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Abstract 

Multi-stable piezoelectric energy harvesters have been exploited to enhance performance for 

extracting ambient vibrational energy from a broadband energy source. Since magnetic force plays a 

significant role in enhancing the dynamic behavior of harvesters, it is necessary to model and 

understand the significant influencing of structural parameters on magnetic force. Recently, several 

theoretical modeling methods, including magnetic dipole, improved dipole, magnetic current and 

magnetic charge models, have been developed to calculate the magnetic force in multi-stable energy 

harvesters. However, the influence of structural parameters and magnet dimensions on the accuracy of 

magnetic force calculation for these methods has not been analyzed. Therefore, it is necessary to 

investigate the applicability of these methods under a range of operating conditions. New insights into 

the accuracy and application constraints of these methods are presented in this paper to calculate the 

impact of magnetic force on multi-stable energy harvesters. From the theoretical derivation of models 
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and numerical results obtained, a quantitative assessment of errors under different structural 

parameters and magnet sizes is presented and compared to evaluate the application constraints. 

Moreover, experimental measurements are performed to verify the applicability of these modeling 

methods for bi-stable and tri-stable energy harvesters with different structural parameters. 

Keywords: Multi-stable energy harvester; magnetic force; nonlinearity; theoretical modeling 

 

1. Introduction  

A number of researchers have devoted significant effort to enhancing the performance of 

traditional energy harvesters (Cottone et al., 2009; Fang et al., 2020a; Yang et al., 2018; Zhao et al., 

2019a). The nonlinear energy harvester has received much attention since its stiffness can be adjusted 

to broaden the resonant frequency for performance enhancement (Barton et al., 2010; Fang et al., 

2020b; Fang et al., 2020c; Gammaitoni et al., 2009; Tang and Yang, 2012; Zhao et al., 2018; Zou et 

al., 2017). There are two main methods to achieve nonlinearity, including the mechanical method and 

the magnetic coupled method. The mechanical method aims to generate the complex buckling of the 

structures, but this is difficult to accurately design and control ( Arrieta et al., 2010; Leland and Wright, 

2006). However, the magnetic coupled method is preferable and is achieved by employing a magnetic 

force which can lead to a compact device structure and can be easily adjusted. 

It has been demonstrated that magnetic coupled nonlinear energy harvesters outperform their 

linear counterparts (Stanton et al., 2009). Among the different types of configurations, multi-stable 

piezoelectric energy harvesters have been widely developed and investigated as a result of their 

favorable dynamic characteristics (Kim and Seok, 2014; Lai et al., 2019; Wang et al., 2018a; Zhou et 

al., 2014). Cottone et al. (2009) investigated the nonlinear characteristics of a bi-stable energy 
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harvester which was achieved using a piezoelectric inverted pendulum, whose response was better 

than the linear oscillators under stochastic excitations. Erturk et al. (2009) designed a bi-stable 

piezoelectric energy harvester to scavenge vibrational energy sources based on a nonlinear 

magnetoelastic strange attractor (Moon and Holmes, 1979), which demonstrated that the voltage 

amplitude of this structure can achieve a 200% increase under a harmonic excitation. The effectiveness 

of the bi-stable device proposed by Erturk et al. (2009) under the random excitations was also verified 

by Litak et al. (2010). In addition, He and Daqaq (2016) investigated the optimal electric load of a 

mono-stable energy harvester under white noise excitations. Koszewnik et al. (2022) presented the 

optimization process of magnetic coupled piezoelectric harvesters for performance enhancement by 

choosing optimal parameters. The bi-stable magneto-piezoelastic absorber and bi-stable PZT-based 

absorber were exploited for simultaneous energy harvesting and vibration mitigation (Rezaei et al., 

2021; Rezaei et al., 2022). In order to further improve the performance, a tri-stable piezoelectric energy 

harvester that was formed by replacing the fixed external magnets with rotatable external magnets was 

proposed, which led to improved performance since it can pass through the potential energy wells 

more easily than a bi-stable energy harvester with deeper potential wells (Zhou et al., 2013; Zhou et 

al., 2014) . Rezaei and Talebitooti (2022) investigated the performance of tri-stable magneto-

piezoelastic absorber for energy harvesting and vibration suppression. To optimize the output 

performance of tri-stable energy harvesters, Cao et al. (2015) analyzed the effects of potential well 

depth on the energy harvesting performance, revealing that a shallower potential well depth can lead 

to a higher broadband performance under low frequency ambient vibrations. However, although the 

relationship between the nonlinear restoring force and the voltage response of the multi-stable energy 

harvesters has been investigated in these works, the method to design the nonlinear restoring force has 
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yet to be discussed in detail. Therefore, in order to understand the significant influencing of the 

structural parameters on the nonlinear restoring force, it is essential to theoretically model the restoring 

force and its nonlinear characteristics. While the magnetic force plays a significant role in the 

nonlinearity of restoring force, it is difficult to calculate since it is highly sensitive to the spatial 

positions of the magnets. 

There are three main approaches to acquire the magnetic force of multi-stable energy harvesters; 

these include the finite element method, experimental measurement, and theoretical modeling. The 

finite element method is usually achieved by a variety of commercial software tools. Upadrashta and 

Yang (2015) used the finite element modeling method to model nonlinear harvesters and calculate the 

magnetic force by using a nonlinear spring element available in ANSYS, which could accurately 

analyze the behavior of nonlinear harvesters with magnetic interaction. However, the accuracy of finite 

element method relies heavily on the time-consuming refinement of meshing. In addition, the 

experimental measurement aims to fit an expression of magnetic force from measured data. Zhou et 

al. (2014) applied a polynomial to fit the nonlinear restoring force to numerically verify the 

performance of both bi-stable and tri-stable energy harvesters. Abdelmoula et al. (2017) compared the 

accuracy between different order polynomials to fit the nonlinear magnetic force, and showed that the 

fifth order and seventh order polynomials can achieve high accuracy. Although this method can 

achieve an accurate expression of magnetic force, it requires a new analysis if any of the operational 

parameters change. 

In addition to finite element method and experimental measurement, the theoretical modeling 

method has attracted significant attention. Several popular methods include the magnetic dipole 

method, improved dipole method, magnetic current method, and magnetic charge method. Firstly, the 
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magnetic dipole method was presented by Yung et al. (1998) which regards the magnet as a magnetic 

dipole located in the geometric center of the magnet and was widely used in the magnetic force 

calculation for energy harvesting (Lai et al., 2019; Li et al., 2016; Wang et al., 2018a; Zhao et al., 

2019b). Zhao et al. (2019b) employed the magnetic dipole method to analyze the change of magnetic 

force between the rotor magnet and the external magnet for a water-proof magnetically coupled hybrid 

wind energy harvester. Li et al. (2016) derived the magnetic repulsive force of the tri-stable 

piezoelectric energy harvester based on the magnetic dipole method. Secondly, based on magnetic 

dipole method, an improved dipole method was developed to calculate the magnetic force for a tri-

stable piezoelectric energy harvester (Wang et al., 2019; Wang et al., 2020). The improved dipole 

method was utilized to calculate the magnetic force for investigating the performance of simultaneous 

energy harvesting and vibration isolation of bi-stable and tri-stable absorber (Rezaei et al., 2021; 

Rezaei et al., 2022; Rezaei and Talebitooti, 2022). Thirdly, based on the research by Agashe and Arnold 

(2008), Gao et al. (2016) and Leng et al. (2017) applied the magnetic current method to calculate the 

magnetic force for the bi-stable and tri-stable piezoelectric energy harvesters. Finally, a magnetic 

charge method was developed from magnetic potential theory to calculate the magnetic force for cubic 

magnets (Akoun and Yonnet, 1984; Charpentier and Lemarquand, 1999). Fu and Yeatman (2017) 

analyzed the change of magnetic force when the external magnet rotates for low frequency nonlinear 

energy harvester. Then, Zhang et al. (2021) proposed a rotational magnetic charge method to calculate 

the magnetic force for a range of structural parameters.  

However, the influence of structural parameters and the magnets dimensions on the accuracy of 

magnetic force calculation for the above methods has not been analyzed. As a result, the applicability 

and the application constraints should be deeply investigated. This paper therefore presents new 
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insights into the accuracy and application constraints of magnetic dipole, improved dipole, magnetic 

current and magnetic charge methods to calculate the magnetic force of multi-stable energy harvesters, 

predominately for bi-stable piezoelectric energy harvesters (BPEH) and tri-stable piezoelectric energy 

harvesters (TPEH). The applicability for these modeling methods is clarified based on finite element 

analysis and theoretical evaluations of the different methods. Moreover, experiments under different 

conditions are carried out to demonstrate the modeling applicability in calculating the magnetic force 

for different structural parameters. This paper is organized as follows: Sect. 2 provides the theoretical 

modeling process of magnetic force for different modeling methods for multi-stable piezoelectric 

energy harvesters. The applicability and the detailed application constraints are then investigated based 

on the numerical simulation in Sect. 3. In Sect. 4, experimental investigation of modeling magnetic 

force methods is carried out. The conclusions are drawn in Sect. 5.  

 

2. Models of multi-stable piezoelectric energy harvesters 

2.1 Multi-stable piezoelectric energy harvesters 

The cantilever beam structure is a popular form of multi-stable piezoelectric energy harvesters 

(Erturk et al., 2009). This kind of structure is achieved by employing one or more external magnets to 

generate the nonlinear magnetic force on the tip magnet of cantilever beam. Therefore, the restoring 

force becomes nonlinear, and its stiffness changes for different displacements. Since the superior 

performance of such structures provides a potential alternative for a sustainable energy supply, many 

different configurations based on this cantilever beam structure have been developed for performance 

enhancement.  

Multi-stable piezoelectric energy harvesters predominantly include bi-stable (Cottone et al., 2009; 
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Erturk et al., 2009; Masana and Daqaq, 2011; Stanton et al., 2010) and tri-stable (Zhou et al., 2013; 

Zhou et al., 2014) systems, and asymmetric configurations (Harne and Wang, 2014; He and Daqaq, 

2014; Wang et al., 2018b). In order to improve the efficiency, these works have concentrated on the 

influence of potential well shape on dynamic responses, such as bifurcations, chaos and inter-well 

motion. Therefore, the design of the potential well plays a significant role in performance enhancement, 

and it can be understood and optimized by modeling magnetic restoring force theoretically. 

Figure 1 depicts a BPEH, which includes piezoelectric ceramics, cantilever beam, tip magnet and 

external magnet. The piezoelectric ceramics are located close to the root of cantilever beam to generate 

the electric energy according to the direct piezoelectric effect. The tip magnet is located at the free end 

of the cantilever beam, and is subjected to the magnetic force from the external magnet. The restoring 

force of a multi-stable energy harvester is nonlinear, with more than one balancing points. The BPEH 

has two stable balancing points and one unstable balancing point, while the TPEH contains three stable 

balancing points and two unstable balancing points. Therefore, stable balancing points can produce 

the corresponding potential wells. If the cantilever beam oscillates and crosses different potential wells, 

the displacement of cantilever beam will be large, thus maintaining a high-energy orbit and providing 

more electricity. 

Since the displacement of cantilever beam mainly comes from the first resonant mode, the 

governing equations of multi-stable energy harvesters based on the Hamilton principle and Euler-

Bernoulli beam theory are given by (Erturk, 2012; Stanton et al., 2010) 

{
Mÿ(t) + Ccẏ(t) + Ky(t) + Fm - ξv(t) = F(t)

Cpv̇(t) + v(t)(Rl)
-1

 + ξẏ(t) = 0
                      (1) 

where  

M the equivalent mass of multi-stable energy harvester 
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Cc the equivalent damping of multi-stable energy harvester 

K the equivalent stiffness of multi-stable energy harvester 

ξ the electromechanical coupling coefficient 

Cp the equivalent capacitance of the piezoelectric ceramic 

Rl the load resistance of external circuit 

v(t) the voltage generated by the piezoelectric ceramic 

y(t) the transverse displacement of the cantilever beam 

F(t) the external excitation 

Fm the magnetic force. 

It should be noted that the combination of the elastic force from the cantilever beam and the 

magnetic force from external magnet can be regarded as the nonlinear restoring force Fr, that is 

 +r mF Ky t F                                 (2) 

Since the potential well plays a significant role in performance enhancement of multi-stable 

energy harvesters, it is necessary to investigate the potential well of multi-stable energy harvesters. 

The potential well can be calculated by the integrating nonlinear restoring force Fr with respect to the 

displacement. 

It has been widely acknowledged that the piezoelectric cantilever energy harvester without any 

magnets is regarded as a linear system. Therefore, the K can be considered as a constant. Besides, in 

some magnetic configurations, the beam may have a large static deflection, so that the linear elastic 

force should be replaced by the nonlinear elastic force with the geometric nonlinearities. 

Although the relationship between the nonlinear restoring force and dynamic performance of 

multi-stable energy harvesters has been verified experimentally (Cao et al., 2015), the mechanism by 
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which the structural parameters influence the nonlinear restoring force must be understood. Once the 

relationship between structural parameters and nonlinear restoring force is understood, it aids in the 

design of the preferable nonlinear restoring force for performance enhancement. During the modeling 

of nonlinear restoring force, it is difficult to calculate the magnetic force since the magnetic force is 

highly sensitive to the spatial position of the magnets. Therefore, it is essential to investigate the 

accuracy and the applicability of these modeling methods for magnetic force calculation. In addition, 

from Eq. (2), only the magnetic force along excitation direction is required to calculate the nonlinear 

restoring force. 

 

Figure 1. Schematic of bi-stable piezoelectric energy harvester 

 

2.1 Modeling of magnetic force 

The methods of modeling the magnetic force in multi-stable energy harvesters include magnetic 

dipole, improved dipole, magnetic current and magnetic charge methods. These methods can be 

applied to calculate the magnetic force between two permanent magnets. If there are more than one 

external magnets, the total magnetic force exerted on tip magnet can be obtained by superposing these 

magnetic forces. Taking the BPEH shown in Fig. 2 as an example, the magnetizations of the tip magnet 

and external magnet are denoted as M1 and M2 respectively, and the dimensions of the tip magnet and 



10 

 

external magnet are 2a×2b×2c and 2A×2B×2C along x, y and z directions respectively. Before 

developing the model, the relationship between the rotational angle β and the displacement y of 

cantilever beam is required to define the spatial position of tip magnet. Based on the existing research 

(Friswell et al., 2012), the length of cantilever beam along z-direction versus displacement y is 

3

2 2 2

12

12
z

l
l

y l



                                        (3) 

where l is the original length of cantilever beam. 

The rotational angle β of cantilever beam at the free end is 

arcsin sin
2

2 1 cos
2

z

z

ly

l l
l

l






 
 

 
   

     
  

                         (4) 

 

 

Figure 2. Modeling approach for a BPEH 

2.2.1 Magnetic dipole method 

The magnetic dipole method views the permanent magnet as a magnetic dipole point with an 

equivalent dipole moment to calculate magnetic field and magnetic force. As shown in Fig. 2, the 

equivalent magnetic moments of the tip magnet and external magnet in BPEH are mt and me 
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respectively, which are located in the geometric center O1 and O of tip magnet and external magnet. 

The magnetic moment is defined as the product of the magnetization and the volume of the permanent 

magnet. Therefore, when the displacement of cantilever beam is y, the magnetic moments of the tip 

magnet and external magnet are 

 1 10 8 sin 8 cost abcM abcM  m                    (5) 

 20 0 8e ABCMm                           (6) 

According to the magnetic Coulomb's law, the magnetic flux density at point O1 produced by 

external magnet is 

1

1

0
, 3

4

e OO

e t

OO






  

m r
B

r
                                  (7) 

where μ0 is the permeability in vacuum; 
1OOr  represents the distance vector from the center of external 

magnet to the center of tip magnet, which can be expressed as 

 
1

0 2 cosOO z
h C c l l c      r                       (8) 

Hence, the magnetic force on tip magnet exerted by the external magnet is 

  1

1

0
, 3

4

e OO

dipole e t t t

OO





            
   
  

m r
F B m m

r

                    (9) 

After further calculation, Eq. (9) can be simplified as (Yung et al., 1998) 

      1 1

1 1 1 1

1 1
1

0

5

3
5

4

OO OO

dipole OO t e t OO e e OO t OO t e

OO OOOO





   
           

   
   

r r
F r m m m r m m r m r m m

r rr

  (10) 

Since only the volume and the magnetization of the magnet are considered when calculating the 

magnetic moment, this may yield an error in magnetic force calculation. If the magnetization and the 

volume of magnets are the same, the calculated magnetic moments are equal to each other since the 

shape of the magnets is ignored. It can be directly concluded that when the size of magnets is small 
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and the separation between magnets is large, the magnets can be regarded as dipole points to improve 

the accuracy of magnetic dipole method. 

 

2.2.2 Improved dipole method 

The improved dipole method considers the magnetization of the permanent magnet as magnetic 

dipole points distributed on two magnetic surfaces, which are perpendicular to the direction of 

magnetization. Compared with magnetic dipole method, the dipoles of the improved dipole method 

are located in the center of two magnetic surfaces and there exist two dipoles for one magnet. Here, 

the magnetic surfaces of tip magnet and external magnet are surfaces 2, 2' and surfaces 5, 5' 

respectively in Fig. 2. The magnetic force between the tip magnet and the external magnet can be 

calculated by the magnetic Coulomb's law. As the displacement of cantilever beam is y, the centers of 

magnetic surfaces for tip magnet are P1 (0, y - csinβ, h+C+2c+l-lz) and P2 (0, y +csinβ, h+C+2c+l-lz-

2ccosβ) respectively, while the centers of magnetic surfaces for external magnet are P5 (0, 0, C) and 

P6 (0, 0, -C) respectively. The surface magnetic dipole moments of P1, P2, P5 and P6 are defined as 

(Wang et al., 2019) 

1 1 1

2 1 2

5 2 5

6 2 6

Q M S

Q M S

Q M S

Q M S

 





 

                               (11) 

where S1, S2, S5, S6 are the areas of magnetic surfaces at P1, P2, P5, P6, with 4ab, 4ab, 4AB and 4AB 

respectively. 

The distance vectors from P1 to P5, P1 to P6, P2 to P5, P2 to P6 are 
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15 1 5

16 1 6

25 2 5

26 2 6

 

 

 

 

r P P

r P P

r P P

r P P

                                    (12) 

Then, the magnetic flux density of point P1 generated by external magnet is 

0 15 16
1 5 63 3

15 16
4

P Q Q




 
   

 
 

r r
B

r r
                       (13) 

The magnetic force of point P1 is 

,1 1 1imp PQF B                               (14) 

Similarly, the magnetic flux density of point P2 generated by external magnet is 

0 25 26
2 5 63 3

25 26
4

P Q Q




 
   

 
 

r r
B

r r
                        (15) 

The magnetic force of point P2 is 

,2 2 2imp PQF B                              (16) 

As a result, the total magnetic force acted on tip magnet is 

,1 ,2imp imp imp F F F                               (17) 

Since the improved dipole method regards the magnetization of magnets as a dipole located on 

the magnetic surfaces, the distribution of the magnetic surfaces has been ignored in the magnetic force 

calculation. If the area of the magnetic surfaces is small or the length along the magnetization direction 

of magnet is large, the magnetic surfaces can be approximately regarded as points.  

 

2.2.3 Magnetic current method 

The magnetic current method regards the magnetization of permanent magnets as a magnetic 

surface current density Km and magnetic volume current density Jm. The magnet with a magnetization 

M can be defined as 
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m

m

 

 

J M

K M n
                                (18) 

where n is the unit vector of magnetization direction. 

For uniformly magnetized magnets, the magnetization M is a constant, so that the magnetic 

volume current density Jm = 0 and the magnitude of magnetic surface current density Km is equal to 

the magnitude of magnetization M. Therefore, based on the Biot–Savart’s law and the Kelvin equation, 

the incremental magnetic force (dFcur) of the tip magnet generated by the external magnet on an 

infinitesimal element (ds) is 

 0 1d dcur ext s  F M Η                             (19) 

where Hext is the magnetic field produced by external magnet.  

According to Ampere's rule, the equivalent current density distributed at the tip magnet is 

described in Fig. 3. In this method, the rotational angle β of the cantilever beam is assumed very small, 

so that only the current density distributed on surface 1 and surface 1' which are perpendicular to the 

y direction can contribute to the magnetic force along the y direction. To obtain a total magnetic force, 

there is a need to calculate and integrate the magnetic flux density produced on the whole surface 1 

and 1'; however, it is difficult to calculate the magnetic flux density directly because of the complexity 

of distribution. Therefore, the current density distributed on surface 1 and 1' is simply equivalent to 

the current density at the surface centers P3  (0, y + b cosβ, h + C + 2c + l - lz - ccosβ + bsinβ) and P4  

(0, y - bcosβ, h + C + 2c + l - lz - ccosβ - bsinβ). As a result, the magnetic flux density of surface center 

is only required to calculate the magnetic force (Gao et al., 2016). The magnetic force of tip magnet 

along y direction is given by 

       
   

    

, 1 0 4 1 0 3

1 0 4 4 3 3

d dcur y z z

S S

z z

M s s M s s

M S H P H P

 



 

 

 F H H

                   (20) 



15 

 

where Hz3 (s) and Hz4 (s) are the magnetic fields of surface 1 and surface 1' along z direction produced 

by external magnet; Hz3 (P3 ) and Hz4 (P4 ) are the magnetic fields of P3  and P4  along z direction produced 

by external magnet; S is the area of both surface 1 and surface 1' and equals 4ac. 

 

 

Figure 3. Equivalent magnetic current of tip magnet 

 

Then, the magnetic field produced by the external magnet is calculated by the magnetic charge 

method. Here, it is assumed that the coordinates of points P3 and P4 are (x3, y3, z3) and (x4, y4, z4). 

Therefore, the magnetic fields along z directions of P3 and P4 produced by external magnet are given 

by (Akoun and Yonnet, 1984) 
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    
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  (21) 
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 (22) 

 

2.2.4 Magnetic charge method 

The magnetic charge method considers that the magnetization of the permanent magnet as 
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positive and negative magnetic charges distributed on two magnetic surfaces. Then, according to 

Coulomb's magnetic law, the magnetic potential energy can be obtained to calculate the magnetic force. 

In particular, the magnetic charge of the tip magnet is distributed on surface 2 and 2', while the 

magnetic charge of the external magnet is distributed on surface 5 and 5'. The magnetic charge densities 

of surface 2, 2', 5 and 5' are 

2 0 1
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                                    (23) 

Considering surface 2 and surface 5, the interaction energy is 

2 5
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d d d d
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a b A B
W x y X Y
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 
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                            (24) 

where r is the distance between two magnetic charge densities on surface 2 and surface 5; x, y, X and 

Y are the dummy variables. 

After integrations, the total interaction energy is 

2,5 2,5' 2',5 2',5'W W W W W                             (25) 

The magnetic force can be obtained by 

cha WF                                  (26) 

First, when the rotational angle β of cantilever beam is 0, the tip magnet and external magnet are 

parallel with each other. It is assumed that the differences between the two geometric centers of the tip 

magnet and external magnet along x, y, z directions are α1 , β1  and γ1  respectively. Then, the magnetic 

potential energy after integration is given by (Akoun and Yonnet, 1984) 
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where i, j, k, l, p and q are the dummy variables; u, v, w and r are the intermediate variables; 
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                       (29) 

After calculation of the gradient of magnetic potential energy, the magnetic force between the tip 

magnet and external magnet is 
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where for magnetic force Fcha,y along y direction, it has 
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Second, if the rotational angle β of the cantilever beam is not equal to kπ (k = 1,2,3…), the 

rotational angle of the magnetization direction for the tip magnet relative to the external magnet along 

the counter-clockwise direction is π+β. On selecting the vertexes of the external magnet and tip magnet 

P7  (-A, -B, -C) and P8  (-a, (y/sinβ-c)sinβ + bcosβ, h + C + 2c + l + lz + bsinβ), the relative difference 

between P7  and P8  is 
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                    (32) 

Therefore, the magnetic force along the z direction is expressed from Eq. (33) to Eq. (39) where 

f1 , f2 , f3 , f4 , f5 , f6  are intermediate functions and u, v, w, y' and z' are the intermediate variables 

(Charpentier and Lemarquand, 1999). 



18 

 

   

 

 

 

01 01 01 1 2 1 01 01 01 01 1 2

1 01 01 01 01 1 2

1 01 01 01 01 1 2

1 01 01 01 01 1 2

1 0

+ , , , , , , , , , , , , , , , + ,0,0, , , ,

, , , , + ,0,0, , , ,

, , , , + , ,0, , , ,

, , , , + , ,0, , , ,

yF x y z A B C a b c M M f x x a y z b c M M

f x A x A a y z b c M M

f x A x A a y z B b c M M

f x x a y z B b c M M

f x

   

 

 

 

 

   

   

 

  

 

 

 

1 01 01 01 1 2

1 01 01 01 01 1 2

1 01 01 01 01 1 2

1 01 01 01 01 1 2

, , , , + ,0, , , , ,

, , , , + ,0, , , , ,

, , , , + , , , , , ,

, , , , + , , , , , ,

A x A a y z C b c M M

f x x a y z C b c M M

f x x a y z B C b c M M

f x A x A a y z B C b c M M

 

 

 

 

  

 

 

   

  (33) 

    

 

1 2
1 01 01 1 2 2 01 01

0

2 01 01

, , , , + , , , , , , , , , , + , , , ,
4

, , , , + , , , ,0

M M
f v w y z B C b c M M f v w y z B C b c

f v w y z B C b

   


 





         (34) 

     

   

2 01 01 3 01 01 3 01 01

3 01 01 3 01 01

, , , , + , , , , ' , , , + , , ,0, ' , , , + , , , , '

, , , + , , ,0, ' , , , + , , ,0, '

f v w y z B C b z f w y z B C z f v y z B C b z

f w y z B C z f v y z B C z

     

   

 

 
(35) 

      

 

    

 
 

3 01 01 6 01 01 4 01 01

6 01 01

2

4 01 01 6 01 01

2 2

5 01 01

5 01 01

, , , + , , , ', ' , , + , , , ' ln , , + , , , ', '

, , + , , , '

ln , , + , , , ', ' , , + , , , '

, , + , , , '
, , + , , , ' arctan

f u y z B C y z uf y z B C y u f y z B C y z

uf y z B C y

u f y z B C y z f y z B C y

f y z B C y u
uf y z B C z

     

 

   

 
 

  



 

  


 

   

    

   

  

4 01 01

5 01 01 6 01 01

5 01 01 6 01 01

6 01 01 4 01 01

2 2

5 01 01

, , + , , , ', '

, , + , , , ' , , + , , , '

1
, , + , , , ' , , + , , , '

2

1
, , + , , , ' , , + , , , ', '

2

1
, , + , , , ', ' ln

2

uf y z B C y z

f y z B C z f y z B C y

u f y z B C z sign f y z B C y

f y z B C y f y z B C y z

u f y z B C y z f

 

   

    

   

 

 
  
 





      4 01 01 6 01 01, , + , , , ', ' , , + , , , 'y z B C y z f y z B C y   

 (36) 

     2 2 2

4 01 01 5 01 01 6 01 01, , + , , , ', ' , , + , , , ' , , + , , , 'f y z B C y z u f y z B C z f y z B C y          (37) 

         5 01 01 01 01, , + , , , ' sin + cos + sin + cos + 'f y z B C z y z b c z                 (38) 

         6 01 01 01 01, , + , , , ' cos + sin + cos + sin + 'f y z B C y y z B C y                (39) 

Therefore, the magnetic force calculated by the magnetic charge method is via integrating the 

magnetic force between surfaces to obtain the theoretical expression.  

 

3 Numerical simulations for applicability analysis 

Numerical simulation is applied here to investigate the application constraints of these four 

different modeling methods for calculation of the magnetic force. Several structural parameters and 
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magnets sizes are taken into consideration, including the ratio ζ of the magnetic surface area to the 

length along the magnetization direction, the distance h between magnets, the length along x, y and z 

directions. In this part, the mechanisms by which these factors influence the accuracy of the calculation 

of magnetic force is analyzed, and the quantitative errors of different methods are determined and 

compared. According to this result, the application constraints and applicability of these modeling 

methods could be concluded.  

The process of simulation is achieved by AC/DC modules of COMSOL. The original length of 

cantilever beam is 120 mm, and the magnet is N50 with a magnetization of 1.41 T. In addition, the 

theoretical magnetic forces of magnetic dipole, improved dipole, magnetic current and magnetic 

charge methods are from the above analytical expressions.  

3.1 Ratio of magnetic surface area to length along magnetization direction 

The ratio of the magnetic surface area to the length along the magnetization direction is defined 

as ζ = 4AB/2C = 4ab/2c, as shown in Fig. 2, and the dimensions of the tip magnet and the external 

magnet are the same. The terms 2A and 2B are the lengths along the x and y directions, thereby 

constructing the magnetic surface of the tip magnet. The dimension 2C is the length along the z 

direction, namely the magnetization direction. Figure 4 indicates the influence of ζ on the magnetic 

force, where h is 10 mm. It can be seen that with a decrease of ζ, the magnetic force from the improved 

dipole method is in better agreement with the numerical result. This may be because the magnetic 

surfaces can be regarded as points when the area of the magnetic surfaces is much smaller than the 

length along the magnetization direction. When ζ = 0.4, the error in the peak value between the 

improved dipole method and the numerical result is 9.25%, but this error increases dramatically when 

ζ reaches 2.5. In addition, the magnetic charge method matches well with the numerical result under 
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different values of ζ, and the errors exhibit a lower difference, which stabilizes at around 3%. In 

addition, during an increase of ζ from 0.4 to 2.5, the errors for the magnetic dipole method and 

magnetic current method both exhibit a small decline, but show a large deviation. This may be due the 

fact that for large ζ, magnets can no longer be regarded as dipoles, and the influence of the magnet 

shape significantly decreases the accuracy of magnetic dipole method. 

 

 

Figure 4. Influence of the ratio ζ of magnetic surface area to the length along magnetization 

 

3.2 Distance between magnets 
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The parameter h is considered here, as shown in Fig. 2, to analyze the influence of the structural 

parameters. Figure 5 shows the influence of h on the magnetic force, and the other parameters in this 

system are 2A = 2a = 10 mm, 2B = 2b = 10 mm, 2C = 2c = 10 mm. The results indicate that when h 

increases from 5 mm to 20 mm, the magnetic forces obtained by magnetic dipole method and improved 

dipole method become more consistent with the numerical results. This may be due to the fact that if 

the tip magnet and external magnet are far from each other, the dipoles in these two methods can 

approximately represent the magnets. In detail, with an increase in h from 5 mm to 20 mm, the errors 

of the peak values of the improved dipole method and magnetic dipole method decrease to 25.5% and 

to 15.2% respectively. In addition, compared with the numerical result, the magnetic force calculated 

by the magnetic current method is increasingly higher during the increase in h. When h is 5 mm, the 

magnetic force predicted by the magnetic current method is lower than the numerical simulation, with 

an error of 18.0%. When h increases to 10 mm, the magnetic forces between the magnetic current 

method and numerical result are in good agreement, with an error of only 6.5%. However, with a 

continuous rise of h from 15 mm to 20 mm, the error in a magnetic current has a significant rise. As 

for magnetic charge method, the errors show lower difference, with a figure of around 5%. 



22 

 

 

Figure 5. Influence of the distance h between magnets 

 

3.3 Length along x direction 

The length of magnet along the x direction is now considered to investigate the influence on 

magnetic force calculation as shown in Fig. 6. In this figure, 2A and 2a are the lengths of the external 

magnet and tip magnet along the x direction respectively, the other parameters are 2B = 2b = 10 mm, 

2C = 2c = 10 mm and h = 10 mm. The improved dipole method shows a large difference compared 

with the numerical result and the error increases when the length of the magnet along the x direction 

increases from 6 mm to 18 mm. This may be caused by the increase in the length along the x direction, 
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which increases the area of the magnetic surface, thus the magnetic surface can no longer be regarded 

as a dipole. In addition, the magnetic current method also sees a large deviation, but the error falls to 

25.2%. For the magnetic dipole method, the error first decreases but then increases with the increase 

of the length of magnet along the x direction. In detail, when the lengths along the x direction are 6 

mm and 10 mm, the errors are 7.9% and 6.5 % respectively. When the length along the x direction 

increases to 18 mm, the error can be 37.1%. Besides, the errors in magnetic force between the magnetic 

charge method and numerical result are stabilized at around 5% during the whole process. 

 

 

Figure 6. Influence of the length along x direction 
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3.4 Length along y direction 

Figure 7 analyzes the influence of the length along the y direction on the magnetic force. In this 

figure, 2B and 2b are the lengths of the external magnet and tip magnet along the y direction 

respectively, the other parameters are 2A = 2a = 8 mm, 2C = 2c = 8 mm and h = 10 mm. It can be seen 

that with an increase of the length along the y direction from 4 mm to 16 mm, the magnetic force 

predicted by the magnetic current method approaches the simulation, with the error decreasing to 4.2%. 

This may be due to the increase of the length along the y direction, where the area of the current surface 

has less influence on the distribution of the magnetic field, and therefore the current surface is likely 

to match the assumption of the magnetic current method. In addition, the error of the improved dipole 

method shows a significant increase trend with an increase of the length along the y direction from 4 

mm to 16 mm. For the magnetic dipole method, the error in the magnetic force first exhibits a 

decreasing trend and then an increasing trend with an increase of the length along the y direction. In 

detail, it decreases from 13.5% to 2.1% when the length along the y direction increases from 4 mm to 

8 mm. For larger lengths, this error tends to climb to 74.6% when the length along y direction is 16 

mm. In addition, the magnetic charge method shows a small error of approximately 3%. 
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Figure 7. Influence of the length along y direction 

 

3.5 Length along z direction 

Figure 8 investigates the influence of the length along the z direction, where 2C and 2c are the 

lengths of external magnet and tip magnet along z direction respectively, the other parameters are 2A 

= 2a = 10 mm, 2B = 2b = 10 mm and h = 10 mm. This indicates that the magnetic force calculated by 

improved dipole method is closer to numerical result with an increase of the length along the z direction. 

In addition, during the increase in length along the z direction, the errors for the magnetic current 

method and magnetic dipole method both have a decreasing trend, but then show an increasing trend 
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for longer lengths. When the length along the z direction increases from 4 mm to 8 mm, the error of 

magnetic current method decreases to 6.4%, after which this error increase to 54.5%. Similarly, the 

error for the magnetic dipole method has a significant fall to 6.5%, with the length along the z direction 

ranging from 4 mm to 10 mm. When the length along the z direction increases to 14 mm, this error can 

increase to 15.8%. In addition, the errors for the magnetic charge method are about 5%. 

 

 

Figure 8. Influence of the length along z direction 

 

Therefore, the applicability of the above methods can now be concluded. Firstly, the improved 
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dipole method is suitable for conditions where ζ is low in Fig. 4(a). This may be because in this 

condition the area of the magnetic surface is much lower than the length along the magnetization 

direction; as a result, the magnetic surface can be regarded as a dipole point, which satisfies the 

assumption of this method. However, when the lengths along x and y directions are high, as in Fig. 6(d) 

and Fig. 7(d), the area of the magnetic surface is increased and can no longer be ignored, thereby 

increasing the error for the improved dipole method. 

Secondly, in the case of a large h, the improved dipole method and magnetic dipole method can 

both exhibit a high accuracy in Fig. 5(d). This may be caused by the assumption of a dipole point. For 

the improved dipole method and magnetic dipole method, the conditions of a large distance could 

match the assumption of dipole point. 

Thirdly, the magnetic dipole method is preferable when all dimensions of magnets are equal to 

each other, as shown in Fig. 6 (b) and Fig. 7 (b), where the lengths along the x, y and z directions are 

all 10 mm and 8 mm respectively. In addition, smaller lengths can lead to higher accuracy for the 

magnetic dipole method. This phenomenon relies on the calculation of magnetic moment, only 

considering the volume and the magnetization of magnets. If all lengths of the magnets are the same, 

the magnetic moment could be approximately located in the geometric center of magnets.  

In addition, the magnetic current method can be favorable if the length along the y direction is 

relatively large. This may be because the area of the current surface is the product of the lengths along 

x direction and z direction. If the area of current surface is much smaller than the length along y 

direction, the magnetic distribution on the current surface may be ignored to match the assumption of 

magnetic current method. 

Finally, the magnetic charge method is able to have a relatively high accuracy for all occasions, 
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with a maximal error of 5%, but this method could have more complicated expressions. 

Moreover, some of the application constraints presented in this paper can match the finds in other 

literatures. It has reported that the larger error can be seen in dipole model compared to the improved 

dipole method in smaller gaps (Wang et al., 2019). It can be used to support the findings in this paper. 

In addition to the application of smaller gaps, the more comprehensive applicability of magnetic force 

models has been presented in this paper. The influence of structural parameters on the accuracy of 

magnetic force calculation has been deeply analyzed to obtain the application constraints of modeling 

methods under a range of operating conditions. These findings of application constraints will be helpful 

to provide a clear guideline for the application of magnetic force modeling methods. 

 

4 Experimental verifications 

In order to compare the relative accuracy of these methods, an experimental configuration has 

been developed to measure the magnetic force, as shown in Fig. 9. This configuration contains a 

dynamometer, laser displacement sensor, screw and multi-stable piezoelectric energy harvester. The 

dynamometer (Force Gauge Model M5-2) with a resolution of 0.002 N connects with an external 

magnet. A laser displacement sensor (Panasonic HL-G105-A -C5) with a resolution of 1.5 μm is used 

to obtain the displacement of the cantilever beam. The dimensions of the stainless steel cantilever beam 

are 120 mm  10 mm  0.28 mm, with a Young modulus of 200 GPa. The material of the tip magnet 

and external magnet is N50 with the magnetization of 1.46 T. The dimensions of the tip magnet and 

external magnet are 10 mm × 10 mm × 4 mm and 10 mm × 10 mm × 10 mm respectively. By adjusting 

the screw, the magnetic force and the displacement are recorded to obtain the magnetic force under 

different positions. 
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Figure 9. Experimental configuration for magnetic force measurement 

4.1 Bi-stable piezoelectric energy harvester 

Figure 10 shows the magnetic force of BPEH-1 and BPEH-2 for different h of 12 mm and 22 mm. 

Here, the error of the peak value for the magnetic force is selected to investigate the accuracy of 

different modeling methods. During the increasing in h from 12 mm to 22 mm, both magnetic forces 

of experimental measurement for BPEH-1 and BPEH-2 are in good agreement with the magnetic 

charge method, with the errors of 2.6% and 4.2% respectively. In addition, although the improved 

dipole method has more deviation from experimental result, the accuracy of improved dipole method 

can be significantly improved, with the error reducing from 61.5% to 26.0%. Similarly, the accuracy 

of the magnetic current method also sees a dramatic rise, with the error from 31.8% to 8.1%. The 

magnetic force calculated by magnetic current method is lower than the experimental result with h of 

12 mm, but it is higher than the experimental result when h reaches 12 mm. In addition, the accuracy 

of the magnetic dipole method has a slight increase with a rise of h, with the error from 23% to 12.6%. 
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Figure 10. Experimental comparison for magnetic force of BPEH 

 

4.2 Tri-stable piezoelectric energy harvester 

The schematic of tri-stable piezoelectric energy harvester considered in the experimental test is 

shown in Fig.11. There are two external magnets compared with bi-stable piezoelectric energy 

harvester. The d represents the distance between the two external magnets. 

 

 

Figure 11. Schematic of tri-stable piezoelectric energy harvester 

 

Figure 12 describes the magnetic forces of TPEH-1 and TPEH-2 for different h of 12 mm and 14 

mm, with the d of 10 mm. Compared with the BPEH, the magnetic force of TPEH has two peak values 
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which are defined as the inner peak value and the outer peak value. It can be observed that both 

magnetic forces of experimental measurement for TPEH-1 and TPEH-2 are consistent with magnetic 

charge method. The errors of the inner peak value and the outer peak value of magnetic charge method 

in TPEH-1 and TPEH-2 are 3.64% and 8.35%, 4.84% and 6.35% respectively. In terms of improved 

dipole method, during an increase of h, the errors of the inner peak value and the outer peak value have 

a decreasing trend, from 81.0% to 63.2% and from 56.2% to 45.6%. Similarly, the errors of the inner 

peak value and the outer peak value for magnetic dipole method also exhibit a slight decrease, from 

33.6% to 24.4% and from 21.9% to 20.4% respectively. In contrast, the accuracy of the magnetic 

current method is reduced with an increase of h, with the error of the inner peak value from 83.3% to 

90.3% and the error of outer peak value from 8.5% to 22.0%.  

 

 

Figure 12. Experimental comparison for magnetic force of TPEH 

 

Therefore, from the analysis of BPEH, the influence of h on the magnetic force for all modeling 

methods can be in good agreement with the numerical investigation. With an increase of h, both the 
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magnetic dipole method and improved dipole method can be the most accurate while the magnetic 

force calculated by the magnetic current method can have some deviation from the experimental result. 

As for the TPEH, during the increasing process of distance h, both magnetic dipole method and 

improved dipole method can match better with experimental result, but magnetic current method 

shows a higher error.  

Since the nature frequency is a key factor to evaluate the dynamic response of energy harvester, 

there are two main methods used to obtain the natural frequency of linear cantilever beam. Firstly, it 

can be obtained by theoretical calculation of equivalent mass and equivalent stiffness according to the 

dimensions and the material properties of cantilever beam. Secondly, natural frequency can be 

identified from the frequency sweep or damped free vibration experiments. In addition to the 

equivalent mass and the equivalent stiffness, the damping factor and the electromechanical coupling 

factor are also important to affect the output performance of the system. The damping factor can be 

identified from the resonance amplification and damping ratio, while the electromechanical coupling 

factor can be obtained from the voltage response of linear system. 

More importantly, since the difference between the linear and the multi-stable piezoelectric 

energy harvesters is the magnet, these parameters including equivalent mass, damping factor, 

equivalent stiffness and electromechanical coupling factor can be used to analyze the multi-stable 

piezoelectric energy harvester. From the application constraints of magnetic force modeling methods 

presented in this paper, the accurate magnetic force can be calculated by selecting the proper modeling 

methods to obtain desired nonlinear characteristics. The influence of the size, position, and rotational 

angle of permanent magnets on magnetic force can be investigated. Then, the frequency response of 

nonlinear multi-stable energy harvesters can be obtained by solving the governing equation through 
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harmonic balance method or Runge-Kutta method. Therefore, the optimal structural parameters can 

be obtained to improve the performance of multi-stable energy harvesters. 

 

5 Conclusion 

The influence of structural parameters and magnets dimensions on the accuracy of the calculation 

of the magnetic force has been investigated among different modeling methods, including the magnetic 

dipole, improved dipole, magnetic current and magnetic charge methods. In addition, their relative 

accuracy and the application constraints for magnetic force calculation in multi-stable piezoelectric 

energy harvesters have been evaluated by both theoretical expression and numerical results. 

Consequently, experimental measurements are performed to demonstrate the applicability of these 

methods for bi-stable and tri-stable energy harvesters with a range of structural parameters. The 

applicability of these modeling methods can be concluded as follows: 

(1) The improved dipole method is suitable for ζ ≤ 0.4, and an increase in ζ or decrease in h can 

improve the error of this method. (2) The magnetic dipole method is preferable for a large h, where an 

increase in h can allow magnets to be regarded as dipoles to improve accuracy. (3) The magnetic 

current method is favorable for conditions when the length along the z direction is 6 mm or h = 10 mm. 

The error of the magnetic current method can decrease with an increase in the length of the magnet 

along the x direction or y direction. (4) It is also interesting that when all dimensions of the magnet are 

the same, 2A = 2B = 2C = 10 mm or 2A = 2B = 2C = 8 mm, the magnetic dipole method can be more 

consistent with simulation result. (5) The magnetic force calculation by magnetic charge method is not 

limited to the application conditions, but this method has complicated expressions. These observations 

provide new insights into the selection of modelling methods for the design of nonlinear energy 
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harvesters. 
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