of DRO is 

constructed to capture the FDIA and renewable uncertainty. In 

section C, the expression of CVaR is given and incorporated in the 

original formulation of TSRA-FMS. Finally, the mathematical 

reformulation is made and the solution algorithm is proposed. 

A. Formulation in Brevity 

Matrices and vectors are used for notation brevity of the TSRA-

FMS problem. The original objective function of TSRA-FMS is 

given in (46) without considering the risk measure. 
min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉 

𝐸𝑝[𝑄(𝑥, 𝜉)] (46) 

The risk-averse DRO incorporates the risk measure in the 

second-stage problem, which is given in (47). The first term 𝑐′𝑥 

is the first-stage objective. The second term (1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] 

represents the weighted expected second-stage objective and the 

last term 𝛼𝑅(𝑄(𝑥, 𝜉))  is the weighted risk measure. The 

weighting coefficient 𝛼 ranges between 0 and 1. Equation (50) 

degrades to risk-neutral DRO model when 𝛼=0.  
min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉 

{(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] + 𝛼𝑅(𝑄(𝑥, 𝜉))}   (47) 

s.t. 𝐴𝑥 ≤ 𝑏, (48) 
𝑄(𝑥, 𝜉) = min

𝑦
𝑓′𝑦 (49) 

s.t. 𝐸𝑥 + 𝐹𝑦 + 𝐺𝜉 ≤ ℎ, (50) 

  The first-stage constraints are represented by (48). Equations 

(49) and (50) represent the second-stage objective function and 

constraints, respectively, where the coefficient of (49) is denoted 

by f.  

B. Constructing the Ambiguity Set  

Based on the distance between probability distributions, the 

discrepancy-based ambiguity set can be modelled, where η is the 

divergence tolerance. In (51) and (52), 𝑝 and 𝑝𝑟𝑒𝑓 are the true 

and reference probability distribution, respectively. Equations (51) 

and (52) are the implicit and explicit descriptions of distribution 

distance.   
𝐷𝑖𝑠 = {𝑝 ∈ 𝐷𝜉,|𝐷𝜉,(𝑝‖𝑝𝑟𝑒𝑓) ≤ 𝜂} (51) 

𝐷𝜉,(𝑝‖𝑝𝑟𝑒𝑓) = ∫ 𝑓 (𝜉) 𝑙𝑜𝑔
𝑝 (𝜉)

𝑝𝑟𝑒𝑓(𝜉)
𝑑𝜉 

(52) 

  Equation (54) shows the KL-divergence function of variable a.  
𝜑𝐾𝐿(𝑎): = 𝑎 log 𝑎 − 𝑎 + 1 (53) 

C. Risk-Averse DRO 

CVaR refers to a risk assessment which quantifies the tail risk 

of investment [26]. CVaR is developed to mitigate the 

shortcomings of value at risk. CVaR is initially applied in finance 

industries, which is then extended to portfolio problems in other 

fields, such as power systems [27].  

The probability of 𝑄(𝑥, 𝜉) is limited by the threshold ζ. The 

coherent risk measure CVaR is convex and monotonic. The 

probability of 𝑄(𝑥, 𝜉) not larger than the threshold 𝜁 is shown as: 
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𝛹(𝑥, 𝜁): = ∫ 𝑝 (𝜉)𝑑𝜉
 

𝑄(𝑥,𝜉)≤𝜁

 (54) 

Where 𝛹  is the cumulative distribution function of 𝑄(𝑥, 𝜉) , 

which is a fundamental element of VaR and CVaR. Moreover, is 

continuous and nondecreasing with respect to 𝜁. The definition of 

𝛽-VaR and 𝛽-CVaR are shown as (55) and (56). 
𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)) = min{𝜁 ∈ ℝ:   𝛹(𝑥, 𝜁) ≥ 𝛽} (55) 

𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)): =
1

1 − 𝛽
∫ 𝑄(𝑥, 𝜉)𝑝 (𝜉)𝑑𝜉

 

𝑄(𝑥,𝜉)≥𝜁𝛽(𝑥,𝜉)

 (56) 

Since 𝑄(𝑥, 𝜉)  is continuously differentiable and convex, the 

below formula can be derived [26, 28].  

𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)): = min
𝜁∈ℝ

{𝜁 +
1

1 − 𝛽
𝐸𝑝[𝑄(𝑥, 𝜉) − 𝜁]+ } (57) 

Where function [𝑄(𝑥, 𝜉) − 𝜁]+ is used to determine the larger 

value between 𝑄(𝑥, 𝜉) − 𝜁 and 0.  

[𝑄(𝑥, 𝜉) − 𝜁]+ = {
𝑄(𝑥, 𝜉) − 𝜁  (𝑄(𝑥, 𝜉) − 𝜁 > 0)

 
0  (𝑄(𝑥, 𝜉) − 𝜁 ≤ 0)

 
(58) 

The original objective function of TSRA-FMS is reformulated 

as (59) with weighted CVaR. When substituting CVaR in (59) with 

(58), (59) can be derived.  
min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] + 𝛼𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉))}   (59) 

min
𝑥∈𝑋

{𝑐′𝑥 + sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

min
𝜁∈ℝ

{𝛼𝜁 + 𝐸𝑝[𝐺(𝑥, 𝜉)]}  } 
(60) 

𝐺(𝑥, 𝜉): = (1 − 𝛼)[𝑄(𝑥, 𝜉)] +
𝛼

1 − 𝛽
𝑎̃  

s.t.𝑄(𝑥, 𝜉) −  𝑎̃ − 𝜁 ≤ 0, 𝑎̃ ≥ 0  

When the strong duality holds, (60) can be reformulated to (61) 

and then further equivalent to (62) [29].  

min
𝑥∈𝑋

{𝑐′𝑥 + min
𝜁∈ℝ

sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{𝛼𝜁 + 𝐸𝑝[𝐺(𝑥, 𝜉)]}  } 
 

(61) 

min
𝑥∈𝑋

{𝑐′𝑥 + 𝛼𝜁 + max
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{∑ 𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

}  } 
 

(62) 

Larange function (63) can be used to handle the inner 

maximization problem with its dual formulation (64). 

ℒ(𝑝, 𝜏, 𝜇) = ∑ 𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

+ 𝜏 (1 − ∑ 𝑝𝑖

𝑚

𝑖=1

) + 𝜇 (𝜂 − ∑ 𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

𝜑𝐾𝐿 (
𝑝𝑖

𝑝𝑟𝑒𝑓,𝑖

)) 
 

(63) 

max  ℒ(𝑝, 𝜏, 𝜇) = 𝜏 + 𝜂𝜇 + 𝜇 ∑ 𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1] 

 

(64) 

Based on the Slater’s condition [30], the (65) and (66) can be 

made when 𝜂 is larger than 0: 

max
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{∑ 𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

} = min
𝜏,𝜇≥0

max  ℒ(𝑝, 𝜏, 𝜇)

  

 
 

(65) 

= min
𝜏,𝜇≥0

{𝜏 + 𝜂𝜇 + 𝜇 ∑ 𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1]} 

 

(66) 

The derivation in (67) can be obtained when substituting the 

inner maximization problem in (62) with (66). 

min
𝜁,𝜏,𝜇≥0

{𝑐′𝑥 + 𝛼𝜁 + 𝜏 + 𝜂𝜇 + 𝜇 ∑ 𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1]} 

 

(67) 

s.t. 𝑥 ∈ 𝑋, 𝑄(𝑥, 𝜉) −  𝑎̃ − 𝜁 ≤ 0, 𝑎̃ ≥ 0, 

𝐺(𝑥, 𝜉): = (1 − 𝛼)[𝑄(𝑥, 𝜉)] +
𝛼

1 − 𝛽
𝑎̃ 

Nevertheless, equation (67) is a nonlinear problem which 

requires to be linearized before the decomposition algorithm. For a 

given 𝑥 = 𝑥𝑘 , when 𝑄(𝑥𝑘 , 𝜉) < ∞ , 𝑄(𝑥𝑘 , 𝜉)  is 

subdifferentiable [31] and (68) can be obtained, where 

𝐷𝑢𝑎𝑙(𝑥𝑘) = 𝑎𝑟𝑔max{𝜋′(ℎ − 𝐸𝑥𝑘): 𝐹′𝜋 ≤ 𝑓}  is the set of 

optimal solutions of dual problem in (49). 𝜋𝑘,𝑖 ∈ 𝐷𝑢𝑎𝑙(𝑥𝑘) is the 

optimal solution for the ith scenario and kth iteration.  
𝜕𝑄(𝑥𝑘 , 𝜉) = −𝐸′𝐷𝑢𝑎𝑙(𝑥𝑘) (68) 

Let 𝑠𝑘: =
𝐺𝑖(𝑥𝑘,𝜉)−𝜏𝑘

𝜇𝑘
 and 𝐹𝑖

𝑘: = 𝜇𝑘[exp(𝑠𝑘) − 1], the subgradient 

of 𝐹𝑖
𝑘 is given as: 

𝜕𝐹𝑖
𝑘 = [(1 − 𝛼)exp(𝑠𝑘)𝐸′𝜋𝑘,𝑖 , (1 − 𝑠𝑘)exp(𝑠𝑘) − 1, −exp(𝑠𝑘),

𝛼

1 − 𝛽
exp(𝑠𝑘)] (69) 

Equation (70) can be obtained based on the subgradient 

inequality of convex function. And equation (71) is the optimality 

cut. 
𝐹𝑖

 (𝑥, 𝜇, 𝜏, 𝑎̃𝑖) ≥ 𝐹𝑖
 (𝑥𝑘, 𝜇𝑘 , 𝜏𝑘, 𝑎̃𝑖

𝑘) + 𝜕𝐹𝑖
𝑘 ∙ (𝑥 − 𝑥𝑘, 𝜇 − 𝜇𝑘 , 𝜏 − 𝜏𝑘, 𝑎̃𝑖 − 𝑎̃𝑖

𝑘) (70) 

𝐹𝑖
 (𝑥, 𝜇, 𝜏, 𝑎̃𝑖) ≥ [𝐺𝑖(𝑥𝑘 , 𝜉) + (1 − 𝛼)(𝜋𝑘,𝑖)′𝐸𝑥𝑘 −

𝛼𝑎̃𝑖
𝑘

1 − 𝛽
]

+ 𝜕𝐹𝑖
𝑘(𝑥  , 𝜇 , 𝜏  , 𝑎̃𝑖

 ) 

(71) 

Finally, to solve the overall two-stage risk-averse DRO problem, 

a Bender’s decomposition method should be applied.  

V. CASE STUDY 

In this section, the numerical experiments are validated on a 

modified IEEE 30-bus power system, connected with a 20-node 

gas system and a 10-node water system. The WES is given in 

Fig. 1. The RESs are connected at buses 15, 22 and 26 with 

60MW for each output. Two P2G facilities and a gas turbine are 

used for power-gas connection. The water consumption of 

P2Gs is supplied by the water system at node 5. The water 

system has three water pumps, which consume power from the 

power system. TABLEs Ⅱ presents the parameters of water 

reservoirs. Fig. 3 presents the maximum and minimum limits of 

the gas pressure. The load profile of power, gas and water 

systems are shown in Figs. 4-5. For notation simplicity, the 

FDIA at power, gas and water systems are denoted as P-FDIA, 

G-FDIA and W-FDIA, respectively.  

The case illustration is given in TABLE Ⅲ. Case 1 is a 

deterministic operation model of WES without considering 

FDIA or renewable uncertainty. Case 2 utilizes RO to capture 

FDIA. Compared with case 2, case 3 further incorporates 

renewable uncertainty. Cases 4-7 are used to analyse the impact 

under different FDIA scenarios. As the benchmark case, case 7 

considers all the potential types of FDIA (P-FDIA, G-FDIA and 

W-FDIA) with 5% of AIL. In comparison, the AIL of cases 8-

10 gradually increases.  

A. Studies on Economic Performance  

The economic performance for all cases are first analysed 

and the result is given in TABLE Ⅳ. Case 1 has the lowest 

operation cost, i.e., $843986, when no FDIA is conducted. In 

contrast, the operation cost of case 10 is the highest ($2521441) 

when all three types of FDIA are at 20% of AIL. Compared with 

cases 6 and 7, cases 2 and 3 utilize single-stage RO. The results 

of cases 2 and 3 are higher than cases 6 and 7, which implies 

the over-conservatism of RO when considering the worst-case 

FDIA condition. Case 4 only considers the potential impact 

from P-FDIA, which yields the second-lowest solution, i.e., 

$855096. When addition G-FDIA is modelled in case 5, the 

operation cost is $26866 higher than that of case 4. Similarly, 

W-FDIA and renewable uncertainty are additionally considered 

in cases 6 and 7. The AIL is increasing consecutively in cases 7, 

8, 9 and 10 from 5% to 20%. The first and second stage 

operation cost of case 7 are $759910 and $248762, respectively. 

With the increase of AIL, the expected second stage costs 

increase rapidly. In particular, the expected second stage cost 
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increases $637428 from case 9 to 10. Consequently, it can be 

concluded that the increase rate of operation cost is highly 

affected by the AIL.  

B. Studies on Load Shedding  

Load shedding in three sub-systems is implemented to ensure 

the overall system security and maintain the feasibility of the 

proposed mitigation scheme. The optimal coordinated load 

shedding strategy considers power load shedding (PLS), gas 

load shedding (GLS) and water load shedding (WLS) for 24 

hours under different levels of FDIA. Figs. 6-9 present the load 

shedding under different combinations of FDIA. In Fig. 6, it can 

be seen that PLS is affected by both P-FDIA and G-FDIA. PLS 

is not sensitive when the AIL of P-FDIA is below 8%. When G-

FDIA is at 0%, PLS rises from 0MWh to 691MWh; when G-

FDIA is at 20%, PLS rises from 0MWh to 1274MWh. Fig. 7 

shows the GLS under P-FDIA and G-FDIA. The highest GLS, 

589kcf, is obtained when the two types of FDIA are at the 

highest level. When solely conducting G-FDIA,  GLS ranges 

between 400kcf and 589kcf. The PLS under P-FDIA and W-

FDIA is shown in Fig. 8. The highest PLS (1990MWh) is 

implemented at 20% of AIL of P-FDIA and W-FDIA, which 

indicates the higher impact caused by W-FDIA compared with 

G-FDIA in Fig. 6. At the highest level of P-FDIA, increasing 

W-FDIA causes PLS growth from 709MWh to 1990MWh. Fig. 

9 depicts WLS under P-FDIA and W-FDIA. The highest WLS 

is 257m3 at the highest level of P-FDIA and W-FDIA. 

TABLE Ⅱ 

 PARAMETERS OF WATER RESERVOIRS 

 

Node No. 
𝑃𝑤𝑟,𝑚𝑎𝑥 

(m3/h) 

𝜆𝑤𝑟 

($/m3) 

Elevation 

(m) 

1 325 6.4 -252.5 

2 700 2.6 -255 

 

 
Fig. 3. Limits of gas pressure at each node. 

 

 

 
Fig. 4. Power and gas load profile. 

 
 

 
Fig. 5. Water load profile. 
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Fig. 6.  Power load shedding under P-FDIA and G-FDIA.    

                  

 

Fig. 7.  Gas load shedding under P-FDIA and G-FDIA.    

    

 
               

 

Fig. 8.  Power load shedding under P-FDIA and W-FDIA. 

 

 
Fig. 9.  Water load shedding under P-FDIA and W-FDIA. 
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Compared with other FDIA scenarios, WLS increases smoothly 

when P-FDIA is at the highest level.  

C. Scalability Analysis 

In this section, the proposed TSRA-FMS is tested in a larger 

system scale to validate the applicability. This WES contains an 

IEEE 118-bus system, a 20-node gas system and a 10-node 

water system according to [32] and [33]. There are 54 power 

generators and 3 RES generators in the power system. RES 

generators are connected with buses 36, 69 and 77 with a 

capacity of 250MW.  This analysis is conducted among 8 

cases to demonstrate i) the effectiveness of TSRA-FMS on IESs, 

ii) comparison between risk-averse DRO and risk-neutral DRO 

and iii) the impact of system interdependency on system 

vulnerability. The case illustration is shown in TABLE Ⅴ. Note 

that ‘system interdependencies’ indicates the number of 

connected gas and water systems in the WES. For instance, in 

case 1, the WES contains 3 gas systems and 3 water systems.  

In Figs. 10 and 11, the water load shedding under cases 4 and 

5 is given. Cases 4 and 5 are used to compare the proposed risk-

averse DRO and risk-neutral DRO of [9]. In Fig. 11, the WLS 

reaches up to 983m3 when P-FDIA and W-FDIA are both under 

20% of AIL. When P-FDIA is not considered, the highest AIL 

of W-FDIA causes 77 m3 WLS. Compared with Fig. 10, the 

risk-averse DRO presents a higher WLS than that of risk-

neutral DRO, i.e., the WLS is 1168 m3 under 20% of P-FDIA 

and W-FDIA, which is 19% higher than that of risk-neutral 

DRO.  

 
TABLE Ⅲ 

 CASE ILLUSTRATION 

 

Case 

No. 

Optimization 

method 
P-FDIA G-FDIA W-FDIA 

Renewable 

Uncertainty 
AIL 

1 Deterministic No No No No 0% 

2 RO Yes Yes Yes No 5% 

3 RO Yes Yes Yes Yes 5% 

4 DRO Yes No No No 5% 

5 DRO Yes Yes No No 5% 

6 DRO Yes Yes Yes No 5% 

7 DRO Yes Yes Yes Yes 5% 

8 DRO Yes Yes Yes Yes 10% 

9 DRO Yes Yes Yes Yes 15% 

10 DRO Yes Yes Yes Yes 20% 

 

TABLE Ⅳ 

ECONOMIC PERFORMANCE FOR CASE 1-10 

 

Economic 

result 
Case 1 Case 2 Case 3 Case 4 Case 5 

First-stage 

cost ($) 
843986 1031728 1037751 729817 748581 

Expected 

Second-stage 

cost ($) 

0 0 0 125279 133381 

Total cost ($) 843986 1031728 1037751 855096 881962 

Economic 

result 
Case 6 Case 7 Case 8 Case 9 Case 10 

First-stage 

cost ($) 
759284 759910 804595 843697 889062 

Expected 

Second-stage 

cost ($) 

247276 248762 516593 994951 1632379 

Total cost ($) 1006560 1008672 1321188 1838648 2521441 

 

 

 

TABLE Ⅴ 

 CASE ILLUSTRATION 

Case 

No. 
Risk analysis 

Test 

system 

System 

interdependencies 

1 Yes IES 3 

2 Yes IES 2 

3 Yes IES 4 

4 No WES 3 

5 Yes WES 3 

6 Yes WES 2 

7 Yes WES 4 

 

 

Fig. 10. Water load shedding under case 4. 

 

Fig. 11. Water load shedding under case 5. 

 

Fig. 12.  Total expected cost of cases 4 and 5. 

 
Fig. 13. Power load shedding cost of different cases. 
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5% of AIL is considered for Figs. 12 and 13. In Fig. 12, the 

second-stage expected cost under different sample size is given, 

where the black and blue curves represent cases 4 and 5, 

respectively. Overall, case 4 without considering CVaR shows 

lower second-stage expected operation cost under FDIA and 

renewable uncertainty. When 5000 second-stage samples are 

considered, the results of cases 4 and 5 approximates to 

$736000 and $800000. However, the result fluctuates when the 

data sample is below 500. In Fig. 13, the results show that the 

PLS in WES is higher than that in IES. For instance, cases 3 

and 7 yield $567000 and $648000 PLS cost, respectively. Since 

W-FDIA causes WLS and the water reservoirs and pumps 

require higher usage. Accordingly, higher power consumption 

of water pumps leads to higher PLS. For case 5, there are 2 gas 

systems and 2 water systems, which shows $47000 higher cost 

than that of case 6 with 1 gas system and 1 water system. The 

additional 2 P2G facilities and 3 water pumps thus result in 

higher power consumption.  

VI. CONCLUSION 

Under the water-energy nexus era, the three proposed sub-

systems are highly interwined. The cyber-attacks on any sub-

system could propagate to the other two-subsystems. 

Consequently, this paper proposes a two-stage risk-based 

mitigation strategy for the novel WES under water-energy 

nexus. Both the day-ahead and real-time operation schemes are 

determined with FDIA on three sub-systems. The FDIA and 

renewable uncertainty are captured via the proposed RA-DRO. 

The trade-off between the economic performance and risk 

caused by cyber-attacks and renewable fluctuation is provided. 

This two-stage mitigation framework with flexible risk 

alternative is solved by a tractable Bender’s decomposition 

method. Through the extensive studies, the key findings are 

listed below:  

▪ Considering all types of FDIA, i.e., P-FDIA, G-FDIA and 

W-FDIA, leads to higher system economic loss than 

considering two types or one type of FDIA.  

▪ PLS is more sensitive to W-FDIA compared with G-FDIA. 

▪ The proposed RA-DRO mitigates the conservatism of RO 

with less load shedding.  

The economic efficiency and system security under water-

energy nexus is achieved via the effective proposed TSRA-

FMS with optimally coordinated load shedding schemes to 

protect the entire system. The end energy users will benefit 

from this better supply security. This work is especially 

practical under smart cities with enormous water-energy 

interdependencies.  
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