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Closed loop control systems are designed for Linear Time-Invariant (LTI) controllable and observable
systems modelled by bond graph. Cascade and feedback interconnections of bond graph models are
considered and are realized through active (signal) bonds with no loading effect. The use of active
bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-
junction structures. These structures are build by adding parasitic elements to the bond graph models
which assure that each storage element is connected to a dissipative element and the overall system
may become singularly perturbed. The structures for these interconnections can be seen as consisting
of inner structures that satisfy energy conservation properties and outer structures including multiport-
coupled dissipative fields. These structures are called pseudo due to the structural properties of power
conservation not being satisfied in the outer structures. The multiport-coupled dissipative fields highlight
energy properties like passivity. These properties are useful for control design. In both interconnections,
junction structures and multiport-coupled dissipative fields for the controllers are proposed and passivity
is guaranteed for the closed loop systems assuring robust stability. The pseudo-junction structure for the
cascade interconnection is applied to the structural representation of the closed loop transfer functions,
in a one-degree of freedom feedback configuration, when a controller from the parametrisation of all
stabilizing controllers is applied to a given nominal plant. Applications are given when the plant and
the controller are described by state-space realizations, in this case parasitic elements are not added.
Moreover, the feedback interconnection is used and the controller is tuned getting necessary and sufficient
stability conditions based on the characteristic polynomial of the closed loop transfer function, solving a
pole-placement problem and achieving zero-stationary state error.

Keywords: Bond Graph; Junction structure; Structural properties; Feedback; Physical and Passivity
Based Control; Robust stability; Pole-placement; Parametrisation of all stabilizing controllers;
Singularly perturbed

1. Introduction

Over the last two decades, the design of control systems in the physical domain has been proposed
as a means of integrating controllers within the design of systems from various engineering domains.
Advantages of such an approach are to preserve physical insight and to exploit the system’s archi-
tecture for controller synthesis and analysis. The pioneering work of Sharon, Hogan & Hardt (1991)
developed a control system for a robotic manipulator by comparing classical (purely mathematical)
and physical-based design approaches. They showed that the latter technique provided guidance
for the choice and location of actuators leading to a stable overall system. A modelling technique
that naturally lends itself to the above physical approach is the bond graph representation first
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proposed by Paynter (1961) and developed by Karnopp & Rosenberg (1975) among others. For a
tutorial on bond graph the reader is referred to the works of Tanguy (1995) and Gawthrop (2007).
Gawthrop (1995) used bond graphs to propose a generic framework for the design of controllers
in the physical domain, where the controller as well as the system to be controlled were all rep-
resented by their bond graph models. This physical model-based control has more recently found
a number of applications like the ones of Gawthrop, Wagg & Nield (2007); Gawthrop, Bhikkaji &
Moheimani (2010). In particular in the work of Yeh (2002) the closed-loop system is visualized from
the open-loop bond-graph model to derive a control law using a recursive back-stepping procedure
for one and two-port systems with a specific cascaded structure. The present article does not focus
on an specific physical system as in the work of Sharon, Hogan & Hardt (1991). It focus on an a
dynamic feedback rather than on an observer-control design as in the works of Gawthrop (1995)
or Gonzalez-A (2016), and it is a closed loop methodology while the work of Yeh (2002) is based
on an open-loop design.

In this paper, a closed loop control system is analysed from the junction structures and multiport-
coupled dissipative fields point of view with the objective of determining the properties of the
control system. Both the system and the dynamic controller are modelled by junction structures
and multiport-coupled dissipative fields representations. This description of the system represents
a bond graph model of a physical system, and the other is a proposed description for the controller.
A common problem in the bond graph representation of control system is that of the interconnec-
tion of systems with no loading effect. This usually results in combining power bonds and active
(signal) bonds. An alternative approach, attempting to preserve a common framework of power,
was proposed in Li & Ngwompo (2005) through the introduction of power scaling elements in the
context of the design of passive control systems.

In the present work, pseudo-junction structures are proposed and analysed for the cascade and
feedback interconnections of Linear Time Invariant (LTI) controllable and observable systems,
modelled by bond graph. These interconnections are realized through active bonds, which may
lead to the overall structure not being conservative. The structures for these interconnections can
be seen as inner structures that satisfy energy conservation properties and outer structures includ-
ing multiport-coupled dissipative fields. These structures are called pseudo due to the structural
properties of power conservation are not being satisfied in the outer structures. These multiport-
coupled dissipative fields highlight energy properties like passivity of the overall system. The aim of
the control designer is to keep the physical properties in closed loop. The advantage of the proposed
controllers is that they have associated junction structures and multiport-coupled dissipated fields
with physical meaning. The proposed structures are based on a certain connection of each storage
element to a dissipative element. These connections are achieved adding parasitic elements, so,
when small storage elements are added, the overall system may become singularly perturbed (see
Kokotovic, Khalil & O’Reilly (1999)). In the work of Gonzalez-A (2016) a state-estimated feedback
is designed for singularly perturbed systems modelled by bond graph. A quasi-steady state model
of the closed loop system is gotten, based on assigning integral and derivative causalities to the
plant and to the observer, respectively.

Passivity Based Control (PBC) is addressed based on the proposed pseudo-junction structures.
A lot of works have been realized on PBC, for instance see the survey of Ortega & Garcia (2004),
and few works on PBC based on bond graph, one of them is the work of Garcia, Rimaux &
Delgado (2006) in which damping is added to a DC/DC power converter such that the closed loop
system is passive. A general non-linear control methodology is presented in the work of Ortega
& Garcfa (2004), that first assigns algebraically a desired interconnection and damping and then
the dependency of non-measurable states is removed by the non-parametrised interconnection and
damping assignment. This PBC is realized for an specific non-linear state space description in terms
of the total stored energy. The present work does not focus on an specific physical system as it
focuses on linear systems modelled by bond graph. Passivity implies that a certain transfer function
is positive real and that robust stability is achieved by the closed loop system (see Brogliato,
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Lozano, Maschke & Egeland (2007)), that is, stability is guaranteed under large uncertainties such
as unmodelled dynamics or large variations in the parameters. In the present work it is considered
that after the subsystem interconnection only power energy external sources are applied to the
m-port system. Hence, as stated in the work of Beaman & Rosenberg (1988) whether each element
of a model is passive then the system is passive. In the proposed pseudo-junction structures the
storage fields of the plant and the controller are assumed passive and remains unchanged, so
power conservation is guaranteed if the closed loop multiport-coupled dissipative field is passive,
or equivalently if the associated defining matrix is positive semi-definite.

In section 2 the tackled problem is stated. Using the parametrisation of all stabilizing controllers
the closed loop transfer functions are affine functions of the free control parameters and can be
regarded as the cascade interconnection of certain transfer functions. In this case, applications of
the proposed results are given in sections 3 and 5 when the plant and the controller are described
by state-space realizations. Parasitic elements are not required and so the system is not singularly
perturbed. Also, in section 4, a junction structure and a multiport-dissipative field for the controller
are proposed into the pseudo-junction structure for the feedback interconnection. In both intercon-
nections passivity is analysed. Moreover, necessary and sufficient stability conditions are presented
based on the characteristic polynomial of the closed loop transfer function and the controller is
tuned by solving a pole-placement problem and a constrained pole-placement problem, achieving
zero-stationary state error in both cases. In section 4 and 5 an Illustrative example of a two-mass
spring damper system is given.

Notation 1: 7, is the identity matrix of dimension p X p; diag{a1, as, ..., a,} is a diagonal matrix
of dimension n x n whose elements are a1, as, ..., a,; and a real matrix M is positive semi-definite
if and only if the symmetric part % (M + M T) is positive semi-definite, where M7 is the transpose
of M.

2. Background and Problem Statement

A bond graph model of a conservative Linear Time-Invariant (LTI) system in integral causality
is represented in Fig. 1 where C' and I are storage elements in integral causality, S. and Sy are
sources of effort and flow, R is the dissipative field, D, and Dy are detectors (sensors) of effort and
flow as proposed by Karnopp & Rosenberg (1975). The junction structure S(0,1,TF, GY), linking
these elements, is an assemblage of 0— junctions, 1— junctions, transformers , T'F, and gyrators,
GY. Let m, n, p and ¢ be the input, state, output and dissipative space dimensions, respectively.
The state vector z(t) € R"*! is associated with the energy variables of the storage elements in
integral causality; z(t) = Fz(t) € R°*! is the co-energy vector, where F is a matrix composed of
1/I and 1/C elements; D,(t) € R2*! and D;(t) € R9*! are vectors of variables associated with the
dissipation field R such that D,(t) = LD;(t), where L is a matrix; u(t) € R™*! and v(t) € Rm*!
are the system input and y(t) € RP*! is the system output.

1,0

z xr
(5.5 107 8(0,1,TF, GY) }_y{ De, Dy|
D, | D

LR

Figure 1. Junction structure associated with a bond graph in integral causality
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The relationships for the junction structure are given by:

i(t) z(t)
Di(t) | =5(0,1,TF,GY) | Dy(t) (1)

y(t) u(t)

where S(0,1,TF,GY) has a block partition according to the dimensions of z(t), D,(t) and u(t).
The system of Fig. 1 is power conservative in the sense that the supplied power must be equal
to the stored and dissipated powers,

#7(1)=(t) + DT (H)Dolt) = uT (o(t) (2)

Moreover, junction structures associated to bond graph models of conservative Linear Time-
Invariant (LTI) systems, may be regarded as a special type of dissipative fields that preserves the
continuity of power, and their properties (see Karnopp & Rosenberg (1975); Sueur & Dauphin-
Tanguy (1989) and Lamb, Woodall & Asher (1997)) are stated as follows:

1 : 511 and S99, are skew-symmetric,
P2 : S;p = —S1,
Moreover, a solvability property is,
P3 : The bond graph model is singular if Z — SyoL is a singular matrix. When the elements
of R are linearly independent, there are no direct causal paths between these elements and
S99 = 0, meaning that Z — Soo L = 7 and the model is non-singular.

However, bond graphs that use active bonds do not satisfy Eq. (2). These non-conservative
systems may arise in the system interconnection of subsystems or in systems that includes in-
ternal modulated sources, that is, the junction structure is also a function of these sources, i.e.,
S(0,1,TF,GY,MS., MS¢) where M S, and M Sy are the internal modulated sources of effort and
flow respectively. This is the case of bond graphs including power-scaling elements of the work of
Li & Ngwompo (2005). Also, properties P1 and P2 are not satisfied by non-conservative systems.
The proposed inner pseudo-junction structures satisfy these properties and allow focusing on the
multiport-coupled dissipative fields.

In the present work it is assumed that,

Assumption 1. After the subsystem interconnection only power energy external sources or con-
Jugate external input/output signals, i.e., whose product is power, are applied to the m-port system,
where m is the input space dimension.

This assumption characterise the allowable outputs and references for the feedback system. Also,
under this assumption, as stated in the work of Beaman & Rosenberg (1988) whether each element
of a model is passive then the system is passive. In the proposed pseudo-junction structures the
storage fields of the plant and the controller are assumed passive and remains unchanged, so
power conservation is guaranteed if the closed loop multiport-coupled dissipative field is passive,
or equivalently if the associated defining matrix is positive semi-definite.

Under assumption 1 it is possible to have outputs and references of velocities, and the closed-loop
relative degree can be 1, i.e., it can be passivized. However, outputs and references of positions are
in general not allowed due to the increase of the closed-loop relative degree, although, as it will be
shown in example 2 of section 4, it is possible to design a passivity-based control of velocities and
use an approximation of a derivative, to control positions.

The proposed pseudo-junction structures, combined with the constitutive relationships of the
fields, have the following characteristics,

(1) it can represent non-conservative systems and are useful for control design.
2) it has an inner structure that is power conservative and an outer structure with a multiport-
p p
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coupled dissipative field that includes the internal modulated sources (M Se, M Sy).

(3) the multiport-coupled dissipative field may be decomposed into power scaling elements in-
troduced in Li & Ngwompo (2005) and the original dissipative fields.

(4) it leads to an associated state-space description.

(5) under Assumption 1, power conservation is guaranteed if the multiport-coupled dissipative
field is passive (due to the original storage field remaining unchanged).

The aim of the present work is,

Problem 1. Based on proposed pseudo-junction structures for the cascade and feedback inter-
connections of LTI systems with no loading effect, the aim is to design a control such that the
closed loop system is passive, that is, the control is such that the multiport-coupled dissipative field
1s passive and thus the overall system becomes conservative.

The pseudo-junction structure of the work of Gonzalez & Galindo (2009) for systems described by
a state-space realizations, can be derived from the presented pseudo-junction structures. However,
as stated before, the state-space description matrices (A, B, C, D) might not have physical signif-
icance. The proposed pseudo-junction structures require that the number of storage elements be
equal to the number of dissipative elements. This condition is consistent with the work of Gonzalez
& Galindo (2009) and it can be achieved by,

(1) Connecting “high” resistors in parallel to each C' or connecting “small” capacitors in parallel
to each R, as required, and

(2) Connecting “small” resistors in serial to each I or connecting “small” inductors in serial to
each R, as required.

This building proposition is shown in Fig. 2 where a predefined integral causality assignment is
realized. So, the strong bonds impose the causality to all the elements connected to these junctions
and assure that,

er =ec and fr = fr (3)
Hence, since it is realized for each pair of R — C and R — I, then,
q=n, 521 = In, 522 =0 and 523 =0 (4)

and property P3 is achieved. Also, Fig. 2 implies that S19 = —Z,, for a conservative system. However,
it does not hold for non-conservative systems like the interconnection of subsystems using active
bonds.

Connecting “high” resistors in parallel to a C' element and “small” resistors in serial to an [
element, adds 1/R and R elements to the dissipative field, respectively. So, these parasitic ele-
ments add almost zero elements into L. Also, when “small” capacitors or inductors are added, the
augmented system is singularly perturbed and the added fast dynamics must be stable accordingly
to Tikhonov’s Theorem (see Kokotovic, Khalil & O’Reilly (1999)). These parasitic elements add
1/e€ elements into F', where € € R is a “small” perturbation parameter replacing the added “small”
capacitors or inductors. Locate all together the 1/e elements, the state equation of the system
becomes of the form,

{ i‘l (t) = Alll‘l(t) -+ Algflfg(t) + Blu(t) (5)
Eiiz(t) = A9 11 (t) + AQQCL‘Q(t) + Bgu(t)

where the fast dynamics associated to z5(t) must be stable, and the as it will be shown in section
4 the quasi-steady state can be gotten setting e = 0 or in a bond graph approach using the result
of Gonzalez-A (2016). Moreover, the proposed augmented bond graph ensures that all the storage
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elements accept a predefined integral causality assignment as shown in Fig. 2. Also they accept a
predefined derivative causality assignment on the Singularly Perturbed Bond Graph proposed by
Gonzalez which implies that Ass is a non-singular matrix as required for getting the quasi-steady
state model.

In what follows it is assumed that,

Assumption 2. Fach LTI subsystem to be interconnected with no loading effect satisfies Eq. (4).

A<= —A-

C
— g —= —t
S
Figure 2. Augmenting the BG model using parasitic elements.

In the following section the cascade interconnection of systems described by state-space realiza-
tions is considered, and an application is presented when an ideal plant is described by a state-space
description (A,Z,,Z,,0) and the controller belongs to the parametrisation of all stabilizing con-
trollers (see Vidyasagar (1985)). The pseudo-junction structure of the cascade interconnection is
used to get closed loop transfer functions. In the last section, the results of this section are extended
to plants described by a state-space description (A, B,Z,,0).

3. Ideal plant and controller described by state-space realizations

If the plant and the controller are described by state-space realizations, a useful result is the
one given by the work of Gonzalez & Galindo (2009). There are several junction structures and
possible constitutive relationships for the same state-space description. If the junction structure
S(0,1,TF,GY,MS., MSy¢) is described in terms of a state-space realization using the work of
Gonzalez & Galindo (2009), then, z (t) = —Fz (t) into the pseudo-junction structure. So, the
passivity properties are not obtained directly from the dissipative field due to the sign of the storage
field. In order to obtain z (t) = Fz (t) a change of sign is proposed into the result of Gonzalez
& Galindo (2009), that is, an inner pseudo-junction structure of a BG with predefined integral
causality assignment, is derived from a linear time-invariant state-space realization (A, B, C, D)
and is given by,

z (t) 0 -1, B z (t)
D; (t) = Z, 0 0 D, (t) (6)
y (t) CF* 0 D u ()
where z (t) = Fz (t), Do(t) = LD; (t) and L = —AF~' with F :diag{%,. R e %}
and v an arbitrary number of L elements. The storage elements Iy,. .., I,,, Cy11,. . ., Cy, are cancelled

in the product AF~!, leaving only resistive elements in L matrix as expected. Clearly Eq. (6) also
reduces to & (t) = Ax (t) + Bu (t) and y (t) = Cz (t) + Du (t) as the result of the work of Gonzalez
& Galindo (2009).

Since in Eq. (6) each storage element is connected to a dissipative element, then parasitic elements
are not added and the system is not singularly perturbed.

Using the parametrisation of all stabilizing controllers the closed loop transfer functions are affine
functions of the free control parameters (see Vidyasagar (1985)). In particular in the one degree
of freedom feedback configuration shown in Fig. 3, where P(s) is the plant, K(s) is the controller,
y(t) is the plant output and yg (t) is the output reference, the transfer function from yg4 (t) to y (t)
is T, (s) = N (s) Nx (s) (see Vidyasagar (1985)), where N (s) and Ni (s) are the numerators of the
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yd(S)Ee(S) K(s) u(s) P(s) '?J_(f)

Figure 3. One degree of freedom feedback configuration

coprime factorizations of the plant and the controller, respectively. The objective is to get pseudo-
junction structures of these sensitivity functions, so, pseudo-junction structures of the cascade
interconnection of N (s) and Nk (s), are required.

The following Theorem states the construction of a pseudo-junction structure for given
bond graph models with associated junction structures S%(0,1,TF,GY,MS.,MSs) and
50,1, TF,GY, MS,, MSy) described by Eq. (6). The subsystems are interconnected in cascade
with no loading effect.

Theorem 1: Suppose that the subsystems described by (Aa, Ba, Ca, Do) and (Ay, By, Ch, Dy)
are interconnected in cascade with no loading effect and under Assumption 1. Let mg, ng and p,
be the input, state and output space dimensions of the first system, respectively, my, ny and pp be
the input, state and output space dimensions of the second system, and uy (t) = Kyq (t), where
K € R™>Pa js a non-singular matriz composed of the gains of MS® and MS?, and two junction

structures S%(0,1, TF,GY, M Se, MSy) and S*(0,1, TF,GY, MS,, MSy) described by Eq. (6),

ia(t) 0 _Ina Ba %a (t)
Df(t) = I, 0 0 Dg(t) , (7)
Ya(t) C,F ! 0 D, U (t)
and
(1) 0 —Zn, Bb 2p(t)
Dit) | = | I, 0 0 Db(t) (8)
yb(t) Cbefl 0 Dy ub(t)

that satisfy Eq. (§), where x4 (t) € KX\ 2, (t) = Fuz, € R"*1 D(t) € R*1 Do(t) =
—AJF7IDA(t) € RXL )y, (1) € RPXL wy (t) € RMXL ay (t) € R™XL, 2, (t) = Fpy () € R™*E
DY(t) € Rl Db(t) = — A F, Db (t) € RX1 )y, (1) € WX and wy (t) € R™X,

Then, an inner pseudo-junction structure Sflb(O, 1,TF,GY,MS., MSy) for the cascade intercon-
nection, satisfying the energy conservation properties Pl and P2 is,

i (t) 0 —Ton, S5 |[ 20
D; (t) = Ing+m, 0 AO D, (t) (9)
Y(t) 59 0 52, Uq ()
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And the multiport-coupled dissipative field is,
D, (t) := LapD; (1) (11)
where,

Lo AgF;t 0
ab = BbKCaFa_l Abe_l

Moreover, the system is passive if Lqy is a positive semi-definite matrix.
Proof. See Appendix 1. O

The triangular structure of the dissipative field given in equations (11) and (12), means that the
dissipative field of the controller remains decoupled and from the outer pseudo-junction structure
for the cascade interconnection, it is clear that the controller subsystem does not change, i.e., as
expected due to the cascade interconnection with no loading effect.

The definitions of the elements of equations (9) to (12) clearly shows the dependency of the inner
pseudo-junction structure on the gain K of the internal modulated sources.

Control can be designed using the power conservation of Sflb(O, 1I,TF,GY,MS., MS¢) and the
passivity properties of its dissipative field such that the overall system becomes robustly stable.

For simplicity, first consider an ideal plant with transfer function (sf,, — A)f1 obtained by setting
B = C = 7, . This plant is controllable and observable, and let K = Z,. From the work of

Galindo, Sanchez-Orta & Herrera (2002), a stabilizing controller is K (s) = A + MI,L, SO

~ st+a—r
that Ni (s) = SJ%CL [((a+7r)T,+ A)s+a®T, + (a—r) A] and N (s) = H%In, where r € R and

0 < a € R are control parameters. Hence, the state-space realizations of N (s) and N (s) are,

(—aZ,,I,, —r(aZ,+A), (a+7r)L,+ A) and (13)

(_aI’n7 Inv I’n? 0) )
respectively. So, applying the stabilizing controller K (s) to (sI,, — A)_1 in a one degree of freedom
feedback configuration, and since K = Z,, then from Theorem 1 the closed loop pseudo-junction
structure of the complementary sensitivity function T, (s) = N (s) Nk (s) is given by Eq. (9), where
S§3 — 07

7

Sf?’:[(a—l—r)%n—l—fl]’ g??l:[o Fb_1}7 (14)

and the dissipative field is Dy (t) = LqyDi(t), where,

- aF; ! 0
Lap = [ r(aZ, +A)F; aF, ! ] (15)
with Fy, :diag{%,. - %} and Fj, :diag{%,. . %} Hence, the system is passive if the real and
1 nq 1 ng

non-symmetric matrix Lgp is a positive semi-definite matrix. Necessary conditions for Ly, to be a
positive semi-definite matrix, are that aF, ! and an_l be positive semi-definite matrices. Since Fy,
and Fp are diagonal matrices of positive elements, so, these matrices are positive definite matrices
and the necessary conditions for L., to be a positive semi-definite matrix are achieved if,

a>0 (16)
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From the work of Galindo, Sanchez-Orta & Herrera (2002), —a < r < a and at low frequencies
regulation is achieved when r — a. The large couplings of the dissipative field arise when r — a or
when r — —a, and when r = 0 the dissipative field is decoupled.

For a given Eq. (1) and the constitutive relationships of the fields, the state-space description of
the model is given by (see Karnopp & Rosenberg (1975)),

A= (511 + 812MS21) F, B = S13+ S12M S (17)
C = (S31 4 S32M S21) ', D = S33 + S32M So3

where M := (Z — LSy) " L. So, from Eq. (17) a state-space realization of Eq. (9) where $¢; and
S9, are given by Eq. (14) is,

CLIn 0 _ In
Aa == r(aZ,+A) aZ, ] » Ba= [ (a+m)I,+ A ] (18)
Ccl:[o In], Dy =0

for which the result can be verified since its transfer function is 7Ty, (s).
Eq. (18) reveals that when the plant and the controller are described by state-space realizations,
the closed-loop state-space realization does not depend on F', as apparently depends on Eq. (17).

Example 1: Consider for instance n = 1, F, = 1, F, = f, A = «, then, from (15), Ly =

a 0 dit tri -
r(a+a) % and its symmetric part is,

1 a ir(a+a)

2( a ab) %r(a—i—a) % ( )
that from Sylvester’s criterion is positive semi-definite if ¢ > 0 and % > r. From the
eigenvalues of Eq. (18) the closed loop system is stable if a > 0. So, as expected passivity implies
stability, however, the converse may not hold. ]

In the following sections passivity conditions are presented based on passivity properties of the
multiport-coupled dissipative field, and necessary and sufficient stability conditions are given based
on the characteristic polynomial of the closed loop transfer function.

4. Control design

The following Theorem presents a pseudo-junction structure for the feedback configuration as
shown in Fig. 4, that is Fig. 1 combined with Fig. 3, where the junctions structures associated to
the bond graph of K(s) and P(s) are denoted by S® and S°, respectively. It is assumed that the
sub-systems are interconnected with no loading effect, that is, these sub-systems are interconnected
trough active (signal) bonds that modulates sources of effort or flow. Due to this connection, the
overall system may not conserve energy.

Theorem 2: Suppose that the sub-systems modelled by bond graph are interconnected in feedback
with no loading effect as shown in Fig. 4 and under Assumptions 1 and 2. Let mg, ng and p, be
the input, state and output space dimensions of the first system, respectively, my, ny and py be
the input, state and output space dimensions of the second system, up (t) = Kpy, (t) and ug (t) =
K, (ya (t) —yp (1)), where K, € R"™*Pe and K, € R™*P* are non-singular matrices composed of
the gains of MS®, MS%, MS* and M S, and two junction structures 50,1, TF,GY,MS., MSy)
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Zad | Tq . Zh Ty
Ya € | MSS | Uq Yo| MSg Y Yb
MS 5 = MS? mulElS S12Y
- Ds| | Dy Db D!

Figure 4. Feedback interconnection of bond graph models

and S*(0,1,TF,GY, MS., MSy) of bond graphs modelling conservative or non-conservative LTI
systems,

a(t) Sti Sty STy za(t)
pity | = | 7o 0 o || Da) | (20)
Yal(t) S51 53y 953 Ua(t)
and
(1) Sfl 8%2 5?3 2p(t)
Dit) | =|Zo, O O D5 (t) (21)
Y(t) S5 Sy Shy up(t)

that satisfy Eq. (4), where x4 (t) € R 2, (t) = Fuz, (t) € R%*1, Da(t) € R>1 DI(t) =
LoD¢(t) € RM*1 gy, (1) € NP>y (t) € RMXL ap (1) € R™X 2, (t) = Fyxy (1) € RwxL,
Db(t) € R Db(t) = Lo DY (t) € REXL, y, (t) € RP>¥L and wy (t) € RmMex1L,

Then, an inner pseudo-junction structure Sgl(O, 1,TF,GY,MS., MS¢) for the closed loop system,
satisfying the energy conservation properties Pl and P2 is,

x(t) 0 “Lng+ng Sf3\1/Ka Az(t)
Di(t) | = Tnotm, o0 Doal (1) (22)
(1) (z+ S§3Ka) Sy 0 8%UK, ya(t)

with the following multiport-coupled dissipative field,

Dou(t) == (Lab 4 S*fgxyKaSgl) Di(t) (23)

where & (t) == [ #1 (t) T (¢) |7, D; () := [ (Dee)” (D))" ]T, ()= L@) @],

o St + S{oLa 0 & . &o o . 50 ) 1
Luvi=—| g polon 5 1) b 4 shr, |- S 1= S5+ Sl and W= (T, + KaS3)
. . Qo ST Qo a Qo
With L:=diag{La, Ly}, S5 = [ shrss, } S9 = [ ShE,SY St ] 8% =

[ S55KpSg, S, | and 595 = 583K, 555

Moreover, the closed loop system is passive if Lap+ §f3qJKa§31 s a positive semi-definite matriz.

10



October 7, 2016

International Journal of Control Control'design’'v18'latex

Proof. See Appendix 2. O

Remark 1: Theorems 1 and 2 allows the interconnection of conservative and non-conservative
subsystems, so that each subsystem can be another interconnection of subsystems. Also, due to
the storage fields of Theorems 1 and Theorem 2 being identical to the original fields, then passivity
depends only on the multiport-coupled dissipative field. In order to solve Problem 1 it is required
to design the control such that the real and non-symmetric matrices Ly of Theorem 1 and Ly, +
59,0 K ,S31 of Theorem 2 be positive semi-definite matrices. These requirements are simplified when
the plant and the controller are power conservative systems, that is, S¥y = —Z,,, and 5%2 =-1n,,
and S and S% are skew symmetric matrices. Hence, D (¢)S¢ D;(t) = 0 and DY (t)S% D;(t) = 0,
VD;(t) # 0. Then, the cascade and feedback interconnections are passive if,

;. Lq 0

= 24
—S03 K (S 4+ S%La) Ly (24)

and L + ng\IIKaggl, respectively, are positive semi-definite matrices. O

Remark 2: Collecting all together the added “small” capacitors and inductors, such that, F' =
F, 0
i
Applying Eq. (17) to the closed loop system described by equations (22) and (23), then the state-

space equation is,

, where € is a perturbation parameter replacing the “small” inductors and capacitors.

i(t) = = (L + S50 Ko S ) Fa(t) + S50 K u(t) (25)
S0 = | L1 Li2 S0 | B .. .
and let L+ 573 VWK, 531 1= Lot Loy and SPsVK, := B, be block partitioned accordingly

to the dimensions of the block partition of F', so, the singularly perturbed model is,

{ i’l(t) = —L11F1LL‘1(t) — ngéwg(t) + Blu(t) (26)
61"2(75) = —elLo1 F1x1 (t) — ngwg(t) + GBQ’LL(t)

Assuming that the fast dynamics associated to x2(t) are stable and Lo be a non-singular matrix,
hence the quasi-steady state model is,

:i’g(t) = €L521 (*LglFli‘l(t) + Bgu(t)) (27)
and the reduced model is,
i‘l(t) = (L12L521L21 — L11> Flfi’l(t) + (Bl — L12L521 BQ) U(t) (28)

In the following Corollaries that are useful for control design, a junction structure
50,1, TF,GY) associated to a bond graph model for the controller is proposed as,

q(t) St —In. Si3 Za(t)
Dit) | =|Zn, O O D3(t) (29)
Ya(t) S5 0 S35 Uuq(t)

where S¢, is a skew symmetric matrix, x4 (t) € R X1, 2z, (1) = Faz, (t) € R*1, De(t) € Rrexd]
DA(t) = Ly D(t) € R™*L y, (t) € RP* and u, (t) € R™*1, and it is assumed that,

11
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(1) the controllable and observable plant is a conservative system, that is, S%, = —Z, and S%; is
a skew symmetric matrix, and
(2) the output of the plant y;(t), is not related to the dissipative field D2(t), that is, S5, = 0.

Consider a junction structure S%(0,1,TF,GY) associated to a bond graph model of the plant,
under these assumptions,

p(1) St —Zn, St 2 (t)
Dit) | = | Zn, O 0 D} (t) (30)
Yp(t) Sy 0 S up(t)

where S?, is a skew symmetric matrix, z; (t) € R™X1, 2, (1) = Fyap (t) € R™*1, Db (t) € Rrexd)
Db(t) = LyDY(t) € R™<L 4y (t) € NP> and uy (t) € R™>L

Suppose that the proposed controller and the plant are connected in closed loop as shown in Fig.
4, where,

up (t) = Kpya (t) and uq (t) = Ko (Ya () = vp () , (31)

with K, € ™*P» and K € R *P+ being non-singular matrices composed of the gains of MS¢,
M55, MS? and MS?.

The following Corollaries present stability analysis based on the passivity properties of the dissi-
pative field and based on the characteristic polynomial of the closed loop transfer function. The aim
is to select the gains K,, Kp, the elements of the proposed junction structure and the multiport-
coupled dissipative field for the controller given by Eq (29).

Corollary 1: Suppose that two bond graph models are connected in closed loop as shown in Fig.
4, satisfying Assumptions 1 and 2. Consider two junction structures associated to these bond graph
models, S*(0,1,TF,GY) and S*(0,1,TF,GY) given by equations (29) and (30). Then, an equiv-
alent inner pseudo-junction structure Sil(O, 1L,TF,GY,MS., MSy) for the closed loop system, sat-
isfying the energy conservation properties Pl and P2 is,

i(t) 0 ~Toin, S%UK, 2(t)
Dit) | = Tt 0 0 Dou(t) (32)
us(t) (T+5%,7) 85 0 83Uk, | [ ()

with the following multiport-coupled dissipative field,

Doat(t) i= (Lay + S5 WKL S5, ) Di(t) (33)

where D; (1) := [ (D2(1))” (Db(t))” }T, w(t):=[2T@) 2T )] 20 =[T) L))"
Lo — S 0 -1

- — do
b= | s sy | (sass)
Sty

Sf:a = [ Si’gKngg } and ggl = [ S§3KbS§1 Sgl ] ’ S§3 = S§3Kb533- (34)

The feedback system is passive if,

La 0 Go Go
[ + STs VK, S35, (35)

—S% KyS$ Ly

12
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s a positive semi-definite matriz.
Moreover, for strictly proper systems, i.e., for S§3 =0, Eq. (35) reduces to,

L, S§3K.S5) (36)
_Slf:stS:?l Ly - S%3Kb5§3KaS§1
Furthermore, let S%5 = —(S5)7, 8% = —(S4)T, S4 = 0 and K, = —K_, then the feedback
system is passive.

Proof. From equations (29) and (30), and Theorem 2, §§2 =0, so, S31 = 5’?‘;1 Thus, from the same
Theorem the results of equations (32) and (33) follows. Moreover, from Theorem 2, the closed loop
system is passive if,

Loy + 53,V K, 5% (37)

is a positive semi-definite matrix. Since by assumption S§; and S%; are skew-symmetric matrices,
hence, DI'S¢ D; = 0 and DI'S%, D; = 0, VD; # 0. Then, Lab+§f3‘¥Ka§§1 is a positive semi-definite
matrix if L + ng\I/KaS% is a positive semi-definite matrix, where L with K = K, is given by Eq.
(24). Thus, the result of (35) follows. Also, if S%; = 0, then S%; = 0 and 5§, = [0 S% |, which
implies ¥ = Z,,, and matrix (35) reduces to matrix (36). Furthermore, if S%y = —(S5,), S =
— (84T, S% = 0 and K;, = —KZ, then matrix (36) becomes decomposed as a positive definite
a 0 0 5S4 K,S%
0 Lb —S{’SKngl 0

is a positive definite matrix. O]

matrix plus a skew symmetric matrix . Thus, matrix (36)

In the following Corollary, the pole placement problem is solved for a particular class of systems,
assigning a desired characteristic polynomial to the closed loop transfer function. It is assumed
that the plant inputs and outputs are linearly independent.

Corollary 2: Consider two junction structures S*(0,1,TF,GY) and S°(0,1,TF,GY) given by
equations (29) and (30) associated to bond graph models for the controller and the plant, respec-
tively. Suppose that the controller and the plant are connected in a feedback configuration as shown
in Fig. 4 with no loading effect, the plant is a strictly proper system, i.e., S§3 =0, mnk(Sﬁ) =m
and mnk(Sgl) = p. Let det (32Im + Ais + Ag) be the desired closed loop characteristic polynomial
of the transfer function from yq(t) to yp(t) where Ay € R™*™ Ay € R™*™ and let,

Sty =0, 55 = 51173 and S5 = Sgl (38)

Then, the transfer function from yq (t) to yp (t) is,

_ -1

b (s) = [Q1 + K DK, — Q12955 Q1] KT Koy4 (s) (39)
where | 1 Shz | U(sFy '+ Ly— S%)V and T == 8% + S84 Fo (sTn, + LaFa) ™ %y, with
Qo1 Qoo |- b b 11 : 33 31t a \o4n, ala 13> ’

Ue R™X™ gnd V € R™>™ being non-singular matrices such that,

b Ly, b

USl3: |: 0 :| and5'31V: [Ip 0:| (40)
Moreover, let 2q(t):=diag{ F{*, F§} x4 (1), 2p(t):=diag{ F}, FY} zy, (1),

13
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DO(t):=diag{L%, L$} D(t) and DY(t):=diag{L}, L} Db(t), with F§ € Rm=m Fb e Rmxm,
b c §Rm><m, F2a c %(n—m)x(n—m)} F2b c %(n—m)x(n—m) and Lg c %(n—m)x(n—m)'

Furthermore, let Sb, = [ Ou  On } Sby = [ I ], S =[Zm 0], LY=0, Ko =1y and

-0, o 0
LS = 0 then,
—1 —
= M (FD) 7" = b+ 0u (88) " and "
Fi =K, {A2 (F)) " - @12F§’@1Tz}
if S%3 1s a non-singular matriz, and,
-1
Ky = Ay (FP)™ — ©12F501, (42)
=17,
if S§3 = 0. The reference gain,
a\—1 7—1 b -1
va () = (FO) K 0 (FY) - da() (43)
assigns the following desired closed loop transfer function from yq (t) to yp (1),
F} (8L + Ays + M)~ [stsgg (P 'Ky + Im} Ag (FD)™H (44)
if S§3 1s a non-singular matriz, and,
FP [$%T + (LY — ©11) Fbs + Ao] ™' Ag (F2) ™ (45)

if 5%, = 0.

Proof. For strictly proper systems S5 = 0 and using equations (38), then S’gl = [ 0 S5 ],

§§3 :=0 and ¥ := Z,,. Hence, from Corollary 1, an equivalent inner pseudo-junction structure S°
for the closed loop system, satisfying the energy conservation properties P1 and P2 is,

&(t) 0 ~Tooiny, S¥3Kq 2(t)
z(t) = Ina-i-nb 0 0 ocl(t) (46)
yb(t) [0 S5 ] 0 0 ya(t)

with the following multiport-coupled dissipative field,

) La 513K 531

D = D; 4
oct(?) —SYKySy Ly — SV + St3KpS53KaS5, Q (47)

So, from Eq. (17) the closed loop state-space realization is given and hence the closed loop transfer
function from yq (t) to yp (t) is,

[ 0 SglFb ] (SIna,+nb - Acl)_l ‘gff}Ka (48)

14
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where
A, = [ —L.F, —~Sb. K, S5 F, ] (49)
: S%3Kb5§1Fa (Sfl_Lb_S?:stSg:sKaSgl)Fb
Ay Ap 17
Using Eq. (34) and (see Zhou, Doyle & Glover (1985), p. 23) [All Alz] =
21 22

Afljl A1 A**l ] where A := AQQ—A21A1_11A12 and * are some finite values not important
- 214111
in this context, then,

uy (s) = S5 FyA LS KT Ky (s) (50)
where A = s, + (Ly—S%H)F, + SEK\TK,S3F, Since by assumption
rank(S?%;) = m and rank(S%) = p, then there are U € R™™ and V €

R™X™  pon-singular matrices such that Eq. (40) is satisfied. Hence y(s) =
[Z, 0][U(sFy" +Ly— %)V + USL KT K,S8 V] Iom } KyT'Kayq (s), that is,

-1
O+ K TK, Q K,)I'K,
N e S M P

Using (see Zhou, Doyle & Glover (1985), p. 23),
AH A12 -1 . Ail *
|: A21 AQQ :| o * * (52)

where A = Ay — A12A§21A21 and * are some finite values, then the result of Eq. (39) follows.

Moreover, if Si’g = Lm ], S’é’l = [ Zn O }, i.e., V=U=1,, and LY =0, K, =7, and Lg =0

0
then I := S$, + 1 F¢, and

Q11 Q0 _ (Flb)_ls + Ll{ — 011 —0O19 (53)
Qo1 Qoo o% (F9)~1s

So from (39), the transfer function from yg4 (¢) to yp (t) is,
-1
FY [T + (L} = 011 + K,S53) Fis + (Ko + 012300 ) FY| Ky (Sgys + FY) (54)
Hence, using the definitions given by equations (41) and (42),

Y () = Flb (Szzm + Ais + A2)71 Ky (S335 + F1') ya (s) (55)

if S§; is a non-singular matrix, and,

1
up () = FV [szfm n (Ll{ _ 911) Fbs + AQ} Ky Fly () (56)

15
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if 543 = 0, that in stationary state is,
Ybss = Fleg_leFlaydss (57)

Thus, the reference gain given by Eq. (43) assigns the desired closed loop transfer functions from
ga (t) to yp (t) given by equations (44) and (45). O

The proposed junction structure associated to a bond graph model for the controller
S%0,1,TF,GY) given by Eq. (29) used in Corollaries 1 and 2, has a similar structure as the
plant, simplifying the controller implementation. Also, the sufficient stability conditions given by
(35) and (36) are easy to check, as illustrated in the following example.

Corollary 2 shows that the characteristic polynomial of the transfer function from y,(t) to yu(t)
can be freely assigned when S§3 = 7,,, and a constrained pole-placement can be achieved when
S83 = 0. In the last case the implementation of the controller is easier since F' = Z,,. If S5; = 0,
the fixed coefficient of the characteristic polynomial Ll{ — 013 is a positive definite matrix, because
Ll{ is a symmetric matrix and ©1; is a skew symmetric matrix. This condition is consistent with
the sufficient stability condition of (36) and in this case leads to a single condition compared to
those given in Galindo (2015), which require that Lll’ — ©11 be a positive definite and symmetric
matrix with an additional commutability condition that must be satisfied.

yd,(S)‘ 6<S),ﬁ4/€(s) u(s) P(S);«pzﬂf)

Figure 5. One degree of freedom feedback configuration including an approximation of a derivative

Accordingly to Assumption 1, outputs and references of velocities are selected in the next exam-
ple, and the passivity-based control is designed using Corollaries 1 and 2. This control is applied to
control output positions using an approximation of a derivative, as shown in Fig. 5, where 0 < ¢ € R
is a “small” parameter.

— f3(t) — fs(t)
ma '_» me9 '_»
omomiie oo el

Figure 6. Two-cart system

Example 2: Consider the two-mass-spring-damper system shown in Fig. 6, where m;, k; and b;,
i =1, 2, are the mass, the elasticity and friction coefficients, respectively, e (¢) and eqg (t) are forces
applied to masses m; and mg, respectively, and f3 (t) and fg (¢) are the velocities of the masses my
and mg, respectively. These velocity outputs satisfies Assumption 1. Fig. 7 shows a BG of this two
mass spring damper system. In order to apply Theorem 2 or Corollary 1, assuring a non-singular
matrix 5317 first high gain resistors R3 and R4 are added as show in Fig. 8. The junction structure
of this augmented BG is,

i () St —I1 Si 2 (1)
D@ty |=| I, 0 0 Db (t) (58)
up (1) Sy 0 0 up (t)
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mf | kG k2
mz |
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Se ATl =0 A1k Se
Ze Zef
;]
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Figure 7. BG of two mass system spring damper system
\ k1 C
ke C m2 | y2
m1 |
\ I/ B-F
7 10
Se A1l A1 Se
ut 2], 12J£ o], w2
1 R R4 R 2 R

Figure 8. Augmented bond graph of a two mass spring damper system

where SY, = [_%{2 (?);2] with ©1p = [—01 —11 ]7 S, [gz ], Sto= 11 0y,
i(t) = [es es fi fe ]T, DYt) = [ fo fo enn en2 ]T, y(t) = [ fs fe ]T7 z(t) =

[ f3s fs es €5 ]T, Dg (t) [ es eg fi1 fi2 ]T and wuy, (t) [ e1 €1 ]T. Since the junc-
tion structure associated to the bond graph model of the two mass system given by Eq. (58) is
strictly proper and has the structure of Eq. (30), in order to apply Corollaries 1 and 2, the controller
with the proposed junction structure given by Eq. (29) is applied to the nominal plant with the
junction structure given by Eq. (58) in the feedback interconnection of Fig. 4.

From Corollary 1, an equivalent inner pseudo-junction structure for the closed loop system,
satisfying the energy conservation properties P1 and P2 is given by Eq. (32) with the multiport-
coupled dissipative field given by Eq. (33). The added high resistors R3 and R4 introduce some
zero terms into Ly, + 513\11[( 531 of Eq. (33) as shown in the next example. Since no storage
elements were added then the system is not singularly perturbed. Also, let 8§35 = 0, Sf5 = 8%3
and 5§, = S§1 into the junction structure associated to the bond graph for the controller, so, the
passivity condition given by (36) is satisfied if,

K,=K[. (59)

Moreover, from Corollary 2, U = Z, V = 7 and as Rs and R4 tends to infinity then Lg approaches

zero, in order to obtain the closed loop transfer function given by (45), let K, = Iy, L = 0, L§ = s,

17
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F§ = F2, Ay = 2T, and Ay = Ty, so, from Eq. (42),

| m— (k‘l + k‘z) ko e o
| 2my — by 0 e oqa
Ky = 0 2mgy — bo ] A58 =1 (60)
Fo=1,if 8% =0
ml—kl—k2 k2
Fip=| 2my-be 2moh ] , if Sg =T
2m2—b2 2m2—b2

and from Eq. (43) the reference gain is,

1 (TTLQ — k‘Q) ma *k‘gmg

Ydss = a 7k2m1 (ml . kl o k:g) mo :| gd (61)

where gb = (m1 — k‘l) (m2 — k‘2) — ]{727712.

In order to control positions using the above control design of velocities, the designed controller
is implemented in MATLAB/Simulink in the feedback configuration of Fig. 5 where the plant
parameters are m; = mg = 1 Kg, by = b = 1 Ns/m and k; = k2 = 100 N/m. The positions
of the mass and the applied forces are shown in figures 9 and 10, if S§; = 0 and in figures 11
and 12, if S§3 = T, when a step reference of g = [ 1 05 }T is applied. This is accomplished
with a stable response having zero stationary state error as shown in figures 9 and 11, and due
to the passivity properties the required forces are smooth and into an admissible range as shown
figures 10 and 12. The initial oscillations of the mass velocities of Fig. 9 are due to the assigned
characteristic polynomial det((s+ s+ 1)Zs), and can be removed choosing instead Ay = 0.25Z,
with a bigger time response. On the other hand a smooth response is shown in Fig. 11 where the

desired characteristic polynomial of the transfer function from yu(t) to yp(t) is det((s + 1)212)
and in this case it is freely assigned.

1.4

: : : v
12} : : - : : H : s

o
@
I

o
m

Mass positions

Figure 9. Mass positions when S§; = 0

In the next section an application of Corollary 1 is presented when the plant is described by a
state-space description (A, B, Z,, 0). The controller belongs to the parametrisation of all stabilizing

controllers, is designed for an ideal plant (A, Z,, Z,, 0) and is implemented using a left inverse of
B.
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Figure 10. Applied forces when Sg; = 0
.
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Figure 12. Applied forces when S§; =T

5. Plant and controller described by state-space realizations

Let the plant and the controller be described by state-space realizations and be given by Eq. (6),
then, an equivalent inner pseudo-junction structure for the closed loop system is given by Eq. (32)

and Eq. (33) of Corollary 1 where,

S0, = [ Bq ] 59 = [ DyEy,C ;Y Oyt ], (62)
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(63)

A A F1
S%s = DyKyDy, Loy = — { ¢ 0 }

ByKyCoF7t ApF, !

Moreover, let the controller (see Galindo (2006)) K (s) = B* (A + wIn> be applied to

s+a—r
the plant P (s) := (sI, — A)"' B, in the feedback configuration of Fig. 4, where 0 < a € ® and
r € R are control parameters. These controller and plant have state-space realizations,

K(s): ((r—a)Zn, I, r?BL, D,) (64)

and
P(s): (A, B, Z,,0) (65)
respectively, where D, := B [A + (a + 1) T,]. Let K, = T, and K}, = T,,,. Hence, an inner pseudo-

junction structure for the closed loop system is given by equations (32) and (33) of Corollary 1
where,

A T A _
S| mp ] Sm=lo &1 (66)
. (r—a)F; 1 0
S§3 =0, Loy = — |: T‘QBBLFz_l Abel (67)
So, from Eq. (17) a state-space description of the closed loop system is,
| (r—a)Z,, -K, | I,
Aa=| "oppt” 4-pp,k, |© P47 | BD, | Ko (68)
Ca=10 I], Dy =0,

that has previously been given in the work of Galindo (2006). Stability and performance were
analysed by Galindo (2006) based on the characteristic polynomial. Applying Corollary 1, the
feedback system is passive if the non-symmetric matrix,

(69)

N N _ -1 —1
L+ StyiaSy = | Dl ]

—r?BBYF; 1 My

is a positive semi-definite matrix, where Mss := (BD, — A) Fb_l, that is, the feedback system is
passive if the symmetric part,

(a—r)F;1 r
{ QO ;(MaﬂMsz)] (70)

is a positive semi-definite matrix, where Q91 := % (Fb_ - rZBBLFa_ 1). Necessary conditions are
that (a —r) F; ! and % (Ma2 + MJ,) be positive semi-definite matrices. So, since F, is a positive

definite matrix, then from Sylvester’s criterion a necessary condition is,

r<a (71)
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that also assures a stable controller and regulation is achieved when r — a (see Galindo (2006)). Let
F,=1,, F, = diag {F{’,Fé’}, B 281{3 = [ Zm O ]T and Bl = [ Im G ] be a left-inverse matrix
of B, i.e., BB = T, where G € R™* (=) From the work of Galindo (2006) whether G = 0 and
invertible the characteristic polynomial depends only on A1 € R™*™ where Aq; is a sub-matrix

of A. So, G # 0 is needed to assign a desired characteristic polynomial. Hence, BBY = [ Iom g }
and the feedback system is passive if,
(a—1r)Tn 0 % ((Flb)*1 — 7“2Im) 0
0 (CL — ’I") In*m _TQGT %(Fé))_l (72)
3 (Pt =rT,) 1—7“2G (al—i— r) (F) 1+ Wiy —3(FY) 1AL + Wi

0 F(F9~ —5 A (FP)1 4+ Wy Waa
is a positive semi-definite matrix, where Wiy = L (GAy(F)) '+ (F)) 'ALGT), Way =
SED) (AL + (a4 1r)T,) GT and Way i= —5 (A(F2) ™! + (F¥)71AL)). A necessary condition
for % (M22 + Mg;) be a positive semi-definite matrix is that,

(a+7) (F)~t+ Wiy (73)

be a positive semi-definite matrix.

Using the result that (see Boyd, Ghaoui, Feron & Balakrishnan (1994)), [ A A
21 A2

positive semi-definite matrix if and only if Ay; and the Schur complement Asy — AglAilAlg are
positive semi-definite matrices, then under (71), (a —r)Z, is a positive semi-definite matrix and
(72) is a positive semi-definite matrix if and only if,

A AIQ} < a

Z —5(F)) T AS + Wi — 3r2G(Fp)
_lA Fb —1 W 1.2 Fb —IGT W- 1 Fb -2 (74)
5 A2 (FY) ™" + War — 372(F3) 22 — 1 (£3)
be a positive semi-definite matrix, where Z = (a+7r)(F))™L + Wpn -
_ 2
5 (3 (P = 22)" - rteaT).

Im
0
from y4(t) to y(t) does not depend on F¥¢, and so passivity does not depend on FY and hence does
not depend on Woy — 1(F%) 2. Let S5, = [ Z,, 0 | then (72) is a positive semi-definite matrix if

and only if Z be a positive semi-definite matrix.
As r and GG approach a and 0, respectively, since F{" is a positive definite matrix, then from (72)
and Sylvester’s criterion a necessary condition is,

Corollary 2 shows that whether, S%; = [ ] and S5, = [ Zm O ] then the transfer function

—a<r (75)
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Let I} =diag{fi,..., fm}, the leading principal minors of Z are,

2
det <(a +7) % - 74((114) <% - r2> 2 ,
det @”"7%_“éﬂ(%_rﬂ ’ 2 (76)
0 (a—l—r)ﬁ—ﬁ_”(ﬁ—ﬁ)

So, considering inequality (71), the feedback system is passive if,
2
(=) -1 (+-) 20, (77)

2
for i = 1,...,m, that are equivalent to ‘}—2 > % <fi + 7"2) fori=1,...,m, that is,

1 2a 9 1 2a

<r<——+—= (78)
fi VFi fi fi

for i = 1,...,m. Since f; > 0 for i = 1,...,m and a > 0 to have a stable feedback system (see

Galindo (2006)), so, the left hand side of inequality (78) gives imaginary solutions to r. Hence, the

closed loop system is passive if,

rgfi—i—j%andaz%iﬁ (79)

fori=1,...,m, leading to r € R.

Example 3: The results given by inequalities (71), (75) and (79) are applied to the previous
example of a two mass spring damper system that is shown in Fig. 7. As in example 2, in order
to apply Theorem 2 and Corollary 1, assuring a non-singular matrix S5;, first high gain resistors
R3 and R4 are added as show in Fig. 8. The junction structure of this augmented BG is given by
Eq. (58), and from Eq. (17), a state-space description for this system is ((Sll’l — Lb) Fy, 8%, 7y, 0),
that is,

b0 Ry ks

b
-2 O —kQ I2
A: m2 B:
2% e o el 0
-1 1 03 k2
ma mo R4
C =1, D=0

Let Ka = I4, Kb = IQ, k‘l = k‘g = 100 N/m, bl = bg =1 NS/Hl and mp = myg = 1 Kg, BL =
[ I 0 ] and F, = T,,. Then, F}, =diag{F}, F¥} where F} =diag{1,1} and F} =diag{100,100}.
Hence, applying the controller with the state-space realization given by Eq. (64), an equivalent
inner pseudo-junction structure for the closed loop system is given by equations (32) and (33) of
Corollary 1. Hence, for ¢ = 1,2 from inequalities (71), (75) and (79), as r and G approach a and 0,
respectively, the passivity conditions for the closed loop system are,

—a <r<a,

< —-1+2a and 0.5<a (81)
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increased, the time response is decreased
the feedback system becomes more robust in the sense that additive disturbance at the output are

International Journal of Control Control'design’'v18'latex

b1
mil bO k]_ k;2
22 —k
considering that A approaches i "62 8 02 as R3 and R4 tends to infinity. As a is
m
-1 1
o om0 0

ma
and the control energy is increased. Also, as a is increased,

well attenuated. However, decreasing a, robust stability is achieved, that is, stability is preserved
under large uncertainties due to unmodelled dynamics or parameter variations. Thus, a criterion is
to select the smallest value of a that achieves the desired performance. Also, from inequalities (81),
the difference between r and «a is increased as the value of a is different from 1. Selecting a = 1,
then from inequalities (81), —1 < r < 1. Passivity is achieved for values of a and r close to 1.

Tracking to the reference can be gotten if G = 0, however GG # 0 is needed to assure stability, so
instead the regulation problem is solved. Tracking to the reference and robustness under external
disturbances, i.e., robust performance are out of the scope of this work.

Controller applied to the nominal plant
1 . . T T T . ,

T T
—— =y, for =05
— =l for =075

o
n
T

vy for =1

[}
T

Welocities of m,
7,
/

a
i)
o
M
Wk
I
m
o
-l
jux)
jiu)
E

Time in sec.

T T
———yzforrZDS
—-—--yzforFO.?ﬁ H

v for =1

‘elocities of f,

Time in sec

Figure 13. Velocities y1 and y2 of m1 (top) and mso (bottom), respectively, for r = 0.5, » = 0.75 and » = 1 when the control

is applied to the nominal plant.

Caontroller applied to the nominal plant

Joo T T
———u, for =05

— = - uy for =075

wy for =1

Forces applied to m,

— ——uy for =05

—-—--uzfor.r=0 K]

u, for =1 H

Forces applied to i,

Time in sec.

Figure 14. Applied forces uj and uz to m; (top) and ma (bottom), respectively, for r = 0.5, » = 0.75 and r = 1 when the

control is applied to the nominal plant.

The controller is implemented in MatLab-Simulink using the feedback configuration of Fig. 4,
and is applied to the two mass spring damper system that is shown in Fig. 7. The outputs are shown
in figures 13 and 14 when the control is applied to the nominal plant and are compared in figures
15 and 16 when a large change of the parameters of 1.2A4 in the state matrix is realized. A state
reference 4 = 0 and a state initial condition z(0) = [ 1 2 3 4 |T are considered. In all the cases
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the values of r = 0.5 and r = 0.75 for a passive closed loop system, and the value of r = 1 for closed
loop system at the limit of passivity, are compared. Values of » > 1 for active closed loop system
are unstable and are not shown. Also, K, =7, K, =7 and B}, = [ Iy, G } are considered, where

G{ 0  0.001

0.001 0
Smooth output responses are achieved in all the cases. Figures 13 and 14 show that when the

control is applied to the nominal plant, the stationary state error of the velocities is decreased as r
increase, until zero stationary state error is obtained for » = 1. The slope of the magnitude of the
applied forces is increased as r increase.

Due to the small values of a and r, selected to achieve regulation and passivity, the magnitude
of the plant input is ‘small” in all the cases. However, robust performance requires bigger values
of a. Figures 15 and 16 show that stability is preserved for » = 0.5, r = 0.75 and r = 1, despite
the large change of parameters. This robust stability property is expected due to the passivity of
the closed loop system. However, the outputs become more oscillatory and in the limit of passivity
small numerical errors can lead to instability under large change of parameters.

} is close to zero and assigns a stable closed-loop characteristic polynomial.

Controller applied to the uncertain plant
10 . . T T T . ,

T T
———Vy for =05
— ==y, for =075 4

vy for =1

Welocities of m,

T T
: ———yzforr=05

—-—--yzforr=0.75 I

v for =1 !

“Yelocities of mm,

Time in sec

Figure 15. Velocities y1 and y2 of m1 (top) and mso (bottom), respectively, for r = 0.5, » = 0.75 and » = 1 when the control
is applied to the uncertain plant.

Controller applied to the uncertain plant
1000 T T T T T T T T T
: : : : ———u, for=0.5

— == uy for =075

m
)
o

u, for =1

Forces applied to m,

Time in sec.

500

T T
—— —u, for =05

— =~ uy for =075

u, for =1 H

Forces applied to fm,
o

i i i ; i
1 2 3 4 5 =1 7 =] 9
Time in sec.
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=]
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Figure 16. Applied forces w1 and uz to mi (top) and mo (bottom), respectively, for » = 0.5, r = 0.75 and » = 1 when the
control is applied to the uncertain plant.
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6. Conclusions

Passivity-Based Control (PBC) design is proposed based on proposed pseudo-junction structures
for the cascade and feedback interconnections and the multiport-coupled dissipative fields. The
high or small resistances added to the bond graph model implies that certain terms of the matrix
defining the relationship of the dissipative field, approach zero. Also, the added small capacitors and
inductors to this model lead to a singularly perturbed model. From these unified representations of
the closed loop system, conditions for passivity are determined from the passivity of the dissipative
fields. It is shown that the method provides guidance in the choice of the structure of the controller
and the assignment of relevant parameters. The result shows that the proposed PBC achieves robust
stability. Applications of the results are given, when the plant and the controller are described by
state-space realizations. In this case the overall system is not singularly perturbed. The results
show that the passivity condition of the closed loop system allows to tune the control parameters
when only power external sources after the interconnection are considered. An approximation of
a derivative is proposed for control of output positions when the controller is designed for control
of velocities. The results shows that the tracking control problem is solved when the controller is
designed in the physical domain and the regulation control problem is solved when the plant and
the controller are described by state space realizations. Moreover, the pole placement problem is
considered for a particular class of systems using the proposed representation. The pseudo-junction
structures in the representation of closed loop control system provide a framework for consideration
of advanced control design in the physical domain. Optimal control or energy-based control can be
tackled using this approach. Further investigations can be realized for tracking the output reference
when the plant and the controller are described by state space realizations, for robust performance
and for . extensions to non-linear systems.
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Appendix A. Proof of Theorem 1

Proof. Energy may not be conserved when the subsystems are interconnected using active bonds. Since
up (t) = Ky, (t) and by assumption (Ay, By, Cp, Dp) does not have load effect on (A4, Ba, Cq, D,), then
from the outputs of S¢ and S? in equations (7) and (8), we have S, for the cascade interconnection,

) 1)

where
(2)

that does not satisfy the structural properties of energy conservation, i.e., Sfl is not a skew-symmetric
matrix. From the outputs of S’gb in Eq. (1), 2 (t) = D; (t). So, substituting D, () given by Eq. (2) into
Eq. (1), and using the definition of the coupled dissipative field given in Eq. (11), the result of Eq. (9)
follows. Clearly, Eq. (9) satisfy properties P1 and P2 and thus is power conserving. Moreover, the system
is passive whether the elements of the bond graph model must be such that the system be a power
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conserving physical system, that is, under Assumption 1 the stored and dissipated powers must satisfy,
&7 (t)2(t) + DY () Do(t) = o™ (t)u(t) (3)

Since the inner structure S’flb is power conserving, the only element that may not be power conserving
is the multiport-coupled dissipative field. Under Assumption 1 whether all the elements are passive then
the system is passive according to the work of Beaman & Rosenberg (1988). Hence, the overall system

is passive if fot DT (7)D,(7)dr > 0, that is, from Eq. (11) ,fot DI (7)LayDi(7)d7 > 0, and the condition of
passivity follows. O

Appendix B. Proof of Theorem 2

Proof. Energy may not be conserved when the subsystems are interconnected using active bonds. Using
up(t) = Kpya(t), from the outputs of S¢ and S® in equations (20) and (21),

where D, := | (D2(t))" (Dg(t))T }Tf

4 S¢ 0
59, = . and
" S%BKbSBI Si)l (5)
Sfo e SilZ 0
12 S%BKbS?E Si)Q ’
SO7 Uq (t) = Ka (yd (t> W% (t)> iS?
ta (£) = WEq (a (1) = S12(t) = S52D0()) (6)

Hence, an outer pseudo-junction structure S, for the feedback interconnection is,

& (1) S0 — SR UEK,Sg Sy — SUK,SS,  SHUK, 2 (t)
Di(t) | = Lnotny 0 0 D, (1) (7)
w (1) (Zp, — 83V Ka)S5  (Tp, — 53VKa)SS S%YK, | | va(t)

N N -1, N 1 A
Since, I, — S5; VYK, =T— (I+S§3Ka> S§3 Ko = (I—i— S§3Ka) , then, from the outputs of S¢ in Eq.

(7), z(t) = D; (t). So, substituting D,, (t) = LD; (t) into Eq. (7,

i (t) = (Sfl — S0, UK, S5 + Sf@) D; (t) + 52V K, yq (t)
D;(t) =z (t) (8)

A -1 _ -
o (8) = (T + S5 Ka)  SaDi (6) + S50 Koy (1)

Since 59, + 59, L = —L,, and using the definition of the coupled dissipative field given in Eq. (23), the
result of Eq. (22) follows. Clearly, Eq. (22) satisfy properties P1 and P2 and thus is power conserving.
Moreover, the system is passive whether the elements of the bond graph model must be such that the
system be a power conserving physical system, that is, under Assumption 1, the only element that may
not be power conserving is the multiport-coupled dissipative field. So, whether all the elements are passive
then the system is passive according to the work of Beaman & Rosenberg (1988). Hence, the overall system
is passive if fot DT (7)Dy(7)dr > 0, that is, from Eq. (23) the condition of passivity follows. O
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