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Global Existence for a Nonlinear System in

Thermoviscoelasticity with Nonconvex Energy

Johannes Zimmer

Max Planck Institute for Mathematics in the Sciences,
Inselstr. 22, 04 103 Leipzig, Germany

E-mail: zimmer@mis.mpg.de

A three-dimensional thermoviscoelastic system derived from the balance
laws of momentum and energy is considered. To describe structural phase
transitions in solids, the stored energy function is not assumed to be convex as
a function of the deformation gradient. A novel feature for multi-dimensional,
nonconvex, and non-isothermal problems is that no regularizing higher order
terms are introduced. The mechanical dissipation is not linearized. We prove
existence global in time. The approach is based on a fixed-point argument
using an implicit time discretization and the theory of renormalized solutions
for parabolic equations with L1 data.

1. INTRODUCTION

This article is concerned with global solvability of an initial-boundary
value problem in three-dimensional thermoviscoelasticity arising from the
theory of solid-solid phase transitions. We consider a three-dimensional
body, identified with its reference configuration Ω in IR3. Here, Ω is
assumed to be a bounded, nonempty domain with Lipschitz boundary.
Let T > 0 be an arbitrary, but fixed time. The thermomechanical evo-
lution of the body will be described in terms of the deformation field
u: Ω × [0, T [→ IRn and the absolute temperature field θ: Ω × [0, T [→ IR.
The evolution of the body also depends on the stored energy function
Φ(F, θ): Mat (n× n)×IR → IR which enters the equation through the stress
tensor σ(F, θ) = ∂Φ(F,θ)

∂F .
The balance laws of momentum and energy ultimately lead to the non-

linear coupled system

utt = Div (σ(∇u, θ) +∇ut) in Ω×]0, T [, (1a)
θt = ∆θ + θσθ(∇u, θ) : ∇ut +∇ut : ∇ut in Ω×]0, T [. (1b)
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Initial and boundary conditions are specified in Section 2. Remarks about
the derivation of this system follow at the end of this section.

To model phase transitions, we do not assume σ to be monotone in F
for temperatures below the critical temperature (i.e., the temperature at
which the phase transition occurs). Hence, the stored energy Φ will be
nonconvex as a function of F below the critical temperature.

Some remarks about the peculiarities of this model and related systems
are in order. In this vein, we will focus on systems with nonconvex energies.
Equations of thermoviscoelasticity with convex energy have been consid-
ered in [2], where renormalized solutions are used to show existence of a
solution. We rely heavily on this machinery and comment later on differ-
ences between convex and nonconvex energies. The novelty of the existence
result presented in this paper (Theorem 3.1) is that, to our knowledge, all
previous results for similar systems with nonconvex energies either

(i) study the one-dimensional case, i.e., Ω = [0, 1],

or

(ii) in the multi-dimensional case, concentrate on the isothermal problem
or include capillarity-like higher-order terms that have a regularizing effect.

Even given these assumptions, it is nonetheless remarkably difficult to prove
global existence. Let us highlight a few salient results.

– The one-dimensional case has been a focus of study for a long time.
See, e.g., [6, 7, 17, 5]. Recent advances have been made in [22], where
rather weak solutions are considered. In the noteworthy paper [26], Watson
studies solids as well as gaseous materials. It is important to note that
all these results do not hold for the multi-dimensional case: though very
different techniques are used throughout these papers, the crucial step is
always a bound on ux in L∞ (Ω; IR). In higher space dimensions, even in
the isothermal case, this estimate is wrong unless one imposes rotational
invariance of Ω or physically unrealistic smoothness assumptions on the
given data [24].

– The three-dimensional isothermal case has been studied by Rybka [23].
Among others, he proves existence and uniqueness of a solution in the multi-
dimensional isothermal case for Lipschitz continuous σ. Later, this result
was generalized by Friesecke and Dolzmann [14] to allow a more general
kind of nonlinearity in σ. Our proof uses the ideas developed in [14]. The
main difficulty of generalizing their results to the non-isothermal case is
the mechanical dissipation ∇ut : ∇ut in the heat equation.

– The three-dimensional, non-isothermal case including capillarity-like
higher-order terms was an open problem for some years until recently when
Paw low and Żochowski [19] proved global existence. The proof relies on the
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observation that the higher-order term allows a parabolic decomposition of
the equation of motion. Preliminary results were, for example, obtained in
[15].

System (1a)–(1b) is derived from the the balance laws of momentum and
energy,

utt = Div (σ(∇u, θ) +∇ut) in Ω×]0, T [, (2a)
−θΦθθ (∇u, θ) θt = ∆θ + θσθ(∇u, θ) : ∇ut +∇ut : ∇ut (2b)

in Ω×]0, T [.

In Section 2, the assumptions on Φ are listed. In particular, by (E2), one
has

−θΦθθ (∇u, θ) = 1− θφ′′(θ)Φ1(F ).

For physical reasons, one expects φ(θ) to be linear in θ. In this case, 1 −
θφ′′(θ)Φ1(F ) = 1, which means that (2a)–(2b) reduces to the system (1a)–
(1b) under consideration. Yet, the growth conditions we must impose allow
Φ to be linear only in an arbitrarily large, but fixed range of θ, so (1a)–
(1b) represent the balance of energy within this restricted range. This
explains why we replace the nonlinear term 1 − θΦθθ (∇u, θ) with 1 and
consequently study the system (1a)–(1b) as an approximation of the full
system (2a)–(2b).

It should be noted that the viscous part ∇ut of the stress tensor is not
frame-indifferent. This is a typical weakness of multidimensional models of
thermoviscoelasticity that are analytically tractable.

We will use a self-explanatory notation for Lebesgue and Sobolev space.
E.g., L1 (Ω; IRn) denotes the class of Lebesgue integrable functions defined
on Ω with values in IRn. Time-dependent function spaces will be denoted,
e.g., W 1,2

(
0, T ; W 1,p (Ω; IR)

)
.

To prove global existence of a solution to the system (1a)–(1b), we com-
bine methods developed in [14] (to deal with the nonconvexity) with the
theory of renormalized solutions in classical thermoviscoelasticity (to deal
with the mechanical dissipation; see in particular the paper by Blanchard
and Guibé [2]).

2. THE INITIAL-BOUNDARY VALUE PROBLEM

The system (1a)–(1b) has to be furnished with appropriate initial and
boundary conditions. We study the initial-boundary value problem

utt = Div (σ(∇u, θ) +∇ut) in Ω×]0, T [, (3a)
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θt = ∆θ + θσθ(∇u, θ) : ∇ut +∇ut : ∇ut (3b)
in Ω×]0, T [,

u = g on ∂Ω× [0, T [, (3c)
u = u0 in Ω× {0}, (3d)

ut = v0 in Ω× {0}, (3e)
θ = 0 on ∂Ω× [0, T [, (3f)
θ = θ0 in Ω× {0}. (3g)

Here, g, u0, v0 and θ0 are given functions. Their regularity is specified in
Section 2.1. The boundary condition θ = 0 on ∂Ω seems to be inappropri-
ate, since this corresponds to zero (absolute) temperature on the boundary.
However, after reformulating the above equations for the incremental tem-
perature field with respect to a fixed temperature Θ, rather than for the
absolute temperature θ, one can see that the same proof holds for (positive)
boundary data Θ. We refrain from spelling this out, to keep the notation
simple.

On the stored energy Φ(F, θ), the following conditions will be imposed:

1. Φ is sufficiently smooth:

Φ ∈ C2(Mat (n× n)× IR; IR). (E1)

2. The stored energy is of the form

Φ(F, θ) = α + θ − θ ln(θ) + φ(θ)Φ1(F ) + Φ2(F ), (E2)

where α is constant. The other quantities will be specified in the next
paragraphs.

To simplify the notation, let us define

φj(F ) :=
∂Φj(F )

∂F
(j = 1, 2). (4)

3. Growth condition on φ: IR → IR:

|φ(θ)| , |θφ′(θ)| , |φ′(θ)| ≤ C. (E3)

4. Growth condition on Φ1:

Φ1 has linear growth near infinity. That is to say, φ1 is bounded.(E4)

Additionally, we require that

φ1 is a globally Lipschitz continuous function. (E5)
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5. Growth condition on Φ2:

φ2 =
∂Φ2

∂F
is a globally Lipschitz continuous function, (E6)

and c, c′ > 0 exist such that

c|F |2 − c′ ≤ Φ2(F ) ≤ c′
(
|F |2 + 1

)
and |φ2(F )| ≤ c′ (|F |+ 1) . (E7)

Remark 2. 1. We need to explain that the growth conditions (E1)–(E7)
are consistent with experimental observations of martensitic phase tran-
sitions. First, it is an inherent property of martensitic phase transitions
that the energy is convex for high temperatures (beyond the so-called Md

temperature, about 300◦C for NiTi). And as there are no nonconvexities at
high temperature, there are no nonconvexities for large strains. The reason
is that only the parent (austenitic) and the martensitic phases are stable,
and their strains differ only by a few percent. Phases with large strain are
always unstable, which means that they are in the convex region of the
energy landscape, away from the minimizers. Therefore, for high tempera-
tures or strains, the problem reduces to one which is very similar to the one
studied by Blanchard and Guibé [2]. The challenge is exactly to address
the nonconvexity in small strains and below the transition temperature.
Indeed, it is important to note that even the modeling implicitly relies
on the small strain assumption. It follows that the difficult mathematical
question of growth conditions at Infinity seems largely irrelevant from a
viewpoint of applications. Specifically, the modeling of phase transitions
on the continuum level relies on the existence of Ericksen-Pitteri neighbor-
hoods [12, 20]. This approach is only valid if the different stable phases
can be confined to a neighborhood which does not, on the crystalline level,
include shifts by one atomic layer (the cut-off function ξ in the example
below singles out an analogue neighborhood on the continuum level). The
fact that martensitic phase transitions are a small strain phenomenon is
illustrated in [1]. Here, it is demonstrated that for specific phase transi-
tions like the fcc-to-bcc transition occurring in iron, the crystalline energy
necessarily has to be in L∞. Finally, we remark that some of the conditions
stated above are familiar from related problems: the conditions imposed on
the absolute temperature in (E3) for φ(θ) can also be found, for example,
in [25] (however, the restrictive assumption (E4) is not imposed there).

Remark 2. 2. A priori, it is not even clear that the strong growth con-
ditions to be imposed on the energy to obtain existence results of multi-
dimensional thermoviscoelastic models of phase transitions (even with higher
order terms [19]) can be met for a frame-indifferent function. However, a
general method to derive energy functions meeting all physical require-
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FIG. 1. Left: Prototypical shape of φ(θ), satisfying (E3). Right: The cut-off func-
tion ξ used in the example in Remark 2.2. It takes the value 1 in a region surrounding
possibly stable phases, and decreases to 0 for large strains.

ments (and arbitrary growth conditions) is presented in [27, 28]. For il-
lustrational purposes, we give an example of the tetragonal-orthorhombic
(orthoI) symmetry breaking, as it occurs in Zirconia (ZrO2). As explained
in [11], this problem can be studied in two space dimensions. To ensure
frame-indifference of the energy (that is, to satisfy Φ(QF ) = Φ(F ) for ev-
ery Q ∈ SO(3)), we use the polar decomposition and write the energy in
C := FT F . We will write both Φ = Φ(F ) and Φ = Φ(C) if no confusion can
arise. It is convenient to introduce the Voigt notation for the components
of C,

C =
(

c1
1
2c6

1
2c6 c2

)
.

Using the ideas of [27, 28, 11], it is clear to see that every function in C
with tetragonal symmetry can be written as

Φ(c1, c2, c6) := Φ
(
c1 + c2, c

2
1 + c2

2, c
2
6

)
.

We derive an energy function for a first order phase transition. Let us
introduce ρ1 (c1, c2, c6) := c1 + c2 and ρ2 (c1, c2, c6) := c2

1 + c2
2. Then, if

ξ = ξ(c1, c2, c6) is a smooth cut-off function (see Figure 1 on the right) and
γ > 0 is a constant, a possible energy is given by

Φ(c1, c2, c3) := α + θ − θ ln(θ)

+
2∑

j=1

ξ

[
arctan

(
θ − θc +

1
4

)
· ρj (c1, c2, c6)

− 1
2
ρj (c1, c2, c6)2 +

1
3

(c1, c2, c6)3
]

+ ξ · c2
6 + γ(c1 + c2). (5)
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We first motivate this structure of Φ. The right-hand side of the first
line of (5) gives the caloric term. The second and third line of (5) de-
scribe the behavior for ‘small’ strains, including the strain region in which
the phase transition occurs. The last line models the growth rate for
‘large’ strains in c1, c2 and the behavior in the off-diagonal c6, which is
independent of the phase transition. The function in square brackets is
the usual Landau-Ginzburg energy for first order transitions [13], where
the planar symmetry has been factored out and the commonly used term
θ − θc + 1

4 has been replaced by arctan
(
θ − θc + 1

4

)
. The elimination of

the the planar symmetry is a physical necessity; one avoids unwanted min-
imizers. The growth conditions (E3) on θ are introduced for mathematical
reasons. Obviously, Φ is of the type (E2) and satisfies the smoothness
assumption (E1). It is plain to see that φ(θ) := arctan

(
θ − θc + 1

4

)
sat-

isfies (E3), and Φ2(F ) := ξc2
6 + γ(c1 + c2) satisfies for large strains the

equality Φ2(F ) = γ(c1 + c2) = γ |F |2. Consequently, the growth condi-
tions (E6), (E7) are met. The example shows that these growth conditions
are physically reasonable (an experimental determination of the growth
condition for large strains is not possible; and in engineering literature,
the use of piecewise quadratic functions is common [16]). Finally, the two
remaining growth conditions (E4) and (E5) hold since we use the cut-off
function ξ in the definition of Φ. Though these growth conditions are intro-
duced for mathematical convenience, the discussion in the preceding remark
provides a physical justification. Namely, (E4) and (E5) model the phase
transition, which happens only in a bounded set of strains. The cut-off
function ξ singles out such a set. Since we merely aim to give a prototypi-
cal example for an energy function, we refrain from introducing appropriate
constants and parameters. In practice, it is compelling to choose γ small
enough to make sure Φ2 does not hide the potential wells. Similarly, one
has to select ξ in such a way that its decrease does not destroy the convexity
away from the minimizers. Both choices can easily be accomplished. The
details are explained in [11], where it is also shown how to fit the location
of minimizers, the energy barriers, and the elastic moduli. Since the result
is necessarily more technical and does not shed deeper light on our goals,
we refrain from repeating it here.

2.1. Initial and Boundary Conditions
The given data should satisfy the following smoothness assumptions:

g ∈ W 1,2 (Ω; IRn) ,

u0 ∈ W 1,2
g (Ω; IRn) := {u ∈ W 1,2 (Ω; IRn)

∣∣ u− g ∈ W 1,2
0 (Ω; IRn)},

v0 ∈ L2 (Ω; IRn) ,

θ0 ∈ L1 (Ω; IR) .
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2.2. Resulting System of Equations
Using (E2), one obtains

σ(F, θ) =
∂Φ(F, θ)

∂F
= φ(θ)φ1(F ) + φ2(F )

and θσθ(∇u, θ) : ∇ut = θφ′(θ)φ1(∇u) : ∇ut. To simplify the notation, let
us write f(θ) := θφ′(θ). Then, system (3a)–(3g) becomes

utt = Div (φ(θ)φ1(∇u) + φ2(∇u) +∇ut) in Ω×]0, T [, (6a)
u = g on ∂Ω× [0, T [, (6b)
u = u0 in Ω× {0}, (6c)

ut = v0 in Ω× {0}, (6d)
θt = ∆θ + f(θ)φ1(∇u) : ∇ut +∇ut : ∇ut in Ω×]0, T [, (7a)
θ = 0 on ∂Ω× [0, T [, (7b)
θ = θ0 in Ω× {0}. (7c)

3. EXISTENCE OF A WEAK-RENORMALIZED SOLUTION
GLOBAL IN TIME

In order to prove existence of a weak solution, we have to overcome two
main difficulties: the nonconvexity of the energy density and the mechanical
dissipation, i.e., the term ∇ut : ∇ut in the heat equation.

The latter will lead to a parabolic equation with initial data in L1 (Ω; IR)
and a right-hand side in L1

(
0, T ; L1 (Ω; IR)

)
. We will use the concept of

renormalized solutions, introduced by Lions and DiPerna in their investiga-
tion of the Boltzmann equation [10, 9]. Further references for renormalized
solutions for parabolic equations in L1 are, e.g., [18, 4, 3]. Other frame-
works are, for example, SOLA [8], and entropy solutions [21].

In this paper, we combine ideas of [14] and [2]. In [2], renormalized
solutions are applied to a thermoviscoelastic system with a convex stored
energy. Apart from the free energy, the coupling of the equations studied
here differs from [2]: for phase transitions, the essential parameter is the
temperature θ, not its gradient ∇θ.

3.1. Quick Review of Renormalized Solutions
For the reader’s convenience, the basic properties of renormalized solu-

tions are briefly summarized. With our application in mind, we concentrate
on parabolic equations.
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This section deals with equations of the type

θt −∆θ = H in Ω×]0, T [, (8a)
θ = 0 on ∂Ω×]0, T [, (8b)
θ = θ0 in Ω× {0}, (8c)

with H ∈ L1
(
0, T ; L1 (Ω; IR)

)
and θ0 ∈ L1 (Ω; IR).

TK(r) := max (min(r, K),−K) denotes the truncation function at height
K ≥ 0.

Definition 3.1. A measurable function θ: Ω×]0, T [→ IR is a renor-
malized solution of problem (8a)–(8c) if it satisfies the following properties:

(i) θ ∈ L∞
(
0, T ; L1 (Ω; IR)

)
,

(ii) TK(θ) ∈ L2
(

0, T ; W 1,2
0 (Ω; IR)

)
for every K ≥ 0,

(iii) lim
n→+∞

∫∫
{(x,t) | n≤|θ(x,t)|≤n+1}

|∇θ|2 dy ds = 0,

and, for every S ∈ C∞(IR; IR) with S′ ∈ C∞
0 (IR; IR),

(iv) S(θ)t − div [S′(θ)∇θ] + S′′(θ) |∇θ|2 = HS′(θ) in D′(Ω×]0, T [),

(v) S(θ) = S(θ0) in Ω× {0}.

Remark 3. 1. In our application, the right hand side H of the heat
equation will depend on an absolute temperature θ̂ and u:

θt −∆θ = H(θ̂, u) in Ω×]0, T [,

where H(θ̂, u) := f(θ̂)φ1(∇u) : ∇ut +∇ut : ∇ut. To obtain the regularity
H ∈ L1

(
0, T ; L1 (Ω; IR)

)
, aiming for u ∈ W 1,2

(
0, T ; W 1,2 (Ω; IRn)

)
as reg-

ularity of the deformation looks reasonable. This is a physically reasonable
solution space: Since solids undergoing a phase transformation are likely
to form microstructures, the regularity of the deformation will be low. It
is not necessarily the case that the second spatial derivatives are to be in
Lp (Ω; IR). Accepting this point, we arrive at a heat equation in L1 (Ω; IR).
Since the heat capacity is constant, temperature is proportional to energy
density, which is naturally measured in an L1 (Ω; IR) norm. Therefore, the
treatment of the heat equation in L1 (Ω; IR) seems to be physically reason-
able.

3.2. Statement of the Theorems
Now we are in a position to define a weak-renormalized solution of (6a)–

(7c).



10 ZIMMER

PSfrag replacements

θ

φ

FIG. 2. Prototypical shape of φ(θ), satisfying φ′(r0) = 0 for some point r0 > 0 in
addition to (E3). Here, φ is chosen to be constant close to the absolute temperature
θ = 0, which is plotted at the origin.

Definition 3.2. A pair (u, θ) with u: Ω×]0, T [→ IRn and θ: Ω×]0, T [→
IR is said to be a weak renormalized solution of the system (6a)–(7c) if it
satisfies the following conditions:

(i) Regularity of u:

u ∈ L∞
(
W 1,2

g (Ω; IRn)
)
∩W 1,∞ (

0, T ; L2 (Ω; IRn)
)

∩ W 1,2
(
0, T ; W 1,2 (Ω; IRn)

)
∩W 2,2

(
0, T ; W−1,2 (Ω; IRn)

)
,

(ii) u is a weak solution of (6a)–(6d): for every ζ ∈ C∞
0 (Ω×]0, T [; IRn),∫ T

0

∫
Ω

[(σ(∇u, θ) +∇ut) : ∇ζ − ut · ζt] dx dt = 0,

u(·, 0) = u0(·) in Ω× {0},
ut(·, 0) = v0(·) in Ω× {0},

(iii) θ is a renormalized solution of (7a)–(7c).

The main theorem of this paper can be formulated as follows.

Theorem 3.1. Let Ω be a nonempty, bounded domain in IRn (n = 2 or
n = 3) with a Lipschitz boundary. Assume the initial and boundary con-
ditions satisfy the conditions stated in Section 2.1 and Φ satisfies hypothe-
ses (E1)–(E7). Then a weak renormalized solution of system (6a)–(7c)
exists.

One also has the following result concerning the positivity of the absolute
temperature.
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Theorem 3.2. Suppose in addition to the assumptions of Theorem 3.1
that f(r0) = 0 for some r0 ≥ 0 and θ0 ≥ r0 almost everywhere in Ω×]0, T [.
Then the absolute temperature θ of the weak renormalized solution of sys-
tem (6a)–(7c) satisfies θ ≥ r0 almost everywhere in Ω×]0, T [.

We note that Theorem 3.2 specifically gives for the prototypical energy
of Remark 2.2 the estimate θ ≥ 0 almost everywhere. To obtain θ > 0, one
has to modify the toy model for the energy to fulfill φ′(r0) = 0 for some
point r0 > 0. This can easily be achieved, an example of such a function is
plotted in Figure 3.2.

4. PROOF OF THEOREMS 3.1 AND 3.2

The main part of this section will be devoted to the proof of Theorem 3.1.
The proof of Theorem 3.2 follows at the end of the section; and it is a
straightforward application of ideas of Blanchard and Guibé [2].

We will use the Schauder Fixed Point Theorem to prove Theorem 3.1.
Let θ̂ = θ̂(x, t) be an arbitrary element in L1

(
0, T ; L1 (Ω; IR)

)
. First, we

consider the problem

utt = Div
(
φ(θ̂)φ1(∇u) + φ2(∇u) +∇ut

)
in Ω×]0, T [, (9a)

u = g on ∂Ω× [0, T [, (9b)
u = u0 in Ω× {0}, (9c)

ut = v0 in Ω× {0}. (9d)

We will show that this system has a unique solution û. Substitution of θ̂
and û in the nonlinear term on the right-hand side of Equation (7a) will give
a solution θ̂ of (7a)–(7c). We will investigate continuity and compactness
of the map Ψ: θ̂ → θ.

Theorem 4.1. The system (9a)–(9d) admits a unique weak solution û =
û(x, t) with the regularity û ∈ L∞

(
W 1,2

g (Ω; IRn)
)
∩W 1,∞ (

0, T ; L2 (Ω; IRn)
)

∩W 1,2
(
0, T ; W 1,2 (Ω; IRn)

)
∩W 2,2

(
0, T ; W−1,2 (Ω; IRn)

)
.

Proof. Since the temperature is fixed, this is a purely viscoelastic prob-
lem. Existence and uniqueness of a solution follows on from the work of
Friesecke and Dolzmann [14, Theorem 4.1]: a semi-implicit discretization
in time leads to a variational problem. The integrand is convex, due to the
discretized viscosity. Since the functional can be shown to be coercive (here,
we need the assumption that ∂Ω is Lipschitz), a solution exists. Using dif-
ferent approximations in time, one can easily obtain most of the necessary
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weak convergences (to obtain strong convergence of the velocity, we use
again that ∂Ω is Lipschitz to apply an Aubin-type argument). The crucial
step is to show strong convergence of ∇u; this is [14, Proposition 3.1]. tu

A multiplication of equation (9a) by ût and integration over space and
time yields

1
2

∫
Ω

|ût(t)|2 dx +
∫ t

0

∫
Ω

|∇ût|2 dx ds +
∫

Ω

Φ2(∇û)(t) dx

= −
∫ t

0

∫
Ω

φ(θ̂)φ1(∇û) : ∇ût dx ds +
1
2

∫
Ω

|ût(0)|2 dx +
∫

Ω

Φ2(∇û)(0) dx

for almost every t in ]0, T [.
By (E7), there are positive constants c and c′ such that

c |∇û(t)|2 − c′ < Φ2(∇û)(t) and Φ2(∇û)(0) < c′
(
|∇û(0)|2 + 1

)
.

Hence, we obtain

1
2

∫
Ω

|ût(t)|2 dx +
∫ t

0

∫
Ω

|∇ût|2 dx ds + c

∫
Ω

|∇û(t)|2 dx (10)

≤ −
∫ t

0

∫
Ω

φ(θ̂)φ1(∇û) : ∇ût dx ds +
1
2
‖v0‖2L2(Ω;IRn)

+ c′ ‖u0‖2W 1,2(Ω;IRn) + C

for almost every t in ]0, T [.
By (E4), φ1(∇û) is bounded. Using this and Young’s inequality, the first

term on the right-hand side can be estimated as follows:

−
∫ t

0

∫
Ω

φ(θ̂)φ1(∇û) : ∇ût dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂)
∣∣∣2 dx ds +

1
2

∫ t

0

∫
Ω

|∇ût|2 dx ds. (11)

Combining (10) and (11), we arrive at

1
2

∫
Ω

|ût(t)|2 dx +
1
2

∫ t

0

∫
Ω

|∇ût|2 dx ds + c

∫
Ω

|∇û(t)|2 dx

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂)
∣∣∣2 dx ds +

1
2
‖v0‖2L2(Ω;IRn) + c′ ‖u0‖2W 1,2(Ω;IRn) + C

for almost every t in ]0, T [.
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Since the terms on the left hand side are nonnegative, we can take the
supremum over t. This yields

1
2
‖ût‖2L∞(0,T ;L2(Ω;IRn)) +

1
2
‖∇ût‖2L2(0,T ;L2(Ω;IRn×n))

+ c ‖∇û‖2L∞(0,T ;L2(Ω;IRn×n))

≤ C

[∥∥∥φ(θ̂)
∥∥∥2

L2(0,T ;L2(Ω;IR))
+ ‖v0‖2L2(Ω;IRn) + ‖u0‖2W 1,2(Ω;IRn) + 1

]
≤ C,

where C is independent of θ̂ by (E3).
Poincaré’s inequality

‖û− g‖2L2(Ω;IRn) ≤ C
(
‖∇û‖2L2(Ω;IRn×n) + 1

)
finally gives the bound

1
2
‖ût‖2L∞(0,T ;L2(Ω;IRn))

+
1
2
‖∇ût‖2L2(0,T ;L2(Ω;IRn×n)) + ‖û‖2L∞(0,T ;W 1,2(Ω;IRn)) ≤ C.

Next, we prove continuous dependence of û on θ̂. Let θ̂1, θ̂2 be two
absolute temperatures. Denote the corresponding solutions of (9a)–(9d)
by û1 and û2. A multiplication of the differences of the two equations by
û1 − û2 and integration over space and time yields

∂t
1
2

(∫
Ω

|û1(t)− û2(t)|2 dx +
∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

)
(12)

= −
∫ t

0

∫
Ω

[(
φ(θ̂1)φ1(∇û1)− φ(θ̂2)φ1(∇û2)

)
: (∇û1 −∇û2)

]
dx ds

−
∫ t

0

[∫
Ω

(φ2(∇û1)− φ2(∇û2)) : (∇û1 −∇û2)
]

dx ds

+
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤
∣∣∣∣ ∫ t

0

∫
Ω

(
φ(θ̂1)− φ(θ̂2)

)
φ1(∇û1) : (∇û1 −∇û2)

+ φ(θ̂2) (φ1(∇û1)− φ1(∇û2)) : (∇û1 −∇û2) dx ds

∣∣∣∣
+ Lip (φ2)

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds
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≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1)− φ(θ̂2)
∣∣∣2 dx ds +

1
2

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

+ C Lip (φ1)
∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

+ Lip (φ2)
∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1)− φ(θ̂2)
∣∣∣2 dx ds + C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

+
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

for almost every t in ]0, T [ (the first inequality uses (E6), the second one
Young’s inequality, (E3), (E4) and (E5)). Similarly, using ∂tû1 − ∂tû2 as
test function and invoking (E3), (E4), (E5), (E6) and Young’s inequality,
one obtains

∂t
1
2

∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds (13)

≤ ∂t
1
2

∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds +
1
2

∫ t

0

∫
Ω

|∇∂tû1 −∇∂tû2|2 dx ds

= −
∫ t

0

∫
Ω

(
φ(θ̂1)φ1(∇û1)− φ(θ̂2)φ1(∇û2)

)
: (∇∂tû1 −∇∂tû2) dx ds

−
∫ t

0

∫
Ω

(φ2(∇û1)− φ2(∇û2)) : (∇∂tû1 −∇∂tû2) dx ds

− 1
2

∫ t

0

∫
Ω

|∇∂tû1 −∇∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1)− φ(θ̂2)
∣∣∣2 dx ds + C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

for almost every t in ]0, T [.
Let us add (12) and (13). The second inequality uses |φ| ≤ C, the third

one |φ′| ≤ C.

∂t
1
2

(∫
Ω

|û1(t)− û2(t)|2 dx (14)

+
∫ t

0

∫
Ω

|∇û1 −∇û1|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

)
≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1)− φ(θ̂2)
∣∣∣2 dx ds
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+ C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1)− φ(θ̂2)
∣∣∣ dx ds

+ C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣θ̂1 − θ̂2

∣∣∣ dx ds

+ C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

for almost every t in ]0, T [.
Hence, by Gronwall’s inequality, û depends continuously on θ̂. In partic-

ular, the map

θ̂ 7→ ∇û

is continuous from L1
(
0, T ; L1 (Ω; IR)

)
to L2

(
0, T ; L2

(
Ω; IRn×n

))
; the sec-

ond line of (13) shows that

θ̂ 7→ ∇ût

is continuous from L1
(
0, T ; L1 (Ω; IR)

)
to L2

(
0, T ; L2 (Ω; IRn)

)
.

Using the estimates derived so far and the boundedness of f(θ̂) = θ̂φ′(θ̂)
required in (E3), one easily obtains a bound in L1 on the nonlinear term
on the right-hand side of the heat equation:∥∥∥f(θ̂)φ1(∇û) : ∇ût +∇ût : ∇ût

∥∥∥
L1(0,T ;L1(Ω;IR))

(15)

≤ C
[
‖u0‖2W 1,2(Ω;IRn) + ‖v0‖2L2(Ω;IRn) + 1

]
≤ C,

C being a constant independent of
∥∥∥θ̂

∥∥∥
L1(0,T ;L1(Ω;IR))

.

Substituting û and θ̂ in the right-hand side of the heat equation (7a), we
get a unique solution θ:

θt = ∆θ + f(θ̂)φ1(∇û) : ∇ût +∇ût : ∇ût in Ω×]0, T [, (16)
θ = 0 on ∂Ω×]0, T [,
θ = θ0 in Ω× {0}

(since the right hand side is in L1
(
0, T ; L1 (Ω; IR)

)
, it has a unique renor-

malized solution, see [2, Proposition 1 & 2]).
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Recall that the map θ̂ → θ is denoted Ψ. The two maps θ̂ 7→ ∇ût and θ̂ 7→
∇û are continuous from L1

(
0, T ; L1 (Ω; IR)

)
to L2

(
0, T ; L2

(
Ω; IRn×n

))
.

Hence, the nonlinear term f(θ̂)φ1(∇û) : ∇ût +∇ût : ∇ût of the right hand
side of the heat equation is a continuous mapping of L1

(
0, T ; L1 (Ω; IR)

)
to

itself. Hence, by [2, Proposition 1], Ψ is continuous. Furthermore, by (15)
and [2, Proposition 3], Ψ is compact for 1 ≤ p < 1 + 2

n as a map from
L1

(
0, T ; L1 (Ω; IR)

)
to Lp (0, T ; Lp (Ω; IR)).

The existence of a bounded set B ⊆ L1
(
0, T ; L1 (Ω; IR)

)
with Ψ(B) ⊆ B

is now straightforward: inequality (15) gives a bound on the right-hand
side of the heat equation by

C
[
‖u0‖2W 1,2(Ω;IRn) + ‖v0‖2L2(Ω;IRn) + 1

]
.

According to the theory of renormalized solutions (see, e.g., [2, Proposition
1], there exists a constant C independent of

∥∥∥θ̂
∥∥∥

L1(0,T ;L1(Ω;IR))
such that

‖θ‖L1(0,T ;L1(Ω;IR)) < R := C
[
‖u0‖2W 1,2(Ω;IRn)

+ ‖v0‖2L2(Ω;IRn) + ‖θ0‖L1(Ω;IR) + 1
]
.

One can choose B := B(0, R). An application of Schauder’s Fixed Point
Theorem finishes the proof. tu

We now sketch the proof of Theorem 3.2. It follows the proof of Theorem
4 in [2]. We denote by f̃(r) the function

f̃(r) :=
{

0 if r ≤ r0

f(r) else .

It is easy to verify that the proof of Theorem 3.1 also applies to the sys-
tem (6a)–(7c) with f(θ) replaced by f̃(θ). Considering the special test func-
tion S(r) := min(TK(r− r0), 0) for K > 0, one obtains from Definition 3.1
(iv) (χA is the characteristic function of a set A and S̃(r) :=

∫ r

0
S(x) dx

the primitive of S)∫
Ω

S̃(θ)(t) dx +
∫ t

0

∫
Ω

χ]−K+r0,r0[∇θ2 dx ds

=
∫

0

∫
Ω

[
∇ut : ∇ut + f̃(θ)φ1(∇u) : ∇ut

]
S(θ) dx ds +

∫
Ω

S̃(θ0) dx.

By considering the signs of f̃ and S, one obtains∫
Ω

S̃(θ)(t) dx ≤ 0



THERMO-VISCOELASTICITY WITH NONCONVEX ENERGY 17

for almost every t in Ω×]0, T [. This implies θ ≥ r0 almost everywhere in
Ω×]0, T [. The nature of the definition of f̃ finally implies then

f̃(θ) = f(θ) almost everywhere in Ω×]0, T [,

and Theorem 3.2 is established. tu
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