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Abstract

When developing sustainable building fabric technologies, it is essential that the energy use
and CO, burden arising from manufacture does not outweigh the respective in-use savings.
This study investigates this paradigm by carrying out a streamlined life cycle assessment
(LCA) of silica aerogel. This unique, nanoporous translucent insulation material has the lowest
thermal conductivity of any solid, retaining up to four times as much heat as conventional
insulation, whilst being highly transparent to light and solar radiation. Monolithic silica aerogel
has been cited as the ‘holy grail’ of future glazing technology. Alternatively, translucent
granular aerogel is now being produced on a commercial scale. In each case, many solvents are
used in production, often accompanied by intensive drying processes, which may consume
large amounts of energy and CO,. To date, there has been no peer-reviewed LCA of this
material conducted to the ISO 14000 standard.

Primary data for this ‘cradle-to-factory gate’ LCA is collected for silica aerogel made by low
and high temperature supercritical drying. In both cases, the mass of raw materials and
electricity usage for each process is monitored to determine the total energy use and CO,
burden. Findings are compared against the predicted operational savings arising from
retrofitting translucent silica aerogel to a single glazed window to upgrade its thermal
performance. Results should be treated as a conservative estimate as the aerogel is produced in
a laboratory, which has not been developed for mass manufacture or refined to reduce its
environmental impact. Furthermore, the samples are small and assumptions to upscale the
manufacturing volume occur without major changes to production steps or equipment used.
Despite this, parity between the CO, burden and CO; savings is achieved in less than 2 years,
indicating that silica aerogel can provide a measurable environmental benefit.
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1.0 Introduction

This study forms part of a systematic approach to improving UK building fabrics while
considering both embodied impacts and operational savings - a critical balance that is typically
ignored. A number of innovative insulation technologies have been developed to satisfy the
growing demand for energy efficient buildings. Finding a balance between thickness, cost and
in-situ performance is essential, particularly for measures that rely on sustaining a vacuum.
Above all, however, technologies must provide a measurable benefit over their lifecycle i.e. the
in-use savings must not be outweighed by the respective energy and CO, burden arising from
manufacture, transport and end-of-life processing. This study investigates this paradigm by
carrying out a streamlined ‘cradle-to-factory gate’ life cycle assessment (LCA) of transparent
silica aerogel following the environmental standard BS EN ISO 14044:2006 [1]. Silica aerogel
is an emerging super insulation material, rapidly gaining interest within the new build and
refurbishment markets. Despite many solvents being used in silica aerogel production, often
accompanied by intensive drying processes, which may consume large amounts of energy and
CO,, there has been no peer-reviewed LCA of this material conducted to date.

1.1 What is Aerogel?

Aerogels are synthetic low-density materials with unique physical properties [2]. They are
formed by removing the liquid from a gel under special drying conditions, bypassing the
shrinkage and cracking experienced during ambient evaporation [3]. This creates a solid three-
dimensional nanoporous structure, containing 80-99.8% air [4,5]. Due to their high porosity,
aerogels exhibit the lowest thermal conductivity of any solid, whilst being transparent to light
and solar radiation [6,7]. Aerogels are often cited as a promising material for translucent
insulation applications [2-7]. The material can be produced in monolithic or granular form.
Commercial products for the building sector include cavity insulation, glazing units and
cladding systems containing granular aerogel, along with translucent and opaque insulation
boards, blankets and tensile roof membranes embedded with aerogel particles. Alternatively,
transparent monolithic silica aerogel has been cited as the ‘holy grail” of future glazing
technology, with potential to achieve U-values as low as 0.1 W/m?.K [8]. Current research and
development into monolithic glazing is limited by the high cost of production, long processing
time and difficulty creating large uniform samples with complete transparency [9].

1.2 How is it Made?

Aerogels were first reported by Samuel Stephens Kistler in the early 1930’s [10]. Kistler aimed
to test the hypothesis that “liquid inside a jelly can be replaced by a gas with little or no
shrinkage”.

Kistler’s three-step experiment began by preparing a porous ‘sol-gel’ (a rigid body containing
continuous solid and liquid networks) using sodium silicate and hydrochloric acid. This
‘hydrogel” (where the liquid in the pores is water) was then soaked in alcohol several times
over a 1-2 week period to strengthen the gel, causing the water inside the pores to be displaced.
The resultant ‘alcogel’ (pores containing alcohol) was dried inside an autoclave using
supercritical drying. The temperature and pressure of the autoclave were simultaneously raised
to 270 °C and 100 bar, causing the alcohol to become supercritical (i.e. it begins to vaporise
without completely changing phase due to the high pressure). As a result, the alcohol gains
properties of both a liquid and a gas, eliminating surface tension inside the gel and enabling the
fluid inside the pores to drain out without collapsing the solid structure. The newly formed
‘aerogel’ (pores containing air), could be safely handled when cool. The material possessed a
low density and was opalescent. Kistler stated that numerous other materials had been
successfully prepared, and that aerogels could be made from practically any material.
Nowadays, silica aerogel is still the best-known and most widely prepared aerogel [11].



Up until mid 1980, risks associated with supercritical drying of alcohol were major obstacles to
high volume aerogel production [12]. However, improvements in the manufacturing processes
have yielded more cost effective aerogels that are economic to produce on a commercial scale
[2,6,13,14]. The process has three steps: gel preparation, ageing and drying. Drying takes place
through either high temperature supercritical drying (HTSCD), low temperature supercritical
drying (LTSCD) or ambient pressure drying.

The most common technique for gel preparation involves reacting a silicon precursor, such as
sodium silicate (“water-glass”), tetramethoxysilane (TMOS) or tetracthoxysilane (TEOS) with
water in a solvent such as ethanol or methanol at ambient temperatures and pressures [11],
forming silica nanoparticles. Gelation occurs when enough silica nanoparticles agglomerate to
form a continuous network spanning throughout the entire volume of sol. Once the gel is
prepared, it must be aged through a solvent exchange process to strengthen the gel network and
prevent cracking during drying. This is achieved by soaking the gel within a pure organic
solvent, usually methanol, ethanol or acetone for at least 24 hours. The solvent is replaced each
time equilibrium in concentration is reached — typically, this step is repeated 3-4 times.

High temperature supercritical drying was originally used by Kistler to dry aerogel. It relies
upon heating and pressurising the wet gel to ~240 °C and ~100 bar, i.e. the conditions that
transform the alcohol within the gel into a supercritical fluid. The process can be dangerous if
proper safety precautions are not taken. In 1984, the Airglass laboratory in Sweden was
destroyed due to an autoclave leaking out 1000 litres of explosive methanol [11].

Low temperature supercritical drying was developed in the mid 1980s [15]. Here, the solvent
inside the wet gel is replaced with liquid CO; prior to drying, as it possesses a critical point
closer to ambient temperature. Drying therefore takes place at ~40 °C and ~100 bar, making the
process more viable for commercial production. To increase the efficiency of production,
supercritical CO; can be substituted instead of liquid CO,. CO; recycling can also occur [14].

Ambient pressure drying, also called ‘subcritical drying” emerged in the mid 1990s [6,13]. This
process involves chemically modifying the surface of a wet-gel so that it becomes hydrophobic
prior to drying. When dried ambiently, the gel partially collapses but re-expand to 85% of its
original volume, since the internal network does not stick together. Gels dried by ambient
pressure drying typically have 50-80% denser porosities than supercritically dried aerogels,
thus are less transparent but mechanically stronger [11].

1.3  Whatis its Environmental Impact?

According to Lawrence Berkeley Laboratory, the production and use of silica aerogels is
environmentally benign, the product is non-toxic, non-flammable, and it can be easily recycled
[16]. Conversely, according to manufacturing studies, silica aerogel requires reasonably toxic
chemicals, diffusion-controlled processes that consume a lot of solvent, and depending on the
drying process, high-pressure vessels running for a long time [4,11].

Two major manufactures of silica aerogel are Cabot Corporation and Aspen Aerogels. Cabot
produces translucent granules and insulation blankets via ambient pressure drying. Aspen
produces opaque insulation boards and blankets embedded with silica aerogel particles via
LTSCD. In 2008, both companies received a ‘Silver’ Cradle-to-Cradle environmental award
from McDonough Braungart Design Chemistry (MBDC) for their aerogel production. MBDC
claim to evaluate a products complete formulation, energy use, water use and recycling
potential when assessing environmental impacts [ 17]. Unfortunately, data from these studies is
confidential, making it difficult to assess the rigour and validity of the results. Moreover, as the



MBDC Cradle-to-Cradle programme does not undergo third party certification, it does not
comply with the ISO standards for life cycle assessment [18].

At present, the only data on embodied energy and CO; of silica acrogel comes from Aspen
Aerogels opaque insulation blankets. According to the manufacturers, its production energy is
53.9 MJ/kg and its CO, burden is 4.3 kgCO,/kg, excluding CO, used for supercritical
extraction as it is recovered from external industrial processes. Compared to conventional
insulation, these values are reasonably high. According to the University of Bath’s Inventory of
Carbon and Energy [19], the production energy and CO; burden in organic insulation ranges
from 3.5-26.8 MJ/kg and 0.2-1.7 kgCO,/kg respectively. Contrarily, mineral insulation ranges
from 16.6-38.8 MJ/kg and 1.1-1.4 kgCO,/kg respectively. Oil derived insulation ranges from
70-98.3 MJ/kg and 2.5-3 kgCO,/kg. Note that available data for double-glazing indicates that
production energy and CO, burden can be much higher at 360-5470 MJ/m” and 18-279
kgCO,/m?, depending on the frame type and gas fill. Nonetheless, it is interesting that Aspen
do not disclose the amount of CO; required during supercritical extraction of their aerogel.
According to the manufacturers, this CO; is a recycled waste product recovered from ethanol
and ammonia production plants. Evidently, the actual amount of CO; used is unclear, thus
highlighting a need for further investigation.

2.0 Streamlined LCA

Life cycle assessment (LCA) is a process by which the environmental impacts associated with
a product can be quantified over its lifecycle from ‘cradle-to-grave’. To date there have been no
peer-reviewed life cycle assessments of silica aerogel meeting the ISO 14000 standards. This
study addresses this issue by conducting a streamlined LCA following BS EN ISO 14044:2006.

2.1 Goal

The aim of this study is to establish the CO, and energy costs associated with two different
methods for manufacturing silica aerogel. Data will be compared against potential CO, and
energy savings when retrofitting aerogel to building fabrics in-situ. The purpose of this
investigation is to identify whether the production costs of silica aerogel can be recovered by its
operational savings within a realistic product lifespan. The study will also serve to provide a
unique comparison between two (of the three) methods of aerogel production.

The intended audience for this study includes environmental engineers, architects, materials
scientists and product designers. Results are intended to be publicly available. It is anticipated
that results may be compared against the life cycle impacts of conventional and emerging
building fabric technologies. All comparisons must recognise that the results of this study are
based on a laboratory experiment, scaled-up to produce 1 m® volumes. Scaling assumptions
must be treated as conservative estimates for commercial production due to the lack of
information from industry concerning the actual economies and efficiencies of scale associated
with mass production.

2.2 Scope

This study is a ‘cradle-to-factory gate’ assessment. Primary data is collected for two methods of
aerogel production. Secondary data is used to account for the energy use and CO; burden from
extracting raw materials, as well as the grid intensity of electricity. The impact of transport (of
raw materials / finished products) and end of life processing (e.g. product re-use, recycling,
landfill etc) are omitted from this study. However, their significance is discussed.

At the University of Bath, aerogels are produced using both low and high temperature
supercritical drying for research into optical applications. We made use of their experience in
aerogel production to conduct two studies, monitoring the CO, and energy usage associated



with manufacturing small samples of silica aerogel using both drying techniques. It should be
noted that there is a third method for aerogel production, via ambient pressure drying.
Currently the group does not produce aerogels in this way.

The results of this study should be treated as a conservative estimate for the production cost of
aerogel. The processes developed at the University of Bath have not been developed or refined
for mass manufacture. As such, no recycling of solvents or CO; occurs. Furthermore, just 40ml
of aerogel is produced during each production run. The aerogels are solid (not granular) and
have a high optical quality. Scaling assumptions to upscale the manufacturing volume, without
major changes to production steps or equipment must be treated with caution.

The functional unit for this investigation is the energy use (kWh) and CO, burden (kgCO5)
required to produce 1 m’® of aerogel. Results are compared against the operational energy and
CO, savings arising from retrofitting a 1cm thick, 1 m? twin-wall polycarbonate panel filled
with aerogel granules to a single glazed window. The predicted performance of this product
over a 15 year lifespan is estimated based upon the results of in-situ testing, carried out by the
corresponding author prior to this streamlined LCA [20].

3.0 Data Collection

Data collection is split across three stages: Gel preparation, ageing and drying. Gel preparation
took place during April 2010. Following this, gels were aged in solvent for 3 weeks, and then
supercritically dried. Figure 1 displays the system boundary for both methods of aerogel
manufacture studied. Monitoring procedures and omitted factors are outlined.
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[Figure 1: System boundary and monitoring strategy for manufacturing study]

3.1 Gel preparation

The first stage of aerogel production involved mixing the chemicals together at the correct
proportions, inside a ventilated fume cupboard. Approximately 40 ml of solution was prepared
for both drying methods. The HTSCD samples were prepared in 4 glass test tubes, and the
LTSCD samples were prepared in 18 smaller plastic cuvettes. Approximately 10-12 minutes
after the raw ingredients were mixed the samples became rigid alcogels. The mass of all raw
ingredients was measured using digital scales and the electricity use of the fume cupboard was
logged using an ‘Eco-Eye Plug-in Energy Monitor’, displaying the rate of energy use (W) and
the total energy use (kWh). Table 1 and Table 2 show the respective data collection inventories
for the HTSCD and LTSCD samples. Note that gel preparation time, and consequent electricity
usage was higher than normal, due to time spent weighing each ingredient on the digital scales.

Raw materials used in Volume Mass Material
_gel preparation (HTSCD) (ml) (2) Supplier
Tetramethoxysilane 14.4 14.64 Fisher
Methyltrimethoxysilane 1.6 1.36 Alfa Aesar
Methanol 16 12.52 Fisher
Analytical reagent grade water 8 8.00 Fisher
Ammonia 2M 0.016 0.014 Sigma Aldrich

Running  Total Equipment
time (h) kWh supplier
Fan cupboard 00:43 0.063 Astec

Electrical equipment:

[Table 1: Data collection inventory for HTSCD gel preparation]

Raw materials used in Volume Mass Material
_gel preparation (LTSCD) (ml) (g) Supplier
Tetramethoxysilane 16.2 16.56 Fisher
Methanol 16.2 12.96 Fisher
Analytical reagent grade water 8.1 8.10 Fisher
Ammonia 2M 0.072 0.062 Sigma Aldrich

Running  Total Equipment
time (h) kWh supplier
Fan cupboard 01:20 0.112 Astec

Electrical equipment:

[Table 2: Data collection inventory for LTSCD gel preparation]

3.2 Ageing

After gel preparation, 2 ml of methanol was added to each sample to prevent ambient drying
and they were covered with Parafilm. Over the next 3 weeks, the gels were fully immersed in
several solvent baths within the sealed plastic containers. During this step, all unreacted water
diffused out from the gel, and the network had time to strengthen. In total, the HTSCD samples
went through two solvent exchanges during the ageing process. The LTSCD samples went
through five, where the fourth included a surface modification to make the gel hydrophobic.
All saturated aging solvents were disposed into waste containers sent to the universities waste
management facility. Table 3 and Table 4 display the respective data collection inventories.

Raw materials used in Volume Mass Material
_ageing (HTSCD) (ml) (2) Supplier
Methanol - covering samples 8 6.33 Fisher
Methanol - Ist exchange 125 98.88 Fisher
Methanol - 2nd exchange 125 98.88 Fisher

Running  Total Equipment
time (h) kWh supplier
Fan cupboard 00:10 0.014 Astec

Electrical equipment:

[Table 3: Data collection inventory for HTSCD ageing process]



Raw materials used in Volume Mass Material

_ageing (LTSCD) (ml) (2) Supplier
Methanol - covering samples 36 28.48 Fisher
Methanol - st exchange 250 197.75  Fisher
Methanol - 2nd exchange 250 197.75  Fisher
Methanol - 3rd exchange 200 158.20  Fisher
Hexamethyldisilazane - 4th ex 40 30.96 Sigma Aldrich
Methanol - 4th exchange 160 126.56  Fisher
Methanol - 5th exchange 200 158.20  Fisher

Running  Total Equipment
time (h) kWh supplier
Fan cupboard 00:35 0.049 Astec

Electrical equipment:

[Table 4: Data collection inventory for LTSCD ageing process]

33 High Temperature Supercritical Drying

Figure 2 displays the equipment used and monitored during HTSCD. The process utilises an
autoclave with a 1-litre capacity, connected to an electric heater and temperature sensor. A
nitrogen bottle is connected prior to drying to create an inert atmosphere within the autoclave
and check that the seals are capable of withstanding supercritical pressures. During
supercritical drying, the temperature is controlled by manually entering set-points on the heater
controller and the pressure is controlled using a needle valve. Excess solvent is drained away
into a container as pressure is released.

HTSCD: @ Nitrogen canister @ Heater controller @ Solvent capture
@ Autoclave @ Temperature reader @ Plug monitors

[Figure 2: Equipment for HTSCD]

To begin, the 4 gel samples (still inside the test tubes) were placed inside the autoclave with
400 ml of methanol. Two steel bars were then inserted to displace some of the unused volume.
The autoclave was then sealed and filled with regulated nitrogen to 100 bar to check the
integrity of the chamber. After approximately 5 minutes, the nitrogen flow was disconnected
and the pressure inside the autoclave was dropped to 10 bar.

The heater was programmed to a set point of 75 °C. Temperatures were raised 25 °C every 10
minutes until reaching 250 °C. Between 95-110 minutes, the set point was gradually increased
to 280 °C. During this time, the pressure was allowed to rise to 100 bar, and then carefully
controlled to stay at this level. At 120 minutes, solvent was manually drained out of the
autoclave causing the pressure to fall. 15 minutes later, the heater set point was reduced to 100
°C and the unit was switched off. The autoclave was then left to cool for 100 minutes, after
which the aerogel could be removed. 95% of waste solvent was recovered and disposed via the
universities waste management facility.



Although the fluid in this process exceeded the critical point of methanol by ~40 °C and ~25
bar, we have noticed that if the pressure and temperature do not reach at least these values, the
aerogel will be cracked and more shrunken. We attribute this to excess water causing a change
in the critical point of the pore fluid, requiring higher temperature and pressure to reach
supercritical conditions.

During the supercritical drying process, two plug-in electricity monitors were used to record
the total kWh of the heater and temperature sensor. The total energy use of the process was
0.895kWh. Table 5 displays the data inventory for the entire HTSCD process. The mass of
nitrogen used was calculated using the formula n=PV/RT. Here n= quantity of nitrogen
consumed (moles), P = Pressure (bar), V = volume (litres), R = universal gas constant (0.0832),
and T = temperature (Kelvin).

Raw materials used in Volume Mass Material
drying (HTSCD) (ml) () Supplier
Methanol 400 316.4 Fisher
Nitrogen (N, at 100 bar, 296K)  ~500 0.057 BOC gases

Running  Total Equipment
time (h) kWh supplier
Heater 02:15 0.882 SciMed
Temperature Sensor 04:00 0.013 RS

Electrical equipment:

[Table 5: Data collection inventory for HTSCD]

3.4  Low Temperature Supercritical Drying

Figure 3 shows the equipment used and monitored during LTSCD. The process utilises a 1-litre
capacity autoclave with a window for viewing supercritical extraction. The autoclave is
connected to a liquid CO; canister, chiller, pipe heater, pump and vessel heater. A backpressure
regulator controls the outflow of CO, and depressurisation rate of the autoclave. The entire
process, including the flow rate of liquid CO», is controlled by a computer.

LTSCD: (4) Temperature sensor Back pressure regulator
@ CO2 canister @ Pipe heater @ Computer & monitor

@ Chiller @ Autoclave Autoclave heater controller
@ Pump @ Pipe heater controller @ Plug monitors

[Figure 3: Equipment for LTSCD]

To begin, the 18 gel samples (removed from the cuvettes) were placed inside the autoclave
filling approximately 5-10% of the usable space. 200ml of methanol was added to prevent the
samples from cracking during the drying process. Next, the autoclave was sealed and liquid
CO; flowed in until in equilibrium with the bottle pressure (~55 bar). Prior to entering the
autoclave, the liquid CO, was chilled to 0 °C. A dual-piston pump increases the CO, pressure
to 100 bar, flowing through a pipe heater at 45 °C into the autoclave.



[Figure 4: Liquid CO; entering autoclave (photos taken at 0-30 minutes into drying)]

Figure 4 shows photographs taken through the window of the autoclave as liquid CO, enters
and submerges the gel. Once supercritical conditions were reached, a vessel heater maintains
the supercritical temperature at 45 °C, for approximately 4 hours. When depressurisation
occurred, the chiller was switched off. As pressure dropped below 50 bar, the pipe heater and
vessel heater were also switched off. Once cooled, the autoclave was opened and the aerogel
could be removed.

Throughout LTSCD, no recycling of CO, occurred. Instead, all excess CO, was trailed through
a pipe out of a nearby window. The total duration of CO, flow was 4 hours, 20 minutes. The
total amount of CO; used, monitored by a computer during the drying process, was 4.538 kg,
split across four main cycles. This value was verified by weighing the bottles using mechanical
scales before and after supercritical drying.

During LTSCD, seven plug-in electricity monitor monitors were used to study the energy use
of each piece of equipment. The total energy use was 3.063 kWh. The chiller (which cooled the
CO, before entering the autoclave) accounted for over half of the total energy use, using

1.629 kWh. The computer with monitor had the second largest energy use accounting for

0.641 kWh. Table 6 displays the data collection inventory for the entire LTSCD process.

Raw materials used in Volume Mass Material
drying (LTSCD) (ml) (2) Supplier
Methanol 200 158.2 Fisher
Carbon dioxide - 4538 BOC gases

Running  Total Equipment

Electrical equipment: time(h) KWh supplier

Chiller 04:30 1.629 Thar

Computer & Monitor 07:00 0.641 Dell

Vessel Heater 05:45 0.206 Syrris & Lenton
Back Pressure Regulator 07:00 0.200 Thar

Pipe Heater 05:45 0.185 Thar & SciMed
Pump 07:00 0.180 Thar
Temperature sensor 07:00 0.022 RS

[Table 6: Data collection inventory for LTSCD]

4.0 The Aerogel

Figure 5 show photographs of the aerogel produced from HTSCD and LTSCD respectively.
Samples have good optical quality and no internal cracks. They can be handled with care, but
are fragile at the edges. Samples appear blue against a dark background and yellow against a
light background. This is due to different wavelengths of light being transmitted, absorbed and
reflected by the nanosized pores due to Rayleigh scattering [3].
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[Figure 5: Aerogel samples produced in the experiment. Top image shows the aerogel produced
by HTSCD. Bottom image shows the aerogel produced by LTSCD.]

To assess the properties of the aerogel samples made in a lab compared to industrially produced
aerogel, scanning electron microscopy (SEM) was used to investigate the general topography
of the LTSCD and HTSCD samples alongside ambiently dried translucent granular aerogel
produced industrially by Cabot Corporation. All samples were fractured prior to investigation.
The industrial granules were fractured by crushing them against the viewing plate. The HTSCD
and LTSCD aerogel samples were fractured by cutting them with a scalpel. All samples were
brittle.

Figure 6 displays low magnification SEM images of the three aerogels showing their fracture
conditions. As shown, the surface of all three samples appeared smooth and it was not possible
to see individual pores or particles, indicating that these features are on a nanoscale. Micro-
cracks and cleavage marks were clearly visible across the surface of each sample where
fracturing occurred. This fracturing characteristic implied that the lab samples should have
similar properties to industrially produced aerogel.

erogel

CD aerog

e

Aerogel granule produced by Cabot




[Figure 6: Scanning electron microscopy showing the surface characteristics of three different
aerogel samples at 500x magnification. The left image shows the HTSCD aerogel. The middle
image shows the LTSCD aerogel. The right image shows ambiently dried translucent granular
aerogel produced industrially by Cabot Corporation].

5.0 Inventory Analysis

Figure 7 displays the production energy and CO, burden associated with making 40 ml of
aerogel via LTSCD and HTSCD. For each raw material and electrical usage, the production
energy and CO, burden was calculated, based upon the following assumptions. The energy and
CO; spent to produce methanol was used to represent the impact of all chemicals. Methanol
accounted for ~96% of all chemicals used in both processes. An energy cost of 47 MJ/kg and
CO; burden of 0.4 kgCO,/kg was used for pure methanol manufacture [21,22]. Note that this
reference for methanol also contains a combustion value of 30 MJ/kg, which was not included
at this stage [22]. The impacts of nitrogen and water use were also disregarded. A carbon factor
0f 0.517 kgCO,/kWh was assumed for grid electricity in the UK [23].
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[Figure 7: Production impact associated with making 40ml aerogel via HTSCD and LTSCD.
Left graph compares production energy. Right graph compares CO, burden]

The total production energy associated with HTSCD was 29.3 MJ/40ml. The total production
energy associated with LTSCD was higher at 62.6 MJ/40ml. Regarding the total CO, burden,
HTSCD was accountable for 0.73 kgCO,/40 ml. LTSCD was higher at 6.64 kgCO,/40 ml. The
methanol used during ageing had the most significant impact on the total production energy.
The CO; consumed during LTSCD had the most significant impact on total CO, burden.

6.0 Impact Assessment

To attain the functional unit, we have considered several ways both laboratory scale processes
could be optimised to create 1 m® (1000 litres) of aerogel without major changes to equipment
or manufacturing steps. These changes are:

Firstly, the maximum batch size during gel preparation could be expanded to 1-litre without
different stirring mechanisms. Secondly, gel preparation time could be reduced to 20 minutes
(as weighing ingredients during data collection prolonged the process). Thirdly, the amount of
solvent used during ageing could be reduced, as the least amount of solvent required for aging
is an identical volume to that of the gel. On this basis, 4 soaks are required for HTSCD and 7
soaks are required for LTSCD to completely remove the water before supercritical drying. This
was calculated from tolerances of 0.16% water for HTSCD and 0.00128% water for LTSCD,
the same water % used to successfully make gels in this study. Finally, we estimate that both 1-
litre autoclaves could be filled with up to 500 ml of gel without changing the equipment,
making drying 12.5 times more efficient.

Applying each change still means 1000 batches of gel must be prepared and aged, then

supercritically dried over 2000 cycles, to produce 1 m® of aerogel. Nonetheless, the production
energy and CO; burden arising from these scaled batches is shown in Figure 8.
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[Figure 8: Scaled production impact for making 1m’ aerogel via HTSCD and LTSCD. Left
graph compares production energy. Right graph compares CO, burden]

7.0 Interpretation

Prior to this investigation, in-situ testing found that retrofitting a 1 cm thick, 1 m?® twin-wall
polycarbonate panel filled with aerogel granules to single glazing could reduce heat loss by
80% [20]. If adapted into removable secondary glazing, for example, fitted permanently from
Ist October — 31st May in a gas heated home in London, UK, then annual energy savings of
approximately 400 kWh/m?/year are predicted, equivalent to 1440 MJ/m*/year and 80
kgCO,/m?/year (assuming a boiler efficiency of 84%, a gas carbon factor of 0.198 kgCO,/kWh
[23], and that the house is heated to 21 °C all year round with an 18 °C night-time set back).
Taking a wall thickness of 0.5 mm, approximately 0.008 m*/m? of granular aerogel was
required to fill the twin-wall polycarbonate panel. Figure 9 displays the predicted energy and
CO, production cost for these production runs. Values are compared against the material’s
estimated operational savings over a 15-year product lifespan.
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[Figure 9: Production costs of aerogel vs. in-use savings over product lifespan. Left graph
compares production energy. Right graph compares CO, burden]

Results show that aerogel can provide a positive energy and CO, contribution within 0.3-1.9
years. Aerogel produced by HTSCD can recover its production energy within 1.3 years and its
CO; burden within 0.3 years. Contrarily, aerogel produced by LTSCD can recover its
production energy within 1.9 years and its CO, burden within 1.5 years.

Two factors omitted in this comparison were transport (of raw materials / finished products)
and the impact of end of life processing (e.g. product re-use, recycling, landfill etc). Transport
can be complicated to assess since it is unclear where a system boundary should be drawn in a
global economy. A full sensitivity analysis should consider the type of vehicle, transport
distance and loading etc. Contrarily, end of life processing can be complicated to assess since it
is uncertain what might happen to products at the end of their usable lifespan. Presumably,
aerogel would just be crushed and disposed of in the same way as sand or rocks, since the
material consists of amorphous silica, which is not carcinogenic. Conversely, provided the
aerogel has not been contaminated during its incorporation into a building, the thermal and
optical properties are not expected to degrade and the material can be re-used again, resulting
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in further operational savings. According to the Cambridge Eco Selector (a comprehensive
materials selection tool developed by Cambridge University), transporting 1 kg of insulation
100 km by ship and 300 km using a 32 ton truck accounts for just 0.15 MJ and landfill accounts
for 0.2 MJ. As such, these factors are not expected to have a significant impact on the
interpretation of results.

8.0  Limitations

A significant factor affecting the accuracy of this study is the differences between laboratory
and industrial scale aerogel manufacture. Currently, scaling assumptions used to produce a

1 m® volume of aerogel, do not accurately represent the energy use and CO, burden that would
result from producing this volume industrially. This issue is difficult to resolve, due to the lack
of information from industry concerning the actual economies and efficiencies of scale
associated with mass production of aerogel. As such, the interpretation of these results should
be treated as conservative estimates, used to provide judgement as to whether silica aerogel is a
good environmental technology or not. Primary sources of discrepancy are given below:

The laboratory process was scaled with no major changes to equipment or production steps
The maximum batch size for gel preparation and drying was restricted to 1 litre and 0.5 litres
respectively. This meant 1000 batches of gel would have to be separately prepared and dried
over 2000 cycles to produce 1 m® of acrogel. This is unrealistic in the context of commercial
production. Larger batch sizes or continuous production would result in far greater efficiencies.

No recycling of CO; occurred

In the laboratory study, 4.5 kg of CO, was used to dry 40 ml of aerogel using LTSCD. This
mass was directly scaled by 2000 times to produce 1 m® of aerogel. This scaling factor could be
eliminated if CO, recycling had occurred. According to Aspen Aerogels, all CO; is recycled at
their production facility.

No recycling or energy recovery from solvents occurred

The energy used to produce methanol was taken as 47 MJ/kg. The material has a combustion
value of 30 MJ/kg, which was not included in the impact assessment. When producing aerogel
on a mass scale, it can be assumed that solvents would be recycled/re-used or burnt for energy
recovery. If recycled, then less methanol would need to be used. If the energy were recovered,
this would result in the life cycle energy use in producing methanol being reduced to 17 MJ/kg.

The aerogels were solid, crack free and possessed high optical quality

Scaling assumptions predicted that 4-7 solvent exchanges were required to reproduce the high
quality aerogel from the laboratory study. These exchanges aimed to purify the gels and
completely remove the water to prevent cracking. Manufacturing granules with lower optical
quality could mean that fewer solvent exchanges are required, and less control is needed to
prevent cracking. Additionally, thinner granules require less time in the supercritical drying
equipment as the time taken to remove the solvent scales with the square of the thickness.

Electrical equipment could be more efficient

The chiller used the largest amount of electricity during LTSCD. This unit was large and not
been appropriately sized for its function. In industry, issues such as this would be corrected for
cost savings, resulting in reductions in overall energy and CO, usage.

9.0 Industrial Economies of Scale

If we compare the results generated in this experiment to the corresponding benchmarks for

Aspen Aerogel’s Spaceloft® insulation, we find that our production energy and CO; burden,
per m>, is 28-42x and 4.4-23x larger, respectively, than industrial benchmarks. Note that the
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lower value in each of these ranges represents the magnitude of difference for HTSCD aerogel
and the higher value represents LTSCD aerogel. In addition, note that the production energy
and CO, burden, per m”, for Spaceloft® is 8139 MJ/m® and 648 kgCO,/m” respectively,
generated by multiplying the products impacts, per kg, by its nominal density of 151 kg/m’
[24].

In an effort to understand (and bridge the gap) between laboratory scale and industrial scale
manufacture, Figure 10 demonstrates how altering the scaling assumptions can significantly
reduce this discrepancy.
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[Figure 10: Scaling revisions to bridge discrepancies between laboratory and industrial
production. Left graph compares production energy. Right graph compares CO, burden. Bars
are labelled showing the magnitude of difference compared to industry benchmarks]

Firstly, in revision 1, the batch size for gel preparation and drying is increased to 1000 litres
enabling 1m’ of aerogel to be manufactured over one production run (as opposed to preparing
0.5 litres of gel 2000 times, followed by drying 1 litre of gel 1000 times). Additional changes
include scaling up electricity use by 1000, assuming 100kg of CO; is used during drying for
LTSCD and that all methanol usage in both manufacturing methods is combusted for energy
recovery. The culmination of this revision causes the magnitude of difference to reduce to 11-
15x and 3.8-8.1x respectively for production energy and CO; burden.

Going further, revision 2, assumes that two solvent exchanges for HTSCD and three for
LTSCD are carried out and the chiller efficiency in LTSCD is increased by 80%. This causes
the production energy and CO; burden discrepancy to be reduced further to 7.3-7.8x and 2.8-
5.1x respectively.

Finally, revision 3, assumes that all CO, used during drying for LTSCD and all methanol used
in both processes is recovered/recycled (thus eliminating the impact). This causes the
difference to reduce to 1.3-1.7x for the embodied energy and 1.01-3.4x for the embodied CO,.

10.0 Conclusion

The aim of this study was to investigate whether the use of aerogel as an insulation technology
for the building sector provides a measurable environmental benefit over its life cycle. Two
methods of aerogel production have been studied to compile a data inventory for this
assessment. For each, the production energy and CO, burden was quantified, and scaled up to
produce a 1 m® volume of aerogel. The impact was then compared against the operational
savings over 15 years, arising from retrofitting translucent aerogel to single glazing.

Preliminary results indicate that aerogel produced by LTSCD and HTSCD could recover its
production cost within 0.3-1.9 years. These results are well within the predicted lifespan of
building products containing aerogel. The LTSCD method of aerogel manufacture had the
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longest environmental payback. This was largely due to LTSCD having a higher amount of
solvent use during the ageing process and because supercritical drying required more energy
intensive equipment, whilst directly consumed CO,.

The environmental impact of both manufacturing techniques could be reduced if larger batches
were produced, more energy efficient equipment were used and/or if recycling or energy
recovery of solvents took place. The greatest improvements are expected from LTSCD, since
there is an opportunity to recycle the CO, used during drying. If the desire is to produce
granular aerogel, there may also be opportunities to reduce the amount of solvents used, which
account for a significant proportion of the total production energy. It must be emphasised that
the true economies and efficiencies of scale associated with mass production are unclear due to
a lack of information regarding commercial manufacturing of aerogel. Despite these factors,
results have demonstrated that aerogel can provide a measurable benefit over its life cycle.
Furthermore, an analysis of the scaling assumptions has shown that the discrepancies between
laboratory and industrial scale manufacture can be significantly reduced.
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