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Abstract

Substitution between clean and dirty inputs and directed technical change,
either clean energy-augmenting or dirty energy-augmenting, lie at the center of
leading economic analyses of climate policy. Despite their theoretical intercon-
nectedness, joint empirical assessments of these two factors are scarce to date.
To fill the gap in the literature, this paper jointly estimates the elasticity of sub-
stitution between clean and dirty energy and the direction of technical change.
Using my estimates, I examine the historical increase in the relative share of
clean energy in France, which suggests that changing factor prices were a rela-
tively stronger driver than technical change in inducing energy transition.
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1 Introduction

The framework and insights of directed technical change have been widely applied in
the leading economic analyses of optimal climate policy (Hémous and Olsen, 2021).
For instance, a large number of studies have adopted the framework and investigated
important outcomes such as induced innovation in green technologies for sustainable
growth (e.g., Otto et al., 2007; Acemoglu et al., 2012; Fried, 2018), the relative efficacy
of different policy instruments (e.g., Lemoine, 2017; Greaker et al., 2018; Hart, 2019),
and the overall economic costs of climate change mitigation (e.g., Golosov et al., 2014;
Baccianti, 2019).

As a key element in the theory of directed technical change, the importance of the
substitution elasticity is strongly emphasized in the literature. In the context of climate
change, for example, Acemoglu et al. (2012) consider two inputs, clean and dirty, and
demonstrate that if clean and dirty inputs are highly substitutable, a temporary carbon
tax is sufficient to shift the direction of technical change towards clean technologies and
avert an environmental disaster. On the other hand, the shift would occur much more
slowly and require a permanent carbon tax, if the two inputs are less substitutable
or complements. This illustrates that optimal climate policy may depend sensitively
on the degree of the substitution elasticity and the direction and speed of technical
change.

Yet, there exists a surprising lack of empirical knowledge in the substitutability
between clean and dirty inputs and even less in the direction of technical change in
the energy context.! A well-known study by Papageorgiou et al. (2017) estimates
the substitution parameter from macro-level data, yet it abstracts away from direct
assessments of the bias in technical change despite the theoretical interconnectedness of
the two factors. In this paper, I extend the empirical literature and jointly estimate the
elasticity of substitution between clean and dirty energy and the direction of technical
change, thereby making a clear connection to the theoretical literature. Using the
estimates, I then assess the relative contribution of the two factors in inducing energy
transition.

For the purpose, I use firm-level panel data from the French manufacturing sector

LAs a result, studies that involve numerical simulations or calibration in the related literatures
therefore often choose values that are very different from one another. For instance, Otto et al. (2007)
choose a value of 2 and Acemoglu et al. (2012) use 3 and 10 for the weak and strong substitutes scenario,
respectively. On the other hand, Karydas and Zhang (2019) choose a conservative benchmark value
of 0.7.



with rich variation in energy use and expenditure by fuel across firms. Using the data, I
first provide evidence for the presence of non-neutral efficiency differences across clean
and dirty energy, which motivates investigating factor-specific technology in clean and
dirty energy (therefore the direction or bias of technical change) rather than assum-
ing neutral technology. This encourages the specification of a constant elasticity of
substitution (CES) energy aggregate that combines clean and dirty energy with a sep-
arate technology parameter for each energy type, which allows flexibly investigating
the direction of technical change.

Most existing studies estimating CES functions adopt one of the two approaches,
namely, the estimation of the CES function itself or its first-order conditions (FOCs)
from profit maximization. However, the estimation of the production function alone
is generally only accomplished with restrictive assumptions on the nature of technical
progress such as Hicks neutrality (Antras, 2004; Leén-Ledesma et al., 2010). Therefore,
this approach is not suitable for the goal of this paper which is to estimate factor-specific
technical progress as well as the elasticity of substitution. Similarly, the FOC approach
does not allow flexibly estimating two separate technical parameters. The FOC with
respect to one type of energy does not allow estimating the technical progress parameter
of the other energy type.

To overcome these limitations, I employ the system of equations approach that
combines the production function and FOCs, which offers clear advantages in the
current setting. Most importantly, in contrast to the other two methods mentioned
above, the system approach enables one to identify all parameters of interest: the
elasticity of substitution as well as two separate technical progress parameters. Fur-
thermore, the system exploits cross-equation restrictions that force the parameters to
be the same across the two equations, which substantially improves the efficiency of
estimation (Greene, 2000). Relatedly, Klump et al. (2007) and Leén-Ledesma et al.
(2010) demonstrate that cross-equation restrictions imposed in the system approach
lead to its superior performance compared to the single equation approaches (either
the production function or FOCs), particularly in identifying the factor-specific tech-
nical progress parameters. To address the endogeneity of firm-level energy prices and
demands, I follow earlier studies and develop instruments based on national energy
prices (Linn, 2008; Sato et al., 2019; Marin and Vona, 2019; Dussaux, 2020; Marin and
Vona, 2021). To the best of my knowledge, this paper is the first to directly assess the

bias in technical change in the energy context along with the elasticity of substitution



and thus to empirically shed light on the workings of directed technical change at the
firm level.

I find micro estimates of the long-run elasticity of substitution between clean
and dirty energy sufficiently above one, a necessary condition that allows sustain-
able growth in many macroeconomic growth models, ranging between 2 and 5. More
importantly, the estimated technical progress parameters provide clear evidence that
technical change was biased toward dirty-energy-augmenting technology between 1995
and 2015. This observed dirty-energy-biased technical change is consistent with the
framework of directed technical change. The theory suggests the path of innovation is
influenced by two opposing forces: the market size effect that encourages innovation in
technologies that use the cheaper and more abundant input and the price effect that
spurs the development of technologies that favor the more expensive input. Which
effect dominates the other is determined by the elasticity of substitution between the
two inputs. When the inputs are gross substitutes, which is the case for clean and
dirty energy as suggested by my estimates, it is predicted that the market size effect
dominates the price effect (Acemoglu, 2002; Acemoglu et al., 2012). Given that dirty
energy was considerably cheaper than clean energy throughout the sample period in
France, the dirty-energy-biased technical change (or the market size effect dominating
the price effect) observed in the data is in line with the prediction of the directed
technical change framework.

However, I also find evidence that there was a shift in the direction of technical
change. Despite the overall trend in technical change that favors dirty energy, exam-
ining variation over time shows that clean-energy-augmenting technology is growing
faster than dirty-energy-augmenting technology in recent years. Several alternative
estimation methods corroborate the shift. This observation can still be interpreted
within the theory of directed technical change. First, the relative price competitive-
ness of dirty energy has been decreasing, although it was still cheaper than clean energy
in absolute levels. For example, dirty energy was 3.5 times cheaper than clean energy
in 1995, but less than 2 times cheaper in 2015. This decreasing price competitiveness
of dirty fuels might have lowered the incentive to innovate dirty-energy-augmenting
technology over time. Second, the literature has also emphasized the role of R&D
subsidies in influencing the path of innovation. Indeed, government subsidies for clean
energy were steadily growing in France, eventually surpassing the amount of subsidies
for R&D in fossil fuels, the timing of which coincides with the shift in the direction of



technical change observed in the data.

Finally, I use my estimates of the elasticity of substitution to decompose the his-
torical increase in the relative share of clean energy in France into two driving forces,
namely, the contribution of changing energy prices and of biased technical change. The
exercise shows that the contribution of changing factor prices was relatively stronger
thus far than that of technical change, accounting for two-thirds of the increase in the
relative share of clean energy cumulatively. This suggests the importance of strong
price signals through policy instruments such as a carbon tax in raising the share of
clean energy in manufacturing (Fischer and Newell, 2008; Hart, 2019). It is, however,
important to note that the contribution of technical change to energy transition is
likely to grow in the future, given the observed shift in the path of innovation towards
clean technologies in recent years.

These results provide a strong micro-empirical foundation for a large number of
studies that investigate the possibilities of sustainable growth with directed technical
change in the presence of climate change (e.g., Acemoglu et al., 2012; Hassler et al.,
2021; Golosov et al., 2014; Bretschger et al., 2017; Van den Bijgaart, 2017; Fried, 2018;
Greaker et al., 2018; Borissov et al., 2019; Hart, 2019). The estimated technical pa-
rameters validate the framework of directed technical change applied in this literature.
The dirty-energy-biased technical change observed in the data especially in the early
years of the sample is consistent with the theoretical prediction, given the historical
movement of relative energy prices and the two inputs being substitutes.

I also connect with empirical studies on directed technical change (see Popp (2019)
for a review of this literature) such as, most notably, Popp (2002) and Aghion et al.
(2016). Both studies find that energy prices and past knowledge stocks strongly influ-
ence the path of innovation. The novelty of my paper is that I assess biased technical
change jointly with the elasticity of substitution, a key parameter that determines how
price signals affect the direction of innovation (Acemoglu, 2002, 2007). The joint as-
sessments of the elasticity of substitution and technical change empirically corroborate
the workings of directed technical change at the micro level.

Finally, this paper also relates to a growing number of studies that advance our
understanding of the substitutability between clean and dirty inputs, addressing a well-
known concern in the field of environmental economics regarding the lack of reliable
estimates of this parameter (Pindyck, 1979; Fried, 2018; Karydas and Zhang, 2019).

For instance, Papageorgiou et al. (2017) find estimates of the elasticity of substitution



ranging between 1.7 and 2.9 from sector-level data. Meng (2021) recovers an estimate
of the substitution parameter around 3 from a structural model of energy transition. I
attempt to improve upon their analyses by directly using firm-level panel data on energy
price and consumption and accounting for endogeneity, which yields micro estimates
of the long-run elasticity of substitution ranging between 2 and 5. Through numerical
exercises, Wiskich (2019) and Stockl and Zerrahn (2020) explore the determinants of
the substitution elasticity between clean and dirty inputs in electricity generation with
a focus on the evolution of the substitutability over time.

The article proceeds as follows. Section 2 provides motivating evidence for investi-
gating factor-specific technology. Section 3 derives estimating equations from a model
of the firm’s energy use and Section 4 presents estimation results. Section 5 reports
robustness checks and Section 6 examines the observed increase in clean energy shares

using the empirical estimates. Section 7 concludes.

2 Motivating evidence

2.1 Data

For the analysis here and what follows, I use data on the French manufacturing indus-
try from two main sources. First, the Enquéte sur les Consommations d’Energie dans
I'Industrie (EACEI) administered by the French National Institute of Statistics and
Economic Studies (Insee) provides plant-level information on energy use and expendi-
tures by fuel. It covers a representative sample of manufacturing plants with at least
20 employees. Second, Fichier de comptabilité unifié dans SUSE (FICUS), also col-
lected by Insee, provides firm-level information on key characteristics such as industry;,
number of employees, date of creation and cessation, as well as detailed financial infor-
mation including turnover, export, and operating costs.? To merge the two datasets,
I aggregate the plant-level information from the EACEI to the firm-level. Given that
the EACEI covers a sample of manufacturing plants, I only keep firm-year pairs for
which all plants of a firm were surveyed in the EACEI to ensure that the aggregation

of energy use and expenditure is comprehensive at the firm level. The final dataset

2The Unified Corporate Statistics System (SUSE) is an annual fiscal census of manufacturing,
mining and utilities firms on which the FICUS is based. SUSE covers all firms that are required to
make tax declarations to the French Ministry of the Economy and Finance. The FICUS was replaced
by Fichier approché des résultats d’Esane (FARE) in 2008.



leads to an unbalanced panel of 12,864 manufacturing firms that covers the period of
1995 - 2015.

I aggregate energy consumption of different fuels to a clean and a dirty bundle for
each firm. Following Papageorgiou et al. (2017), I add up electricity, steam and renew-
ables into a clean aggregate and all other types (natural gas, petroleum products, etc)
into a dirty aggregate.® The information on expenditure by fuel is similarly aggregated
into a clean and a dirty energy expenditure. Energy purchase prices are deflated by
the GDP deflator to reflect real prices. To construct the unit prices for clean and dirty

energy, | divide the expenditure measures by corresponding consumption measures.

Table 1: Descriptive statistics

Rates of Growth
Ec/Ep Po/Pp Ec¢/E Ep/E Pe Pp  Rev/E

Industry (1) (2) (3) 4 ) () (7)

Steel -0.017  -0.035 0.013 -0.008 -0.000 0.032 0.083
Metals -0.017  -0.028 0.011 -0.010 0.000 0.030 0.021
Minerals -0.037  -0.028 -0.007 0.004 0.010 0.040 0.076
Plaster, lime, cement  0.072  -0.038  0.050 -0.033 0.009 0.050 0.079
Ceramic 0.041  -0.030 0.016 -0.010 0.004 0.035 0.043
Glass 0.061  -0.031 0.018 -0.020 -0.000 0.032 0.041
Fertilizer 0.017  -0.041 0.009 -0.005 -0.003 0.038 0.061
Other chemicals 0.114  -0.028 0.031 -0.021 0.009 0.040 0.040
Plastic, rubber -0.117  -0.034 0.007 -0.009 -0.001 0.034 -0.019
Pharmaceutical 0.013  -0.028 0.011 -0.010 0.002 0.032 -0.013
Steel processing 0.024  -0.026 0.010 -0.010 -0.001 0.027 0.032
Machinery 0.039  -0.029 0.012 -0.012 -0.004 0.029 0.017
Electronics 0.035  -0.028 0.005 -0.006 0.001 0.032 0.009
Transport equipment — 0.044  -0.027  0.009 -0.009 -0.003 0.026 0.027
Shipbuilding 0.060  -0.035 0.012 -0.014 -0.010 0.029 0.034
Textile 0.017  -0.030 0.009 -0.007 0.001 0.040 0.031
Paper 0.045 -0.030 0.011 -0.010 -0.001 0.030 0.006
Rubber products -0.100  -0.030  0.003 -0.004 0.000 0.031 0.024
Plastic products 0.067  -0.027 0.002 -0.004 0.002 0.030 0.032

Notes: Calculated for 1995-2015.

Table 1 provides key descriptive statistics. The growth of the relative share of clean

energy ranges from -1.7% to 11.7% and positive in most industries (column (1)). This

3Information on the use of renewable energy sources is included in the survey from 2005. Thus,
up to 2004, only electricity and steam comprise the clean energy aggregate.



observation is consistent with the decreasing relative price of clean to dirty energy over
time in all industries (column (2)). The measure of energy efficiency in column (7)
shows that energy efficiency has been growing in most industries (except for Plastic,

rubber and Pharmaceutical).

2.2 Factor-specific technology

Using the data described above, I provide motivating evidence for investigating factor-
specific technology in clean and dirty energy (therefore the direction or bias of technical
change) rather than assuming neutral technology. For the purpose, I follow Raval
(2019) and explore whether overall energy efficiency of the firm, measured by revenue
divided by the total amount of energy consumption, is correlated with the relative
share of clean energy. This will reveal the presence of non-neutral efficiency differences
across the two inputs. To explain, if differences in energy efficiency were neutral and
therefore affect both types of energy proportionately, these differences would not be
correlated with the factor ratio. On the other hand, a correlation between overall
energy efficiency and the factor ratio would suggest non-neutral efficiency differences
across clean and dirty energy.

As a starting point, I calculate the correlation coefficient between energy efficiency
and the relative share of clean energy across all firms and find the coefficient of 0.094
significant at 1 percent level. T also check the role of age as a potentially important
determinant of the relative share of clean energy and find that younger firms tend to
have higher shares of clean energy (with a correlation coefficient of -0.017 significant
at 1 percent level).

Next, I examine whether the correlation remains robust in regressions that include
region and industry fixed effects by regressing the relative share of clean energy on
overall energy efficiency and a set of fixed effects as well as the firm’s age as a control.
Table 2 reports these results. All regressions are weighted by the total energy con-
sumption. Column (1) shows a strong positive association between the relative clean
energy share and energy efficiency. I include age as a control in column (2) and find
that it does not explain much variation in the share of clean energy any more. The
correlation between energy efficiency and the relative input ratio remains statistically
significant when region and industry specific factors are controlled for (column (3)).
These results point to the strong presence of non-neutral, factor-specific technology

across the two types of energy. Motivated by this evidence, I formulate a CES function



Table 2: Correlation between energy efficiency and the relative share of clean energy
(1) (2) (3)

Energy efficiency 0.440%**  (.424%** (). 228%**
(0.092)  (0.094)  (0.062)

Age -0.001**  -0.000**
(0.000)  (0.000)

N 65,884 61,070 61,070
R? 0.02 0.03 0.23
Industry FE v
Region FE v

Notes: The dependent variable is the relative share of
clean energy. All regressions are weighted by the to-
tal energy consumption of the firm. Standard errors are
clustered at the firm level.

of the energy aggregate that combines clean and dirty energy with a separate technical
parameter for each energy type that allows the investigation of factor-specific technical

progress.4

3 Estimation strategy

3.1 Main specification

[ focus on how different sources of energy are combined and/or substituted in re-
sponse to price signals and how efficiency associated with each energy type evolves,
while abstracting away from the use of other production factors such as labor and
capital. Formulating a production function with non-energy inputs as well as energy
inputs necessitates imposing assumptions on the representation of these factors. For

instance, for parsimony and tractability, previous studies have assumed the same elas-

4Estimating two technical progress parameters rather than focusing on one of them is in contrast to
recent studies in industrial organization that tend to focus on labor-augmenting technology rather than
considering both labor- and capital-augmenting technology. Their focus is motivated by theoretical
predictions that technical change would be biased toward labor in the long-run (e.g., Doraszelski and
Jaumandreu, 2018; Raval, 2019). In the energy context, however, no strong theoretical predictions
exist for either direction and the bias in technical progress might change over time (for which I do
find evidence later). Thus, I estimate two technical parameters in order to separately and flexibly
estimate the direction of technical change.



ticity of substitution between all inputs (Doraszelski and Jaumandreu, 2018; Raval,
2019). However, existing empirical evidence suggests that the elasticity of substitution
between labor and capital is significantly below one (e.g. Antras, 2004; Klump et al.,
2007; Doraszelski and Jaumandreu, 2018; Raval, 2019), while that between clean and
dirty energy is likely to be above one (Papageorgiou et al., 2017). This growing body of
empirical evidence makes it unrealistic to assume the elasticity of substitution between
labor, capital, clean and dirty energy (or the energy aggregate) to be the same.
Alternative approach is to simplify the specification by assuming a Cobb-Douglas
relationship between some of the inputs, for instance, between the energy aggregate
and non-energy inputs (Papageorgiou et al., 2017). Yet, Hassler et al. (2021) find that
the elasticity of substitution between energy and non-energy inputs is not significantly
different from zero (Hassler et al., 2021), which again makes it difficult to assume
a Cobb-Douglas with its implied elasticity of substitution equal to one.” Thus, I
abstract from other production factors and focus on the standard specification of energy

aggregate that combines two types of energy:

o

o—1

Ei = |7(ASES) = + (1 —7)(ARED)*Z (1)

where Ej; is the total energy consumption of firm i in year t, ES and EZ are the
consumption of clean and dirty energy, respectively.® The parameter o represents the
elasticity of substitution between the two types of energy. Following the literature
in estimating production functions with factor-specific technical progress (David and
Van de Klundert, 1965; Panik, 1976; Kalt, 1978; Antras, 2004; Klump et al., 2007; Ledn-

Ledesma et al., 2010), I assume the following functional form for technical progress:
Ag = AOC eTCt7 (2)

D __ D Tpt
A=A e

SHassler et al. (2021) use US data for the period of 1949- 2008 for their analysis. Given that their
sample period is much longer than what is available for my analysis here, it is unlikely that the same
elasticity would be larger in my context.

SFirst-order conditions with respect to energy inputs from a larger production function would
still be the same as those derived from equation (1). As a robustness check, I estimate the first-
order conditions in Section 5.2 which produce very similar estimates as those from specifications that
involve the energy production function. This mitigates the concern that the results are driven by the
specification choice.



where 7; represents economy-wide growth in productivity associated with factor ¢ and
t represents a time trend. Without loss of generality, the components of technical
progress are scaled such that AS = AP = 1. The assumption of linear growth in tech-
nology might seem restrictive but is necessary in estimating factor-specific technology
of more than one input.” This assumption is relaxed in Appendix B as a robustness
check, which yields similar results. The distribution parameter « reflects the intensity
of clean energy use. Following earlier studies both theoretical (Acemoglu et al., 2012;
Hémous, 2016; Fried, 2018) and empirical (Hassler et al., 2021; Papageorgiou et al.,

2017), I suppress the distribution parameter in the subsequent estimation.

3.2 Estimation method

Two popular methods for estimating CES functions are the estimation of the CES
function itself or the estimation of one of its first-order conditions (FOCs) from profit
maximization (Klump et al., 2012). Regarding the first approach, Leén-Ledesma et al.
(2010) argue that the estimation of the production function alone is generally only
accomplished with restrictive assumptions on the nature of technical progress such as
Hicks neutrality. For instance, Papageorgiou et al. (2017) adopt this approach by as-
suming neutral technical progress and focus on estimating the substitution parameter.
However, this approach is not suitable for estimating the specification in (1) that allows
for non-neutral technical change.

Regarding the FOC approach, the standard log-linear FOCs of profit maximization

are written as:

E;
wrt. Ec:  log ( é) =ologPy + (1—0) 70t (3)
L
E;
wrt. Ep:  log (E’;> =ologP? + (1-0)mpt (4)
it
w.r.t i io : Eilt) = PZ? — —
r.t. price ratio:  log 70 | = o log PD +(1—o0) (¢ —71p)t. (5)
it it

The limitation of estimating one of these equations in the current setting is that it
does not allow identifying two separate technical parameters. It is clear from equation
(3) and (4) that only one technical parameter can be estimated. It is possible to have

both technical parameters in the regression equation by combining the two FOCs with

"Based on this approach, studies mentioned above separately estimate technical progress of labor
and capital and provide evidence for labor-biased technical change.

10



respect to each energy type as in equation (5). However, the specification allows one
to recover only overall bias (¢ — 7p) rather than identifying the technical parameters
separately.

To overcome these limitations, I employ the alternative approach of combining the

FOCs and production function and jointly estimating them as a system of equations:

Ef By
log( ’):010g< Z)—i—(l—o)(TC—TD)t (6)
Ef Py
looE; o 1 Tot EC o—1 Tpt ED z—1 7
0gLuit — 18 (e i) -+ (e it) 7 (7)

Although less popular than the other two methods, the system approach offers
clear advantages in the current setting.® Most importantly, in contrast to the other
two methods explained above, the system approach allows identifying all parameters
of interest: the elasticity of substitution as well as two technical progress parameters.
Furthermore, the system exploits cross-equation restrictions that force the parameters
to be the same across the two equations, which substantially improves the efficiency
of estimation (Greene, 2000). Relatedly, Klump et al. (2007) and Leén-Ledesma et al.
(2010) demonstrate that cross-equation restrictions imposed in the system approach
lead to its superior performance compared to the single equation approaches (either the
production function or FOCs), particularly in identifying the factor-specific technical
progress parameters.’

[ include the combined FOCs in the system (equation (6)) rather than two separate
FOCs with respect to each energy type in order to reduce omitted variable bias affect-
ing both types of energy proportionately such as overall (factor-neutral) unobserved
productivity shocks or demand shocks experienced at the firm level. Such biases are
expected to cancel out in the system and what remains is likely to be factor-specific

omitted variable bias that affects the two types of energy disproportionately. In the

8The reason for the system approach being less popular has to do with most studies in the
macroeconomics literature being interested in labor-augmenting technical change (along with Hicks-
neutral technical progress), rather than both labor- and capital-augmenting technical change. To infer
technical progress of one factor, much simpler single equation approaches suffice.

9The two studies use a normalized CES function to estimate the elasticity of substitution between
labor and capital and technical parameters from time-series data where variables are normalized
relative to their sample averages (see Ledn-Ledesma et al. (2010) for a detailed discussion of the nor-
malization approach when using time-series data). However, there is no need for explicit normalization
when using cross-sectional or panel data since such normalization is implicitly done by the constant
term or fixed effects, respectively.

11



next section, I discuss endogeneity concerns in more detail and propose instruments to
improve identification.

I do not include firm fixed effects in the main specification for two reasons. First,
it is known that exploiting time-variation in time-series data or panel data with fixed
effects captures short-run substitution, while exploiting cross-sectional variation cap-
tures long-run substitution (Arnberg and Bjgrner, 2007). Thus, not having fixed effects
enables interpreting the estimates as long-run elasticities of substitution, which cor-
respond closely to the interpretation of the parameter in the theoretical literature.
Second, exploiting only time variation within firms will lead to discarding changes in
fuel prices that induce firms to adjust fuel choices at the extensive margin (i.e., start
or stop using a certain energy type) or to close down. Therefore, I avoid including firm
fixed effects in order to incorporate fuel choices at the extensive margin and more gen-
erally entry, exit and the reallocation of inputs across firms. This specification is again
in line with the goal of the analysis which is to inform the economy-wide possibility
of sustainable growth through input substitution and technical change. As a robust-
ness check, I also provide within estimates that correspond to short-run elasticities of
substitution in Appendix B. As expected, they tend to be smaller in magnitude than
those without firm fixed effects (Table B3).

3.3 Addressing endogeneity

Potential endogeneity in firm-level energy demands and prices has been recognized in
the literature. For example, demand and productivity shocks are likely to be correlated
with both energy demands and prices through quantity discounts (i.e., lower unit price
through purchasing a large amount of energy) and changes in the energy mix (the
share of different types of energy used in a given firm). In discussing these sources
of endogeneity, I distinguish between factor-neutral sources of endogeneity that affect
both types of energy proportionately and factor-specific sources that affect the two
types of energy disproportionately.

To mitigate factor-neutral shocks such as demand shocks or productivity shocks
experienced at the firm level, I choose to include the combined FOCs in the system of
equations (equation (6)) rather than two separate FOCs with respect to each energy
type shown in equation (3) and (4). Such factor-neutral unobservables that affect both
types of energy proportionately are expected to cancel out in equation (6) that relates

the price ratio to the input ratio. They are also likely to be innocuous in equation (7),

12



since the CES representation specifies how fuel choices are determined through the
degree of substitutability between the two types of energy and the efficiency associated
with each type. Unobserved factors that affect both types of energy proportionately
are not likely to affect either channel.

Regarding factor-specific omitted variable bias that affects fuel choices dispropor-
tionately, Antras (2004) discusses potential factor-specific productivity shocks at the
firm level and how they can be correlated with factor demands. That is, to the extent
that firms take into account their factor-specific productivity when choosing inputs,
it would affect input demands as well as input prices through resulting quantity dis-
counts.'®

To account for such factor-specific omitted variable bias at the firm level, I follow
the approach taken in earlier studies and develop instruments that rely on national
energy prices by applying the growth rates of national energy prices to the pre-sample
firm-level price (Linn, 2008; Sato et al., 2019; Dussaux, 2020; Marin and Vona, 2021).
Specifically, the instrument for the firm-level price of clean energy Fi? is constructed

as:

t
PS¢ =P5 x [0+ GY) (8)
j=1

where PS, is firm i’s unit price of clean energy observed in the pre-sample period (t = tg)
and G¢ is the growth rate of the national average price of clean energy in year t. The
firm-level variation in the instrument comes from the pre-sample price, which provides
information on the relative intensity of clean energy consumption. For example, a firm’s
unit price of clean energy that is lower than the average national price is likely to imply
that the firm uses a larger amount of clean energy than other firms and receives more
sizeable quantity discounts. The firm-level variation makes the instrument sufficiently
strong for the firm-level energy prices, avoiding a weak-instrument problem. The same
logic applies in constructing PztD . In Appendix B, T also try an alternative specification
for the instruments that weight national prices of different fuels using the pre-sample
firm-level fuel mix as weights (‘shift-share’ instruments), which yields similar results

(Table B4)."! Using P§ and P;’tj as instruments, I estimate the system of equations (6)-

10For example, a firm experiencing a positive productivity shock associated with clean energy might
increase its demand for clean energy, which may lower the unit price of clean energy through quantity
discounts.

HThe alternative specification is not chosen as the preferred specification because it does not
provide as strong firm-level variation in the current setting where energy is already partitioned into
the clean and dirty bundle with the two most popular fuels, electricity and natural gas, belonging to
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(7) by using the two-step generalized method moments (GMM) estimator of Hansen

(1982).'2 Standard errors are clustered at the firm level.

Figure 1: Average price of clean and dirty energy
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Source: Enquéte sur les Consommations d’Energie dans I'Industrie (EACEI).

The validity of the instruments hinges on three assumptions. The first assumption
requires factor-specific unobservables such as factor-specific efficiency shocks at the firm
level to be uncorrelated with the growth rates of the national energy prices. Given that
the sample includes around 13,000 firms (see Appendix A for detailed descriptions of
the data), it is unlikely that productivity shocks in a given firm are correlated with
national energy prices. Secondly, the pre-sample prices (Pgo and PIIZ)) should also be
uncorrelated with such idiosyncratic firm-level productivity shocks in subsequent years.
This assumption of no serial correlation in idiosyncratic productivity shocks is relatively
common in the literature (e.g., Olley and Pakes, 1996). Finally, the identification of

the technical parameters requires that the national growth rates in energy prices are

each one (compared to other studies where energy is considered as a whole). In particular, the share
of electricity in the clean bundle is very high (98 percent on average) and does not vary substantially
across firms. On the other hand, two firms that display the same share of electricity in their clean
energy consumption might still be charged substantially different unit prices due to the differences in
the absolute amount of electricity consumption and resulting differences in quantity discounts.

12 Another possible estimator is nonlinear Three Stage Least Square (3SLS), which is simpler
than GMM. However, it is asymptotically efficient only under the assumption of homoskedasticity
(Wooldridge, 2010).
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uncorrelated with the linear growth in factor-specific technologies specified in equation
(7). Figure 1 shows that the evolution of energy prices at the national level is not
necessarily linear: the price of clean energy features a U-shape growth, while the price

of dirty energy is also associated with annual fluctuations.

4 Results

4.1 The elasticity of substitution between clean and dirty en-

ergy and technological bias

Table 3 reports the baseline results from estimating the system of equations (6)-(7)
without instruments. I begin by estimating the system without any fixed effects in col-
umn (1). The estimate of the elasticity of substitution between clean and dirty energy
is well above one around 2.2 and precisely estimated. The estimated technical progress
parameters suggest -0.8% and 1.5% per year growth in the clean- and dirty-energy-
augmenting efficiency, respectively.'®> The estimates indicate that technical change was
clearly biased towards dirty energy over the period of 1995-2015.

With industry fixed effects in column (2), the estimate of the elasticity falls slightly
and yet remains close to 2. In column (3) also with region fixed effects, the estimated
elasticity of substitution and technical progress parameters remain qualitatively similar.
In column (4), I re-estimate the specification in column (3) using the total energy
consumption Ej; as weights in order to put more emphasis on the behavior of heavy
energy-using firms. The elasticity estimate appears to be slightly larger when more
weight is given to large and heavy energy-using firms. Technical progress estimates are
comparable to the results from the non-weighted specifications with -1.9% and 1.9%
annual growth in efficiency associated with clean and dirty energy, respectively.

I further estimate the system by industry to examine how the parameters vary
across industries based on the French classification of economic activities (NAF rev.2)
and report the results in Appendix B. Table B1 presents estimates of the elasticity of
substitution and technical parameters by industry. Elasticity estimates range between
1.6 and 3.2 and are precisely estimated for all industries. Technical parameters yield

very similar results with positive 7p and negative 7o in most industries. The implied

13A downward trend in efficiency is not infrequently found in factor-augmenting technology esti-
mates. For instance, Antras (2004) and Doraszelski and Jaumandreu (2018) report negative estimates
of capital-augmenting technology.
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Table 3: Estimation of the elasticity of substitution and technical change in the
energy aggregate

(1) (2) (3) (4)

2.194%*%  1.963***  1.950%**  2.209%**

o

(0.039) (0.037) (0.037) (0.083)
T -0.008***  -0.014***  -0.014%*F*  -0.019***

(0.000) (0.001) (0.001) (0.001)
™D 0.015%**  0.019%**  0.019%**  (0.019***

(0.000) (0.000) (0.000) (0.001)
Industry FE v v v
Region FE v v
Weighted by Ej v
Observations 65,884 65,884 65,884 65,884

Notes: Estimates from estimating the system (6)-(7) are reported.
Standard errors are clustered at the firm level.

bias in technical change, 7p — 7¢, ranges between 1.0% and 5.1%, indicating dirty-
energy-biased technical change in all but one industry (Plasters, line , and cement).

Table 4 reports GMM estimates that address endogeneity concerns. Even formally
accounting for endogeneity arising from factor-specific omitted variable bias, the results
are similar to those obtained from the baseline specification. Over the period between
1995 and 2015, the estimated elasticity of substitution between clean and dirty energy
ranges between 1.6 and 2.2 when unweighted (column (1)-(3)) and tends to be larger
when weighted by the total energy consumption (3 in column (4)), again strongly
suggesting that the two inputs are substitutes. The estimated technical progress pa-
rameters provide a similar pattern observed from the baseline specifications: -2.3%
and 2.2% per year growth in the clean- and dirty-energy-augmenting efficiency, respec-
tively (column (4)), implying that the direction of technical change was clearly biased
towards dirty fuels.

The general picture arising from these results largely confirms the prediction from
the theory of directed technical change. The theory argues that there are two opposing

forces influencing the path of innovation. First, the market size effect encourages

16



Table 4: Estimation of the elasticity of substitution and technical change in the
energy aggregate: GMM estimates

(1) (2) (3) (4)

o 1.623%** 2. 176%*F*  2.222%*F 3 000%**
(0.091) (0.082) (0.078) (0.101)
TO -0.024***  -0.026***  -0.026%**  -0.023***
(0.001) (0.001) (0.001) (0.001)
™D 0.024***  0.023%F*  (0.023***  (.022%**
(0.001) (0.000) (0.000) (0.001)
Industry FE v v v
Region FE v v
Weighted by FE;; v
Observations 65,884 65,884 65,884 65,884

Notes: Estimates from estimating the system (6)-(7) using instruments
are reported. Instruments are constructed according to equation (8).
Standard errors are clustered at the firm level.
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innovation in technologies that use the cheaper input and second, the price effect
spurs the development of technologies that favor the more expensive input. Which
effect dominates the other is determined by the elasticity of substitution between the
two inputs. When the inputs are gross substitutes, which is the case for clean and
dirty energy as suggested by the estimates above, the market size effect is predicted
to dominate the price effect (Acemoglu, 2002; Acemoglu et al., 2012).'* Looking at
relevant prices in France, Figure 1 shows that the price of dirty energy was considerably
lower than that of clean energy throughout the sample period. Thus, the dirty-energy-
biased technical change (or the market size effect dominating the price effect) observed
in the data is consistent with the relative price movement, given the estimated elasticity

of substitution between clean and dirty energy sufficiently above one.

4.2 Government interventions and the evolution of technology
4.2.1 Empirical documentation

Figure 1 shows a shift in the trend in energy prices, clean energy in particular, around
the early 2000s. The shift coincides with a number of government interventions in the
energy sector implemented in France. First, the government introduced a tax scheme
applying to all final consumers of electricity in 2002 with a purpose of using the tax
revenue to support renewable energy and co-generation (Contribution au Service Public
de I'Electricité). Further, as part of the government’s initiative to liberalize energy
markets, the electricity and gas markets in France have been opened to competition
for all non-residential users since 2004 and all final consumers have been able to choose
between regulated tariffs and market-based prices with the supplier of their choice
since then. The transition to competitive markets, however, led to higher electricity

15 Although not specific to the French context,

prices due to limited competition.
the EU Emissions Trading Scheme that started operating in 2005 might have also

influenced energy prices though changes in fossil fuel consumption or cost pass-through

4When the two inputs can be easily substituted, it is intuitive that the cheaper input would be
favored and innovation efforts will be directed to improving its efficient use. In contrast, when the two
inputs are complements, it is likely that innovation will go in the direction of improving the efficiency
of the more expensive but necessary (since both inputs are needed in this case) input.

15Limited competition is due to the dominant role of the incumbent utility, for instance, Electricité
de France (EDF) in the electricity market. EDF controls a large nuclear fleet with production costs
lower than wholesale electricity prices.
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by electricity producers (Alexeeva-Talebi, 2011; Fabra and Reguant, 2014).1°

Table 5: Estimation of the elasticity of substitution and technical change in the
energy aggregate: Pre- & post-2004

(1) (2) (3)

GMM

All pre-2004  post-2004

o 3.000%**  3.286%*F*  5.037F**
(0.101) (0.100) (0.214)
Te -0.023***  -0.057*** 0.001
(0.001) (0.003) (0.001)
Td 0.022%F%  0.039***  -0.002**
(0.001) (0.001) (0.001)
Industry FE v v v
Region FE v v v
Weighted by Ej v v v
Observations 65,884 31,637 34,247

Notes: Results from estimating the system (6)-(7) with in-
struments. Instruments are constructed according to equa-
tion (8). Samples used are indicated in each column. Stan-
dard errors are clustered at the firm level.

I try to investigate whether and to what extent such large-scale reforms in the
energy sector affected the elasticity of substitution between clean and dirty energy
and the direction of technical change. For the purpose, I divide the sample into the
pre- (1995 - 2003) and post-intervention period (2004 - 2015) and re-estimate the
system of equations (6)-(7) separately on these two sub-periods. Table 5 reports the
GMM estimates from this exercise. Column (1) reproduces the estimation results

from the baseline specification on the entire sample period with industry and region

6Marin and Vona (2021) explore in an econometric analysis the role of these energy policies in
driving firm-level energy prices in France and find that the tax scheme applying to all final consumers
of electricity (Contribution au Service Public de I'Electricité) had an impact of the largest magnitude,
although the other two policies also had a significant impact on energy prices.
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fixed effects (column (4) in Table 4) for reference. Results from the pre- and post-
intervention period are reported in column (2) and (3), respectively. The elasticity
estimates remain sufficiently above one in both periods as in the main specification. In
contrast, technical progress parameters change substantially. To begin, dirty-energy-
biased technical change observed over the entire sample period appears to be largely
driven by the trend in the pre-intervention period. The estimates have the same signs
and tend to be larger in magnitude, while the signs of the technical progress estimates
flip in the post-intervention period. The estimated technical parameter associated with
clean energy is now positive, although imprecise, in the post-intervention period, while
that associated with dirty energy turns negative. These estimates point to a shift in
the direction of technical change that favors clean energy in recent years. I further
examine the shift in the direction of technical change in different industries and find
that despite a large degree of heterogeneity across sectors, technical change appears
to be biased towards clean energy in the post-intervention period for 16 out of 19
industries (Table B2).

To check the possibility that the division of the sample period (before and after
2004) is arbitrary and the results depend on it, I estimate the system on a 10-year rolling
window using the specification in column (4) of Table 4. The results from this exercise
are graphically reported in Figure 2. It is readily observable that the growth rates of two
technologies exhibit markedly different patterns. Clean-energy-augmenting technology
grows at a faster rate as the rolling window moves to the right and includes more recent
years, eventually surpassing the growth rates of dirty-energy-augmenting technology,
while the growth of dirty-energy-augmenting technology appears to attenuate slowly

over time.

4.2.2 Theoretical explanations

The directed technical change framework offers theoretical explanations for the ob-
served shift in the direction of technical change. One explanation is that the relative
price competitiveness of dirty energy has been decreasing, although it was still cheaper
than clean energy in absolute levels. For example, dirty energy was 3.5 times cheaper
than clean energy in 1995, but less than 2 times cheaper in 2015. This decreasing
relative price competitiveness of dirty fuels might have had a negative influence on the
incentives to innovate dirty-energy-augmenting technology over time.

The literature has also emphasized the role of R&D subsidies for clean energy in
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Figure 2: Annual growth of clean- and dirty-augmenting technologies: on a 10-year
rolling window
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Notes: GMM estimates of technology parameters with confidence intervals from estimating the system

(6)-(7) on a 10-year rolling window. Year is the median year in each 10-year window.

inducing clean-energy-biased technical change (Acemoglu et al., 2012; Greaker et al.,
2018; Fried, 2018). Figure 3 shows the government expenditure on R&D support for
fossil fuels, renewables and nuclear in France since 1990. The data come from the Inter-
national Energy Agency (IEA). While subsidies for R&D related to nuclear remained
highest with no clear pattern, subsidies for R&D in fossil fuels have been falling since
2002. At the same time, government support for renewables grew continuously from
the late 1990s, eventually exceeding support for fossil fuels around 2010.'7 The steady
increase in the R&D subsidies for clean energy is consistent with the observed technical

progress biased towards clean energy from mid-2000 in the data.

1TThis observation can be seen in the context of the comprehensive environmental programme
launched in 2007, Grenelle de I’Environnement, which puts forward a series of policies and mea-
sures including specific plans for strengthening R&D on clean energy technologies in order to achieve
France’s long-term greenhouse gas emissions reduction target (75 percent reduction by 2050) (IEA,
2009). For example, the government has provided subsidies through a € 57 billion investment program
“Investments for the Future” for the integration of renewable energy into industrial plants since 2010.
The program includes full subsidies granted to research institutes, subsidies and grants to companies
and direct capital investment for the development of renewable energy. Similarly, the government
has initiated a series of calls for tenders since 2004 in order to stimulate investments in large-scale
renewable energy plants (IEA, 2004, 2009).
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Figure 3: Government R&D expenditure by energy source

o
S |
o
N R
// \ T~ - // \\\
/ \ [ T~—TTe— - J ~
~__-" \ ~ / >
/T~— \ 7 S
Sl _~—o \/
S |7 T~ v
o
S
o
o -
T T T T T T
1990 1995 2000 2005 2010 2015
Year
—'— — = Fossil fuel Renewables
————— Nuclear

Source: International Energy Agency (IEA).

5 Robustness checks

5.1 Kmenta approximation

In this section, I test the sensitivity of the estimates to alternative estimation methods
other than the system of equations approach by trying two other popular methods used
in the literature, namely, the estimation of a linearized production function and of the
FOCs. First, I try the Kmenta approximation, which is a first-order Taylor expansion

of the CES function around o = 1. The approximation leads to:

o—1)v(1—
+ [yre + (1 — ’}/)TDl t+ ( >270( 7 7o — o) t* (9)
‘b’ . -~ /

again assuming A§ = A§ et AD = AP ™' and A = A§ = 1."® Using 4, o is

C
18In approximation, the term that multiplies input ratio by the time trend, Wh)g % t, is

it
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Table 6: Kmenta approximation of the energy technology function

(1) (2) (3)

Dependent var: E/Ep

Ec/Ep 0.497F%%  (.497HFF% (). 489%F*
(0.001)  (0.001)  (0.002)
(Ec/Ep)®  0.081%F*%  (.081%*%* (.070%**
(0.001)  (0.001)  (0.003)

t -0.000%*  -0.000  0.000
(0.000)  (0.000)  (0.001)
2 0.000  0.000  -0.000

(0.000)  (0.000)  (0.000)

Industry FE v v
Region FE v v
Weighted v

Observations 65,884 65,884 65,884

o 2.851 2.819 2.263

Notes: Results from estimating equation (9). Stan-
dard errors are clustered at the firm level.

identified from the composite a. One drawback of this specification is that it is difficult
to identify 7¢ and 7p without prior information on which technology parameter is
larger. Thus, as in Leén-Ledesma et al. (2010), T use this specification to check for the
robustness of the o estimates only. Results are reported in Table 6. Column (1) shows
the estimate of the substitution parameter around 2.9, which is comparable to those
from the system of equations approach. I include industry and region fixed effects in
column (2). When weighted by the total energy consumption, the estimate falls but

remains qualitatively similar to the previous ones.

5.2 First-order conditions

Second, I estimate the combined FOCs in equation (5), which I reproduce below, to
estimate the elasticity of substitution and the overall bias in technical change captured

by 7¢ — 1p:

dropped as in Leén-Ledesma et al. (2010) without any significant loss of precision.
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Table 7: Estimation of the elasticity of substitution and technical change in the
energy aggregate: First-order conditions

(1) (2) (3)
v
All pre-2004  post-2004

Log price ratio  2.794%#%  3.032%#* 4 751***
(0.166)  (0.166)  (0.327)

t 0.084%#% (. 214%F*  _0.028***
(0.007)  (0.016) (0.007)
Age 0.000 0.001 0.002
(0.001)  (0.001) (0.001)
Industry FE v v v
Region FE v v v
weight by Ej; v v v

Observations 61,070 27,942 33,128

Notes: Results from estimating equation (10) with in-
struments. Standard errors are clustered at the firm

level.
ED pPC
log(E’é) = ay + o log (Pfg>+(1—a) (T —Tp) t+ € (10)
1t 1t

In column (1) of Table 7, I find an IV estimate of the elasticity of substitution
between clean and dirty energy of 2.794, which is within the range of estimates from the
system of equations approach reported above. Reassuringly, the coefficient on the time
trend is positive (0.084), implying that the overall bias in technical change (7o —7p) is
negative over the whole sample period (i.e., dirty-energy biased technical change) given
the estimate of the the elasticity of substitution greater than one. When splitting the
sample into pre- and post-2004, the implication regarding the change in the direction of
technical change is remarkably similar to the findings from the the system of equations
approach. In the pre-2004 period, the bias is towards dirty-energy, while technical
change appears slightly clean-energy-biased in the post-2004 period (a positive and a
negative coefficient on the time trend in column (2) and (3), respectively). The similar

estimates from alternative approaches reported in this section add confidence that the
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Figure 4: Relative share and price of clean energy over time
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main estimates from the system of equations approach are not driven by the choice of

the estimation method.

6 The increase in the relative share of clean energy

Figure 4 shows the relative share (E¢/FEp) and price (Po/Pp) of clean energy between
1995 and 2015 in the French manufacturing sector. The relative price of clean energy
over time is depicted in the dashed line. The measure declines sharply from 3.8 in 1995
to the lowest point of 1.5 in 2008 and rises afterwards. On the other hand, the relative
share of clean energy has been steadily increasing from 1.1 in 1995 and 1.8 in 2015.%°
The growth appears to have slightly slowed down in the second half of the period, but
not significantly so. In this section, I examine the historical increase in the relative
share of clean energy in France through a simple decomposition exercise that separates
the increase into the effect of changing relative prices and that of technical change.

It is suitable to look into the changes in each component over time to assess their
contributions to the increase in the relative share of clean energy. Thus, following

Oberfield and Raval (2021), the percentage change in input ratio is decomposed as

YNote that the measure seems large (above one) since clean energy also includes electricity as
explained in Section 2.1.
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follows:

E 0 In £c P E. OlnZc P,
din ¢ = — 22 qin “% 4 [dln =€ - —E2 qn < (11)
Ep Oln e Pp Ep 9ln e Pp
contr. from‘?actor prices contr. from tgcrhnical change

where the first term measures the contribution of factor price changes. The residual
(the second term) is labelled as the contribution of technical change.?’ To compute the
contribution of changing factor prices, I use my estimate of the elasticity of substitution

from Section 4.2.2!

Figure 5: Cumulative contribution of factor prices and of biased technical change to
the increase in the relative share of clean energy
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Figure 5 displays the cumulative contribution of each component to the increase in
the relative share of clean energy. Changes in relative energy prices have contributed to
an increase of almost 100 percentage points from 1995 and 2015. Consistent with the
evolution of price movements shown in Figure 4, the declining relative price of clean
energy caused its relative share to increase gradually, peaking in 2008. From then on,

the increase in the relative price of clean energy attenuates this increase. Moving as

20With this expression, Oberfield and Raval (2021) note that any change in the economy other
than changes in factor prices that would alter relative factor demand is considered biased technical
change. These include, for instance, changes in preferences, markups, demographics, technology, or
trade barriers.

21Specifically, I use the estimate of 2.22 in column (3) of Table 4.
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a mirror image of the contribution of factor prices, technical change has cumulatively
contributed to a decline of 45 percentage points in the share of clean energy, which is
in line with the observed dirty-energy-biased technical change between 1995 and 2015
(Table 3, 4).

It is noteworthy that the contribution of changing factor prices was relatively
stronger, at least thus far, compared to that of technical change, accounting for two
thirds of the increase in the relative share of clean energy cumulatively. This points
to the importance of strong price signals through policy instruments such as a car-
bon tax in raising the share of clean energy in manufacturing (Fischer and Newell,
2008; Hart, 2019). However, I also note that the contribution of technical change to
energy transition may grow in the future, as hinted by the growth of clean-energy-
augmenting technology in more recent years (Figure 2). For instance, Markard (2018)
argues that energy transition occurs through multiple phases and the impact of tech-
nological advances tends to emerge in later phases. In earlier phases, new technologies
are immature and cannot compete with established technologies, while in later phases,

technologies mature substantially and diffuse much faster than before.

7 Conclusion

The elasticity of substitution between clean and dirty energy and the direction of tech-
nical change, either dirty-energy-biased or clean-energy-biased, are central parameters
in discussing one of the most challenging questions facing the world today, climate
change. However, there is limited consensus on the magnitude of this substitution
elasticity and much less on the nature of technical change due to a dearth of empirical
estimates for these key parameters. In this paper, I made an attempt to fill this gap by
estimating the elasticity of substitution between clean and dirty energy inputs jointly
with the direction of technical change in the energy aggregate.

I find micro estimates of the elasticity of substitution between clean and dirty en-
ergy inputs greater than one, around 3. Moreover, largely dirty-energy-biased technical
change observed in the data is consistent the framework of directed technical change
widely applied in the large sustainable growth literature, given the historical move-
ment of relative energy prices and the estimated elasticity of substitution above one.
However, my analysis also provides clear evidence of a shift in the path of innovation

towards clean-energy-augmenting technologies in recent years. A simple decomposition
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exercise shows that changes in relative energy prices were a stronger driver behind the
historical increase in the relative share of clean energy than technical change. This
points to the importance of strong price signals in raising the share of clean energy in
manufacturing, although the contribution of technical change to energy transition may
grow in the future.

Although the findings presented in this paper provide a strong empirical foundation
for a large number of papers that investigate the possibilities of sustainable growth with
directed technical change, there is ample room for improvement and future research.
For instance, expanding the method to include public and private R&D to investigate
their causal impacts on the switch in the direction of technical change would provide
further insight. Moreover, although the elasticity of substitution parameter is con-
sidered time-invariant in most of the literature, the kind of technical progress that
allows substitution between factors easier, in other words, ‘sigma-augmenting’ tech-
nical change can be also very relevant, particularly in the context of climate change
(Stockl, 2020). It has been noted in the macroeconomic literature that an increase in
the elasticity of substitution between labor and capital has strong effects on growth,
although the mechanisms are not well understood (Klump et al., 2012). I believe the
knowledge of how such sigma-augmenting technical change may occur and operate will

broaden the scope of our understanding of sustainable growth.
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Appendix A

Data

The sample consists of 12,864 firms observed at least twice between 1994 and 2015.
The first observation of each firm is dropped in constructing the instruments (ex-
plained in detail in Section 4.2) and thus the final sample runs from 1995. Since the
FICUS/FARE is a census and the EACEI is a survey, the sample size is influenced by
the EACEI, which is representative of manufacturing plants with more than 20 em-
ployees. In merging the two datasets, I only keep firm-year pairs for which all plants
of a firm were surveyed in the EACEI to ensure that the aggregation of energy use and
expenditure is comprehensive at the firm level. In what follows I define the variables

used in the main analysis.

e Total energy consumption (E): Total Amount of energy consumed in the calendar
year in TOE.

e Clean energy consumption (F¢): Amount of electricity, steam and renewables

consumed in the calendar year in TOE.

e Dirty energy consumption (Ep): Amount of natural gas, other types of gas, coal,
lignite, coke, propane, butane, heavy fuel oil, heating oil and other petroleum

products consumed in the calendar year in TOE.

e Unit price of clean energy (Pr): Expenditure on clean energy purchase (electric-
ity, steam and renewables) in the calendar year deflated by GDP deflator and
divided by clean energy consumption (E¢). Thus, using self-generated electricity

or steam (not purchased) lowers the firm’s unit price of energy.

e Unit price of dirty energy (Pp): Expenditure on dirty energy purchase in the
calendar year deflated by GDP deflator and divided by dirty energy consumption
(Ebp)-
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e Weights: EACEI sample weights are used in the baseline regressions and EACEI
sample weights multiplied by the total energy consumption are used in the re-

gressions weighted by energy consumption (E).

For the descriptive analysis, the following additional variables are used:

e Energy efficiency: Total sales of goods and services in million euro divided by

total energy consumption in the calendar year in TOE.

e Age: Years in existence calculated by the year in which the firm is surveyed sub-
tracted by the year in which the firm started operation.

Table A1l reports the number of observations by year.

Appendix B

B1 Additional results
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Table Al: Number of observations (firms) by year

Year Observations
1995 4,076
1996 4,359
1997 4,587
1998 4,608
1999 4,644
2000 1,913
2001 3,561
2002 1,909
2003 1,980
2004 2,236
2005 2,089
2006 3,326
2007 3,818
2008 3,326
2009 3,277
2010 3,459
2011 3,646
2012 2,609
2013 1,964
2014 1,964
2015 2,533
Total 65,884
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9¢

Table B1: Estimation of the system of equations by industry

Industry Observations o (SE) TC (SE) ) (SE)
Steel 203 1.890%F*  (0.261)  -0.019%*  (0.008)  0.011%¥%*  (0.003)
Metals 874 3ATIF* (0.421)  -0.007%%  (0.003)  0.010%%* (0.001)
Minerals 332 2.515%%  (0.361)  -0.020%%* (0.006)  0.011%%* (0.003)
Plaster, lime, cement 167 2.311%**  (0.231) -0.004*  (0.002) -0.008***  (0.002)
Ceramic 5,476 2.349%%% (0.081)  -0.017%F (0.001)  0.012%%%  (0.000)
Class 1,665 2.6854%*% (0.213)  -0.007FF* (0.001)  0.011%%*  (0.001)
Fertilizer 328 1896***  (0.215)  -0.030%%* (0.010)  0.021%**  (0.004)
Other chemicals 287 3.199%** ((.385) -0.008**  (0.004) 0.009***  (0.001)
Plastic, rubber 731 2.736%%%  (0.240) 0.001  (0.002)  0.010%%* (0.001)
Pharmaceutical 3,226 185265 (0.126)  -0.011%** (0.003)  0.013%%* (0.001)
Steel processing 14,230 2.0554%*% (0.053)  -0.007FF* (0.000)  0.014%¥*  (0.000)
Machinery 8,513 1782%F%  (0.088)  -0.012%%% (0.002)  0.015¥%*  (0.001)
Electronics 5,266 L86G***  (0.097)  -0.012%%% (0.002)  0.020%** (0.001)
Transport equipment 3,327 L980***  (0.099)  -0.009%%* (0.002)  0.013¥** (0.001)
Shipbuilding 1,289 1.923%%% (0.172)  -0.006* (0.003)  0.014%%* (0.002)
Textile 8,386 2.253%%% (0.067)  -0.018%%* (0.002)  0.017%%*  (0.000)
Paper 4,470 2.140%%*%  (0.085)  -0.006%* (0.002)  0.015%% (0.000)
Rubber products 889 L597%%  (0.348)  -0.017%%  (0.007)  0.028%** (0.005)
Plastic products 6,225 2,173 (0.062) 0.002**  (0.000) 0.012***  (0.000)

Notes: Estimates from estimating the system (6)-(7) by sector are reported. Standard errors are clustered at the
firm level.
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Table B2: Estimation of the system of equations by industry post-2004

Industry Observations o (SE) T (SE) ) (SE)
Steel 130 1.560%%* (0.313) 0.004  (0.009) 0.001  (0.012)
Metals 477 3.633%%* (0.492)  -0.000  (0.001) 20.001  (0.002)
Minerals 229 2.808%*% (0.663)  -0.004  (0.005) 0.006  (0.004)
Plaster, lime, cement 63 1.647%**  (0.322) 0.014*%% (0.004) -0.012*%** (0.004)
Ceramic 3,214 2067 (0.197)  0.012%%%  (0.003)  -0.007**  (0.003)
Glass 998 4.004***  (0.428) 0.001 (0.001) -0.001 (0.001)
Fertilizer 153 1.860%%*  (0.477) 0.002  (0.004)  -0.010%* (0.005)
Other chemicals 175 5.623*** (1.094) 0.001  (0.001) -0.001  (0.002)
Plastic, rubber 465 4792%%% (0.515)  0.003%*  (0.001) 20.002  (0.001)
Pharmaceutical 1,861 1.958%%% (0.144) 0.001  (0.003) 20.002  (0.004)
Steel processing 8,253 2.550%%% (0.181)  0.002%**  (0.000) 20.001  (0.001)
Machinery 3,700 2.196%%*  (0.148)  0.009%** (0.000)  -0.018*¥** (0.001)
Electronics 2,525 2,655+ (0.272) 0.000  (0.001) 0.000  (0.002)
Transport equipment 1,603 2.800*** (0.201) -0.001  (0.001) 0.002**  (0.001)
Shipbuilding 698 2.516%*% (0.367)  0.005%* (0.002)  -0.009%*  (0.003)
Textile 2,955 3.485%%*%  (0.428) 0.000  (0.001)  -0.003%** (0.001)
Paper 2,601 3.653%%% (0.208)  0.001*  (0.000)  -0.001%¥** (0.000)
Rubber products 369 1.538%%%  (0.559) 0.033  (0.027) 20.017  (0.035)
Plastic products 3,778 4.026%%% (0.216)  0.002%%* (0.000)  -0.006*** (0.000)

Notes: Estimates from estimating the system (6)-(7) by industry in post-2004 period. Standard errors are clustered

at the firm level.



B2 Sensitivity of the system of equations approach

Firm fixed effects In the main analysis, firm fixed effects are not included so that the
estimates can be interpreted as long-run elasticities of substitution, which correspond
closely to the theoretical literature. In this section, I examine within-estimates of the
elasticity of substitution and technical parameters.

Table B3 reports the within estimates. When exploiting variation within firms only
in column (1), the estimate of the elasticity of substitution between clean and dirty
energy falls in magnitude, compared to the estimates in Table 3. This is not surprising
since the within estimates correspond to short-run elasticities of substitution (Arnberg
and Bjgrner, 2007). Further, these do not incorporate changes in fuel prices that induce
firms to adjust fuel choices at the extensive margin (or close down) that are likely to
be larger in magnitude than changes in fuel prices that lead to adjustments in fuel
choices only at the intensive margin. However, the estimate remains above one, thus
qualitatively comparable to the estimates that exploit cross-sectional variation.

Technical parameters similarly indicate dirty-energy-biased technical change over
the entire time period: -2 % and 2% per year growth in the clean- and dirty-energy-
augmenting technology, respectively. Column (2) presents estimates weighted by en-
ergy consumption. Examining the shift in the direction of technical change, column (3)
and (4) report estimates from the pre- and post-2004 period, respectively. Technical
change appears biased toward dirty energy up to 2004 (column (3)). Again qualita-
tively similar to the earlier results, the technical parameter associated with clean energy
turns positive in the post-2004 period, indicating 0.8% per year growth (column (4)).
At the same time, the dirty-augmenting technical change parameter turns negative and

is less precisely estimated.

Alternative instruments The preferred instruments used so far apply the growth
rates of energy prices at the national level to the pre-sample firm-level price. Other
studies have implemented a similar specification that weights national fuel prices using
the pre-sample fuel share at the firm level (Linn, 2008; Sato et al., 2019; Marin and
Vona, 2019). As a robustness check, I try this alternative specification to check the
sensitivity of the system of equations approach. The alternative instrument for the

price of clean energy P§ is constructed as:
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Table B3: Estimation of the system of equations: within estimates

(1) (2) (3) (4)
pre-2004  post-2004

o 1.314%**  1.402%F*  1.503***  1.379***
(0.026) (0.061) (0.101) (0.067)
TC -0.014***F  -0.020%**  -0.043***  0.008**
(0.003) (0.003) (0.005) (0.004)
™D 0.020%**  0.019%**  (0.023*** -0.005
(0.002) (0.003) (0.004) (0.005)
Firm FE v v v v
Industry FE v v v v
Region FE v v v v
Weighted by Ej v v v
Observations 65,884 65,884 31,637 34,247

Notes: Estimates from the within specification of the system of equa-
tions (6)-(7). Standard errors are clustered at the firm level.

3
PS¢ =3¢}, P (12)
j=1

where Ptj is the national price of fuel j and qbgto is the share of fuel 7 in the clean
energy bundle (that includes electricity, steam, and renewables) in the pre-sample
period (t = tp). The alternative instrument for the price of dirty energy P;’tj is similarly
constructed with the pre-sample share of each dirty fuel (10 in total) calculated within
the dirty energy bundle.

Although the specification is slightly different, exclusion restrictions are similar to
the main instruments. First, the national energy prices should not be correlated with
factor-specific firm-level omitted variable bias such as firm-specific productivity shocks.
Second, the pre-sample share qﬁfto in t = ¢y should not be correlated with idiosyncratic
productivity shocks in subsequent periods.

Table B4 reports GMM estimates from using the alternative instruments. The es-
timates of the substitution parameter tend to be smaller in magnitude than those in
earlier specifications (except in column (4)), but remain above one. Technology pa-

rameters across all columns suggest largely dirty-energy-biased technical change. For
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Table B4: Estimation of the elasticity of substitution and technical change in the
energy aggregate: GMM estimates using alternative instruments

(1) (2) (3) (4)

o 1.380%**F  1.206***  1.285%F* 2 423%**
(0.223)  (0.071)  (0.063)  (0.122)
T -0.022%**  -0.045%**  -0.040%*F*  -0.021***
(0.005) (0.009) (0.005) (0.001)
™D 0.020%**  0.042%F*  0.037FF*F  (0.023%**
(0.004) (0.008) (0.004) (0.001)
Industry FE v v v
Region FE v v
Weighted by Ej v
Observations 65,884 65,884 65,884 65,884

Notes: Results from estimating the system (6)-(7). Standard errors
are clustered at the firm level.

instance, the clean- and dirty-energy-augmenting technology has experienced -2.1%

and 2.3% per year growth, respectively (column (4)).

Alternative specification for technical progress So far, [ adopted the assump-
tion of linear constant technical progress, following the relevant empirical literature.
As a robustness check, I relax this assumption and allow technical progress to flexibly
nest linear, log-linear and hyperbolic growth based on the Box-Cox transformation
(Klump et al., 2007; Leén-Ledesma et al., 2010). This leads to the general expression,
Ai(t) = e9® where g;(t) = X [t —1],i = C,D and t > 0. The curvature parameter
A; determines the shape of the technical progress function. A; = 1 implies the linear
constant growth assumed so far; \; = 0 a log-linear specification; and \; < 0 a hyper-
bolic specification for technical growth. For instance, A\¢c = 1 with 7¢ > 0 and \p =0
with 7p > 0 corresponds to a scenario where the growth in clean-energy-augmenting
technical progress is constant, while that in dirty-energy-augmenting technical progress
continuously decelerates and asymptotically converges to zero.

Table B5 reports the estimates from this exercise. It is noteworthy that o estimates

40



remain comparable to those from the main specification despite the strong nonlinear-
ities added by the new terms. The estimated technology parameters suggest largely
dirty-energy-biased technical change over the sample period across different specifi-
cations, corroborating the findings from the main specification. But, they are much
larger in magnitude than those produced by the previous specifications and likely to be
beyond what is economically reasonable: -13 % and 17% per year growth in the clean-
and dirty-energy-augmenting technology, respectively (column (3)). The estimates of
the curvature parameters are less stable across different specifications. With indus-
try and region fixed effects in column (3), both curvature parameters are imprecisely
estimated with positive coefficients. Once weighted by total energy consumption in
column (4), the estimates turn negative, making it difficult to draw firm conclusions
about the patterns of growth in efficiency. Ledn-Ledesma et al. (2010) also find that
bias in estimates from this specification tends to be higher compared to the linear spec-
ification for technical progress especially when the elasticity of substitution is greater
than one. GMM estimates that account for potential endogeneity are also qualitatively

similar (Table B6), again pointing to a largely dirty-energy-biased technical change.
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Table B5: Estimation of the elasticity of substitution and technical change in the
energy aggregate: Alternative specification for technical progress

(1) (2) (3) (4)

2.453%H%  2.106%**  2.088*** 2457

&
(0.046) (0.042) (0.042) (0.103)
T J0.082%FF (. 134%FF (. 137K (. 156%kF
(0.007) (0.008) (0.008) (0.014)
o -0.208%* 0.034 0.044 -0.179%
(0.107) (0.093) (0.092) (0.108)
5 0.110%F%  0.169%%*  (.172%%F (. 154%**
(0.006) (0.007) (0.007) (0.011)
b -0.027 0.061 0.066  -0.304%%*
(0.080) (0.071) (0.070) (0.102)
Industry FE v v v
Region FE v v
Weighted by E;; v
Observations 65,884 65,884 65,884 65,884

Notes: Estimates from the specification with Box-Cox transformation
for technical progress. Standard errors are clustered at the firm level.
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Table B6

specification for technical progress

(1) (2) (3) (4)
15 2.879%F%  3.049%**  3.823%**F 4 389%**
(0.152)  (0.132)  (0.132)  (0.148)
To -0.161%FF  -0.156%**  -0.083*** _0.077***
(0.027)  (0.022)  (0.020)  (0.024)
Ao S0.697FFK (. T3THRRR _] BARKIE ] AQR¥HK
(0.289)  (0.243)  (0.273)  (0.361)
™D 0.161*%%*  0.168***  (0.104***  (.112%**
(0.021)  (0.017)  (0.017)  (0.021)
Ap S0.87HFFK L TTIRRR ] 4Q8FRE ] 213K
(0.228)  (0.188)  (0.224)  (0.250)
Industry FE v v v
Region FE v v
Weighted by Ej v
Observations 65,884 65,884 65,884 65,884

Notes: GMM estimates from the specification with Box-Cox transfor-

mation for technical progress. Standard errors are clustered at the firm
level.
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