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A geometric Ginzburg-Landau problem

Roger Moser*
March 5, 2012

Abstract

For surfaces embedded in a three-dimensional Euclidean space, con-
sider a functional consisting of two terms: a version of the Willmore energy
and an anisotropic area penalising the first component of the normal vec-
tor, the latter weighted with the factor 1/e2. The asymptotic behaviour
of such functionals as € tends to 0 is studied in this paper. The results
include a lower and an upper bound on the minimal energy subject to suit-
able constraints. Moreover, for embedded spheres, a compactness result
is obtained under appropriate energy bounds.

1 Introduction

1.1 Background

Given a closed surface M, smoothly embedded in R?, let v denote its normal
vector and A its second fundamental form. Let H™ denote the n-dimensional
Hausdorff measure. For € > 0, consider the integral

1 v?
— AP+ 2L 2,
2/M (| | +62> t

This is the sum of a quantity closely related to the Willmore energy (an overview
of which is given by Willmore [17]) and an anisotropic area functional. We study
the behaviour of this functional, and of surfaces with reasonably small energy,
as the parameter € tends to 0.

Functionals of this type have been proposed as models for the free energy
of crystal surfaces [10, 1, 6, 15, 8, 9]. The anisotropy reflects the underlying
crystal structure in this context, and the inclusion of the curvature term is
motivated sometimes by its regularisation properties and sometimes on physical
grounds. A one-dimensional version (with curves rather than surfaces) has also
been studied for its applications in image processing [3, 4, 5].

Some tools for the analysis of a similar problem have been developed in a
previous paper [13]. They are motivated by the theory of Modica and Mortola
[11, 12] (and others) on models of phase transitions, and they work only for
an anisotropy given by a potential function ¥ : $? — R with isolated minima.
In this situation, it turns out that a sequence of surfaces satisfying a suitable
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energy bound always subconverges to a generalised polyhedron. A lower bound
for the limiting energy can also be derived, and it depends linearly on the lengths
of the edges.

In contrast, the functional studied here involves the function ¥(v) = v,
which attains its minimum on the whole equator {0} x S'. At a first glance,
this problem looks closer to the theory of Ginzburg-Landau vortices, which
was first developed by Bethuel, Brezis, and Hélein [2]. But despite the formal
similarities, we will see that the analogy between these two problems is limited,
too. Above all, the interesting phenomena occur at different scaling regimes
for the two energies. Ginzburg-Landau vortices have a typical energy of order
|loge|. For the geometric problem, unless we allow the surfaces to shrink to
a point in the limit, we need at least an energy of order ¢ ~'/2. It is therefore
convenient to renormalise the functional and define

E (M) = g /M <|A2 + lﬁ) dH?.

Provided that this quantity remains bounded, and assuming that we have
topological spheres, we will see that they approach a line segment parallel to the
x1-axis in the Hausdorff distance sense. If L is the length of the line segment,
then we find a limiting energy of order v/L. When we study connected surfaces
of arbitrary genus, then we still find estimates for the energy indicating a similar
behaviour.

1.2 Main results

For simplicity, we now assume that we have a surface M C R? that is not only
closed and smoothly embedded, but also connected. This is not a significant
restriction, because in the case of a disconnected surface, we can apply the theory
to each connected component individually; on the other hand, the assumption
simplifies the presentation of the results.

We first note that the two terms in the definition of E. behave differently
when we scale M. Therefore, the asymptotic behaviour of the energy will depend
on the size of the surface. There are of course many ways to measure its size,
but for our purpose the extension of M in the direction of the zi-axis is the
most relevant quantity. We define

A(M) = Suegw(yl — x1).
x,y

Let I' denote the traditional I'-function. Furthermore, let

,_ L@/6) _rasnas) 20/ (Gb B
ST/ T T(2/9) V3 \Va

Then we have the following estimates.

ﬁ) G

Theorem 1.1. For any L > 0,

2%/47rVL <liminf inf E (M) <limsup inf FE (M) < VL.
N0 A(M)>L 0 AL



A numerical evaluation gives 2%/4r ~ 5.28351 and ¢ ~ 6.77995. We will
prove the last inequality by a construction involving surfaces of revolution.
More precisely, they are obtained from functions u : [-L/2,L/2] — [0,00)
with u(—L/2) = u(L/2) = 0 through a rotation of the graph about the z;-axis.
We find a relation between the energy of such a surface and the functional

F(u) =7r/L/2 (1 +u(u’)2) dt,

—L/2 \U

and the constant ¢ is the minimum of F' on a suitable space of functions. In
particular, it is the optimal value found with this method.

Since the limiting energy is of order VL, we see that it is energetically
unfavourable for a connected surface to split into several parts (while conserving
the total extension in the x-direction) if € is small. This observation provides
further justification for restricting our attention to connected surfaces.

We now consider a variant of the problem. Let H be the mean curvature
vector of the surface M and suppose that K is its Gauss curvature and x (M)
its Kuler characteristic. Using the identity

HP — |AP = 2K

and the Gauss-Bonnet formula, we can express E.(M) in the form

E (M) = % /M <|H|2 + ﬁ) dH? — 2m\/ex(M).

If we have suitable control of the Euler characteristic, then the asymptotic
behaviours of E, and the functional

. € vi
E*(M) = % /M (|H|2 + 6;) dH?>

are the same. In particular, the estimates from Theorem 1.1 then apply to
E* as well. But as one of the estimates used in the proof relies on the mean
curvature rather than the second fundamental form, we obtain a better result
under certain assumptions on the Euler characteristics.

Theorem 1.2. Let L > 0. For every e > 0, let M, C R3 be a closed, connected,
smoothly embedded surface with A(M) > L. If lim o vex(Me) = 0, then

2mVL < lim\iglf E (M,). (2)

The surfaces used for the proof of Theorem 1.1 are topological spheres. Thus
there exists a sequence of surfaces satisfying the hypothesis, such that in addition
to the inequality of the theorem,

lim sup E.(M,) < ¢VL, (3)
e\

where ¢ is the constant from (1).

For the final main result we only consider topological spheres. This is for
technical reasons. When we further assume that we have uniformly bounded
energies, then we obtain convergence of a subsequence up to translation. The
limit is always a line segment parallel to the x;-axis.



Theorem 1.3. For every e > 0, suppose that M. C R3 is a smoothly embedded
sphere such that
lim sup E.(M.) < occ.
N0

Then there exist a sequence €, \, 0, a sequence of points x;, € R3, and a
number £ > 0 such that M, — x converges in Hausdorff distance to the set

{(¢,0,0) : =€ <t < (}.
Note that Theorem 1.2 then implies

2V L < lim inf E. (M.,)
—00

for L = 2¢. If we consider the functionals

E.(M) if M is a smoothly embedded sphere,

56(M ) = {
%) else,

on the space of compact subsets of R3, then we may interpret the combination

of Theorems 1.2 and 1.3 as a step towards I'-convergence of £ with respect to

the Hausdorff distance. The expected limit functional is of the form

£(M) = {CO\/Z if M is a line segment of length L parallel to the z;-axis,

00 else,

with 27 < ¢g < ¢. But in order to obtain a complete proof of I'-convergence, we
would need matching constants in (2) and (3).

2 A construction

The purpose of this section is to prove the last inequality in Theorem 1.1. We
first note that the reason for the appearance of v/L in this formula is the scaling
behaviour of E.. Suppose that M is a closed, connected, smoothly embedded
surface in R? and € > 0. For A > 0, consider My = AM and ey = Ae. Then we
compute

E.,(My) = VAE (M),

Thus in order to prove Theorem 1.1, it suffices to consider one specific value for
L. For reasons that we will see later, it is convenient to choose

L _ AAL(T/6)
o 3T(2/3)

We want to construct a sequence of surfaces M, with A(M.) = L, such that

limsup E(M,) < VL
N0

for the constant ¢ defined in (1).



2.1 Surfaces of revolution

Fix an ¢ > 0 and consider a surface of revolution generated by a function
u € C®(=£,0) N C°([—£,€]) with w > 0 in (—¢,¢) and u(—¢) = u(f) = 0. We
also assume that

li "(t) = )
fp ) = e

The corresponding surface is then
M ={z e[ xR 23+ 23 = (u(z1))*}.

The above assumptions do not imply that M is smooth at the points (£¢,0,0),
but it is readily seen that the singularities can be smoothed out while increasing
the energy by an arbitrarily small amount. We extend F. in the obvious way
so that surfaces of this type are included in its domain.
We then calculate the first component of the normal vector and the norm of
the second fundamental form of M, namely
u/ | |2 1 (u//)2

N T iy TRt @)?) A+ @R

—1 +€—2 (u )2 U(UN)Q
‘Wf/1< VI W)y *u+wwpﬂ>“

When we let € \, 0, the functions generating our surfaces must of course
depend on e. We use the ansatz u. = v/ev for a fixed function v. If M, denotes
the corresponding surface of revolution, then

e/ —1 N2 2,1 (2111)2
E.(M.) :7r/ Ul CO I C) dt.
o\ VT He)? (1 4e(v)?)>/2
Fix o € (0,2]. Using the estimates 1 + ¢(v/)? > 1 and 1 + €(v")? > ¢(1 + (v)?)
simultaneously, we find

E.(M,) < 77/2 (i —|—v(v’)2> dt—i—e"w/ZW;;(i/)f)%rdt

when € < 1. Provided that

l U(U”)2
ﬁﬂw%+n%a“<“’ )

Therefore,

this implies

limsup E.(M.) < 7 / E (3} +v(v')2> dt. (5)

N0 —L



2.2 Solving an auxiliary problem

These observations show that for any function v that satisfies the relevant as-
sumptions, including (4), we obtain an upper bound similar to the last estimate
in Theorem 1.1. In order to make the most of this information, we want to
minimise the functional

F(v) = w/i (11] + v(v’)z) dt

in an appropriate class of functions. Thus we have a new variational problem,
and its Euler-Lagrange equation is

)32 1
U”‘FW—F%:O. (6)

We now look for solutions of this equation.
It is convenient, however, to first apply the transformation w = v3/2. Defin-

ing ,
G(w) = 7r/ <3(w’)2 + w_2/3) dt,
¢

we then have F'(v) = G(w). Moreover, equation (6) is equivalent to
n, 3 -5/3
w” + i =0. (7)

Suppose that £ > 0 and that w is a solution of (7) in (—¢,¢) with w > 0.
Multiply both sides of the equation with w’. Then we find

i é N2 _ . —2/3) _
dt(Q(w) w =0.

Thus there exists a constant ~ such that

S =W =, (8)

Motivated by the underlying geometric problem, and expecting symmetry, we
make the ansatz w’(0) = 0 and w'(t) < 0 for ¢ > 0. In order to single out one
specific solution, we also assume that w(0) = 1, which implies v = —1. In the
interval [0, £), we then have
3
== =2/3 1.
w 5 Vw

We can solve this equation using separation of variables. Let

s dr
9(s) :/0 TS

Then g is invertible on the interval [0, 1] and we have

w =g~ (s -3).



If .
2 2 dr
= 2g9(1) = */ T
3 3Jo Vr—3/2 -1
then we have w(¢) = 0. Because w solves (8), we also obtain

lim w’'(t) = —oo.
t 0

We extend w as an even function to [—¢, ¢], and it remains a solution of (7).

2.3 Condition (4) is satisfied

Now we set v = w?/3. This is a solution of (6), and potentially a good choice

for the construction in section 2.1. We need to verify, however, that v satisfies
(4) before we can draw any conclusions.

Note that
1%33/4\/573/2 —1=1.
By 'Hopital’s rule,
457/4 o g3/4

lim —— = lim —— =
sN\O0 Tg(s)  s\0 ¢'(s)

gt ) gMg(s) L (4sT _
2 AT~ 0 Ggle) T sh{%( ) =1

In particular, we have

Hence

w(t) > (0 —t)¥7

in a neighbourhood of £.
Now consider the function v = w?/?, which is a solution of (6). We have

v = gw—l/Bw/ _ _w—1/3 /w_2/3 1

3
for t > 0, and

2
o — 1 <(v’) N 1 > _ 1 (w*4/3(w*2/3 _1) +w*2) — w24 }w74/3'

2 v v3
If £ —t is sufficiently small, then
1
|| <2w™? and (V) 41> §w_4/3.

Thus

U(U”)Q d—o —2tdc 4o __ 8+160
e sppr =2 7w 7 =TT

As long as 0 < %, we find that (4) is indeed satisfied. This means that for this

choice of the function v, inequality (5) is satisfied as well.



2.4 Calculating the energy

Finally, we want to compute F(v). Or more precisely, we want to show that

_ F)

for the number ¢ defined in (1).
First we note that by the symmetry and by (8),

G(w) = 27 /Oe (2w_2/3 - 1) dt = 4 /OK (g_l (3(62_ t>)>2/3 dt — 20,

Using the substitution s = ¢g=1(3(¢ — t)/2), we find

¢ —2/3 1 1
— 2 2
/ (g_l (3(5 t))) g — 7/ 8_2/39/(3) ds — 7/ ds .
0 2 3 0 3 0 52/3\/3_2/3 — 1

Thus

8r (! ds
Fo) = Glw) = 5 /O T~ 2t

and recall that

)2 /1 ds
S 3Jo Vs o1
Next we want to evaluate these integrals. To this end, we use the traditional
B- (beta-) and I'-functions

[e’e) tpfl
B = ———dt 0
(p,q) A Aot pa>0

I(p) = / tP~le7tdt, p>0,
0
satisfying the well-known relations I'(p + 1) = pI'(p) and

L(p)L'(q)

Blp.a)= Lp+4q)

Moreover, we know that T'(1/2) = /7.
If ¢ : [0,1) — [0,00) is a continuous, increasing function with ¢(0) = 0 and
lim; 1 ¢(s) = oo, then Fubini’s theorem implies

1 1 pé(s) oo pl 0o
/ ¢(s)ds=/ / ldrds:/ / 1d8d7‘=/ (1—9¢7'(r)) dr.
0 0o Jo 0 Jo-1(r) 0
Thus
! ds & r4/3
/ ds / - ) an
o Vo1 Jo \' T GEAIER
We have

d ) ,,,,4/3 4 7"1/3
dr ( (24 1)2/3) T3 (2 1)/



Hence an integration by parts gives

/1 ds 4 /°° e
—_— = — ———— dar.
o Vs32—-1 3/, (r241)5/3

The substitution p = 72 finally yields

1/6 pm
o= 2000/0.1/2) = YO

0o Vs32-1 3Jy (1+p)P/3
With the same method, we obtain

! ds _ 3y/7(13/18)
./0 s2/3ys32—1  T(2/9)

Hence
F) 2t (6 o
NCTRRE: (ﬁ f)’
where TS, TO3/18)
T M T TEM

That is, identity (9) is true.

The rest of the proof of Theorem 1.1 is rather different from the arguments
used here, and so before we continue, we summarise the results so far. We have
constructed a family of surfaces of revolution M, with A(M,) = L = 2¢, such
that

limsup E(M,) < VL
eN\,0
for the number ¢ defined in (1). Although M. is not necessarily smooth, it
is regular enough so that the same conclusion can be drawn for appropriate
smooth surfaces approximating M..

3 Slicing

In the rest of the paper, we study an arbitrary closed, connected, smoothly
embedded surface M C R?. Most of the estimates that we use involve intersec-
tions of M with planes perpendicular to the zi-axis. In this section we give a
preliminary discussion of these slices.

3.1 Regular surfaces

Definition 3.1. Suppose that M C R? is a closed, connected, smoothly embed-
ded surface with normal vector v. Then fort € R, we define

M; = M n ({t} x R?).

We say that t € R is reqular (for M ) if the intersection is transversal everywhere
on M;. We say that M is regular if v=1({(£1,0,0)}) is finite.

For a regular surface M, it follows that there exist only finitely many irreg-
ular values for ¢. For the problems studied in this paper, it suffices to consider
regular surfaces.



Proposition 3.1. Let M C R® be a closed, connected, smoothly embedded
surface and € > 0. Then there exists a sequence of reqular surfaces My, such that
E.(My) — E.(M) and My, — M in the Hausdorff distance sense as k — 0o.

Proof. Let v be the normal vector of M. By the area formula, we have

[ ) arn) < o

Thus in any neighbourhood of (1,0,0), there exists an 1 such that v=1({£n}) is
finite. We can obtain the surfaces My by applying suitable rotations to M. O

From now on, we focus on regular surfaces. It is also convenient to fix A(M),
say A(M) = 2¢, and then we may assume that M C [/, (] x R?.

Definition 3.2. Let ¢ > 0. The set My consists of all closed, connected,
smoothly embedded surfaces M C R® such that M is regular, A(M) = 2¢, and
M C [—4, 0] x R

3.2 Notation and preliminaries

Now let £ > 0 and M € M,. For a regular ¢t € (—¢,¢), we introduce some
notation. First, the map IT: R?® — R? is the projection onto the (z2,x3)-plane:

(zy, 22, 23) = (22, 3).

As M; is the result of a transversal intersection, it is a compact, smooth,
one-dimensional submanifold of the plane {t} x R?; in other words, M; is a
union of smooth Jordan curves. Moreover, it has a well-defined curvature k;.
We use a sign convention such that «; < 0 if M; is convex.

When we vary ¢, then M; remains smooth in a neighbourhood of a regular
point in (—¢,¢). Interpreting ¢ as time, we obtain a smoothly evolving subman-
ifold TI(M;) in R?, and we can define the normal velocity v; of the evolution.
We choose the sign of v; such that v; > 0 for an expansion.

Fix a regular point ¢ again. Suppose that f is a differentiable function on
M and s denotes an arc length parameter locally on M;. We introduce the
quantities f and f’, informally defined as

of

i /_ﬁ
f—% and f =5

More precisely, if vy is a parametrisation of a piece of My by arc length, then

F() = 7).

This leaves some ambiguity about the sign, which we will remove in a moment
by fixing the orientation of . In order to give another representation of f,
we can extend f to a neighbourhood of M in R? such that V, f = 0 (i.e., the

directional derivative of f in the normal direction vanishes), and then f’ = aa—mfl.

Locally on M;, we can use the unit vectors e(") and e(® | where e*) = 4 and
(2)

e® = x e, Assuming that v is oriented such that e;”’ >0, we have
Ve(z)f = 1-— V%f’.

10



Of course, we also have f = V.o f. In particular,
AP = Ve v + Ve = [P + (1 - )|V

Furthermore,

ol = [Vomye®] = 60 = 2] A

Ik S
1

\/1—1/12.

and
Vg = —

Note also that we have

‘
f 1
de2=/ — dH  dt.
/M BN S VARV

Finally, we calculate

d

i Mtdel :/Mt (f = fuike) dH

3.3 A simple estimate

We can immediately give an estimate for the length of the part of M; where v
is small.

Lemma 3.1. Let £ >0 and M € M,. For everyt € [—{,/],

/Mtuvl) S VeB.(n).

Proof. We compute

d

a ., (1—v¥)dH' = — /M Q1] + (1 — v} rpvy) dH!

for every regular ¢t € (—¢,¢). Using the previous calculations, we obtain
|Alfv: |

\/1—1/12

%/ |‘A|2 +6721/1 dHl
M,

2 V1-—v

(1= R)lkevel < 7] <

and
d

a 2 1 <
dt/Mt(l v2)dH| <

The function

t— (1—vi)dH?
M,

is continuous even at an irregular t. As H'(M_;) = H'(M;) = 0, we have

2
/(kﬁ)dﬁlg // AP + e VldHlds
M, l—V1

B
2 {zeM:x, <t}

11



and also
3e

2
/ (1-v2)dH! < 7/ (|A|2 + ”;) dH>
M, 2 {z€M:z >t} €

for every t € [—¢,£]. The smaller of these two numbers gives rise to the desired
inequality. O

4 The lower bound

We now derive the first estimate in Theorem 1.1. The proof relies on the next
two lemmas.
4.1 Preliminary estimates

Let £ > 0. Throughout this section, we consider a fixed regular surface M € M,
with normal vector v and second fundamental form A. Its mean curvature vector
is denoted by H.

Lemma 4.1. The inequality
HA(M) < (V26 +262) E (M)

holds true.

Proof. Consider the vector field ®(x) = (x1,0,0) on R3. Writing id for the
identity (3 x 3)-matrix, we calculate

divy @ = trace ((id — v @ v)V®) = 1 — v

for the divergence of ® with respect to M. We have the integration by parts
formula

/ divys @ dH? = —/ (®, H) dH?.
M M

Note that |H|? < 2|A|?. Hence

2
/ (1—vi)dH? < \/5/ |21 ||| | Al dH? < < (|A|2 + ”;) dH>.
M M V2 Sy €

The desired inequality follows. O
Remark. With exactly the same method, we also obtain

HA(M) < (ﬁﬁ + 263/2) E*(M). (10)

The next statement is a variant of a well-known inequality [14]. (A more

general discussion of similar inequalities is given by Topping [16].) We provide
the details of the proof, although there is nothing essentially new here.

Lemma 4.2. Let n € S? and suppose that J C R is a measurable set. Let
M={zxeM:{(zx,n) € J}. Then

47> (H ()2 < H2(MT) /M A2 dH2.

12



In particular,
167202 < HQ(M)/ |A|? dH2.
M

Proof. We assume that n = (1,0,0), because we already have the appropriate
notation for this case. Any other case can be reduced to this situation by a
rotation.

Fix a regular t € (—¢,¢). Let C be a connected component of M;. Then
Al
c\1—-v?

dH' > / |ke| dH' > 2m. (11)
C

Now we obtain

Al : 5
2rHY (T g// |7d7-[1dt:/ AdH2§<H2M/ A2dH2> )
(J) D Ao Ml\ ()M\I

Finally we take the square on both sides. The second inequality follows when
we choose J = [—£, {]. O

4.2 Proofs of Theorems 1.1 and 1.2

We have already seen that the last inequality in Theorem 1.1 is a consequence
of the construction in section 2.
For the first inequality, it suffices to show that

23/47\V/[ < liminf inf E,
6\0 ML/2

by Proposition 3.1. Let £ = L/2 and fix M € M,. Combining Lemma 4.1 and
Lemma 4.2, we then infer

16722 < H?(M)/ AP dH? < (2v2¢ + 4¢) (E(M))
M

Thus P
25/45¢
E.(M) > T

= /7£+\/§67

and the desired inequality in Theorem 1.1 follows as € \, 0.
For the proof of Theorem 1.2, we use exactly the same method, but instead
of Lemma 4.1, we use inequality (10). This then gives

167202 < (20 + 4e) E.(M.)E* (M.).
Under the hypothesis on the Euler characteristics in Theorem 1.2, we have

_B(M) _
o0 EF(M)

and so the required inequality follows.

13



5 A decomposition

For the proof of Theorem 1.3, it suffices to study regular surfaces as well. Again
we fix ¢ and study a fixed surface M € My, and as usual we use the symbols v
and A to denote its normal vector and its second fundamental form, respectively.

Under a control of E, of the form E.(M) < CyvL, we expect that the
typical slice M; will be a curve with length of order /e and with a shape not
too dissimilar to a circle; or possibly the union of several curves of this type,
but not too many. But in general there will be slices where this expectation is
not fulfilled. The purpose of this section is to separate the ‘good’ from the ‘bad’
curves.

5.1 Definitions

Throughout this section, let § € (0, %} be a fixed number. Fix a regular ¢ €
(=£,0). Let Cq,...,Cyp, be the connected components of M;. Moreover, let a; be
the area of the region enclosed by C;. Define

L={ie{l,...,m}:1n(C;) C[-1,—-6/2)U[6/2,1]},
L={ie{l,....om}:i¢ I and 1n(C;) Z [-6,0]},
Iy={ie{l,...,m}:i¢ Ul and a; < §(H'(C;))*},
L={ie{l,...om}:i¢ L UL UIand H'(C;) < 6 /e}.

These are the indices of curves that we think of as exceptional in some sense:
either the intersection of the surface M with the plane {t} x R? is not sufficiently
transversal on all or part of C;, or C; is not round enough (in terms of the
isoperimetric quotient), or it is too short. Now let

Mt]:UCza j:1727354,
i€l

and
M) = M\(M}! U M?u M? U M.

Furthermore, let '
#=Ll, j=1,2,3,4

(i.e., the number of indices in each category). The quantities M7 and #! are
then independent of the labelling of the connected components, and thus well-
defined as functions of ¢. If ¢ is irregular, then we set M{ = () and #] = 0 for
every j.

Finally, for j =0,...,4, let

M o= ) {t}x M.
—<t<t

The union of M°,..., M* then comprises all of M except the irregular slices.

As 1n] > g on M1, it is quite easy to estimate the area of M! in terms of
E.(M). We now want to estimate the areas of M?, M3 and M* as well, and
for this purpose we estimate the integrals of #7, #3 and #; first.
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5.2 The second exceptional set

Lemma 5.1. The inequality

4
/ #2dt < 4\/e6 2E (M)
—

holds true.

Proof. Fix a regular t € (—£,/) with #? # 0. Suppose that C is a connected
component of M?. Consider a parametrisation v : [0,5] — C by arc length.
Then there exist two points s, s2 € [0, 5] with [v1(y(s1))| = & and |11 (v(s2))| =
0, and we may assume that s; < sg. Then

62

|||

s2
— <2 v )| s))|ds <2 | —== dH .
Ay
Hence ) L )
/ AP + 20} s ci
1 — V 2¢
Treating every connected component similarly, we obtain
A 2 -2 52 2
/ | | +e 2V1 dHl #t .
M2 A1 = Vi 2¢
On the other hand,
A2 €72 2E. (M
/ / | | + € Vl dHl dt ( ) ,
M2 117 Ve
and the claim follows. O

5.3 The third exceptional set

In order to prove a similar estimate for #7, we use an estimate of the isoperi-
metric quotient.

Lemma 5.2. For any a > 0 there exists a number 6o > 0 with the following
property. Suppose that C is a smooth Jordan curve in R? with curvature x and
length \. Let a denote the area of the region enclosed by C. Then either a > 6o \>
or

A//@QdHl > a.
c

Remark. Incidentally, the inequality

/n dH1>7T—>\
I a

was proved by Gage [7] for convex curves.
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Proof. We may assume that A = 27, as the inequalities are invariant under
scaling. It is convenient to consider a parametrisation v : S' — R? of C by arc
length.

If the statement was false for some a > 0, then we could find a sequence of
curves with parametrisations 7 : S' — R? by arc length, such that the enclosed
areas aj converge to 0, but

27r/ k2 ds < a
S1

for every k € N. Thus after a translation, we have a uniform bound for 7y in the
Sobolev space W?22(S1; R?). Hence we may choose a subsequence that converges
weakly in W?22(S1;R?), and this implies uniform convergence as well by the
Sobolev embedding theorem and the Arzela-Ascoli theorem. Let v : St — R2
be the limit. This curve may have self-intersections, but it still decomposes the
plane into two (degenerate) regions. Moreover, the inner region has vanishing

area. But we also have
271'/ 152 ds < .
Sl

In particular we have a C™'/2-immersion, and it is clear that no such curve
exists. ]

Lemma 5.3. Let a > 0. There exists a number 6o > 0 such that if 6 < g, then

14
/ war < 4B ).
iy (67

Proof. Choose Jy as in Lemma 5.2. Fix a regular ¢ and suppose that C is a
connected component of M. Then we have

e
/c = HI(C)

provided that § < dg. Thus
a | A2 1 1 |A|2
< dH" < d
Hl(C)_/cl—u% V1= e 102

Furthermore,

H.

dH!
HU(C) < | ——.
©s [ =

Hence, recalling that we have assumed § < %, we find
9 / 1 /
@ < ﬁ dH! L
2 " \Jey1—-0v} c/1—v? .

Summing over all connected components and using the Cauchy-Schwarz inequal-
ity, we obtain

/ 1/2
2 T \Ump 1-13 ME /1 —vi -
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Integrating over (—¢, ) and using Holder’s inequality and Lemma 4.1 now yields

Va [f 12 1/2
7/ #3dt < (/ |A|2dH2) (HA(M))"" <2Vl + cE(M).
—e M
The claim follows immediately. O

5.4 The fourth exceptional set
Lemma 5.4. The inequality

14
/ #idt < n 25E.(M)
—L

holds true.

Proof. Fix a regular t with #7 # 0. Let C be a connected component of M.
Then we have

2
NG |A?
4% < //-cdH1> <6 e/deH1< dH*.
_(ct _\[ct T V1602 Je 11}

Hence
A7

——d
Mp /1 — v

224t < 60/e ML

As usual, we integrate and find

¢
272 / 5#;* dt < 26E.(M),
which implies the claim. O

5.5 An estimate of the area

The following proposition, giving an estimate for the area of the ‘bad’ part of
M, is the main result of this section. We now set L = 2/ again.

Proposition 5.1. Let Cy > 1 and o > 0. There exists a number dg > 0 such
that if § < 8o, € < L, and E.(M) < Cov/'L, then

HA(M' U M2 U M3 UM*) < 1602VeL <5+ g + \/f> _
«

Proof. As #7 is always an integer, it follows from Lemma 5.1 that
H' ({t € [-0,0] : #; > 0}) < 4y/e6 2E(M).

Combining this estimate with Lemma 3.1, we obtain

H? ({x e M?: || < i}) < 8ed"2(E.(M))%. (12)

17



Using Lemmas 5.3 and 5.4, we obtain similar estimates for M3 and M*, namely

H(M?) §81/27L6(E6(M))2 and  H*(M*) < 5y/e(E(M))>.

(Recall that || < % on M3 and M%) We have [v1] > & on M?, and also on

the part of M? not accounted for in (12). It is clear that
)
H? ({x eM: || > 2}) < 85 22E(M).
Now it suffices to add up all the terms and use the fact that Cy > 1 and
e< L. O

6 Convergence in Hausdorff distance

Finally, we want to give a proof of Theorem 1.3. In the first step, we still study
a fixed L > 0 and an fixed M € My, ;. We consider the projection

D =TI(M)

onto the (x2,x3)-plane. In order to prove closeness to a line segment parallel to
the z1-axis, we need above all to estimate the diameter of D.

6.1 The area of D

We begin with something easier: to estimate the area of D.

Lemma 6.1. For any e > 0,
H*(D) < VL + eE(M).

Proof. Consider an open subset Q C D and a function f € C*°(Q) such that
the graph of f,
G = {(f(z2,23), w2, 33) : (22, 73) € Q},

is contained in M. Then we compute

/ lv1| dH? = H? ().
G
We define the function # : D — N U {co} by

#(za,23) = HO (M N (R x {(22,23)})) ,

and we infer

1/2
/#dHQZ/ 1| dH? < (H2(M))'/? (/ yde2> .
D M M

We use Lemma 4.1 to estimate the area of M. We find
/ #dH? < 2L + eE(M).
D

But clearly, we have # > 2 almost everywhere in D. O]
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6.2 The diameter of D

Next we decompose D according to the ‘good’ and the ‘bad’ sets from section 5.
For a fixed § € (0, 3], let M©,..., M* be defined as before. Set

D’ =T(M°) and D*=T(M\M").
Then D = D° U D*.

Lemma 6.2. Let Cy > 1 and R = CyVeL. Furthermore, suppose that n € N
with 2CoL6—3 < n+ 1. If M is a topological sphere, and if e < L and E.(M) <
CoV'L, then there exist certain points yV, ..., y™ e R? such that

DOCU{y€R2:|y—y(i)|§R}.
i=1

Proof. We argue by contradiction. Suppose that D° cannot be covered by n
disks of radius R. Then there exist y™"), ..., 3y"*tD € D with

ly® —y D) >R fori#j.

For every i = 1,...,n + 1 there exists a number ¢; such that (t;,y*) € MtO
For each i, let C; be the connected component of H(Mto) containing y*). Let a;
be the area of the region enclosed by C;.

Note that {t;} x C; is a loop in M. Since M is a sphere, the loop can be
contracted within M, which gives rise to a contraction of C; in D. In particular,
the region bounded by C; is contained in D. (This is the only place in the proof
of this lemma and of Theorem 1.3 where the assumption on the topology of M
is used.)

By the definition of M and Lemma 3.1, we have

HY(M;,) < 2CoVel = 2R.

Hence the curves C; are pairwise disjoint, as are the regions enclosed by them.
Again using the definition of Mtoi, we also see that

ai > §(H'(C;))? > 6%
Therefore,

H2(D) > Zai > (TL + 1)(536 > 2Cqy Le.
i=1
This contradicts Lemma 6.1. O

Proposition 6.1. For any Cy > 1 there exists a number C > 0 with the
following property. Let o > 0 and L > 0. Then there is a dg > 0 such that
for all § € (0,00] and € € (0, L], and for all embedded spheres M € My, o with

E (M) < Co\V/'L, the inequality

/4 p1/4 p3/4
diam TI(M) < LY (VG4 S ¢ B L Ve
) 061/4 63

holds true.
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Proof. We use the same notation as before, in particular D = II(M). Choose
y,z € D with diam D = |y — z|. Define

(Ovy — Z)

77:
ly — 2|

and
J:{(os,n>:xGM}\{(x,n):IEMO}.

By Lemma 6.2, we have
HY(J) > diam D — 4C2 L3253 /e.

According to Lemma 4.2 and Proposition 5.1, there exists a constant C, de-
pending only on Cj, such that

1/2
HYJ) < CL L3 [ 6+ Ve + \/f .
62 o

A combination of the two estimates gives the desired inequality. O

6.3 Proof of Theorem 1.3

By Proposition 3.1, we need only consider regular surfaces. Consider embedded
spheres M. C R3. Suppose that each M, is regular with A(M.) = L. and

lim sup E.(M,) < oco.
e\,0

Let D, = II(M,). As we are free to apply a translation to each M., we may
assume that M, € Mp_s; and 0 € D for every e.
By Theorem 1.1, we have

limsup L, < oo.
eN\.0

Hence there exist a sequence ¢, \, 0 and a number L > 0 such that L., — L.
Now consider the inequality of Proposition 6.1. Choosing « sufficiently large
and 0 and e sufficiently small, we can make the right hand side arbitrarily small.
Hence we have
lim diam D, = 0.

k—oo
That is, the surface M., is contained in a cylinder about the z;-axis of length
L., and radius r; with limy_. 7y = 0. As M., is connected, it follows that

M., converges in Hausdorff distance to the line segment connecting the points
(£L/2,0,0).
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