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Potential for reliance on solar water 
heating throughout the summer in 
northern cloudy climates  

J G Rogers1, M McManus, S Cooper 

Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath, Bath, 

BA2 7AY 

Abstract 

In latitudes between 50° and 60°north domestic hot water is frequently provided by the house's 

central heating boiler.  These are run for short periods in the summer just to provide hot water, this 

tends to be inefficient.  In places with a constant solar climate it should be possible to rely on solar 

energy to provide domestic hot water, however many northern cities have a large daily variation in 

solar radiation.  The potential of solar water heaters to meet the hot water demand of a household 

throughout the summer period in a wide range of cities was investigated.  Hourly solar irradiation 

and air temperature values for a typical year are used to calculate the efficiency of a commercially 

available solar panel and estimate the energy collected each hour.  The hot water is stored with daily 

extraction varied to correspond to different levels of occupants.  The heat loss from the store is also 

calculated and used to find the optimum area of solar collector for a given store size.  It was found 

that it should be possible to provide domestic hot water by solar panels for the period when space 

heating is not required in all location considered. 

Keywords 

solar water heating; domestic hot water; northern climate; summertime usage; thermal stores 

 

1 Introduction 
The practicality of using solar water heating to augment existing water heating systems in Northerly 

latitudes (50° and above) has been established.  This normally involves the use of an auxiliary water 

heater to boost the temperature on cloudy days [1,2] or the  running of central heating boilers for 

very short times to top up the temperature in the domestic hot water tank to supplement the solar 

heating on dull days  [3].  Although some gas boilers and electric heaters can work efficiently for 

short duration runs the same is not true for low carbon heat sources like biomass fired boilers or 

micro CHP units.  This leads to the conclusion that solar water heaters cannot be used efficiently in 

combination with low carbon heating systems.  Consequently a different implementation strategy 

should be employed when using solar water heaters in combination with low carbon heat sources.  It 

has been show previously [4] that it is possible for a typical solar water heater to provide adequate 

                                                           
1
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hot water without auxiliary heating on a number of days in the year in Northern Ireland a region that 

is not known for its sunny weather.  

This paper investigates the possibility of using suitably sized solar water heating systems with heat 

stores to provide all the hot water demand throughout the summer period allowing the alternative 

heating system to be switched off for the season.  It is reasonable to assume that this can be done in 

areas where there is consistent sunshine but this is not the case for many northern cities.  In these 

cases it may be possible to heat more water than is required on sunny days and store it for use so on 

cloudier ones.   

As location that experience changeable weather patterns are being considered it is desirable to use 

hourly irradiation data rather than averaged data.  The availability of solar energy in the latitudes 

considered is highly seasonal so although some of the results are given for a complete year the 

systems considered are designed for summer duty.  For the purpose of this analysis summer is 

considered to start four weeks after the spring equinox and continue until four weeks before the 

autumn equinox i.e. days 109 to 242.   

2 Background 

2.1 Domestic Hot Water Demand 
The consumption of Domestic Hot Water (DHW) will vary across cultures.  The IEA Solar Heating and 

Cooling programme - Task 32 published a model of a reference heating system for a typical 

European house [5].  This included an estimate for DHW, although unfortunately it was not 

characterised by the number of occupants so it is too general to use for a study that concentrates on 

DHW heating. There have been several attempts to estimate or measure the typical DHW demand of 

a British household but most report the data in terms of volume flow rather than heat.  The Energy 

Saving Trust carried out a survey which measured both flow and temperature [6] so it gives 

indication of the DHW heat requirements.  

The EST survey reported that the average hot water delivery temperature was 52°C.  The 

temperature of the cold water feed to the boiler was also measured and was found to vary from 10 

to 20°C depending on whether the boiler was supplied directly from the incoming main or from a 

storage tank. The average water supply temperature was 15°C.  To raise water from 15°C to 52°C 

requires  

155kJl-1 which gives:  Q=4.34+6.2N MJd-1 

 

Where Q is the heat supplied per day.  It should be noted that the survey data used to derive this 

equation reported a wide range of usage between similar households and there is a possibility that a 

real household could use twice the energy calculated by this equation. 

2.2 Available solar energy 
The amount of solar energy available at a given location and time principally depends on the 

orientation of the collector, elevation of the sun in the sky and the degree of cloud cover.  This varies 

over the year and throughout the day.  There have been many attempts to model solar radiation 
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patterns [7] however there are also some measurement based weather data series for typical years.  

These use historic data adjusted to give hourly data readings that could have reasonably been 

encountered in the last 30 years.  The use of these data series avoids the need to estimate the 

hourly cloud cover.  Measured solar radiation data is reported in three formats,  horizontal radiation 

(or global horizontal radiation) which is the total radiation falling on the horizontal plane of the 

earth, beam radiation which is the radiation that falls on a plane normal to the sun's beam (this 

plane changes orientation throughout the day) and diffuse radiation which is the radiation falling on 

the horizontal plane of the earth that is not the direct result of beam radiation i.e. all the solar 

energy that hit the earth after being scattered by clouds and atmospheric dust.   

The US Department of Energy runs a web site [8]which contains typical year data for a large number 

of locations.  The total horizontal, beam and diffuse radiation received during the summer for 

northern cities have been taken from this web site and are shown in Figure 1 along with their annual 

total horizontal radiation.  The cities in Figure 1 are in order of their latitude which is shown after the 

city's name.  

 

Figure 1 Annual solar radiation received by different cities  

 As would be expected those in the south are generally sunnier than the north but this trend is less 

pronounced in the summer than for the year as a whole.  This may be a consequence of the summer 

days being longer in the north than in the south.    

The total horizontal radiation figures do not give an indication of the cloud cover that a location 

experience.  This can be inferred from the ratio of diffuse radiation to beam radiation.  Brussels 

receives the highest proportion of diffuse radiation of any city considered and Vancouver the lowest.   

The daily horizontal solar radiation received in these cities is shown in Figure 2.  As they are on 

similar latitudes the differences in their total summer radiation shown in Figure 1 must be due to 

different amounts of cloud cover.   

 

Figure 2 Impact of cloud cover on summer radiation 

Both cities experience a large daily variation in the level of radiation.  However the occurrence of 

more than a few consecutive days with low radiation in summer is low in both locations.  

2.3 Radiation on an inclined plane 
In most cases the collectors are mounted on south facing sloping roofs so the total energy on an 

incline plane needs to be calculated (IN).  The beam (IB) and diffuse (ID) radiation need to be 

considered separately, there is also a requirement to consider radiation that has been reflected from 

the earth's surface onto steeply inclined collectors (IR).   

2.3.1 Direct Beam 

This will depend on the angle between the sun’s ray and the collector so 

 

IN=IBcos(Θ) 
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Where Θ is the incident angle between the sun’s ray and the normal of the collector 

surface. 

 

θ varies throughout the day its calculation is explained in a number of text books, and papers 

[9,10,11] . 

 

2.3.2 Diffuse radiation  

Diffuse light is the result of the some of the direct beam being scattered as it passes through the 

atmosphere so it is reasonable to assume that it can come from any direction. This is the basis for 

isotropic sky models of solar radiation [7]. Using the isotropic sky model the diffuse radiation can be 

calculated by: 

IS=ID(1+cos(β))/2 

Where IS is the diffuse radiation on the collector and β the angle between the collector and 

the earth’s surface or tilt angel 

2.3.3 Reflected light 

Not all light is absorbed by the ground; some is reflected back to the sky and so could irradiate a 

collector which was tilted above the horizontal.  The proportion of light reflected back is called the 

albedo.  This varies with the type of ground surface.  Natural Resources Canada [12] suggests that a 

value of 0.2 is used if the air temperature is above freezing.   

The isotropic sky model uses the following equation for reflected radiation 

IR=IGα(1-cos(β))/2 

where IG is the total radiation on a horizontal plane. 

2.4 Collector tilt angle 
To collect the maximum amount of solar energy from a fixed collector, it should be orientated 

towards the strongest beam experienced over a year.  That is, a tilt angle equal to the suns zenith 

angle on a summer's day.  The zenith angle at noon is the latitude minus the declination that is 

between 28° and 38° for the cities in Figure 1.  The summer irradiation has been calculated for 

different tilt angles at Vancouver and Brussels.  These have been plotted in Figure 3 to see if the 

different proportion of bean radiation affects the optimum mounting angle.  As both of these cities 

are in the south of the region being considered the data for Anchorage and Oslo has also been 

plotted to see the impact of latitude on optimum mounting angle.  

 

Figure 3 Impact of tilt angle on annual radiation on an inclined collector 

 

In all cases the level of radiation does not appear to vary greatly over the range of inclinations used 

for roofs of flat or pitched roof (0° - 50°).  The output of Vancouver peaks with a tilt angle around 30° 

and Anchorage peaks around 40° which supports the assumption that the tilt angle should be the 

latitude minus the maximum declination.  The higher level of diffuse radiation received by Brussels 

and Oslo tends to reduce the impact of changes in tilt angle.   
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3 Solar hot water system model 
The average summer irradiation for the cities in Figure 1 was 2600 kJm-2 and the average ratio of 

beam to diffuse radiation was 1.343.  St Petersburg experiences conditions that are the closes to the 

average conditions of the cities considered (summer irradiation of 2582 kJm-2 and a beam to diffuse 

ratio of 1.331) so it was decided to use its data to represent a typical city.  A spread sheet model for 

a house experiencing the weather conditions of St Petersburg with south facing solar panels 

mounted at an optimum tilt angle of 37° and variable sized thermal stores was developed.  The 

auxiliary DHW heating that would be needed to maintain an acceptable water temperature was 

calculated.  In order to investigate the impact of variation in solar panel performance with 

irradiation and air temperature hourly data was used.   The solar panel area was increased until the 

maximum temperature at any hour of the water in the store was reached 90°C.  This was done to 

ensure that maximum use could be made of the storage capacity without the risk of boiling the 

water.   90°C is of course too hot for use for DHW but thermal stores are fitted with temperature 

regulator valves that automatically mixes the hot water from the store with cold water to get an 

acceptable temperature before it enters the DHW system.   

 On each hour the following parameters were calculated: 

 The efficiency of the solar panel based on the recorded ambient air temperature with the fluid 

exit temperature assumed to be equal to the store temperature from the previous hour plus 

10°C (to allow heat transfer through the solar heating coils in the heat store). 

 The energy collected by the panel based on its efficiency and the calculated irradiance for that 

hour. 

 The net energy stored once the additional energy from the panel and store losses have been 

accounted for. 

 The temperature of the store at the end of the hour. 

As the system considered used large stratified thermal storage tanks which held more than one days 

water consumption it was decided to model the hot water extraction as a single demand taken at 

12:00 each day.  The stores energy level would be reduced by the daily DHW demand and the energy 

required from an auxiliary heater to return the store temperature to a minimum acceptable 

temperature of 40°C calculated. 

3.1   Solar panel performance 
Solar water heaters collectors are tested according to EN 12975-1, 2:2006 this uses the following 

equation to describe the variation of efficiency with irradiation and temperature: 

ηdt = η0 – a1dtG-1-a2dt2G-1 

where  

ηΔt is the efficiency at a given temperature difference 

η0 is the efficiency when the fluid leaving the heater is at ambient temperature 

Δt is the temperature difference between the fluid leaving the heater and the ambient 

temperature 

G is the irradiation 

a1 and a2 are constants determined by measurement under test conditions. 
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There are many types of solar water heaters and it is important to choose the correct technology for 

a specific application.   As it was intended to look at applications where the stored water 

temperature would be considerably hotter than the ambient air it was decided to only consider the 

use of evacuated tube water heaters as these have lower losses under these conditions than other 

types of solar collectors. 

Table 1 shows typical performance with some equipment currently available on the market taken 

from their manufacturer’s web sites [13,14,15,16]   This is not a comprehensive market survey but 

Table 1 indicates that there is not a lot of difference in performance between different manufactures 

equipment.      

Table 1 Solar panel characteristics 

 

In order to investigate the impact that loss of efficiency at higher water temperatures it was decided 

to use the characteristic for the SunnPro unit's as they appear to be slightly more temperature 

sensitive than the others.   

The Hot Water Association heat store specification indicates that the solar collector fluid should be 

10°C above the stored water temperature for the solar heating heat exchange to work at as 

designed [17](The Hot Water Association 2010).   

The heat storage capacity of a heat store depends on the maximum and minimum acceptable water 

temperatures.  It is assumed that the heat store temperature is going to vary between 90°C (to avoid 

boiling the store’s contents) and 40°C (the assumed minimum acceptable hot water supply 

temperature) so the heat transfer fluid from the solar panel will need to be between 50 – 100°C.   

3.2 Heat store losses 
When water is drawn from a heat store it is replaced by cold feed water at the bottom of the tank.  

Thermal stratification ensures that there is a supply of hot water at the top of the tank so that 

around 50% of the tanks capacity can be taken from it before the discharge temperature reaches an 

unacceptable level [17].  However over time the temperature in the tank will equalise; so a uniform 

average temperature can be assumed when calculating the heat loss from the thermal store.  This 

will have to be provided by the solar water heater in additional to the DHW load. The Hot Water 

Association standard for heat stores quotes the following equation for calculating the maximum 

permitted heat loss from a heat store installation in a new building: 

QHL-MAX = 1.28 x [0.2 + 0.051 (VT)
2/3)] 

Where QHL-MAX is the maximum permitted daily heat loss from a thermal store in kWh with an initial 

store temperature of 75°C and a total storage capacity of VT litres.  The rate of heat loss will be 

proportional to the difference in temperature between the store and the ambient air so:  

ΔQ/Δt = K (Tw - Ta) 

Where K is a constant for the heat store, Ta is the ambient air temperature around the store, 

and Tw is the temperature of the water in the store. 
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The maximum losses are specified for a 24hr period from an initial storage temperature of 75°C with 

an ambient air temperature of 20°C.  Given that the temperature drop after 24 hours is not that 

large it is reasonable to assume a constant rate of heat loss over the period so: 

ΔQ/Δt =QHL-MAX / 24 = K ((Tw,o+Tw,24)/2)-Ta) or 

K = QHL-MAX /24((Tw,o+Tw,24)/2)-Ta) 

4 Results of modelling 

4.1 Impact of storage capacity 
It would be expected that a system with high storage capacity should be able to smooth out the daily 

variations in radiation and provide DHW for more days than a system with lower capacity.  The 

model was run with the store capacity from 300 litres to 1200 litres, in each case the solar collector 

area adjusted so that the maximum water temperature at 90°C.   The incidence of different auxiliary 

heat input required to maintain an acceptable DHW temperature throughout the 135 day summer 

period is shown if Figure 4.    

 

Figure 4 Auxiliary water heater duties for different thermal store size 

The DHW load for a household of four is 29MJ but the water heater must also be able to provide the 

losses from the thermal store.  The difference in performance shown in Figure 4 is not just the result 

of the different store size.  The additional buffering provided by the larger store allows a larger area 

of collector to be used without unacceptable water temperatures being reached as shown in Figure 

5. 

 

Figure 5 Maximum collector area that can be installed for a given capacity thermal store 

It is not surprising that a larger collector area will allow sufficient solar energy to be collected to 

satisfy the DHW loads on more days of the year as is shown in Figure 6.  There is clearly a limit to the 

benefits that can be made from increasing the solar collector area.  The reason for this can be seen 

from Figure 2, there are a few periods with very low irradiation levels if the solar collector was sized 

to provide DHW over these periods the store temperature limit would be reached during sunny 

spells. 

    

 Figure 6 Maximum collector area that can be installed for a given capacity thermal store 

 

4.2 Impact of changes in occupation levels 
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From Figures 4,5 and 6 it was concluded that the most appropriate size system for a house with four 

occupants in St Petersburg would consisting of a 6 m2 collector and 700 l thermal store.  Its 

performance throughout the summer is shown in Figure 7.   

 

Figure 7 Auxiliary water heater duties for different occupation levels  

Although four occupants is frequently considered to be a typical family in the developed world 

according to the "Housing in England" survey (anon,2009) [18] only 7% of English households have 

more than four occupants and 64% have less than three so the characteristic for 2 occupants is likely 

to be representative of a typical households.  Increasing the occupancy level increases the duty of 

the auxiliary heater but it is clear that the solar water heater supplies the majority of the summer 

DHW in all cases.  The system is sized to give a maximum water temperature of 90°C with 4 

occupants.  If the house has 6 occupants the maximum temperature reached was 83°C and it 

reached 96°C with just 2 occupants. 

4.3 Impact of tilt angle 
Figure 3 indicates that the amount of harvestable solar energy is not particularly sensitive to 

collector inclination.  There are many buildings with flat roofs or south facing walls which may be 

considered as possible location for solar water heaters.   In practice manufactures recommend limits 

to the inclination of their panels SunnPro recommend that the SP series mounting angle should be in 

the range 15o - 75o.  The model was rerun with the appropriate solar radiation figures used for tilt 

angles of 15o and 75o. The maximum area of collector that could be installed while avoiding 

excessive water temperature in a 700l thermal store was separately calculated for each of the tilt 

angles. The auxiliary DHW requirements of the three systems are shown in Figure 8.  

 

Figure 8 Performance of systems sized for different tilt angles 

All of the systems could be considered as the main DHW system in summer.  However this is 

achieved by using different areas of collectors which are given below: 

 6.1m2 for a 15° tilt,  

 5.9m2 for a 37° tilt,  

 8.9m2 for a 75° tilt.   

It has been found that solar collectors integrated into walls can improve the walls insulation and 

reduce summer solar gains [19] which could offset the additional cost of the larger collector. 

4.4 Impact of location 
The model was rerun using Vancouver and Brussels climates to investigate the impact of variations 

in the solar climate.   The store size was set to 700l and the collector adjusted to give a maximum 

water temperature of 90°C. The Brussels system did not perform as well as the others so the 

Brussels model was rerun with a 1000 l store.  Results for the three locations are plotted in Figure 9. 
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Figure 9 Auxiliary water heater duties at different locations 

  The collector areas of the following systems are given below: 

 St Petersburg 5.8m2 

 Brussels 700l store 5.9m2 

 Brussels 1000l store 7.1m2 

 Vancouver 4.4m2 

As may be expected the higher sunshine levels in Vancouver give the best performance but it is 

possible to design a suitable system for all of the locations. 

4.5 Use of unsupported solar heating in summer 
There will be an ambient air temperature where the solar gain input to a building and heat released 

by activities carried out in a building will match the heat loss from the building.  This is known as the 

balance point temperature [20] and is typically 15.5° for UK houses.  At this temperature the 

buildings do not need space heating.  To see if the solar water heaters can cope without additional 

heat input from the buildings heating system the models for St Petersburg with a 700 l store and 

Brussels with a 1000 l store were rerun with the auxiliary heater disabled.  The results are shown in 

Figures 10 along with the ambient air temperature.   

 

Figure 10 Water storage temperatures with no auxiliary heating throughout the summer 

From the air temperature plots it is likely that space heating will be needed up to day 150 until 

around day 240.  The DHW temperature at St Petersburg and Brussels are show in Table 2. 

Table 2 summer performance of solar water heaters 

 

The hot water consumption survey [6] reported that 80% of DHW systems delivered hot water with 

a temperature in the range 44-60 °C.  From Table 2 it would appear that the St Petersburg system 

could supply this for the period when space heating was not required but he Brussels system would 

need some auxiliary heating system available.  However from Figures 9 and 10 it would appear that 

this would only be needed on a few days a year. 

4.6 Minimum water temperature 
There is a concern that DHW systems need to be periodically run at temperatures above 60°C to 

prevent Legionella bacteria growing [21].  Figure 10 shows that this requirement is met in both 

locations.  

5 Discussion 
 

5.1 Solar heating season 
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One would expect to have more solar heating available in the summer than the winter.  There 

appears to be little available solar energy 50 days each side of the winter solstice however there is a 

dramatic change in available energy in the four weeks around the equinoxes and sufficient available 

solar energy to provide the domestic hot water needs of a household in summer.  These large 

seasonal variations mean that summertime data should be used when designing a system rather 

than annual values.  Figure 10 show that for the portion of the year when heating is unlikely to be 

required the DHW temperature will be at acceptable levels without any auxiliary heating in St 

Petersburg.  Whereas in Brussels there would be a few day in the period when space heating was 

not required when the hot water would be tepid without the occasional use of auxiliary water 

heating .   

5.2 Regional variation 
It is clear from Figure 1 and 2 that most northern cities have exploitable solar energy in the summer 

period.  This potential is demonstrated in Figure 9, the critical factor is the degree of cloud cover 

rather than the latitude of the location.  Even in cloudy location suitably sized systems can supply 

the bulk of the DHW load throughout the summer.  Sites that have a wide variation in daily radiation 

will need larger thermal stores than ones with more consistent solar climates.  

5.3 Tilt angle 
The performance of a roof mounted south facing solar panel is not particularly sensitive to the actual 

angle of inclination (see Figure 3).  It is noticeable from Figure 1 that many cities received a 

significant proportion of diffuse radiation.  The collection of this is maximised by having a horizontal 

collector.  This may explain why for the cloudy cities of Brussels and Oslo the panel with the 

maximum summer irradiation were mounted at a tilt angle less than the optimum angle for beam 

radiation.   The good performance of horizontal and shallow inclined panels means that solar water 

heaters could be considered for properties with flat roofs rather than just those with south facing 

roofs. 

Panels mounted with a high tilt angle were found to produce the highest number of days on which 

solar water heating can supply the DHW demand.  This mounting arrangement captures beam 

radiation when the sun has a high zenith angle and reflected radiation; as such it is essential that the 

installation has a clear view of the horizon and the ground.  The intensity of early morning and 

reflected radiation is low and there may be issues with the fluid in the panels reaching sufficient 

temperature to transfer heat to a thermal store.  More experimental work may be needed to how 

well this configuration performs in practice.   

5.4 Storage capacity 
Increasing the storage capacity should increase the number of days when solar water heaters could 

satisfy the DHW load.  This is contrary to the findings of Yohanis et al [4] , who were simulating the 

performance of a solar panel and hot water tank and concluded that increase in tank size did not 

increases the number of days that the DHW demand could be met by solar water heating.  The 

difference between these findings may be explained by the fact that Yohanis et al increased the tank 

capacity while using the same size solar panel; thus increasing the losses from the storage tank 

without increasing the energy input.  The difference in losses between a 100l thermal store and a 

300l one is equivalent to increasing the occupancy by two people.  From Figure 7 it can be seen that 
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increasing the occupancy level by two without increasing the panel size does reduce the number of 

days that the solar water heating system can satisfy the DHW demand.   

In this paper the solar collector was sized to provide a peak water temperature while providing the 

DHW load and storage losses.  Figure 5 clearly shows that the area of solar collector that can be used 

in a given property is directly proportional to the capacity of thermal store used.    To summarize the 

larger the store the larger the collector area that can be used and the more days in a year the solar 

water heating can be relied on. However there appears to be a practical limit to the number of days 

that solar energy can be depended on irrespective of the size of system installed.   

5.5 Practical sizing 
The systems considered have been sized for a given consumption.  It is likely that there will be a 

large variation in daily consumption from day to day and between households.  Insufficient load 

causes a rise in the peak water temperature; excessive load causes an increase in the use of the 

auxiliary water heater.  It is likely that there will be times when the house is unoccupied so the solar 

DHW system will need to have a strategy to limit the maximum stored water temperature.  This is 

normally achieved by switching off the solar collector pump once the maximum water temperature 

is achieved this is acceptable providing the fluid temperature remains below its maximum stagnation 

temperature (200 °C for the SunnPro panels).  An alternative strategy may be to have a small portion 

of the top of the thermal store occupied by phase change material that melts around 90°C.   

Occasional increases in occupancy could be accommodated by additional running of the auxiliary 

water heater.  

5.6 Rating of Auxiliary water heater 
Figures 4, 7 and 9 show that if auxiliary heating is required on summer days it is often at a low level. 

A low capital cost solution to provide an auxiliary DHW system in the summer may be to use a low 

power electric immersion heater to maintain a minimum tank temperature (for the rest of the year 

the central heating system can provide the auxiliary DHW load).  The auxiliary water heater should 

only cut in if the water temperature is unacceptable cool and it should cut out again as soon as it is 

acceptable so that the water in the store can take up heat from the solar collectors.  If short 

immersion elements are mounted in the top of the tank they will only heat the top layer of water, 

this will help maintain a satisfactory DHW supply while still keeping the average temperature low. 

5.7 Impact of electrical consumption 
Solar water heating systems which employ thermal storage tanks are likely to have to be pumped 

systems.   The parasitic energy requirements of a number of systems were measure during field 

trials [22] and found to be between 4.2 - 9.1% of thermal energy collected (although one installation 

included an integrated PV panel which generated sufficient electricity to power the installation).  By 

comparison gas fired central heating boilers when operating in the summer have a parasitic 

electricity consumption of 2% of their hot water production [23].  Consequently a solar DHW system 

is likely to use more electricity that a gas fired system so the simple solar fraction does not give a 

true representation of the carbon saving.  To do this the primary energy needed to produce the 

electricity used by the solar DHW system needs to be calculated.  The exact value will depend on the 

mix of plant that was generating at the time; this will vary between counties, throughout the day 

and from day to day.  On a summer's day in the UK the marginal power is likely to come from a gas 

fired combined cycle gas turbine power station.  On average these achieve a gross efficiency of 43% 
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when supplying domestic  consumers (average power plant efficiencies from DUKES table 5.10 [24] 

with an 8% allowance for transmission and distribution losses), so each kJ of parasitic power needs 

2.3 kJ of primary energy in the form of natural gas to produce it.     

If the gas DHW system was replaced by a solar one it would have an additional electrical parasitic 

load of 5% of the thermal load. If this was provided by mains electricity this would represent around 

12% of the thermal energy collected by the system. Consequently if the primary energy used to 

produce the parasitic power is considered, the maximum solar fraction is actually 88% rather than 

100%. 

5.8 Economic considerations 
An economic analysis has not been included in this paper as this is the subject of further work 

covering the economics of using a cluster of micro-generation technologies.    It is recognised that 

the systems sizes proposed in this paper are larger than those used for systems that are designed to 

augment the DHW system in the summer.  From the St Petersburg model the system with100l store 

had an annual solar fraction of 33% which would be typical of a system that was designed to 

augment the existing DHW system. The 600 l one had a solar fraction of 52%.   A report into the cost 

of systems installed under the "The Low Carbon Buildings Programme" [25] reported a wide spread 

in the installed cost of solar hot water systems but they found the following weak correlation to 

output for system with outputs from 0.5 to 10 MWh/year: 

cost = 540Q + 2900 

where the cost is in £ and Q is annual output in MWh/year 

The 300l system in St Petersburg collected 1.7MWh/year of heat where the 700l one collected 

2.2MWh/year this is an output increase of 29% the corresponding increase in the installed cost of 

the solar collector would be 7%.  Consequently if it is finically viable to install solar water heating the 

value of the extra energy collected by the larger system is likely to cover the additional cost of the 

larger solar panel installation and thermal store. 

6 Conclusions 
The low strength of the winter sun in northern latitudes means that it cannot be considered as the 

main source of DHW heating in winter.  However it has been shown that a suitably sized system can 

provide the bulk of the DHW demand during the summer period with only a minimum use of 

auxiliary water heating.  This could have considerable operational advantages for combined heat and 

power plants, biomass boilers and district heating systems as they could be shut down for the 

summer rather than be left running for short periods to provide DHW loads.   

In the summer time the inclination of a solar panel was not found to be critical.  Horizontal (or 

minimally inclined) panels could also be used in situations where a south facing roof is not available.   

In some locations a vertically mounted solar panel will provide the highest solar fraction but a 

disproportionate increase in panel area is needed to achieve this.   

After allowance has been made for the primary energy used to provide the electric power used by 

the system solar water heating could provide 9.5% of domestic heat consumption in a typical UK 
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house from a renewable source.  The EU  has a target for 20% of energy to come from renewable 

sources by 2020; it is clear that a much wider adoption of solar water heating  could make a major 

contribution towards achieving  this for the domestic sector in Northern Europe.  
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Figure 1 Annual solar radiation received by different cities  

Figure 2 Impact of cloud cover on summer radiation 

Figure 3 Impact of tilt angle on annual radiation on an inclined collector 

Figure 4 Auxiliary water heater duties for different thermal store size 

Figure 5 Maximum collector area that can be installed for a given capacity thermal store 

 Figure 6 Maximum collector area that can be installed for a given capacity thermal store 

Figure 7 Auxiliary water heater duties for different occupation levels  

Figure 8 Performance of systems sized for different tilt angles 

Figure 9 Auxiliary water heater duties at different locations 

Figure 10 Water storage temperatures with no auxiliary heating throughout the summer 
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Table 1 Solar panel characteristics 

Manufacturer ηo a1 a2 

SunnPro SP series 0.73 1.53 0.017 
Solar Tube Company 0.65 1.49 0.014 
Solar UK LaZer2 0.753 1.54 0.0099 
Solarplusgreen TZ58/1800-
20R 

0.71 1.529 0.0166 
 

 

Table 2 summer performance of solar water heaters 

 minimum temperature average temperature standard deviation 

St Petersburg 34.7 62.7 10.4 
Brussels 29.2 46.4 13.6 

 

 

Table(s) with Caption(s)



Page 17 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Figure(s)



Page 18 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

 

Figure(s)



Page 19 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

Figure(s)



Page 20 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Figure(s)



Page 21 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Figure(s)



Page 22 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

 

Figure(s)



Page 23 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Figure(s)



Page 24 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

Figure(s)



Page 25 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

 

Figure(s)



Page 26 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

 

Figure(s)



Page 27 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

Highlights 

 Hourly solar data used in simple model of solar water panel and thermal store. 

 Heat stores allow larger solar panels to be used. 

 Surplus heat from sunny days stored for use on cloudy ones. 

 Solar water heating could be sole means of water heating even at latitudes 50° to 60°. 

 12 cities between Anchorage, St Petersburg, Brussels, Vancouver considered. 

*Highlights (for review)




