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A geometric Ginzburg-Landau problem

Roger Moser∗

March 5, 2012

Abstract

For surfaces embedded in a three-dimensional Euclidean space, con-
sider a functional consisting of two terms: a version of the Willmore energy
and an anisotropic area penalising the first component of the normal vec-
tor, the latter weighted with the factor 1/ε2. The asymptotic behaviour
of such functionals as ε tends to 0 is studied in this paper. The results
include a lower and an upper bound on the minimal energy subject to suit-
able constraints. Moreover, for embedded spheres, a compactness result
is obtained under appropriate energy bounds.

1 Introduction

1.1 Background

Given a closed surface M , smoothly embedded in R3, let ν denote its normal
vector and A its second fundamental form. Let Hn denote the n-dimensional
Hausdorff measure. For ε > 0, consider the integral

1
2

ˆ
M

(
|A|2 +

ν2
1

ε2

)
dH2.

This is the sum of a quantity closely related to the Willmore energy (an overview
of which is given by Willmore [17]) and an anisotropic area functional. We study
the behaviour of this functional, and of surfaces with reasonably small energy,
as the parameter ε tends to 0.

Functionals of this type have been proposed as models for the free energy
of crystal surfaces [10, 1, 6, 15, 8, 9]. The anisotropy reflects the underlying
crystal structure in this context, and the inclusion of the curvature term is
motivated sometimes by its regularisation properties and sometimes on physical
grounds. A one-dimensional version (with curves rather than surfaces) has also
been studied for its applications in image processing [3, 4, 5].

Some tools for the analysis of a similar problem have been developed in a
previous paper [13]. They are motivated by the theory of Modica and Mortola
[11, 12] (and others) on models of phase transitions, and they work only for
an anisotropy given by a potential function Ψ : S2 → R with isolated minima.
In this situation, it turns out that a sequence of surfaces satisfying a suitable
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energy bound always subconverges to a generalised polyhedron. A lower bound
for the limiting energy can also be derived, and it depends linearly on the lengths
of the edges.

In contrast, the functional studied here involves the function Ψ(ν) = ν2
1 ,

which attains its minimum on the whole equator {0} × S1. At a first glance,
this problem looks closer to the theory of Ginzburg-Landau vortices, which
was first developed by Bethuel, Brezis, and Hélein [2]. But despite the formal
similarities, we will see that the analogy between these two problems is limited,
too. Above all, the interesting phenomena occur at different scaling regimes
for the two energies. Ginzburg-Landau vortices have a typical energy of order
| log ε|. For the geometric problem, unless we allow the surfaces to shrink to
a point in the limit, we need at least an energy of order ε−1/2. It is therefore
convenient to renormalise the functional and define

Eε(M) =
√
ε

2

ˆ
M

(
|A|2 +

ν2
1

ε2

)
dH2.

Provided that this quantity remains bounded, and assuming that we have
topological spheres, we will see that they approach a line segment parallel to the
x1-axis in the Hausdorff distance sense. If L is the length of the line segment,
then we find a limiting energy of order

√
L. When we study connected surfaces

of arbitrary genus, then we still find estimates for the energy indicating a similar
behaviour.

1.2 Main results

For simplicity, we now assume that we have a surface M ⊂ R3 that is not only
closed and smoothly embedded, but also connected. This is not a significant
restriction, because in the case of a disconnected surface, we can apply the theory
to each connected component individually; on the other hand, the assumption
simplifies the presentation of the results.

We first note that the two terms in the definition of Eε behave differently
when we scaleM . Therefore, the asymptotic behaviour of the energy will depend
on the size of the surface. There are of course many ways to measure its size,
but for our purpose the extension of M in the direction of the x1-axis is the
most relevant quantity. We define

Λ(M) = sup
x,y∈M

(y1 − x1).

Let Γ denote the traditional Γ-function. Furthermore, let

a =
Γ(7/6)
Γ(2/3)

, b =
Γ(13/18)
Γ(2/9)

and c =
2π5/4

√
3

(
6b√
a
−
√
a

)
. (1)

Then we have the following estimates.

Theorem 1.1. For any L > 0,

23/4π
√
L ≤ lim inf

ε↘0
inf

Λ(M)≥L
Eε(M) ≤ lim sup

ε↘0
inf

Λ(M)≥L
Eε(M) ≤ c

√
L.
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A numerical evaluation gives 23/4π ≈ 5.28351 and c ≈ 6.77995. We will
prove the last inequality by a construction involving surfaces of revolution.
More precisely, they are obtained from functions u : [−L/2, L/2] → [0,∞)
with u(−L/2) = u(L/2) = 0 through a rotation of the graph about the x1-axis.
We find a relation between the energy of such a surface and the functional

F (u) = π

ˆ L/2

−L/2

(
1
u

+ u(u′)2

)
dt,

and the constant c is the minimum of F on a suitable space of functions. In
particular, it is the optimal value found with this method.

Since the limiting energy is of order
√
L, we see that it is energetically

unfavourable for a connected surface to split into several parts (while conserving
the total extension in the x1-direction) if ε is small. This observation provides
further justification for restricting our attention to connected surfaces.

We now consider a variant of the problem. Let H be the mean curvature
vector of the surface M and suppose that K is its Gauss curvature and χ(M)
its Euler characteristic. Using the identity

|H|2 − |A|2 = 2K

and the Gauss-Bonnet formula, we can express Eε(M) in the form

Eε(M) =
√
ε

2

ˆ
M

(
|H|2 +

ν2
1

ε2

)
dH2 − 2π

√
εχ(M).

If we have suitable control of the Euler characteristic, then the asymptotic
behaviours of Eε and the functional

E∗ε (M) =
√
ε

2

ˆ
M

(
|H|2 +

ν2
1

ε2

)
dH2

are the same. In particular, the estimates from Theorem 1.1 then apply to
E∗ε as well. But as one of the estimates used in the proof relies on the mean
curvature rather than the second fundamental form, we obtain a better result
under certain assumptions on the Euler characteristics.

Theorem 1.2. Let L > 0. For every ε > 0, let Mε ⊂ R3 be a closed, connected,
smoothly embedded surface with Λ(M) ≥ L. If limε↘0

√
εχ(Mε) = 0, then

2π
√
L ≤ lim inf

ε↘0
Eε(Mε). (2)

The surfaces used for the proof of Theorem 1.1 are topological spheres. Thus
there exists a sequence of surfaces satisfying the hypothesis, such that in addition
to the inequality of the theorem,

lim sup
ε↘0

Eε(Mε) ≤ c
√
L, (3)

where c is the constant from (1).
For the final main result we only consider topological spheres. This is for

technical reasons. When we further assume that we have uniformly bounded
energies, then we obtain convergence of a subsequence up to translation. The
limit is always a line segment parallel to the x1-axis.
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Theorem 1.3. For every ε > 0, suppose that Mε ⊂ R3 is a smoothly embedded
sphere such that

lim sup
ε↘0

Eε(Mε) <∞.

Then there exist a sequence εk ↘ 0, a sequence of points xk ∈ R3, and a
number ` ≥ 0 such that Mεk − xk converges in Hausdorff distance to the set
{(t, 0, 0) : −` ≤ t ≤ `}.

Note that Theorem 1.2 then implies

2π
√
L ≤ lim inf

k→∞
Eεk(Mεk)

for L = 2`. If we consider the functionals

Eε(M) =

{
Eε(M) if M is a smoothly embedded sphere,
∞ else,

on the space of compact subsets of R3, then we may interpret the combination
of Theorems 1.2 and 1.3 as a step towards Γ-convergence of Eε with respect to
the Hausdorff distance. The expected limit functional is of the form

E(M) =

{
c0
√
L if M is a line segment of length L parallel to the x1-axis,

∞ else,

with 2π ≤ c0 ≤ c. But in order to obtain a complete proof of Γ-convergence, we
would need matching constants in (2) and (3).

2 A construction

The purpose of this section is to prove the last inequality in Theorem 1.1. We
first note that the reason for the appearance of

√
L in this formula is the scaling

behaviour of Eε. Suppose that M is a closed, connected, smoothly embedded
surface in R3 and ε > 0. For λ > 0, consider Mλ = λM and ελ = λε. Then we
compute

Eελ(Mλ) =
√
λEε(M).

Thus in order to prove Theorem 1.1, it suffices to consider one specific value for
L. For reasons that we will see later, it is convenient to choose

L =
4
√
πΓ(7/6)

3Γ(2/3)
.

We want to construct a sequence of surfaces Mε with Λ(Mε) = L, such that

lim sup
ε↘0

Eε(Mε) ≤ c
√
L

for the constant c defined in (1).
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2.1 Surfaces of revolution

Fix an ` > 0 and consider a surface of revolution generated by a function
u ∈ C∞(−`, `) ∩ C0([−`, `]) with u > 0 in (−`, `) and u(−`) = u(`) = 0. We
also assume that

lim
t→±`

u′(t) = ∓∞.

The corresponding surface is then

M =
{
x ∈ [−`, `]× R2 : x2

2 + x2
3 = (u(x1))2

}
.

The above assumptions do not imply that M is smooth at the points (±`, 0, 0),
but it is readily seen that the singularities can be smoothed out while increasing
the energy by an arbitrarily small amount. We extend Eε in the obvious way
so that surfaces of this type are included in its domain.

We then calculate the first component of the normal vector and the norm of
the second fundamental form of M , namely

ν1 = − u′√
1 + (u′)2

, |A|2 =
1

u2(1 + (u′)2)
+

(u′′)2

(1 + (u′)2)3
.

Therefore,

Eε(M) = π
√
ε

ˆ `

−`

(
u−1 + ε−2u(u′)2√

1 + (u′)2
+

u(u′′)2

(1 + (u′)2)5/2

)
dt.

When we let ε ↘ 0, the functions generating our surfaces must of course
depend on ε. We use the ansatz uε =

√
εv for a fixed function v. If Mε denotes

the corresponding surface of revolution, then

Eε(Mε) = π

ˆ `

−`

(
v−1 + v(v′)2√

1 + ε(v′)2
+

ε2v(v′′)2

(1 + ε(v′)2)5/2

)
dt.

Fix σ ∈ (0, 2]. Using the estimates 1 + ε(v′)2 ≥ 1 and 1 + ε(v′)2 ≥ ε(1 + (v′)2)
simultaneously, we find

Eε(Mε) ≤ π
ˆ `

−`

(
1
v

+ v(v′)2

)
dt+ εσπ

ˆ `

−`

v(v′′)2

((v′)2 + 1)2−σ dt

when ε ≤ 1. Provided that
ˆ `

−`

v(v′′)2

((v′)2 + 1)2−σ dt <∞, (4)

this implies

lim sup
ε↘0

Eε(Mε) ≤ π
ˆ `

−`

(
1
v

+ v(v′)2

)
dt. (5)
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2.2 Solving an auxiliary problem

These observations show that for any function v that satisfies the relevant as-
sumptions, including (4), we obtain an upper bound similar to the last estimate
in Theorem 1.1. In order to make the most of this information, we want to
minimise the functional

F (v) = π

ˆ `

−`

(
1
v

+ v(v′)2

)
dt

in an appropriate class of functions. Thus we have a new variational problem,
and its Euler-Lagrange equation is

v′′ +
(v′)2

2v
+

1
2v3

= 0. (6)

We now look for solutions of this equation.
It is convenient, however, to first apply the transformation w = v3/2. Defin-

ing

G(w) = π

ˆ `

−`

(
4
9

(w′)2 + w−2/3

)
dt,

we then have F (v) = G(w). Moreover, equation (6) is equivalent to

w′′ +
3
4
w−5/3 = 0. (7)

Suppose that ` > 0 and that w is a solution of (7) in (−`, `) with w > 0.
Multiply both sides of the equation with w′. Then we find

d

dt

(
4
9

(w′)2 − w−2/3

)
= 0.

Thus there exists a constant γ such that

4
9

(w′)2 − w−2/3 = γ. (8)

Motivated by the underlying geometric problem, and expecting symmetry, we
make the ansatz w′(0) = 0 and w′(t) ≤ 0 for t > 0. In order to single out one
specific solution, we also assume that w(0) = 1, which implies γ = −1. In the
interval [0, `), we then have

w′ = −3
2

√
w−2/3 − 1.

We can solve this equation using separation of variables. Let

g(s) =
ˆ s

0

dr√
r−3/2 − 1

.

Then g is invertible on the interval [0, 1] and we have

w(t) = g−1

(
g(1)− 3t

2

)
.
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If

` =
2
3
g(1) =

2
3

ˆ 1

0

dr√
r−3/2 − 1

,

then we have w(`) = 0. Because w solves (8), we also obtain

lim
t↗`

w′(t) = −∞.

We extend w as an even function to [−`, `], and it remains a solution of (7).

2.3 Condition (4) is satisfied

Now we set v = w2/3. This is a solution of (6), and potentially a good choice
for the construction in section 2.1. We need to verify, however, that v satisfies
(4) before we can draw any conclusions.

Note that
lim
s↘0

s3/4
√
s−3/2 − 1 = 1.

By l’Hôpital’s rule,

lim
s↘0

4s7/4

7g(s)
= lim
s↘0

s3/4

g′(s)
= 1.

Hence

lim
t↘0

g−1(t)
(7t/4)4/7

= lim
s↘0

g−1(g(s))
(7g(s)/4)4/7

= lim
s↘0

(
4s7/4

7g(s)

)4/7

= 1.

In particular, we have
w(t) ≥ (`− t)4/7

in a neighbourhood of `.
Now consider the function v = w2/3, which is a solution of (6). We have

v′ =
2
3
w−1/3w′ = −w−1/3

√
w−2/3 − 1

for t > 0, and

v′′ = −1
2

(
(v′)2

v
+

1
v3

)
= −1

2

(
w−4/3(w−2/3 − 1) + w−2

)
= −w−2 +

1
2
w−4/3.

If `− t is sufficiently small, then

|v′′| ≤ 2w−2 and (v′)2 + 1 ≥ 1
2
w−4/3.

Thus
v(v′′)2

((v′)2 + 1)2−σ ≤ 24−σw−
2+4σ

3 ≤ 24−σ(`− t)−
8+16σ

21 .

As long as σ < 13
16 , we find that (4) is indeed satisfied. This means that for this

choice of the function v, inequality (5) is satisfied as well.
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2.4 Calculating the energy

Finally, we want to compute F (v). Or more precisely, we want to show that

c =
F (v)√

2`
(9)

for the number c defined in (1).
First we note that by the symmetry and by (8),

G(w) = 2π
ˆ `

0

(
2w−2/3 − 1

)
dt = 4π

ˆ `

0

(
g−1

(
3(`− t)

2

))−2/3

dt− 2π`.

Using the substitution s = g−1(3(`− t)/2), we find

ˆ `

0

(
g−1

(
3(`− t)

2

))−2/3

dt =
2
3

ˆ 1

0

s−2/3g′(s) ds =
2
3

ˆ 1

0

ds

s2/3
√
s−2/3 − 1

.

Thus

F (v) = G(w) =
8π
3

ˆ 1

0

ds

s2/3
√
s−2/3 − 1

− 2π`,

and recall that

` =
2
3

ˆ 1

0

ds√
s−3/2 − 1

.

Next we want to evaluate these integrals. To this end, we use the traditional
B- (beta-) and Γ-functions

B(p, q) =
ˆ ∞

0

tp−1

(1 + t)p+q
dt, p, q > 0,

Γ(p) =
ˆ ∞

0

tp−1e−t dt, p > 0,

satisfying the well-known relations Γ(p+ 1) = pΓ(p) and

B(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

.

Moreover, we know that Γ(1/2) =
√
π.

If φ : [0, 1) → [0,∞) is a continuous, increasing function with φ(0) = 0 and
lims↗1 φ(s) =∞, then Fubini’s theorem implies

ˆ 1

0

φ(s) ds =
ˆ 1

0

ˆ φ(s)

0

1 dr ds =
ˆ ∞

0

ˆ 1

φ−1(r)

1 ds dr =
ˆ ∞

0

(
1− φ−1(r)

)
dr.

Thus ˆ 1

0

ds√
s−3/2 − 1

=
ˆ ∞

0

(
1− r4/3

(r2 + 1)2/3

)
dr.

We have
d

dr

(
1− r4/3

(r2 + 1)2/3

)
= −4

3
r1/3

(r2 + 1)5/3
.
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Hence an integration by parts gives
ˆ 1

0

ds√
s−3/2 − 1

=
4
3

ˆ ∞
0

r4/3

(r2 + 1)5/3
dr.

The substitution ρ = r2 finally yields
ˆ 1

0

ds√
s−3/2 − 1

=
2
3

ˆ ∞
0

ρ1/6

(1 + ρ)5/3
dρ =

2
3

B(7/6, 1/2) =
√
πΓ(7/6)
Γ(2/3)

.

With the same method, we obtain
ˆ 1

0

ds

s2/3
√
s−3/2 − 1

=
3
√
πΓ(13/18)
Γ(2/9)

.

Hence
F (v)√

2`
=

2π5/4

√
3

(
6b√
a
−
√
a

)
,

where

a =
Γ(7/6)
Γ(2/3)

and b =
Γ(13/18)
Γ(2/9)

.

That is, identity (9) is true.
The rest of the proof of Theorem 1.1 is rather different from the arguments

used here, and so before we continue, we summarise the results so far. We have
constructed a family of surfaces of revolution Mε with Λ(Mε) = L = 2`, such
that

lim sup
ε↘0

Eε(Mε) ≤ c
√
L

for the number c defined in (1). Although Mε is not necessarily smooth, it
is regular enough so that the same conclusion can be drawn for appropriate
smooth surfaces approximating Mε.

3 Slicing

In the rest of the paper, we study an arbitrary closed, connected, smoothly
embedded surface M ⊂ R3. Most of the estimates that we use involve intersec-
tions of M with planes perpendicular to the x1-axis. In this section we give a
preliminary discussion of these slices.

3.1 Regular surfaces

Definition 3.1. Suppose that M ⊂ R3 is a closed, connected, smoothly embed-
ded surface with normal vector ν. Then for t ∈ R, we define

Mt = M ∩ ({t} × R2).

We say that t ∈ R is regular (for M) if the intersection is transversal everywhere
on Mt. We say that M is regular if ν−1({(±1, 0, 0)}) is finite.

For a regular surface M , it follows that there exist only finitely many irreg-
ular values for t. For the problems studied in this paper, it suffices to consider
regular surfaces.

9



Proposition 3.1. Let M ⊂ R3 be a closed, connected, smoothly embedded
surface and ε > 0. Then there exists a sequence of regular surfaces Mk such that
Eε(Mk)→ Eε(M) and Mk →M in the Hausdorff distance sense as k →∞.

Proof. Let ν be the normal vector of M . By the area formula, we have
ˆ
S2
H0(ν−1({η})) dH2(η) <∞.

Thus in any neighbourhood of (1, 0, 0), there exists an η such that ν−1({±η}) is
finite. We can obtain the surfaces Mk by applying suitable rotations to M .

From now on, we focus on regular surfaces. It is also convenient to fix Λ(M),
say Λ(M) = 2`, and then we may assume that M ⊂ [−`, `]× R2.

Definition 3.2. Let ` > 0. The set M` consists of all closed, connected,
smoothly embedded surfaces M ⊂ R3 such that M is regular, Λ(M) = 2`, and
M ⊂ [−`, `]× R2.

3.2 Notation and preliminaries

Now let ` > 0 and M ∈ M`. For a regular t ∈ (−`, `), we introduce some
notation. First, the map Π : R3 → R2 is the projection onto the (x2, x3)-plane:

Π(x1, x2, x3) = (x2, x3).

As Mt is the result of a transversal intersection, it is a compact, smooth,
one-dimensional submanifold of the plane {t} × R2; in other words, Mt is a
union of smooth Jordan curves. Moreover, it has a well-defined curvature κt.
We use a sign convention such that κt < 0 if Mt is convex.

When we vary t, then Mt remains smooth in a neighbourhood of a regular
point in (−`, `). Interpreting t as time, we obtain a smoothly evolving subman-
ifold Π(Mt) in R2, and we can define the normal velocity vt of the evolution.
We choose the sign of vt such that vt > 0 for an expansion.

Fix a regular point t again. Suppose that f is a differentiable function on
M and s denotes an arc length parameter locally on Mt. We introduce the
quantities ḟ and f ′, informally defined as

ḟ =
∂f

∂s
and f ′ =

∂f

∂t
.

More precisely, if γ is a parametrisation of a piece of Mt by arc length, then

ḟ(γ(s)) =
d

ds
f(γ(s)).

This leaves some ambiguity about the sign, which we will remove in a moment
by fixing the orientation of γ. In order to give another representation of f ′,
we can extend f to a neighbourhood of M in R3 such that ∇νf = 0 (i.e., the
directional derivative of f in the normal direction vanishes), and then f ′ = ∂f

∂x1
.

Locally on Mt, we can use the unit vectors e(1) and e(2), where e(1) = γ̇ and
e(2) = ν × e(1). Assuming that γ is oriented such that e(2)

1 > 0, we have

∇e(2)f =
√

1− ν2
1f
′.

10



Of course, we also have ḟ = ∇e(1)f . In particular,

|A|2 = |∇e(1)ν|2 + |∇e(1)ν|2 = |ν̇|2 + (1− ν2
1)|ν′|2.

Furthermore,

|κt| = |∇e(1)e(1)| = |ė(1)| =
∣∣〈ν, ė(1)

〉∣∣√
1− ν2

1

≤ |A|√
1− ν2

1

and
vt = − ν1√

1− ν2
1

.

Note also that we have
ˆ
M

f dH2 =
ˆ `

−`

ˆ
Mt

f√
1− ν2

1

dH1 dt.

Finally, we calculate

d

dt

ˆ
Mt

f dH1 =
ˆ
Mt

(f ′ − fvtκt) dH1.

3.3 A simple estimate

We can immediately give an estimate for the length of the part of Mt where ν1

is small.

Lemma 3.1. Let ` > 0 and M ∈M`. For every t ∈ [−`, `],
ˆ
Mt

(1− ν2
1) dH1 ≤ 3

2
√
εEε(M).

Proof. We compute

d

dt

ˆ
Mt

(1− ν2
1) dH1 = −

ˆ
Mt

(2ν1ν
′
1 + (1− ν2

1)κtvt) dH1

for every regular t ∈ (−`, `). Using the previous calculations, we obtain

(1− ν2
1)|κtvt| ≤ |ν1||ν̇| ≤

|A||ν1|√
1− ν2

1

and ∣∣∣∣ ddt
ˆ
Mt

(1− ν2
1) dH1

∣∣∣∣ ≤ 3ε
2

ˆ
Mt

|A|2 + ε−2ν2
1√

1− ν2
1

dH1.

The function
t 7→
ˆ
Mt

(1− ν2
1) dH1

is continuous even at an irregular t. As H1(M−`) = H1(M`) = 0, we have
ˆ
Mt

(1− ν2
1) dH1 ≤ 3ε

2

ˆ t

−`

ˆ
Ms

|A|2 + ε−2ν2
1√

1− ν2
1

dH1 ds

=
3ε
2

ˆ
{x∈M :x1≤t}

(
|A|2 +

ν2
1

ε2

)
dH2

11



and also ˆ
Mt

(1− ν2
1) dH1 ≤ 3ε

2

ˆ
{x∈M :x1≥t}

(
|A|2 +

ν2
1

ε2

)
dH2

for every t ∈ [−`, `]. The smaller of these two numbers gives rise to the desired
inequality.

4 The lower bound

We now derive the first estimate in Theorem 1.1. The proof relies on the next
two lemmas.

4.1 Preliminary estimates

Let ` > 0. Throughout this section, we consider a fixed regular surface M ∈M`

with normal vector ν and second fundamental form A. Its mean curvature vector
is denoted by H.

Lemma 4.1. The inequality

H2(M) ≤
(
`
√

2ε+ 2ε3/2
)
Eε(M)

holds true.

Proof. Consider the vector field Φ(x) = (x1, 0, 0) on R3. Writing id for the
identity (3× 3)-matrix, we calculate

divM Φ = trace ((id− ν ⊗ ν)∇Φ) = 1− ν2
1

for the divergence of Φ with respect to M . We have the integration by parts
formula ˆ

M

divM Φ dH2 = −
ˆ
M

〈Φ, H〉 dH2.

Note that |H|2 ≤ 2|A|2. Hence
ˆ
M

(1− ν2
1) dH2 ≤

√
2
ˆ
M

|x1||ν1||A| dH2 ≤ ε`√
2

ˆ
M

(
|A|2 +

ν2
1

ε2

)
dH2.

The desired inequality follows.

Remark. With exactly the same method, we also obtain

H2(M) ≤
(
`
√
ε+ 2ε3/2

)
E∗ε (M). (10)

The next statement is a variant of a well-known inequality [14]. (A more
general discussion of similar inequalities is given by Topping [16].) We provide
the details of the proof, although there is nothing essentially new here.

Lemma 4.2. Let η ∈ S2 and suppose that J ⊂ R is a measurable set. Let
M̃ = {x ∈M : 〈x, η〉 ∈ J}. Then

4π2(H1(J))2 ≤ H2(M̃)
ˆ
M̃

|A|2 dH2.

12



In particular,

16π2`2 ≤ H2(M)
ˆ
M

|A|2 dH2.

Proof. We assume that η = (1, 0, 0), because we already have the appropriate
notation for this case. Any other case can be reduced to this situation by a
rotation.

Fix a regular t ∈ (−`, `). Let C be a connected component of Mt. Then
ˆ
C

|A|√
1− ν2

1

dH1 ≥
ˆ
C
|κt| dH1 ≥ 2π. (11)

Now we obtain

2πH1(J) ≤
ˆ
J

ˆ
Mt

|A|√
1− ν2

1

dH1 dt =
ˆ
M̃

|A| dH2 ≤
(
H2(M̃)

ˆ
M̃

|A|2 dH2

) 1
2

.

Finally we take the square on both sides. The second inequality follows when
we choose J = [−`, `].

4.2 Proofs of Theorems 1.1 and 1.2

We have already seen that the last inequality in Theorem 1.1 is a consequence
of the construction in section 2.

For the first inequality, it suffices to show that

23/4π
√
L ≤ lim inf

ε↘0
inf
ML/2

Eε

by Proposition 3.1. Let ` = L/2 and fix M ∈ M`. Combining Lemma 4.1 and
Lemma 4.2, we then infer

16π2`2 ≤ H2(M)
ˆ
M

|A|2 dH2 ≤
(

2
√

2`+ 4ε
)

(Eε(M))2.

Thus

Eε(M) ≥ 25/4π`√
`+
√

2ε
,

and the desired inequality in Theorem 1.1 follows as ε↘ 0.
For the proof of Theorem 1.2, we use exactly the same method, but instead

of Lemma 4.1, we use inequality (10). This then gives

16π2`2 ≤ (2`+ 4ε)Eε(Mε)E∗ε (Mε).

Under the hypothesis on the Euler characteristics in Theorem 1.2, we have

lim
ε↘0

Eε(Mε)
E∗ε (Mε)

= 1,

and so the required inequality follows.
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5 A decomposition

For the proof of Theorem 1.3, it suffices to study regular surfaces as well. Again
we fix ` and study a fixed surface M ∈M`, and as usual we use the symbols ν
and A to denote its normal vector and its second fundamental form, respectively.

Under a control of Eε of the form Eε(M) ≤ C0

√
L, we expect that the

typical slice Mt will be a curve with length of order
√
ε and with a shape not

too dissimilar to a circle; or possibly the union of several curves of this type,
but not too many. But in general there will be slices where this expectation is
not fulfilled. The purpose of this section is to separate the ‘good’ from the ‘bad’
curves.

5.1 Definitions

Throughout this section, let δ ∈ (0, 1
4 ] be a fixed number. Fix a regular t ∈

(−`, `). Let C1, . . . , Cm be the connected components of Mt. Moreover, let ai be
the area of the region enclosed by Ci. Define

I1 = {i ∈ {1, . . . ,m} : ν1(Ci) ⊂ [−1,−δ/2] ∪ [δ/2, 1]} ,
I2 = {i ∈ {1, . . . ,m} : i 6∈ I1 and ν1(Ci) 6⊂ [−δ, δ]} ,
I3 =

{
i ∈ {1, . . . ,m} : i 6∈ I1 ∪ I2 and ai < δ(H1(Ci))2

}
,

I4 =
{
i ∈ {1, . . . ,m} : i 6∈ I1 ∪ I2 ∪ I3 and H1(Ci) < δ

√
ε
}
.

These are the indices of curves that we think of as exceptional in some sense:
either the intersection of the surface M with the plane {t}×R2 is not sufficiently
transversal on all or part of Ci, or Ci is not round enough (in terms of the
isoperimetric quotient), or it is too short. Now let

M j
t =

⋃
i∈Ij

Ci, j = 1, 2, 3, 4,

and
M0
t = Mt\(M1

t ∪M2
t ∪M3

t ∪M4
t ).

Furthermore, let
#j
t = |Ij |, j = 1, 2, 3, 4

(i.e., the number of indices in each category). The quantities M j
t and #j

t are
then independent of the labelling of the connected components, and thus well-
defined as functions of t. If t is irregular, then we set M j

t = ∅ and #j
t = 0 for

every j.
Finally, for j = 0, . . . , 4, let

M j =
⋃

−`<t<`

{t} ×M j
t .

The union of M0, . . . ,M4 then comprises all of M except the irregular slices.
As |ν1| ≥ δ

2 on M1, it is quite easy to estimate the area of M1 in terms of
Eε(M). We now want to estimate the areas of M2, M3, and M4 as well, and
for this purpose we estimate the integrals of #2

t , #3
t and #4

t first.
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5.2 The second exceptional set

Lemma 5.1. The inequality

ˆ `

−`
#2
t dt ≤ 4

√
εδ−2Eε(M)

holds true.

Proof. Fix a regular t ∈ (−`, `) with #2
t 6= 0. Suppose that C is a connected

component of M2
t . Consider a parametrisation γ : [0, S] → C by arc length.

Then there exist two points s1, s2 ∈ [0, S] with |ν1(γ(s1))| = δ
2 and |ν1(γ(s2))| =

δ, and we may assume that s1 < s2. Then

δ2

2
≤ 2
ˆ s2

s1

|ν1(γ(s))||ν̇1(γ(s))| ds ≤ 2
ˆ
C

|ν1||ν̇|√
1− ν2

1

dH1.

Hence ˆ
C

|A|2 + ε−2ν2
1√

1− ν2
1

dH1 ≥ δ2

2ε
.

Treating every connected component similarly, we obtain
ˆ
M2
t

|A|2 + ε−2ν2
1√

1− ν2
1

dH1 ≥ δ2#2
t

2ε
.

On the other hand,

ˆ `

−`

ˆ
M2
t

|A|2 + ε−2ν2
1√

1− ν2
1

dH1 dt =
2Eε(M)√

ε
,

and the claim follows.

5.3 The third exceptional set

In order to prove a similar estimate for #3
t , we use an estimate of the isoperi-

metric quotient.

Lemma 5.2. For any α > 0 there exists a number δ0 > 0 with the following
property. Suppose that C is a smooth Jordan curve in R2 with curvature κ and
length λ. Let a denote the area of the region enclosed by C. Then either a ≥ δ0λ2

or
λ

ˆ
C
κ2 dH1 ≥ α.

Remark. Incidentally, the inequality
ˆ
C
κ2 dH1 ≥ πλ

a

was proved by Gage [7] for convex curves.
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Proof. We may assume that λ = 2π, as the inequalities are invariant under
scaling. It is convenient to consider a parametrisation γ : S1 → R2 of C by arc
length.

If the statement was false for some α > 0, then we could find a sequence of
curves with parametrisations γk : S1 → R2 by arc length, such that the enclosed
areas ak converge to 0, but

2π
ˆ
S1
|γ̈k|2 ds < α

for every k ∈ N. Thus after a translation, we have a uniform bound for γk in the
Sobolev space W 2,2(S1; R2). Hence we may choose a subsequence that converges
weakly in W 2,2(S1; R2), and this implies uniform convergence as well by the
Sobolev embedding theorem and the Arzelà-Ascoli theorem. Let γ : S1 → R2

be the limit. This curve may have self-intersections, but it still decomposes the
plane into two (degenerate) regions. Moreover, the inner region has vanishing
area. But we also have

2π
ˆ
S1
|γ̈|2 ds ≤ α.

In particular we have a C1,1/2-immersion, and it is clear that no such curve
exists.

Lemma 5.3. Let α > 0. There exists a number δ0 > 0 such that if δ ≤ δ0, then
ˆ `

−`
#3
tdt ≤ 4

√
`+ ε

α
Eε(M).

Proof. Choose δ0 as in Lemma 5.2. Fix a regular t and suppose that C is a
connected component of M3

t . Then we have
ˆ
C
κ2
t dH1 ≥ α

H1(C)
,

provided that δ ≤ δ0. Thus

α

H1(C)
≤
ˆ
C

|A|2

1− ν2
1

dH1 ≤ 1√
1− δ2

ˆ
C

|A|2√
1− ν2

1

dH1.

Furthermore,

H1(C) ≤
ˆ
C

dH1√
1− ν2

1

.

Hence, recalling that we have assumed δ ≤ 1
4 , we find

√
α

2
≤

(ˆ
C

|A|2√
1− ν2

1

dH1

)1/2(ˆ
C

dH1√
1− ν2

1

)1/2

.

Summing over all connected components and using the Cauchy-Schwarz inequal-
ity, we obtain

#3
t

√
α

2
≤

(ˆ
M3
t

|A|2√
1− ν2

1

dH1

)1/2(ˆ
M3
t

dH1√
1− ν2

1

)1/2

.
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Integrating over (−`, `) and using Hölder’s inequality and Lemma 4.1 now yields

√
α

2

ˆ `

−`
#3
t dt ≤

(ˆ
M

|A|2 dH2

)1/2 (
H2(M)

)1/2 ≤ 2
√
`+ εEε(M).

The claim follows immediately.

5.4 The fourth exceptional set

Lemma 5.4. The inequality

ˆ `

−`
#4
t dt ≤ π−2δEε(M)

holds true.

Proof. Fix a regular t with #4
t 6= 0. Let C be a connected component of M4

t .
Then we have

4π2 ≤
(ˆ
C
κt dH1

)2

≤ δ
√
ε

ˆ
C
κ2
t dH1 ≤ δ

√
ε√

1− δ2

ˆ
C

|A|2√
1− ν2

1

dH1.

Hence

2π2#4
t ≤ δ

√
ε

ˆ
M4
t

|A|2√
1− ν2

1

dH1.

As usual, we integrate and find

2π2

ˆ `

−`
#4
t dt ≤ 2δEε(M),

which implies the claim.

5.5 An estimate of the area

The following proposition, giving an estimate for the area of the ‘bad’ part of
M , is the main result of this section. We now set L = 2` again.

Proposition 5.1. Let C0 ≥ 1 and α > 0. There exists a number δ0 > 0 such
that if δ ≤ δ0, ε ≤ L, and Eε(M) ≤ C0

√
L, then

H2(M1 ∪M2 ∪M3 ∪M4) ≤ 16C2
0

√
εL

(
δ +
√
ε

δ2
+

√
L

α

)
.

Proof. As #2
t is always an integer, it follows from Lemma 5.1 that

H1
({
t ∈ [−`, `] : #2

t > 0
})
≤ 4
√
εδ−2Eε(M).

Combining this estimate with Lemma 3.1, we obtain

H2

({
x ∈M2 : |ν1| ≤

1
4

})
≤ 8εδ−2(Eε(M))2. (12)
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Using Lemmas 5.3 and 5.4, we obtain similar estimates for M3 and M4, namely

H2(M3) ≤ 8

√
2Lε
α

(Eε(M))2 and H2(M4) ≤ δ
√
ε(Eε(M))2.

(Recall that |ν1| ≤ 1
4 on M3 and M4.) We have |ν1| ≥ δ

2 on M1, and also on
the part of M2 not accounted for in (12). It is clear that

H2

({
x ∈M : |ν1| ≥

δ

2

})
≤ 8δ−2ε3/2Eε(M).

Now it suffices to add up all the terms and use the fact that C0 ≥ 1 and
ε ≤ L.

6 Convergence in Hausdorff distance

Finally, we want to give a proof of Theorem 1.3. In the first step, we still study
a fixed L > 0 and an fixed M ∈ML/2. We consider the projection

D = Π(M)

onto the (x2, x3)-plane. In order to prove closeness to a line segment parallel to
the x1-axis, we need above all to estimate the diameter of D.

6.1 The area of D

We begin with something easier: to estimate the area of D.

Lemma 6.1. For any ε > 0,

H2(D) ≤ ε
√
L+ εEε(M).

Proof. Consider an open subset Ω ⊂ D and a function f ∈ C∞(Ω) such that
the graph of f ,

G = {(f(x2, x3), x2, x3) : (x2, x3) ∈ Ω} ,
is contained in M . Then we compute

ˆ
G

|ν1| dH2 = H2(Ω).

We define the function # : D → N ∪ {∞} by

#(x2, x3) = H0 (M ∩ (R× {(x2, x3)})) ,

and we infer
ˆ
D

# dH2 =
ˆ
M

|ν1| dH2 ≤ (H2(M))1/2

(ˆ
M

ν2
1 dH2

)1/2

.

We use Lemma 4.1 to estimate the area of M . We findˆ
D

# dH2 ≤ 2ε
√
L+ εEε(M).

But clearly, we have # ≥ 2 almost everywhere in D.
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6.2 The diameter of D

Next we decompose D according to the ‘good’ and the ‘bad’ sets from section 5.
For a fixed δ ∈ (0, 1

4 ], let M0, . . . ,M4 be defined as before. Set

D0 = Π(M0) and D∗ = Π(M\M0).

Then D = D0 ∪D∗.

Lemma 6.2. Let C0 ≥ 1 and R = C0

√
εL. Furthermore, suppose that n ∈ N

with 2C0Lδ
−3 < n+ 1. If M is a topological sphere, and if ε ≤ L and Eε(M) ≤

C0

√
L, then there exist certain points y(1), . . . , y(n) ∈ R2 such that

D0 ⊂
n⋃
i=1

{
y ∈ R2 : |y − y(i)| ≤ R

}
.

Proof. We argue by contradiction. Suppose that D0 cannot be covered by n
disks of radius R. Then there exist y(1), . . . , y(n+1) ∈ D0 with

|y(i) − y(j)| > R for i 6= j.

For every i = 1, . . . , n + 1 there exists a number ti such that (ti, y(i)) ∈ M0
ti .

For each i, let Ci be the connected component of Π(M0
ti) containing y(i). Let ai

be the area of the region enclosed by Ci.
Note that {ti} × Ci is a loop in M . Since M is a sphere, the loop can be

contracted within M , which gives rise to a contraction of Ci in D. In particular,
the region bounded by Ci is contained in D. (This is the only place in the proof
of this lemma and of Theorem 1.3 where the assumption on the topology of M
is used.)

By the definition of M0
ti and Lemma 3.1, we have

H1(Mti) ≤ 2C0

√
εL = 2R.

Hence the curves Ci are pairwise disjoint, as are the regions enclosed by them.
Again using the definition of M0

ti , we also see that

ai ≥ δ(H1(Ci))2 ≥ δ3ε.

Therefore,

H2(D) ≥
n+1∑
i=1

ai ≥ (n+ 1)δ3ε > 2C0Lε.

This contradicts Lemma 6.1.

Proposition 6.1. For any C0 ≥ 1 there exists a number C > 0 with the
following property. Let α > 0 and L > 0. Then there is a δ0 > 0 such that
for all δ ∈ (0, δ0] and ε ∈ (0, L], and for all embedded spheres M ∈ ML/2 with
Eε(M) ≤ C0

√
L, the inequality

diam Π(M) ≤ CL3/4

(√
δ +

ε1/4

δ
+
L1/4

α1/4
+
L3/4
√
ε

δ3

)
holds true.
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Proof. We use the same notation as before, in particular D = Π(M). Choose
y, z ∈ D with diamD = |y − z|. Define

η =
(0, y − z)
|y − z|

and
J = {〈x, η〉 : x ∈M} \

{
〈x, η〉 : x ∈M0

}
.

By Lemma 6.2, we have

H1(J) ≥ diamD − 4C2
0L

3/2δ−3
√
ε.

According to Lemma 4.2 and Proposition 5.1, there exists a constant C1, de-
pending only on C0, such that

H1(J) ≤ C1L
3/4

(
δ +
√
ε

δ2
+

√
L

α

)1/2

.

A combination of the two estimates gives the desired inequality.

6.3 Proof of Theorem 1.3

By Proposition 3.1, we need only consider regular surfaces. Consider embedded
spheres Mε ⊂ R3. Suppose that each Mε is regular with Λ(Mε) = Lε and

lim sup
ε↘0

Eε(Mε) <∞.

Let Dε = Π(Mε). As we are free to apply a translation to each Mε, we may
assume that Mε ∈MLε/2 and 0 ∈ Dε for every ε.

By Theorem 1.1, we have

lim sup
ε↘0

Lε <∞.

Hence there exist a sequence εk ↘ 0 and a number L ≥ 0 such that Lεk → L.
Now consider the inequality of Proposition 6.1. Choosing α sufficiently large

and δ and ε sufficiently small, we can make the right hand side arbitrarily small.
Hence we have

lim
k→∞

diamDεk = 0.

That is, the surface Mεk is contained in a cylinder about the x1-axis of length
Lεk and radius rk with limk→∞ rk = 0. As Mεk is connected, it follows that
Mεk converges in Hausdorff distance to the line segment connecting the points
(±L/2, 0, 0).
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