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Abstract 16 

Decarbonisation of the energy industry and enforcement of strict targets for operational energy 17 

consumption means that non-operational greenhouse gases (GHG) emissions, also known as 18 

embodied carbon (EC), will soon represent the majority of whole life carbon associated with buildings. 19 

EC assessments are often presented as deterministic, single-point values but contain a high degree 20 

of variability which is typically unacknowledged. Common sources of uncertainty are variability, data 21 

gaps, measurement error and epistemic uncertainty such as absence of detailed material 22 

specification (e.g. manufacturer, concrete mix, recycled content etc). Particularly during early design 23 

stages when such information is unconfirmed, average material data is used by necessity. While 24 

some material databases and LCA software can provide ranges of embodied carbon coefficients 25 

(ECC) between some materials and/or the uncertainty within individual manufacturers’ carbon data, 26 

the practice of reporting this is uncommon and has limited practicality for whole building assessments. 27 
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This paper presents a simple procedure that selects the highest impact materials of the EC of an 28 

asset and implements a Monte-Carlo simulation to estimate the uncertainty behind the product stage 29 

EC assessment. Material coefficients of variation (CoV) are obtained from database values where 30 

available, and interpolated values are used in the absence of such data. 31 

A product stage EC assessment of a UK educational building, initially undertaken using single data 32 

points for each material, gave an EC prediction of 525 kgCO2e/m2 GIFA. Two scenarios were then 33 

assessed using our proposed procedure: 1) the full building scope and 2) substructure and 34 

superstructure only. 35 

It was demonstrated that, for scenario one, the EC can range from 50-140% of the original result 36 

when considering the extreme results from the Monte-Carlo simulation. Scenario one (considering the 37 

full building scope) resulted in an average EC value (mean ± CoV) of 526 kgCO2e/m2 GIFA±10.0%. 38 

The second scenario (sub- and super-structure only) resulted in an average EC value of 312 39 

kgCO2e/m2 GIFA ± 11.9% with a full range of 45-155% of the original result.  40 

This paper shows that a straightforward uncertainty analysis procedure can support designers in 41 

understanding the possible range of asset product-stage EC and, therefore, inform construction 42 

product selections at an early stage where detailed information is not known. The variation also gives 43 

a degree of confidence/caution in the average EC prediction in lieu of a single-point result. The 44 

construction product CoV results can be used to set target ECCs on projects to help ensure reliable 45 

low-carbon products are specified. If these target ECCs were met, a minimum of 29% and 33% (excl. 46 

EPD uncertainty) in product stage EC reductions could be achieved. Future work should extend this 47 

method to include additional life cycle assessment (LCA) stages and other uncertainty factors. And, 48 

the method could be applied to comparative life cycle assessments and optioneering exercises, as 49 

well as including more specific construction product variability data.  50 

  51 
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1 Introduction 52 

In order to achieve the Paris Climate agreement targets by 2050, the UK construction sector must 53 

drastically reduce its greenhouse gases (GHG) emissions. The GHG emissions associated with 54 

buildings refer to only 100-year global warming potentials (GWP) measured in kilograms of carbon 55 

dioxide equivalent (kgCO2e) and are divided into operational and embodied impacts. In this paper, 56 

GHG emissions are referred to as “carbon”, as defined in PAS 2080 (BSI, 2016). Decarbonisation of 57 

the energy supply system and the improvement of building energy performance means that 58 

operational carbon are decreasing, and that non-operational carbon (embodied carbon) will soon 59 

represent the majority of whole life carbon associated with buildings. For example, embodied carbon 60 

(EC)  can make up 67% of the whole life carbon of a typical office building (RICS, 2014). This shift in 61 

focus will require assessments to demonstrate whether assets are net zero carbon, as defined by 62 

Twinn et al. (2019), with clear reporting of assumed assessment scope, material data sources, life 63 

cycle assessment (LCA) boundary and reference study period (RICS, 2017).  64 

Each of these estimations introduces variability into EC predictions, but assessment results are often 65 

reported as a single deterministic value without acknowledging the range of uncertainty. Other 66 

sources of uncertainty in life-cycle assessments (LCA) include, but are not limited to, data accuracy, 67 

data gaps unrepresentative data, spatial and temporary variability and epistemic uncertainty 68 

(Björklund, 2002), and can broadly be categorised into three categories - parameter (input data such 69 

as quantities and material carbon data), scenario (normative choices such as future scenarios) and 70 

model (mathematical relationships) (Lloyd and Ries, 2007).Uncertainty can refer to both random and 71 

systematic error (measurement uncertainty) and unknowns caused by limited data and knowledge 72 

(epistemic uncertainty) (Björklund, 2002). Variability can be linked to geographical, environmental and 73 

temporal  differences and can be improved by better sampling but not reduced (Björklund, 2002). In 74 

addition, errors due to simplified calculations (including incomplete scopes and LCA boundaries) and 75 

approximations are also sources of uncertainty. For a comprehensive list of uncertainty types, please 76 

refer to Björklund (2002) and Lloyd and Ries (2007). This paper deals with epistemic uncertainty 77 

where detailed material information (such as specification, manufacturer, performance characteristics) 78 

is unknown and/or unavailable. 79 
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Carbon assessments, in accordance with BS EN 15978:2011 (BSI, 2011) for buildings (currently 80 

under revision) and BS EN 15804:2012+A2:2019 (BSI, 2019) for products, are becoming more 81 

common amongst practitioners.  This has been driven, in part, by the release of industry guidance 82 

documents with a focus on whole life carbon assessments for buildings (RICS, 2017) and the 83 

incorporation of EC into client briefs (UKGBC, 2017). Best practice relies on the comparison against 84 

EC case studies and industry databases to benchmark and verify the performance of projects. 85 

However, this is challenging due to a sparsity in both case studies and sufficiently detailed reporting, 86 

including material data sources. Within the material carbon data, there is also a lack of consistent 87 

environmental product declarations (EPDs), despite the presence of product category rules (PCR). 88 

Consequently, access to data, lack of standardisation and data transparency have been identified as 89 

issues with EC assessments for buildings (Giesekam and Pomponi, 2017), and mean that 90 

quantification of uncertainty is rare.  91 

In order to accurately inform reduction strategies on projects, designers require a good quality 92 

baseline estimate of EC and, ideally, an appreciation of the potential variation in EC results. This is 93 

important both in cases where the design is “fixed” (during or post-tender) and most products and 94 

materials are confirmed but also in early stage estimates where the final material information is 95 

unknown and there are multiple design options (e.g. steel vs. concrete frame). In the latter case, 96 

designers may apply a specific manufacturer EPD upfront before this is confirmed. There is 97 

substantial variation in manufacturing global warming potential (GWP in kgCO2e per functional unit) of 98 

common structural material EPDs, with the ratio of maximum to minimum GWP ranging from 284 - 99 

1044% in different materials and can be due to regional, process and material specification 100 

differences (Pomponi and Moncaster, 2018). In addition, oversight (quality control), inconsistent 101 

functional units, allocation rules and transparency have been identified as key reasons for the lack of 102 

comparability (and, hence, variation) in EPDs (Gelowitz and McArthur, 2017).This can lead to 103 

unrealistic predictions of EC in comparison to the final constructed building and incorporating a range 104 

of EPD data into assessments, by using statistical measures of uncertainty such as coefficient of 105 

variation (CoV), would help to mitigate this.  106 

Product stage EC, emissions associated with raw material extraction and manufacturing, often 107 

represents the majority of EC across multiple building typologies over 60-years (Zhang and Wang, 108 

2016, Pomponi et al., 2018, London Energy Transformation Initiative, 2020). Building elements with 109 
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high in-use replacement rates, such as services and equipment, can make up a significant proportion 110 

of whole life carbon – particularly where long life spans are considered (Sturgis, 2017, Pomponi et al., 111 

2018). However, the structure (sub-structure and superstructure) is often the largest contributor to 112 

product stage EC in new buildings, (Kaethner and Burridge, 2012, London Energy Transformation 113 

Initiative, 2020, Dimoudi and Tompa, 2008, Pomponi et al., 2018). Although, it is worth noting that this 114 

is dependent on the primary structural material as timber structures have significantly lower carbon. 115 

And, as shown above, the variation in structural material embodied carbon coefficients (ECCs) is 116 

large.  117 

Structural design choices, such as span length, main structural material, flooring solution etc, can 118 

have a large impact on EC (D'Amico and Pomponi, 2020, Dunant et al., 2021). Therefore, highly 119 

variable comparative structural LCA studies could result in differing conclusions and, consequently, 120 

recommendations on projects. In addition, the material quantities during early stages can be uncertain 121 

and reinforcement rates, connection allowances are used prior to detailed design. ECC and mass 122 

parameter variation have been incorporated into parametric tools for use in early stage steel frame 123 

design (D’Amico and Pomponi, 2018). For an 8-storey steel structural frame a CoV of 24.8% was 124 

found when used as part of a mass optimisation procedure (D’Amico and Pomponi, 2018). 125 

This paper provides a methodology to quantify uncertainty in EC assessments for product stage 126 

carbon only. Mendoza Beltran et al. (2018) has previously reviewed a broad range of different 127 

statistical analyses that could be applied to compare the relative impacts of multiple LCA 128 

assessments, but this is beyond the scope of this paper. The uncertainty analysis method proposed 129 

here is applied to a single building assessment and builds on the method from Pomponi et al. (2017) 130 

and uses a Monte-Carlo simulation, as the uncertainty propagation method. However, the process 131 

could also be applied to multiple assessments or design options and could be used for comparisons.  132 

1.1 Structure  133 

This paper investigates a UK educational building case study and assesses the potential range of 134 

results in product stage EC based on the uncertainty of ECCs. An uncertainty analysis procedure 135 

using Monte-Carlo simulation was developed and tested on a case study, in two scenarios - 1) full 136 

building and 2) substructure and structural frame. The availability and range of data for the most 137 

impactful materials were gathered from Hammond and Jones (2019) and used for the analysis. The 138 
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paper finishes with a discussion, conclusions and recommendations for future EC assessments and 139 

research outputs.  140 

2 Methodology 141 

This paper describes a methodology, built on techniques from Pomponi et al. (2017), to estimate 142 

parameter uncertainty through simulation, designed to be performed as part of a LCA assessment 143 

using material inventory data from Hammond and Jones (2019) and calculated CoV, Figure 1. 144 

Stochastic modelling is the most common method for uncertainty propagation; therefore, a Monte-145 

Carlo simulation is used in this study (Lloyd and Ries, 2007). Monte-Carlo simulations facilitate 146 

uncertainty analysis for multiple design variables using basic statistical parameters (European 147 

Commission, 2010). The analysis method, described here in further detail, is as follows: 148 

1. Perform LCA assessment for product stage only (Modules A1-A3), in compliance with BSI 149 

(2011).  150 

2. Rank the EC results by material, from highest impact to lowest GWP impact (kgCO2e)  151 

3. Maintaining the rank order, select the materials that contribute 80% of the estimated EC.   152 

4. For each of the selected materials: 153 

a. Extract, where possible, the mean and standard deviation of the material ECC from the 154 

ICE material inventory (Hammond and Jones, 2019). In the absence of material data, 155 

the average CoV of the other materials is used.  156 

b. Using the values above, calculate CoV and plot a corresponding normal distribution.  157 

5. For pragmatic reasons, sum the remaining 20% of the EC to include in the simulation and apply 158 

the average CoV.  159 

6. Perform a Monte-Carlo simulation with N number of iterations. During each iteration, a random 160 

value is selected from each material normal distribution. Sum these to produce a building total 161 

EC. Total EC is summarised as mean, standard deviation, CoV and range.  162 
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 163 

Figure 1 Uncertainty methodology flow chart 164 

 165 

The methodology is software agnostic and simply applies a variation in material (Cradle-to-Gate) EC 166 

parameters. As a result, a distribution of building total EC helps to indicate the range and standard 167 

deviation, as well as providing a total estimated CoV for the assessment. Where a standard deviation 168 

value was unavailable for material parameters, the average CoV of the other materials was used.  169 

The calculated CoVs and Monte-Carlo simulation can be used to inform on materials with the highest 170 
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variability and their impact on the assessment. As a result, the CoVs can be used to inform decisions 171 

on ECC targets for EPDs to achieve carbon reductions.  172 

During each iteration of the MC simulation, a random material ECCs is generated from an assumed 173 

distribution defined by the mean and standard deviation. For this assessment, it is assumed that the 174 

possible range of ECCs of each material are best represented by a normal distribution. However, 175 

additional analysis is conducted applying the methodology using two alternative distributions (uniform 176 

and truncated normal). Normal and triangle distributions are the most common distribution used for 177 

uncertainty studies (Lloyd and Ries, 2007) and is discussed in more detail later in the paper.  178 

The method is used for the EC of LCA Modules A1-3 only (product stage), as per BSI (2011). The 179 

methodology could be applied to assessments of different scope boundaries, if CoVs are available, 180 

such as those applied in Hoxha et al. (2017). The ICE database (Hammond and Jones, 2019), used 181 

in this study, only provides ECCs for product stage. Alternatively, the assessor could choose to collect 182 

EPDs manually and calculate standard deviations and means, or consult with experts to determine 183 

the variability of the material data. However, this can be time-consuming (Pomponi et al., 2017). The 184 

Ecoinvent (Ecoinvent, 2015) and EC3 (Labs, 2019) databases display uncertainty for Cradle-to-Gate 185 

ECCs and could also be used. However, EC3 (Labs, 2019) EPDs are predominantly American 186 

products and therefore the ICE database, consisting of UK EPDs, (Hammond and Jones, 2019) is 187 

deemed better suited to the UK case study building and reflects the uncertainty in UK products.  188 

The treatment of biogenic carbon in the amendment to EN-15804 (2019), which will become 189 

mandatory in 2022, uses the -1/+1 approach - where the carbon uptake occurs during product stage 190 

A1 and the carbon release occurs at the end-of-life (C3) stage. Biogenic GWP will need to be 191 

reported alongside fossil GWP and LULUC (Land Use and Land Change) GWP. It also requires that 192 

materials that contain biogenic carbon must declare modules product (A1-3), end-of-life (C1-4), and D 193 

stage benefits. However, IStructE (2020) suggests reporting carbon sequestration separately when 194 

presenting assessments results to practical completion (A1-A5). This follows the more widely used 195 

0/0 approach that the carbon uptake is equivalent to the carbon release at the end of life and ensures 196 

that product stage carbon is not under reported. As per RICS (2017), biogenic carbon has been 197 

excluded from the product stage results in this study because end-of-life impacts are not considered 198 
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and were beyond the assessment scope. Arehart et al. (2021) and Hoxha et al. (2020) provide a 199 

detailed review of carbon sequestration and storage treatment in LCAs. 200 

The post-processing method was written in Python 3.8.1. In order to check the optimum number of 201 

iterations to generate accurate simulations whilst limiting runtime, a sensitivity check is conducted. 202 

Measures of runtime, central tendency and variance (average and standard deviation) are evaluated 203 

whilst increasing the number of iterations (1,000 to 2,000,000 iterations) in the Monte-Carlo 204 

simulation. Test-retest reliability of the methodology is assessed by performing 25 identical 205 

simulations and calculating CoV, expressed as a percentage of the mean.  206 

2.1 Application 207 

2.1.1 Case Study Building 208 

This section summarises the scope of an EC assessment for an educational building in the UK using 209 

the RICS methodology (RICS, 2017). Material quantities were obtained from the Bill of Quantities. 210 

The project parameters are summarised below in Table 1. The full assessment contained 93 211 

individual materials. The product stage EC represented 77% of the whole life carbon emissions. The 212 

results for the product-stage only are summarised below.  213 

It should be noted that the following case study includes both products (assemblies such as windows 214 

and doors) and raw materials (i.e. concrete and steel). From this point forward, the term “constuction 215 

products” will refer to both products and raw materials.  Concrete 1 represents the concrete used for 216 

substructure only and has a different specification from Concrete 2.  217 

Table 1 Assessment summary, adapted from reporting temple provided in RICS (2017) 218 

Project Type New build 
Assessment 
Objective 

EC only 

Property type Educational 
Size Gross internal floor area (GIFA) – 1760 m2 
Project 
design life 

60-year design life  

Assessment 
scope 

A1-3 (Product stage only) 

Data sources Material quantities - Bill of Quantities  
Carbon data – OneClickLCA (Bionova Ltd, 2020) 
Coefficient of variations (CoV) - ICE database (Hammond and Jones, 2019) and 
OneClickLCA ((Bionova Ltd, 2020) using methodology from EC3 (Labs, 2019)) 
 

 219 
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Building elements included, and excluded, in the analysis are displayed in Table 2. Two scenarios 220 

have been evaluated – superstructure (structural i.e. NRM 2.1-2.4 (RICS, 2017)) plus substructure 221 

and the full building analysis. Due to a lack of data, services other than lifts were excluded from the 222 

study. Services can have a high replacement rate and are often made from high impact materials 223 

therefore the services results will be underestimated across all LCA stages.      224 
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Table 2 Building elements included in assessments (two scenarios) 225 

 Scenario One – 
Full Scope  

Scenario Two – 
Substructure and 
Superstructure (2.1 
– 2.4) Only 

1 Substructure Y Y 
2.1 Frame 
2.2 Upper floors 
2.3 Roof 
2.4 Stairs and Ramps 

Y 
Y 
Y 
Y 

Y 
Y 
Y 
Y 

2.5 External Walls 
2.6 Windows and External Door 

Y 
Y 

N 
N 
 

2.7 Internal Wall and Partitions 
2.8 Doors 

Y 
Y 

N 
N 

3 Finishes Y N 
5 Services (Lifts only)  Y N 

3 Results 226 

3.1 Case Study – Product stage EC Assessment from Bill of Quantities 227 

Table 3 indicates the product stage EC (absolute, kgCO2e, and kgCO2e/m2 GIFA), by building 228 

element, for the full building. The full superstructure (NRM 2.1-2.8) accounts for 54.6% of the product 229 

stage EC with the structural frame (NRM 2.1-2.4) contributing 21.5%. The second largest contributor 230 

is the substructure (38%) and, therefore, the structural frame and substructure account for 59.2% of 231 

the total EC, Figure 2.    232 

Table 3 Product stage EC, scenario one i.e. full scope, by building element. 233 

 Scenario 
One 
(kgCO2e)  

Scenario One -  
(kgCO2e/m2 GIFA) 

Percentage 
contribution to total 
(%) 

1 Substructure 350,000 198 37.7% 
2.1-2.4 Superstructure 
2.1 Frame 
2.2 Upper floors 
2.3 Roof 
2.4 Stairs and Ramps 

200,000 113 21.5% 

2.5-2.6 Superstructure 
2.5 External Walls 
2.6 Windows and External Door 

227,000 128 24.4% 

2.7-2.8 Superstructure 
2.7 Internal Wall and Partitions 
2.8 Doors 

80,800 45.9 8.74% 

3 Finishes 58,800 33.4 6.36% 
5 Services (Lifts only)  11,600 6.59 1.26% 
Total kgCO2e 928,000 525 - 
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 234 

Figure 2 Product stage embodied Carbon (EC), by building element  235 

3.2 Uncertainty Analysis Results 236 

3.2.1 Scenario One – Full Scope  237 

This section presents the result of the post-assessment uncertainty analysis. This includes a 238 

discussion of the initial construction product inputs for the analysis and their contribution to the 239 

building total. The CoV from the extracted values are also shown, followed by the corresponding 240 

results. Fifty thousand iterations were deemed adequate for the analysis with respect to running time, 241 

sensitivity and repeatability, discussed at the end of this section.  242 

The highest impact construction products, contributing up to 80% of total product-stage EC were 243 

identified, as shown in Table 4. Their total and cumulative contribution to the whole building total was 244 

calculated. In rank order, the top five construction products account for 58.0% of the estimated total 245 

building product stage EC. All thirteen construction products listed represent 80.1% of the estimated 246 

total.  247 

Table 4 Product stage embodied carbon (EC) by construction product, ordered by impact. Percentage 248 
contribution to total EC and cumulative percentage contribution also shown. Average and standard deviation 249 
ECC from (Hammond and Jones, 2019) . Calculated coefficient of variation (CoV).  250 

Construction 
product 
description 

Absolute 
EC  
(kgCO2e) 

% Total 
EC 

Cumulative 
EC %  

Average EC 
coefficient 
(kgCO2e/kg) 

Standard 
deviation 
EC 
coefficient 
(kgCO2e/kg) 

Coefficient 
of 
variation , 
CoV (± %) 

Concrete 1 187,000 20.1% 20.1% 0.112 0.028 25.0% 
Red brick 111,000 11.9% 32.0% 0.225 0.045 20.0% 
Concrete 2  99,200 10.7% 42.7% 0.112 0.028 25.0% 
CLT  90,900 9.79% 52.5% 1.20 0.136 11.3% 
Steel 1  50,800 5.48% 58.0% 2.37 0.645 27.2% 
Reinforcement 31,200 3.36% 61.3% 1.09 0.707 64.9% 
Window 1 29,800 3.21% 64.6% N/A N/A N/A 
Structural steel 
profiles 

27,000 2.90% 67.5% 2.10 0.940 44.8% 

38%

22%

24%

9%
6%1% 1 Substructure

2.1-2.4 Superstructure

2.5-2.6 Superstructure

2.7-2.8 Superstructure

3 Finishes

5 Services
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Lime mortar 23,600 2.55% 70.0% 0.737 0.319 43.3% 
Window 2 21,800 2.35% 72.4% N/A N/A N/A 
Glazed door 19,800 2.13% 74.5% N/A N/A N/A 
Glulam 19,600 2.11% 76.6% 0.896 0.361 40.3% 
Insulation 17,400 1.87% 78.5% N/A N/A N/A 
Precast concrete 14,800 1.59% 80.1% 0.152 0.075 49.3% 
All remaining 
items  

184,000 19.9% 100% N/A N/A N/A 

 251 

The CoV for the construction product EC has been calculated using the extracted values from the ICE 252 

database (Hammond and Jones, 2019), Table 4. Using these values, a normal distribution of possible 253 

EC impacts for each construction product was produced. Figure 3 shows a bar chart for each 254 

construction product with CoV error bars indicated. The average of the overall calculated CoV is 35% 255 

and has been applied to all remaining items and construction products where variability information 256 

was not available, i.e. window 1, window 2, glazed door and insulation. 257 

 258 

Figure 3 EC (kgCO2e) for scenario one by construction products 259 

Uncertainty analysis was performed on a simulation of 50,000 iterations for the full building. The 260 

average EC was 930,000 kgCO2e, with a standard deviation of 93,000 kgCO2e (± 10.0%). The results 261 
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varied from 513,000 kgCO2e to 1,300,000 kgCO2e, Figure 4. The vertical axis represents the 262 

probability and the histogram bin size is 10,000 kgCO2e.  263 

264 
Figure 4 Histogram of total product stage EC (kgCO2e) for 50,000 iterations 265 

3.2.2 Scenario Two – Substructure and Superstructure (NRM 2.1-2.4) 266 

The highest impact construction products, for substructure and superstructure, contributing up to 80% 267 

of total product stage EC, are listed in Table 5. The top five construction products represent 82.2% of 268 

the estimated total product stage EC. The average of the calculated construction products CoV is 269 

31% and has been applied to all remaining items in scenario two.  270 

Table 5 Embodied Carbon (EC) by material, ordered by impact, scenario two. Percentage contribution to total EC 271 
and cumulative percentage contribution also shown. Average and standard deviation ECC from (Hammond and 272 
Jones, 2019). Calculated coefficient of variation (CoV) 273 

Construction 
product 
description 

Absolute 
EC 
(kgCO2e) 

% Sup. + 
Sub EC 

Cumulative 
EC %  

Average EC 
coefficient 
(kgCO2e/kg) 

Standard 
deviation 
EC 
coefficient 
(kgCO2e/kg) 

Coefficient 
of 
variation, 
CoV (± %) 

Concrete 1 187,000 33.9% 33.9% 0.112 0.028 25.0% 
Concrete 2  98,000 17.8% 51.7% 0.112 0.028 25.0% 
CLT  87,800 16.0% 67.7% 1.200 0.136 11.3% 



16 
 

Steel 1  50,700 9.20% 76.9% 2.37 0.645 27.2% 
Reinforcement 29,300 5.32% 82.2% 1.09 0.707 64.9% 
All remaining 
items  

97,900 17.8% 100% N/A N/A N/A 

 274 

The CoV for the construction product EC has been calculated using the extracted values from the ICE 275 

database (Hammond and Jones, 2019), Table 5. Using these values, a normal distribution of possible 276 

EC impacts for each construction product was produced. Figure 6 shows a bar chart for each 277 

construction product with CoV errors bar indicated.  278 

 279 

Figure 5 Scenario two (substructure and superstructure NRM 2.1 - 2.4) EC by material, with CoV error bar 280 

Uncertainty analysis was performed on a simulation of 50,000 iterations for the substructure and 281 

superstructure (NRM 2.1-2.4). The average product stage EC was 551,000 kgCO2e, with a standard 282 

deviation of 65,700 kgCO2e (± 11.9%). The results varied from 247,000 kgCO2e to 858,000 kgCO2e.   283 

3.3 Summary 284 

The average, standard deviation, CoV, minimum and maximum for both scenarios have been 285 

summarised, Table 6.  286 

Table 6 Uncertainty analysis results summary, embodied carbon (kgCO2e and kgCO2e/m2 GIFA) 287 

  Average  St. Dev CoV (%) Minimum Maximum 
Scenario One - 
Full Building 

Absolute EC 
(kgCO2e) 930,000 93,000 10.0% 513,000 1,300,000 
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EC (kgCO2e/m2 
GIFA) 526 52.0 10.0% 290 736 

       

       

Scenario Two -
Substructure 
and 
Superstructure 
NRM 2.1-4 

Absolute EC 
(kgCO2e) 551,000 65,700 11.9% 247,000 858,000 

EC (kgCO2e/m2 
GIFA) 312 37.1 11.9% 140 485 

 288 

3.4 Sensitivity check 289 

A sensitivity check was performed by varying the number of iterations in the Monte-Carlo simulation 290 

from 50,000 (used in this study) to between 1,000 and 2,000,000. The time taken for the analysis was 291 

recorded. A Dell Inspiron laptop with 16GB of memory RAM, running on an Intel(R) Core™ i7-292 

4712HQ CPU at 2.30GHz was used for the analysis. As expected, as the number of iterations, N, 293 

increased, the running time increased. The largest analysis, with two million iterations, took 208 294 

seconds to complete. For the purpose of a post-analysis assessment, the running time is less 295 

important. However, if the uncertainty procedure were integrated into an assessment tool this running 296 

time would not allow real-time interaction. Additionally, if fewer construction products were used in the 297 

analysis, similar to scenario two, the running time would reduce as the random value generator for 298 

each construction products at each iteration would need to run fewer times. A 50,000-iteration 299 

simulation took 6 seconds, for scenario one.  300 

The variation between both mean EC and standard deviation decreased as the number of iterations 301 

increased. However, the mean difference for average and standard deviation was ≤1% after 10,000 302 

and 4,000 iterations for scenario one and two, respectively.   303 
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3.4.1 Reliability check  304 

For both scenarios, the reliability of the uncertainty analysis was checked by performing 25 identical 305 

analyses. The average and standard deviation EC varied by less than 1% across the 25 tests with the 306 

same number of iterations. However, the minimum and maximum EC values varied significantly (± 307 

7%) and, therefore, this parameter is less reliable across multiple repetitions. This is because a 308 

normal distribution is assumed for each construction products and therefore the probability of the 309 

minimum and maximum values being selected is low.  310 

3.5 Alternative distributions 311 

The construction products EC average values and standard deviations from ICE database (Hammond 312 

and Jones, 2019) were used to create a normal distribution of possible values for the EC. Multiple 313 

distributions can be used to represent data variability and have been surveyed (Lloyd and Ries, 314 

2007). Random square distribution, a normal distribution (used in this study) and a truncated normal 315 

distribution were tested to see how the total product-stage EC result could vary. The analysis has 316 

been performed for both scenarios for 50,000 iterations. Table 7 and Table 8 provide a summary of 317 

the key parameters for each scenario, respectively. The CoV is equal to the standard deviation 318 

divided by the average.  319 

Table 7 Average, standard deviation, coefficient of variation (CoV), minimum, maximum and range values for 320 
initial EC (kgCO2e) for scenario one (full scope). 321 

Analysis  Average  St. Dev CoV (%) Minimum Maximum 
Normal 930,000 93,000 10.0% 513,000 1,300,000 
Square 929,000 53,600 5.77% 746,000 1,110,000 
Truncated 
normal 

929,000 92,000 9.90% 549,000 1,300,000 

Table 8 Average, standard deviation, coefficient of variation (CoV), minimum, maximum and range values for 322 
initial EC (kgCO2e) for scenario two (superstructure only) 323 

Analysis  Average  St. Dev CoV (%) Minimum Maximum 
Normal 551,000 65,700 11.9% 247,000 858,000 
Square 550,000 38,200 6.94% 423,000 676,000 
Truncated 
normal 

551,000 64,800 11.8% 294,000 823,000 

4 Discussion  324 

This paper set out to provide a methodology to quantify uncertainty in EC assessments for product 325 

stage carbon only. This procedure was tested on two scenarios for an educational case study 326 

building. The aim of the uncertainty analysis is to provide designers with an understanding of possible 327 

CoV in construction product ECCs across the high-impact construction products and determine a 328 



19 
 

confidence level in product stage EC prediction based on variance, particularly in early stage 329 

assessments.  In the context of designers needing to demonstrate that assets are zero carbon, this 330 

also assists in decision making and material selection choices to ensure carbon reductions. The 331 

procedure is intended for use in supporting design decisions and not for demonstrating compliance 332 

with legal requirements  333 

It was identified that 13 construction products in scenario one (full scope) and 5 construction products 334 

in scenario two (substructure and superstructure NRM2.1 – 2.4) represented 80% EC. The number of 335 

construction products used in the assessment directly affects the running time of the simulation, which 336 

may be a consideration for future use. Secondly, the identification of these construction products 337 

helps to prioritise the areas of focus for EC reductions. The average material CoV for the two 338 

scenarios were 35% and 31%, respectively, where reinforcement had the largest individual variability 339 

(64.9%) based on 44 data points. Other construction products, such as steel structural sections 340 

(27.2% CoV from ten data points), are based on fewer data points. The overall EC resulted in a CoV 341 

of ± 10.0% (scenario one) and ±11.9% (scenario two) representing 68.2% solutions from the Monte-342 

Carlo simulations. Sensitivity and repeatability checks were performed and alternative distributions for 343 

material ECCs examined.  344 

Reinforcement exhibited the highest construction products CoV of 64.9%, followed by structural steel 345 

profiles with 44.8%. Despite this high variability, these construction products represent only 6.3% of 346 

the total EC. Concrete, in contrast, has a lower variation (25.0%) but a high quantity and high 347 

contribution (30.8%) to the total EC. As a preliminary step in industry/reporting practice, the lower 348 

CoV bound, which equates to one standard deviation below the ECC average, could be used to 349 

define ECC reduction targets in order to select EPDs. For scenario one, adopting this approach would 350 

result in potential reductions for concrete and reinforcement of 71,500 and 20,000 kgCO2e, 351 

respectively, and a 10.0% reduction in total EC. While it should be encouraged for designers to seek 352 

out construction products with an ECC below these thresholds, it is worth noting that construction 353 

products that fall below one standard deviation in a normal distribution inherently represent only 354 

15.9% of possible solutions, which could represent an increasing challenge when searching for EPDs 355 

for specific projects.  356 
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In the absence of mean and standard deviation values for some construction products (four 357 

construction products in scenario one), interim CoV values have been used. This interim value was 358 

calculated from the average CoV from the other construction products. If the methodology were to be 359 

developed further, data points from other sources could be collected and used to calculate these 360 

values for the missing construction products. In addition, multiple databases could be used to 361 

generate CoVs based on larger datasets.  The average construction product CoV for scenario one 362 

and two were 35% and 31%, respectively, and were used for construction products without variability 363 

data available. This is comparable to the highest possible variation from the EC3 (Labs, 2019) 364 

uncertainty methodology, used for approximating uncertainty in individual EPDs, also used in 365 

OneClickLCA (Bionova Ltd, 2020) which equates to ± 34.6%.  366 

Alternatively, individual EPDs could be collected and compared to determine average values, 367 

standard deviation and, therefore, CoV to be used in the uncertainty analysis. Construction product 368 

data could also be divided into finer categories such as concrete strength, recycled content and 369 

geographical location etc. However, the numbers of data points available in these categories may be 370 

low with high variability. As projects progress and designs become more “fixed”, products and 371 

manufacturer will be selected. The methodology could be adjusted to use specific EPD information for 372 

“confirmed” construction products. Although, as previously discussed, EPDs inherently have a degree 373 

of uncertainty and this should be included in the assessment (Labs, 2019).  374 

Each individual construction product type may have a different range and distribution of EPDs (i.e. 375 

with most EPDs toward the upper or lower extremes of ECC) and, therefore, be more/less accurately 376 

represented by non-normal distributions in a simulation (e.g. left- or right-skewed, log-normal etc). 377 

Depending on the number of data points and variability of data, this could include log-normal 378 

distribution or perhaps only a single data point. As such, a further development of the proposed 379 

uncertainty methodology could account for different distribution by construction product, depending on 380 

its data availability and quality. ICE material database (Hammond and Jones, 2019) materials 381 

generally indicate log-normal or normal distribution for ECC. In this study, the CoV is lower when 382 

assuming a square distribution compared to normal and is unlikely to accurately represent the data 383 

available.  384 
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The uncertainty analysis currently selects the construction products that contribute approximately 385 

80% of the building EC. However, in different real-world scenarios, practitioners may have access to 386 

differing amounts of accurate data, which would shift reliance more or less onto assumed/interim CoV 387 

values employed in this method. In the present study, for scenarios one and two, 13 and 5 388 

construction products were selected, respectively. Theoretically, if an alternative contribution value of 389 

50% were adopted in scenario one then only 5 construction products (rather than 13) would be 390 

included and the other 8 construction products would be added to the remaining items. This would 391 

result in an almost identical average EC (525 vs. 526 kgCO2e/m2 GIFA) and similar CoV (± 11.3% vs. 392 

10.0%) but increased range of results by ~18% (from ± 40 up to 47%). In contrast though, due to the 393 

lower number of construction products being assessed, the method running time would be reduced by 394 

69% which may be of greater value than the increase in uncertainty.  395 

In contrast, it could be argued that the methodology should address more than 80% EC. In the case 396 

study here though, 93 construction products were included in the original assessment and only 13 397 

construction products were required to reach the 80% selection criteria for the uncertainty procedure. 398 

Of these, the lowest contributor in scenario one (Precast concrete) represented only 1.7% of the total 399 

EC in comparison to 20.1% from the largest contributor, concrete 1. In this scenario, any one of the 400 

remaining unselected construction products would represent less than 1.7% of the total EC and their 401 

additional inclusion would result in a greater duration of data collection and analysis run time. Given 402 

that one aim of the methodology was to identify and target high-impact construction products for 403 

carbon reductions while approximating uncertainty for the remaining lower-impact construction 404 

products, selecting construction products up to 80% EC appears to strike a good balance for this case 405 

study but may differ for other projects.  406 

Figure 4 and Figure 6 present the relative construction product carbon results, including CoV errors 407 

bars. These figures can be used to identify the effect of choosing lower-carbon EPDs for different 408 

construction products relative to other products in the project. This could also apply to EC 409 

comparisons of design options or multiple projects. Depending on the construction products, the 410 

standard deviation could be large in the lower impact construction products and, therefore, the 411 

analysis could be under-predicting the “all remaining items” carbon variation. Alternative analysis 412 

could be undertaken such that construction products are investigated, and ranked, by weight as well 413 

as GWP impact.  414 
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This study has a number of limitations to consider. Product stage (cradle to gate) assessments have 415 

been shown to miss up to 40% of whole-life carbon emissions (Pomponi et al., 2018). For scenario 2, 416 

the exclusion of other LCA stages is less of a concern because the carbon associated with 417 

replacement and refurbishment is lower in structures over the 60-year life cycle compared to other 418 

building elements such as finishes, façades and services.  The uncertainty procedure proposed in the 419 

paper could be extended to account for additional LCA stages. However, EPDs do not always include 420 

data for stages beyond the product stage (A1-3). Approximation of CoV for input values for other 421 

stages has been used elsewhere and has shown that the resultant CoV for the full life-cycle of a case 422 

study building was 17% (GWP, not including biogenic carbon) compared to the pre-use and 423 

maintenance stages which had a CoV of 20%  (Blengini and Di Carlo, 2010). Additionally, it should be 424 

noted that the authors applied CoV to parameters additional to those used in the present study, 425 

including quantity, transport distance, waste percentages and maintenance.  It has also been 426 

identified that 38% of EPDs are missing information required by ISO standards (ISO, 2006a, ISO, 427 

2006b), partly resulting from poor harmonisation between product category rules (PCRs) across 428 

materials and EPD data (Gelowitz and McArthur, 2017) and the underlying material source 429 

information in the ICE database (Hammond and Jones, 2019) has not been reviewed as part of this 430 

study.  431 

It is important to note that the consideration of product stage only and the 0/0 approach to biogenic 432 

carbon is conservative and assumes that the sequestered carbon is released at the end-of-life and 433 

balanced across the life cycle. If the -1/+1 approach were adopted, this would underpredict the 434 

product stage carbon and materials containing biogenic carbon could be negative. This would change 435 

the material ranking as part of the uncertainty procedure and identification of the highest contributing 436 

materials. The assessment also wouldn’t consider the end-of-life impact. If biogenic carbon were 437 

included, the initial result for product stage carbon would be 45% lower. Alternative end-of-life impacts  438 

could be considered if the procedure were extended to include additional LCA stages.  439 

Additionally, due to a lack of material and quantity information, services (other than lifts) were 440 

excluded from the study and therefore the scope of assessment isn’t representative of the whole 441 

building. However, the minimum scope requirements according to RICS (2017) do not include the 442 

product stage EC of services. In addition, building elements with high replacement rates, such as 443 

services and internal elements, accumulate large amounts of EC over the building life cycle but may 444 
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have a comparatively small impact at product stage. The accuracy of material quantities at different 445 

project stages may differ, particularly at early stage stages where structural calculations can be based 446 

on approximations (such as reinforcement rates). Mass parameter uncertainty is not currently 447 

considered in the uncertainty methodology. Previous studies have considered this by design stage  or 448 

as a single quantity CoV (Blengini and Di Carlo, 2010). 449 

Operational greenhouse gases emissions contribute approximately 33% whole life carbon emissions 450 

in typical office buildings but are beyond the scope of this paper (RICS, 2017). If the proposed 451 

methodology were used for optioneering exercises where alternative materials are being considered, 452 

the operational impacts could be affected by changes in performance characteristics. An example of 453 

this could be the thermal resistance of insulation and the benefits of thermal mass from exposed 454 

concrete. Passive design strategies, including natural ventilation, high fabric efficiency and thermal 455 

mass, may cause a “penalty” in EC but a whole life carbon saving when considering the operational 456 

benefits. As operational carbon is not included as part of the uncertainty procedure, these effects are 457 

unable to be quantified.  458 

The proposed uncertainty method is intended to be able to give designers the possible range of error 459 

and, therefore, an indication of confidence/caution in their product stage assessments. This would be 460 

particularly important when tracking carbon over the course of a project relative to a baseline value. 461 

Without accounting for uncertainty, issues could arise with false reporting of carbon savings due to 462 

construction product replacements. Alternatively, designers could find that at a later project stage, 463 

where specific products or manufacturers are being selected, the carbon assessment increases due 464 

to original underestimation. Therefore, practitioners could use this approach to identify key 465 

construction products with high-impact or high-uncertainty (such as concrete and reinforcement in this 466 

case study), as hotspots for carbon, and better focus their efforts when specifying construction 467 

products. The lower-bound material CoV has been proposed as guidance for an ECC target. 468 

However, the selection of low-carbon materials should be considered alongside other performance 469 

characteristics such as durability, thermal resistance and efficiency of equipment, as these choices 470 

may increase the life cycle impacts.  471 
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5 Conclusions  472 

As the energy supply system decarbonises and operational greenhouse gases emissions reduce, EC 473 

will soon make up most of the whole-life carbon in new buildings and the construction industry must 474 

reach net-zero by 2050. This will require designers to demonstrate that assets are achieving net-zero 475 

with accurate and detailed reporting.  476 

Based on the literature and the results from the presented study, the possible range of results for 477 

carbon assessments is large and introduces a significant margin of error in prediction. However, this 478 

methodology for post-analysis of epistemic uncertainty in product-stage carbon assessments can 479 

support designers to estimate the uncertainty associated with the variability of material ECCs. This is 480 

particularly important in the early stages of a project where the level of detail in material and/or 481 

product selection is low. This approach can help designers to see the implications of their material 482 

choices, good or bad, in order to make informed decisions to reduce product stage carbon through 483 

prioritisation, and ensure those assumptions follow through to construction. In addition, this will help to 484 

not overpromise on carbon reductions.  485 

If the methodology were to be developed further, data points from other sources could be collated and 486 

used to improve the interim CoV values (calculated as the average variation of all construction 487 

products used in the study). Similarly, alternative distributions could be used for representing the data 488 

variability such as uniform or log normal. The method demonstrated here considered product stage 489 

ECC uncertainty only. Future work will investigate the inclusion of additional LCA stages and other 490 

forms of parameter uncertainty, such as mass parameters. It will be also extended to be used for LCA 491 

assessment comparisons.  492 

CRediT authorship contribution statement 493 

Ellie Marsh: Conceptualisation, Data curation, Formal analysis, Investigation, Methodology, Software, 494 

Validation, Visualization, Writing - original draft. John Orr: Funding acquisition, Project administration, 495 

Methodology, Resources, Supervision, Writing - review & editing. Tim Ibell: Resources, Supervision, 496 

Writing - review & editing.  497 



25 
 

Data Access Statement 498 

The data created in this research is openly available from the University of Cambridge data repository 499 

at XXX (DOI to follow) .  500 

Declaration of Competing Interest 501 

None.  502 

Acknowledgements 503 

This research was supported and funded by a doctoral scholarship from the University of Cambridge 504 

Department of Engineering.  505 

  506 



26 
 

6 References 507 

AREHART, J. H., HART, J., POMPONI, F. & D'AMICO, B. 2021. Carbon sequestration and 508 
storage in the built environment. Sustainable Production and Consumption, 27, 1047-509 
1063. 510 

BIONOVA LTD. 2020. OneClickLCA [Online]. https://www.oneclicklca.com/: Bionova Ltd.  511 
[Accessed]. 512 

BJÖRKLUND, A. E. 2002. Survey of approaches to improve reliability in LCA. The International 513 
Journal of Life Cycle Assessment, 7, 64. 514 

BLENGINI, G. A. & DI CARLO, T. 2010. The changing role of life cycle phases, subsystems and 515 
materials in the LCA of low energy buildings. Energy and buildings, 42, 869-880. 516 

BSI 2011. BS EN 15978: 2011 Sustainability of Construction Works. Assessment of 517 
Environmental Performance of Buildings. Calculation Method. 518 

BSI 2016. PAS 2080: 2016 Carbon Management in infrastructure. London: BSI. 519 
BSI 2019. BS EN 15804: 2012+ A2: 2019: Sustainability of construction works. Environmental 520 

product declarations. Core rules for the product category of construction products 521 
(+A2:2019) (Incorporating corrigenda February 2014 and July 2020). BSI London, UK. 522 

D'AMICO, B. & POMPONI, F. 2020. On mass quantities of gravity frames in building structures. 523 
Journal of Building Engineering, 101426. 524 

D’AMICO, B. & POMPONI, F. 2018. Accuracy and reliability: A computational tool to minimise 525 
steel mass and carbon emissions at early-stage structural design. Energy and 526 
Buildings, 168, 236-250. 527 

DIMOUDI, A. & TOMPA, C. 2008. Energy and environmental indicators related to construction 528 
of office buildings. Resources, Conservation and Recycling, 53, 86-95. 529 

DUNANT, C. F., DREWNIOK, M. P., ORR, J. J. & ALLWOOD, J. M. 2021. Good early stage design 530 
decisions can halve embodied CO2 and lower structural frames’ cost. Structures, 33, 531 
343-354. 532 

ECOINVENT, C. 2015. Ecoinvent database. 533 
EN-15804 2019. Sustainability of construction works—Environmental product declarations—534 

Core rules for the product 535 

category of construction products.: European Committee for Standardization (CEN). 536 
EUROPEAN COMMISSION, J. 2010. International reference life cycle data system (ILCD) 537 

handbook e general guide for life cycle assessment e detailed guidance. Institute for 538 
Environment and Sustainability. 539 

GELOWITZ, M. D. C. & MCARTHUR, J. J. 2017. Comparison of type III environmental product 540 
declarations for construction products: Material sourcing and harmonization 541 
evaluation. Journal of Cleaner Production, 157, 125-133. 542 

GIESEKAM, J. & POMPONI, F. 2017. Briefing: Embodied carbon dioxide assessment in 543 
buildings: guidance and gaps. Proceedings of the ICE-Engineering Sustainability. 544 

HAMMOND, G. & JONES, C. 2019. The ICE Database. V3.0 ed. 545 
https://circularecology.com/embodied-carbon-footprint-database.html: Circular 546 
Ecology. 547 

HARTER, H., SINGH, M. M., SCHNEIDER-MARIN, P., LANG, W. & GEYER, P. 2020. Uncertainty 548 
Analysis of Life Cycle Energy Assessment in Early Stages of Design. Energy and 549 
Buildings, 208, 109635. 550 

https://www.oneclicklca.com/
https://circularecology.com/embodied-carbon-footprint-database.html


27 
 

HOXHA, E., HABERT, G., LASVAUX, S., CHEVALIER, J. & LE ROY, R. 2017. Influence of 551 
construction material uncertainties on residential building LCA reliability. Journal of 552 
cleaner production, 144, 33-47. 553 

HOXHA, E., PASSER, A., MENDES SAADE, M., TRIGAUX, D., SHUTTLEWORTH, A., PITTAU, F., 554 
ALLACKER, K. & HABERT, G. 2020. Biogenic carbon in buildings: a critical overview of 555 
LCA methods. 556 

ISO 2006a. Environmental Management: Life Cycle Assessment; Principles and Framework, 557 
ISO. 558 

ISO 2006b. Environmental management: Life cycle assessment; requirements and guidelines, 559 
ISO Geneva. 560 

ISTRUCTE 2020. A brief guide to calculating embodied carbon. 561 
KAETHNER, S. & BURRIDGE, J. 2012. Embodied CO2 of structural frames. The structural 562 

engineer, 90, 33-40. 563 
LABS, C. C. 2019. EC3 tool version v-24.0.3_b-1359. C Change Labs. 564 
LLOYD, S. M. & RIES, R. 2007. Characterizing, Propagating, and Analyzing Uncertainty in Life-565 

Cycle Assessment: A Survey of Quantitative Approaches. Journal of Industrial Ecology, 566 
11, 161-179. 567 

LONDON ENERGY TRANSFORMATION INITIATIVE 2020. Climate Emergency Design Guide. 568 
LETI: London, UK. 569 

MENDOZA BELTRAN, A., PRADO, V., FONT VIVANCO, D., HENRIKSSON, P. J., GUINÉE, J. B. & 570 
HEIJUNGS, R. 2018. Quantified uncertainties in comparative life cycle assessment: 571 
what can be concluded? Environmental science & technology, 52, 2152-2161. 572 

POMPONI, F., D’AMICO, B. & MONCASTER, A. M. 2017. A method to facilitate uncertainty 573 
analysis in LCAs of buildings. Energies, 10, 524. 574 

POMPONI, F. & MONCASTER, A. 2018. Scrutinising embodied carbon in buildings: The next 575 
performance gap made manifest. Renewable and Sustainable Energy Reviews, 81, 576 
2431-2442. 577 

POMPONI, F., MONCASTER, A. & DE WOLF, C. 2018. Furthering embodied carbon assessment 578 
in practice: Results of an industry-academia collaborative research project. Energy 579 
and Buildings, 167, 177-186. 580 

RICS 2014. Methodology to Calculate Embodied Carbon. Rics London. 581 
RICS 2017. Whole life carbon assessment for the built environment. RICS Professional 582 

Statement. London: RICS. 583 
STURGIS, S. 2017. Targeting Zero: Embodied and Whole Life Carbon Explained. RIBA 584 

Publishing: London, UK. 585 
TWINN, R., DESAI, K. & BOX, P. 2019. Net Zero Embodied Carbon Buildings - A Framework 586 

Definition. ukgbc.org: UK Green Building Council. 587 
UKGBC, E. C. 2017. Developing a Client Brief. UK Green Building Council, Last Accessed 30th 588 

May, in. 589 
ZHANG, Z. & WANG, B. 2016. Research on the life-cycle CO2 emission of China's construction 590 

sector. Energy and Buildings, 112, 244-255. 591 

 592 


	1 Introduction
	1.1 Structure

	2 Methodology
	2.1 Application
	2.1.1 Case Study Building


	3 Results
	3.1 Case Study – Product stage EC Assessment from Bill of Quantities
	3.2 Uncertainty Analysis Results
	3.2.1 Scenario One – Full Scope
	3.2.2 Scenario Two – Substructure and Superstructure (NRM 2.1-2.4)

	3.3 Summary
	3.4 Sensitivity check
	3.4.1 Reliability check

	3.5 Alternative distributions

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Data Access Statement
	Declaration of Competing Interest
	Acknowledgements
	6 References

