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CLC Cycle life correction.
Abstract—Battery energy storage systems (BESS) have been CTUDC  Chinese typical urban drive cycles.
extensively investigated to improve the efficiency, economy, and EMS Energy management strategy.
stability of modern power systems and electric vehicles (EVs). MPC Model predictive control.
However, it is still challenging to widely deploy BESS in
commercial and industrial applications due to the concerns of NOMENCLATURE
battery aging. This paper proposes an integrated battery life loss
modeling and anti-aging energy management (IBLEM) method ~ SoC, Initial battery SoC value in operation cycles [%].
for improving the total economy of BESS in EVs. The  SoC, Final battery SoC value in an operation cycle [%].
quantification of BESS aging cost is realized by a multifactorial | Working current of the battery [A].
ba_ttery life Ios§ quantlflcatlon model _establ_lshed by capturing Qo Rated capacity of the battery [Ah].
aging characteristics from cell acceleration aging tests. Meanwhile, DoD DoD of the b o
a charging event analysis method is proposed to deploy the built 0 oD of the battery [%].
life loss model in vehicle BESS management. Two BESS active ~ Crate Crate of the battery [C].
anti-aging vehicle energy management models: vehicle to grid CTF Battery cycle to failure value.
(V2G) scheduling and plug-in hybrid electric vehicle (PHEV) fd Function to quantify the influence of DOD.
power distribution, are further designed, where the battery life ¢ c Battery cycle life correction factor.
loss quantification model is used to generate the aging cost ; : ;
feedback signals. The performance of the developed method is IfDCICC)D Eun(t:::or]l (tjo ql;]antlfy;htﬁ InbeLtance ;)karOa/te.
validated on a V2G peak-shaving simulation system and a hybrid k €pth ot discharge ot the baltery a [%].
electric vehicle. The work in this paper presents a practical ~ Crate Crate of the battery at k [C]. _
solution to quantify and mitigate battery aging costs by optimizing I Function to quantify percentage battery life loss.
energy management strategies and thus can further promote  SoC, Battery SoC value at k [%].
transportation electrification. Ad, Variable to judge extreme points in SoC profile.
Index T Batt ) X lectric vehicl Epat Accumulated battery output energy at k [kWh].
ndex erms—noaltiery energy storageé sysiem, ectric venicle, Poat k Working power of the battery pack at k [kW].
battery aging assessment, battery aging mitigation, energy at, . .
management, vehicle power distribution, vehicle to grid. At Duration of an energy management interval [s].
Ubpat k Terminal voltage of the battery at k [V].
ABBREVIATIONS I?Lk Quantified batter life loss at k [%].
i Function to quantify battery life loss in EMS.
ibl
'IBBELSESM :Bitteryteg‘gg&’ Stolri“fgelsysmma SN V™ B’ \/2G and BESS working power in PHEV [KW].
agif]%rzrferg; nf;{]aégm‘:ft modeting and antl- PB Grid power balance state [KW].
. . o P - i .
Crate Charging and discharging rate. ref Reference peak-shaving value [kW]
: Road « Grid demand at k [kW].
DOD Depth of discharge. , .
Chat Unit cost of battery pack [$].
SoC State of charge. c tified batt . tat k 3
V2G Vehicle to grid. aging k quan1: 1ed ba e;y aging cost at k [$].
PHEV Plug-in hybrid electric vehicle. Cost function of BESS management. .
GEVs Grid-connected electric vehicles. S0Cpip  Minimum limit of battery SoC value [%].
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S0Cx  Maximum limit of battery SoC value [%].
X ie Maximum V2G discharging power of EV; [kW].
X Maximum V2G charging power of EV, [kW].
SoC; Battery SoC state of EV; at k [%].
SoC,, « Benchmark battery SoC value at k [%)].

Ciuel » Celee Fuel and electricity cost of PHEV [$].
f

SoC;* PHEV battery SoC reference trajectory [%].

oy, g Online BESS management strategy.

Te, T Engine and electric motor torque [N-m].

Ne, Ny Engine and electric motor speed [RPM].

Prk  Pex Motor and engine working power [KW].

P PHEV power requirement [KW].

v Scheduled online V2G power [KW].

B! Scheduled online BESS working power [KW].

P min+ Pn max  Minimum and maximum motor power [KW].
P min+ Pe max  Minimum and maximum engine power [KW].

. INTRODUCTION

ATTERY energy storage systems (BESS) have been

recognized as one of the most effective ways to improve
the efficiency and economy of power systems in the distribution
network and electric transportation sector [1, 2]. According to
the four Future Energy Scenarios carried out by National Grid
ESO in the UK, around 50 GWh and 120 GWh energy storage
capacity will be provided by establishing grid battery energy
storage and deploying vehicle-to-grid (V2G) technologies in
2050 [3]. Meanwhile, the plug-in hybrid electric vehicle
(PHEV), which uses the battery as an auxiliary power unit to
reduce the fuel costs of internal combustion engines, has also
been widely adopted in many countries [4]. BESS s
characterized by high power density and energy conversion
efficiency. The adoption of V2G and PHEV technologies with
BESS brings a bright prospect to improve the efficiency,
stability, and economy of the power grid and vehicular power
systems. However, the expected lifetime of the battery is much
shorter than most other energy storage devices [5]. The
concerns with battery aging costs make it difficult to widely
deploy BESS in commercial and industrial applications [6, 7].
Therefore, BESS should be effectively protected to enable the
benefits of V2G and PHEV.

Understanding battery degradation mechanisms and
establishing an accurate aging model is fundamental for
guantifying battery life loss in daily operations [8, 9].
Meanwhile, properly designed energy management and
protection algorithms are indispensable for prolonging battery
life and reducing usage costs. Many studies have investigated
vehicle battery aging mechanism, and the data-driven methods
have been commonly used in predicting and quantifying battery
capacity losses [10, 11]. In the data-driven method, aging
datasets under the whole life cycle are used to extract and
generate battery life loss trajectories. In [12], a data-driven
battery cycle life prediction model is established based on a
machine learning algorithm. A comprehensive dataset
containing 124 sets of operation aging data of lithium iron
phosphate batteries was obtained under rapid charging
conditions. The aging model is established based on aging data
under different working conditions, and the predicted battery

life loss can be limited to 9.1%.

Data-driven methods can characterize the aging mechanism
of battery cells during the whole life cycle. However, limited
by the dataset integrity and model extrapolation, it can hardly
be deployed in commercial BESS management issues. Unlike
common mechanical and electrical devices, the battery pack is
a complex electrochemistry system. Therefore, a large amount
of data is required to accurately simulate its operational
characteristics [13-15]. According to [16], a comprehensive
database that reflects battery aging characteristics under the
whole life cycle is indispensable for establishing a battery
model with satisfactory performance. However, aging
experiments are costly and time-consuming, and it is very
challenging to obtain the experimental aging data during the
whole battery life cycle [17]. Furthermore, data driven methods
are usually carried out to model the aging phenomenon of a
single cell, but battery packs in real-world energy storage
devices usually consist of thousands of cells, each with different
aging characteristics [18, 19]. Therefore, the established
degradation quantification models are usually with limited
extrapolation on the whole battery pack. Most existing papers
focus on battery cell state of heath estimation, but to the best of
the authors' knowledge, aging quantification models for BESS
energy management have not been well investigated.

To reduce BESS usage costs, battery aging should also be
actively mitigated in energy management algorithms [19, 20].
Some references have investigated off-line battery anti-aging
BESS energy management approaches. In [21], the rain-flow
cycle counting algorithm is used to analyze aging cycles in a
grid-connected battery storage system. The proposed method
enables distribution network operators to optimally
schedule the day-ahead battery anti-aging bidding for energy
storage systems in power markets. Reference [22] models the
life loss of BESS as a function of the number of cycles and
depth of discharge (DOD). The heuristic algorithm is used in
[23] to optimize the operational schedule of energy storage
systems in micro-grids for improving the power transmission
efficiency and extending battery life expectancy. Limited by the
analyticity of the battery aging quantification model, most
existing methods can only schedule the operation of BESSs day
ahead [24]. However, system dynamic performance is also
emphasized in BESS management in engineering applications.

BESS operation can be dynamically scheduled based on the
sampled power system and BESS state information, which
indicates that energy storage capacity can be better utilized to
respond to system transient power fluctuations. In aggregated
V2G coordinator [25], the deployment of dynamic V2G
management strategies further improves renewable energy
sources utilization and power system economy by 12% and 3.3%
in a microgrid with grid-connected electric vehicles (GEVSs)
penetration. In PHEV energy management deployed in vehicle
control units, system dynamic performance is also of great
significance to vehicle power system stability and economy [26,
27]. Nevertheless, reference [28] points out that battery aging is
a cumulative process, and it is challenging to quantify and
mitigate battery aging costs in dynamic energy management.

Based on the above discussion, this paper proposes an
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integrated battery life loss modeling and anti-aging energy

management (IBLEM) method for mitigating the degradation

cost of BESS in EVs. Battery anti-aging energy management is
realized by a two-stage framework: i) the establishment of

multifactorial battery aging quantification model, and ii)

deployment of the battery aging model in dynamic BESS

energy management. In the first stage, a multifactorial battery
life loss quantification model is established by learning general
degradation characteristics extracted from cell acceleration
aging test datasets. In the second stage, the deployment of the
established battery model is realized by a charging event and
cycle analysis method. Further, battery active anti-aging energy
management is modeled as a mathematical problem based on
the established BESS life loss model. The two most common
scenarios: V2G scheduling and PHEV energy management, are
used as case studies to verify the developed methods.

The main contributions of this paper are:

1) It develops a novel multifactorial battery life loss
modeling method to quantify the usage cost of BESS in
EVs. Compared to existing literature, the proposed
method can comprehensively reflect battery aging
mechanisms under different working conditions (DoDs
and Crates) by only utilizing cell aging test datasets
provided by the manufacturer.

2) It for the first time proposes an analyzable BESS
degradation cost quantification method, where battery
aging cycle, DoD, and Crate information are dynamically
extracted by analyzing the change of charging states in
SoC profiles. The developed event-based method provides
a single-step battery life loss feedback signal for
facilitating anti-aging vehicle BESS energy management.

3) The established BESS aging quantification model is
further deployed in V2G scheduling and PHEV power
distribution scenarios to realize anti-aging vehicle battery
energy management. Compared to existing vehicle energy
management methods, the proposed method can
efficiently schedule BESS operation while significantly
mitigating battery aging.

Furthermore, the theoretical and practical significance of the
developed method can be summarized as follows:

1) The developed battery aging modeling method provides
an economic and efficient scheme for vehicle BESS life
loss quantification in commercial applications. GEV
battery aging modeling and anti-aging management can be
realized by using the open-access cell experimental
databases provided by the manufacturer.

2) The BESS life loss quantification model and anti-aging
energy management method also improve the total
economy of PHEV. With the developed method, the usage
cost of vehicle owners can be significantly reduced.

The remainder of this paper is organized as follows. Section

Il presents the developed IBLEM framework. Section IlI

proposes the cell experimental data-driven BESS life loss

quantification model. Then, a event-based battery aging

quantification model is established in Section IV. Section V

demonstrates the implementation of the established battery

aging model in V2G scheduling and PHEV energy management.

Section VI validates the efficacy of the proposed method. The
conclusions are drawn in Section VII.

Il. INTEGRATED BATTERY LIFE LOSS QUANTIFICATION AND
ANTI-AGING ENERGY MANAGEMENT FRAMEWORK

This section develops an integrated battery life loss modeling
and anti-aging energy management framework to reduce the
operation cost and improve the total economy of BESS. As
shown in Fig. 1, the built IBLEM framework consists of 2
stages: the establishment of a multifactorial battery life loss
quantification model, and the deployment of the battery aging
model in BESS energy management.

(+ S ogs s s
Battery life loss quantification model based on experimental data

Battery life loss responding
Kernel aging . Accessory aging
factor: DoD ~ factor: Crate
<&
-
Battery life loss test
\under different DODs

Battery life loss test
under different Crates )

( i B
il \"\m‘h\ww L\ £ &1 ¥
] = Power syste : Battery :lginé: %‘i_;Dg
model  § cost A .

Anti-aging EMS
strategy

Analyzable battery life loss
quantification model

Power system
working conditions
\ Battery anti-aging vehicle energy storage system management

J
Fig. 1. Integrated battery life loss modeling and anti-aging energy management
framework.

In the first stage, an experimental data-driven multifactorial
battery aging model is established to quantify battery life loss
under different working conditions. Compared to the battery
pack, aging experiments are easily carried out under single cells.
Therefore, this study uses the aging characteristics of a single
battery cell to model and mitigate the aging phenomenon of the
whole pack in energy management strategy. As shown in Fig.
1, in the developed IBLEM method, the kernel aging factor of
the battery is modeled by cell aging tests under different DODs.
Similarly, the accessory aging factor of the battery is derived by
battery aging tests under different Crates. Battery DoD and
Crate in the aging test are quantified by the following equations
[29]:

DoD = (SoC, —SoC ) x100% (@)

! @
bat

Where: SoC, and SoC, are the initial and final SoC value of
the battery in the studied discharging cycle. 1 and Q,; are the
working current and rated capacity of the battery. The battery
life loss responding profile, which models BESS aging
characteristics under different working conditions, is
constructed by integrating the influence of both kernel and
accessory factors.

In the second stage, the established life loss responding
profile is used to provide a single-step battery aging cost signal
for BESS energy management. Firstly, based on the working
condition and mathematical model of the power system, the
output power profile of BESS system is calculated. Then,
battery cycles and the corresponding Crate and DOD

Crate =
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information are extracted by analyzing the charging events in
output power profiles. BESS aging cost is quantified by the
established battery life loss responding profile. With the battery
aging cost feedback signal, energy management unit schedules
the optimal anti-aging strategy to satisfy power system
operation requirements while effectively protecting the battery
pack.

I1l. ESTABLISHMENT OF MULTIFACTORIAL BATTERY LIFE LOSS
QUANTIFICATION MODEL BASED ON CELL EXPERIMENT DATA

This section establishes an experimental data-driven battery
life loss quantification model. Firstly, the impacts of DOD and
Crate on battery aging are quantified by cell acceleration aging
test data. Then a life loss responding profile is constructed for

evaluating battery aging costs under various working conditions.

Commercial EVs normally use standard cells to form battery
packs, such as 18650 and 21700 cells provided by LG Chem,
Samsung, Panasonic, and Sanyo. According to [30] and [31],
battery packs consisting of cells produced by the same
manufacturer have extremely similar aging characteristics. In
[32], the large-scale battery energy storage system simulation is
realized by only using the operation data collected from 9 cells.
The characteristic similarity between the battery pack and cell
is validated through both theoretically and experimentally
analyses. The published open-access cell experimental
databases also make it convenient to model battery aging
through cell datasets in commercial applications [30, 33, 34].
Therefore, this study uses battery cell degradation data to
characterize the aging characteristic of EV batteries for
simplifying the life loss quantification process.

Battery undergoes cycles with various DoDs and Crates in
engineering applications. However, it is challenging and costly
to carry out the corresponding battery aging experiment under
every different DoDs and Crates. It has been proved that curve
fitting is effective in inferring the aging characteristics of BESS
in energy bidding [35], renewable energy systems [36, 37], and
electric vehicles [38] under different working conditions. In [9],
BESS remaining capacity estimation is realized by fitting
cycling test data. The established model is widely recognized
by both academic and industry circles. Therefore, a piecewise
function is used in this study to model battery cycle to failure
characteristics under different DoD and Crate states. Battery
life under different DoD states in the cell experiment [39] is
shown in Fig. 2 (a). 11 independent battery aging experiment is
conducted to characterize battery life under different DoD
range from 5% to 100%. Based on the experimental data, the
following function is established to represent battery life loss
under different DoDs:

40000 DOD < 5%

3
946.1- DOD 17 59 < DOD <100% ®)

Where: CTF is battery cycle to failure value. f; is the
function to quantify battery life under different DoD states.
This paper defines a cycle life correction (CLC) factor to
quantify the impact of discharging current on battery life.
Battery CTF value under 1C current and 100% DOD scenario
is selected as the benchmark. Battery life loss test data under

CTF = f,(DOD) ={

different Crates and 100% DOD are used to describe the
influence, and the failure cycles of the battery when its capacity
declines by 20% are labeled as CTF. . The impact of
different Crates on battery life is quantified by calculating the
ratio between battery CTF under different Crates and
benchmark value:

CLC CTFCrate

T CTF - )
| DOD =100%

Based on (4), the correction factors in 11 experiments are
calculated, and the corresponding discrete experimental data
points are given in Fig. 2 (b). Meanwhile, based on the
calculated discrete results, the following piecewise function is
used to fit the relationship between CLC value and battery Crate:

4 Crate <0.2
CLC = f . (Crate) =

5
1.041-Crate ®*® 0.2 <Crate <10 ©)

Where: CLC is calculate battery Crate correction factors. fg.
is the function to quantify the influence of Crate on battery life.

x10*
@ 4 T T T T 7]
E © Experiment data points
=3 Curve fitting result
= 5 RMSE: 659.4
b R-square: 0.9923
£}
"
© 0 ?"""‘9——?—._
0 20 40 . 60 80 100
Depth of discharge (%)
=4 - ; - .
% (®) O Experimental data points
=3 Curve fitting result ;
_5 2 RMSE=0.04474
b1 R-square=0.9974
21 ]
00 2 4 6 8 10

Crate
Fig. 2. Battery aging characteristic profile. (a) Battery cycle to failure value
under different DODs; (b) correction factor value under different Crates.

In the established life loss quantification model, fj
quantifies battery life under different DoDs, f. reflects the
impact of Crate. This study assumes that the Crate impacts
battery life in the same way under different DODs to simplify
the modeling process and reduce data requirements. Therefore,
the product of fy and f is used to reflect maximum battery
life under the current working state. The reciprocal of its value
is used to describe battery percentage life loss under different
DOD and Crate working states, which can be described by the
following equation:

1

f4(DOD)- f,.(Crate)
Where: f, is the function to quantify percentage battery life
degradation degree.

f,(DOD, Crate) = x100%  (6)

IV. BATTERY AGING QUANTIFICATION BY ANALYZING
CHARGING EVENTS

In vehicle energy storage system management, battery life
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loss should be dynamically calculated to derive optimal active
anti-aging strategies. This section develops an analyzable
deployment method for the establishment battery aging model
based on charging event analysis.

Extreme points R S0Crax

/

S Discharging: DoD: / X
3 y A / DoD:
g /
N / / .
2 / D ",
5 / 4 80Conin
g Charging: DoDs
a y
Charging: DoD: ——> Crateay
> v
Strategy time [ Nt

Fig. 3. Battery aging quantification model based on charging event analysis.

As shown in Fig. 3, in energy storage system management,
the whole scheduling period can be divided into several
dispatch time intervals. In each interval, the energy
management controller schedules the charging and discharging
power of the battery dynamically, and it is necessary to provide
a battery life loss feedback signal to enable active anti-aging
control. In this study, battery state of charge (SoC) values in
energy management strategy are used as the observation
variable to quantify the aging cost. Firstly, extreme points,
where battery charging state changes, are labeled to divide the
SoC profile into several independent discharging and charging
events:

A 1 (SOCk71 - SOCk )(SOCk - SOCkfl) > O
“"10 (S0C,_; —S0Cy )-(S0C, —S0C, ;) <0

When extreme points appear, the value of Ad, is labeled as
0, which indicates that a discharging or charging event is
completed. Otherwise, the value of Ad, will be labeled as 1 to
indicate that battery is still in an incomplete charging or
discharging half-cycle. Battery DoD is an accumulative process
in a completed charging or discharging cycle. Therefore, the
DoD is calculated under multi-intervals to quantify its impact
on battery life loss in this study. Ad, is used to decide whether
the energy exchange in the previous interval will be
accumulated. The accumulated energy output of the battery at
k can be calculated by the following equation:

Epatk = Ady - Epar k-1 + Roar i - At @)

Where: At is the duration of an energy management dispatch
time interval; R, , is the working power of the battery pack at
k. A complete cycle ends when the value of Ad, is 0, and
Epae « 1S Only decided by the battery discharging power in the
current interval. Otherwise, E\; in previous intervals will
be accumulated.

Based on the operation power and energy exchange, battery
Crate and DOD at k can be calculated by the following
equations:

U]

P
Crate, = _batk 9)
bat,k 'Qbat
E
DoD, =— 2tk (10)
Ubat,k 'Qbat

Where: Uy, and Qy, are the terminal voltage and capacity
of the battery. Battery life loss in current discharging and

charging events can be represented as:
BL, = f,(DoD,,Crate, ) (11)
The instant battery life loss signal is calculated by
constructing the following differential signal that compares the
difference between BL, and BL,_;, which can be represented
by the following function:
1:ibl (Pbat,k) = BLk - Adk ' BI-k—l (12)
The value of Ad, is calculated based on (7), which judges the
extreme points in the SoC profile. When a new cycle appears,
its value will be set as 0, and battery life loss is fully influenced
by battery charging and discharging behavior in the current
interval. Otherwise, the value of Ad, will be set to 1, and the
battery life loss will be determined by the difference between
BL, and BL,_; to avoid repetitive calculation.

V. BATTERY ANTI-AGING VEHICLE BESS ENERGY
MANAGEMENT METHOD

Based on the established battery life loss quantification
model, this section further proposes an anti-aging energy
management method for vehicle BESS in V2G and PHEV
power distribution scenarios.

A. Battery anti-aging V2G behavior management

V2G scheduling is a complex optimization problem that
relates to the electricity market and trading. This study mainly
focuses on the quantification and mitigation of BESS aging.
Therefore, a most basic and simple V2G mode: aggregated
GEVs oriented peak-shaving services, are studied.

In the developed anti-aging V2G behavior management
model, the decision variable V™' is designed as the charging
and discharging power of GEVs, which can be represented as:

f f f f
Vi :[Vi,rlf Viket Vi,rIf+T:| (13)
Vref :{Vlref ’__.’Vr:'ef} (14)
Where: V;'¢" is vehicle V2G power of i™ GEVsat k; T isthe
length of the scheduling period; n is the number of GEVs.

Based on the presumed V2G power of GEVs, the grid power
balance state is calculated by the following equation:

n f
PB, = zi:lvi,rls + Poad x = Prer (15)

Where: B,,q represents grid demand state. P is the peak-
shaving reference value provided by the distribution network
operator [40].

The established battery life loss model in Sections Il and IV
is used to quantify BESS aging cost in V2G services by
analyzing the impact of Crate and DoD caused by charging and
discharging power of GEVs:

n
ref
Caging,k = i_zlcbat,i 'Qbat,i : fibl (Vi,k

Where: C,; is the unit cost of the vehicle battery system.
The optimization target is designed to reduce battery aging

cost of all GEVs while providing peak-shaving services:
k+T
v = kZ::lal 'Caging,k+a2 -PBy

(16)

A7)

Where: a; and a, are the weight factors between different
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optimization targets.

BESS management constraints in V2G are set to subject the
battery discharging power (17) and SoC states (18) in the
scheduling period. Furthermore, the battery SoC value at k
should be higher than the benchmark value SoC , that
reflects the charging urgency [41] of GEVs to satisfy the
charging requirement, as described in (19). The detailed
constraints are listed as follows:

—PR i SVirff <R"h (18)
SOC iy <SOC{% <S0C s, (19)
SoC{%{ >S0C,, (20)

Where: RS and B are the maximum discharging and

charging power of GEVs; SoC;, and SoCma}x are the

minimum and maximum battery SoC values. SoC{’; is battery

SoC value at k, which is calculated based on V2G power of

GEVs. The calculation of SoC{ﬁf can be represented as:
ref

soCf® :SoC{’eLﬁV"k At

(21)
bat,i
The anti-aging V2G strategies are derived by minimizing (17)
subject to constraints (18)-(20), which can be represented by the
following optimization problem:
mindy (V')
Vre (22)
subject to (18) ~ (20)

B. Battery anti-aging PHEV energy management

In PHEV, BESS is used to work with the fuel engine for
providing power ancillary services. In this study, the decision
variable is designed as the output power of BESS to facilitate
flexible vehicle power system operation scheduling, which can
be represented as:

ol |

B™ =B B (23)

Battery aging cost in PHEV energy management strategies is
quantified based on the established BESS aging model in
Sections 11 and IV by the following equation;

f
Caging,k = Coat " Qpat - fibl (Bkre ) (24)
Vehicle fuel and electricity cost is calculated according to the

engine and motor efficiency maps shown in Fig. 4 by the
following equations:
Celec,k = Pelec “Tlbat Blzef “m (nm lTm) (25)
Cfuel,k = Piuel '(Pd ~That “m - Bl:ef ) 'be (nelTe) (26)
Where: pge. and pye are the unit cost of electricity and fuel.
ma and Py are BESS efficiency and vehicle power
requirement. b, and 7,, are calculated according to the motor
efficiency map (a) and engine fuel consumption map (b) based
on engine speed N, engine torque T,, motor speed n,,, and
motor torque T, . The detailed system efficiency and dynamic
coupling relationship between n,, T, n., T., and Py of the
studied PHEV can be found in [42].
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Fig. 4. The (a) fuel consumption map of the engine and (b)
working efficiency map of the driving motor.
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The optimization target is to reduce fuel cost, electricity cost,
and battery aging cost while providing power ancillary services
to PHEV. Accordingly, the following optimization objective
function is formulated to derive the energies management

strategies:
k+T

J B = kZ::l (C fuel,k T Celec,k + Caging,k) (27)

Scheduling constraints are set to subject the output power of
the electric motor (28) and internal combustion engine (29).
Furthermore, the battery SoC state is constrained by (30). The
detailed constraints adopted in the PHEV energy management
are listed as follows:

I:’m, min < Prrrﬁi < I:’m, max (28)

Pe_ min < Pefif < Pe_ max (29)

SOC iy < SOCH" < SOC (30)

Where: B, ins Pe min+ P max> @nd P, o are minimum and
maximum working power of motor and engine. Py, Py

and SoCLef are the working power of engine, motor, and
battery SoC at k , which are calculated based on BESS working
power and PHEV power requirement:

Pk = TThat B (31)
Perﬁf =Py k —Moat T * Bkmf (32)
Bref At
SoC® =SoC® ——X (33)
Qbat

The optimal BESS operation strategies are derived by
minimizing (27) subject to constraints (28)-(30), which can be
represented by the following optimization problem:

minJg (B™")
Bref (34)
subject to (28) ~ (30)

C. Strategy deployment and model solving

The deployment of the established online vehicle BESS
operation scheduling model is realized in a two-stage
optimization framework as shown in Fig. 5. In the first stage,
anti-aging strategies are derived based on the established
optimization model in (22) and (34). Both the defined V2G
behavior management and PHEV power distribution models are
nonlinear programming problems with multiple time periods
due to the use of a nonlinear instant battery life loss
quantification function. The Generic Dynamic Programming
Matlab Function in [43], which is specially designed for solving
nonlinear vehicle BESS operation optimization problems, is
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employed in this study to solve the established optimization
model. It has great versatility and can solve the optimization
problem with various cost functions (even the table look-up
function is acceptable). For this reason, it has been commonly
used in BESS energy management problems in electric vehicles
[44, 45], grid energy storage systems [46, 47], and intelligent
transportation systems [48]. Based on the optimization problem
in (22) and (34), the optimal anti-aging V2G strategy V" and
PHEV distribution strategy B™" are solved by the dynamic
programming algorithm.

Realize online BESS operation
control by following output
power and SoC trajectories

Power balancing requirement
Battery aging mitigation
Operation constraints

Quantifying the impact of DoD
and Crate.

Fig. 5. The solving of the established anti-aging vehicle BESS operation
scheduling model.

In practical vehicle BESS management, vehicle charging
demand and PHEV torque requirement may differ from those
in ideal conditions due to the uncertain vehicle usage and
operation states. Different from the management of
conventional stationary energy storage systems, vehicle BESS
should be online scheduled to respond to the unplanned vehicle
charging and operation conditions [42, 49]. The anti-aging
BESS management model can only provide day-ahead or hour-
ahead strategies, which dramatically limits the flexibility of
vehicle BESS operation. Therefore, to facilitate strategy
deployment in practical vehicle energy management, this study
further proposes an online deployment scheme for the derived

anti-aging BESS energy management strategy. As shown in Fig.

5, in the second stage, vehicle BESS operation is online
scheduled by following the anti-aging strategies V' and
B™ . The anti-aging target is realized by following the optimal
solution from the first stage. Dynamic vehicle charging
requirements and PHEV power requirements are strictly
satisfied by setting constraints on online BESS working power
in the second stage.

In online V2G behavior management, the decision variable
is designed as the practical charging and discharging power of
GEVs. The actual V2G power of i GEV is labeled as Vi°' ,
and the online V2G behavior coordination is modeled as a
quadratic programming problem:

; n I f \2
Ty = ar%?m Z:izl(\/if’k -Vil
st.
R <V < T (35)
SOC i <SOCP} <S0C 0
SoCP} >S0C,,

Where: V' is the collection of Vi » which represents the
actual V2G power of all GEVs at k . SoCﬁ'k is the actual
battery SoC value, which is calculated based on Vif’k' by Eq.
(21). The online V2G strategy m, is derived by solving the
constrained optimization problem in (35).

In PHEV energy management, the decision variable is

designed as the practical working power of BESS. The actual

ol
Ko

BESS working power at k is labeled as Bf' . Online PHEV
power distribution is realized by following the anti-aging
strategy Bf®" in the scheduling period to provide dynamic
auxiliary power for the vehicle driving system, which can be
described as:

g =argmin(BY' — B[ )?

By
st

ol
me min < Pm,k < Pm, max

(36)
P

e_min
S0C,,;,, <SoCY <SoC

Where: P\, P, and SoC{' are the actual working power of
motor, engine, and battery SoC state, which are calculated
based on Bf' by Eqg. (31)~(33). The online PHEV energy
management strategy 7y is derived by solving the constrained
optimization problem in (36).

Both the established strategy deployment model in V2G
scheduling and vehicle power distribution are solved by a
mixed-integer programming toolbox provided by Gurobi 9.1.0
optimizer [50].

< Pe?’( < Pe, max

max

VI. CASE STUDY

This section verifies the effectiveness of the established
multifactorial battery life loss quantification model and anti-
aging energy management method. Two cases are employed to
evaluate performance: V2G peak-shaving services in
distribution networks and PHEV energy management. Battery
active anti-aging vehicle charging management

GEVs are considered to provide peak-shaving services to a
distribution network in this study for verifying the effectiveness
of the established battery aging model in V2G scheduling. Grid
demand data [51] comes from the Stentaway Primary substation
near Plymouth, which is open-access provided by Western
Power Distribution in the UK, is used in this study as a basic
load profile. The period (16:00~08:00) that owns the most
active grid energy consumption and GEVs charging
requirement is studied, and the corresponding grid demand
profiles within 30 working days are shown in Fig. 6. In this
study, V2G scheduling for aggregators at the charging station
and residential area, where GEVs can be regarded as fixed
energy storage devices in a specific timeframe, is carried out to
explore the potential benefit of the developed method. The
national household travel survey data [52] is employed to
characterize the trip behavior of GEVs, and the Monte Carlo
simulation model is used to simulate GEVs' grid-connected
timeframe. This paper mainly focuses on mitigating BESS
aging in V2G services. Therefore, GEVs are assumed to be with
firm connection timeframes in the simulation period and their
uncertainty is not considered.
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Fig. 6. The demand profile within 30 days of the studied distribution network.

In this study, charging behaviors of 30 GEVs each with a 60
kWh battery pack, are simulated to provide peak-shaving
service, and the peak-shaving reference value is set as 400 kW.
The peak-shaving and battery anti-aging performance of the
developed method (Case 4) is quantitively compared with
conventional online scheduling method (Case 2) and off-line
rain-flow anti-aging (ORA) method [53] (Case 3) in Fig. 7. The
V2G behavior of the whole GEV fleet within 30 working days
is simulated. In terms of power balancing service, as shown in
(a) and (b), all three methods can significantly stabilize the grid
demand. Compared to baseload (Case 1), average grid load
fluctuation and the peak-valley difference can be reduced by
around 68.6% and 57.4% in the simulation period, which
validates the effectiveness of V2G scheduling. It should be
figured out that the set of battery aging mitigation targets shows
a very limited impact on V2G power balancing performance.
Battery utilization degree decreases 4.3% in the developed
IBLEM method.

The battery anti-aging performance of different methods is
compared in Fig. 7 (c) and (d). After the anti-aging optimization
target is deployed, battery DoD and aging cycles can be
significantly reduced by around 22.9% and 56.1% on average
in ORA method and the developed IBLEM method. Compared
to the ORA method, IBLEM method shows more outstanding
performance (4.7% more) in mitigating battery DoD. The
reason is that the developed life loss quantification model can
better characterize the aging mechanism of the vehicle battery.
However, due to lacking global optimization mechanism, the
battery undergoes 17.2% more cycles in the IBLEM method
compared to the ORA method. In quantitative analysis, more
than 54.3% battery life loss can be avoided while providing the
same peak-shaving service to the grid, which validates the
effectiveness of the developed IBLEM method in GEVs
charging management.
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Fig. 7. Quantitative performance comparison of different methods on GEVs
fleet. (a) load fluctuation mitigation; (b) peak-shaving difference; (c) battery
cycles and DoD; (d) quantified battery life loss.

In engineering applications, the benefits of joining peak-
shaving services and the cost of battery aging can be balanced
by minimizing the total cost of V2G service, which can be
calculated based on bi-directional peak-valley electricity price
and battery unit cost. Various power systems and GEVs are
with different electricity price states and battery unit costs.
Therefore, the balance between the benefit of joining peak load
shaving services and the cost of battery aging changes in
different V2G scenarios. This study further verifies the anti-
aging performance of the developed IBLEM-based V2G
scheduling method under different peak-shaving intensities. Fig.
8 shows the vehicle battery life loss under different peak-
shaving reference values. The lower the preset peak-shaving
value, the more the V2G auxiliary power is required, and the
more the battery life will be depleted. Vehicle battery life loss
reduces with the improvement of peak-shaving reference value.
When the peak-shaving reference value improves by 40%,
battery life loss can be limited to 2.03x10-2%, which validates
the battery anti-aging effectiveness of the developed IBLEM
method. It should be figured out that battery life loss
dramatically increases when the change of peak-shaving value
reaches -30%. The reason is that the satisfying of peak-shaving
requirements is emphasized in the developed scheduling
algorithm. When GEVs' energy storage capacity is not enough
to support V2G services, battery anti-aging targets will be
neglected in the scheduling algorithm to some extent.
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Fig. 8. Vehicle battery life loss under different grid peak-shaving reference
values.

It should be noted the realization of bi-directional V2G
services from residential EVs is still challenging because it
highly depends on the electricity market, energy trading, and
smart charging pile technologies. This study mainly focuses on
quantification and mitigation of BESS aging, and V2G is
simplified to a peak-shaving optimization problem. Future
work can be conducted on deploying the battery life loss
quantification model and aging mitigation methods in V2G
with a realistic energy market and trading scenario.

A. Hybrid electric vehicle energy management

A plug-in hybrid electric bus [54] weights 18000 kg with a
147 kW fuel engine, a 65 kW ISG motor, a 168 kW main
driving motor, and a 34.5 kWh battery pack is studied in this
part to verify the performance of the developed battery anti-
aging energy storage system management method. The Chinese
Typical Urban Drive Cycles (CTUDC) is used in this study to
simulate vehicle daily operation, the velocity and acceleration
profiles are shown in Fig. 9 (a) and (b). Battery energy storage
system is used to work with the fuel engine and 1ISG motor to
improve the vehicle working efficiency. Based on the engine
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and I1SG efficiency map and battery aging model, vehicle power
requirement in driving cycles is distributed between fuel engine
and battery pack by the developed time-windowed energy
management method, the corresponding engine and battery
output power profiles in 6 CTUDC cycles are shown in (c).
Instead of fuel engine, battery is used as the main power source
to power vehicle driving systems in most of the simulation
period (more than 84%). With the anti-aging feedback signal
and economic objectives, fuel engine only works under the
following two scenarios: (1) when the peak power requirement
appears during the vehicle acceleration, fuel engine works with
BESS to reduce the Crate of the battery and prolong its life. (2)
fuel engine works with 1ISG motor to charge energy back to the
battery to sustain its SoC level and mitigate DoD of operation
cycles. In the whole simulation period, fuel engine can work
within a high-efficiency area for 86% more time, which
highlights the effectiveness of the developed time-windowed
optimal control method.

Battery SoC profiles in conventional energy management
strategy (EMS) [55] and the developed active anti-aging
method are further compared in Fig. 9 (d). In the conventional
EMS method, the improvement of engine fuel economy is used
as the single optimization objective; thus, the battery undergoes
many cycles with high Crate to satisfy vehicle power
requirements. Compared to the conventional method, battery
anti-aging is also considered in the developed energy
management method. Therefore, as shown in the detailed view,
battery number of cycles and the corresponding Crates are
significantly reduced after the multifactorial battery life loss
model and the aging feedback signal is deployed. It should be
figured out that the mitigating of battery aging cost is not
realized by sacrificing vehicle fuel economy. As shown in (d),
battery SoC profiles end at almost the same points after 6
CTUDC cycles, which indicates that the battery provides a
similar energy output in both methods.
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Fig. 9. PHEV power distribution results with the developed anti-aging method.
(a) vehicle speed profile; (b) vehicle acceleration profile; (c) engine and battery
power profile; (d) battery SoC profile.

The long-term operation cost of different PHEV energy
management strategies is quantitatively compared in Table | to

better illustrate the improvement. It is assumed that each PHEV
needs to operate 12 CTUDC cycles per day and 300 days per
year, and its set life is assumed to be 10 years. The unit price of
the battery is set as 600$/kWh, the price of diesel is set as
1.04$/liter, and the electric price is assumed to be 0.18%/kWh.
In terms of fuel cost, the deployment of anti-aging algorithm is
not able to reduce its value. On the contrary, the set of anti-
aging target limit the use of battery in energy management
algorithm, and thus the working period of the fuel engine is
inevitably increased. The bucket model [56] limits the sum of
battery discharging energy directly, and vehicle fuel cost is
elevated by 26.1% compared to conventional EMS. The
developed IBLEM method can better model the aging
characteristics and improve the utilization degree of the battery.
Both energy management strategies that consider degradation
cost consume less electricity because of the set of battery anti-
aging target, but the IBLEM method can provide 15.1% more
electricity to improve vehicle fuel economy. As a result, EMS
with the IBLEM method keeps a similar (4% higher only) fuel
cost compared to conventional EMS. The use of the bucket
model can directly limit the discharging energy of the battery in
the energy management algorithm. Therefore, as shown in
Table |, the battery degradation cost is reduced by 26.3%
compared to conventional EMS. Compared to the bucket model,
the developed IBLEM method can comprehensively evaluate
battery life loss, and thus the degradation cost in energy
management strategy is further reduced by 8.9% compared to
the bucket model.

TABLE |. LONG-TERM OPERATION COST COMPARISON OF PHEV WITH
DIFFERENT ENERGY MANAGEMENT STRATEGIES

Parameters Conventional Anti-aging  Anti-aging IBLEM

EMS bucket model MPC method  method

Fuel cost ($/year) 1865.3 2352.5 1896.4 1939.4

Electricity cost
($lyear) 1426.5 1074.2 1211.7 1288.7
Batery degradation 37,6 58558 20463 24943
cost ($/year)

Total cost ($/year) 7166.4 6282.5 6054.4 5722.4

Cost comparison (%) 100 87.7 84.5 79.8

In Table I, the developed IBLEM method is also compared
with the model predictive control (MPC) method [57], the most
commonly used PHEV energy management scheme in the
existing literature. The IBLEM method greatly outperforms the
MPC in terms of reducing battery degradation costs. The
battery anti-aging target can hardly be realized by using the
simple MPC method because of the limited observation
window length. PHEV battery aging cost is reduced by 15.3%
in the IBLEM method, which validates its battery aging
mitigation performance. From the total operation cost
perspective, the developed IBLEM method can further improve
20.2%, 7.9%, and 4.7% vehicle economy compared to
conventional EMS, bucket model, and MPC method, which
validates the effectiveness of the developed multifactorial
battery life loss quantification model and anti-aging energy
management method.

VII. CONCLUSION
An integrated battery life loss modeling and anti-aging
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energy management method is developed in this paper for

mitigating the degradation cost of BESS. BESS aging cost is

quantified by establishing a multifactorial degradation model

based on cell acceleration aging test datasets. Meanwhile, the

deployment of the aging model is realized by a charging event

analysis method. The built battery life loss quantification model

is deployed in V2G scheduling and PHEV power distribution

to realize anti-aging energy management. Some key findings

are given:

= The established multifactorial battery life loss model can
accurately quantify BESS usage cost under different
working conditions (DoDs and Crates). Battery aging
costs in both V2G scheduling and PHEV energy
management can be significantly reduced by using the
generated life loss feedback signal.

= In V2G scheduling, the anti-aging method shows a
significant advantage in mitigating battery number of
cycles and DoDs while guaranteeing peak-shaving
performance.

= In vehicle energy management, the developed IBLEM
method vyields less-conservative strategies, and thus the
total economy of PHEV can be improved while mitigating
battery aging.

The proposed IBLEM method presents a practical solution to
quantify and mitigate battery aging by optimizing energy
management strategies. It also brings a promising solution to
improve the total economy of BESS in providing V2G services
and PHEYV usage, thus helping incentive the adoption of EVs in
the future transport sector to reduce emissions.
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