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EXISTENCE AND STABILITY OF INFINITE TIME BUBBLE
TOWERS IN THE ENERGY CRITICAL HEAT EQUATION

MANUEL DEL PINO, MONICA MUSSO, AND JUNCHENG WEI

ABSTRACT. We consider the energy critical heat equation in R™ for n > 6
ur = Au + |u\ﬁu in R™ x (0, 00),
{u(-,O) =up inR",
which corresponds to the L2-gradient flow of the Sobolev-critical energy
Ty = [ elul,elul = g Vult = T2y

Given any k > 2 we find an initial condition ug that leads to sign-changing
solutions with multiple blow-up at a single point (tower of bubbles) as t — +oo.
It has the form of a superposition with alternate signs of singularly scaled
Aubin-Talenti solitons,

k . _n=2

u(z,t) = E (—1)7_111]- 2 U(i) + o(1) as t— 4oo
- 145
Jj=1

n—2

where U(y) is the standard soliton U(y) = an (1+‘1y‘2> T nd

1 — 2\t
S (=

if n > 7. For n = 6, the rate of the p;(t) is different and it is also discussed.
Letting dp the Dirac mass, we have energy concentration of the form

elu(-,t)] —e[lU] = (k—1)Spdp as t— +oo
where S, = J(U). The initial condition can be chosen radial and com-
pactly supported. We establish the codimension k + n(k — 1) stability of this
phenomenon for perturbations of the initial condition that have space decay
ug(z) = O(|z|~%), a > "T_Q, which yields finite energy of the solution.

1. INTRODUCTION

This paper deals with the analysis of solutions that exhibit infinite time blow-up
in the energy critical heat equation

ug = Au+ [ulPtu in R™ x (0, 00), (L1)
u(-,0) =wup inR" )

where n > 3 and p is the critical Sobolev exponent p = ZJ_F; We are interested in
solutions u(z,t) globally defined in time such that

i flu(-, 1))z ) = +oc.

The energy functional associated to (1.1) is the functional

J(u) = /n elu], elu] := %|Vu|2 L

— T |ulpt?
p+1| |
1
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which represents a Lyapunov functional for (1.1) in the sense that ¢ — J(u(-,t)) is
decreasing. In fact for a solution globally defined in time we must have J(u(-,t)) >0
for all ¢ and hence the value lim;_, o J(u(+,t)) exists and it is nonnegative.

The behavior at infinity for finite energy solutions is of course connected to
steady states, namely solutions of the Yamabe equation

Au+ [u/72u=0 inR" (1.2)
u(-,t) as t — +oo is along sequences = t, — 400, of Palais-Smale type for the
energy J. An application of the classical Struwe’s profile decomposition [50] (in a
form given in [22]) tells us that passing to a subsequence, there are finite energy
solutions Uy, ..., Uy of (1.2), positive scalars p;(¢) and points &;(t) such that for
i F 7,

‘log&(t)’ + @(t) — 400 as t=t, =+
Hj Hi

k
u(z,t) = Z tl —U; (x /:]%f)(t)) +o(1) as t=t, — +oo, (1.3)

with o(1) — 0 in L (R™). This information is vague, since no information can be
directly drawn from the centers and the scaling parameters. Even worse, the steady
states could in principle depend on the particular sequence chosen. It is therefore
a natural question to understand in which precise ways a profile decomposition like
(1.3) can take place as well as its stability properties.

The purpose of this paper is to exhibit a family of solution whose soliton reso-
lution is made out of least energy steady states, all centered at a single point, thus
exhibiting multiple blow-up at distinct rates in the form of a “tower of bubbles”.
The solutions we build here are presumably the unique soliton resolutions possible
in the radial case, but this is not known. We analyze stablity of this phenomenon,
establishing its universality under small finite energy perturbations.

We recall that all positive entire solutions of the equation are given by the family
of Aubin-Talenti solitons

Unelo) =20 (25 (1.4)

where U(y) is the standard bubble soliton

U = (15m) o An= -2, (15)

The main characteristic of the critical exponent p is that the energy functional is
invariant under the scalings w,(z) = p~ "7 u(p~'z). In particular we have that
J(Upe) = J(U) =: Sp. The functions Uy, ¢ are steady states of (1.1). In fact U, ¢
are precisely the least energy nontrivial solutions of (1.2). The only radial solutions
of (1.2) are given by the functions +U, . In particular for a radially symmetric
solution of (1.1), decomposition (1.3) would read as a “tower of bubbles” of the

form

k o
u(z,t) = Z ]7%2 U (u(ﬂ) +o(1) as t— +oo, (1.6)

o k() i
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where 0; € {—1,+1} and pi(t) < -+ < p1(t). In fact, H. Matano and F. Merle
have obtained that in (1.6) signs are alternate: either o; = (—1)7 for all j or
= (—1)771 for all j [385].

In this paper we construct for each given k > 2 a solution of (1.1) with profile
decomposition (1.6) and o; = (—1)771, and analyze its stability in the class of all
non-radial functions.

We will find a solution that satisfies
lim J(u(-,t)) = kS,

t—+oo

In fact the energy density concentrates in the form
elu(-,t)] = e[U] + (k —1)S, & (1.7)

where g is the Dirac mass at the origin. This solution looks at main order near the
blow-up points as a superposition of one bubble and k—1 sharply scaled alternating-
sign bubbles (1.4) centered at 0 with time dependent, distinct order scaling param-

eters ”Ljizt()t) —0,j=1,...,k—1, as t — 00, as described in (1.6). The following

is our main result.
Theorem 1. Letn > 7, k > 1. There exists a radially symmetric initial condition
uo(x) such that the solution of Problem (1.1) blows-up in infinite time exactly at 0
with a profile of the form

k

. _n—2
u(z,t) = Z(—l)]_l,uj > U (m) +o(l) as t— 4+ (1.8)
= Hj
and for certain positive numbers 5, j =1,...,k we have
pi(t) = Bt~ (1+0(1)), (1.9)

where

1 /n—2\"" 1
R L =1,k
a] 2(n—6> 2a .7 ’ 7k

Theorem 1 for k = 1 is actually trivial, just taking
u(z,t) = U(x).

In dimension n = 6, a sign-changing bubble-tower solution blowing up as ¢t —
oo as (1.8) also exists. The rates for the scaling parameters p;(¢) are negative
exponential in time and their expressions get more involved as k is taken larger.
For simplicity of exposition we state the result only for £ = 2,3. In Section 2,
formula (2.18) we give the general rule for any k > 4.

Theorem 2. Let n =6, k = 2,3. There exists a radially symmetric initial condi-
tion ug(x) such that the solution of Problem (1.1) blows-up in infinite time exactly
at 0 with a profile of the form (1.8) with

p(t) =1+o0(1), pa(t)=e (1 +o0(1))
if k=2, and
pt) =1+0(1), pa(t)=e(1+o(1), ps(t)=e 2" (1+o0(1))

if k =3, for some positive constants ¢ and 3.
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In dimensions n < 5, the computations at (2.15) suggest that such bubbling
tower solutions do not exist. For related phenomena in the elliptic case see [25].

Radial symmetry is not necessary in our construction. In fact, a by-product of the
proof is a codimension k + n(k — 1)-stability result: the bubble-tower phenomenon
persists for initial data chosen in a codimension k + n(k — 1)-manifold of finite-
energy perturbations. Let ug(x) be the radial initial condition for the solution in
Theorem 1. There exist smooth, compactly supported radial functions wy(x), ¢ =
1,..., Ny =k+n(k—1) such that the following property holds.
Corollary 1. Let a > % Then for any sufficiently small 6 > 0 and any n-
symmetric function function z.(xz) such that

0
14 [x]*
there exist Ny, scalars ci(z.) and a point ¢ = q(z.) € R™ with |¢;| +|q| = O(9), such
that the solution u(z,t) of problem (1.1) with initial condition

|2 (2)] < (1.10)

Ny,
u(x,0) = ug(x) + 2.(z) + Y colz) we(z) (1.11)
(=1

is globally defined in time and has the expansion (1.8) where p1;(t) is as in (1.9).

Thus in order for a small perturbation of ug to lead to a k-bubble tower as
t — 400 it should satisfy the k + n(k — 1) scalar constraints cy(z.) = 0. These
constraints define C'-functionals in the natural topology for z, with linearly inde-
pendent differentials at z, = 0, and hence a local C'' manifold with codimension
k+ n(k — 1) (see Remark 5.1). Condition v > 252 in (1.10) is sharp to obtain
finite energy of the initial condition (1.11), namely J(u(-,0)) < +oco. (Finite-time
blow-up is expected when a < 252, See [15].)

We observe that corollary 1 essentially recovers the 1-codimensional stability of
steady states in the energy space established for n > 6 in [3].

The formal analysis in [18] yields that no infinite time blow-up of positive so-
lutions of (1.1) should be present in dimensions n = 5 or higher, while it should
be possible for n = 3,4. We rigorously established this for n = 3 in [9]. Blow-
up by bubbling in finite time for (1.1) was formally analyzed in [19] and rigorous
constructions achieved in [19, 10]. Global unbounded solutions like in Theorem
1 are regarded as “threshold solutions” for the dynamics of (1.1). We refer to
[18, 44, 45, 46] and references therein.

The solutions built in this paper seem to be the first examples of multiple blow-
up at a single point in Problem (1.1). Related phenomena has been detected in the
elliptic Brezis-Nirenberg problem Au + \u|$u + Au = 0 in a ball. See [26, 27]
and also [12, 21, 43] for multiple bubbling in the slightly supercritical case. In the
parabolic critical setting a construction of ancient solutions with multiple blow-up
backwards in time for the Yamabe flow was achieved in [7].

Blow-up by bubbling (time dependent, energy invariant, asymptotically singu-
lar scalings of steady states) is a phenomenon that arises in various problems of
parabolic and dispersive nature. This has been an intensively studied topic in the
harmonic map flow [37] and critical heat equations [19, 10, 40, 41, 46]. Profile de-
compositions of the type (1.3) are well-known to arise in dispersive contexts such
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as the energy critical wave equation [1, 14, 15, 16, 33]. The actual classification
problem is known as the soliton resolution conjecture, see [6, 17, 36, 48, 51]. See also
[13, 32, 35, 34, 39, 47] for related results. Constructions of two-bubble solutions in
wave and Schrodinger energy critical equations under radial symmetry have been
recently achieved in [28, 29, 30, 31].

The method of this paper is close in spirit to the analysis in the works [5, 8, 9,

, 11], where the inner-outer gluing method is employed. That approach consists
of reducing the original problem to solving a basically uncoupled system, which
depends in subtle ways on the parameter choices (which are governed by relatively
simple ODE systems). The new challenge in this paper is to deal with drastic
differences in blow-up rates at the same place. A novel topology for both inner
and outer problems is introduced. See the norms (4.15) and (5.23) below. The
analysis of “bubble towers” in this paper may be useful in energy critical geometric
equations such as the harmonic map flow [37, 52, 53] and also in dispersive settings
like those mentioned above.

Finally, we mention that the problem of blow-up in finite or infinite time for more
general p > 1 in (1.1) is a classical subject after the seminal work by Fujita [20].
Various different scenarios have been discovered or discarded in the supercritical
case. See for instance [2, 4, 11, 23, 24, 41, 42] and the book [46].

The rest of this paper will be devoted to the proofs of Theorem 1 and Corollary
1, and in §2 we will deduce the main difference in the construction of the solution in
dimension n = 6, as it is stated in Theorem 2. In §2 we will build a sufficiently ac-
curate first approximation for the solution and estimate the error of approximation.
In §3 we formulate an ansatz for the solution and the inner-outer gluing system for
its unknown. In §4 we discuss the necessary linear theories, and finally solve the
problem by means of a fixed point argument in §5.

Throughout this paper, x(s) will denote a smooth cut-off function such that

1 fors<1
= - 1.12
x(s) {0 for s > 2 ( )

and, for a set 2 C R", 1 will denote the characteristic function defined as

1 forze
1 ’ . 1.13
2(@) {O for z € R™\ (1.13)
2. A FIRST APPROXIMATION AND THE ANSATZ
In what follows we write Problem (1.1) in the equivalent form
Slu] == —up +Au+ f(u) =0 in R" x (tp,00), 01
u(-,tp) =up in R" 21)

where
4
flu) = [ulP~tu = [u[7=2u
and the initial time t5 > 0 is left as a parameter which will be later on taken

sufficiently large. The difference is just convenient cosmetics, since then the function
u(z,t+top) will solve the original problem (1.1). We thus look for a solution u(x,t)
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of (2.1) which looks like a tower of bubbles of the form (1.8) centered at gy = 0 as
t — +o0.

Let us consider k > 2, k positive functions
pi(t) < p—1(t) < <pa(t) in (to,00)
which will later be chosen, such that as ¢t — +o0,
f+1(t)
15 (t)

Let us also consider k£ points £;, such that as t — +o0

i(t

5 (t)
Let us observe that these assumptions on p;(t) and &;(¢) imply that
§+1(t) — ()

145 (t)

a fact that will be used later on. We denote in what follows

ﬁ:(lu’la'“vuk) and g': (513"'7516)'

Let us set x(z,t) = x (%) with x(s) asin (1.12). Consistently with (1.8), we write

wr(t) = 1, —0 forall j=1,...;k—1. (2.2)

ks (2.3)
51 (t) — 0,

—0 forall 7=1,...,k—1,

k
U=x> U (2.4)
j=1

where

I G VN et 3100
Gt = = U( (1) )

and U(y) is given by (1.5). We will get an accurate first approximation to a solution

of (2.1) of the form U + g that reduces the part of the error S[U] created by the
interaction of the bubbles U; and U;_1, j = 2,...,k. To get the correction ¢y we
will need to fix the parameters ;; at main order around certain explicit values.

Let us consider the geometric averages

ﬂ] =V —1s j:2aak

and introduce the cut-off functions

X(M)_X(W;W) j=2. k-1,
Hj i+

Xz, t) = (2.5)
2lx — &;(t .
e P
Mk
We observe that they have the property that
0 if |z — & ()] < 20541,
. _ 1_
Xi(@,t) = ¢ 1 if 4 <z —&(t)] < S

0 if e — & 0] > ;.
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with the convention fig11 = 0. We look for a correction ¢q of the form

k
Yo = Z P05 X3> (2.6)
j=2

where
—1)-1 T —E(t
voj(z,t) = %%j (é}()’t>
() T 1 (t)
for certain functions ¢g;(y,t) defined in entire y € R™ which we will suitably deter-
mine. Let us write

S(U + ¢o) = S(U) + Lglwol + Np o] (2.7)
where

Lyleol = — 0o + Aspo + (U)o,

Nglpol =f(U + o) = f'(U)po — f(O).
Using the homogeneity of the function f, we observe that

k k k
S(U) = =3 (xU;) + X" FQ_Us) =X D f(U;)
k B (2.8)
+(AaX)Q_U5) +2(VaX) (3 Valy)
=FE + E
where
B k k k
Ey=x _Z( Uj) + f(ZUJ) ZUJ
j=1 Jj=1 7j=1
B k k k
Ey= (X" =) fQ_Up) + (As =) (0)(D_ U QO V.U
Jj=1 Jj=1 j=1

We decompose E; in different regions defined by the cut-off functions y; introduced
n (2.5) as follows

k
Ey = —(9,U1)X Z [~0:U; + ' (Uj)U;—1(0)] x; + B, (2.9)
where
k
B =Y |F W)Y, U)+f(U)(U;- 1—Uj1(0))] Xj
=2 I£5,j—1

Xi =X (1= x,)dU; (2.10)

+
Mw
M
S
1
(S
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with

k
> U) = (D0 — 1) = £ (D).
I#5,j—1 =1 I#j
Next we write L [po] using the form of g in (2.6) as follows

k
Lilpol =Y [Awpo; + ' (U)pos] X
=2
k k
+ Zp(f/(U) — F'(U;))poix; + Z [2V200; Ve (xs) + Az(X;)poi] (2.11)

Nk

0t (05 X;j)-

Il
)

J
Replacing (2.8), (2.9), (2.11) into (2.7), and reorganizing properly the terms, we
obtain

k
S(U =+ 800) = —x0U1 + Z z¥0; + f )@OJ 8tU + f ( ) Jj— 1(0)] X3
j=2

k
+ En+ By + Zp(f/([_]) = ' (U))poixi
j=2

k k
+ > [2Va00;Va (5) + Au(X)905] — Y, 0i(0;x;5) + N o,
Jj=2 j=2

(2.12)
where E1; and E» are defined respectively in (2.10) and (2.8). The functions ¢,
will be chosen to eliminate at main order the terms in the first line of (2.12), after

conveniently restricting the range of variation of y and E,

Ejlpoj; i1,€] = Aupo; + f'(U;) o5 — OU; + f/(U;)Uj—1(0)

(_1)J ! p—1 .
= nt2 [Ay(bOj +pU(y) ¢Oj + MijZ(y)
N’j 2 (213)
p—1 u’j % ¢
) () T U0+ U] g
Hi—1 Yy=—7—

¥

where Z,11(y) = 252U(y) +y - VU(y). The elliptic equation (for a radially sym-
metric function ¢(y))

Ayd+pU(y)P "o+ hj(y,p) =0 inR" (2.14)

where

n—2

s 1) = sy Zoss (9) — pU ()7 (u”) )

has a solution with ¢(y) = 0 as |y| — oo if and only if h; satisfies the solvability
condition

/n hi(y, 1) Zn41(y) dy = 0.
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The latter conditions hold if the parameters p;(t) satisfy the following relations:
n—2 .
p=1 iy = e\, A= —9 forall j=2,...k (2.15)
fhj—1
where
LUPT Z 0 d —2 | UPd
Dfer U7 i dy _ pyyn=2 o Urdy (2.16)
Jon Zi 1y 2 Jan Z3dy
Assume now that n > 7. We let jip = (101, - .. tox) be the solution of (2.15) in
(to, 00) given by

c = =U(0)

poj(t) = Bit=%, t € (to,0) (2.17)

1/n-—2\"" 1
== o =1,
“ 2<n—6) g STk

and the numbers 3; are determined by the recursive relations

2
n—2 2 n=2
51 :].7 5j :< (lj1+n_6> jn_lﬁ.

where

n—=6
If n =6, we let fip = (po1, - .. por) be the solution with pg;(t) — 0, as t — oo of
B _ ,
w(t) =1, /Tj = —c,uj_zl, j=2,...k. (2.18)

To simplify the exposition, from now on we will focus on the case n > 7. From
(2.15), we see that setting
Hoj
Xoj(t) = ——"—(t)
Ho,5—1
we have

hi(y, 10) = AoZ h(y),  B(lyl) = cpU(O)U (1)P~" + Zn 11 (y).

Since fR" hZ,.1dy = 0, there exists a radially symmetric solution ¢(y) to the
equation
Ap+pU(y)P ¢ +h(ly) =0 in R"
O(ly|=2) as |y| — +oo. Indeed, writing with some abuse of
(ly]) the above equation becomes

such that ¢(y)
notation ¢(y) =

<1

_ n—1- _

L[g] = ¢" (p) + ¢'(p) = —h(p), p€(0,00) (2.19)

We observe that £[Z,+1] = 0 and that there is a second linearly independent Z (p)
with £][Z] = 0, with Z(p) = O(p?>~") as p — 0 and Z(p) = O(1) as p — +o0, which
we can choose so that the variation of parameters formula

80 = 200) [ W) Zors 00"+ Zos ) / R 2y tdr (2.20)

gives a solution of (2.19). Since [;* h(r)Zps1(r)r"~'dr = 0 the above solution is
regular at the origin and satisfies ¢(p) = O(p~2) as p — +o0.
Then we define ¢g;(y,t) as

n—2

B0 (y:t) = Ao/ (y)- (2.21)
Thus ¢g; solves equation (2.14).
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In what follows we let the parameters p;(t) in (2.2) have the form [ = fip + i1

or

1 (t) = poz(t) + pa; (1), (2.22)

where the parameters fi1;(t) to be determined satisfy for some small and fixed ¢ > 0
. n=2 _4

pojling (D) < Aoj(t) =77, (2.23)

Condition (2.23) implies
i(t
lim nu'lj( )
t—=00 [1g; (t)
We will also assume that the points &; in (2.3) satisfy

n—2

pol& ()] < Aoj(8)Z 7.
It is convenient to write

AAQ:Jﬁ“U:&Mﬂ+Mﬂm j=2.. .k
P

We observe that for some positive number c¢; we have

n2Yi—2
)\Oj(t) = ijﬁ(rfg)

With these choices, we have that E}[po;; o, 6] = 0. The expression E;[pq;; [, 5} in

(2.13) can be decomposed as

= n—2 n—2
Ej[po53 fio + fir, €] = [mife; — pojfog] Znsa(y;) — pUP(y5) P‘j Ay } U(0)
1585 - VU (y;)
— o2 = z —§5(t)

=p; * Djli] + 6,1, €],y = )

where for j =2,...,k

—

~ . . n—2 ned i :
Djliir, €] =(frojpaj + tojfg) Znv1(yi) + TPUP l(yj)U(O)/\of ﬁ + 1;& - VU(y),
)=

i €] _ n—2 n=2pq;
0,71, 8] = — 04(13;) Zus () — pUP ™ (U (0) " 2 Ag7 1=
2 Hoj—1

_ n-2 M1 H1j—142
FRUP ) O PR
j— j—

(2.24)
with this choice of g;, we observe that the first term in (2.10) takes the more
explicit form

X . : x—&(2
—X0Ur = L (I + )1 Znia(yr) + 6 - VU(@)], i = &
Hy? H
Define
D+lii = R . : _ €T — 51(t)
i€ = T+ p) 1 Zny (1) + & - VU )], = e (2.25)
We define our approximate solution to be given by w,. = u.[f1, 5_] as
ue = U+ ¢ (2.26)

where U is defined by (2.4) and ¢ has the form (2.6), with ¢o; defined by (2.21),
and p; defined by (2.22) and (2.17).
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3. THE INNER-OUTER GLUING SYSTEM

We consider the approximation u, = w.[fi1, €] in (2.26) built in the previous
section and want to find a solution of equation (2.1) in the form u = u, + . The
problem becomes

Slus + ] =
— @+ Ap + f(us)p + Ny, [p] + Slus] =0 in R™ x (tg,00) (3.1)
w(-to) = ps  in R™

where

Nu[e] = flus + @) = f'(us)p — f(us)
the function ¢.(x) is an initial condition to be determined, and in (2.1) we have
ug = Ux(+,0) + Py

We consider the cut-off functions n;, (;, 7 =1,...,k, defined as
|z — €j(t)|)
n;(z,t x( :
00 =X T o

Gz, t) =x (W) “x (W)

‘We observe that

(28) = L for [z —&;(t)] < Ruj;(t),
M%) = 0 0 for |z —&(t)| > 2Rpu;(t)

and
1 for 2R () <o —&(8)] < Ruy(t)
ot = { 0 for |2 > 2Rpu;(t) or |o— &) < R y(0).
We will in addition choose an R to be a t-dependent, slowly growing function, say
R(t) =15, t>t (3.3)
where ¢ > 0 will be later on fixed sufficiently small.

We consider functions ¢;(y,t) j = 1,...,k defined for |y| < 3R and a function
P(z,t) defined in R™ X (tg,00). We look for a solution ¢(x,t) of (3.1) of the form

k
p= Z win; + 9, (3.4)

=1

pj(x,t) = (713;:1% (xgj(t),t>.

Let us substitute ¢ given by (3.4) into equation (3.1). We get

where

n42 N

k
Sluw + @] = nj(=0up; + Aupj + F'(Us) s + G (U)W + iy * Dy, £])
j=1

— —

— Wy + AU + VU + Blg| + N(o, U3 i, §) + B
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—

Here we denote for ¢ = (¢1,...,¢x), = (1, .-, pux), € = (€1, .., &)
k k
Blg| = " 2Van;Vas + (=0m; + Aam)ps + > ni(f (ue) = £/(U;)g;
j=1 j=1
Ky o, 2 RS AR IL A
- . k k (3.5)
N (@i, 8) = Nu, (D _jmj + ), V= f(u) =Y Gf(U)),

Jj=1 Jj=1

n+2 -

k
Eout — S[U*} _ ZﬂJ_TD][/I17£]nJ
7=1

where D; [71,€] is the operator defined in (2.24) and (2.25).
We will have that Su. + ¢] = 0 if the following system of k + 1 equations is
satisfied.

n—2 5
Pl

— u30bj + Dy +pU W) 5 + GU )Py = W+ Dy, ] = 0 (3.6)

— U+ AU+ VU + Blg] + N (b, U; i, &) + EO* =0 (3.7)
In the next sections we will find a solution to this system with the appropriate size.
We will be able to do that only choosing properly the parameters fi; and the points
E. We shall formulate this problem creating a system involving the parameters as
a part of the unknowns.

4. THE LINEAR OUTER AND INNER PROBLEMS

In order to solve system (3.6)-(3.7), in this section we find inverses and corre-
sponding estimates for their main linear parts.

4.1. The linear outer problem. In this section we consider the issue of finding
estimates through barriers for the unique solution of

vy = Ay + g(x,t) in R™ x (tg,00) i1
¢(t0) =0 inR" b
given by Duhamel’s formula
1 ¢ ds lz—yl|?
Y(x,t) = T g)(x,t) = 7/ Q/ e 19 g(y,s) dy. (4.2)
@) =Tl ) = v | o | (

where g € L®(R™ x (0,00)). The class of right hand sides g that we want consider
in this section are those needed to solve the outer problem. We begin with a class
of right hand sides that are better expressed in selfsimilar form. Let us consider

the function
1 T
o) = gzt ()

where 0 < d < 5. We assume that for a positive function h we have

Lemma 4.1. There exists a constant C' such that for all g in equation (4.1) that
satisfies (4.3) and the solution v given by (4.2) we have that
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(1) If h is compactly supported then

¢ _
W) < e

(2) If for some m > 2d we have h(z) = W, then
ctz 4
7t < Tm
e

Proof. We look for a supersolution of problem (4.1), for g satisfying (4.3) of the

o U t) = & f (j%)

=ty + A+ go(z,t) <0
is equivalent to the following relation for f(¢)

La[f]+n(§) <0 &€ (0,00) (4.4)

The differential inequality

where
n—1 1
Lalf] = f"(§) + Tf’(é) +df(€) + 5€f()
Let us assume that d < § and that h is compactly supported. For d = 5 the

following function is an exact solution.
&2 3 22 1 o s2 1
f(6 = e_T/ eTp _"dp/ e~ Th(s)s" "ds
0 P

This f is also a positive supersolution to equation (4.4). Inequality (1) then imme-
diately follows.

and choose as a supersolution for all £
sufficiently large a function of the form f(¢) = Eg for a large enough large C. In

fact for m > 2d we will have Ly[f] + h < 0 for £ > M. If we consider the usual
smooth cut-off function x(s) we have then that

F&) = (1 —x(&=M)FE) + f(6) (4.5)
will satisfy the differential inequality Lg[f] + h < 0 in case that

Let us now assume that h(§) = @

Lalf)+ b =Lalfil + 207 + (" + "2 + 5607

+ @ =x)(Lalf] +h) +xh < Lalfi] + he(€) <0
where the function h. is compactly supported. Using (1) we then find a positive

supersolution f; of La[f1]+|he(€)| < 0 with a Gaussian decay. From here and (4.5),
relation (2) readily follows. O

Next we consider a class of right hand sides g which satisfy (4.3) for a class of
functions gy which are not of self-similar form.
Let us consider a positive function A(t) such that for some a > 0

Mt) =t Y14 0(1)) as t— +oo, (4.6)
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and a point £(¢) such that

HEDI _
N o(1), as t— +oo.

For numbers m > 2 and « < m we consider the function ¢;(z,t) given by

B 1 1 || _x—&(t)
o) = s (V1) 0~ S o

We consider again functions g with
lg(z,t)] < gi(z,t) forall (z,t) € (tg,00) (4.8)
and find suitable barriers for (4.1) dependent on whether m < n or m > n.

Lemma 4.2. Let us assume that m # n. There exists a C' > 0 such that for all
g satisfying (4.8) with g1 given by (4.7), the solution ¥ (x,t) of (4.1) given by (4.2)
satisfies the inequality

AT 1 =2 x—&(t
Wz(m,t)|§C[W+t—ge ] oy = (t)

where m = min{m,n}, and setting b = a(im — 2 — o) + 252, we write
;_ {g if b>%
b if b<g
Moreover, we have the following local estimate on the gradient

AT =)

Veb(z,t)| < CAT'RT <R.
V(e 0)] < o i
Proof. We need to find a positive supersolution to
— s + A + go(x,t) <0 in R™ X (tg,00). (4.9)

Let us consider the radial solution P(z) of the equation

—A,P(z)=—— inR"
) =1pm
given by the formula
[} r n—1
P(z):2/ drl/ P dp.
) T Jo 14T
Clearly we have
C
= VP +PE) € s

where m = min{m,n}. Let us assume first m > n. With no loss of generality we
take m < n + o for an arbitrarily small, fixed ¢ > 0. Let us define

Dl t) = A(t) P <x Aé)(t))
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and compute for |z| < t2, using assumptions (4.6),
E(z,t) == — 4 + AY + gi(z, 1)
A A £ 1 1
:)\_O‘{— -V, P —-P v,P ,,_77]
< AT [c 1 1 } x—&(t)
L+l - Pl YT

Reducing the value of o if necessary, we get that the above quantity is negative
provided that |z—&| < 27, with an arbitrarily small ¢ > 0. Now, for [z—&| > t2—¢

we have
An72fa

C
E(x,t) < EW
c 1
T pHn—2ma)at 252 |pmg (g — £) 2 4 ¢ (n-2)e
c 1
T ftn—2-a)at 252 —(n=2)e |g=3 (g — £) P2 4 1
c 1

S Al :
B2 (@ -2 +1
Now, we write ¢ = x((@ — £)/Vt) + 1. Then relation (4.9) amounts to finding a
positive ¢, satisfying
1

— 01 + Ay + e

h((z - €)/V1)

for a certain smooth, compactly supported h(£). Then Lemma 4.1 provides a
positive supersolution of the type

lz—¢|2

_ Cc
Yi(x,t) = tlﬁe 4

The proof is concluded in the case m > n. The proof for m < n is the same, in fact
slightly simpler since we can directly take in the above argument o = ¢ = 0.

To get the local estimate for the gradient, we write ¢ (x,t) = (25, 7), with

)
4z = X\=%(t), and observe that

~ ~ AT Az
T = A +g ’ ) g ) S T 1 m s
b= 84505 7), 137 < T )
We have already established that

~ Ao
<C—F-—— R.
P < O o<
Standard parabolic estimates give, for 71 > 7(¢o), for fixed M > 0,

IV ()l Lo (Bar0)) < C 1%l 2o (Bans (0)x (ri—1,71)) + G120 (Bans (0)x (r1=1,71))

<COA™™
In the original variables, we get for t > tg,
AT r—£
RAV U (x,t)| K C———, f —| < R.
Voo ) < O ey for 17
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We apply the results above to derive estimates of the solution of (4.1) for a right
hand side g controlled by several different weights, that are designed ad-hoc to treat
the outer problem (3.7). Let us fix o > 0, a > 0 and S with

O<a<n—2 2<f<n
and define the following weights:

won(a.t) = t—1i-e N <x§1|>

(1+‘x_£1|)2+a \/i (4 10)
wii(x,t) = L X [z = &
e (1+ |z — &) Vit
and for 2 < j <k,
n—2
e AT o = &l
w1>1‘7t = n j_, X( — j)
]( ) Iu/j# (1+|$#§J|)2+a MJ
o (4.11)
n—2
* 7 AT € _é-
wlj(x’t) = 1 Jm—ij aX( ﬂj|>
i ( ‘HTD J
c
waj l’,t i . ¢
0 sy
)\";2 (4.12)
. e j
sz(zat) = "o o
T e
and
() :
w3 =
’ B
(VE+[])
o) 1 (4.13)
3\T,1) = ——————(5—5
(Vi+lal)”

We claim that the following estimates hold

Proposition 4.1. Let us consider g and ¢ as in (4.1) and (4.2). There exists a
C > 0 such that:

(1) If lg(z, )] < wii(z,t) then
" 1 _lz—&?
et < C(whet) + e ),
(2) If for j > 2 |g(z,t)| <wij(x,t) then
. . 1 l=—gl?
[Y(z,t)] < C(le(%t)‘f'wzj(xat)‘i'ge — )

(3) If for j > 2 |g(z,t)] < woj(x,t) then

e, t)] < C(why(zt)+

| 2

1 ==t )
— € 4t .
t2

(4) If |g(z,t)| < ws(z,t) then
[(z,t)| < Cwi(z,t).
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Proof. Claim (4) directly follows from Lemma 4.1. We also see that Claims (1) and
(3) follow from Lemma 4.2. It only remains to prove Claim (2). Let us write

_nt2

M 2
4 (@ = &)

where 0 < a < n—2. We claim that the following estimate holds: there is a positive
supersolution ¢ (x,t) of

go(w,t) = 7N x (e = &)

e = A +go(x,t) inR" x (tg,00) (4.14)
such that
_n=2
M 2 _ n=2 1
Y(x,t) < { - TN x (s e =&
I‘H,Ujl(x §J)|a ! ( ! ])
n—2
0. 2 n-2  a n le—g;1?
+ _ffj SN T t2 +t*§e*47tj}
L+ |pg (z = &)

To prove this, we consider first the problem

_nt2

M 2
1+ |p; Hx = &) PHe

n—2
Yl > AP+ t7oN; 7 i R x (tg, 00).
According to Lemma 4.2 there is a positive supersolution of this problem with

n—2

2 2
. n—2 le—¢&;|
Hj —oy 3 -z - =

— . +t 2e 1t

T gl |

Then, 1 satisfies (4.14) if ¢ = ¢'n + ¢ where n(z,t) = X(ﬁj_l(:c —¢;)) and
e = A+ 2V Vi o+ (An — o)yt

Dz, t) < C[

Now we observe that

n+2
2

i
L+ g (@ = &)+

299!V 4+ (Ap—n)ypt| < CAT RO

The existence of 1) with the desired bound then follows from Lemma 4.2. O

For a function h = h(z,t), we define the norm ||h||s 3 as the least number
M > 0 such that
k
|h(z,t)| < MZ (w1 + wej +wi1 +ws)(x,t) forall (x,t) € R"™ x (to,00).
j=2

Similarly, we define the the norm ||h|/+,q,0,5 as the least M with
k
(2, t)] < MY (wh+ws;+wi+ws) (2,t) forall (z,t) € R"x(t,00). (4.15)
j=2

As a consequence of Proposition 4.1 we find the following estimate, fundamental
for our purposes.
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Corollary 2. There exists a C > 0 such that for all g with ||gl|a,0,3 < +00 we have

[¥ll«.a,0.8 < Cliglla,o,p- (4.16)
where 1 = T°4[g] is the solution of (4.1) given by (4.2).

4.2. The linear inner problems. Next we will state the necessary facts to solve
the inner problems (3.6). We omit the index j and then consider the linear equation

for ¢ = ¢(y, t)

p(t)? b = Dy +pU(y)" "o+ h(y,t), to<t, |yl <2R, (4.17)
where u(t) ~ t=177 for a suitable 0 > 0. Here R is a large number, possibly
t-dependent.

Our purpose is to solve (4.17) for a ¢ that defines a linear operator in h and has
good bounds in terms of h, provided that certain solvability conditions for the right
hand side are satisfied.

One observation is that the change of variables

t
7(t) = 79 +/ p(s)"2ds ~ 23

to

transforms equation (4.17) into

¢r =Dy +pUW)P o+ h(y,7), 1<, |y <2R. (4.18)
Let us recall some basic facts on the elliptic problem for functions ¢(y)
Lo[¢] := Ay¢ +pU(y)" "¢ = h(y) in R" (4.19)

Using a decomposition in spherical harmonics

$(y) = > dilly))Oiy/Iyl)
=0

where ©; designates a basis of eigenfunctions of the problem —Agn®; = 1;0;. The
above system decouples into an infinite set of equations for the radially symmetric
coeflicients. The following facts are standard.

(1) The bounded functions satisfying Lo[Z] = 0 are precisely the linear combi-
nations of the n + 1 functions

. n—2
(2) If h(y) = O(Jy|~™) as |y| = +oo, with 2 < m < n, then Equation (4.19)
has a decaying solution ¢(y) = O(|y|>*~™) if and only if

h(y)Zi(y)dy=0 forall i=1,...,n,n+ 1.
R’Vl
In the radial case, this is what formula (2.20) directly yields.
(3) The eigenvalue problem

Lo[f] = Mf, feL*®R").

has a unique positive eigenvalue A\g > 0, which is simple and with a positive
eigenfunction Zy(y) with

n—1
Zo(y) ~ [y~ T eVl as [y = oo,

which we normalize so that fR" ngy =1.
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While Zy does not enter in solvability conditions in the elliptic problem (4.19),
it plays a crucial role in solving for ¢ uniformly bounded its parabolic counterpart
(4.18) in entire space, say

¢r = Lolp] + h(y,7) in R™ x (79, 00). (4.20)
In fact if we set
p(T) = - oy, m)Zo(y) dy, q(7) = - h(y, ) Zo(y) dy.
then we compute
dp A B
D7)~ xap(r) = a(r).

This ODE has a unique bounded solution

p(r) = / o) g(s) ds

and hence its initial condition is imposed: we need one linear constraint, on the
initial value ¢(y,0),

[ o0ty = @n= [ [ h ozt dys

Let us consider then the initial value problem for (4.20)

or =Lo[p] + h(y,T) in R"™ x (79, 00)
o(

x,0) =0Zy(x) (4.21)

Let us assume that for some 2 < m < n and v > 0 the right hand side h satisfy the
decay conditions

-V

T

h ~—
(y,7) T+ e

My, 7)Zi(y)dy = 0,i=1,...,n+1, (4.22)
for all 7 € (19,00). Let us consider as an approximate solution that obtained by
solving the elliptic equation

Lolg] + h(y,7) =0  inR"

so that
_ T_V
,T) ~ ——————, 4.23
307) ~ T (4.23)
and formally, the error of approximation is given by
_ —v—1
— (Y, 7) ~ T2

With this choice we obtain an improvement in the region |y| < /7 for error of
approximation, since there —¢, has smaller size compared with h. We would like
to find a true solution of (4.21) with the behavior (4.23), but according to the
above discussion this can only be achieved with the choice a = (¢, h). It is then
natural to consider the problem restricted to a ball Bag in R™ as in (4.18) where
R = R(7) < /7. In fact what we can establish is that for h satisfying (4.22) there
is a solution ¢ of (4.21) defined in Bog that satisfies an estimate similar but worse
than (4.23). That estimate however coincides with (4.23) for |y| ~ R, which is
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enough for our purposes. Let us be more precise. Let us denote, for R(t) = t°,
€ > 0 small and fixed,

Dar = {(y,t) / t € (to,0), |yl <2R(1)}.

and consider the initial value problem

e = Ayd+pU(y)P~ o+ h(y,t) in Dag (4.24)
#(y,0) = €Zy(y) in Bag, '
for some constant ¢, under the orthogonality conditions, for ¢ € (g, c0)
/ hy,t) Z;(y)dy =0 forall i=1,...,n+1. (4.25)
Bar

Let us fix numbers 0 < a < n—2 and v > 0 and define the following norms. We
let ||h]|2+q,, be the least number K such that

p”
hyt) < K—Y  inp
| (y )| = 1+|y‘2+a 2R
According to the above discussion, in the best of the worlds we would like to find a
solution to (4.24) that satisfies ||@||xa,r < C||h]l24a,,- We cannot quite achieve this
but, let us define ||@||.+q,, to be the least number K with

e p@®)”
lo(y,t)] < KR 1ﬁy)|n+1 in Dyg. (4.26)

We notice that
w(t)”

O S 6l xa,r
6y, )] < [|l+a, T+ e

The following is the key linear result associated to the inner problem.

Lemma 4.3. There is a C > 0 such For all sufficiently large R > 0 and any h
with ||h||24q,, < +00 that satisfies relations (4.25) there exist linear operators

¢="T,"h], (=[]
which solve Problem (4.24) and define linear operators of h with
R + 111+ [yD Vbl + [8llkar < ClRllb2+a-
Proof. As we have discussed, Problem (4.24) is equivalent to
¢r = Dy +pU)' o+ h(y,7) inlyl <2R, 7€ (10,00)
¢(y,0) = €Zy(y) in Bag.

The result then follows from Proposition 5.5 and the gradient estimates in the
proof of Proposition 7.2 in [5]. We remark that we also have the validity of a
Holder estimate in space and time with the natural forms. (Il

5. SOLVING THE OUTER AND INNER PROBLEMS

In this section we will solve the outer-inner gluing system (3.6)-(3.7), setting it
up as a system in ¢, 1) and ji; that will involve a fixed point formulation in terms
of the linear inverses built in the previous section.
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5.1. The outer problem. Let us denote, for R(t) = t°, € > 0 small and fixed as
in (3.3),
Dar ={(y,t) / t € (to,0), [y| < 2R(t)}

and consider a k-tuple of C' functions

g(yat) = (¢1(yat)a ) ¢k(yat))v (yat) € Dg.

In addition we consider a bounded function z.(x) that satisfies the assumption
(1.10) in Corollary 1 namely

2@ < 5w (51)
with a > ”T_Q Let us consider the solution Z*(x,t) of the heat equation
{ Zf =AZ* inR" x (tg,00)
Z*(2,to) = 2. (x).
Then we have
|Z%(z,t)] < ¢ (5.2)

(VE+ el
Indeed, the solution of the initial value problem is given explicitly by the convolution

formula
1 _le—y)?

Z*(z,t) = W/Rne Sz (y) dy.

It is not restrictive to think that o < n. By the decay assumption (5.1), for some
constant C whose value changes from line to line, we have

_lz—y|? 12]2

Zeolsgy [ S cwso [
t2 Jgo 14 |yl re 14 |2 4 V12|

1212
1 - 1
<O | —— d:<Cr—,
t3 Jrn |55 + 2l (tz +|z|)*

which concludes the proof of (5.2).
Let us set in the outer problem (3.7),

V(z,t) = Z"(z,t) + (. 1)
and impose initial condition 0 for ). Then the outer problem in terms of ¥) becomes

{ b =) + G(6, 05 i, ) in R™ X (tg,00)

¥(-,to) =0 in R™, (53)

where
G(d, 03 fir, ) = Vo + BIG| + VZ" + N (6, 2" + s jig + fir, &) + B
and the components of G are defined in (3.5). We express (5.3) as
v = TGS, 430, ). (54)
where 1) = T°%[g] is the solution of the heat equation given by (4.2).
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5.2. The inner problem. We will formulate the inner problem (3.6) for the func-
tions ¢;(y,t) using the setting introduced in Lemma 4.3. Let us write Problem
(3.6) in the form

w30h; = Dydy + pU ()" ¢ + Hi(¢, fir,€) in Dag (5.5)
where
Hi (Y, i1, €) = H; (@, fir, €) + Djliir, €]
with
Hi (4, fir,€) = GU )P~ i (1) (2" + ) (5.6)
and, as in (2.24)-(2.25)
Dyl €y, t) = (oghur () + pogitn; (£) Z(y) + = 5 U () U (0)20; (1) %(t)

+ & -VU(y), for j=2,...k
Dy, €y, t) = (14 ) [ Z(y) + & - VU(y)).

First we modify the right hand side of (5.5) to achieve the solvability conditions
(4.25), and introducing an initial condition as in (4.21). We consider the problem

n+1
pi0id; =Dy s +pU ()P~ & + H, (b, jin, €) = > djilty, fir,§] Zi  in Dag
i=1

¢ (-, to) =0Zo(y).
(5.7)
where

3 Hj s M1, ‘) ,t Z,L' d
djil, fir, €](t) = JBon (fw MZi;()zd; (y) dy
Bag

Let us denote by 71” the linear operator in Lemma 4.3 for p = p;. Then (5.7) is
solved if the following equation holds

¢; = T H;( i), j=1,....k (5-8)

In order to solve the full equation (3.6), we couple these equations with

—

djil, [1,€](t) =0 forall te(tg,00), j=1,....,k,i=1,...,n,n+1. (5.9)

The equations (5.9) can be expressed in a quite simple form: Equations (5.9) for

—

i=n+1, djn,1[, 1, = 0 are equivalent to

. n—4a; L o=
f115 + TTJNU + Mj i1, fin, 6] =0, t € (to,00), (5.10)
where Mj pq1 = M; 1[0, ﬁl,a is given by

157 o S PP  Zr )0+ 22) s + 1)
Hoj fBR Z3 1 (y)dy ’

and 6(t) is a bounded function. Furthermore, Equations (5.9) for i = 1,...,n,

—

dj i, i1, €] = 0 are equivalent to
éj+Mj[w’ﬁlag] :07 (511)

= 0
My i, €10) = 0 1)+
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where

= i UP L (y)VU () (4 + Z.) (yy + &;.t) d
Myl 8] = 7 L2 PV OVU OO + 20 + 650y

Proof of (5.10)-(5.11). Formula (5.11) follows by a straightforward computation.
Let us consider (5.10). For each j, we have
|

djny1[, f1,€](t) = (frojhens(t) + pojfra;(t))
B n—2U(0) fBRPUPﬂ(?J)ZnH(y) dy/\"T*‘1 H1j (1)
2 fBR Z721+1(y) dy 07 Ho,5—1
137 L PUP ) Zoa (0) (@ + Z7) gy + &) dy
fBR Z72l+1(y) dy
(5.12)
Since
| w0 ) Zenwdy = [ o0 ) Za ) dy + Ol )
Br
n w1 (y)dy + O :
/BR 1y /Rn 1y (R 7)
we get

VO 5, U W) 2y oL
fBR Z’?H—l(y) dy R?
where c¢ is the positive constant defined in (2.16). We conclude that the first two
terms in (5.12) are given by

n—2U(0 fB pUP™ ()Zn+1(y)dy)\”T*4 1

(frojp15 () + pogfuns(t)) — ;
o Y 2 Sy Zasa(y) dy 7 pog-1

. Hij . n—2 2
= pojH1j + MT)j [MOJ‘MOJ‘ +— 9 (C+O(R2))/\OJ2 }

. n—4 1 /\0]‘2

= Moj |H1j + T(C+ O(ﬁ))T%jﬂlj
4 o O(+)

= Hoj [le + TTJMU + tR‘Qum} ~

O

Next we formulate Equation (5.10) as a fixed point problem using the initial
value problem
n—4aq;
S = B0, 1 (to,)

H1j (tO) =0
We recall that 110;(t) ~t~* and we want to solve this equation for a function p(t)

with a decay slightly faster than this. For a number b > 0 and a function g(t) we
define

ot (5.13)

lglls == sup [t°g(t)| (5.14)
t>to
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The unique solution p(t) of (5.13) defines a linear operator of 5(t) represented as

n—4

z Y 6(s)ds

u(e) = Slpl(e) =5 [

to

Clearly, if b < "7_4% for any j = 2,...,k, we have the validity of the uniform

Cl-estimate
tllbr + lulls < CliBllb+1,  u(t) = S;61() (5.15)
Also, we write Equations (5.11) as a fixed point problem using the solution to
E=Z(t), te (t,o0)
defined by
{0 =PE) = [ =
for vector-valued function =. We have the validity of the uniform C'-estimate

I€llo+1 + 11Ells < Cl=lb41, £(8) = PE]()

We formulate equations (5.9) as follows

{ Hi; = Sj[_Mj,n+1(w7ﬁlag)]

§ = P[=M;(¥, fi1, €)]-

5.3. The system. Solving the system of (k + 1) equations given in (3.6)-(3.7)
reduces to solving (5.4)-(5.8)-(5.9) in ¢, ¢, fi; and £. We formulate the system
(5.4)-(5.8)-(5.9) as follows

¢ = Tout [G(QE’, ¢a ﬁl)é]

= TOH (0,6, G=1,... .k
?; o [Hy (¥, i f)] } J | (5.16)
prj = Si[Mjni (¥, i, €)], j=1,....k

—

gj :P[M](w7ﬁl7€)]? .7:1,)]{:

We now fix the number o introduced in (2.23) to be some small, positive number

satisfying o < ”T*(Saj for all j = 2,..., k. We assume in what follows that
k
I llo == 11 li4o + D lijlhsas 4o + lajlla,40 < 1 (5.17)
j=2
and
k .
€10 := D N€jll1tas 4o + 1€ llas 4o <1 (5.18)
j=1

where the norm || || is defined in (5.14). The function ¢ will naturally be measured
in the norm (4.15). Let us assume that ||¢|/« 4,8 < 400 for some number ¢’ > o,
0 <a<1and B > 2+ a where the number a > "T_Q chosen in the bound (5.2) for
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Z*. Here o is already fixed in bound (5.17). Then the following pointwise estimate
for the operator H; in (5.6) holds:

C n=2
T IO @+ 20Dl sy <o <)

C )\%
L+ [y[* 77

|ﬁj(wvﬁ176(yat)| S

< = [ 191,070,870 + 1}'

(5.19)
n—2
Consistently, for the operator M; ,,+1 we find, using that \ugjl)\j <ottt

M1 (9, i, (O] < 477 ([0, + 1. (5.20)

Moreover, consequence of Lemma 4.2, we have

|I~{j (1/}7 /117 5)(:% t) - f{j(w7 67 6)(:[/, t)|

C n
< T4 [ ||:uj(t) 2 VIW + Z*)('v t)‘lLW(R*1/Lj<\m—£j|<Ruj)}
1+ [yl
n—2 ’
C )\j 2 tfo'

< e o 11,
— 1+|y|4 R “WH ,0',a,8 + }
(5.21)
n—2
Consistently, for the operator M; we find, using that |ugj1)\jT| <Ot

. t—aj—l—al

|M;(, fia, §) ()] < T[ll¢|\*,w,a,ﬁ/+1]~ (5.22)

Bounds (5.19)-(5.21) and (5.20)-(5.22) roughly tell us that in the inner problems
¢; = HT[H]], the norm [|¢;l«,q,,, in (4.26) is expected to be bounded, where
0 <a <2, u=pu;and v; is the power such that p;(t)"7 ~ ¢t~ ~177. Let us also
fix a = 1. We write in what follows

k
165050 = N0illetss 19lla =D 15l (5.23)
j=1

Let us choose numbers
0<a<l 0O0<o<o <od'<l, 24+a<pf <ap B'=pa (5.24)

and measure 1 in the norm |[¢||« 4,0-,3- A major role in the rest of the proof will
be played by the following estimate for the operator G.

Proposition 5.1. Assume the parameters p; have the form (2.22) with [i1 satis-

fying (5.17), and the points € satisfy (5.18). Then there exists £ > 0 such that for
all sufficiently large ty we have

1G(¢, 3 1, ) lasorpr < to " (L+ 1l waoror HIIL oo o+ I Dllo + 1 SIIE). (5.25)
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The fixed point problem. First we define the space X of tuples of functions
(¢, 1, ji1, &) where ¢, V,¢ are continuous in Dag, 1 is continuous in R” x [0, oc)
and fi1, £ is of class C* [to, o0) and such that

||($»1/1»/71»6||X = H/jl”a + Hf_]

X is a Banach space endowed with this norm. It is convenient to formulate the
fixed point problem (5.16) in the form

((;a 1% /j17 E) = f((ﬁ, 1% ﬁ17 5) in X (526)
where T = (T*, T2, T3, T%), with

0.0 T 9llo + 1%llk0,87.a < +00.

T2(6, 9, fir, &) = TG (¢, i1, E)]

TH, 0, i1, §) = T H; (W, fir, €],

T, 11,E) = S[Mjnir (TG, 0, 1. €), 1, )],

THG ¥, i1, €) = TIMH(T[G(, . i, €), i, §)] G=1,....k.

Using Estimates (4.16) and (5.25) we get that

”TQ((E’ Y, ﬁlag)”*,tf”,ﬁ'a < CHG((;7w7ﬁ175)HU” B ,a

< to (L Wlvao s + 1912 005 + 16l + I1SIIE).
(5.27)
for some ¢ > 0. Now, from estimate (5.19) and the bounds in the definition of the
operator 7;’:’ we see that

|‘Tj1($7w7ﬁ176|
and hence for some ¢ > 0,

1T} (6.0, . E)lje < " (1+ 1Y
Similarly, estimates (5.15), (5.20) and (5.27) yield

o < C(L+ 1Yl ac,s)

w,a,07,6")- (5.28)

T2 (6,4, i1, E)le < t5 N T2 (b, 0, fin) |l ov

< Ctg > (14 9 llarer 5 + 1GIL 4 o 5 + 16llo + [112)-
(5.29)
Let

—

B= {($a¢7ﬁ1a§) eX / ||($,¢,ﬁ175)||X < 1}
From estimates (5.27), (5.28) and (5.29) we find

16,9t )llx < Kty* forall (4,11, € B.
for some fixed K. Hence, enlarging tq if necessary, we find that

T(B) C B.

The existence of a fixed point in B will then follow from Schauder’s theorem if we
establish the compactness of the operator in the topology of X.
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Compactness. Thus we consider a sequence of parameters (an,ﬂin,ﬁln) e X
which is bounded. We have to prove that the sequence T(¢n,¥n, fi1n,&n) has a
convergent subsequence in X. Let us consider first the sequence

(lgnj = Tg‘l(d_;mqu /jlnvgn) = m?[hnL b, = E[J(Z/Jmﬁm,gn)
From the above estimates, we see that h,, is locally uniformly bounded in Dg, and
then so is ¢y,;(y,t). Writing ¢,,;(y,t) = gi;nj (y, Tn(t)) where 7,(t) = fti) ﬁ, we
see that ¢,;(y, T) satisfies

arénj = Ay(bnj + Bn(ya T)

where h,, (y, 7) is uniformly bounded, and with a uniformly smooth initial condition.
We conclude that for any compact set K C Dog and points (x;,7;) € Dar we have
that for a fixed v € (0,1)

Vi (Y1, 71) = Vi (Y2, )] < Cr[lyr — yo|” + |71 — 72| 2]
But if 7 = 7,,(t))

|70 (t1) — Tn(t2)| < Ckx max ,un(s)_2|t1 — to
s€[0,T]

for a certain fixed T' > 0. This estimates implies the local equicontinuity of the
sequences ¢n;(y,t) and V,d,;(y,t). Hence there is a subsequence (that we still
denote the same way) such that they converge uniformly on compact subsets of
Dsor. Now, from the assumed bound on ¢ and the a priori estimate obtained we
have that

R’I’L

[Pns (Y, )] + (L+ |y Von;(y, )] < CE77 A;% ¢ [yt

which implies that for some v > 0 and some o < ¢ < ¢’
Rn

[0y, )] + (1 + YD Vén;(y, 1) < Ct77 )\j2 W

This implies that the local uniform limit of ¢,,;(y,t) is in fact global in the norm
Il l;,o- This gives the compactness.

Let us consider now

1/;71 = Tz(é’mwmﬁlnagn) = Tom[gn]a gn = G(d)nﬂ/}na ﬁlnvgn)

Since g, is uniformly bounded, we have a uniform Hélder bound for ), (z,t) on
compact subsets of R” x [0, 00). Hence 1), (x,t) converges uniformly (up to a sub-
sequence) to a function 1. The convergence also holds in the norm || ||«.o.q.5 as it
follows of the further uniform decay (in space and time) quantitatively measured by
the boundedness of the operator G in the norm || ||, 4,5+ This convergence yields

in straightforward way that of T3(q§n, Uy fi1n, &, ). The proof is concluded.

Conclusion. From Schauder’s Theorem, we have the existence of a solution to the
fixed point (¢, v, fi1, ) problem (5.26) in B. In fact we see that H((E, U, i, |x <0
for any given small § > 0 after having chosen ¢y sufficiently large. Then we have
that the function



BUBBLE TOWERS IN THE CRITICAL HEAT EQUATION 28

— —

k
UWH@J%mmﬂ+¢@ﬂ+§)h3f@<xugﬁ>+T@ﬁ

J=1 Wy !

is a solution to (2.1), satisfying (1.7). Notice that by construction [i(tg) = fo(to)
since ﬁl (to) = 0, ¢($, to) = 0 while

(=& N _, o, [2=&()
%( [ ,t0)£]20< 19(0) )

with limt_>oo[§j+1(t) — §j(t)] = 0 for ] = 1,. . .,k — 1. Write Ej = 69 + Zjl and
E = E_D + 5_1 where ¢° and 5_0 are the adequate values for z, = 0 and wg(x) the
corresponding initial condition. To have the energy density satisfying (1.7), £€) = 0.

Then by construction we find that ¢! and f_j(to) have a size proportional to that of
z«(x). Since We have then that the solution of equation (2.1) with initial condition

k

k
u(z,to) = uo(x) + 24() + Zf}wj(x) +Y & (to) - Va(x)

Jj=2

gives rise to a k-bubble tower if we choose the compactly supported functions

() — z — &;(to) z —§&j(to)
”“)%< @m>>X<R@w>>

)~ (TGt ) (2= &(t)
WJ( )—U< M?(to) >X< Rﬂg(to) )

The proof is concluded. O

Remark 5.1. The set of initial conditions of Equation (1.1) that lead to a k-bubble
tower can actually be smoothly parametrized. In fact we have used Schauder’s
theorem just for simplicity. With a bit more effort and similar computations we
can prove that the operator T in the fixed problem (5.26) is actually a contraction
mapping, and then we have uniqueness of the fixed point and the scalars £} = (3[2.],

éq[z*] defines a Lipschitz function of z, in its natural topology. Moreover, an
application of implicit function theorem, yields the C''character of these functionals.
It follows that this set of initial conditions defines a codimension k + n(k — 1)
manifold inside the natural finite-energy space of perturbations.

6. ESTIMATES FOR THE OPERATOR G

In this section we will prove (5.25) in Proposition 5.1. The result will follow
from individual estimates for each of the terms of the operator which we state and
prove as separate lemmas below. We recall that

G(b, 45 fi1,€) = Vb + B[] + VZ* + N (¢, Z* + 5 fig + fin, €) + E°™.
All terms are defined in (3.5), with ¥ = ¢ + Z*.
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Lemma 6.1. Assume the parameters p; have the form (2.22) with i1 satisfying

(5.17), and the points £ satisfy (5.18). Assume that a, o and " are defined as in
(5.24). Then there exists £ > 0 so that for all sufficiently large ty we have

(P2 P (6.1)
where E°* is defined in (3.5).

Proof. The error function E°“t defined in (3.5) has the explicit expression

k

_ _ —1)y=r Y -
E = En + By + Z %@‘(Mhﬁ))@‘ + %91(/&5)
. 2 2
Jj=2 My Hq
k
+ ZP "(U;)poix; + Z 2Vap0;Va(X5) + Ax(X;)0;]
j=2
. o ) (6.2)
— > ulpoix;) + Nalpol + i * Dilfin, €][x —m]
j=2
+Z AN Dj[ﬁl,f_][)(j_nj]-

—

In the above formula, Ey; is defined in (2.10), E5 in (2.8), Dj[ji1,£] in (2.25), for
j=2,...,k, 0 and D;[i1,£] in (2.24), x; in (2.5) and ¢p; in (2.6)-(2.21). Also the

functions 7;, j = 1,..., k are the cut-off functions introduced in (3.2).
We will estimate in details most of the terms in (6.2). To estimate these terms
in the norm || - ||4,07 g7, we will make use od the definition of the weights w11, w1j,

waj, j =2,...,k, and ws introduced respectively in (4.10), (4.11), (4.12) and (4.13),
with 0 = ¢ and 8= f".

Estimate of Eyy in (2.10). We start with the term

k
Zf/(Uj) Z Ui | x;-

=2 i#j.j—1

Let us fix j. If i < j — 2, we have

n—2 _9
/ 2 )\J ’ Hj —2
|7 (U;)Uix;| < OX;2 E= = 5] e <ty wi(w,t),
Ky
for some £ > 0. If i > j,
) 1 1
|f(U)Uix;| < C Ui(z)x; ()

14 |5

n_2
1 1 [

S Ci r— : n XJ( )(1 - 1+a +1 e JLte ),
?1+| 5] |4 (M]+1+|$*§J+1| ) 2 {lz EJ|<H] } {lz 5]‘>IJ }
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for some a > 0, where 1 is the function defined in (1.13). Now, we observe that

n—2 n+2

30

1 1 iy Ajta (Aj+1)~?
2 —&; ﬁxi(x)l —&jl<ptte SC, n—2 z—E; J
i1+ |55 (2 + |2 — € [?) ™ the=stnm ™ (Bir1) T (14|52
n—2
AN ()7
+1 Hjt1 —¢
= Ol = (o i 0 S o
Hi+1 Hj+1
and also
ns2 n2
1 1 Hjta 1 1 K1
— — = X (@) g s ptey £ C— — - X;j
BIL4 |8 2y + o — ) ST T Tl g e e (e
n—2
Air1 F —(n—2 _
=¢ <Z> 1y " < 1w,

for some £ > 0, provided a is chosen small enough. Thus

FECAR IR Xj‘ <ty (wiy +w2,541)

i>j

for some £ > 0. Another term in Fy; is

k
> FUNU;1 = Uj—1(0)x;,

=2
which can be bounded as follows

n—2
2 -2

A :
U1~ Uy a O] < OX g — 20
o (1+ ‘T]D ¢

¢
X Sty wij

for some ¢ > 0. Let us now consider the term
k

[(Nu, (Y Uy = 1))y

2 1#£§.5—1 1]

J
in F11. By construction,

Vo, (30 )| < € (P + U)X
I#5,5—1

We have
T A\
a 1 ; 1
U;j—1lPx; < CAj(to)' ™2 2 — Y <tyf L —
pr L+ |%|)2+“ pr I+ |%|)2+“

and
n+2
Ajta 1
— nt2 T—E&;
(Bj41) "% (1+]25))

Hj41

\Uj+1|pXj <C

—L
—Xj Sty w241

Xi

X ()

()
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To bound |f(U;)|x;, for I # j, we argue in a very similar way. We thus conclude
that

1#5,5—1
The next term to estimate in Ej; is

HZ No, (Y U) =Y f(n) XgH o

I#j

Let us fix j, and observe that

IX(1 = x5)8:U;] < c?

x—E& . _
11+2 U( ] J)X(17XJ)
22 2 J
If j # 2, then
)\L—Q /\L—2t_ ” _9
. g o
i UE v ) < gt B
TR
If j = 2, then
/\HEQ /\# ( ) 2
xr — —6 -
2 U251y < onyr L2
o H2 (B2) 2

M2
A similar bound is also valid for the last terms in E;;. We conclude that

1B11lla,0m6m < t5°
for some positive £

Estimate of Ey in (2.8)

We start with (x? — X) f(Z;?:l U;): we have
k

(@ -0 )| < 0 g X

<C 1
= N P e
The second term in Fy can be estimated as follows
k ||
c x(7) c
—d,) U,) <
VDR = T <

(t7 + |z|)nt
The last term in F5 can be treated in a similar way, thus we conclude that

| By (x,t)] < Oty ws(x,t)
for some ¢ > 0.
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Estimates of the remaining terms. The next two terms are directly bounded

n—2
k ‘71 k AT -2
151 j Hj
Z Mlag)x S C Z n—2 X
uf e W SR =T/
and
X po L NE ()
SR 21 i+1 1
011, 6)| < C(M11+7) i j; & 2
e B’ (i) (L4 | 25)
From (2.22), we conclude that
k
(-t - ¢
Z nt2 0'(/1'1)XJ nt2 01(1“‘1) < tO
j=2 ,UJ 2 lul 2 a,o B

for some ¢ > 0.

Next we estimate 2?22 2V200;Vz(X;) + Az(X;j)po;]. From (2.21), we easily
get that

lpoixil < CAU;x;-
Since

[Vax;l < C— 1{m<|w §J|<2m}+c fij+1 L <lo—g;]1<2f;1}

where 1 is defined in (1.13). We have

Aj 1 1 1
. N < J
‘2V1¢0Jv1(xj)| — C ,U/J% 14+ |-L;fj |n—1 </’L {a;<lz—¢&;1<2f;} +— /’LJ+1 1{:“‘J+1<‘x §J<2HJ+1}>

IN

ty " (Wi + way) -
A very similar estimate is also valid for the term Ay (x;)po;. We find

k
> (2Va00; Vi (X)) + A (X5)05) < Ctg".

Jj=2
" g
a,c”,B

Now let us consider the term Ng[po]. We have

k
INgleoll < Cleol” <3 losPx;
=2
k nt2
1 1 )2
<O —lboPx; < C = ;5 X
- 2 (1 + | r—S5 ‘)2+a
I=2 1 0N

The remaining terms in E°“! can be treated as follows:

i . 1
D [jir][x — 771]‘ < CWH‘W’

_nt2
2
‘/h
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foreach j =2,...,k—1,

n—2
_n+2 . C .2
py; % Dyl —n5l| < .

T —§;
= p—e xX(|—=1)
R2_a/1'j 2 (]. + |Tfj|)2+a Hj

n—2
c )\jﬁl |£E _gj |
(14 |52 Ll

Hji1 Hjt1
and for j =k
n—2
—nt2 . C A2 x— &
e * Dilia]Dos —mel| < s = X(I——==1)-
Re—apes (L+ |52+ ™
Collecting all these estimates, we obtain the validity of (6.1). O

Lemma 6.2. Assume the parameters pi; have the form (2.22) with [i, satisfying
(5.17), and the points 5satisfy (5.18). Assume that a, o”, o', B and 8" are defined

as in (5.24). Then there exists £ > 0 so that for all sufficiently large to we have
IV Gllaorsr < 10" [¥leaos (6:3)
where V is defined in (3.5).

Proof. Using the convention that fix11 =0 and fi; = Vt, we have

k k p—1
V¢|<CX1—-§:Cj)<§:l@1uwu<m—akuﬁ> D (wiy + why + why +w3) 9]l ,a.07 5

j=1 i=1 j=2
k k k
< Cléllsaron8 (1= ZCJ’) Z Uf)_ll{ﬁi+1<\z—£i\<ﬁi} Z (wij + ws; + Wiy +w3)
j=1 =1 =2
where wi;, w3;, wi;, and w3 are defined respectively in (4.11), (4.12), (4.10) and
(4.13). Also the norm || - ||«,a’,07,5 is defined in (4.15).
Our purpose is now to show that, for all « € {1,...,k},
k k
[(1— Z G) U’L'pill{ﬂi+1<|m—fi|<ﬁi} Z (WL' +W;j +wiy +W§) la,o,87 < tae (6.4)
Jj=1 Jj=2

Indeed, estimate (6.3) follows directly from (6.4).
Take ¢ = k, then

k k
(L= U Loy D (Wi +ws; +wiy +w)
j=1 =2
k
_1 * *
<O =) GIUE Yoy (W5 +w3r) (6.5)
j=1
ST w-&l, _ C
1 t7° T — &
<O h X(———) < 55— Wik
R W fgelpee ™ e R
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Take i € {2,...,k — 1}, then

1_2@ 1{m+1<\w 51\<M}Z Wi + wy; + Wiy +w3)

k
-1
<C(1l- Z gj)Uip 1{ﬁ¢+1<\x—§i\<ﬁi} (wii—&-l + W;,H-l)

j=1
i (6.6)
—1 * *
+C(1 - Z UF ™ L <lo—ei<py (Wi +w3)
j:l
Z 1{u1+1<|z eil<piy (Wiim1 T ws g Wi +w3).
—1

We next estimate the different terms in the above expression. Let us consider first
the terms involving (wj ;; + w3 ;,1). We have

k: 1"
_ C t=° A2 |z — &
1 * i+1 1
(1- ch)Uf’ Lipia<lo—&|<p)Wiivr = Rt Lipia<le—&l<p) =) o X ( -

=& .
j=1 Hife (1+ |m+1 Hi+1
C
< @)\lel,iﬂ
and
—1 *
(1- ZCJ 1{u1+1<lm €< }Waip1 < <(1- ZCJ‘) Uy L <lo—gil<pitW2,it1

]‘ - ZC] 1{N1<‘$ §Z‘<H1}w2 41
t_b

— W21+ Twl,i7

C
< R4

for some b > 0.
Let us now consider the terms involving (w7 ; +ws ;). A direct computation gives

C
—1 *
(1 - (j)Uz'p 1{ﬂi+1<\I*§i\<ﬂi}w1,i < ﬁwl i

M-

1

J
and

C
1 - ZCJ 1{%51+1<|x f1|<ﬂz} 1 = R2

Arguing similarly, we get
C
(1- ZCJ 1{m+1<\w —&|<fii }(w1 io1 Twsg twip + W3) < Rr—a¥li
Thus we conclude that, for i € {2,...,k — 1} it holds

k
1
Z P 4, <o £z\<m}z (wijFws;+wi;+wi) < e (w1, +wiit1 +wait1) -
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Take now ¢ = 1, then

k k
—1 * * * *
(1= U L cpomeat vy D (@1 + w35 + 0y +wi)
=t =2 (6.7)
. .
—1 * * * *
<C(1=Y Ut L clo—er |<viy (W12 + Who + Wiy +w3).
j=1
We have
k
—1 * *
(1- ZCJ')U{) 1{ﬁ2<\1*§1\<\/f} (w1,2 + w22)
=1
" ’ " /‘ug " ’
<t 77 ﬂ%wm +t70 e ?ﬁg 7 wa
2

< to_e(wl,Q + wa2)
for some £ > 0, thanks to the facts that ¢’ > ¢’ and that ¢” and o’ are small
positive numbers. Also,
p—1 ot V4
_ . _
U1 Lis<lo—er1<vpy@in < (1+ |z — &)z + w1 S g wit,

M-

(1-

J

and
i C 1
1— N P 5 <
( ; G st = T (T4 [P =
_B'=2
+Oo— X(M) <t "t (win +ws)
1+ |z[* Ve —
thanks to the fact that ¢’ can be chosen so that 652 —1—0¢" > 0since ' > 2+a.
The validity of (6.3) thus follows from (6.4), (6.5), (6.6) and (6.7). O

-,

Let us now estimate the linear operator B[¢]. We recall that, using summation
convention,

- 2 1
B¢ = —=Van; - Vadj + —= (=mje + Aunj)d;
sz sz
14 f1 1€
+om (65 +y - Vydilng + =g - Vyding
:u‘j2 /u‘j2
qs,
410 (f (us) = f'(U;)) ;
Hj

=B1+ B2+ B3+ By

Lemma 6.3. Assume the parameters p; have the form (2.22) with fi1 satisfying

(5.17), and the points gsatisfy (5.18). Assume that a, o” and 8" are defined as in
(5.24). Then there exists £ > 0 so that for all sufficiently large ty we have

—

||B[¢] |a,a”,/5” < t6£||¢>||a~
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Proof. We recall that by definition of ||¢,||,,- we have

R’n

Uw”@”m

(L+ DIV 6(y. )] + oy D] < A7

n—-2
Hence, by choosing ¢ sufficiently small in B = ¢* we can assume A;* R" < t—2,

n—2
N sl
J J 1,0
|BB(x7t)| < /Jn;rz 1+ |,Uj_1(-73 — fj)|n+1 1{‘1*53“<2Rﬂj}
J

As a conclusion, the following bound holds: for a £ > 0 that can be chosen arbitrarily
small, we have

1Bs|

k
¢
w208 < 15" llesl0
j=1

Similarly we estimate the term Ba:

n—2
A gl
|Ba(z,t)] < jﬁ%lﬂz—gkzlzuﬁ

1 ®
n-2
2 —0
P I#5ll5.0.0 .
TR Ly - g

The same estimate holds for B;. We find that for some ¢” > o,

k
[Billa.or.p7 + | Bsllaor o < 6 llsllj.0-
j=1
Finally, we estimate B4. We have that
k
[ (f () = F U giai<iyiny < F' (D2 Uilgaipaclo-sil<any)
i=j+1
k
-1
<C Z UZP Yp, i <lo—gil<mi}
i=j+1
k
1 1
<C 2 — Lja—ei<pi}-
i;ﬁ-l pi L+ |y (= &)1 Hemslsmd
Hence
! ! U |¢ 1
[ (f (ws) = f/(U)) n_2 {lz=&il<hj1}
Hj

n—2

k n—2
1 1 i\ 2 o n=2 -
<C >y = - Ljo—g|<p} () A2 TR (6o
S L (= &) AN ’
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n—2

n—2

Usmg that (’”) : < A;? and that with a convenient choice of ¢ we have that
7

)\j = Rrtl-a < t729 we find

() = PO~ 1o

k (6.8)

1 1
C ) TP /\ t_3” o
= Z n+2 1 + "U/Z ( é—l)| {‘ §z|<}l«1} ||¢||

On the other hand, we can estimate

1, U; U,_
i (f' () = F'UN)Lfamg; 5,003 < CUPTY( 51 + []],1)
J J

1

2

1
We have that in the region fij41 < [ — ;| < fi; (‘equivalently A2, < |y| < A;

for y = = 51)
.7
Uit 252 _1+1y"
U. — il AT 2+| |n—2
J JJ,»I y
n—2
Az o
j+1 -
- ng n—2 + )\j—il
)\_]-i-l + |y|
U1 _ 252 141y
R S
< AT (4"
Hence
p-1Uj-1 _ C /\;%2 n—d+a
n;U;j 1+ lyl )

U, S 2T
-2 C 1
=7 M 1+|y|2+a {l=—=&;1<p;}>

U; n=2 1

—-1Vj541

nUP <N T

g U; j+1 21+|y‘4 Ljo—g;i<pny

¢ 1 Al

+ = L+ |yt =2
Hj+1 y )‘j—il + [y|n—2
C 1

=2 -
i 1+ |Nj+1(x =&
Then, assuming with no loss of generality that € in R = t° is chosen so that

AT RN < 472 A

% n —20
J+1 R St 9
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we find
¢ c 1 222 3,
I (f' (we) = £ U ==z Vot 155013 < 2z N Xt 9l
I O +|N3+1($_§J)|
C 1 n-2
5 — 1 x—&;|<pag A;? t_sa“¢'
B3 14 g (o — g eI ’
(6.9)
Combining estimates (6.8) and (6.9) we find
k
1Balla,2o,7 < 6D 1165]j.0.0-
j=1
At last we get for the full operator and for number ¢” > o,
k
IB[@lllaorpr < 6D 165050
j=1
O

Finally, let us consider the remaining terms nonlinear term V Z, + N (qg, U, fi1).
Lemma 6.4. We have the validity of the estimate
IVZe + N (8,0, i) laor 0 < 61+ 6lI%
Proof. We see that

. ]
*,a,0",3"

* 1 *
(Zuj gy 40 Z7)| < gl [P 4 |27 = Ny + Mo+ N
N’jz
‘We have that

1 )\ = t—ot (p— 1)0an)\2

1 1
EM)JVQUJ S@l|¢]”]al+‘ |4 j

I 122
Assuming that an)\? < +(®=3)9 we then find

[N1lla20,87 < 6l9jll5.0-
Similarly,
k
No| < I, o g D (@17 4 ws,” + wiy? + wi?)
j=2

Since ' — 2 > ”T_Q we have (' — 2)p > /. We may assume p(n —o —2) > n—o",
hence for some v > 0, we may assume

w4+ wi’ Fws? < Ot (woj + w11 + w%Jﬂ)
Finally we see that for j > 2
* —1 —(p—
wi? < wy (L |y @ = &)PTPTIIN < wig
And, as a conclusion for some numbers ¢’ > o', 8" > ' we get

HNQHG a',B"” < 6“1/)”* ,a,0’,3"
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Finally, using estimate (5.2) on Z, and 3 > “=2 we readily see that

IVZ |a,0 7 + INsla,0r 5 < &

for an arbitrarily small 6. O
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