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 Abstract—Battery energy storage systems (BESS) have been 

extensively investigated to improve the efficiency, economy, and 
stability of modern power systems and electric vehicles (EVs). 
However, it is still challenging to widely deploy BESS in 
commercial and industrial applications due to the concerns of 
battery aging. This paper proposes an integrated battery life loss 
modeling and anti-aging energy management (IBLEM) method 
for improving the total economy of BESS in EVs. The 
quantification of BESS aging cost is realized by a multifactorial 
battery life loss quantification model established by capturing 
aging characteristics from cell acceleration aging tests. Meanwhile, 
a charging event analysis method is proposed to deploy the built 
life loss model in vehicle BESS management. Two BESS active 
anti-aging vehicle energy management models: vehicle to grid 
(V2G) scheduling and plug-in hybrid electric vehicle (PHEV) 
power distribution, are further designed, where the battery life 
loss quantification model is used to generate the aging cost 
feedback signals. The performance of the developed method is 
validated on a V2G peak-shaving simulation system and a hybrid 
electric vehicle. The work in this paper presents a practical 
solution to quantify and mitigate battery aging costs by optimizing 
energy management strategies and thus can further promote 
transportation electrification. 
 

Index Terms—Battery energy storage system, electric vehicle, 
battery aging assessment, battery aging mitigation, energy 
management, vehicle power distribution, vehicle to grid. 

ABBREVIATIONS 
BESS   Battery energy storage system. 
IBLEM  Integrated battery life loss modeling and anti-

aging energy management. 
Crate   Charging and discharging rate. 
DOD   Depth of discharge. 
SoC    State of charge. 
V2G    Vehicle to grid. 
PHEV   Plug-in hybrid electric vehicle. 
GEVs   Grid-connected electric vehicles. 
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CLC    Cycle life correction. 
CTUDC  Chinese typical urban drive cycles. 
EMS   Energy management strategy. 
MPC   Model predictive control. 

NOMENCLATURE 

0SoC    Initial battery SoC value in operation cycles [%]. 
dSoC    Final battery SoC value in an operation cycle [%]. 

I      Working current of the battery [A]. 
batQ    Rated capacity of the battery [Ah]. 

DoD    DoD of the battery [%]. 
Crate    Crate of the battery [C]. 
CTF    Battery cycle to failure value. 

df     Function to quantify the influence of DOD. 
CLC    Battery cycle life correction factor. 

clcf     Function to quantify the influence of Crate. 
kDOD    Depth of discharge of the battery at k  [%]. 
kCrate    Crate of the battery at k   [C]. 

lf     Function to quantify percentage battery life loss.  
kSoC    Battery SoC value at k  [%]. 

kAd    Variable to judge extreme points in SoC profile. 
,bat kE    Accumulated battery output energy at k  [kWh]. 
,bat kP    Working power of the battery pack at k  [kW]. 

Δt     Duration of an energy management interval [s]. 
,bat kU    Terminal voltage of the battery at k  [V]. 

kBL     Quantified batter life loss at k  [%]. 
iblf     Function to quantify battery life loss in EMS.  
refV , refΒ  V2G and BESS working power in PHEV [kW]. 

PB     Grid power balance state [kW]. 
refP     Reference peak-shaving value [kW]. 

,load kP    Grid demand at k  [kW]. 
batC    Unit cost of battery pack [$]. 

,aging kC   quantified battery aging cost at k  [$]. 
J      Cost function of BESS management. 

minSoC   Minimum limit of battery SoC value [%]. 
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maxSoC   Maximum limit of battery SoC value [%]. 
max
,i disP    Maximum V2G discharging power of iEV  [kW]. 
max
,i chP    Maximum V2G charging power of iEV  [kW]. 

,SoCi k    Battery SoC state of iEV  at k  [%]. 
,SoCcu k   Benchmark battery SoC value at k  [%]. 

fuelC , elecC   Fuel and electricity cost of PHEV [$]. 
ref
kSoC   PHEV battery SoC reference trajectory [%]. 

Vπ , Bπ   Online BESS management strategy. 
eT , mT    Engine and electric motor torque [N·m]. 
en , mn    Engine and electric motor speed [RPM]. 
m,kP , e,kP   Motor and engine working power [kW]. 
dP     PHEV power requirement [kW]. 
olV     Scheduled online V2G power [kW]. 
olB     Scheduled online BESS working power [kW]. 

minmP
−

, maxmP
−

 Minimum and maximum motor power [kW]. 
e minP

−
, e maxP

−
 Minimum and maximum engine power [kW]. 

I. INTRODUCTION 
ATTERY energy storage systems (BESS) have been 
recognized as one of the most effective ways to improve 

the efficiency and economy of power systems in the distribution 
network and electric transportation sector [1, 2]. According to 
the four Future Energy Scenarios carried out by National Grid 
ESO in the UK, around 50 GWh and 120 GWh energy storage 
capacity will be provided by establishing grid battery energy 
storage and deploying vehicle-to-grid (V2G) technologies in 
2050 [3]. Meanwhile, the plug-in hybrid electric vehicle 
(PHEV), which uses the battery as an auxiliary power unit to 
reduce the fuel costs of internal combustion engines, has also 
been widely adopted in many countries [4]. BESS is 
characterized by high power density and energy conversion 
efficiency. The adoption of V2G and PHEV technologies with 
BESS brings a bright prospect to improve the efficiency, 
stability, and economy of the power grid and vehicular power 
systems. However, the expected lifetime of the battery is much 
shorter than most other energy storage devices [5]. The 
concerns with battery aging costs make it difficult to widely 
deploy BESS in commercial and industrial applications [6, 7]. 
Therefore, BESS should be effectively protected to enable the 
benefits of V2G and PHEV. 

Understanding battery degradation mechanisms and 
establishing an accurate aging model is fundamental for 
quantifying battery life loss in daily operations [8, 9]. 
Meanwhile, properly designed energy management and 
protection algorithms are indispensable for prolonging battery 
life and reducing usage costs. Many studies have investigated 
vehicle battery aging mechanism, and the data-driven methods 
have been commonly used in predicting and quantifying battery 
capacity losses [10, 11]. In the data-driven method, aging 
datasets under the whole life cycle are used to extract and 
generate battery life loss trajectories. In [12], a data-driven 
battery cycle life prediction model is established based on a 
machine learning algorithm. A comprehensive dataset 
containing 124 sets of operation aging data of lithium iron 
phosphate batteries was obtained under rapid charging 
conditions. The aging model is established based on aging data 
under different working conditions, and the predicted battery 

life loss can be limited to 9.1%.  
Data-driven methods can characterize the aging mechanism 

of battery cells during the whole life cycle. However, limited 
by the dataset integrity and model extrapolation, it can hardly 
be deployed in commercial BESS management issues. Unlike 
common mechanical and electrical devices, the battery pack is 
a complex electrochemistry system. Therefore, a large amount 
of data is required to accurately simulate its operational 
characteristics [13-15]. According to [16], a comprehensive 
database that reflects battery aging characteristics under the 
whole life cycle is indispensable for establishing a battery 
model with satisfactory performance. However, aging 
experiments are costly and time-consuming, and it is very 
challenging to obtain the experimental aging data during the 
whole battery life cycle [17]. Furthermore, data driven methods 
are usually carried out to model the aging phenomenon of a 
single cell, but battery packs in real-world energy storage 
devices usually consist of thousands of cells, each with different 
aging characteristics [18, 19]. Therefore, the established 
degradation quantification models are usually with limited 
extrapolation on the whole battery pack. Most existing papers 
focus on battery cell state of heath estimation, but to the best of 
the authors' knowledge, aging quantification models for BESS 
energy management have not been well investigated. 

To reduce BESS usage costs, battery aging should also be 
actively mitigated in energy management algorithms [19, 20]. 
Some references have investigated off-line battery anti-aging 
BESS energy management approaches. In [21], the rain-flow 
cycle counting algorithm is used to analyze aging cycles in a 
grid-connected battery storage system. The proposed method 
enables distribution network operators to optimally 
schedule the day-ahead battery anti-aging bidding for energy 
storage systems in power markets. Reference [22] models the 
life loss of BESS as a function of the number of cycles and 
depth of discharge (DOD). The heuristic algorithm is used in 
[23] to optimize the operational schedule of energy storage 
systems in micro-grids for improving the power transmission 
efficiency and extending battery life expectancy. Limited by the 
analyticity of the battery aging quantification model, most 
existing methods can only schedule the operation of BESSs day 
ahead [24]. However, system dynamic performance is also 
emphasized in BESS management in engineering applications.  

BESS operation can be dynamically scheduled based on the 
sampled power system and BESS state information, which 
indicates that energy storage capacity can be better utilized to 
respond to system transient power fluctuations. In aggregated 
V2G coordinator [25], the deployment of dynamic V2G 
management strategies further improves renewable energy 
sources utilization and power system economy by 12% and 3.3% 
in a microgrid with grid-connected electric vehicles (GEVs) 
penetration. In PHEV energy management deployed in vehicle 
control units, system dynamic performance is also of great 
significance to vehicle power system stability and economy [26, 
27]. Nevertheless, reference [28] points out that battery aging is 
a cumulative process, and it is challenging to quantify and 
mitigate battery aging costs in dynamic energy management. 

Based on the above discussion, this paper proposes an 

B 
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integrated battery life loss modeling and anti-aging energy 
management (IBLEM) method for mitigating the degradation 
cost of BESS in EVs. Battery anti-aging energy management is 
realized by a two-stage framework: i) the establishment of 
multifactorial battery aging quantification model, and ii) 
deployment of the battery aging model in dynamic BESS 
energy management. In the first stage, a multifactorial battery 
life loss quantification model is established by learning general 
degradation characteristics extracted from cell acceleration 
aging test datasets. In the second stage, the deployment of the 
established battery model is realized by a charging event and 
cycle analysis method. Further, battery active anti-aging energy 
management is modeled as a mathematical problem based on 
the established BESS life loss model. The two most common 
scenarios: V2G scheduling and PHEV energy management, are 
used as case studies to verify the developed methods. 

The main contributions of this paper are: 
1) It develops a novel multifactorial battery life loss 

modeling method to quantify the usage cost of BESS in 
EVs. Compared to existing literature, the proposed 
method can comprehensively reflect battery aging 
mechanisms under different working conditions (DoDs 
and Crates) by only utilizing cell aging test datasets 
provided by the manufacturer. 

2) It for the first time proposes an analyzable BESS 
degradation cost quantification method, where battery 
aging cycle, DoD, and Crate information are dynamically 
extracted by analyzing the change of charging states in 
SoC profiles. The developed event-based method provides 
a single-step battery life loss feedback signal for 
facilitating anti-aging vehicle BESS energy management. 

3) The established BESS aging quantification model is 
further deployed in V2G scheduling and PHEV power 
distribution scenarios to realize anti-aging vehicle battery 
energy management. Compared to existing vehicle energy 
management methods, the proposed method can 
efficiently schedule BESS operation while significantly 
mitigating battery aging. 

Furthermore, the theoretical and practical significance of the 
developed method can be summarized as follows: 
1) The developed battery aging modeling method provides 

an economic and efficient scheme for vehicle BESS life 
loss quantification in commercial applications. GEV 
battery aging modeling and anti-aging management can be 
realized by using the open-access cell experimental 
databases provided by the manufacturer.  

2) The BESS life loss quantification model and anti-aging 
energy management method also improve the total 
economy of PHEV. With the developed method, the usage 
cost of vehicle owners can be significantly reduced. 

The remainder of this paper is organized as follows. Section 
II presents the developed IBLEM framework. Section III 
proposes the cell experimental data-driven BESS life loss 
quantification model. Then, a event-based battery aging 
quantification model is established in Section IV. Section V 
demonstrates the implementation of the established battery 
aging model in V2G scheduling and PHEV energy management. 

Section VI validates the efficacy of the proposed method. The 
conclusions are drawn in Section VII.  

II. INTEGRATED BATTERY LIFE LOSS QUANTIFICATION AND 
ANTI-AGING ENERGY MANAGEMENT FRAMEWORK 

This section develops an integrated battery life loss modeling 
and anti-aging energy management framework to reduce the 
operation cost and improve the total economy of BESS. As 
shown in Fig. 1, the built IBLEM framework consists of 2 
stages: the establishment of a multifactorial battery life loss 
quantification model, and the deployment of the battery aging 
model in BESS energy management. 

 
Fig. 1. Integrated battery life loss modeling and anti-aging energy management 
framework. 

In the first stage, an experimental data-driven multifactorial 
battery aging model is established to quantify battery life loss 
under different working conditions. Compared to the battery 
pack, aging experiments are easily carried out under single cells. 
Therefore, this study uses the aging characteristics of a single 
battery cell to model and mitigate the aging phenomenon of the 
whole pack in energy management strategy. As shown in Fig. 
1, in the developed IBLEM method, the kernel aging factor of 
the battery is modeled by cell aging tests under different DODs. 
Similarly, the accessory aging factor of the battery is derived by 
battery aging tests under different Crates. Battery DoD and 
Crate in the aging test are quantified by the following equations 
[29]: 

0( ) 100%dDoD SoC SoC= − ×                     (1) 

bat

ICrate
Q

=                                   (2) 

Where: 0SoC  and 0SoC  are the initial and final SoC value of 
the battery in the studied discharging cycle. I  and batQ  are the 
working current and rated capacity of the battery. The battery 
life loss responding profile, which models BESS aging 
characteristics under different working conditions, is 
constructed by integrating the influence of both kernel and 
accessory factors.  

In the second stage, the established life loss responding 
profile is used to provide a single-step battery aging cost signal 
for BESS energy management. Firstly, based on the working 
condition and mathematical model of the power system, the 
output power profile of BESS system is calculated. Then, 
battery cycles and the corresponding Crate and DOD 
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information are extracted by analyzing the charging events in 
output power profiles. BESS aging cost is quantified by the 
established battery life loss responding profile. With the battery 
aging cost feedback signal, energy management unit schedules 
the optimal anti-aging strategy to satisfy power system 
operation requirements while effectively protecting the battery 
pack. 

III. ESTABLISHMENT OF MULTIFACTORIAL BATTERY LIFE LOSS 
QUANTIFICATION MODEL BASED ON CELL EXPERIMENT DATA 
This section establishes an experimental data-driven battery 

life loss quantification model. Firstly, the impacts of DOD and 
Crate on battery aging are quantified by cell acceleration aging 
test data. Then a life loss responding profile is constructed for 
evaluating battery aging costs under various working conditions. 

Commercial EVs normally use standard cells to form battery 
packs, such as 18650 and 21700 cells provided by LG Chem, 
Samsung, Panasonic, and Sanyo. According to [30] and [31], 
battery packs consisting of cells produced by the same 
manufacturer have extremely similar aging characteristics. In 
[32], the large-scale battery energy storage system simulation is 
realized by only using the operation data collected from 9 cells. 
The characteristic similarity between the battery pack and cell 
is validated through both theoretically and experimentally 
analyses. The published open-access cell experimental 
databases also make it convenient to model battery aging 
through cell datasets in commercial applications [30, 33, 34]. 
Therefore, this study uses battery cell degradation data to 
characterize the aging characteristic of EV batteries for 
simplifying the life loss quantification process.  

Battery undergoes cycles with various DoDs and Crates in 
engineering applications. However, it is challenging and costly 
to carry out the corresponding battery aging experiment under 
every different DoDs and Crates. It has been proved that curve 
fitting is effective in inferring the aging characteristics of BESS 
in energy bidding [35], renewable energy systems [36, 37], and 
electric vehicles [38] under different working conditions. In [9], 
BESS remaining capacity estimation is realized by fitting 
cycling test data. The established model is widely recognized 
by both academic and industry circles. Therefore, a piecewise 
function is used in this study to model battery cycle to failure 
characteristics under different DoD and Crate states. Battery 
life under different DoD states in the cell experiment [39] is 
shown in Fig. 2 (a). 11 independent battery aging experiment is 
conducted to characterize battery life under different DoD 
range from 5% to 100%. Based on the experimental data, the 
following function is established to represent battery life loss 
under different DoDs: 

1.079

40000                         5%
( )

946.1  5% 100%d
DOD

CTF f DOD
DOD DOD−

<= = 
⋅ ≤ ≤

(3) 

Where: CTF  is battery cycle to failure value. df  is the 
function to quantify battery life under different DoD states. 

This paper defines a cycle life correction (CLC) factor to 
quantify the impact of discharging current on battery life. 
Battery CTF value under 1C current and 100% DOD scenario 
is selected as the benchmark. Battery life loss test data under 

different Crates and 100% DOD are used to describe the 
influence, and the failure cycles of the battery when its capacity 
declines by 20% are labeled as CrateCTF . The impact of 
different Crates on battery life is quantified by calculating the 
ratio between battery CTF under different Crates and 
benchmark value: 

| 100%
CrateCTF

CLC
CTF DOD

=
=

                     (4) 

Based on (4), the correction factors in 11 experiments are 
calculated, and the corresponding discrete experimental data 
points are given in Fig. 2 (b). Meanwhile, based on the 
calculated discrete results, the following piecewise function is 
used to fit the relationship between CLC value and battery Crate:  

0.445

4                              Crate 0.2
( )

1.041   0.2 10clcCLC f Crate
Crate Crate−

<= = 
⋅ ≤ ≤

(5) 

Where: CLC  is calculate battery Crate correction factors. clcf  
is the function to quantify the influence of Crate on battery life. 

 
Fig. 2. Battery aging characteristic profile. (a) Battery cycle to failure value 
under different DODs; (b) correction factor value under different Crates. 

In the established life loss quantification model, df  
quantifies battery life under different DoDs, clcf  reflects the 
impact of Crate. This study assumes that the Crate impacts 
battery life in the same way under different DODs to simplify 
the modeling process and reduce data requirements. Therefore, 
the product of df  and clcf  is used to reflect maximum battery 
life under the current working state. The reciprocal of its value 
is used to describe battery percentage life loss under different 
DOD and Crate working states, which can be described by the 
following equation: 

1( , ) 100%
( ) ( )l

d clc
f DOD Crate

f DOD f Crate
= ×

⋅
     (6) 

Where: lf  is the function to quantify percentage battery life 
degradation degree.  

IV. BATTERY AGING QUANTIFICATION BY ANALYZING 
CHARGING EVENTS 

In vehicle energy storage system management, battery life 
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loss should be dynamically calculated to derive optimal active 
anti-aging strategies. This section develops an analyzable 
deployment method for the establishment battery aging model 
based on charging event analysis. 

 
Fig. 3. Battery aging quantification model based on charging event analysis. 

As shown in Fig. 3, in energy storage system management, 
the whole scheduling period can be divided into several 
dispatch time intervals. In each interval, the energy 
management controller schedules the charging and discharging 
power of the battery dynamically, and it is necessary to provide 
a battery life loss feedback signal to enable active anti-aging 
control. In this study, battery state of charge (SoC) values in 
energy management strategy are used as the observation 
variable to quantify the aging cost. Firstly, extreme points, 
where battery charging state changes, are labeled to divide the 
SoC profile into several independent discharging and charging 
events: 

( ) ( )
( ) ( )

1 1

1 1

1    0

0   0
k k k k

k
k k k k

SoC SoC SoC SoC
Ad

SoC SoC SoC SoC
− −

− −

 − ⋅ − >= 
− ⋅ − ≤

      (7) 

When extreme points appear, the value of kAd  is labeled as 
0, which indicates that a discharging or charging event is 
completed. Otherwise, the value of kAd  will be labeled as 1 to 
indicate that battery is still in an incomplete charging or 
discharging half-cycle. Battery DoD is an accumulative process 
in a completed charging or discharging cycle. Therefore, the 
DoD is calculated under multi-intervals to quantify its impact 
on battery life loss in this study. kAd  is used to decide whether 
the energy exchange in the previous interval will be 
accumulated. The accumulated energy output of the battery at 
k  can be calculated by the following equation:  

,, ,1 Δbatbat kk k bat kE Ad E P t−= ⋅ + ⋅               (8) 
Where: Δt  is the duration of an energy management dispatch 
time interval; ,bat kP  is the working power of the battery pack at 
k . A complete cycle ends when the value of kAd  is 0, and 

,bat kE  is only decided by the battery discharging power in the 
current interval. Otherwise, , 1bat kE −  in previous intervals will 
be accumulated. 

Based on the operation power and energy exchange, battery 
Crate and DOD at k  can be calculated by the following 
equations: 

,

,
 Crate bat k

k
bat k bat

P
U Q

=
⋅

                            (9) 

,

,

ba
k

bat

t k

bat k

E
U

DoD
Q⋅

=                            (10) 

Where: ,bat kU  and batQ  are the terminal voltage and capacity 
of the battery. Battery life loss in current discharging and 

charging events can be represented as: 
ate )Cr( , kk l kBL f DoD=                        (11) 

The instant battery life loss signal is calculated by 
constructing the following differential signal that compares the 
difference between  kBL  and 1kBL − , which can be represented 
by the following function: 

, 1( )ibl bat k k kkBf P AdL BL −= ⋅−                (12) 
The value of kAd  is calculated based on (7), which judges the 
extreme points in the SoC profile. When a new cycle appears, 
its value will be set as 0, and battery life loss is fully influenced 
by battery charging and discharging behavior in the current 
interval. Otherwise, the value of kAd  will be set to 1, and the 
battery life loss will be determined by the difference between 

kBL  and 1kBL −  to avoid repetitive calculation. 

V. BATTERY ANTI-AGING VEHICLE BESS ENERGY 
MANAGEMENT METHOD 

Based on the established battery life loss quantification 
model, this section further proposes an anti-aging energy 
management method for vehicle BESS in V2G and PHEV 
power distribution scenarios.  

A. Battery anti-aging V2G behavior management 
V2G scheduling is a complex optimization problem that 

relates to the electricity market and trading. This study mainly 
focuses on the quantification and mitigation of BESS aging. 
Therefore, a most basic and simple V2G mode: aggregated 
GEVs oriented peak-shaving services, are studied.  

In the developed anti-aging V2G behavior management 
model, the decision variable refV  is designed as the charging 
and discharging power of GEVs, which can be represented as: 

, , 1 ,
ref ref refr

i i k i k i T
ef

kV V V+ +
 =  V                  (13) 

1{ , , }ref ref ref
n=V V V                         (14) 

Where: ,
f

i k
reV  is vehicle V2G power of thi  GEVs at k ; T  is the 

length of the scheduling period; n  is the number of GEVs.  
Based on the presumed V2G power of GEVs, the grid power 

balance state is calculated by the following equation:  

, ,1

n
k ref

ref
load ki i kV PPB P

=
= + −∑                  (15) 

Where: loadP  represents grid demand state. refP  is the peak-
shaving reference value provided by the distribution network 
operator [40]. 

The established battery life loss model in Sections III and IV 
is used to quantify BESS aging cost in V2G services by 
analyzing the impact of Crate and DoD caused by charging and 
discharging power of GEVs: 

,, , ,
1

( )ref
aging k bat i bat i ibl i

i

n

kC C Q f V
=

= ∑ ⋅ ⋅             (16) 

Where: batC  is the unit cost of the vehicle battery system. 
The optimization target is designed to reduce battery aging 

cost of all GEVs while providing peak-shaving services: 

1 2
1

k T

aging,kV k
k

CJ PBα α
+

=
= ∑ ⋅ + ⋅                    (17) 

Where: 1α  and 2α  are the weight factors between different 
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optimization targets. 
BESS management constraints in V2G are set to subject the 

battery discharging power (17) and SoC states (18) in the 
scheduling period. Furthermore, the battery SoC value at k  
should be higher than the benchmark value ,SoCcu k  that 
reflects the charging urgency [41] of GEVs to satisfy the 
charging requirement, as described in (19). The detailed 
constraints are listed as follows: 

max max
,dis , ch ,i k

ref
i iP V P− ≤ ≤                            (18) 

min max,SoC SoC SoCref
i k≤ ≤                     (19) 

, ,SoC SoCref
kk cui ≥                              (20) 

Where: max
,disiP  and max

, ch iP  are the maximum discharging and 
charging power of GEVs; minSoC  and maxSoC  are the 
minimum and maximum battery SoC values. ,SoCref

i k  is battery 
SoC value at k , which is calculated based on V2G power of 
GEVs. The calculation of ,SoCref

i k  can be represented as: 

,
, , 1

,

Δ
SoC SoC

ref
ref ref
i k i

b

k
k

t

i

a i

V t
Q−

⋅
= +                   (21) 

The anti-aging V2G strategies are derived by minimizing (17) 
subject to constraints (18)-(20), which can be represented by the 
following optimization problem: 

min ( )

subject to (18) ~ (20)

ref

ref
VJ

V
V

                       (22) 

B. Battery anti-aging PHEV energy management 
In PHEV, BESS is used to work with the fuel engine for 

providing power ancillary services. In this study, the decision 
variable is designed as the output power of BESS to facilitate 
flexible vehicle power system operation scheduling, which can 
be represented as: 

1
ref ref ref ref

k k k TB B B+ +
 =  Β                     (23) 

Battery aging cost in PHEV energy management strategies is 
quantified based on the established BESS aging model in 
Sections III and IV by the following equation: 

, ( )aging k bat bat ibl
ref
kC C BQ f= ⋅ ⋅                   (24) 

Vehicle fuel and electricity cost is calculated according to the 
engine and motor efficiency maps shown in Fig. 4 by the 
following equations: 

( ), ,elec k ba
ref

elec kt m m mC n TBη ηρ= ⋅ ⋅⋅               (25) 

( ), ( ,)fuel k bat
ref

fuel d e e ekmP B bC n Tη ηρ ⋅ ⋅= ⋅ − ⋅       (26) 

Where: elecρ  and fuelρ  are the unit cost of electricity and fuel. 
batη  and dP  are BESS efficiency and vehicle power 

requirement. eb  and mη  are calculated according to the motor 
efficiency map (a) and engine fuel consumption map (b) based 
on engine speed en , engine torque eT , motor speed mn , and 
motor torque mT .  The detailed system efficiency and dynamic 
coupling relationship between mn , mT , en , eT , and dP  of the 
studied PHEV can be found in [42]. 

 
Fig. 4. The (a) fuel consumption map of the engine and (b) 
working efficiency map of the driving motor. 

The optimization target is to reduce fuel cost, electricity cost, 
and battery aging cost while providing power ancillary services 
to PHEV. Accordingly, the following optimization objective 
function is formulated to derive the energies management 
strategies: 

, , ,
1
( )fuel k elec

k

k aging k

T

k
B C C CJ

=

+
∑ + +=               (27) 

Scheduling constraints are set to subject the output power of 
the electric motor (28) and internal combustion engine (29). 
Furthermore, the battery SoC state is constrained by (30). The 
detailed constraints adopted in the PHEV energy management 
are listed as follows: 

min m,k max
ref

m mP P P
− −

≤ ≤                       (28) 

e min ee,k max
refP P P

− −
≤ ≤                        (29) 

min maxSoC SoC SoCref
k≤ ≤                    (30) 

Where: minmP
−

, e minP
−

, maxmP
−

, and maxeP
−

 are minimum and 
maximum working power of motor and engine. m,k

refP , e,k
refP , 

and SoCref
k  are the working power of engine, motor, and 

battery SoC at k , which are calculated based on BESS working 
power and PHEV power requirement: 

m,k
ref

bat
ref
kP Bη ⋅=                             (31) 

,e,k
ref

d
ref

bat mk kP BP η η⋅ ⋅= −                     (32) 

1
Δ

SoC SoC
ref

ref ref
k k

k

bat

B t
Q−

⋅
= −                    (33) 

The optimal BESS operation strategies are derived by 
minimizing (27) subject to constraints (28)-(30), which can be 
represented by the following optimization problem: 

min ( )

subject to (28) ~ (30)

ref

ref
BJ

Β
Β

                     (34) 

C. Strategy deployment and model solving 
The deployment of the established online vehicle BESS 

operation scheduling model is realized in a two-stage 
optimization framework as shown in Fig. 5. In the first stage, 
anti-aging strategies are derived based on the established 
optimization model in (22) and (34). Both the defined V2G 
behavior management and PHEV power distribution models are 
nonlinear programming problems with multiple time periods 
due to the use of a nonlinear instant battery life loss 
quantification function. The Generic Dynamic Programming 
Matlab Function in [43], which is specially designed for solving 
nonlinear vehicle BESS operation optimization problems, is 
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employed in this study to solve the established optimization 
model. It has great versatility and can solve the optimization 
problem with various cost functions (even the table look-up 
function is acceptable). For this reason, it has been commonly 
used in BESS energy management problems in electric vehicles 
[44, 45], grid energy storage systems [46, 47], and intelligent 
transportation systems [48]. Based on the optimization problem 
in (22) and (34), the optimal anti-aging V2G strategy refV  and 
PHEV distribution strategy refΒ  are solved by the dynamic 
programming algorithm. 

 
Fig. 5.  The solving of the established anti-aging vehicle BESS operation 
scheduling model. 

In practical vehicle BESS management, vehicle charging 
demand and PHEV torque requirement may differ from those 
in ideal conditions due to the uncertain vehicle usage and 
operation states. Different from the management of 
conventional stationary energy storage systems, vehicle BESS 
should be online scheduled to respond to the unplanned vehicle 
charging and operation conditions [42, 49]. The anti-aging 
BESS management model can only provide day-ahead or hour-
ahead strategies, which dramatically limits the flexibility of 
vehicle BESS operation. Therefore, to facilitate strategy 
deployment in practical vehicle energy management, this study 
further proposes an online deployment scheme for the derived 
anti-aging BESS energy management strategy. As shown in Fig. 
5, in the second stage, vehicle BESS operation is online 
scheduled by following the anti-aging strategies refV  and 

refΒ . The anti-aging target is realized by following the optimal 
solution from the first stage. Dynamic vehicle charging 
requirements and PHEV power requirements are strictly 
satisfied by setting constraints on online BESS working power 
in the second stage. 

In online V2G behavior management, the decision variable 
is designed as the practical charging and discharging power of 
GEVs. The actual V2G power of thi  GEV is labeled as ol

iV , 
and the online V2G behavior coordination is modeled as a 
quadratic programming problem: 

, ,

,

2
1

max max
,dis , c

,

h 

min , max

,

( )arg m

. .

SoC SoC SoC

SoC SoC

in
ol
k

n refol
i

o

V i k i k

l
i i

ol
i k

o

i k

cu
l

i k k

V V

s t

P V P

π
=

−

−

≥

=

≤ ≤

≤ ≤

∑
V

               (35) 

Where: ol
kV  is the collection of ,

l
i k
oV , which represents the 

actual V2G power of all GEVs at k . ,SoCol
i k  is the actual 

battery SoC value, which is calculated based on ,
l

i k
oV  by Eq. 

(21). The online V2G strategy Vπ  is derived by solving the 
constrained optimization problem in (35). 

In PHEV energy management, the decision variable is 
designed as the practical working power of BESS. The actual 

BESS working power at k  is labeled as ol
kB . Online PHEV 

power distribution is realized by following the anti-aging 
strategy ref

kB  in the scheduling period to provide dynamic 
auxiliary power for the vehicle driving system, which can be 
described as:  

2

max

max

min m,k

e min , e

min maxSoC SoC SoC

arg min( )

. .

ol
k

refol
B k k

B

m m
ol

ol
e k

ol
k

P P P

P

B B

P P

s t

π

− −

− −

−

≤ ≤

≤ ≤

≤ ≤

=

                    (36) 

Where: m,k
olP , ,

ol
e kP , and SoCol

k  are the actual working power of 
motor, engine, and battery SoC state, which are calculated 
based on ol

kB  by Eq. (31)~(33). The online PHEV energy 
management strategy Bπ  is derived by solving the constrained 
optimization problem in (36). 

Both the established strategy deployment model in V2G 
scheduling and vehicle power distribution are solved by a 
mixed-integer programming toolbox provided by Gurobi 9.1.0 
optimizer [50]. 

VI. CASE STUDY 
This section verifies the effectiveness of the established 

multifactorial battery life loss quantification model and anti-
aging energy management method. Two cases are employed to 
evaluate performance: V2G peak-shaving services in 
distribution networks and PHEV energy management. Battery 
active anti-aging vehicle charging management 

GEVs are considered to provide peak-shaving services to a 
distribution network in this study for verifying the effectiveness 
of the established battery aging model in V2G scheduling. Grid 
demand data [51] comes from the Stentaway Primary substation 
near Plymouth, which is open-access provided by Western 
Power Distribution in the UK, is used in this study as a basic 
load profile. The period (16:00~08:00) that owns the most 
active grid energy consumption and GEVs charging 
requirement is studied, and the corresponding grid demand 
profiles within 30 working days are shown in Fig. 6. In this 
study, V2G scheduling for aggregators at the charging station 
and residential area, where GEVs can be regarded as fixed 
energy storage devices in a specific timeframe, is carried out to 
explore the potential benefit of the developed method. The 
national household travel survey data [52] is employed to 
characterize the trip behavior of GEVs, and the Monte Carlo 
simulation model is used to simulate GEVs' grid-connected 
timeframe. This paper mainly focuses on mitigating BESS 
aging in V2G services. Therefore, GEVs are assumed to be with 
firm connection timeframes in the simulation period and their 
uncertainty is not considered. 
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Fig. 6. The demand profile within 30 days of the studied distribution network. 

In this study, charging behaviors of 30 GEVs each with a 60 
kWh battery pack, are simulated to provide peak-shaving 
service, and the peak-shaving reference value is set as 400 kW. 
The peak-shaving and battery anti-aging performance of the 
developed method (Case 4) is quantitively compared with 
conventional online scheduling method (Case 2) and off-line 
rain-flow anti-aging (ORA) method [53] (Case 3) in Fig. 7. The 
V2G behavior of the whole GEV fleet within 30 working days 
is simulated. In terms of power balancing service, as shown in 
(a) and (b), all three methods can significantly stabilize the grid 
demand. Compared to baseload (Case 1), average grid load 
fluctuation and the peak-valley difference can be reduced by 
around 68.6% and 57.4% in the simulation period, which 
validates the effectiveness of V2G scheduling. It should be 
figured out that the set of battery aging mitigation targets shows 
a very limited impact on V2G power balancing performance. 
Battery utilization degree decreases 4.3% in the developed 
IBLEM method.  

The battery anti-aging performance of different methods is 
compared in Fig. 7 (c) and (d). After the anti-aging optimization 
target is deployed, battery DoD and aging cycles can be 
significantly reduced by around 22.9% and 56.1% on average 
in ORA method and the developed IBLEM method. Compared 
to the ORA method, IBLEM method shows more outstanding 
performance (4.7% more) in mitigating battery DoD. The 
reason is that the developed life loss quantification model can 
better characterize the aging mechanism of the vehicle battery. 
However, due to lacking global optimization mechanism, the 
battery undergoes 17.2% more cycles in the IBLEM method 
compared to the ORA method. In quantitative analysis, more 
than 54.3% battery life loss can be avoided while providing the 
same peak-shaving service to the grid, which validates the 
effectiveness of the developed IBLEM method in GEVs 
charging management. 

 
Fig. 7. Quantitative performance comparison of different methods on GEVs 
fleet. (a) load fluctuation mitigation; (b) peak-shaving difference; (c) battery 
cycles and DoD; (d) quantified battery life loss. 

In engineering applications, the benefits of joining peak-
shaving services and the cost of battery aging can be balanced 
by minimizing the total cost of V2G service, which can be 
calculated based on bi-directional peak-valley electricity price 
and battery unit cost. Various power systems and GEVs are 
with different electricity price states and battery unit costs. 
Therefore, the balance between the benefit of joining peak load 
shaving services and the cost of battery aging changes in 
different V2G scenarios. This study further verifies the anti-
aging performance of the developed IBLEM-based V2G 
scheduling method under different peak-shaving intensities. Fig. 
8 shows the vehicle battery life loss under different peak-
shaving reference values. The lower the preset peak-shaving 
value, the more the V2G auxiliary power is required, and the 
more the battery life will be depleted. Vehicle battery life loss 
reduces with the improvement of peak-shaving reference value. 
When the peak-shaving reference value improves by 40%, 
battery life loss can be limited to 2.03×10-2%, which validates 
the battery anti-aging effectiveness of the developed IBLEM 
method. It should be figured out that battery life loss 
dramatically increases when the change of peak-shaving value 
reaches -30%. The reason is that the satisfying of peak-shaving 
requirements is emphasized in the developed scheduling 
algorithm. When GEVs' energy storage capacity is not enough 
to support V2G services, battery anti-aging targets will be 
neglected in the scheduling algorithm to some extent.  

 
Fig. 8. Vehicle battery life loss under different grid peak-shaving reference 
values. 

It should be noted the realization of bi-directional V2G 
services from residential EVs is still challenging because it 
highly depends on the electricity market, energy trading, and 
smart charging pile technologies. This study mainly focuses on 
quantification and mitigation of BESS aging, and V2G is 
simplified to a peak-shaving optimization problem. Future 
work can be conducted on deploying the battery life loss 
quantification model and aging mitigation methods in V2G 
with a realistic energy market and trading scenario. 

A. Hybrid electric vehicle energy management 
A plug-in hybrid electric bus [54] weights 18000 kg with a 

147 kW fuel engine, a 65 kW ISG motor, a 168 kW main 
driving motor, and a 34.5 kWh battery pack is studied in this 
part to verify the performance of the developed battery anti-
aging energy storage system management method. The Chinese 
Typical Urban Drive Cycles (CTUDC) is used in this study to 
simulate vehicle daily operation, the velocity and acceleration 
profiles are shown in Fig. 9 (a) and (b). Battery energy storage 
system is used to work with the fuel engine and ISG motor to 
improve the vehicle working efficiency. Based on the engine 
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and ISG efficiency map and battery aging model, vehicle power 
requirement in driving cycles is distributed between fuel engine 
and battery pack by the developed time-windowed energy 
management method, the corresponding engine and battery 
output power profiles in 6 CTUDC cycles are shown in (c). 
Instead of fuel engine, battery is used as the main power source 
to power vehicle driving systems in most of the simulation 
period (more than 84%). With the anti-aging feedback signal 
and economic objectives, fuel engine only works under the 
following two scenarios: (1) when the peak power requirement 
appears during the vehicle acceleration, fuel engine works with 
BESS to reduce the Crate of the battery and prolong its life. (2) 
fuel engine works with ISG motor to charge energy back to the 
battery to sustain its SoC level and mitigate DoD of operation 
cycles. In the whole simulation period, fuel engine can work 
within a high-efficiency area for 86% more time, which 
highlights the effectiveness of the developed time-windowed 
optimal control method. 

Battery SoC profiles in conventional energy management 
strategy (EMS) [55] and the developed active anti-aging 
method are further compared in Fig. 9 (d). In the conventional 
EMS method, the improvement of engine fuel economy is used 
as the single optimization objective; thus, the battery undergoes 
many cycles with high Crate to satisfy vehicle power 
requirements. Compared to the conventional method, battery 
anti-aging is also considered in the developed energy 
management method. Therefore, as shown in the detailed view, 
battery number of cycles and the corresponding Crates are 
significantly reduced after the multifactorial battery life loss 
model and the aging feedback signal is deployed. It should be 
figured out that the mitigating of battery aging cost is not 
realized by sacrificing vehicle fuel economy. As shown in (d), 
battery SoC profiles end at almost the same points after 6 
CTUDC cycles, which indicates that the battery provides a 
similar energy output in both methods. 

 
Fig. 9. PHEV power distribution results with the developed anti-aging method. 
(a) vehicle speed profile; (b) vehicle acceleration profile; (c) engine and battery 
power profile; (d) battery SoC profile. 

The long-term operation cost of different PHEV energy 
management strategies is quantitatively compared in Table I to 

better illustrate the improvement. It is assumed that each PHEV 
needs to operate 12 CTUDC cycles per day and 300 days per 
year, and its set life is assumed to be 10 years. The unit price of 
the battery is set as 600$/kWh, the price of diesel is set as 
1.04$/liter, and the electric price is assumed to be 0.18$/kWh. 
In terms of fuel cost, the deployment of anti-aging algorithm is 
not able to reduce its value. On the contrary, the set of anti-
aging target limit the use of battery in energy management 
algorithm, and thus the working period of the fuel engine is 
inevitably increased. The bucket model [56] limits the sum of 
battery discharging energy directly, and vehicle fuel cost is 
elevated by 26.1% compared to conventional EMS. The 
developed IBLEM method can better model the aging 
characteristics and improve the utilization degree of the battery. 
Both energy management strategies that consider degradation 
cost consume less electricity because of the set of battery anti-
aging target, but the IBLEM method can provide 15.1% more 
electricity to improve vehicle fuel economy. As a result, EMS 
with the IBLEM method keeps a similar (4% higher only) fuel 
cost compared to conventional EMS. The use of the bucket 
model can directly limit the discharging energy of the battery in 
the energy management algorithm. Therefore, as shown in 
Table I, the battery degradation cost is reduced by 26.3% 
compared to conventional EMS. Compared to the bucket model, 
the developed IBLEM method can comprehensively evaluate 
battery life loss, and thus the degradation cost in energy 
management strategy is further reduced by 8.9% compared to 
the bucket model.  

TABLE I. LONG-TERM OPERATION COST COMPARISON OF PHEV WITH 
DIFFERENT ENERGY MANAGEMENT STRATEGIES 

Parameters Conventional 
EMS 

Anti-aging 
bucket model 

Anti-aging 
MPC method 

IBLEM 
method 

Fuel cost ($/year) 1865.3 2352.5 1896.4 1939.4 
Electricity cost 

($/year) 1426.5 1074.2 1211.7 1288.7 

Battery degradation 
cost ($/year) 3874.6 2855.8 2946.3 2494.3 

Total cost ($/year) 7166.4 6282.5 6054.4 5722.4 
Cost comparison (%) 100 87.7 84.5 79.8 

In Table I, the developed IBLEM method is also compared 
with the model predictive control (MPC) method [57], the most 
commonly used PHEV energy management scheme in the 
existing literature. The IBLEM method greatly outperforms the 
MPC in terms of reducing battery degradation costs. The 
battery anti-aging target can hardly be realized by using the 
simple MPC method because of the limited observation 
window length. PHEV battery aging cost is reduced by 15.3% 
in the IBLEM method, which validates its battery aging 
mitigation performance. From the total operation cost 
perspective, the developed IBLEM method can further improve 
20.2%, 7.9%, and 4.7% vehicle economy compared to 
conventional EMS, bucket model, and MPC method, which 
validates the effectiveness of the developed multifactorial 
battery life loss quantification model and anti-aging energy 
management method. 

VII. CONCLUSION 
An integrated battery life loss modeling and anti-aging 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

energy management method is developed in this paper for 
mitigating the degradation cost of BESS. BESS aging cost is 
quantified by establishing a multifactorial degradation model 
based on cell acceleration aging test datasets. Meanwhile, the 
deployment of the aging model is realized by a charging event 
analysis method. The built battery life loss quantification model 
is deployed in V2G scheduling and PHEV power distribution 
to realize anti-aging energy management. Some key findings 
are given: 
 The established multifactorial battery life loss model can 

accurately quantify BESS usage cost under different 
working conditions (DoDs and Crates). Battery aging 
costs in both V2G scheduling and PHEV energy 
management can be significantly reduced by using the 
generated life loss feedback signal. 

 In V2G scheduling, the anti-aging method shows a 
significant advantage in mitigating battery number of 
cycles and DoDs while guaranteeing peak-shaving 
performance. 

 In vehicle energy management, the developed IBLEM 
method yields less-conservative strategies, and thus the 
total economy of PHEV can be improved while mitigating 
battery aging. 

The proposed IBLEM method presents a practical solution to 
quantify and mitigate battery aging by optimizing energy 
management strategies. It also brings a promising solution to 
improve the total economy of BESS in providing V2G services 
and PHEV usage, thus helping incentive the adoption of EVs in 
the future transport sector to reduce emissions.  
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