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[1] It is found that the energy density of electromagnetic 
fields at the surface of the Earth follow a scaling law that 
extends over ∼16 orders of magnitude from ∼10−9 Hz to 
∼107 Hz. The temporal variability of the field can be 
described with an ∼1/f2, or Brownian, noise power spectrum 
which reflects the superposition of numerous transient source 
processes. To the best of our knowledge, the spectral extent 
of this straightforward scaling law is unparalleled and 
outperforms any other scaling law in physics which describes 
a time dependent observable. The frequency dependence of 
the energy density can be approximated with the analytic 
description u( f ) =  u0( f0/f )

2 where u0 = 10−16 Jm−3Hz−1, f0 = 
1 Hz is a scaling constant, and f is the frequency of the 
electromagnetic field. The corresponding frequency depen­
dence of the magnetic field is B( f ) =  B0( f0/f ) where B0 = 
10−11 T/Hz1/2. Citation: Füllekrug, M., and A. C. Fraser‐Smith 
(2011), The Earth’s electromagnetic environment, Geophys. Res. 
Lett., 38, L21807, doi:10.1029/2011GL049572. 

1. Introduction 

[2] The Earth’s atmospheric electromagnetic environment 
is composed of naturally occurring magnetic and electric 
fields which vary on all time scales. The overall frequency 
dependence of the Earth’s atmospheric electromagnetic fields 
is not very well known and has been little studied. Electro­
magnetic field spectra have previously been approximated 
with scaling laws which use the frequency f with an exponent 
a to describe the frequency dependence with the functional 
form f −a. For example, background magnetic field spectra 
from ∼10−5 Hz to ∼105 Hz measured at Arrival Heights in 
Antarctica [Fraser‐Smith et al., 1992] suggest a description 
ranging from ∼f −1 to ∼f −1.5 [Lanzerotti et al., 1990]. Simi­
larly, the electric field spectrum of an exemplary lightning 
discharge suggests a description ranging from ∼f −1 to ∼f −2 in 
the frequency range from ∼103 Hz to ∼107 Hz [Lanzerotti 
et al., 1989]. The energy density of these magnetic and 
electric field spectra has then a functional description ranging 
from ∼f −2 to ∼f −4 which clearly excludes self‐organized 
criticality with a noise power proportional to ∼f −1 [Bak et al., 
1987] as a possible explanation for the energy density of the 
electromagnetic field. Yet, the large range of the observed 
exponents from a ≈ −4 up to  a ≈ −2 and the relatively small 
frequency range of the assessment ∼4–10 orders of magnitude 
inhibits a deeper understanding of any underlying scaling 
law. This contribution aims to reduce the current uncertainty 
by increasing the frequency range of the assessment and by 
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decreasing the possible range of exponents to infer a more 
significant analytic description of the average atmospheric 
electromagnetic field measured at the surface of the Earth. 

2. Observations 

[3] The observations are compiled from three contempo­
rary reviews published in the scientific literature by senior 
authorities in their respective fields. The spectrum of the 
magnetic field B( f ) from ∼10−9 Hz to ∼103 Hz is reported in 
units of 10−9 T/Hz1/2 [Olsen, 2007] which is converted here to 
the corresponding electromagnetic energy density u( f ) =  
B2( f )/m0 where m0 = 4p × 10−7 Hm−1 is the permeability of 
free space. The unit of the energy density is therefore given in 
Jm−3Hz−1, i.e., an energy per volume and per spectral band­
width. The spectrum of the magnetic field from ∼10−5 Hz to 
∼105 Hz is reported in units of 10−15 T/Hz1/2 [Lanzerotti et al., 
1990] which is converted here to the corresponding electro­
magnetic energy density in the same way. Electric field 
measurements from ∼100 Hz to ∼107 Hz are reported in units 
of the noise figure Fa( f ) [Spaulding, 1995]. This noise figure 
measures the radio noise power (in units of W) from sources 
external to a lossless receiving antenna relative to the thermal, 
or Johnson, noise power available in the same bandwidth 
from a resistor at room temperature [Fraser‐Smith, 2007]. 
The resulting unit of the noise figure is dB above KT0b, where 
k ≈ 1.83 × 10−23 J/K is Boltzmann’s constant, T0 = 288.15 K is 
the reference room temperature, and b is the spectral band­
width in Hz which is typically ∼10 % of its center frequency. 
The noise figure is converted here to the corresponding 
electromagnetic energy density in two steps. The first step is 
the calculation of the relative quantity 

Eb f ¼ f þ 20 log10ð Þ � 95:5 ð1Þð Þ Fað Þ f =fM 

where the frequency f of the electromagnetic field is 
referenced against the frequency fM = 106 Hz and the constant 
95.5 dB results from the aperture of a short grounded vertical 
monopole antenna used for the measurements [Fraser‐Smith, 
2007, 1995]. The physical significance of Eb( f ) is to repre­
sent the band‐limited root‐mean‐square (rms) electric field 
strength Er( f ) per spectral bandwidth b measured in dB rel­
ative to E0 = 10−6 Vm−1Hz−1/2 such that 

E2 fð Þ  
Eb f ¼ 10 log10 

r : ð2Þð Þ
bE0

2 

The second step is the calculation of the spectrum from the 
corresponding electric field strength 

Erð Þf p
2
ffiffiffi 

f =20E0

pffiffiffi 
Ef ¼ pffiffiffi ¼ 10Eb ð Þ 2 ð3Þ 

b
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which is converted here to the corresponding electromagnetic 
energy density by use of u( f ) =  E2( f )" 0 where " 0 ≈ 8.85 × 
10−12 Fm−1 is the permittivity of free space. 

3. Results 

[4] The resulting electromagnetic energy density from 
∼10−9 Hz to ∼107 Hz exhibits a constant decrease with 
increasing frequency which extends over the entire frequency 
range (Figure 1). It is interesting to note that the observed 
decrease applies simultaneously to the energy density derived 
from the magnetic field spectrum at lower frequencies and the 
energy density derived from the electric field spectrum at 
higher frequencies. The consistent decrease of the energy 
density also appears to be independent of the instrumentation 
used for the measurements which provides circumstantial 
evidence towards the significance of the published data. 
[5] The electromagnetic energy density can be approxi­

mated with a scaling law of the form u( f ) =  u0( f0/f )2 where 
u0 ≈ 10−16 Jm−3Hz−1, f0 = 1 Hz is a scaling constant, and f is 
the frequency of the electromagnetic field (Figure 1). The 
residuals of this approximation determine the uncertainty of 
u0 in the scaling law. For example, if u0 is increased by two 
orders of magnitude and decreased by two orders of mag­
nitude, almost all the observed data are found within the 
bracketed range (Figure 1). This uncertainty allows for 
deviations from the overall scaling law in several parts of 
the energy density. These local deviations may indicate 
specific physical properties of the underlying source pro­
cesses which contribute to the energy density. However, it is 
surprising that these deviations do not exhibit any signifi­
cant persistent kink in the energy density over ∼16 orders of 
magnitude. To the best of our knowledge, the spectral extent 
of this straightforward scaling law is unparalleled and out-

Figure 1. The energy density of electromagnetic fields 
measured at the surface of the Earth (circles) follows a scal­
ing law which extends over ∼16 orders of magnitude from 
∼10−9 Hz to ∼107 Hz (solid line). The energy density can 
be approximated by the scaling law = u0( f0/f )

2 where 
u0 ≈ 10−16 Jm−3Hz−1, f0 = 1 Hz is a scaling constant, and 
f is the frequency of the electromagnetic field. The measured 
energy density exhibits deviations from the scaling law by 
∼±2 orders of magnitude across the entire frequency range 
(dotted lines). 

Figure 2. The magnetic field spectrum from ∼10−9 Hz to 
∼107 Hz (circles) can be approximated by the scaling law 
B = B0( f0/f ) where B0 ≈ 10−11 T/Hz1/2, f0 = 1 Hz is a scaling 
constant, and f is the frequency of the magnetic field (solid 
line). The measured magnetic field exhibits deviations from 
the scaling law by ∼±1 order of magnitude across the entire 
frequency range (dotted lines). The spectrum of an average 
lightning discharge, which is recorded with a radio receiver 
at  a distance of  ∼510 km, exceeds the scaling law by ∼2 
orders of magnitude at frequencies from ∼0.2–400 kHz. 
The spectrum of the lightning discharge is exceeded at 
198 kHz by the narrow maximum from man made long 
wave radio transmissions, i.e., BBC radio 4 in the UK. 
The scaling law is simulated in the frequency range from 
10−7 Hz to 107 Hz with a persistent normal distributed ran­
dom noise process (stars) and exhibits an excellent agree­
ment with the scaling law. 

performs any other scaling law in physics which describes a 
time dependent observable. 
[6] The electromagnetic energy density is converted to the pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

corresponding magnetic field spectrum B( f ) =  �0u f toð Þ  
determine an equivalent scaling law for magnetic field 
measurements which are more commonly used in the Earth 
sciences community. The magnetic field spectrum can be 
approximated with a scaling law of the form B( f ) =  B0( f0/f ) 
where B0 ≈ 10−11 T/Hz1/2, f0 = 1 Hz is a scaling constant, 
and f is the frequency of the electromagnetic field (Figure 2). 
The spatial and temporal variability of the atmospheric 
electromagnetic field results in deviations from this scaling 
law by ∼±1 order of magnitude which determines the uncer­
tainty of B0. 
[7] It is interesting to note that particular source processes 

can exceed the average scaling law by several orders of 
magnitude. For example, the electric field strength of a 
lightning discharge is recorded with a wideband digital radio 
receiver [Fullekrug, 2010] at a distance of ∼510 km. The 
spectrum of the measured electric field strength is converted 
here to a magnetic field spectrum by use of the relation B( f ) =  pffiffiffiffiffiffiffiffiffiffiffiffi 
m0E( f )/Z0 = E( f )/c where Z0 = �0="0 ≈ 120p W is the 
impedance of free space which is inferred from Faraday’s law 
by use of the speed of light c and the dispersion relation for 
electromagnetic waves in vacuum. This spectrum of the 
lightning discharge exceeds the scaling law by ∼2 orders of 
magnitude in the frequency range ∼0.2–400 kHz (Figure 2). 
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The lightning spectrum is exceeded by a narrow maximum at 
198 kHz which results from the long wave radio transmitter 
BBC 4 in the UK. This peak from man made radio trans­
missions exceeds the average scaling law by ∼3 orders of 
magnitude. 

4. Simulation 

[8] The scaling laws for the energy density ∼1/f 2 and the 
magnetic field spectrum ∼1/f indicate the presence of a ∼1/f 2, 
or Brownian, noise power spectrum over a spectral range of 
∼16 orders of magnitude. A 1/f 2 noise power spectrum can be 
simulated with an observable y which is generated by a per­
sistent discrete random process r using an autoregressive 
process of the form 

yiþ1 ¼ yi þ ri ð4Þ 

where the index i indicates a discrete time step with y0 = 0 and 
ri is the realization of a random number from a normal, or 
Gaussian, distribution with zero mean and standard deviation 
sr . A standard deviation of sr = 6 ×10−15 T is used here to 
simulate the scaling law of the magnetic field spectrum in the 
frequency range from 10−7 Hz to 107 Hz (Figure 2). The 
agreement between the scaling law and the simulation is 
excellent. Yet, whilst it is undoubtedly surprising to explain 
the scaling law over a frequency range of ∼14 orders of 
magnitude with one single parameter sr , there are certainly 
many more physical processes which contribute to the 
atmospheric electromagnetic environment. 

5. Discussion 

[9] The energy density of the electromagnetic field can 
roughly be divided into two parts. The lower frequencies 
∼<1 Hz are mainly associated with geomagnetic fields 
whilst the higher frequencies ∼>1 Hz are mainly associated 
with atmospheric electric fields. Geomagnetic field varia­
tions with frequencies ∼<8 × 10−9 Hz are mainly generated 
inside the Earth, whilst geomagnetic field variations from 
∼10−8 –10−3 Hz are generated by ionospheric current sys­
tems and superimposed geomagnetic storms [Olsen, 2007]. 
Rapid magnetic field variations are typically referred to as 
pulsations and occur irregularly in the frequency range from 
∼10−3 –100 Hz [Lanzerotti et al., 1990]. Atmospheric electric 
field fluctuations with frequencies in the range from ∼100 – 
3 ×  107 Hz are mainly associated with lightning discharge 
processes, e.g., lightning continuing current, return strokes, 
and stepped leaders [Rakov and Uman, 2003]. Super­
imposed on these lightning discharge processes are irregu­
larly occurring bursts of electromagnetic radiation from 
near‐Earth space, e.g., hiss, chorus, and auroral kilometric 
radiation [Lanzerotti et al., 1990]. All these source processes 
are superimposed on each other and vary over large ranges 
of temporal and spatial scales. It is therefore surprising that 
the rich diversity of source processes produces, at least on 
average, a scaling law over a frequency range of ∼16 orders 
of magnitude. In the search for the smallest possible 
denominator of all these source processes, two common 
characteristics may be relevant. The first characteristic is the 
transient nature of individual events. This transient nature is 
often characterized by a sudden rise and a slow decay which 
is, for example, apparent in geomagnetic storms and light­
ning discharges [Füllekrug, 2006]. The second characteristic 

is the relationship between the recurrence time and the 
intensity of an event, e.g., strong events are usually more rare 
and weak events usually occur more often [e.g., Chrissan and 
Fraser‐Smith, 2003]. Whether these recurring transient 
events are sufficient to explain the observed scaling law 
remains to be explored in future studies. 
[10] It is interesting to note that the commonly used word 

‘event’ results from a reductionist view on electromagnetic 
fields. In this view, an unusual excursion from the normally 
observed, or background, intensity of electromagnetic fields 
is the subject of study which involves theoretical modeling 
from first principles, e.g., Maxwell’s equations, and subse­
quent comparison with the measurements. In this context, 
the word ‘unusual’ normally means a large intensity mea­
sured against a background intensity, but it rarely means a 
small intensity measured against a background intensity. As 
a result, scientific efforts are often directed towards waiting 
for unusually intense events rather than studying the com­
monly occurring background intensity. 
[11] In a more holistic view on electromagnetic fields, the 

scientific effort is directed towards the collection and integra­
tion of measurements across scientific subject boundaries to 
describe the background intensity. This approach remains a 
challenge to date which often requires an acute comparison of 
electromagnetic measurements with reference data during 
interdisciplinary research. For example, intense positive 
lightning discharges in the troposphere can cause transient 
luminous events above thunderclouds [Boccippio et al., 1995],  
which are referred to as sprites [Neubert et al., 2008;  Füllekrug 
et al., 2006; Rakov and Uman, 2003;  Sentman et al., 1995; 
Franz et al., 1990]. Spectacular sprites in the mesosphere can 
radiate electromagnetic waves [Pasko et al., 1998; Cummer 
et al., 1998] and occasionally cause pulsations in the iono­
sphere [Füllekrug et al., 1998; Fukunishi et al., 1997]. This 
chain of causal processes can span a frequency range from 
∼0.2 Hz up to ∼3 ×  107 Hz and it may even extend down to 
∼10−5 Hz if the time scale of thunderstorm generation and its 
possible impact on geomagnetic pulsations is considered 
[Fraser‐Smith, 1993; Armstrong, 1987; Fraser‐Smith and 
Roxburgh, 1969]. However, the critical question towards 
explaining the scaling law with such a complex chain of causal 
physical processes is whether or not the same processes con­
tribute to the scaling law if they are not unusually intense. For 
example, intense positive lightning discharges represent only 
∼0.1 % of all lightning discharges [Füllekrug, 2006] and they 
can therefore not contribute significantly to the observed 
scaling law. But if all commonly occurring intra‐cloud light­
ning discharges in the troposphere would generate some 
photons in the mesosphere, i.e., transient luminous events 
which are currently too weak to be detected [Pasko, 2010], and 
weak geomagnetic pulsations in the ionosphere, this exem­
plary chain of causal physical processes may be more impor­
tant than currently thought. 
[12] It remains surprising that the deviations from the scaling 

law only extend over some minor fraction of the spectrum and 
that these deviations do not persist over the remainder of the 
spectrum. As a result, no persistent kink seems to be present in 
the electromagnetic spectrum, whereas the cosmic ray flux 
[Nagano and Watson, 2000] and turbulence [Larsen and 
Kelley, 1982] in the Earth’s atmosphere exhibit significant 
kinks. This means that the superposition of numerous elec­
tromagnetic source processes varying on all temporal and 
spatial scales can not exceed some critical limitation. It is 
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therefore possible that the source processes are embedded in a 
self‐organized structure of random states. It is speculated that 
this critical limitation may be needed to stabilize the Earth’s 
atmospheric electromagnetic environment, similar to the lim­
itation imposed by self‐organized criticality in dynamic sys­
tems which is used to explain 1/f noise power spectra [Bak 
et al., 1987]. 
[13] Another line of thought is to consider space time rela­

tionships of electromagnetic waves and their physical sources. 
For example, the dispersion relations for magnetohydrody­
namic waves [Ryutov, 2007; Lanzerotti, 1974]  and Earth
ionosphere cavity resonances [Füllekrug, 2004; Kroll, 1971]  
have been used to support the standard model [Nakamura 
et al., 2010] by placing an upper limit on the photon rest 
mass, based on an original assessment of the geomagnetic field 
[Fischbach et al., 1994;  Goldhaber and Nieto, 1971, 1968; 
Schrödinger, 1943].  Maxwell’s equations are thought to be 
scale invariant, similar to other physical laws, e.g., Euler 
equations [Kelley et al., 2011], such that the amplitudes of 
electromagnetic fields may scale according to the space time 
relationship of their physical sources. However, we are cur­
rently unaware of any corresponding theoretical conception 
which could explain the observed scaling law. 

6. Application 

[14] The observed scaling law has two important applica­
tions of scientific interest. The first application is to use the 
scaling law as a null hypothesis such that deviations from the 
scaling law of the Earth’s electromagnetic field become of 
primary interest. The second application is to assist the design 
and construction of future generations of measurement 
equipment towards recording environmental electromagnetic 
fields over large frequency ranges. The ∼1/f dependence of 
the magnetic field spectrum suggests the pursuit of two 
possible strategies. The first strategy is to record differential 
electromagnetic fields and the second strategy is to build 
sensors with a response function which is proportional to 
frequency ∼f. The recording of differential fields corresponds 
to calculating the time derivative of the spectrum which 
results in a multiplication of the spectrum with the frequency 
and thereby compensates for the ∼1/f dependence of the 
scaling law. Sensors with a ∼f response compensate for the 
∼1/f dependence of the scaling law prior to the actual mea­
surement of the electromagnetic field. In either case, the 
dynamic range of the recording equipment is of minor con­
cern. As natural and man‐made deviations from the intensity 
specified by the scaling law may span ∼±3, i.e., a total of ∼6, 
orders of magnitude, the currently emerging digital technol­
ogy with 24‐bit dynamic range recording capability appears 
to be sufficient for extremely broadband recordings. Whether 
it will be possible to build sensors with a response function ∼f 
over a frequency range of ∼16 orders of magnitude remains to 
be seen. The key obstacle towards the development of future 
technology to record electromagnetic fields over a frequency 
range of ∼16 orders of magnitude is the frequency dependent 
operation of electronic components, e.g., resistors, capacitors, 
transistors, and low‐noise amplifiers. 

7. Summary 

[15] The frequency dependence of the Earth’s atmospheric 
electromagnetic field is determined by compiling published 

magnetic and electric field measurements over a frequency 
range of ∼16 orders of magnitude. The resulting spectra 
exhibit a ∼1/f 2, or Brownian, scaling law for the energy 
density and a ∼1/f dependence for the magnetic field spec­
trum. The scaling law may be explained with persistent 
random noise, recurring transient events, or the superposition 
of numerous transient source processes which contribute to 
the complexity of the Earth’s atmospheric electromagnetic 
field. We favor the latter interpretation, even though the 
simulation of the scaling law with a persistent random noise 
model exhibits an excellent agreement. It is speculated that an 
as yet unknown mechanism remains to be discovered which 
imposes a critical limitation on naturally occurring electro­
magnetic fields and possibly stabilizes the Earth’s atmo­
spheric electromagnetic environment. 
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