

Citation for published version:
Suwarno, SR, Huang, W, Chew, Y-M, Tan, SHH, Trisno, AE & Zhou, Y 2018, 'On-line Biofilm Strength Detection in Cross-flow Membrane Filtration Systems', *Biofouling: The Journal of Bioadhesion and Biofilm Research*, vol. 34, no. 2, pp. 123-131. https://doi.org/10.1080/08927014.2017.1409892

10.1080/08927014.2017.1409892

Publication date: 2018

Document Version Peer reviewed version

Link to publication

This is an Accepted Manuscript of an article published by Taylor & Francis in Biofouling on 22 Dec 2017, available online: http://www.tandfonline.com/10.1080/08927014.2017.1409892.

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09 Mar 2023

On-line Biofilm Strength Detection in Cross-flow

Membrane Filtration Systems

3 Suwarno, Stanislaus Raditya ²⁺, Huang, Wenhai ¹⁺, Chew, Y. M. John ⁴, 4 Tan, Sio Hoong Henrich ³, Trisno, Augustinus Elmer ³, Zhou, Yan ^{1,3*} 5 6 7 1, Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research 8 Institute, Nanyang Technological University, Singapore; 9 2, Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, 10 Nanyang Technological University, Singapore; 11 3, School of Civil & Environmental Engineering, Nanyang Technological University, Singapore; 12 4, Centre for Advanced Separations Engineering and Department of Chemical Engineering, 13 University of Bath, UK 14 15 Word Count 16 Text: 3594 17 References: 1339 18 Figures: 180 19 Tables: 237

1

2

Email: <u>zhouyan@ntu.edu.sg</u>

Postal address: Nanyang Environment & Water Research Institute (NEWRI), CleanTech Loop (CleanTech One) #06-08, Nanyang Technological University, Singapore, 637141

⁺ These authors contributed equally to this work.

^{*} Corresponding author. Phone No.: +65-6592-1832

ABSTRACT

- 21 A fluid dynamic gauging (FDG) technique was used for on-line and in-situ measurements of 22 Pseudomonas aeruginosa PAO1 biofilm thickness and strength on flat sheet polyethersulfone membranes. The measurements are the first to be successfully conducted in a membrane cross-23 24 flow filtration system under constant permeation. In addition, FDG was used to demonstrate 25 the removal behaviour of biofilms through local biofilm strength and removal energy estimation, which other conventional measurements such as flux and TMP cannot provide. The 26 27 findings suggest that FDG can provide valuable additional information related to biofilm 28 properties that have not been measured by other monitoring methods.
- 29

- 30 Keywords: Fluid dynamic gauging (FDG), biofilm strength, biofilm thickness, membrane
- 31 biofouling

Introduction

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Biofouling in membrane processes is a long-standing problem and biofilm development on and/or within membrane surfaces can cause lower product water quality, increased energy requirement and higher overall costs. Although biofouling predominantly occurs in high pressure systems such as reverse osmosis (RO) and nanofiltration (NF) (Baker and Dudley 1998, Flemming et al. 1997), this problem may also affect other membrane systems including low pressure microfiltration (MF) and ultrafiltration (UF) (Pontié et al. 2007), membrane bioreactors (MBR) (Le-Clech et al. 2006), and other novel membrane systems (eg membrane distillation, pressure retarded osmosis, etc.) (Bar-Zeev et al. 2015, Goh et al. 2013). It has been understood that complete elimination of biofouling is almost impossible (Flemming et al. 1997). Current pretreatment technologies mainly focus on the reduction of microorganisms in the source water, which may not provide effective biofouling control since biofilm development relies heavily on the availability of biodegradable nutrients (Chen et al. 2013, Jamaly et al. 2014, Nguyen et al. 2012). Despite the effort to lower biocide usage, it is currently still the most commonly used method for membrane cleaning. While biocide does kill bacteria, the dead cells are not totally removed but instead become a nutrient source for surviving bacteria (Murthy and Venkatesan 2009). Therefore, a reliable monitoring method which provides insights to biofilm removal under stress conditions is crucial for the development of effective membrane cleaning protocols (Nguyen et al. 2012). Traditionally, flux decline or transmembrane pressure (TMP) rise have been used to determine and infer the occurrence and extent of membrane fouling because they can be measured readily in the laboratory and industrial settings. However, these two parameters, though intuitive, are indirect indicators of the properties of the fouling layer, which may not provide information regarding the actual condition of membrane foulant thus causing ineffective membrane

cleaning. Moreover, flux and TMP are normally time, spatial or volume averaged measurements. Therefore, direct and local information of the deposition and removal behavior of foulant, by measuring the thickness and strength of the foulant, can assist the optimization of the cleaning regimes, operating protocols and module design of membrane systems (Chavez et al. 2016). Most existing on-line monitoring techniques including (i) microscopic (confocal laser scanning microscopy) (Mukherjee et al. 2016), (ii) spectroscopic [infrared, nuclear magnetic resonance spectroscopy (NMR) and Raman] (Graf von der Schulenburg et al. 2008, Kögler et al. 2016), (iii) ultrasonic time-domain reflectometry (UTDR) (Sim et al. 2013), and (iv) optical coherence tomography (OCT) (Chew et al. 2004b, Linares et al. 2016a), mostly focus on the detection of foulant thickness or flow distribution and are unable to provide information on foulant strength or attachment behaviour which could be the relevant parameter for membrane fouling. Atomic force microscopy (AFM) is probably the only technique that allows the measurement of the physical adhesive forces of foulants to surfaces in-situ, which may include bacteria and biofilm adhesion to membrane surfaces (Powell et al. 2017). In addition, it is especially challenging to obtain reliable measurements in flow systems commonly found in membrane operations. Fluid dynamic gauging (FDG) is a relatively simple technique which was initially developed to measure the thickness of deposits on solid surfaces in situ and on-line (Tuladhar et al. 2000). It has been employed to investigate foulant thickness formed on heated surfaces such as heatexchangers used primarily in food processing, polymer manufacturing and crude oil industries (Gu et al. 2009, Peck et al. 2015, Tuladhar et al. 2002). The FDG technique can measure (in a destructive mode) local strength properties throughout the different layers of deposits (Chew et al. 2004a). The ability of the FDG to be operated at elevated temperature and pressure (Ali et al. 2013) has gained some interest for use in membrane filtration scenarios, where permeation is involved (Chew et al. 2007, Jones et al. 2010, Lewis et al. 2016). However, these studies

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

were mainly performed using synthetic organics to simulate constant TMP filtration in food industries. Here, FDG is applied to membrane processes to simulate water and wastewater treatment operations under constant permeation.

The objective of this study was to investigate the feasibility of FDG technique for on-line membrane biofouling detection by measuring both biofilm thickness and strength. This study is the first attempt to apply FDG to measure biofilm thickness and strength in a membrane cross-flow filtration system under constant permeation. This study also explored the impact of biofilm desiccation which could happen due to flow disturbances or during cleaning (transition from feed to cleaning formulations).

Experimental

Biofouling experimental protocol

The experimental set-up and protocols used for simulating biofouling in cross-flow filtration were adapted from previous work (Figure 1A) (Sim et al. 2013). A rectangular flat-sheet cross-flow cell that had a membrane area of 0.0126 m² (180 mm × 70 mm) and a channel height of 2.0 mm was used. Before installation, the low protein binding polyethersulfone (PES) flat sheet membrane (PALL, 10K OMEGATM, MWCO 10 kDa) was cut and soaked in deionised water (Milli-Q, Merck-Millipore) for 24 h. The feed water contained background salinity of 500 mg L¹ NaCl (Merck) and 20 mg L¹ nutrient broth (Difco NB, BD Diagnostics) which provided total organic carbon (TOC) of approximately 8 mg L¹, similar to typical TOC in secondary effluent water. Feed water was circulated via a gear pump (Cole-Palmer, Model 74013-45) in a closed loop as shown in Figure 1A. Wild type *Pseudomonas aeruginosa* PAO1, a common representative of wastewater bacteria, was chosen as model bacterium in this study (Hentzer et al. 2002, Kim et al. 2015, O'Toole and Kolter 1998). A stock solution of PAO1 (cell counts ~106 CFU mL¹) was injected at a constant rate of 0.25 mL min¹¹ via an injection pump

(ELDEX, model 5979-OptosPump 2HM). The preparation of bacteria stock solution can be found elsewhere (Suwarno et al. 2012). The temperature of the feed was kept at 25°C by using a continuous flow chiller (PolyScience 9706A, USA). A microfilter (0.2 μm pore size, Karei Filtration) was installed at the retentate line to prevent bacteria from entering the feed tank. Additionally, the feed solution was replenished within every 24 h to further ensure a controlled feed condition throughout the whole experiment duration.

In this study biofouling experiments were conducted at constant feed pressure (P1) (80 kPa) and cross-flow (0.95 cm s⁻¹) and flux (10 LMH) for durations of 2, 4, and 6 days in duplicates. FDG analysis was conducted on-line (under same operating conditions) at the end of every biofouling experiment. The experiments are identified as 2-day, 4-day and 6-day, respectively. Apart from the biofouling experiment at varying durations, an additional experiment was conducted by performing a 2-day biofouling experiment under the same operating conditions, followed by 24-h desiccation under no cross-flow and no nutrient supply, followed by a 2-day biofouling experiment. This experiment was aimed at investigating the impact of flow cessation

FDG System

as 4*-day.

The schematic of the FDG system and experimental set-up is depicted in Figure 1B. The FDG system was comprised of a stepper motor, linear slide with mount to provide vertical movements, linear stainless steel FDG gauge, pressure transducer, and a motorized syringe pump for a controlled suction speed. A desktop computer was connected with the stepper motor and pressure transducer to record the gauge position and differential pressure (ΔP). The stepper motor movement was controlled by a constant current drive (Nanotec, SMC42) in a programmable circuit board (Arduino, ATmega2560). This circuit board also read voltage from

due to possible process interruption in a large-scale process. The above experiment is identified

the linear potentiometer which provided an independent measurement of the position of the gauge. A signal converter (RS Components, Solartron OD5) was used to transform the linear variable differential transformer (LVDT) output into a steady ± 10 V reading. A precision data acquisition (DAQ) device (National Instruments, NI USB-6210) read both the LVDT and pressure transducer signals. The programmable circuit board and DAQ device were configured using LabVIEWTM visual interface (VI) to perform control and data-logging activities.

The inset in Figure 1B shows the operation of FDG. The FDG gauge was constructed from a stainless steel tube of a diameter (d) of 2.0 mm, connected to a tapered (45°) end with internal nozzle diameter of d_t (0.5 mm). FDG is based in the principles of fluid dynamics to determine the foulant thickness by reading the pressure difference ΔP (Lewis et al. 2016). A dimensionless characteristic height – h/d_t , is uniquely correlated to ΔP in a calibration plot of ΔP vs. h/d_t , such that the foulant thickness, δ , can be determined (Figure 2A). Principally, with a constant suction mass flow rate ($m_g = 0.2 \text{ g s}^{-1}$) controlled by the syringe pump, as the FDG gauge approaches the biofilm surface (ie decreasing h/d_t), ΔP shall firstly be stable and then gradually increase, thus a curve (ΔP vs. h/d_t) to indicate the position of biofilm surface could be generated. In non-invasive mode, the biofilm is not disturbed by the suction flows as the FDG gauge approaches the surface. Comparison of the biofilm surface and membrane surface curves in Figure 2A allow biofilm thickness to be estimated (detailed calculation is described in Supporting Information section 1-2).

In destructive mode, however, as the gauge approaches the biofilm surface, the suction flow shall eventually cause removal of biofilm in the region directly underneath the gauge (Figure 2B). The gauge clearance from surface (h, as in Figure 1B) when removal of biofilm layer occurs is recorded to estimate the strength (cohesive strength or adhesive strength) of biofilms. The thickness of biofilm was estimated by comparing the biofilm surface and membrane surface curves (Figure 2A), and strength of biofilm was calculated by

$$\tau_{\text{w,max}} = \frac{3\mu m_g}{\rho_L \pi h^2} \frac{1}{r} \tag{1}$$

where μ is viscosity of water, m_g is the suction mass flow rate by syringe pump, ρ_L is density of water, h is the clearance from surface when removal of biofilm layer occurs as indicated in Figure 2A and r is $d_f/2$ (Chew et al. 2004a, Lewis et al. 2012). After destructive testing, the energy required to remove the biofilm layers was also estimated (detailed calculation is described in Supporting Information section 3). The fouled membrane was then carefully removed from the test apparatus and immediately analysed using a confocal laser scanning microscope (Figure 2B). Biofilm samples were maintained moist and stored in covered containers during storage and transport to ensure minimum deformation and contamination.

Confocal Microscopy

The thickness of biofilm formed on the membrane surface was also measured by observing the

fouled membrane via a confocal laser scanning microscope (CLSM, Zeiss, model LSM810).

Biofilm thickness measured by the CLSM and FDG were analysed statistically using the

Pearson's correlation analysis. Biofilms were prepared by staining with SYTO9 nucleic acid

fluorescent stain (Molecular Probes, S34854) in accordance with manufacturer's specifications.

Working solutions were prepared by mixing 1.5 µL SYTO9 in 10 mL phosphate buffered saline

170 (PBS) solution.

The flow cell was initially dismantled by removing the top-plate, followed by carefully collecting the membrane samples by holding the two corners of the membranes with sterilized forceps. Centre sections of the membrane samples (1.5 cm x 2.0 cm) were slowly cut and separated from the rest of the membrane areas for CLSM analysis. CLSM samples were then soaked in working solutions and incubated for 30 min in the dark at room temperature. After the incubation the membrane samples were rinsed three times with sterile PBS before placing on the glass slide. Each experimental variable (at different durations) was repeated in duplicate

and five replicates of CLSM three-dimensional (3D) images were constructed by stacking 2D images of the biofilm at different thickness (Z-Stack mode).

Results and Discussion

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Determination of Biofilm thickness by FDG

Biofouling experiments were conducted at durations of 2, 4, and 6 days, and FDG analysis was conducted at the end of every experiment. Typical biofilm and membrane surface curves from FDG measurements are shown in Figure 2A which provides information of both biofilm strength and thickness. The biofilm strength can be separated into cohesive and adhesive strength. Cohesive strength is considered as the strength required to deform layers within the biofilm, while the adhesive strength is the removal strength required to detach biofilms from the membrane surface (FDG thickness = 0) (Peck et al. 2015). Biofilm thickness in this study was measured by comparing the distance between before and after the FDG destructive mode (i.e., cleaned membrane). The rationale behind this method is that the membrane reference point was constantly changed and calibrated due to membrane compaction and possible changes in hydrodynamic conditions caused by fouling. This method differed from previously published literature in which the thickness was measured by taking a reference point at clean condition before fouling (Chew et al. 2004b, Lewis et al. 2016, Peck et al. 2015). The TMP rise (measured by the difference between P1 and P2 in Figure 1A), thickness measured by FDG, and thickness measured by CLSM from different experimental durations are summarized in Table 1. In general the results showed greater TMP rise and thickness associated with more biofilm on the membrane surfaces at longer durations. This is consistent with data reported in literature (Chen et al. 2013, Sim et al. 2013). Pearson correlation analysis was conducted between FDG thickness and confocal thickness. The Pearson correlation coefficient and significant correlation were 0.9733 and 0.0267 (< 0.05), respectively. The close

correlation between FDG thickness and confocal thickness shows that biofilm thickness can be reliably determined by FDG.

Table 1. TMP rise and thickness of biofilm at different experiment durations.

Duration, d	TMP Rise, kPa	FDG Thickness, μm	Confocal Thickness, µm
2	7.7 (± 1.8)	19.4 (± 0.5)	18.0 (± 2.5)
4	$11.0~(\pm~0.9)$	$27.9 (\pm 0.8)$	$28.0 \ (\pm \ 2.0)$
6	$13.9 \ (\pm \ 0.2)$	$43.1 \ (\pm \ 0.5)$	$45.0 \ (\pm \ 3.0)$
4*	12.3 (± 0.4)	23.3 (± 2.3)	28.0 (± 3.0)

^{*)} Special treated biofilm (4 days intermittent run).

Determination of biofilm strength by FDG and impact of biofilm desiccation

The results for destructive strength testing at each time point are shown in Figure 3, in which the biofilm thickness is plotted against the applied gauging shear stress (eq. 1) (Lewis et al. 2016). The scatter in the data points, especially for 4- and 6-day, reflect the dynamic nature of the biofilm growth. The yield stress, characterised as that above which significant erosion of the biofilm (due to suction flow from gauge), for biofilms developed over 2, 4 and 6 days were estimated at 1165, 1600, and 1660 N m⁻², respectively (indicated by the vertical dotted lines on Figure 3). These values were estimated from the average initial FDG strengths from duplicate experiments. The dashed lines, obtained from the yield stress and the average adhesive strengths, were drawn on the figure for each experiment duration to aid visualization. A general negative trend was observed in all these results, showing that the layers closer to the membrane surface were harder to remove than those at the top of the biofilm (ie the cohesive strength increases as the biofilm gets thinner). The increased strength of the biofilm layers closer to the membrane could be caused by the permeate flux through the membrane and/or the increase in EPS concentration. It has been reported that permeate flux is a dominant factor in the

220 accumulation and compaction of EPS matrix within the biofilm which may further affect the 221 hydraulic resistance on membrane surfaces. The drag force caused by the permeate flux may 222 also lead to an increased number of binding points between EPS molecules, and thus, greater 223 cohesive and adhesive strengths (Dreszer et al. 2013). 224 It is clear from Figure 3 that the adhesion increased with the duration of biofouling experiments. 225 However, for 4- and 6-day experiments, the increase in adhesive strength was marginal. One possible explanation could be reduced transfer of fresh nutrient to the bottom layers due to less 226 227 diffusion through the denser EPS layers (Oubekka et al. 2012). Hence, strengthening of the 228 layers closer to the membrane was marginal. 229 Another interesting observation was the degree of variation of biofilm strength at a particular 230 thickness at different experiment durations ie the gradient of the thickness versus strength curve 231 (Figure 3). There was an apparent increase of cohesive and adhesive strengths from the 2-day biofilm to those of 4-day which resulted in a larger gradient, ie, - 8.8×10⁻³ µm Pa⁻¹ (2-day) vs. 232 - 5.6×10⁻³ μm Pa⁻¹ (4-day). However, the 6-day biofilm showed a slight increase in strength 233 with thickness ie - 8.6×10^{-3} µm Pa⁻¹ compared to that of 4-day. 234 235 Figure 4 shows that the average cohesive (more details provided in Supporting Information 236 section 3) and adhesive strengths for 2-day biofilms were lower than those for 4-day and 6-day. 237 This behaviour suggested that the biofilm developed its strength dramatically between 2 and 4 238 days. However, the increase in average cohesive and adhesive strengths from 4 days to 6 days 239 was marginal. The results in Figure 4 may further support the findings in Figure 3 which show 240 slower increase in biofilm strength with thickness at the 6-day duration. 241 Nevertheless, with the increasing thickness, the required removal energy was greater at longer 242 durations (see Figure 5). There was a good correlation between the removal energy (from FDG)

and the required energy to overcome fouling (as shown by the TMP rise). While the increasing

removal energy with longer duration and biofilm thickness is not counter-intuitive, this information may be required in the consideration for membrane cleaning protocol, in contrast to the traditional parameters of TMP rise or permeate quality. It should be noted that the information of biofilm strength and biofilm removal energy proposed in this study is not intended to be used independently for the consideration of membrane cleaning. Instead, this additional biofilm characteristic may be used in conjunction with the information of production energy (ie TMP) to provide the overall comparison between (1) continuing production with presence of fouling, or (2) performing cleaning. Both cohesive and adhesive strengths obtained from biofilms in the present study are considerably higher than those of other FDG studies (Lewis et al. 2012, Mohle et al. 2007). Mohle et. al (2007) used FDG to investigate the activated sludge forming biofilm grown on a rotating disc biofilm reactor (rotation speed of less than 9 min⁻¹ for 7 days) and found the cohesive strength of the biofilm was only 6-7 N m⁻². Lewis et. al (2012) applied a cross-flow system and formed biofilm by yeast suspension. Their experiment was conducted for 30 min with a duct flow rate of 0.9 L min⁻¹ under constant TMP of 3.5 kPa. The highest strength of biofilm was around 55 N m⁻². In the present study, the operating conditions applied were harsher and simulated the actual conditions of microfiltration for water treatment. Moreover biofilms formed by Pseudomonas aeruginosa tend to have higher strength as evidenced by other ex-situ methods (6,000-15,000 N m⁻²) (Korstgens et al. 2001, Poppele and Hozalski 2003). Comparison of 4*-day with 4-day tests shows that biofilm desiccation did not significantly impact the overall TMP and thickness (see Table 1). There was around 8% increase of TMP and 8% decrease of FDG thickness, and the CLSM measurement did not show any thickness change. Interestingly, the strength observation by the FDG showed significant increase in both adhesive and cohesive strength of around 101.5% and 85.6% respectively (see Figure 4). The

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

apparent changes of biofilm condition were also shown by the slope strength at different biofilm layers (Figure 6). Therefore, although the thickness and TMP rise were similar between 4-day and 4*-day, the latter showed significant increase of biofilm strength and resulted in an increase of required removal energy (see Figure 5). An interruption to a biofilm development process may cause undesired impact (eg accelerated attachment process) which affect biofilm growth (Murthy and Venkatesan 2009, Timoner et al. 2012) and it is possible that desiccated biofilm may produce an additional evaporation barrier and denser EPS, which may result in a stronger biofilm (Flemming et al. 2016). These results may indicate that the FDG strength analysis was able to provide additional information related to biofilm structural properties which could not be reflected by TMP rise and biofilm thickness.

FDG as an aid for biofouling detection and cleaning in membrane systems

There have been previous studies related to biofilm properties and biofouling. In general, these studies can be grouped into three main areas: biofilm surface characteristics, biofilm structure and thickness, and biofilm adhesion to surface (see Table 2). Apart from these studies, there have also been some interests on the impact of biofilm development toward flow channel constriction and localized channeling (Graf von der Schulenburg et al. 2008).

In this study, the FDG technique provided unique additional information related to biofilm strength for both biofilm-biofilm (cohesive) and biofilm-surface (adhesive) through an on-line and simple method. This information is unique and can be correlated to the requirements of foulant removal energy due to biofilm development on membrane surfaces. This study also presented comparisons between the energy for maintaining permeate production rate and the required energy for foulant removal (see Figure 5).

Biofouling is still a major fouling problem in membrane operations and the most common indicator for exercising the cleaning-in-place is pressure drop (TMP). FDG showed different

levels of cohesive and adhesive strength, while the TMP and thickness did not show significant differences. The results in this study may provide an avenue for more developments on the use of FDG in future studies related to membrane biofouling. Several areas that can be considered for future research include impact of different operating conditions and validation of the FDG strength information in a large-scale plant.

Biofilm properties	Detailed characteristics	Literature	Note
Surface characteristics	Hydrophobicity	(van Oss 1997)	Surface energy measurements using contact angle technique.
	Surface charge	(He et al. 2015, Ikuma et al. 2014)	Surface zeta-potential measurements of biofilm coated or EPS surfaces.
	Viscoelastic	(Ferrando et al. 2017, Kundukad et al. 2016)	Surface viscoelastic determination including modulus and biofilm viscosity.
	Porosity	(Chew et al. 2014, Goh et al. 2013)	Biofilm porosity distribution determination.
Biofilm structure	Rheological	(Körstgens et al. 2001, Linares et al. 2016b)	Compressibility of biofilm, including impact of membrane permeations.
	Thickness	(Linares et al. 2016a, Mukherjee et al. 2016, Sim et al. 2013)	Most techniques are able to provide accurate thickness prediction of biofilm both on-line and off-line.
Adhesion	Surface adhesion	(Habimana et al. 2014, Huang et al. 2015, Suwarno et al. 2016)	Most studies focus on bacterial attachment to surfaces including impact of initial conditioning layers.
Addiction	Cohesive strength	(Mohle et al. 2007)	Measurement of cohesive strength through an offline FDG method.

Acknowledgements

300

301

302

303

304

305

306

307

308

309

310

The authors were grateful to the funding support from Sustainable Earth Office, Nanyang Technological University for the project "Application of fluid dynamic gauge for fouling control in membrane bioreactor". Singapore Membrane Technology Centre and Advanced Environmental Biotechnology Centre of Nanyang Environment and Water Research Institute are supported by the Economic Development Board of Singapore. The researcher link funding provided by the University of Bath is also gratefully acknowledged.

References

- Ali A, Chapman GJ, Chew YMJ, Gu T, Paterson WR, Wilson DI. 2013. A fluid dynamic gauging device for measuring fouling deposit thickness in opaque liquids at elevated temperature and pressure. Exp Therm Fluid Sci. 48:19-28.
- Baker JS, Dudley LY. 1998. Biofouling in membrane systems a review. Desalination.
- 312 118:81-90.
- Bar-Zeev E, Perreault F, Straub AP, Elimelech M. 2015. Impaired performance of pressure-
- retarded osmosis due to irreversible biofouling. Environ Sci Technol. 49:13050-13058.
- Chavez DLF, Nejidat A, Herzberg M. 2016. Viscoelastic properties of extracellular
- polymeric substances can strongly affect their washing efficiency from reverse osmosis
- membranes. Environ Sci Technol. 50:9206-9213.
- 318 Chen X, Suwarno SR, Chong TH, McDougald D, Kjelleberg S, Cohen Y, Fane AG, Rice SA.
- 319 2013. Dynamics of biofilm formation under different nutrient levels and the effect on
- biofouling of a reverse osmosis membrane system. Biofouling. 29:319-330.
- 321 Chew JW, Krantz WB, Fane AG. 2014. Effect of a macromolecular- or bio-fouling layer on
- membrane distillation. J Membr Sci. 456:66-76.
- 323 Chew JYM, Cardoso SSS, Paterson WR, Wilson DI. 2004a. CFD studies of dynamic
- 324 gauging. Chem Eng Sci. 59:3381-3398.

323	Chew JYM, Cardoso SSS, Paterson WR, Wilson DI. 2004b. Fluid dynamic gauging for
326	measuring the strength of soft deposits. J Food Eng. 65:175-187.
327	Chew YMJ, Paterson WR, Wilson DI. 2007. Fluid dynamic gauging: A new tool to study
328	deposition on porous surfaces. J Membr Sci. 296:29-41.
329	Dreszer C, Vrouwenvelder JS, Paulitsch-Fuchs AH, Zwijnenburg A, Kruithof JC, Flemming
330	HC. 2013. Hydraulic resistance of biofilms. J Membr Sci. 429:436-447.
331	Ferrando D, Ziemba C, Herzberg M. 2017. Revisiting interrelated effects of extracellular
332	polysaccharides during biofouling of reverse osmosis membranes: Viscoelastic
333	properties and biofilm enhanced osmotic pressure. J Membr Sci. 523:394-401.
334	Flemming HC, Schaule G, Griebe T, Schmitt J, Tamachkiarowa A. 1997. Biofouling - The
335	Achilles heel of membrane processes. Desalination. 113:215-225.
336	Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016.
337	Biofilms: An emergent form of bacterial life. Nat Rev Microbiol. 14:563-575.
338	Goh S, Zhang Q, Zhang J, McDougald D, Krantz WB, Liu Y, Fane AG. 2013. Impact of a
339	biofouling layer on the vapor pressure driving force and performance of a membrane
340	distillation process. J Membr Sci. 438:140-152.
341	Graf von der Schulenburg DA, Vrouwenvelder JS, Creber SA, van Loosdrecht MCM, Johns
342	ML. 2008. Nuclear magnetic resonance microscopy studies of membrane biofouling. J
343	Membr Sci. 323:37-44.
344	Gu T, Chew YMJ, Paterson WR, Wilson DI. 2009. Experimental and CFD studies of fluid
345	dynamic gauging in annular flows. AIChE J. 55:1937-1947.
346	Habimana O, Semião AJC, Casey E. 2014. The role of cell-surface interactions in bacterial
347	initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis
348	membranes. J Membr Sci. 454:82-96.

349	He JZ, Li CC, Wang DJ, Zhou DM. 2015. Biofilms and extracellular polymeric substances
350	mediate the transport of graphene oxide nanoparticles in saturated porous media. J
351	Hazard Mater. 300:467-474.
352	Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl
353	L, Molin S, Høiby N, et al. 2002. Inhibition of quorum sensing in Pseudomonas
354	aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology.
355	148:87-102.
356	Huang Q, Wu H, Cai P, Fein JB, Chen W. 2015. Atomic force microscopy measurements of
357	bacterial adhesion and biofilm formation onto clay-sized particles. Sci Rep. 5:1-12.
358	Ikuma K, Madden AS, Decho AW, Lau BLT. 2014. Deposition of nanoparticles onto
359	polysaccharide-coated surfaces: implications for nanoparticle-biofilm interactions.
360	Environ Sci Nano. 1:117-122.
361	Jamaly S, Darwish NN, Ahmed I, Hasan SW. 2014. A short review on reverse osmosis
362	pretreatment technologies. Desalination. 354:30-38.
363	Jones SA, Chew YMJ, Bird MR, Wilson DI. 2010. The application of fluid dynamic gauging
364	in the investigation of synthetic membrane fouling phenomena. Food Bioprod Process.
365	88:409-418.
366	Kögler M, Zhang B, Cui L, Shi Y, Yliperttula M, Laaksonen T, Viitala T, Zhang K. 2016.
367	Real-time Raman based approach for identification of biofouling. Sens Actuators, B.
368	230:411-421.
369	Körstgens V, Flemming HC, Wingender J, Borchard W. 2001. Uniaxial compression
370	measurement device for investigation of the mechanical stability of biofilms. J Microbiol
371	Methods. 46:9-17.

372 Kim LH, Shin MS, Kim SJ, Kim CM, Chae KJ, Kim IS. 2015. Potential effects of damaged 373 Pseudomonas aeruginosa PAO1 cells on development of reverse osmosis membrane 374 biofouling. J Membr Sci. 477:86-92. 375 Korstgens V, Flemming HC, Wingender J, Borchard W. 2001. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water 376 377 Sci Technol. 43:49-57. Kundukad B, Seviour T, Liang Y, Rice SA, Kjelleberg S, Doyle PS. 2016. Mechanical 378 379 properties of the superficial biofilm layer determine the architecture of biofilms. Soft 380 Matter. 12:5718-5726. 381 Le-Clech P, Chen V, Fane TAG. 2006. Fouling in membrane bioreactors used in wastewater 382 treatment. J Membr Sci. 284:17-53. 383 Lewis WJT, Agg A, Clarke A, Mattsson T, Chew YMJ, Bird MR. 2016. Development of an 384 automated, advanced fluid dynamic gauge for cake fouling studies in cross-flow 385 filtrations. Sens Actuators, A. 238:282-296. 386 Lewis WJT, Chew YMJ, Bird MR. 2012. The application of fluid dynamic gauging in 387 characterising cake deposition during the cross-flow microfiltration of a yeast 388 suspension. J Membr Sci. 405:113-122. 389 Linares RV, Fortunato L, Farhat NM, Bucs SS, Staal M, Fridjonsson EO, Johns ML, 390 Vrouwenvelder JS, Leiknes T. 2016a. Mini-review: novel non-destructive in situ biofilm 391 characterization techniques in membrane systems. Desalin Water Treat. 57:22894-22901. 392 Linares RV, Wexler AD, Bucs SS, Dreszer C, Zwijnenburg A, Flemming HC, Kruithof JC, 393 Vrouwenvelder JS. 2016b. Compaction and relaxation of biofilms. Desalin Water Treat. 394 57:12902-12914. 395 Mohle RB, Langemann T, Haesner M, Augustin W, Scholl S, Neu TR, Hempel DC, Horn H. 396 2007. Structure and shear strength of microbial biofilms as determined with confocal

397	laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm
398	reactor. Biotechnol Bioeng. 98:747-755.
399	Mukherjee M, Menon NV, Liu X, Kang Y, Cao B. 2016. Confocal laser scanning
400	microscopy-compatible microfluidic membrane flow cell as a nondestructive tool for
401	studying biofouling dynamics on forward osmosis membranes. Environ Sci Technol Lett.
402	3:303-309.
403	Murthy PS, Venkatesan R. 2009. Industrial biofilms and their control. In: Marine and
404	Industrial Biofouling. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 65-101.
405	Nguyen T, Roddick FA, Fan L. 2012. Biofouling of water treatment membranes: A review of
406	the underlying causes, monitoring techniques and control measures. Membranes. 2:804-
407	840.
408	O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for <i>Pseudomonas</i>
409	aeruginosa biofilm development. Mol Microbiol. 30:295-304.
410	Oubekka SD, Briandet R, Fontaine-Aupart MP, Steenkeste K. 2012. Correlative time-
411	resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms.
412	Antimicrob Agents Chemother. 56:3349-3358.
413	Peck OPW, Chew YMJ, Bird MR, Bolhuis A. 2015. Application of fluid dynamic gauging in
414	the characterization and removal of biofouling deposits. Heat Transfer Eng. 36:685-694.
415	Pontié M, Thekkedath A, Kecili K, Habarou H, Suty H, Croué JP. 2007. Membrane autopsy
416	as a sustainable management of fouling phenomena occurring in MF, UF and NF
417	processes. Desalination. 204:155-169.
418	Poppele EH, Hozalski RM. 2003. Micro-cantilever method for measuring the tensile strength
419	of biofilms and microbial flocs. J Microbiol Methods. 55:607-615.

420	Powell LC, Hilal N, Wright CJ. 2017. Atomic force microscopy study of the biofouling and
421	mechanical properties of virgin and industrially fouled reverse osmosis membranes.
422	Desalination. 404:313-321.
423	Sim STV, Suwarno SR, Chong TH, Krantz WB, Fane AG. 2013. Monitoring membrane
424	biofouling via ultrasonic time-domain reflectometry enhanced by silica dosing. J Membr
425	Sci. 428:24-37.
426	Suwarno SR, Chen X, Chong TH, Puspitasari VL, McDougald D, Cohen Y, Rice SA, Fane
427	AG. 2012. The impact of flux and spacers on biofilm development on reverse osmosis
428	membranes. J Membr Sci. 405-406:219-232.
429	Suwarno SR, Hanada S, Chong TH, Goto S, Henmi M, Fane AG. 2016. The effect of
430	different surface conditioning layers on bacterial adhesion on reverse osmosis
431	membranes. Desalination. 387:1-13.
432	Timoner X, AcuÑA V, Von Schiller D, Sabater S. 2012. Functional responses of stream
433	biofilms to flow cessation, desiccation and rewetting. Freshw Biol. 57:1565-1578.
434	Tuladhar TR, Paterson WR, Macleod N, Wilson DI. 2000. Development of a novel non-
435	contact proximity gauge for thickness measurement of soft deposits and its application in
436	fouling studies. Can J Chem Eng. 78:935-947.
437	Tuladhar TR, Paterson WR, Wilson DI. 2002. Investigation of alkaline cleaning-in-place of
438	whey protein deposits using dynamic gauging. Food Bioprod Process. 80:199-214.
439	van Oss CJ. 1997. Hydrophobicity and hydrophilicity of biosurfaces. Curr Opin Colloid
440	Interface Sci. 2:503-512.
441	